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Motivating example: neutron transport

∂ψt
∂t (r , v) = v · ∇ψt(r , v)− (σs(r , v) + σf(r , v))ψt(r , v)

+ σs(r , v)
∫

V
ψt(r , v ′)πs(r , v , v ′)dv ′

+ σf(r , v)
∫

V
ψt(r , v ′)πf(r , v , v ′)dv ′,

= (T + S + F)[ψt ](r , v)

where

σs(r , v) : is the rate at which a neutron scatters,
σf(r , v) : is the rate at which a fission event occurs,

πs(r , v , v ′) : is the probability a neutron with incoming velocity v scatters with
new velocity v ′,

πf(r , v , v ′) : is the average number of neutrons produced in a fission event with
new velocity v ′ from a neutron with incoming velocity v .
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Motivating example: neutron transport

We also impose the following boundary and initial conditions:

ψt(r , v) = 0, r ∈ ∂D,nr · v > 0,

ψ0(r , v) = g(r , v)
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Motivating example: neutron transport

Aim

Find λ ∈ R, ϕ : D × V → [0,∞) and a probability measure on η such that

(T + S + F)ϕ = λϕ,

and
〈η, (T + S + F)g〉 = λ〈η, g〉,

for suitable test functions g : D × V → [0,∞).
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Branching Markov processes

Let {xi (t) : i = 1, . . . ,Nt} denote the configuration of the system at time
t ≥ 0.

The branching process is given by

Xt :=
Nt∑
i=1

δxi (t).

The law of (Xt)t≥0 is characterised via the non-linear semigroup

vt [g ](x) := Eδx

[
e−Xt [g ]],

where

Xt [g ] =
Nt∑
i=1

g(xi (t)).
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Branching Markov processes

Markov semigroup:

Pt [g ](x) := Ex [g(ξt)1t<τ ], t ≥ 0, x ∈ E , g ∈ B+(E ).

Modified Markov semigroup:

P̂t [g ](x) =
{

Pt [g ](x), t < τ

1, t ≥ τ.

Branching mechanism:

G[g ](x) = β(x)Ex

[ N∏
i=1

g(yi )− g(x)
]
, x ∈ E , g ∈ B+

1 (E ).
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Branching Markov processes

Proposition
We have that (vt , t ≥ 0) is the unique solution to

vt [g ](x) = P̂t [e−g ](x) +
∫ t

0
Ps [G[vt−s ]](x)ds.

Differentiating with respect to t, we obtain the generator equation

∂

∂t vt [g ](x) = Lvt [g ](x) + G [vt [g ]](x),

where L is the infinitesimal generator of the Markov process (ξ,P) and g ∈ D(L).
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Example: continuous time Galton Watson process

Non-linear semigroup: vt [θ] = E[e−θNt ]
Branching mechanism:

G[θ] = E [θN ]− θ =
∑
k≥0

pkθ
k − θ.
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Example: BBM

Pt [g ](x) = Ex [g(Bt)]
∂

∂t vt [g ](x) = 1
2
∂2

∂x2 vt [g ](x) + βvt [g ](x)(vt [g ](x)− 1)
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Example: growth-fragmentation

Pt [f ](x) = Ex [f (x(t))]
G[f ](x) = B(x)

(
Ex
[
f (x(1− p))f (xp)

]
− f (x)

)

Emma Horton Branching processes CUWB Jan 2024



Example: neutron transport
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Branching Markov processes

We are also interested in the linear semigroup

ψt [g ](x) := Eδx [Xt [g ]] ,

which is the unique solution to

ψt [g ](x) = Pt [g ](x) +
∫ t

0
Ps [F[ψt−s ]](x)ds,

where

F[g ](x) = β(x)Ex

[ N∑
i=1

g(yi )− g(x)
]
, x ∈ E , g ∈ B+(E ).

For convenience, we will define

m[g ](x) := Ex [Z[g ]] = Ex

[ N∑
i=1

g(yi )
]

Emma Horton Branching processes CUWB Jan 2024



Many-to-one

Let us consider the process ξ̂, described as follows.

From an initial position x ∈ E , ξ̂ evolves as ξ.

When at y ∈ E , at rate β(y)m[1](y) the process is sent to a new position in
E .

The new position lies in A ⊂ E with probability m[1A](y)/m[1](y).
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Many-to-one

Many-to-one lemma
Suppose that m[1] ∈ B+(E ). Then for x ∈ E , t ≥ 0, g ∈ B+(E ), we have

ψt [g ](x) = Êx

[
e
∫ t

0
γ(ξ̂s )dsg(ξ̂t)

]
,

where γ(ξ̂s) = β(ξ̂s)(m[1](ξ̂s)− 1).
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Many-to-one

Continuous time GW process: E[Nt ] = e(m−1)t .

BBM: Eδx [Xt [f ]] = eβtEx [f (Bt)].

Growth-fragmentation: Eδx [Xt [f ]] = Ex

[
e
∫ t

0
B(Ys )ds f (Yt)

]
.

Neutron transport: Eδx [Xt [f ]] = Ex

[
e
∫ t

0
σf (Rs ,Υs )(m[1](Rs ,Υs )−1)ds f (Rt ,Υt)

]
.
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A Perron Frobenius decomposition

Consider the case where (ξt , t ≥ 0) is a continuous time Markov chain on
E = {1, . . . , n}.

Let pt(i , j) = Pi (ξt = j) ⇒ Pt [g ](i) = Ei [g(ξt)] =
n∑

j=1
pt(i , j)g(j)

Assuming the chain is irreducible, Perron Frobenius theory tells us that there
exist λc ≤ 0 and vectors ϕ, η such that

Pt [ϕ] = eλc tϕ, η[Pt [g ]] = eλc tη[g ],

and
pt(i , j) ∼ eλc tϕ(i)η(j) + o(eλc t), t →∞.
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A Perron-Frobenius decomposition

Similarly, we would like to find
λ∗ ∈ R,
a positive function ϕ ∈ B+(E ),
a probability measure η on E

such that

ψt [ϕ] = eλ∗tϕ, η[ψt [g ]] = eλ∗tη[g ],

and

ψt [g ](x) ∼ eλ∗tϕ(x)η[g ], as t →∞.
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A Perron Frobenius decomposition

Returning to the Markov chain example:

If the chain is conservative, then λc = 0. Thus η[Pt [g ]] = η[g ] and hence η is
the stationary distribution.

If the chain is non-conservative, then λc < 0. In this case, η is called the
quasi-stationary distribution (QSD).
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QSDs

Let (Yt)t≥0 be a time-homogeneous Markov process on E ∪ {∂} with
probabilities (P†x , x ∈ E ) and semigroup (P†t )t≥0.

Assume that τ∂ := inf{t > 0 : Xt = ∂} <∞, P†x -almost surely for all x ∈ E .

Assume further that for all x ∈ E , P†x (t < τ∂) > 0.
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QSDs

Definition
A quasi-stationary distribution (QSD) is a probability measure η on E such that

η = lim
t→∞

P†µ(Xt ∈ ·|t < τ∂)

for some initial probability measure µ on E .

Proposition
A probability measure η is a QSD if and only if, for any t ≥ 0,

η = P†η(Yt ∈ ·|t < τ∂).
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QSDs

Méléard, S., & Villemonais, D. (2012). Quasi-stationary distributions and
population processes.

van Doorn, E. A., & Pollett, P. K. (2011). Quasi-stationary distributions.
Memorandum 1945.

Collet, P., Mart́ınez, S., & San Mart́ın, J. (2013). Quasi-stationary
distributions: Markov chains, diffusions and dynamical systems (Vol. 1).
Berlin: Springer.

Works of Champagnat & Villemonais.
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QSDs

Assumption A
There exists a probability measure ν on E such that

(A1) there exists t0, c1 > 0 such that for all x ∈ E ,

P†x (Yt0 ∈ ·|t0 < τ∂) ≥ c1ν(·);

(A2) there exists c2 > 0 such that for all x ∈ E and t ≥ 0,

P†ν(t < τ∂) ≥ c2P†x (t < τ∂).
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QSDs

Theorem (Champagnat, Villemonais)
Under Assumption A, there exists a probability measure η on E and two constants
C , ε > 0 such that, for all x ∈ E ,

‖P†x (Yt ∈ ·|t < τ∂)− η(·)‖TV ≤ Ce−εt , t ≥ 0.

In this case, η is the unique QSD for the process.

Proposition
If η is a QSD then there exists λc < 0 such that, for all t ≥ 0,

P†η(t < τ∂) = eλc t , η[P†t [g ]] = eλc tη[g ].
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QSDs

Proposition (Champagnat, Villemonais)
There exists a non-negative function ϕ on E ∪ {∂}, positive on E and vanishing on
∂, defined by

ϕ(x) = lim
t→∞

e−λc tP†x (t < τ∂),

where the convergence holds for the uniform norm on E ∪ {∂} and η[ϕ] = 1.
Moreover, ϕ is bounded and

P†t [ϕ] = eλc tϕ.
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A Perron Frobenius decomposition

Define
γ̄ := sup

x∈E
γ(x) = sup

x∈E
β(x)(m[1](x)− 1).

Let us introduce the semigroup ψ† via

ψ†t [g ](x) := e−γ̄tψt [g ](x)

= Êx

[
e
∫ t

0
γ(ξ̂s )−γ̄dsg(ξ̂t)

]
= Êx

[
g(ξ̂t)1t<κ

]
=: E†x [g(ξ̂t)],

where
κ := inf{t > 0 :

∫ t

0
γ̄ − γ(ξ̂s)ds > e}.
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QSDs

Then, under Assumption A, we have

ψ†t [ϕ](x) = eλc tϕ(x), η[ψ†t [g ]] = eλc tη[g ]

and, for any t ≥ 0,

‖P†x (ξ̂t ∈ ·|t < τ∂)− η(·)‖ ≤ Ce−εt .

Since ϕ(x) = lim
t→∞

e−λc tP†x (t < τ∂), it follows that

sup
x∈E ,g∈B+

1 (E)
|e−λc tϕ(x)−1ψ†t [g ]− η[g ]| ≤ Ce−εt .

Since ψt = eγ̄tψ†t , the same conclusion then holds for ψt with λc replaced by
λ∗ = λc + γ̄.
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QSDs

Assumption A
There exists a probability measure ν on E such that

(A1) there exists t0, c1 > 0 such that for all x ∈ E ,

P†x (Yt0 ∈ ·|t0 < τ∂) ≥ c1ν(·);

(A2) there exists c2 > 0 such that for all x ∈ E and t ≥ 0,

P†ν(t < τD) ≥ c2P†x (t < τ∂).

Under mild assumptions on the cross-sections and the domain, (A1) and (A2)
are satisfied for the NTE.

Birth-death processes.

“Processes that come down from infinity”.
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QSDs

Assumption F
There exist γ1, γ2, c1, c2, c3, t1 > 0, a measurable function ψ1 : E → [1,∞), and a
probability measure ν on a measurable subset L ⊂ E such that

(F1) For all x ∈ L

P†x (Xt1 ∈ ·) ≥ c1ν(· ∩ L) and sup
t∈R+

supy∈L P†y (t < τ)
infy∈L P†y (t < τ)

≤ c2.

(F2) We have γ1 < γ2 and

Lψ1(x) ≤ −γ1ψ1(x) + c31L(x), x ∈ E
γ−t

2 P†x (Xt ∈ L)→∞ as t →∞, for all x ∈ L.
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QSDs

Under Assumption F, Champagnat and Villemonais prove the existence of and
convergence towards a QSD but the convergence is not uniform.

In this case, there may be an infinite number of QSDs.

The result captures the existence of the minimal QSD.
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Recap

Branching process (Xt , t ≥ 0).

Non-linear semigroup: Eδx [e−Xt [f ]].

Linear semigroup: Eδx [Xt [f ]] = Êx

[
e
∫ t

0
β(ξ̂s )(m[1](ξ̂s )−1)ds f (ξ̂t)

]
.

The linear semigroup (ψt , t ≥ 0) is the unique solution to

ψt [g ](x) = Pt [g ](x) +
∫ t

0
Ps [F[ψt−s ]](x)ds,
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Recap

We will assume that β,m[1] ∈ B+(E ) and that Assumption A holds.

Then we have
ψt [ϕ] = eλ∗tϕ, η[ψt [g ]] = eλ∗tη[g ]

and
ψt [g ](x) ∼ eλ∗tϕ(x)η[g ], t →∞.
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Spine decomposition

The branching property and the fact that

Eδx [Xt [ϕ]] = eλ∗tϕ(x),

imply that
W 1

t := e−λ∗t Xt [ϕ]
ϕ(x) , t ≥ 0,

is a unit mean Pδx -martingale.

Thus, we can define the change of measure

Pϕδx

Pδx

∣∣∣∣
Ft

:= W 1
t , t ≥ 0, x ∈ E ,

i.e. Pϕδx
(A) = Eδx [1AW 1

t ].
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Spine decomposition

Under Pϕ, the branching process X can be constructed as follows.

1. From the initial configuration µ =
n∑

i=1
δxi , the i∗-th individual is selected with

probability ϕ(xi∗)/µ[ϕ] and marked the spine.
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Spine decomposition

2. The individuals j 6= i∗ in the initial configuration each issue independent copies
of (X ,Pδxj

) respectively.
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Spine decomposition

3. The marked individual, “spine”, issues a single particle whose motion is
determined by the semigroup

St [f ](x) := Ex

[
e
∫ t

0
β(ξs )

(m[ϕ(ξ̂s )]
ϕ(ξ̂s ) −1

)
ds ϕ(ξt)
ϕ(x) f (ξt)

]
x ∈ E , f ∈ B+(E ).
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Spine decomposition
4. When at x ∈ E , the spine undergoes branching at rate

ρ(x) := β(x) m[ϕ](x)
ϕ(x)

at which point, it produces particles according (Z,Pϕx ), where
dPϕx
dPx

= Z[ϕ]
m[ϕ](x) .
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Spine decomposition
5. Given Z from the previous step, µ is redefined as µ = Z and Step 1 is repeated.
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Spine decomposition

From the many-to-one lemma,

Êx

[
e
∫ t

0
γ(ξ̂s )ds

ϕ(ξ̂t)
]

= eλ∗tϕ(x).

It follows that
W 2

t := e−λ∗t+
∫ t

0
γ(ξ̂s )ds ϕ(ξ̂t)

ϕ(x) , t ≥ 0.

is a unit mean P̂x -martingale.

Thus, we can define a second change of measure

dPϕx
dP̂x

∣∣∣∣
Gt

:= W 2
t , t ≥ 0, x ∈ E .
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Spine decomposition

Ergodicity of the spine
The spine process is equal in law to (ξ̂,Pϕ). The semigroup (Pϕt , t ≥ 0) associated
to (ξ̂,Pϕ) is conservative, and satisfies

Pϕt [f ](x) = e−λ∗t

ϕ(x) ψt [ϕf ], t ≥ 0, f ∈ B+(E ),

with stationary distribution

ϕ(x)η(dx), x ∈ E .
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Spine decomposition

(X ,Pδx ) (X ,Pϕδx
)

(ξ̂,Px ) (Y ,Pϕx )

W 1
t

M
an

y−
to
−

on
e M

any−
to−

one

W 2
t
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Q-process

Theorem (Champagnat, Villemonais)
Under Assumption A, the following three properties hold.

There exists a family (Qx )x∈E of probability measures defined by

lim
t→∞

P†x (A|t < τ) = Qx (A).

The process (ξ,Q) is an E -valued homogeneous Markov process. If, in
addition, ξ is strong Markov under P† then it is also strong Markov under Q.
Letting (Qt)t≥0 denote the semigroup of (ξ,Q), we have

Qt [g ](x) = e−λc t

ϕ(x) P†t [ϕg ](x).

The probability measure on E given by ϕ(x)η(dx) is the unique invariant
distribution of ξ under Q.
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Criticality

From the Perron Frobenius decomposition, we have

ψt [g ](x) ∼ eλ∗tϕ(x)η[g ], t →∞.

Subcritical: if λ∗ < 0, the average mass decays at rate −λ∗.

Critical: if λ∗ = 0, the average mass remains constant.

Supercritical: if λ∗ > 0, the average mass in the system grows at rate λ∗.
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Criticality

Define
ζ := inf{t > 0 : Nt = 0}.

Subcritical: {ζ <∞} almost surely.

Critical: {ζ <∞} almost surely.

Supercritical: {ζ =∞} with positive probability.
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Yaglom limit for BGW processes
Suppose (Zn)n≥0 is a BGW process,

Zn+1 =
Zn∑

i=1
ξi , ξi ∼iid ξ.

Assume E[ξ] = 1 so that the process is critical.
Further assume that σ2 := E[ξ2]− E[ξ] <∞.

Kolmogorow limit (Kolmogorov ’38):

lim
n→∞

nP(Zn > 0) = 2
σ2

Yaglom limit (Yaglom ’48):

lim
n→∞

E
[

exp
(
−θZn

n

) ∣∣∣Zn > 0
]

= 1
1 + θσ2/2 .
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Yaglom limit for BBM on a compact domain
Let D ⊂ Rd be compact.
Let (Xt)t≥0 denote a branching process where, given their point of creation,
particles move independently according to a diffusion with generator L.
Particles are killed on ∂D and at rate β > 0, they branch into a random
number of particles with distribution A.

Let λ denote the first eigenvalue of −L on D.
Assume m := E[A] > 1, E[A2] <∞ and λ = β(m − 1).

Kolmogorov result (Powell ’19):

lim
t→∞

tPx (Nt > 0) = C1(x).

Yaglom limit (Powell ’19):

lim
t→∞

Ex

[
exp

(
−θt

Nt∑
i=1

f (X i
t )
)∣∣∣Nt > 0

]
= 1

1 + θC2(f ) .
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General setting

Define

V[g ](x) := Ex

[ N∑
i,j=1
i 6=j

g(yi )g(yj)
]
, x ∈ E , f ∈ B+(E ).

and
Σ = η[βV[ϕ]].

Theorem
Under certain assumptions, we have

lim
t→∞

sup
x∈E

∣∣∣ tPδx (Nt > 0)
ϕ(x) − 2

Σ

∣∣∣ = 0.
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“Certain assumptions”

For all t sufficiently large, sup
x∈E

Pδx (Nt > 0) < 1.

There exists a constant C > 0 such that for all g ∈ B+(E ),

η[βV[g ]] ≥ Cη[g ]2.

The number of offspring produced at a branching event is bounded above by a
constant nmax .
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General setting

Theorem (Yaglom limit)
Under the same assumptions, for each f ∈ B+(E ),(

Xt [f ]
t

∣∣∣∣Nt > 0
)
→ Y , as t →∞,

in distribution, where Y is an exponential random variable with mean η[f ]Σ/2.
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Attempt 1
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Method of moments

Know that exponential distribution is characterised by its moments.

Let us consider the moments of t−1Xt [f ] under Pδx (·|Nt > 0):

Eδx

[(
Xt [f ]

t

)k ∣∣∣∣Nt > 0
]

=
1

tk−1 Eδx [Xt [f ]k1Nt>0]
tPδx (Nt > 0)

If f = ϕ, we have

Eδx

[(
Xt [ϕ]

t

)k ∣∣∣∣Nt > 0
]

=
1

tk−1 Eδx [Xt [ϕ]k1Nt>0]
tPδx (Nt > 0) =

ϕ(x)
tk−1 Eϕδx

[Xt [ϕ]k−1]
tPδx (Nt > 0)
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Method of moments

The spine decomposition means that under the measure Eϕ, we may write

Xt [ϕ]
t = ϕ(ξ̂t)

t + 1
t

nt∑
i=1

Ξi (ξ̂ui
t
, t − ui

t),

where the Ξi (x , u) are independent and equal in law to

N i∑
j=1
j 6=i∗

X j
t−u[ϕ] under ηϕx := Pϕx

⊗
j=1
j 6=i∗

Pδxj
.
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Method of moments

Recall, for homogeneous Poisson processes
The order of the arrivals is not important.
Positions of events are uniformly distributed.

Similarly, in this case, conditional on nt and ξ̂, the ui
t are i.i.d with law

P(t,ξ̂)(ut ∈ ds) = ρ(ξ̂s)∫ t
0 ρ(ξ̂s)ds

.
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Method of moments

Since the spine is ergodic, we have

lim
t→∞

1
t E

ϕ
δx

[Xt [ϕ]] = lim
t→∞

Eϕδx

[
1
t

nt∑
i=1

ηϕ
ξ̂ui

t

[Ξi (ξ̂ui
t
, t − ui

t)]
]

= lim
t→∞

Eϕδx

nt
t

∫ t
0 ρ(ξ̂s)ηϕ

ξ̂s
[Ξ(ξ̂s , t − s)]ds∫ t

0 ρ(ξ̂s)ds


= lim

t→∞
Eϕx
[

1
t

∫ t

0
ρ(ξ̂s)ηϕ

ξ̂s
[Ξ(ξ̂s , t − s)]ds

]
= η [βV[ϕ]] ,

where we recall that V[h](x) = Ex

[ N∑
i,j=1
i 6=j

h(xi )h(xj)
]

.
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Method of moments

Proceed by induction:

1
tk E

ϕ
δx

( nt∑
i=1

Ξ(ξ̂ui
t
, t − ui

t)
)k


= 1
tk E

ϕ
δx

 k∑
j=1

2j
(

nt
j

)
1j≤nt

∑
[k1,...,kj ]+

(
k

k1, . . . , kj

) j∏
i=1

ηϕ
ξ̂ui

t

[Ξ(ξ̂ui
t
, t − ui

t)ki ]

 ,
where [k1, . . . , kj ]+ is the set of all strictly positive {k1, . . . , kj} that sum to k.
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Method of moments

Theorem (Harris, H., Kyprianou, Wang)
Suppose that for some k ≥ 1, sup

x∈E
Ex [Z[1]k+1] <∞. Then, for all j ≤ k,

lim
t→∞

sup
x∈E

∣∣∣∣∣ 1
t j E

ϕ
δx

[Xt [ϕ]j ]− (j + 1)!
(

Σ
2

)j
∣∣∣∣∣ = 0.
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Yaglom limit

Then

lim
t→∞

Eδx

[(
Xt [ϕ]

t

)k ∣∣∣∣Nt > 0
]

= lim
t→∞

1
tk−1 Eδx [Xt [ϕ]k1Nt>0]

tPδx (Nt > 0)

= lim
t→∞

ϕ(x)
tk−1 Eϕδx

[Xt [ϕ]k−1]
tPδx (Nt > 0)

= ϕ(x)k!(Σ/2)k−1

ϕ(x)2/Σ

= k!
(

Σ
2

)k
.
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Yaglom limit

For general f , write f = f − η[f ]ϕ+ η[f ]ϕ =: f̃ + η[f ]ϕ.

From the previous steps, if follows that replacing ϕ by η[f ]ϕ yields the correct
result.

To conclude, we show that Xt [f̃ ]/t → 0 weakly under Pδx (·|Nt > 0).
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Attempt 2
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Attempt 2

Proof of survival probability remains the same  still need the nmax
assumption /

For the Yaglom result, recall that

Eδx

[(
Xt [f ]

t

)k ∣∣∣∣Nt > 0
]

=
1

tk−1 Eδx [Xt [f ]k1Nt>0]
tPδx (Nt > 0)
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Method of moments #2

Set ψ(k)
t [f ](x) = Eδx [Xt [f ]k ]. Note that ψ(1)

t = ψt .

Our objective is to show that for k ≥ 2, f ∈ B+(E ) and x ∈ E ,

lim
t→∞

gk(t)ψ(k)
t [f ](x) = Ck(x , f ),

where gk(t) and Ck(x , f ) can be identified explicitly.

The key is to notice that

ψ
(k)
t [f ](x) = (−1)k ∂

k

∂θk Eδx [e−θXt [f ]]
∣∣∣
θ=0

= (−1)k ∂
k

∂θk vt [θf ](x)
∣∣∣
θ=0

.
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Method of moments #2

Recall the evolution equation for vt [f ](x) = Eδx [e−Xt [f ]]:

vt [f ](x) = P̂t [e−f ](x) +
∫ t

0
Ps [G[vt−s [f ]]] (x)ds,

where P̂t [f ](x) = Ex [f (ξt∧τ∂ )].

However, this is not the right evolution equation to work with.
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Method of moments #2

Set
ut [f ](x) = 1− vt [f ](x), t ≥ 0,

and

A[f ](x) = β(x)Ex

[ N∏
i=1

(1− f (xi ))− 1 +
N∑

i=1
f (xi )

]
.

Lemma
For all x ∈ E and t ≥ 0, ut [g ](x) satisfies

ut [g ](x) = ψt [1− e−g ](x)−
∫ t

0
ψs [A[ut−s [g ]]] (x)ds.
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Method of moments #2

Assume that sup
x∈E
Ex [Z[1]k ] <∞. Then

ψ
(k)
t [f ](x) = ψt [f k ](x) +

∫ t

0
ψs

[
βη

(k−1)
t−s [f ]

]
(x) ds, t ≥ 0, (1)

where

η
(k−1)
t−s [f ](x) = Ex

 ∑
[k1,...,kN ]2

k

(
k

k1, . . . , kN

) ∏
j:kj>0

ψ
(kj )
t−s [f ](xj)

 ,
and [k1, . . . , kN ]2

k is the set of all non-negative N-tuples (k1, . . . , kN) such that
N∑

i=1
ki = k and at least two of the ki are strictly positive.
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Method of moments #2

Theorem (with Gonzalez Garcia & Kyprianou)
Assume that sup

x∈E
Ex [Z[1]k ] <∞. Define

∆(`)
t = sup

x∈E ,f∈B+(E)

∣∣∣t−(`−1)ϕ(x)−1ψ
(`)
t [f ](x)− `! η[f ]`(Σ/2)`−1

∣∣∣ ,
Then, for all ` ≤ k and ε > 0

sup
t≥ε

∆(`)
t <∞ and lim

t→∞
∆(`)

t = 0.

i.e. ψ(`)
t [f ](x) ∼ t`−1`!ϕ(x)η[f ]`(Σ/2)`−1

Emma Horton Branching processes CUWB Jan 2024



Method of moments #2

Theorem (with Gonzalez Garcia & Kyprianou)
Assume that sup

x∈E
Ex [Z[1]k ] <∞. Define

∆(`)
t = sup

x∈E ,f∈B+(E)

∣∣∣t−(`−1)ϕ(x)−1ψ
(`)
t [f ](x)− `! η[f ]`(Σ/2)`−1

∣∣∣ ,
Then, for all ` ≤ k and ε > 0

sup
t≥ε

∆(`)
t <∞ and lim

t→∞
∆(`)

t = 0.

i.e. ψ(`)
t [f ](x) ∼ t`−1`!ϕ(x)η[f ]`(Σ/2)`−1

Emma Horton Branching processes CUWB Jan 2024



Recap

Theorem (Kolmogorov survival probability)
We have

lim
t→∞

sup
x∈E

∣∣∣ tPδx (Nt > 0)
ϕ(x) − 2

Σ

∣∣∣ = 0.

Theorem (Yaglom limit)
For each f ∈ B+(E ), (

Xt [f ]
t

∣∣∣∣Nt > 0
)
→ Y , as t →∞,

in distribution, where Y is an exponential random variable with mean η[f ]Σ/2.
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Recap

Method of moments: show that

Eδx [Xt [f ]k |Nt > 0] ∼ tkk!η[f ]k(Σ/2)k .

Find an evolution equation that relates the k-th moment to the lower order
moments and use induction.

Can use (X ,P) or (X ,Pϕ)...

but either way, we require a bound on the
number of offspring.
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Attempt 3
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New assumptions

β,m[1] ∈ B+(E )

Assumption A holds and λ∗ = 0.

For t sufficiently large, sup
x∈E

Pδx (Nt > 0) < 1.

There exist constants C ,M ∈ (0,∞) such that ∀g ∈ B+(E ),

η[γVM [g ]]〉 ≥ Cη[g ]2,

where
VM [g ](x) := Ex [

∑
i 6=j

g(xi )g(xj)1{N≤M}].

sup
x∈E
Ex [N2] <∞

,
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Attempt 3

Idea: work directly with the Laplace transform

Eδx [e−θXt [ϕ]|Nt > 0] = Eδx [e−θXt [ϕ]1Nt>0]
Pδx (Nt > 0)

1− Eδx [e−θXt [ϕ]] and Pδx (Nt > 0) = 1− Pδx (Nt = 0) are both solutions to

ut [g ](x) = ψt [1− e−g ](x)−
∫ t

0
ψs [A[ut−s [g ]]] (x)ds,

where

A[f ](x) = β(x)Ex

[ N∏
i=1

(1− f (xi ))− 1 +
N∑

i=1
f (xi )

]
.
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Why the 2nd moments?

Magical explanation:

ηϕx

[ N∑
j=1
j 6=i∗

X j
t−u[ϕ]

]
= Eϕx

[ N∑
j=1
j 6=i∗

Eδxj
[X j

t−u[ϕ]]
]

= Ex

[
Z[ϕ]
Ex [Z[ϕ]]

N∑
k=1

ϕ(xk)
Z[ϕ]

N∑
j=1
j 6=k

Eδxj
[X j

t−u[ϕ]]
]

= 1
Ex [Z[ϕ]]Ex

[ N∑
k=1

ϕ(xj)
N∑

j=1
j 6=k

ϕ(xj)
]
.
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j 6=i∗

X j
t−u[ϕ]

]
= Eϕx

[ N∑
j=1
j 6=i∗

Eδxj
[X j

t−u[ϕ]]
]

= Ex

[
Z[ϕ]
Ex [Z[ϕ]]

N∑
k=1

ϕ(xk)
Z[ϕ]

N∑
j=1
j 6=k

Eδxj
[X j

t−u[ϕ]]
]

= 1
Ex [Z[ϕ]]Ex
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k=1

ϕ(xj)
N∑

j=1
j 6=k

ϕ(xj)
]
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Why 2nd moments?

Analytic explanation:

t−kψ
(k+1)
t [f ](x)

= t−k
∫ t

0
ψs

E·
 ∑

[k1,...,kN ]2k+1

(
k + 1

k1, . . . , kN

) ∏
j:kj >0

ψ
(kj )
t−s [f ](xj)

 (x)ds

= 1
t

∫ t

0
ψs

E·
 ∑

[k1,...,kN ]2k+1

(
k + 1

k1, . . . , kN

)
(t − s)k+1−#{j:kj >0}

tk−1

∏
j:kj >0

ψ
(kj )
t−s [f ](xj)

(t − s)kj−1

 (x)ds
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Why the 2nd moments?

Probabilistic explanation: asymptotically, two children of the MRCA, each with at
least 1 descendant alive at time t.

Recall the operator

A[h](x) = β(x)Ex

[
1−

N∏
i=1

(1− h(xi ))−
N∑

i=1
h(xi )

]

= β(x)Ex

∑
i 6=j

h(xi )h(xj)− . . .


= V [h](x) + h.o.t
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Why the exponential distribution?

There are asymptotically two children of the MRCA, each with at least 1
descendant alive at time t.

Distribution of the time of the MRCA of the particles alive at time t is
uniform.

Therefore, under Pδx (·|Nt > 0),

Xt
t ≈ U

(
X (1)

Ut
Ut + X (2)

Ut
Ut

)
.
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Literature

Galton Watson processes: Kolmogorov ’38, Yaglom ’48, Kesten et. al. ’66,
Lyons et. al. ’95, Geiger ’99, Geiger ’00, Vatutin et. al. ’01, Ren et. al. ’18.

Spatial branching processes: Powell ’19, Harris et. al. ’22, Horton & Powell
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Yaglom and Kolmogorov results
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Robustness of the method of moments

Define the occupation measure∫ t

0
Xs(·)ds, t ≥ 0.

Then, as t →∞,

Eδx

[(∫ t

0
Xs [g ]ds

)k]
∼ t2k−1Ck(x , g)
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Robustness of the method of moments

Consider now a Markov process X := (Xt)t≥0 the space of finite measures on E ,
with probabilities P := (Pµ, µ ∈ M(E )) and transition semigroup

Eµ
[
e−Xt [f ]

]
= e−µ[Vt [f ]],

where

Vt [f ](x) = Pt [f ](x)−
∫ t

0
Ps [ψ(·, Vt−s [f ](·)) + φ(·, Vt−s [f ])] (x)ds.
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Method of moments

E. Dumonteil and A. Mazzolo. Residence times of branching diffusion
processes.

S. Durham. Limit theorems for a general critical branching process.

J. Fleischman. Limiting distributions for branching random fields.

I. Iscoe. On the supports of measure-valued critical branching Brownian
motion.

A. Klenke. Multiple scale analysis of clusters in spatial branching models.
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Many-to-few

Recall the moment evolution equation:

ψ
(k)
t [f ](x) = ψt [f k ](x) +

∫ t

0
ψs

[
βη

(k−1)
t−s [f ]

]
(x) ds.
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Many-to-few

(X ,Pδx ) (X ,Pϕδx
)

(ξ̂,Px ) (Y ,Pϕx )

W 1
t

M
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y−
to
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W 2
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Many-to-few

(X k ,Pδx ) (X k ,Pϕδx
)

((ξ̂1, . . . , ξ̂k),Px ) ((ξ̂1, . . . , ξ̂k),Pϕx )

W̃ 1
t

M
an

y−
to
−

fe
w

M
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to−
few

W̃ 2
t
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Genealogical structure: ancestral trees

Let (X ,P) denote a Markov branching process.

Let T > 0. On the event {NT ≥ k}, choose k distinct particles U1, . . . ,Uk
uniformly from those alive at time T .

What does the ancestral tree formed from these k particles look like?
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Ancestral trees

Equivalently, define the equivalence relation ∼t on {1, . . . , k} by

i ∼t j ⇔ Ui and Uj share a common ancestor alive at time t.

Let πk,T
t denote the random partition of {1, . . . , k} corresponding to this

equivalence relation. What is the law of (πk,T
t ) conditional on NT ≥ k?
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Ancestral trees
Consider a continuous time Galton Watson with offspring distribution L.

Theorem (Lambert ’03)
On {NT ≥ 2}, pick two distinct particles, uniformly from those alive at time T .
Let τ denote the time of their most recent common ancestor (MRCA). Then

P(τ ∈ [t,T ],NT ≥ 2) =
∫ 1

0
(1− s)

F ′′T−t(s)
F ′T−t(s) F ′′T (s)ds,

where Ft(s) = E[sNt ].

Theorem (Zubkov ’76)
If m = E[L] = 1, then conditioned on NT ≥ 2,

τ

T → τC ∈ [0, 1],

in distribution, as T →∞.
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Ancestral trees
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Ancestral trees
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Ancestral trees

This result was presented in a more general setting in Harris, Johnston, Roberts
(2019).

The coalescent process obtained is topologically equivalent to Kingman’s
coalescent but with different coalescent rates.

The k − 1 split times of (π̄k,crit
t )t∈[0,1] have joint pdf

P(u1, . . . , uk−1) = k
∫ ∞

0

θk−1

(1 + θ)2

k−1∏
i=1

1
(1 + θ(1− ui ))2 dθ,

and are asymptotically independent of the Kingman tree topology.
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Ancestral trees

Proposition (Harris, H., Kyprianou, Powell)
Let a ∈ (0, 1) and x ∈ E . Let Tt denote the time of the MRCA of two particles,
one chosen uniformly from those alive at time t, and one chosen uniformly from
those alive at time at. Then

Tt
t → T ,

in distribution as t →∞.

Emma Horton Branching processes CUWB Jan 2024



Literature

O’Connell, The genealogy of branching processes and the age of our most
recent common ancestor.

Lambert, Coalescence times for the branching process.

Harris & Roberts, The many-to-few lemma and multiple spines.

Harris, Johnston & Roberts, The coalescent structure of continuous-time
Galton-Watson trees.

Harris, Horton, Kyprianou & Powell, Many-to-few for non-local branching
Markov process.

Johnston, The genealogy of Galton-Watson trees.

Zubkov, Limiting distributions of the distance to the closest common ancestor.

Athreya, Boenkost, Durrett, Foutel-Rodier, Le, Palau, Pardo, Schertzer,
Schweinsberg, Tourniaire, . . .

Emma Horton Branching processes CUWB Jan 2024



Genealogical structure: convergence to the BCRT

Aim is to look at the scaling limit of the continuous planar tree associated
with a MBP.

Ulam Harris notation:

Ω =
∞⋃

n=0
Nn.

The label ∅ denotes the initial ancestor.

Labels are of the form u = ∅u1u2 . . . un, e.g. label ∅215 means the particle is
the 5th child of the 1st child of the 2nd child of the initial ancestor.
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Convergence to the Brownian CRT
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Convergence to the Brownian CRT

Given a contour process (C(t))t≥0, define

d(s, t) = C(s) + C(t)− 2 min
r∈[s,t]

C(r), 0 ≤ s ≤ t.

Define
(Tt,x , dt,x ) := (T, 1

t d) under Pδx (·|Nt > 0)

Let e be a Brownian excursion conditioned to reach at least height 1.

Let (Te, de) denote the real tree encoded by e.
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Convergence to the Brownian CRT

Theorem
For any x ∈ E ,

(Tt,x , dt,x )→ (Te, de) as t →∞,

in distribution, with respect to the Gromov-Hausdorff topology.

GW trees: Aldous ’93, Le Gall & Duquesne ’02, Miermont ’09.

Branching diffusions: Powell ’19.

MBP: Horton & Powell ’24+.
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Convergence to the Brownian CRT

Emma Horton Branching processes CUWB Jan 2024



Comments

All of this can be done in discrete time.

Subcritical case: moment asymptotics, Yaglom limit, . . .

Supercritical case: law of large numbers, moment asymptotics, CLT, . . .
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Monte Carlo methods: branching process

Recall the Perron Frobenius asymptotic,

ψt [g ](x) ∼ eλ∗tη[g ]ϕ(x), t →∞.

Manipulation of this allows us to estimate the eigen-elements, e.g.

λ∗ = lim
t→∞

1
t logψt [1](x) = lim

t→∞

1
t logEδx [Nt ]

≈ 1
T log

(
1
N

N∑
i=1

N(i)
T

)
.
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Monte Carlo methods: many-to-one

Recall the many-to-one formula:

Eδx [Xt [g ]] = Ex

[
e
∫ t

0
γ(ξ̂s )dsg(ξ̂t)1t<τ

]
.

We can replace the branching process by a single weighted trajectory, e.g.

λ∗ = lim
t→∞

1
t logψt [1](x) = lim

t→∞

1
t log Ex

[
e
∫ t

0
γ(ξ̂s )ds1t<τ

]
= 1

T log
(

1
N

N∑
i=1

e
∫ T

0
γ(ξ̂(i)

s )ds1T<τ (i)

)
.
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Monte Carlo methods: Importance sampling

If only we could find a single trajectory that survives forever...

Recall that

dPϕx
dP̂x

∣∣∣∣
Gt

:= e−λ∗t+
∫ t

0
γ(ξ̂s )ds ϕ(ξ̂t)

ϕ(x) , t ≥ 0, x ∈ E .

Then

ψt [g ](x) = Ex

[
e
∫ t

0
γ(ξ̂s )dsg(ξ̂t)1t<τ

]
= Eϕx

[
eλ∗t ϕ(x)

ϕ(ξ̂t)
g(ξ̂t)

]
.
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Monte Carlo methods: Importance sampling

Instead, let’s make a ”guess” for ϕ, say h.

Define the change of measure

dPh
x

dP̂x

∣∣∣∣
Gt

:= e−
∫ t

0
J h(ξ̂s )

h(ξ̂s )
ds h(ξ̂t)

h(x) ,

where J is the generator of ξ̂.

Then

ψt [g ](x) = h(x)Eh
x

[
e
∫ t

0
γ(ξ̂s )+J h(ξ̂s )

h(ξ̂s )
ds g(ξ̂t)

h(ξ̂t)

]
.

Cox, A. M. G., Harris, S. C., Kyprianou, A. E., & Wang, M. (2022). Monte
Carlo methods for the neutron transport equation. SIAM/ASA Journal on
Uncertainty Quantification, 10(2), 775-825.
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Toy model

D = (−L, L), V = {−1,+1}.

We consider a system governed by the following NTE:

∂

∂t ψt(r , v) =v · ∇ψt(r , v)− (Σs + Σf)ψt(r , v)

+ Σs

2
(
ψt(r , v) + ψt(r ,−v)

)
+ Σfν

2
(
ψt(r , v) + ψt(r ,−v)

)
.

Boundary condition: ψt(L, 1) = 0 = ψt(−L,−1).
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Toy model

Standard ODE techniques allow one to solve the associated eigenvalue
problem explicitly.

Critical case:
Lc = arctan(1/

√
c̄ − 1)

(Σs + Σf)
√

c̄ − 1
.

Eigenfunctions:

ϕ(r , v) ∝ φ(r)1{v=+1} + φ(−r)1{v=−1}

η(r , v) ∝ φ(−r)1{v=+1} + φ(r)1{v=−1},

where
φ(r) = cos(α1r)− sin(α1r) cot(α1L).
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Toy model
Joint work with Eric Dumonteil and Andrea Zoia, CEA.
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Toy model

Cox et. al., Monte Carlo methods for the neutron transport equation.
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Cox et. al., Monte Carlo methods for the neutron transport equation.
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Monte Carlo methods: Fleming Viot

Let (Yt)t≥0 be a time-homogeneous Markov process on E ∪ {∂} with
probabilities (P†x , x ∈ E ) and semigroup (P†t )t≥0.

Assume that τ∂ := inf{t > 0 : Xt = ∂} <∞, P†x -almost surely for all x ∈ E .

Assume further that for all x ∈ E , P†x (t < τ∂) > 0.
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Monte Carlo methods: Fleming Viot

Simulate N ≥ 1 independent copies of (Y ,P†) until one of the particles is
absorbed.

Fleming Viot particle system

Emma Horton Branching processes CUWB Jan 2024



Monte Carlo methods: Fleming Viot

When this happens, duplicate one of the remaining N − 1 particles and return to
the previous step.

Fleming Viot particle system
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Monte Carlo methods: Fleming Viot

Fleming Viot particle system
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Monte Carlo methods: Fleming Viot

Let {Y i
t , i = 1, . . . ,N} denote the configuration of the Fleming Viot system at

time t ≥ 0.

Let At denote the number of rebirths up to time t.

Theorem (Villemonais ’14)
Assume that for any x ∈ E and t ≥ 0,

P†x (τ∂ = t) = 0,
At <∞ almost surely.

For any continuous, bounded function f : E → [0,∞), we have

1
N

N∑
i=1

δY i
t
→ Eµ0 [f (Yt)|t < τ∂ ],

in law, as N →∞.
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Monte Carlo methods: Fleming Viot

Let {Y i
t , i = 1, . . . ,N} denote the configuration of the Fleming Viot system at

time t ≥ 0.

Let At denote the number of rebirths up to time t.

Theorem
Assume that for any x ∈ E and t ≥ 0,

P†x (τ∂ = t) = 0,
At <∞ almost surely.

Then, for any f ∈ B+(E ) and T > 0,

E†x [f (YT )] = Ex

[(
N − 1

N

)AN
T 1

N

N∑
i=1

f (Y i
T )
]
.
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Monte Carlo methods: Fleming Viot

Idea of proof:

Define νf
t =

(
N − 1

N

)At 1
N

N∑
i=1

P†T−t [f ](Y i
t ).

Martingale decomposition:

νf
T − νf

0 =
∫ T

0

(
N − 1

N

)AN
s−

dMs + N
N − 1

∫ T

0

(
N − 1

N

)AN
s−

dMs . (2)

Taking expectations yields the result.
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Monte Carlo methods: Fleming Viot

Recall that we can create a subMarkov process from the branching process via

e−γ̄tψt [g ](x) = e−γ̄t Êx

[
e
∫ t

0
γ(ξ̂s )dsg(ξ̂t)1t<τ

]
= E†x [g(ξ̂t)].

Then, playing the same game, we have

Eδx [Xt [g ]] = eγ̄tE

[(
N − 1

N

)At 1
N

N∑
i=1

f (X i
t )
]

and

λ∗ = γ̄ + lim
t→∞

1
t logE

[
1
N

(
N − 1

N

)At
]
.
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Sequential Monte Carlo

Sequential Monte Carlo

 Sampling + Resampling

Particle filters

 Prediction + Updating

Genetic algorithms

 Mutation + Selection

Evolutionary population

 Exploration + Branching-selection

Diffusion Monte Carlo

 Free evolution + Absorption

Quantum Monte Carlo

 Walkers motion + Reconfiguration

Sampling Algorithms

 Transition proposals + Accept-reject-recycle

. . .
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Sequential Monte Carlo

Sequential Monte Carlo  Sampling + Resampling

Particle filters  Prediction + Updating

Genetic algorithms  Mutation + Selection

Evolutionary population  Exploration + Branching-selection

Diffusion Monte Carlo  Free evolution + Absorption

Quantum Monte Carlo  Walkers motion + Reconfiguration

Sampling Algorithms  Transition proposals + Accept-reject-recycle

. . .
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Sequential Monte Carlo
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Sequential Monte Carlo
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Sequential Monte Carlo

Initiate a set of N particles, ξi
0 ∼ µ.

Evolve each particle independently according to a Markov semigroup M, until
some time T .

Compute weights GT (ξi
T ) for each i = 1, . . . ,N.

Select the new population according to:

GT (ξi
T )δξi

T
+ (1− GT (ξi

T ))
∑
j 6=i

GT (ξj
T )

Z N
T

δξj
T
.
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Sequential Monte Carlo

Fleming Viot:
Motion: (Y ,P†),
Time step: T = min

i=1,...,N
inf{t > 0 : Y i

t = ∂},

Weight: G(x) = 1E (x).

Confinements:
Motion: discrete time random walk, (Yn)n≥0, in Zd ,
Time step: T = 1,
Weight: G(x) = 1[−L,L](x).

Self avoiding walks:
Motion: Yn = (Y0, . . . ,Yn),
Time step: T = 1,
Weight: Gn(x) = 1xn /∈{x0,...,xn−1}.

Emma Horton Branching processes CUWB Jan 2024



Literature

Emma Horton Branching processes CUWB Jan 2024



Future work

Systematic comparison of MC methods for simulating branching processes.

Developing SMC methods that incorporate branching.

Understanding the genealogy of SMC algorithms.

Rare events.

Time inhomogeneous systems.

Machine learning.

. . .
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¡Gracias!
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