Branching processes: from theory to application

Emma Horton
University of Warwick

CUWB Probability-on-Sea
8-12 January 2024

Alex Cox

Andreas Kyprianou

Isaac Gonzalez Garcia

Simon Harris

Ellen Powell

Minmin Wang

Motivating example: neutron transport

Motivating example: neutron transport

Motivating example: neutron transport

$$
\begin{aligned}
\frac{\partial \psi_{t}}{\partial t}(r, v)= & v \cdot \nabla \psi_{t}(r, v)-\left(\sigma_{\mathrm{s}}(r, v)+\sigma_{\mathrm{f}}(r, v)\right) \psi_{t}(r, v) \\
& +\sigma_{\mathrm{s}}(r, v) \int_{V} \psi_{t}\left(r, v^{\prime}\right) \pi_{\mathrm{s}}\left(r, v, v^{\prime}\right) \mathrm{d} v^{\prime} \\
& +\sigma_{\mathrm{f}}(r, v) \int_{V} \psi_{t}\left(r, v^{\prime}\right) \pi_{\mathrm{f}}\left(r, v, v^{\prime}\right) \mathrm{d} v^{\prime} \\
= & (\mathrm{T}+\mathrm{S}+\mathrm{F})\left[\psi_{t}\right](r, v)
\end{aligned}
$$

where
$\sigma_{\mathrm{s}}(r, v)$: is the rate at which a neutron scatters,
$\sigma_{f}(r, v)$: is the rate at which a fission event occurs,
$\pi_{\mathrm{s}}\left(r, v, v^{\prime}\right)$: is the probability a neutron with incoming velocity v scatters with new velocity v^{\prime},
$\pi_{f}\left(r, v, v^{\prime}\right)$: is the average number of neutrons produced in a fission event with new velocity v^{\prime} from a neutron with incoming velocity v.

Motivating example: neutron transport

$$
\begin{aligned}
\frac{\partial \psi_{t}}{\partial t}(r, v)= & v \cdot \nabla \psi_{t}(r, v)-\left(\sigma_{\mathrm{s}}(r, v)+\sigma_{\mathrm{f}}(r, v)\right) \psi_{t}(r, v) \\
& +\sigma_{\mathrm{s}}(r, v) \int_{V} \psi_{t}\left(r, v^{\prime}\right) \pi_{\mathrm{s}}\left(r, v, v^{\prime}\right) \mathrm{d} v^{\prime} \\
& +\sigma_{\mathrm{f}}(r, v) \int_{V} \psi_{t}\left(r, v^{\prime}\right) \pi_{\mathrm{f}}\left(r, v, v^{\prime}\right) \mathrm{d} v^{\prime} \\
= & (\mathrm{T}+\mathrm{S}+\mathrm{F})\left[\psi_{t}\right](r, v)
\end{aligned}
$$

where
$\sigma_{\mathrm{s}}(r, v)$: is the rate at which a neutron scatters,
$\sigma_{f}(r, v)$: is the rate at which a fission event occurs,
$\pi_{\mathrm{s}}\left(r, v, v^{\prime}\right)$: is the probability a neutron with incoming velocity v scatters with new velocity v^{\prime},
$\pi_{f}\left(r, v, v^{\prime}\right)$: is the average number of neutrons produced in a fission event with new velocity v^{\prime} from a neutron with incoming velocity v.

Motivating example: neutron transport

$$
\begin{aligned}
\frac{\partial \psi_{t}}{\partial t}(r, v)= & v \cdot \nabla \psi_{t}(r, v)-\left(\sigma_{\mathrm{s}}(r, v)+\sigma_{\mathrm{f}}(r, v)\right) \psi_{t}(r, v) \\
& +\sigma_{\mathrm{s}}(r, v) \int_{V} \psi_{t}\left(r, v^{\prime}\right) \pi_{\mathrm{s}}\left(r, v, v^{\prime}\right) \mathrm{d} v^{\prime} \\
& +\sigma_{\mathrm{f}}(r, v) \int_{V} \psi_{t}\left(r, v^{\prime}\right) \pi_{\mathrm{f}}\left(r, v, v^{\prime}\right) \mathrm{d} v^{\prime} \\
= & (\mathrm{T}+\mathrm{S}+\mathrm{F})\left[\psi_{t}\right](r, v)
\end{aligned}
$$

where
$\sigma_{\mathrm{s}}(r, v)$: is the rate at which a neutron scatters,
$\sigma_{f}(r, v)$: is the rate at which a fission event occurs,
$\pi_{\mathrm{s}}\left(r, v, v^{\prime}\right)$: is the probability a neutron with incoming velocity v scatters with new velocity v^{\prime},
$\pi_{f}\left(r, v, v^{\prime}\right)$: is the average number of neutrons produced in a fission event with new velocity v^{\prime} from a neutron with incoming velocity v.

Motivating example: neutron transport

$$
\begin{aligned}
\frac{\partial \psi_{t}}{\partial t}(r, v)= & v \cdot \nabla \psi_{t}(r, v)-\left(\sigma_{\mathrm{s}}(r, v)+\sigma_{\mathrm{f}}(r, v)\right) \psi_{t}(r, v) \\
& +\sigma_{\mathrm{s}}(r, v) \int_{V} \psi_{t}\left(r, v^{\prime}\right) \pi_{\mathrm{s}}\left(r, v, v^{\prime}\right) \mathrm{d} v^{\prime} \\
& +\sigma_{f}(r, v) \int_{V} \psi_{t}\left(r, v^{\prime}\right) \pi_{\mathrm{f}}\left(r, v, v^{\prime}\right) \mathrm{d} v^{\prime} \\
= & (\mathrm{T}+\mathrm{S}+\mathrm{F})\left[\psi_{t}\right](r, v)
\end{aligned}
$$

where
$\sigma_{\mathrm{s}}(r, v)$: is the rate at which a neutron scatters,
$\sigma_{f}(r, v)$: is the rate at which a fission event occurs,
$\pi_{\mathrm{s}}\left(r, v, v^{\prime}\right)$: is the probability a neutron with incoming velocity v scatters with new velocity v^{\prime},
$\pi_{f}\left(r, v, v^{\prime}\right)$: is the average number of neutrons produced in a fission event with new velocity v^{\prime} from a neutron with incoming velocity v.

Motivating example: neutron transport

We also impose the following boundary and initial conditions:

- $\psi_{t}(r, v)=0, \quad r \in \partial D, \mathbf{n}_{r} \cdot v>0$,
- $\psi_{0}(r, v)=g(r, v)$

Motivating example: neutron transport

Aim

Find $\lambda \in \mathbb{R}, \varphi: D \times V \rightarrow[0, \infty)$ and a probability measure on η such that

$$
(\mathrm{T}+\mathrm{S}+\mathrm{F}) \varphi=\lambda \varphi
$$

and

$$
\langle\eta,(\mathrm{T}+\mathrm{S}+\mathrm{F}) g\rangle=\lambda\langle\eta, g\rangle
$$

for suitable test functions $g: D \times V \rightarrow[0, \infty)$.

Motivating example: neutron transport

Motivating example: neutron transport

Contents

(1) Branching Markov processes
(2) Perron Frobenius results
(3) The critical case
(4) Monte Carlo

Contents

(1) Branching Markov processes
(2) Perron Frobenius results
(3) The critical case
4. Monte Carlo

Branching Markov processes

- Let $\left\{x_{i}(t): i=1, \ldots, N_{t}\right\}$ denote the configuration of the system at time $t \geq 0$.
- The branching process is given by

$$
X_{t}:=\sum_{i=1}^{N_{t}} \delta_{x_{i}(t)} .
$$

- The law of $\left(X_{t}\right)_{t \geq 0}$ is characterised via the non-linear semigroup

$$
v_{t}[g](x):=\mathbb{E}_{\delta_{x}}\left[\mathrm{e}^{-x_{t}[g]}\right]
$$

where

$$
X_{t}[g]=\sum_{i=1}^{N_{t}} g\left(x_{i}(t)\right)
$$

Branching Markov processes

- Markov semigroup:

$$
\mathrm{P}_{t}[g](x):=\mathbf{E}_{x}\left[g\left(\xi_{t}\right) \mathbf{1}_{t<\tau}\right], \quad t \geq 0, x \in E, g \in B^{+}(E) .
$$

- Modified Markov semigroup:

$$
\hat{P}_{t}[g](x)= \begin{cases}P_{t}[g](x), & t<\tau \\ 1, & t \geq \tau .\end{cases}
$$

- Branching mechanism:

$$
\mathrm{G}[g](x)=\beta(x) \mathcal{E}_{x}\left[\prod_{i=1}^{N} g\left(y_{i}\right)-g(x)\right], \quad x \in E, g \in B_{1}^{+}(E) .
$$

Branching Markov processes

Proposition

We have that $\left(v_{t}, t \geq 0\right)$ is the unique solution to

$$
v_{t}[g](x)=\hat{\mathrm{P}}_{t}\left[\mathrm{e}^{-g}\right](x)+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{G}\left[v_{t-s}\right]\right](x) \mathrm{d} s .
$$

Branching Markov processes

Proposition

We have that $\left(v_{t}, t \geq 0\right)$ is the unique solution to

$$
v_{t}[g](x)=\hat{\mathrm{P}}_{t}\left[\mathrm{e}^{-g}\right](x)+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{G}\left[v_{t-s}\right]\right](x) \mathrm{d} s
$$

Differentiating with respect to t, we obtain the generator equation

$$
\frac{\partial}{\partial t} v_{t}[g](x)=\mathcal{L} v_{t}[g](x)+G\left[v_{t}[g]\right](x)
$$

where \mathcal{L} is the infinitesimal generator of the Markov process (ξ, \mathbf{P}) and $g \in \mathcal{D}(\mathcal{L})$.

Example: continuous time Galton Watson process

- Non-linear semigroup: $v_{t}[\theta]=\mathbb{E}\left[\mathrm{e}^{-\theta N_{t}}\right]$
- Branching mechanism:

$$
\mathrm{G}[\theta]=\mathcal{E}\left[\theta^{N}\right]-\theta=\sum_{k \geq 0} p_{k} \theta^{k}-\theta
$$

Example: BBM

Example: growth-fragmentation

$$
\begin{aligned}
\mathrm{P}_{t}[f](x) & =\mathbf{E}_{x}[f(x(t))] \\
\mathrm{G}[f](x) & =B(x)\left(\mathcal{E}_{x}[f(x(1-p)) f(x p)]-f(x)\right)
\end{aligned}
$$

Example: neutron transport

Branching Markov processes

We are also interested in the linear semigroup

$$
\psi_{t}[g](x):=\mathbb{E}_{\delta_{x}}\left[X_{t}[g]\right]
$$

which is the unique solution to

$$
\psi_{t}[g](x)=\mathrm{P}_{t}[g](x)+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{~F}\left[\psi_{t-s}\right]\right](x) \mathrm{d} s
$$

where

$$
\mathrm{F}[g](x)=\beta(x) \mathcal{E}_{x}\left[\sum_{i=1}^{N} g\left(y_{i}\right)-g(x)\right], \quad x \in E, g \in B^{+}(E) .
$$

For convenience, we will define

$$
m[g](x):=\mathcal{E}_{x}[\mathcal{Z}[g]]=\mathcal{E}_{x}\left[\sum_{i=1}^{N} g\left(y_{i}\right)\right]
$$

Many-to-one

Let us consider the process $\hat{\xi}$, described as follows.

- From an initial position $x \in E, \hat{\xi}$ evolves as ξ.
- When at $y \in E$, at rate $\beta(y) m[1](y)$ the process is sent to a new position in E.
- The new position lies in $A \subset E$ with probability $m\left[\mathbf{1}_{A}\right](y) / m[1](y)$.

Many-to-one

Many-to-one

Many-to-one

Many-to-one

Many-to-one

Many-to-one lemma

Suppose that $m[1] \in B^{+}(E)$. Then for $x \in E, t \geq 0, g \in B^{+}(E)$, we have

$$
\psi_{t}[g](x)=\hat{\mathbf{E}}_{x}\left[\mathrm{e}^{\int_{0}^{t} \gamma\left(\hat{\xi}_{s}\right) \mathrm{d} s} g\left(\hat{\xi}_{t}\right)\right],
$$

where $\gamma\left(\hat{\xi}_{s}\right)=\beta\left(\hat{\xi}_{s}\right)\left(m[1]\left(\hat{\xi}_{s}\right)-1\right)$.

Many-to-one

- Continuous time GW process: $\mathbb{E}\left[N_{t}\right]=\mathrm{e}^{(m-1) t}$.
- BBM: $\mathbb{E}_{\delta_{x}}\left[X_{t}[f]\right]=\mathrm{e}^{\beta t} \mathbf{E}_{x}\left[f\left(B_{t}\right)\right]$.
- Growth-fragmentation: $\mathbb{E}_{\delta_{x}}\left[X_{t}[f]\right]=\mathbf{E}_{x}\left[\mathrm{e}^{\int_{0}^{t} B\left(Y_{s}\right) \mathrm{ds}} f\left(Y_{t}\right)\right]$.
- Neutron transport: $\mathbb{E}_{\delta_{x}}\left[X_{t}[f]\right]=\mathbf{E}_{X}\left[\mathrm{e}^{\int_{0}^{t} \sigma_{f}\left(R_{s}, \Upsilon_{s}\right)\left(m[1]\left(R_{s}, \Upsilon_{s}\right)-1\right) \mathrm{ds}} f\left(R_{t}, \Upsilon_{t}\right)\right]$.

Contents

(1) Branching Markov processes

(2) Perron Frobenius results

(3) The critical case

4. Monte Carlo

A Perron Frobenius decomposition

- Consider the case where $\left(\xi_{t}, t \geq 0\right)$ is a continuous time Markov chain on $E=\{1, \ldots, n\}$.
- Let $p_{t}(i, j)=\mathbf{P}_{i}\left(\xi_{t}=j\right) \quad \Rightarrow \quad \mathbf{P}_{t}[g](i)=\mathbf{E}_{i}\left[g\left(\xi_{t}\right)\right]=\sum_{j=1}^{n} p_{t}(i, j) g(j)$
- Assuming the chain is irreducible, Perron Frobenius theory tells us that there exist $\lambda_{c} \leq 0$ and vectors φ, η such that

$$
\mathrm{P}_{t}[\varphi]=\mathrm{e}^{\lambda_{c} t} \varphi, \quad \eta\left[P_{t}[g]\right]=\mathrm{e}^{\lambda_{c} t} \eta[g],
$$

and

$$
p_{t}(i, j) \sim \mathrm{e}^{\lambda_{c} t} \varphi(i) \eta(j)+o\left(\mathrm{e}^{\lambda_{c} t}\right), \quad t \rightarrow \infty .
$$

A Perron-Frobenius decomposition

Similarly, we would like to find

- $\lambda_{*} \in \mathbb{R}$,
- a positive function $\varphi \in B^{+}(E)$,
- a probability measure η on E
such that

$$
\psi_{t}[\varphi]=\mathrm{e}^{\lambda_{*} t} \varphi, \quad \eta\left[\psi_{t}[g]\right]=\mathrm{e}^{\lambda_{*} t} \eta[g],
$$

and

$$
\psi_{t}[g](x) \sim \mathrm{e}^{\lambda_{*} t} \varphi(x) \eta[g], \quad \text { as } t \rightarrow \infty .
$$

A Perron Frobenius decomposition

Returning to the Markov chain example:

- If the chain is conservative, then $\lambda_{c}=0$. Thus $\eta\left[P_{t}[g]\right]=\eta[g]$ and hence η is the stationary distribution.
- If the chain is non-conservative, then $\lambda_{c}<0$. In this case, η is called the quasi-stationary distribution (QSD).

QSDs

- Let $\left(Y_{t}\right)_{t \geq 0}$ be a time-homogeneous Markov process on $E \cup\{\partial\}$ with probabilities $\left(\mathbf{P}_{x}^{\dagger}, x \in E\right)$ and semigroup $\left(\mathrm{P}_{t}^{\dagger}\right)_{t \geq 0}$.
- Assume that $\tau_{\partial}:=\inf \left\{t>0: X_{t}=\partial\right\}<\infty, \mathbf{P}_{x}^{\dagger}$-almost surely for all $x \in E$.
- Assume further that for all $x \in E, \mathbf{P}_{x}^{\dagger}\left(t<\tau_{\partial}\right)>0$.

QSDs

Definition

A quasi-stationary distribution (QSD) is a probability measure η on E such that

$$
\eta=\lim _{t \rightarrow \infty} \mathbf{P}_{\mu}^{\dagger}\left(X_{t} \in \cdot \mid t<\tau_{\partial}\right)
$$

for some initial probability measure μ on E.

QSDs

Definition

A quasi-stationary distribution (QSD) is a probability measure η on E such that

$$
\eta=\lim _{t \rightarrow \infty} \mathbf{P}_{\mu}^{\dagger}\left(X_{t} \in \cdot \mid t<\tau_{\partial}\right)
$$

for some initial probability measure μ on E.

Proposition

A probability measure η is a QSD if and only if, for any $t \geq 0$,

$$
\eta=\mathbf{P}_{\eta}^{\dagger}\left(Y_{t} \in \cdot \mid t<\tau_{\partial}\right) .
$$

QSDs

- Méléard, S., \& Villemonais, D. (2012). Quasi-stationary distributions and population processes.
- van Doorn, E. A., \& Pollett, P. K. (2011). Quasi-stationary distributions. Memorandum 1945.
- Collet, P., Martínez, S., \& San Martín, J. (2013). Quasi-stationary distributions: Markov chains, diffusions and dynamical systems (Vol. 1). Berlin: Springer.
- Works of Champagnat \& Villemonais.

QSDs

Assumption A

There exists a probability measure ν on E such that (A1) there exists $t_{0}, c_{1}>0$ such that for all $x \in E$,

$$
\mathbf{P}_{x}^{\dagger}\left(Y_{t_{0}} \in \cdot \mid t_{0}<\tau_{\partial}\right) \geq c_{1} \nu(\cdot) ;
$$

(A2) there exists $c_{2}>0$ such that for all $x \in E$ and $t \geq 0$,

$$
\mathbf{P}_{\nu}^{\dagger}\left(t<\tau_{\partial}\right) \geq c_{2} \mathbf{P}_{x}^{\dagger}\left(t<\tau_{\partial}\right) .
$$

QSDs

Theorem (Champagnat, Villemonais)

Under Assumption A, there exists a probability measure η on E and two constants $C, \epsilon>0$ such that, for all $x \in E$,

$$
\left\|\mathbf{P}_{x}^{\dagger}\left(Y_{t} \in \cdot \mid t<\tau_{\partial}\right)-\eta(\cdot)\right\|_{T V} \leq C \mathrm{e}^{-\epsilon t}, t \geq 0
$$

In this case, η is the unique QSD for the process.

Proposition

If η is a QSD then there exists $\lambda_{c}<0$ such that, for all $t \geq 0$,

$$
\mathbf{P}_{\eta}^{\dagger}\left(t<\tau_{\partial}\right)=\mathrm{e}^{\lambda_{c} t}, \quad \eta\left[\mathrm{P}_{t}^{\dagger}[g]\right]=\mathrm{e}^{\lambda_{c} t} \eta[g] .
$$

QSDs

Proposition (Champagnat, Villemonais)

There exists a non-negative function φ on $E \cup\{\partial\}$, positive on E and vanishing on ∂, defined by

$$
\varphi(x)=\lim _{t \rightarrow \infty} \mathrm{e}^{-\lambda_{c} t} \mathbf{P}_{x}^{\dagger}\left(t<\tau_{\partial}\right),
$$

where the convergence holds for the uniform norm on $E \cup\{\partial\}$ and $\eta[\varphi]=1$. Moreover, φ is bounded and

$$
\mathrm{P}_{t}^{\dagger}[\varphi]=\mathrm{e}^{\lambda_{c} t} \varphi .
$$

A Perron Frobenius decomposition

- Define

$$
\bar{\gamma}:=\sup _{x \in E} \gamma(x)=\sup _{x \in E} \beta(x)(m[1](x)-1)
$$

- Let us introduce the semigroup ψ^{\dagger} via

$$
\begin{aligned}
\psi_{t}^{\dagger}[g](x) & :=\mathrm{e}^{-\bar{\gamma} t} \psi_{t}[g](x) \\
& =\hat{\mathbf{E}}_{x}\left[\mathrm{e}^{\int_{0}^{t} \gamma\left(\hat{\xi}_{s}\right)-\bar{\gamma} \mathrm{d} s} g\left(\hat{\xi}_{t}\right)\right] \\
& =\hat{\mathbf{E}}_{x}\left[g\left(\hat{\xi}_{t}\right) \mathbf{1}_{t<\kappa}\right] \\
& =: \mathbf{E}_{x}^{\dagger}\left[g\left(\hat{\xi}_{t}\right)\right],
\end{aligned}
$$

where

$$
\kappa:=\inf \left\{t>0: \int_{0}^{t} \bar{\gamma}-\gamma\left(\hat{\xi}_{s}\right) \mathrm{d} s>\mathbf{e}\right\} .
$$

QSDs

- Then, under Assumption A, we have

$$
\psi_{t}^{\dagger}[\varphi](x)=\mathrm{e}^{\lambda_{c} t} \varphi(x), \quad \eta\left[\psi_{t}^{\dagger}[g]\right]=\mathrm{e}^{\lambda_{c} t} \eta[g]
$$

and, for any $t \geq 0$,

$$
\left\|\mathbf{P}_{x}^{\dagger}\left(\hat{\xi}_{t} \in \cdot \mid t<\tau_{\partial}\right)-\eta(\cdot)\right\| \leq \mathrm{Ce}^{-\epsilon t}
$$

- Since $\varphi(x)=\lim _{t \rightarrow \infty} \mathrm{e}^{-\lambda_{c} t} \mathbf{P}_{x}^{\dagger}\left(t<\tau_{\partial}\right)$, it follows that

- Since $\psi_{t}=\mathrm{e}^{\bar{\gamma} t} \psi_{t}^{\dagger}$, the same conclusion then holds for ψ_{t} with λ_{c} replaced by

QSDs

- Then, under Assumption A, we have

$$
\psi_{t}^{\dagger}[\varphi](x)=\mathrm{e}^{\lambda_{c} t} \varphi(x), \quad \eta\left[\psi_{t}^{\dagger}[g]\right]=\mathrm{e}^{\lambda_{c} t} \eta[g]
$$

and, for any $t \geq 0$,

$$
\left\|\mathbf{P}_{x}^{\dagger}\left(\hat{\xi}_{t} \in \cdot \mid t<\tau_{\partial}\right)-\eta(\cdot)\right\| \leq \mathrm{C}^{-\epsilon t}
$$

- Since $\varphi(x)=\lim _{t \rightarrow \infty} \mathrm{e}^{-\lambda_{c} t} \mathbf{P}_{x}^{\dagger}\left(t<\tau_{\partial}\right)$, it follows that

$$
\sup _{x \in E, g \in B_{1}^{+}(E)}\left|\mathrm{e}^{-\lambda_{c} t} \varphi(x)^{-1} \psi_{t}^{\dagger}[g]-\eta[g]\right| \leq C \mathrm{e}^{-\epsilon t} .
$$

- Since $\psi_{t}=\mathrm{e}^{\bar{\gamma} t} \psi_{t}^{\dagger}$, the same conclusion then holds for ψ_{t} with λ_{c} replaced by

QSDs

- Then, under Assumption A, we have

$$
\psi_{t}^{\dagger}[\varphi](x)=\mathrm{e}^{\lambda_{c} t} \varphi(x), \quad \eta\left[\psi_{t}^{\dagger}[g]\right]=\mathrm{e}^{\lambda_{c} t} \eta[g]
$$

and, for any $t \geq 0$,

$$
\left\|\mathbf{P}_{x}^{\dagger}\left(\hat{\xi}_{t} \in \cdot \mid t<\tau_{\partial}\right)-\eta(\cdot)\right\| \leq \mathrm{Ce}^{-\epsilon t}
$$

- Since $\varphi(x)=\lim _{t \rightarrow \infty} \mathrm{e}^{-\lambda_{c} t} \mathbf{P}_{x}^{\dagger}\left(t<\tau_{\partial}\right)$, it follows that

$$
\sup _{x \in E, g \in B_{1}^{+}(E)}\left|\mathrm{e}^{-\lambda_{c} t} \varphi(x)^{-1} \psi_{t}^{\dagger}[g]-\eta[g]\right| \leq C \mathrm{e}^{-\epsilon t} .
$$

- Since $\psi_{t}=\mathrm{e}^{\bar{\gamma} t} \psi_{t}^{\dagger}$, the same conclusion then holds for ψ_{t} with λ_{c} replaced by $\lambda_{*}=\lambda_{c}+\bar{\gamma}$.

QSDs

Assumption A

There exists a probability measure ν on E such that (A1) there exists $t_{0}, c_{1}>0$ such that for all $x \in E$,

$$
\mathbf{P}_{x}^{\dagger}\left(Y_{t_{0}} \in \cdot \mid t_{0}<\tau_{\partial}\right) \geq c_{1} \nu(\cdot) ;
$$

(A2) there exists $c_{2}>0$ such that for all $x \in E$ and $t \geq 0$,

$$
\mathbf{P}_{\nu}^{\dagger}\left(t<\tau_{D}\right) \geq c_{2} \mathbf{P}_{x}^{\dagger}\left(t<\tau_{\partial}\right) .
$$

- Under mild assumptions on the cross-sections and the domain, (A1) and (A2) are satisfied for the NTE.
- Birth-death processes.
- "Processes that come down from infinity".

QSDs

Assumption F

There exist $\gamma_{1}, \gamma_{2}, c_{1}, c_{2}, c_{3}, t_{1}>0$, a measurable function $\psi_{1}: E \rightarrow[1, \infty)$, and a probability measure ν on a measurable subset $L \subset E$ such that
(F1) For all $x \in L$

$$
\mathbf{P}_{x}^{\dagger}\left(X_{t_{1}} \in \cdot\right) \geq c_{1} \nu(\cdot \cap L) \quad \text { and } \quad \sup _{t \in \mathbb{R}_{+}} \frac{\sup _{y \in L} \mathbf{P}_{y}^{\dagger}(t<\tau)}{\inf _{y \in L} \mathbf{P}_{y}^{\dagger}(t<\tau)} \leq c_{2}
$$

(F2) We have $\gamma_{1}<\gamma_{2}$ and

$$
\begin{aligned}
& \mathcal{L} \psi_{1}(x) \leq-\gamma_{1} \psi_{1}(x)+c_{3} \mathbf{1}_{L}(x), \quad x \in E \\
& \gamma_{2}^{-t} \mathbf{P}_{x}^{\dagger}\left(X_{t} \in L\right) \rightarrow \infty \text { as } t \rightarrow \infty, \text { for all } x \in L
\end{aligned}
$$

QSDs

- Under Assumption F, Champagnat and Villemonais prove the existence of and convergence towards a QSD but the convergence is not uniform.
- In this case, there may be an infinite number of QSDs.
- The result captures the existence of the minimal QSD.

Recap

- Branching process $\left(X_{t}, t \geq 0\right)$.
- Non-linear semigroup: $\mathbb{E}_{\delta_{x}}\left[\mathrm{e}^{-X_{t}[f]}\right]$.
- Linear semigroup: $\mathbb{E}_{\delta_{x}}\left[X_{t}[f]\right]=\hat{\mathbf{E}}_{x}\left[\mathrm{e}^{t} \beta\left(\hat{\xi}_{0}\right)\left(m[1]\left(\hat{\xi}_{s}\right)-1\right) \mathrm{d} s f\left(\hat{\xi}_{t}\right)\right]$.
- The linear semigroup $\left(\psi_{t}, t \geq 0\right)$ is the unique solution to

$$
\psi_{t}[g](x)=\mathrm{P}_{t}[g](x)+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{~F}\left[\psi_{t-s}\right]\right](x) \mathrm{d} s,
$$

Recap

We will assume that $\beta, m[1] \in B^{+}(E)$ and that Assumption A holds.
Then we have

$$
\psi_{t}[\varphi]=\mathrm{e}^{\lambda_{*} t} \varphi, \quad \eta\left[\psi_{t}[g]\right]=\mathrm{e}^{\lambda_{*} t} \eta[g]
$$

and

$$
\psi_{t}[g](x) \sim \mathrm{e}^{\lambda_{*} t} \varphi(x) \eta[g], \quad t \rightarrow \infty .
$$

Spine decomposition

- The branching property and the fact that

$$
\mathbb{E}_{\delta_{x}}\left[X_{t}[\varphi]\right]=\mathrm{e}^{\lambda_{*} t} \varphi(x),
$$

imply that

$$
W_{t}^{1}:=\mathrm{e}^{-\lambda_{*}} \frac{X_{t}[\varphi]}{\varphi(x)}, \quad t \geq 0
$$

is a unit mean $\mathbb{P}_{\delta_{x}}$-martingale.

- Thus, we can define the change of measure

$$
\left.\frac{\mathbb{P}_{\delta_{x}}^{\varphi}}{\mathbb{P}_{\delta_{x}}}\right|_{\mathcal{F}_{t}}:=W_{t}^{1}, \quad t \geq 0, x \in E
$$

i.e. $\mathbb{P}_{\delta_{x}}^{\varphi}(A)=\mathbb{E}_{\delta_{x}}\left[\mathbf{1}_{A} W_{t}^{1}\right]$.

Spine decomposition

Under \mathbb{P}^{φ}, the branching process X can be constructed as follows.

Spine decomposition

Under \mathbb{P}^{φ}, the branching process X can be constructed as follows.

1. From the initial configuration $\mu=\sum_{i=1}^{n} \delta_{x_{i}}$, the i^{*}-th individual is selected with probability $\varphi\left(x_{i^{*}}\right) / \mu[\varphi]$ and marked the spine.

Spine decomposition

2. The individuals $j \neq i^{*}$ in the initial configuration each issue independent copies of $\left(X, \mathbb{P}_{\delta_{x_{j}}}\right)$ respectively.

Spine decomposition

3. The marked individual, "spine", issues a single particle whose motion is determined by the semigroup

$$
\mathrm{S}_{t}[f](x):=\mathbf{E}_{x}\left[\mathrm{e}^{\int_{0}^{t} \beta\left(\xi_{s}\right)\left(\frac{m\left[\varphi\left(\hat{\xi}_{s}\right)\right]}{\varphi\left(\xi_{s}\right)}-1\right) \mathrm{ds}} \frac{\varphi\left(\xi_{t}\right)}{\varphi(x)} f\left(\xi_{t}\right)\right] \quad x \in E, f \in B^{+}(E)
$$

Spine decomposition

4. When at $x \in E$, the spine undergoes branching at rate

$$
\rho(x):=\beta(x) \frac{m[\varphi](x)}{\varphi(x)}
$$

at which point, it produces particles according $\left(\mathcal{Z}, \mathcal{P}_{x}^{\varphi}\right)$, where

$$
\frac{\mathrm{d} \mathcal{P}_{x}^{\varphi}}{\mathrm{d} \mathcal{P}_{x}}=\frac{\mathcal{Z}[\varphi]}{m[\varphi](x)} .
$$

Spine decomposition

5. Given \mathcal{Z} from the previous step, μ is redefined as $\mu=\mathcal{Z}$ and Step 1 is repeated.

Spine decomposition

- From the many-to-one lemma,

$$
\hat{\mathbf{E}}_{x}\left[\mathrm{e}^{\int_{0}^{t} \gamma\left(\hat{\xi}_{s}\right) \mathrm{ds}} \varphi\left(\hat{\xi}_{t}\right)\right]=\mathrm{e}^{\lambda_{*} t} \varphi(x)
$$

- It follows that

$$
W_{t}^{2}:=\mathrm{e}^{-\lambda_{*} t+\int_{0}^{t} \gamma\left(\hat{\xi}_{s}\right) \mathrm{d} s} \frac{\varphi\left(\hat{\xi}_{t}\right)}{\varphi(x)}, \quad t \geq 0
$$

is a unit mean $\hat{\mathbf{P}}_{x}$-martingale.

- Thus, we can define a second change of measure

$$
\left.\frac{\mathrm{d} \mathbf{P}_{x}^{\varphi}}{\mathrm{d} \hat{\mathbf{P}}_{x}}\right|_{\mathcal{G}_{t}}:=W_{t}^{2}, \quad t \geq 0, x \in E .
$$

Spine decomposition

Ergodicity of the spine

The spine process is equal in law to $\left(\hat{\xi}, \mathbf{P}^{\varphi}\right)$. The semigroup ($\mathrm{P}_{t}^{\varphi}, t \geq 0$) associated to $\left(\hat{\xi}, \mathbf{P}^{\varphi}\right)$ is conservative, and satisfies

$$
\mathrm{P}_{t}^{\varphi}[f](x)=\frac{\mathrm{e}^{-\lambda_{*} t}}{\varphi(x)} \psi_{t}[\varphi f], \quad t \geq 0, f \in B^{+}(E)
$$

with stationary distribution

$$
\varphi(x) \eta(\mathrm{d} x), \quad x \in E .
$$

Spine decomposition

Q-process

Theorem (Champagnat, Villemonais)

Under Assumption A, the following three properties hold.

- There exists a family $\left(\mathbf{Q}_{x}\right)_{x \in E}$ of probability measures defined by

$$
\lim _{t \rightarrow \infty} \mathbf{P}_{x}^{\dagger}(A \mid t<\tau)=\mathbf{Q}_{x}(A)
$$

The process (ξ, \mathbf{Q}) is an E-valued homogeneous Markov process. If, in addition, ξ is strong Markov under \mathbf{P}^{\dagger} then it is also strong Markov under \mathbf{Q}.

- Letting $\left(\mathbb{Q}_{t}\right)_{t \geq 0}$ denote the semigroup of (ξ, \mathbf{Q}), we have

$$
Q_{t}[g](x)=\frac{\mathrm{e}^{-\lambda_{c} t}}{\varphi(x)} \mathrm{P}_{t}^{\dagger}[\varphi g](x) .
$$

- The probability measure on E given by $\varphi(x) \eta(\mathrm{d} x)$ is the unique invariant distribution of ξ under \mathbf{Q}.

Contents

(1) Branching Markov processes

(2) Perron Frobenius results
(3) The critical case
4. Monte Carlo

Criticality

From the Perron Frobenius decomposition, we have

$$
\psi_{t}[g](x) \sim \mathrm{e}^{\lambda_{*} t} \varphi(x) \eta[g], \quad t \rightarrow \infty .
$$

- Subcritical: if $\lambda_{*}<0$, the average mass decays at rate $-\lambda_{*}$.
- Critical: if $\lambda_{*}=0$, the average mass remains constant.
- Supercritical: if $\lambda_{*}>0$, the average mass in the system grows at rate λ_{*}.

Criticality

Define

$$
\zeta:=\inf \left\{t>0: N_{t}=0\right\} .
$$

- Subcritical: $\{\zeta<\infty\}$ almost surely.
- Critical: $\{\zeta<\infty\}$ almost surely.
- Supercritical: $\{\zeta=\infty\}$ with positive probability.

Criticality

Define

$$
\zeta:=\inf \left\{t>0: N_{t}=0\right\} .
$$

- Subcritical: $\{\zeta<\infty\}$ almost surely.
- Critical: $\{\zeta<\infty\}$ almost surely.
- Supercritical: $\{\zeta=\infty\}$ with positive probability.

Yaglom limit for BGW processes

- Suppose $\left(Z_{n}\right)_{n \geq 0}$ is a BGW process,

$$
Z_{n+1}=\sum_{i=1}^{Z_{n}} \xi_{i}, \quad \xi_{i} \sim^{\mathrm{iid}} \xi
$$

- Assume $\mathbb{E}[\xi]=1$ so that the process is critical.
- Further assume that $\sigma^{2}:=\mathbb{E}\left[\xi^{2}\right]-\mathbb{E}[\xi]<\infty$.
- Kolmogorow limit (Kolmogorov '38):

$$
\lim _{n \rightarrow \infty} n \mathbb{P}\left(Z_{n}>0\right)=\frac{2}{\sigma^{2}}
$$

- Yaglom limit (Yaglom '48):

Yaglom limit for BGW processes

- Suppose $\left(Z_{n}\right)_{n \geq 0}$ is a BGW process,

$$
Z_{n+1}=\sum_{i=1}^{Z_{n}} \xi_{i}, \quad \xi_{i} \sim^{\mathrm{iid}} \xi
$$

- Assume $\mathbb{E}[\xi]=1$ so that the process is critical.
- Further assume that $\sigma^{2}:=\mathbb{E}\left[\xi^{2}\right]-\mathbb{E}[\xi]<\infty$.
- Kolmogorow limit (Kolmogorov '38):

$$
\lim _{n \rightarrow \infty} n \mathbb{P}\left(Z_{n}>0\right)=\frac{2}{\sigma^{2}}
$$

- Yaglom limit (Yaglom '48):

Yaglom limit for BGW processes

- Suppose $\left(Z_{n}\right)_{n \geq 0}$ is a BGW process,

$$
Z_{n+1}=\sum_{i=1}^{Z_{n}} \xi_{i}, \quad \xi_{i} \sim^{\mathrm{iid}} \xi
$$

- Assume $\mathbb{E}[\xi]=1$ so that the process is critical.
- Further assume that $\sigma^{2}:=\mathbb{E}\left[\xi^{2}\right]-\mathbb{E}[\xi]<\infty$.
- Kolmogorow limit (Kolmogorov '38):

$$
\lim _{n \rightarrow \infty} n \mathbb{P}\left(Z_{n}>0\right)=\frac{2}{\sigma^{2}}
$$

- Yaglom limit (Yaglom '48):

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left.\exp \left(-\theta \frac{Z_{n}}{n}\right) \right\rvert\, Z_{n}>0\right]=\frac{1}{1+\theta \sigma^{2} / 2}
$$

Yaglom limit for BBM on a compact domain

- Let $D \subset \mathbb{R}^{d}$ be compact.
- Let $\left(X_{t}\right)_{t \geq 0}$ denote a branching process where, given their point of creation, particles move independently according to a diffusion with generator L. Particles are killed on ∂D and at rate $\beta>0$, they branch into a random number of particles with distribution A.
- Let λ denote the first eigenvalue of $-L$ on D.
- Assume $m:=\mathbb{E}[A]>1, \mathbb{E}\left[A^{2}\right]<\infty$ and $\lambda=\beta(m-1)$
- Kolmogorov result (Powell '19)

$$
\lim _{t \rightarrow \infty} t \mathbb{P}_{x}\left(N_{t}>0\right)=C_{1}(x)
$$

- Yaglom limit (Powell '19)

Yaglom limit for BBM on a compact domain

- Let $D \subset \mathbb{R}^{d}$ be compact.
- Let $\left(X_{t}\right)_{t \geq 0}$ denote a branching process where, given their point of creation, particles move independently according to a diffusion with generator L. Particles are killed on ∂D and at rate $\beta>0$, they branch into a random number of particles with distribution A.
- Let λ denote the first eigenvalue of $-L$ on D.
- Assume $m:=\mathbb{E}[A]>1, \mathbb{E}\left[A^{2}\right]<\infty$ and $\lambda=\beta(m-1)$.
- Kolmogorov result (Powell '19)

$$
\lim _{t \rightarrow \infty} t \mathbb{P}_{x}\left(N_{t}>0\right)=C_{1}(x) .
$$

- Yaglom limit (Powell '19)

Yaglom limit for BBM on a compact domain

- Let $D \subset \mathbb{R}^{d}$ be compact.
- Let $\left(X_{t}\right)_{t \geq 0}$ denote a branching process where, given their point of creation, particles move independently according to a diffusion with generator L. Particles are killed on ∂D and at rate $\beta>0$, they branch into a random number of particles with distribution A.
- Let λ denote the first eigenvalue of $-L$ on D.
- Assume $m:=\mathbb{E}[A]>1, \mathbb{E}\left[A^{2}\right]<\infty$ and $\lambda=\beta(m-1)$.
- Kolmogorov result (Powell '19):

$$
\lim _{t \rightarrow \infty} t \mathbb{P}_{x}\left(N_{t}>0\right)=C_{1}(x)
$$

- Yaglom limit (Powell '19):

$$
\lim _{t \rightarrow \infty} \mathbb{E}_{\times}\left[\left.\exp \left(-\frac{\theta}{t} \sum_{i=1}^{N_{t}} f\left(X_{t}^{i}\right)\right) \right\rvert\, N_{t}>0\right]=\frac{1}{1+\theta C_{2}(f)}
$$

General setting

Define

$$
\mathcal{V}[g](x):=\mathcal{E}_{x}\left[\sum_{\substack{i, j=1 \\ i \neq j}}^{N} g\left(y_{i}\right) g\left(y_{j}\right)\right], \quad x \in E, f \in B^{+}(E) .
$$

and

$$
\Sigma=\eta[\beta \mathcal{V}[\varphi]] .
$$

Theorem

Under certain assumptions, we have

$$
\lim _{t \rightarrow \infty} \sup _{x \in E}\left|\frac{t \mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)}{\varphi(x)}-\frac{2}{\Sigma}\right|=0
$$

"Certain assumptions"

- For all t sufficiently large, sup $\mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)<1$.

$$
x \in E
$$

- There exists a constant $C>0$ such that for all $g \in B^{+}(E)$,

$$
\eta[\beta \mathcal{V}[g]] \geq C \eta[g]^{2}
$$

- The number of offspring produced at a branching event is bounded above by a constant $n_{\text {max }}$.

"Certain assumptions"

- For all t sufficiently large, sup $\mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)<1$.

$$
x \in E
$$

- There exists a constant $C>0$ such that for all $g \in B^{+}(E)$,

$$
\eta[\beta \mathcal{V}[g]] \geq C \eta[g]^{2} .
$$

- The number of offspring produced at a branching event is bounded above by a constant $n_{\text {max }}$.

General setting

Theorem (Yaglom limit)

Under the same assumptions, for each $f \in B^{+}(E)$,

$$
\left(\left.\frac{X_{t}[f]}{t} \right\rvert\, N_{t}>0\right) \rightarrow Y, \quad \text { as } t \rightarrow \infty,
$$

in distribution, where Y is an exponential random variable with mean $\eta[f] \Sigma / 2$.

Attempt 1

Method of moments

- Know that exponential distribution is characterised by its moments.
- Let us consider the moments of $t^{-1} X_{t}[f]$ under $\mathbb{P}_{\delta_{x}}\left(\cdot \mid N_{t}>0\right)$:

$$
\mathbb{E}_{\delta_{x}}\left[\left.\left(\frac{X_{t}[f]}{t}\right)^{k} \right\rvert\, N_{t}>0\right]=\frac{\frac{1}{t^{k-1}} \mathbb{E}_{\delta_{x}}\left[X_{t}[f]^{k} \mathbf{1}_{N_{t}>0}\right]}{t \mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)}
$$

- If $f=\varphi$, we have

$$
\mathbb{E}_{\delta_{x}}\left[\left.\left(\frac{X_{t}[\varphi]}{t}\right)^{k} \right\rvert\, N_{t}>0\right]=\frac{\frac{1}{t^{k-1}} \mathbb{E}_{\delta_{x}}\left[X_{t}[\varphi]^{k} \mathbf{1}_{\left.N_{t}>0\right]}\right.}{t \mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)}=\frac{\frac{\varphi(x)}{t^{k-1}} \mathbb{E}_{\delta_{x}}^{\varphi}\left[X_{t}[\varphi]^{k-1}\right]}{t \mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)}
$$

Method of moments

The spine decomposition means that under the measure \mathbb{E}^{φ}, we may write

$$
\frac{X_{t}[\varphi]}{t}=\frac{\varphi\left(\hat{\xi}_{t}\right)}{t}+\frac{1}{t} \sum_{i=1}^{n_{t}} \equiv_{i}\left(\hat{\xi}_{\mathbf{u}_{t}^{\prime}}, t-\mathbf{u}_{t}^{i}\right)
$$

where the $\bar{\Xi}_{i}(x, u)$ are independent and equal in law to

$$
\sum_{\substack{j=1 \\ j \neq i^{*}}}^{N^{i}} X_{t-u}^{j}[\varphi] \quad \text { under } \quad \eta_{x}^{\varphi}:=\mathcal{P}_{x}^{\varphi} \bigotimes_{\substack{j=1 \\ j \neq i^{*}}} \mathbb{P}_{\delta_{x_{j}}}
$$

Method of moments

Recall, for homogeneous Poisson processes

- The order of the arrivals is not important.
- Positions of events are uniformly distributed.

Method of moments

Recall, for homogeneous Poisson processes

- The order of the arrivals is not important.
- Positions of events are uniformly distributed.

Similarly, in this case, conditional on n_{t} and $\hat{\xi}$, the $\mathbf{u}_{\mathbf{t}}^{\mathbf{i}}$ are i.i.d with law

$$
P_{(t, \hat{\xi})}\left(\mathbf{u}_{t} \in \mathrm{~d} s\right)=\frac{\rho\left(\hat{\xi}_{s}\right)}{\int_{0}^{t} \rho\left(\hat{\xi}_{s}\right) \mathrm{d} s} .
$$

Method of moments

Since the spine is ergodic, we have

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}_{\delta_{x}}^{\varphi}\left[X_{t}[\varphi]\right] & =\lim _{t \rightarrow \infty} \mathbb{E}_{\delta_{x}}^{\varphi}\left[\frac{1}{t} \sum_{i=1}^{n_{t}} \eta_{\hat{\xi}_{\mathbf{u}_{t}^{\prime}}^{\varphi}}^{\varphi}\left[\bar{\Xi}_{i}\left(\hat{\xi}_{\mathbf{u}_{t}^{\prime}}, t-\mathbf{u}_{t}^{i}\right)\right]\right] \\
& =\lim _{t \rightarrow \infty} \mathbb{E}_{\delta_{x}}^{\varphi}\left[\frac{n_{t}}{t} \frac{\int_{0}^{t} \rho\left(\hat{\xi}_{s}\right) \eta_{\hat{\xi}_{s}}^{\varphi}\left[\equiv\left(\hat{\xi}_{s}, t-s\right)\right] \mathrm{d} s}{\int_{0}^{t} \rho\left(\hat{\xi}_{s}\right) \mathrm{d} s}\right] \\
& =\lim _{t \rightarrow \infty} \mathbf{E}_{x}^{\varphi}\left[\frac{1}{t} \int_{0}^{t} \rho\left(\hat{\xi}_{s}\right) \eta_{\hat{\xi}_{s}}^{\varphi}\left[\equiv\left(\hat{\xi}_{s}, t-s\right)\right] \mathrm{d} s\right] \\
& =\eta[\beta \mathcal{V}[\varphi]]
\end{aligned}
$$

where we recall that $\mathcal{V}[h](x)=\mathcal{E}_{x}\left[\sum_{\substack{i, j=1 \\ i \neq j}}^{N} h\left(x_{i}\right) h\left(x_{j}\right)\right]$.

Method of moments

Proceed by induction:

$$
\begin{aligned}
& \frac{1}{t^{k}} \mathbb{E}_{\delta_{x}}^{\varphi}\left[\left(\sum_{i=1}^{n_{t}} \equiv\left(\hat{\xi}_{\mathbf{u}_{t}^{\prime}}, t-\mathbf{u}_{t}^{i}\right)\right)^{k}\right] \\
& \quad=\frac{1}{t^{k}} \mathbb{E}_{\delta_{x}}^{\varphi}\left[\sum_{j=1}^{k} 2^{j}\binom{n_{t}}{j} \mathbf{1}_{j \leq n_{t}} \sum_{\left[k_{1}, \ldots, k_{j}\right]_{+}}\binom{k}{k_{1}, \ldots, k_{j}} \prod_{i=1}^{j} \eta_{\hat{\xi}_{\mathbf{u}_{t}^{\prime}}}^{\varphi}\left[\equiv\left(\hat{\xi}_{\mathbf{u}_{t}^{\prime}}, t-\mathbf{u}_{t}^{i}\right)^{k_{i}}\right]\right],
\end{aligned}
$$

where $\left[k_{1}, \ldots, k_{j}\right]_{+}$is the set of all strictly positive $\left\{k_{1}, \ldots, k_{j}\right\}$ that sum to k.

Method of moments

Theorem (Harris, H., Kyprianou, Wang)

Suppose that for some $k \geq 1$, $\sup \mathcal{E}_{x}\left[\mathcal{Z}[1]^{k+1}\right]<\infty$. Then, for all $j \leq k$,

$$
\lim _{t \rightarrow \infty} \sup _{x \in E}\left|\frac{1}{t^{j}} \mathbb{E}_{\delta_{x}}^{\varphi}\left[X_{t}[\varphi]^{j}\right]-(j+1)!\left(\frac{\Sigma}{2}\right)^{j}\right|=0
$$

Yaglom limit

Then

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \mathbb{E}_{\delta_{x}}\left[\left.\left(\frac{X_{t}[\varphi]}{t}\right)^{k} \right\rvert\, N_{t}>0\right] & =\lim _{t \rightarrow \infty} \frac{\frac{1}{t^{k-1}} \mathbb{E}_{\delta_{x}}\left[X_{t}[\varphi]^{k} \mathbf{1}_{N_{t}>0}\right]}{t \mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)} \\
& =\lim _{t \rightarrow \infty} \frac{\frac{\varphi(x)}{t^{k-1}} \mathbb{E}_{\delta_{x}}^{\varphi}\left[X_{t}[\varphi]^{k-1}\right]}{t \mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)} \\
& =\frac{\varphi(x) k!(\Sigma / 2)^{k-1}}{\varphi(x) 2 / \Sigma} \\
& =k!\left(\frac{\Sigma}{2}\right)^{k} .
\end{aligned}
$$

Yaglom limit

- For general f, write $f=f-\eta[f] \varphi+\eta[f] \varphi=: \tilde{f}+\eta[f] \varphi$.
- From the previous steps, if follows that replacing φ by $\eta[f] \varphi$ yields the correct result.
- To conclude, we show that $X_{t}[\tilde{f}] / t \rightarrow 0$ weakly under $\mathbb{P}_{\delta_{x}}\left(\cdot \mid N_{t}>0\right)$.

Attempt 2

Attempt 2

- Proof of survival probability remains the same \rightsquigarrow still need the $n_{\max }$ assumption © ${ }^{(3)}$
- For the Yaglom result, recall that

$$
\mathbb{E}_{\delta_{x}}\left[\left.\left(\frac{X_{t}[f]}{t}\right)^{k} \right\rvert\, N_{t}>0\right]=\frac{\frac{1}{t^{k-1}} \mathbb{E}_{\delta_{x}}\left[X_{t}[f]^{k} \mathbf{1}_{N_{t}>0}\right]}{t \mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)}
$$

Method of moments \#2

- Set $\psi_{t}^{(k)}[f](x)=\mathbb{E}_{\delta_{x}}\left[X_{t}[f]^{k}\right]$. Note that $\psi_{t}^{(1)}=\psi_{t}$.
- Our objective is to show that for $k \geq 2, f \in B^{+}(E)$ and $x \in E$,

$$
\lim _{t \rightarrow \infty} g_{k}(t) \psi_{t}^{(k)}[f](x)=C_{k}(x, f)
$$

where $g_{k}(t)$ and $C_{k}(x, f)$ can be identified explicitly.

- The key is to notice that

Method of moments \#2

- Set $\psi_{t}^{(k)}[f](x)=\mathbb{E}_{\delta_{x}}\left[X_{t}[f]^{k}\right]$. Note that $\psi_{t}^{(1)}=\psi_{t}$.
- Our objective is to show that for $k \geq 2, f \in B^{+}(E)$ and $x \in E$,

$$
\lim _{t \rightarrow \infty} g_{k}(t) \psi_{t}^{(k)}[f](x)=C_{k}(x, f)
$$

where $g_{k}(t)$ and $C_{k}(x, f)$ can be identified explicitly.

- The key is to notice that

$$
\psi_{t}^{(k)}[f](x)=\left.(-1)^{k} \frac{\partial^{k}}{\partial \theta^{k}} \mathbb{E}_{\delta_{x}}\left[e^{-\theta X_{t}[f]}\right]\right|_{\theta=0}=\left.(-1)^{k} \frac{\partial^{k}}{\partial \theta^{k}} v_{t}[\theta f](x)\right|_{\theta=0} .
$$

Method of moments \#2

- Recall the evolution equation for $\mathrm{v}_{t}[f](x)=\mathbb{E}_{\delta_{x}}\left[\mathrm{e}^{-X_{t}[f]}\right]$:

$$
\mathrm{v}_{t}[f](x)=\hat{\mathrm{P}}_{t}\left[\mathrm{e}^{-f}\right](x)+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{G}\left[\mathrm{v}_{t-s}[f]\right]\right](x) \mathrm{d} s,
$$

where $\hat{\mathrm{P}}_{t}[f](x)=\mathbb{E}_{x}\left[f\left(\xi_{t \wedge \tau_{\partial}}\right)\right]$.

Method of moments \#2

- Recall the evolution equation for $\mathrm{v}_{t}[f](x)=\mathbb{E}_{\delta_{x}}\left[\mathrm{e}^{-X_{t}[f]}\right]$:

$$
\mathrm{v}_{t}[f](x)=\hat{\mathrm{P}}_{t}\left[\mathrm{e}^{-f}\right](x)+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{G}\left[\mathrm{v}_{t-s}[f]\right]\right](x) \mathrm{d} s,
$$

where $\hat{\mathrm{P}}_{t}[f](x)=\mathbb{E}_{x}\left[f\left(\xi_{t \wedge \tau_{\partial}}\right)\right]$.

- However, this is not the right evolution equation to work with.

Method of moments \#2

Set

$$
\mathrm{u}_{t}[f](x)=1-\mathrm{v}_{t}[f](x), \quad t \geq 0
$$

and

$$
\mathcal{A}[f](x)=\beta(x) \mathcal{E}_{x}\left[\prod_{i=1}^{N}\left(1-f\left(x_{i}\right)\right)-1+\sum_{i=1}^{N} f\left(x_{i}\right)\right]
$$

Method of moments \#2

Set

$$
\mathrm{u}_{t}[f](x)=1-\mathrm{v}_{t}[f](x), \quad t \geq 0
$$

and

$$
\mathcal{A}[f](x)=\beta(x) \mathcal{E}_{x}\left[\prod_{i=1}^{N}\left(1-f\left(x_{i}\right)\right)-1+\sum_{i=1}^{N} f\left(x_{i}\right)\right] .
$$

Lemma

For all $x \in E$ and $t \geq 0, \mathrm{u}_{t}[g](x)$ satisfies

$$
\mathrm{u}_{t}[g](x)=\psi_{t}\left[1-\mathrm{e}^{-g}\right](x)-\int_{0}^{t} \psi_{s}\left[\mathcal{A}\left[\mathrm{u}_{t-s}[g]\right]\right](x) \mathrm{d} s
$$

Method of moments \#2

Assume that $\sup \mathcal{E}_{x}\left[\mathcal{Z}[1]^{k}\right]<\infty$. Then

$$
x \in E
$$

$$
\begin{equation*}
\psi_{t}^{(k)}[f](x)=\psi_{t}\left[f^{k}\right](x)+\int_{0}^{t} \psi_{s}\left[\beta \eta_{t-s}^{(k-1)}[f]\right](x) \mathrm{d} s, \quad t \geq 0 \tag{1}
\end{equation*}
$$

where

$$
\eta_{t-s}^{(k-1)}[f](x)=\mathcal{E}_{x}\left[\sum_{\left[k_{1}, \ldots, k_{N}\right]_{k}^{2}}\binom{k}{k_{1}, \ldots, k_{N}} \prod_{j: k_{j}>0} \psi_{t-s}^{\left(k_{j}\right)}[f]\left(x_{j}\right)\right]
$$

and $\left[k_{1}, \ldots, k_{N}\right]_{k}^{2}$ is the set of all non-negative N-tuples $\left(k_{1}, \ldots, k_{N}\right)$ such that $\sum_{i=1}^{N} k_{i}=k$ and at least two of the k_{i} are strictly positive.

Method of moments \#2

Theorem (with Gonzalez Garcia \& Kyprianou)

Assume that $\sup \mathcal{E}_{x}\left[\mathcal{Z}[1]^{k}\right]<\infty$. Define

$$
x \in E
$$

$$
\Delta_{t}^{(\ell)}=\sup _{x \in E, f \in B^{+}(E)}\left|t^{-(\ell-1)} \varphi(x)^{-1} \psi_{t}^{(\ell)}[f](x)-\ell!\eta[f]^{\ell}(\Sigma / 2)^{\ell-1}\right|
$$

Then, for all $\ell \leq k$ and $\varepsilon>0$

$$
\sup _{t \geq \varepsilon} \Delta_{t}^{(\ell)}<\infty \text { and } \lim _{t \rightarrow \infty} \Delta_{t}^{(\ell)}=0
$$

Method of moments \#2

Theorem (with Gonzalez Garcia \& Kyprianou)

Assume that $\sup \mathcal{E}_{x}\left[\mathcal{Z}[1]^{k}\right]<\infty$. Define

$$
\Delta_{t}^{(\ell)}=\sup _{x \in E, f \in B^{+}(E)}\left|t^{-(\ell-1)} \varphi(x)^{-1} \psi_{t}^{(\ell)}[f](x)-\ell!\eta[f]^{\ell}(\Sigma / 2)^{\ell-1}\right|
$$

Then, for all $\ell \leq k$ and $\varepsilon>0$

$$
\sup _{t \geq \varepsilon} \Delta_{t}^{(\ell)}<\infty \text { and } \lim _{t \rightarrow \infty} \Delta_{t}^{(\ell)}=0
$$

$$
\text { i.e. } \psi_{t}^{(\ell)}[f](x) \sim t^{\ell-1} \ell!\varphi(x) \eta[f]^{\ell}(\Sigma / 2)^{\ell-1}
$$

Recap

Theorem (Kolmogorov survival probability)

We have

$$
\lim _{t \rightarrow \infty} \sup _{x \in E}\left|\frac{t \mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)}{\varphi(x)}-\frac{2}{\Sigma}\right|=0
$$

Theorem (Yaglom limit)

For each $f \in B^{+}(E)$,

$$
\left(\left.\frac{X_{t}[f]}{t} \right\rvert\, N_{t}>0\right) \rightarrow Y, \quad \text { as } t \rightarrow \infty,
$$

in distribution, where Y is an exponential random variable with mean $\eta[f] \Sigma / 2$.

Recap

- Method of moments: show that

$$
\mathbb{E}_{\delta_{x}}\left[X_{t}[f]^{k} \mid N_{t}>0\right] \sim t^{k} k!\eta[f]^{k}(\Sigma / 2)^{k} .
$$

- Find an evolution equation that relates the k-th moment to the lower order moments and use induction.
- Can use (X, \mathbb{P}) or $\left(X, \mathbb{P}^{\varphi}\right) \ldots$

Recap

- Method of moments: show that

$$
\mathbb{E}_{\delta_{x}}\left[X_{t}[f]^{k} \mid N_{t}>0\right] \sim t^{k} k!\eta[f]^{k}(\Sigma / 2)^{k} .
$$

- Find an evolution equation that relates the k-th moment to the lower order moments and use induction.
- Can use (X, \mathbb{P}) or $\left(X, \mathbb{P}^{\varphi}\right) \ldots$ but either way, we require a bound on the number of offspring.

Attempt 3

New assumptions

- $\beta, m[1] \in B^{+}(E)$
- Assumption A holds and $\lambda_{*}=0$.
- For t sufficiently large, sup $\mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)<1$.
$x \in E$
- There exist constants $C, M \in(0, \infty)$ such that $\forall g \in B^{+}(E)$,
$\left.\left.\eta^{[\gamma \vartheta}\right)_{M}[g 1]\right\rangle \geq \mathrm{C}_{\eta}[g]^{2}$.
where

New assumptions

- $\beta, m[1] \in B^{+}(E)$
- Assumption A holds and $\lambda_{*}=0$.
- For t sufficiently large, sup $\mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)<1$.

$$
x \in E
$$

- There exist constants $C, M \in(0, \infty)$ such that $\forall g \in B^{+}(E)$,

$$
\left.\eta\left[\gamma \mathcal{V}_{M}[g]\right]\right\rangle \geq C_{\eta}[g]^{2}
$$

where

$$
\mathcal{V}_{M}[g](x):=\mathcal{E}_{x}\left[\sum_{i \neq j} g\left(x_{i}\right) g\left(x_{j}\right) \mathbf{1}_{\{N \leq M\}}\right]
$$

New assumptions

- $\beta, m[1] \in B^{+}(E)$
- Assumption A holds and $\lambda_{*}=0$.
- For t sufficiently large, sup $\mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)<1$.

$$
x \in E
$$

- There exist constants $C, M \in(0, \infty)$ such that $\forall g \in B^{+}(E)$,

$$
\left.\eta\left[\gamma \mathcal{V}_{M}[g]\right]\right\rangle \geq C_{\eta}[g]^{2}
$$

where

$$
\mathcal{V}_{M}[g](x):=\mathcal{E}_{x}\left[\sum_{i \neq j} g\left(x_{i}\right) g\left(x_{j}\right) \mathbf{1}_{\{N \leq M\}}\right]
$$

- $\sup \mathcal{E}_{\times}\left[N^{2}\right]<\infty$
$x \in E$

New assumptions

- $\beta, m[1] \in B^{+}(E)$
- Assumption A holds and $\lambda_{*}=0$.
- For t sufficiently large, sup $\mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)<1$.

$$
x \in E
$$

- There exist constants $C, M \in(0, \infty)$ such that $\forall g \in B^{+}(E)$,

$$
\left.\eta\left[\gamma \mathcal{V}_{M}[g]\right]\right\rangle \geq C_{\eta}[g]^{2}
$$

where

$$
\mathcal{V}_{M}[g](x):=\mathcal{E}_{x}\left[\sum_{i \neq j} g\left(x_{i}\right) g\left(x_{j}\right) \mathbf{1}_{\{N \leq M\}}\right] .
$$

- $\sup \mathcal{E}_{x}\left[N^{2}\right]<\infty \quad \because$
$x \in E$

Attempt 3

- Idea: work directly with the Laplace transform

$$
\mathbb{E}_{\delta_{x}}\left[\mathrm{e}^{-\theta X_{t}[\varphi]} \mid N_{t}>0\right]=\frac{\mathbb{E}_{\delta_{x}}\left[\mathrm{e}^{-\theta X_{t}[\varphi]} \mathbf{1}_{N_{t}>0}\right]}{\mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)}
$$

- $1-\mathbb{E}_{\delta_{x}}\left[\mathrm{e}^{-\theta X_{t}[\varphi]}\right]$ and $\mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)=1-\mathbb{P}_{\delta_{x}}\left(N_{t}=0\right)$ are both solutions to

where

Attempt 3

- Idea: work directly with the Laplace transform

$$
\mathbb{E}_{\delta_{x}}\left[\mathrm{e}^{-\theta X_{t}[\varphi]} \mid N_{t}>0\right]=\frac{\mathbb{E}_{\delta_{x}}\left[\mathrm{e}^{-\theta X_{t}[\varphi]} \mathbf{1}_{N_{t}>0}\right]}{\mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)}
$$

- $1-\mathbb{E}_{\delta_{x}}\left[\mathrm{e}^{-\theta X_{t}[\varphi]}\right]$ and $\mathbb{P}_{\delta_{x}}\left(N_{t}>0\right)=1-\mathbb{P}_{\delta_{x}}\left(N_{t}=0\right)$ are both solutions to

$$
\mathrm{u}_{t}[g](x)=\psi_{t}\left[1-\mathrm{e}^{-g}\right](x)-\int_{0}^{t} \psi_{s}\left[\mathcal{A}\left[\mathrm{u}_{t-s}[g]\right]\right](x) \mathrm{d} s
$$

where

$$
\mathcal{A}[f](x)=\beta(x) \mathcal{E}_{x}\left[\prod_{i=1}^{N}\left(1-f\left(x_{i}\right)\right)-1+\sum_{i=1}^{N} f\left(x_{i}\right)\right]
$$

Why the 2nd moments?

Why the 2nd moments?

Magical explanation:

$$
\eta_{X}^{\varphi}\left[\sum_{\substack{j=1 \\ j \neq i^{*}}}^{N} X_{t-u}^{j}[\varphi]\right]=\mathcal{E}_{x}^{\varphi}\left[\sum_{\substack{j=1 \\ j \neq i^{*}}}^{N} \mathbb{E}_{\delta_{x_{j}}}\left[X_{t-u}^{j}[\varphi]\right]\right]
$$

Why the 2nd moments?

Magical explanation:

$$
\begin{aligned}
\eta_{x}^{\varphi}\left[\sum_{\substack{j=1 \\
j \neq i^{*}}}^{N} X_{t-u}^{j}[\varphi]\right] & =\mathcal{E}_{x}^{\varphi}\left[\sum_{\substack{j=1 \\
j \neq i^{*}}}^{N} \mathbb{E}_{\delta_{x_{j}}}\left[X_{t-u}^{j}[\varphi]\right]\right] \\
& =\mathcal{E}_{x}\left[\frac{\mathcal{Z}[\varphi]}{\mathcal{E}_{x}[\mathcal{Z}[\varphi]]} \sum_{k=1}^{N} \frac{\varphi\left(x_{k}\right)}{\mathcal{Z}[\varphi]} \sum_{\substack{j=1 \\
j \neq k}}^{N} \mathbb{E}_{\delta_{x_{j}}}\left[X_{t-u}^{j}[\varphi]\right]\right]
\end{aligned}
$$

Why the 2nd moments?

Magical explanation:

$$
\begin{aligned}
\eta_{x}^{\varphi}\left[\sum_{\substack{j=1 \\
j \neq i^{*}}}^{N} X_{t-u}^{j}[\varphi]\right] & =\mathcal{E}_{x}^{\varphi}\left[\sum_{\substack{j=1 \\
j \neq i^{*}}}^{N} \mathbb{E}_{\delta_{x_{j}}}\left[X_{t-u}^{j}[\varphi]\right]\right] \\
& =\mathcal{E}_{x}\left[\frac{\mathcal{Z}[\varphi]}{\mathcal{E}_{x}[\mathcal{Z}[\varphi]]} \sum_{k=1}^{N} \frac{\varphi\left(x_{k}\right)}{\mathcal{Z}[\varphi]} \sum_{\substack{j=1 \\
j \neq k}}^{N} \mathbb{E}_{\delta_{x_{j}}}\left[X_{t-u}^{j}[\varphi]\right]\right] \\
& =\frac{1}{\mathcal{E}_{x}[\mathcal{Z}[\varphi]]} \mathcal{E}_{x}\left[\sum_{k=1}^{N} \varphi\left(x_{j}\right) \sum_{\substack{j=1 \\
j \neq k}}^{N} \varphi\left(x_{j}\right)\right]
\end{aligned}
$$

Why 2nd moments?

Analytic explanation:

$$
\begin{aligned}
& t^{-k} \psi_{t}^{(k+1)}[f](x) \\
& =t^{-k} \int_{0}^{t} \psi_{s}\left[\mathcal{E} .\left[\sum_{\left[k_{1}, \ldots, k_{N}\right]_{k+1}^{2}}\binom{k+1}{k_{1}, \ldots, k_{N}} \prod_{j: k_{j}>0} \psi_{t-s}^{\left(k_{j}\right)}[f]\left(x_{j}\right)\right]\right](x) \mathrm{d} s
\end{aligned}
$$

Why 2nd moments?

Analytic explanation:

$$
\begin{aligned}
& t^{-k} \psi_{t}^{(k+1)}[f](x) \\
& =t^{-k} \int_{0}^{t} \psi_{s}\left[\mathcal{E}\left[\sum_{\left[k_{1}, \ldots, k_{N}\right]_{k+1}^{2}}\binom{k+1}{k_{1}, \ldots, k_{N}} \prod_{j: k_{j}>0} \psi_{t-s}^{\left(k_{j}\right)}[f]\left(x_{j}\right)\right]\right](x) \mathrm{d} s \\
& =\frac{1}{t} \int_{0}^{t} \psi_{s}\left[\mathcal{E}\left[\sum_{\left[k_{1}, \ldots, k_{N}\right]_{k+1}^{2}}\binom{k+1}{k_{1}, \ldots, k_{N}} \frac{(t-s)^{k+1-\#\left\{\left\{j: k_{j}>0\right\}\right.}}{t^{k-1}} \prod_{j: k_{j}>0} \frac{\psi_{t-s}^{\left(k_{j}\right)}[f]\left(x_{j}\right)}{(t-s)^{k_{j}-1}}\right]\right](x) \mathrm{d} s
\end{aligned}
$$

Why the 2nd moments?

Probabilistic explanation: asymptotically, two children of the MRCA, each with at least 1 descendant alive at time t.

Recall the operator

$$
\begin{aligned}
\mathcal{A}[h](x) & =\beta(x) \mathcal{E}_{x}\left[1-\prod_{i=1}^{N}\left(1-h\left(x_{i}\right)\right)-\sum_{i=1}^{N} h\left(x_{i}\right)\right] \\
& =\beta(x) \mathcal{E}_{x}\left[\sum_{i \neq j} h\left(x_{i}\right) h\left(x_{j}\right)-\ldots\right] \\
& =V[h](x)+\text { h.o.t }
\end{aligned}
$$

Why the exponential distribution?

- There are asymptotically two children of the MRCA, each with at least 1 descendant alive at time t.
- Distribution of the time of the MRCA of the particles alive at time t is uniform.
- Therefore, under $\mathbb{P}_{\delta_{x}}\left(\cdot \mid N_{t}>0\right)$,

$$
\frac{X_{t}}{t} \approx U\left(\frac{X_{U t}^{(1)}}{U t}+\frac{X_{U t}^{(2)}}{U t}\right)
$$

Literature

- Galton Watson processes: Kolmogorov '38, Yaglom '48, Kesten et. al. '66, Lyons et. al. '95, Geiger '99, Geiger '00, Vatutin et. al. '01, Ren et. al. '18.
- Spatial branching processes: Powell '19, Harris et. al. '22, Horton \& Powell '24+.
- Superprocesses: Ren et. al. '19.
- Random/varying environment: Cardona-Tobòn \& Palau '23.

Yaglom and Kolmogorov results

Robustness of the method of moments

- Define the occupation measure

$$
\int_{0}^{t} X_{s}(\cdot) d s, \quad t \geq 0
$$

- Then, as $t \rightarrow \infty$,
$\mathbb{E}_{\delta_{x}}\left[\left(\int_{0}^{t} X_{s}[g] \mathrm{d} s\right)^{k}\right] \sim t^{2 k-1} C_{k}(x, g)$

Robustness of the method of moments

- Define the occupation measure

$$
\int_{0}^{t} X_{s}(\cdot) \mathrm{d} s, \quad t \geq 0
$$

Robustness of the method of moments

- Define the occupation measure

$$
\int_{0}^{t} X_{s}(\cdot) \mathrm{d} s, \quad t \geq 0
$$

- Then, as $t \rightarrow \infty$,

$$
\mathbb{E}_{\delta_{x}}\left[\left(\int_{0}^{t} X_{s}[g] \mathrm{d} s\right)^{k}\right] \sim t^{2 k-1} C_{k}(x, g)
$$

Robustness of the method of moments

Consider now a Markov process $X:=\left(X_{t}\right)_{t \geq 0}$ the space of finite measures on E, with probabilities $\mathbb{P}:=\left(\mathbb{P}_{\mu}, \mu \in M(E)\right)$ and transition semigroup

$$
\mathbb{E}_{\mu}\left[\mathrm{e}^{-X_{t}[f]}\right]=\mathrm{e}^{-\mu\left[\mathrm{v}_{t}[f]\right]}
$$

where

$$
\mathrm{V}_{t}[f](x)=\mathrm{P}_{t}[f](x)-\int_{0}^{t} \mathrm{P}_{s}\left[\psi\left(\cdot, \mathrm{~V}_{t-s}[f](\cdot)\right)+\phi\left(\cdot, \mathrm{V}_{t-s}[f]\right)\right](x) \mathrm{d} s
$$

Method of moments

- E. Dumonteil and A. Mazzolo. Residence times of branching diffusion processes.
- S. Durham. Limit theorems for a general critical branching process.
- J. Fleischman. Limiting distributions for branching random fields.
- I. Iscoe. On the supports of measure-valued critical branching Brownian motion.
- A. Klenke. Multiple scale analysis of clusters in spatial branching models.

Many-to-few

Many-to-few

Recall the moment evolution equation:

$$
\psi_{t}^{(k)}[f](x)=\psi_{t}\left[f^{k}\right](x)+\int_{0}^{t} \psi_{s}\left[\beta \eta_{t-s}^{(k-1)}[f]\right](x) \mathrm{d} s
$$

Many-to-few

Recall the moment evolution equation:

$$
\psi_{t}^{(k)}[f](x)=\psi_{t}\left[f^{k}\right](x)+\int_{0}^{t} \psi_{s}\left[\beta \eta_{t-s}^{(k-1)}[f]\right](x) \mathrm{d} s
$$

Many-to-few

Many-to-few

Genealogical structure: ancestral trees

- Let (X, \mathbb{P}) denote a Markov branching process.
- Let $T>0$. On the event $\left\{N_{T} \geq k\right\}$, choose k distinct particles U_{1}, \ldots, U_{k} uniformly from those alive at time T.
- What does the ancestral tree formed from these k particles look like?

Genealogical structure: ancestral trees

- Let (X, \mathbb{P}) denote a Markov branching process.
- Let $T>0$. On the event $\left\{N_{T} \geq k\right\}$, choose k distinct particles U_{1}, \ldots, U_{k} uniformly from those alive at time T.
- What does the ancestral tree formed from these k particles look like?

Genealogical structure: ancestral trees

- Let (X, \mathbb{P}) denote a Markov branching process.
- Let $T>0$. On the event $\left\{N_{T} \geq k\right\}$, choose k distinct particles U_{1}, \ldots, U_{k} uniformly from those alive at time T.
- What does the ancestral tree formed from these k particles look like?

Genealogical structure: ancestral trees

- Let (X, \mathbb{P}) denote a Markov branching process.
- Let $T>0$. On the event $\left\{N_{T} \geq k\right\}$, choose k distinct particles U_{1}, \ldots, U_{k} uniformly from those alive at time T.
- What does the ancestral tree formed from these k particles look like?

Ancestral trees

Ancestral trees

Ancestral trees

Equivalently, define the equivalence relation \sim_{t} on $\{1, \ldots, k\}$ by
$i \sim_{t} j \Leftrightarrow \quad U_{i}$ and U_{j} share a common ancestor alive at time t.
Let $\pi_{t}^{k, T}$ denote the random partition of $\{1, \ldots, k\}$ corresponding to this equivalence relation.

Ancestral trees

Equivalently, define the equivalence relation \sim_{t} on $\{1, \ldots, k\}$ by
$i \sim_{t} j \Leftrightarrow \quad U_{i}$ and U_{j} share a common ancestor alive at time t.
Let $\pi_{t}^{k, T}$ denote the random partition of $\{1, \ldots, k\}$ corresponding to this equivalence relation.
What is the law of $\left(\pi_{t}^{k, T}\right)_{t \geq 0}$ conditional on $N_{T} \geq k$?

Ancestral trees

Consider a continuous time Galton Watson with offspring distribution L.

Ancestral trees

Consider a continuous time Galton Watson with offspring distribution L.

Theorem (Lambert '03)

On $\left\{N_{T} \geq 2\right\}$, pick two distinct particles, uniformly from those alive at time T. Let τ denote the time of their most recent common ancestor (MRCA). Then

$$
\mathbb{P}\left(\tau \in[t, T], N_{T} \geq 2\right)=\int_{0}^{1}(1-s) \frac{F_{T-t}^{\prime \prime}(s)}{F_{T-t}^{\prime}(s)} F_{T}^{\prime \prime}(s) \mathrm{d} s
$$

where $F_{t}(s)=\mathbb{E}\left[s^{N_{t}}\right]$.

Ancestral trees

Consider a continuous time Galton Watson with offspring distribution L.

Theorem (Lambert '03)

On $\left\{N_{T} \geq 2\right\}$, pick two distinct particles, uniformly from those alive at time T. Let τ denote the time of their most recent common ancestor (MRCA). Then

$$
\mathbb{P}\left(\tau \in[t, T], N_{T} \geq 2\right)=\int_{0}^{1}(1-s) \frac{F_{T-t}^{\prime \prime}(s)}{F_{T-t}^{\prime}(s)} F_{T}^{\prime \prime}(s) \mathrm{d} s
$$

where $F_{t}(s)=\mathbb{E}\left[s^{N_{t}}\right]$.

Theorem (Zubkov '76)

If $m=\mathbb{E}[L]=1$, then conditioned on $N_{T} \geq 2$,

$$
\frac{\tau}{T} \rightarrow \tau^{C} \in[0,1]
$$

in distribution, as $T \rightarrow \infty$.

Ancestral trees

Theorem 3.1. For any mesh $\left(t_{i}\right)_{i \leq n}$, and any chain of partitions $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ of $\{1, \ldots, k\}$,

$$
\begin{equation*}
\mathbb{P}\left(\pi_{t_{1}}^{k, L, T}=\gamma_{1}, \ldots, \pi_{t_{n}}^{k, L, T}=\gamma_{n}, \quad N_{T} \geq k\right)=\int_{0}^{1} \frac{(1-s)^{k-1}}{(k-1)!} \prod_{i=0}^{n} \prod_{\Gamma \in \gamma_{i}} F_{\Delta t_{i}}^{b_{i}(\Gamma)}\left(F_{T-t_{i+1}}(s)\right) d s \tag{3.6}
\end{equation*}
$$

where $\Delta t_{i}=t_{i+1}-t_{i}$.

Ancestral trees

Theorem 3.1. For any mesh $\left(t_{i}\right)_{i \leq n}$, and any chain of partitions $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ of $\{1, \ldots, k\}$,

$$
\begin{equation*}
\mathbb{P}\left(\pi_{t_{1}}^{k, L, T}=\gamma_{1}, \ldots, \pi_{t_{n}}^{k, L, T}=\gamma_{n}, N_{T} \geq k\right)=\int_{0}^{1} \frac{(1-s)^{k-1}}{(k-1)!} \prod_{i=0}^{n} \prod_{\Gamma \in \gamma_{i}} F_{\Delta t_{i}}^{b_{i}(\Gamma)}\left(F_{T-t_{i+1}}(s)\right) d s \tag{3.6}
\end{equation*}
$$

where $\Delta t_{i}=t_{i+1}-t_{i}$.

Theorem 3.6. There exists a universal stochastic process $\left(\bar{\pi}_{t}^{k, c r i t}\right)_{t \in[0,1]}$ such that for any tree with $m=1$ and $f^{\prime \prime}(1)<\infty$, the process $\left(\pi_{T t}^{k, L, T}\right)_{t \in[0,1]}$ conditioned on $\left\{N_{T} \geq k\right\}$ converges in distribution to $\left(\bar{\pi}_{t}^{k, \text { crit }}\right)_{t \in[0,1]}$ as $T \rightarrow \infty$. Moreover, the finite dimensional distributions of $\left(\bar{\pi}_{t}^{k, \text { crit }}\right)_{t \in[0,1]}$ are given by

$$
\begin{align*}
& \mathbb{P}\left(\bar{\pi}_{t_{1}}^{k, \text { crit }}=\gamma_{1}, \ldots, \bar{\pi}_{t_{n}}^{k, \text { crit }}=\gamma_{n}\right) \tag{3.14}\\
& =\prod_{i=0}^{n} \prod_{\Gamma \in \gamma_{i}} b_{i}(\Gamma)!\int_{0}^{\infty} \frac{\theta^{k-1}}{(k-1)!} \prod_{i=0}^{n}\left(\Delta t_{i}\right)^{\left|\gamma_{i+1}\right|-\left|\gamma_{i}\right|}\left(\frac{1+\left(1-t_{i+1}\right) \theta}{1+\left(1-t_{i}\right) \theta}\right)^{\left|\gamma_{i+1}\right|} d \theta \tag{3.15}
\end{align*}
$$

Ancestral trees

This result was presented in a more general setting in Harris, Johnston, Roberts (2019).

- The coalescent process obtained is topologically equivalent to Kingman's coalescent but with different coalescent rates.
- The $k-1$ split times of $\left(\bar{\pi}_{t}^{k, \text { crit }}\right)_{t \in[0,1]}$ have joint pdf

$$
P\left(u_{1}, \ldots, u_{k-1}\right)=k \int_{0}^{\infty} \frac{\theta^{k-1}}{(1+\theta)^{2}} \prod_{i=1}^{k-1} \frac{1}{\left(1+\theta\left(1-u_{i}\right)\right)^{2}} \mathrm{~d} \theta
$$

and are asymptotically independent of the Kingman tree topology.

Ancestral trees

Proposition (Harris, H., Kyprianou, Powell)

Let $a \in(0,1)$ and $x \in E$. Let T_{t} denote the time of the MRCA of two particles, one chosen uniformly from those alive at time t, and one chosen uniformly from those alive at time at. Then

$$
\frac{T_{t}}{t} \rightarrow T
$$

in distribution as $t \rightarrow \infty$.

Literature

- O'Connell, The genealogy of branching processes and the age of our most recent common ancestor.
- Lambert, Coalescence times for the branching process.
- Harris \& Roberts, The many-to-few lemma and multiple spines.
- Harris, Johnston \& Roberts, The coalescent structure of continuous-time Galton-Watson trees.
- Harris, Horton, Kyprianou \& Powell, Many-to-few for non-local branching Markov process.
- Johnston, The genealogy of Galton-Watson trees.
- Zubkov, Limiting distributions of the distance to the closest common ancestor.
- Athreya, Boenkost, Durrett, Foutel-Rodier, Le, Palau, Pardo, Schertzer, Schweinsberg, Tourniaire, ...

Genealogical structure: convergence to the BCRT

- Aim is to look at the scaling limit of the continuous planar tree associated with a MBP.
- Ulam Harris notation:

$$
\Omega=\bigcup_{n=0}^{\infty} \mathbb{N}^{n}
$$

- The label \emptyset denotes the initial ancestor.
- Labels are of the form $u=\emptyset u_{1} u_{2} \ldots u_{n}$, e.g. label $\emptyset 215$ means the particle is the 5 th child of the 1 st child of the 2 nd child of the initial ancestor.

Genealogical structure: convergence to the BCRT

- Aim is to look at the scaling limit of the continuous planar tree associated with a MBP.
- Ulam Harris notation:

- The label \emptyset denotes the initial ancestor.
- Labels are of the form $u=\emptyset u_{1} u_{2} \ldots u_{n}$, e.g. label $\emptyset 215$ means the particle is the 5 th child of the 1 st child of the 2 nd child of the initial ancestor.

Genealogical structure: convergence to the BCRT

- Aim is to look at the scaling limit of the continuous planar tree associated with a MBP.
- Ulam Harris notation:

$$
\Omega=\bigcup_{n=0}^{\infty} \mathbb{N}^{n} .
$$

- The label \emptyset denotes the initial ancestor
- Labels are of the form $u=\emptyset u_{1} u_{2} \ldots u_{n}$, e.g. label $\emptyset 215$ means the particle is the 5th child of the 1st child of the 2nd child of the initial ancestor.

Genealogical structure: convergence to the BCRT

- Aim is to look at the scaling limit of the continuous planar tree associated with a MBP.
- Ulam Harris notation:

$$
\Omega=\bigcup_{n=0}^{\infty} \mathbb{N}^{n} .
$$

- The label \emptyset denotes the initial ancestor.
- Labels are of the form $u=\emptyset u_{1} u_{2} \ldots u_{n}$, e.g. label $\emptyset 215$ means the particle is the 5th child of the 1st child of the 2nd child of the initial ancestor.

Genealogical structure: convergence to the BCRT

- Aim is to look at the scaling limit of the continuous planar tree associated with a MBP.
- Ulam Harris notation:

$$
\Omega=\bigcup_{n=0}^{\infty} \mathbb{N}^{n} .
$$

- The label \emptyset denotes the initial ancestor.
- Labels are of the form $u=\emptyset u_{1} u_{2} \ldots u_{n}$, e.g. label $\emptyset 215$ means the particle is the 5th child of the 1st child of the 2nd child of the initial ancestor.

Convergence to the Brownian CRT

Convergence to the Brownian CRT

Convergence to the CRT

Convergence to the CRT

Convergence to the Brownian CRT

Convergence to the Brownian CRT

Convergence to the Brownian CRT

- Given a contour process $(C(t))_{t \geq 0}$, define

$$
d(s, t)=C(s)+C(t)-2 \min _{r \in[s, t]} C(r), \quad 0 \leq s \leq t .
$$

- Define

$$
\left(\mathbf{T}_{t, x}, d_{t, x}\right):=\left(\mathbf{T}, \frac{1}{t} d\right) \text { under } \mathbb{P}_{\delta_{x}}\left(\cdot \mid N_{t}>0\right)
$$

- Let \mathbf{e} be a Brownian excursion conditioned to reach at least height 1 .
- Let $\left(\mathcal{T}_{\mathrm{e}}, d_{\mathrm{e}}\right)$ denote the real tree encoded by \mathbf{e}.

Convergence to the Brownian CRT

Theorem

For any $x \in E$,

$$
\left(\mathbf{T}_{t, x}, d_{t, x}\right) \rightarrow\left(\mathcal{T}_{\mathrm{e}}, d_{\mathrm{e}}\right) \text { as } t \rightarrow \infty,
$$

in distribution, with respect to the Gromov-Hausdorff topology.

Convergence to the Brownian CRT

Theorem

For any $x \in E$,

$$
\left(\mathbf{T}_{t, x}, d_{t, x}\right) \rightarrow\left(\mathcal{T}_{\mathrm{e}}, d_{\mathrm{e}}\right) \text { as } t \rightarrow \infty,
$$

in distribution, with respect to the Gromov-Hausdorff topology.

- GW trees: Aldous '93, Le Gall \& Duquesne '02, Miermont '09.
- Branching diffusions: Powell '19.
- MBP: Horton \& Powell '24+.

Convergence to the Brownian CRT

Comments

- All of this can be done in discrete time.
- Subcritical case: moment asymptotics, Yaglom limit,
- Supercritical case: law of large numbers, moment asymptotics, CLT,

Comments

- All of this can be done in discrete time.
- Subcritical case: moment asymptotics, Yaglom limit, ...
- Supercritical case: law of large numbers, moment asymptotics, CLT,

Comments

- All of this can be done in discrete time.
- Subcritical case: moment asymptotics, Yaglom limit, ...
- Supercritical case: law of large numbers, moment asymptotics, CLT, ...

Contents

(1) Branching Markov processes

(2) Perron Frobenius results
(3) The critical case
(4) Monte Carlo

Monte Carlo methods: branching process

Recall the Perron Frobenius asymptotic,

$$
\psi_{t}[g](x) \sim \mathrm{e}^{\lambda_{*} t} \eta[g] \varphi(x), \quad t \rightarrow \infty .
$$

Manipulation of this allows us to estimate the eigen-elements, e.g.

$$
\begin{aligned}
\lambda_{*}=\lim _{t \rightarrow \infty} \frac{1}{t} \log \psi_{t}[\mathbf{1}](x) & =\lim _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}_{\delta_{x}}\left[N_{t}\right] \\
& \approx \frac{1}{T} \log \left(\frac{1}{N} \sum_{i=1}^{N} N_{T}^{(i)}\right) .
\end{aligned}
$$

Monte Carlo methods: many-to-one

Recall the many-to-one formula:

$$
\mathbb{E}_{\delta_{x}}\left[X_{t}[g]\right]=\mathbf{E}_{x}\left[\mathrm{e}^{\int_{0}^{t} \gamma\left(\hat{\xi}_{s}\right) \mathrm{d} s} g\left(\hat{\xi}_{t}\right) \mathbf{1}_{t<\tau}\right] .
$$

We can replace the branching process by a single weighted trajectory, e.g.

$$
\begin{aligned}
& \lambda_{*}=\lim _{t \rightarrow \infty} \frac{1}{t} \log \psi_{t}[\mathbf{1}](x)=\lim _{t \rightarrow \infty} \frac{1}{t} \log \mathbf{E}_{x}\left[\mathrm{e}^{t} \gamma\left(\hat{\xi}_{s}\right) \mathrm{d} \mathrm{~d}\right. \\
&\left.\mathbf{1}_{t<\tau}\right] \\
&=\frac{1}{T} \log \left(\frac{1}{N} \sum_{i=1}^{N} \mathrm{e}^{\int_{0}^{T} \gamma\left(\hat{\xi}_{s}^{(i)}\right) \mathrm{d} \mathrm{~s}} \mathbf{1}_{T<\tau^{(i)}}\right) .
\end{aligned}
$$

Monte Carlo methods: Importance sampling

- If only we could find a single trajectory that survives forever...
- Recall that

Then

Monte Carlo methods: Importance sampling

- If only we could find a single trajectory that survives forever...
- Recall that

$$
\left.\frac{\mathrm{d} \mathbf{P}_{x}^{\varphi}}{\mathrm{d} \hat{\mathbf{P}}_{x}}\right|_{\mathcal{G}_{t}}:=\mathrm{e}^{-\lambda_{*} t+\int_{0}^{t} \gamma\left(\hat{\xi}_{s}\right) \mathrm{d} s} \frac{\varphi\left(\hat{\xi}_{t}\right)}{\varphi(x)}, \quad t \geq 0, x \in E
$$

Then

$$
\psi_{t}[g](x)=\mathbf{E}_{x}\left[\mathrm{e}^{\int_{0}^{t} \gamma\left(\hat{\xi}_{s}\right) \mathrm{d} s} g\left(\hat{\xi}_{t}\right) \mathbf{1}_{t<\tau}\right]=\mathbf{E}_{x}^{\varphi}\left[\mathrm{e}^{\lambda_{*} t} \frac{\varphi(x)}{\varphi\left(\hat{\xi}_{t}\right)} g\left(\hat{\xi}_{t}\right)\right] .
$$

Monte Carlo methods: Importance sampling

- Instead, let's make a "guess" for φ, say h.
- Define the change of measure

where \mathcal{J} is the generator of $\hat{\xi}$.
- Then

$$
\psi_{t}[g](x)=h(x) \mathbf{E}_{x}^{h}\left[\mathrm{e}^{\int_{0}^{t} \gamma\left(\hat{\xi}_{s}\right)+\frac{J h\left(\hat{\xi}_{s}\right)}{h\left(\hat{\xi}_{s}\right)} \mathrm{d} s} \frac{g\left(\hat{\xi}_{t}\right)}{h\left(\hat{\xi}_{t}\right)}\right]
$$

- Cox, A. M. G., Harris, S. C., Kyprianou, A. E., \& Wang, M. (2022). Monte Carlo methods for the neutron transport equation. SIAM/ASA Journal on Uncertainty Quantification, 10(2), 775-825.

Monte Carlo methods: Importance sampling

- Instead, let's make a "guess" for φ, say h.
- Define the change of measure

$$
\left.\frac{\mathrm{d} \mathbf{P}_{x}^{h}}{\mathrm{~d} \hat{\mathbf{P}}_{x}}\right|_{\mathcal{G}_{t}}:=\mathrm{e}^{-\int_{0}^{t} \frac{\mathcal{J} h\left(\hat{\xi}_{s}\right)}{h\left(\hat{\xi}_{s}\right)} \mathrm{d} s} \frac{h\left(\hat{\xi}_{t}\right)}{h(x)}
$$

where \mathcal{J} is the generator of $\hat{\xi}$.

- Then

- Cox, A. M. G., Harris, S. C., Kyprianou, A. E., \& Wang, M. (2022). Monte Carlo methods for the neutron transport equation. SIAM/ASA Journal on Uncertainty Quantification, 10(2), 775-825.

Monte Carlo methods: Importance sampling

- Instead, let's make a "guess" for φ, say h.
- Define the change of measure

$$
\left.\frac{\mathrm{d} \mathbf{P}_{x}^{h}}{\mathrm{~d} \hat{\mathbf{P}}_{x}}\right|_{\mathcal{G}_{t}}:=\mathrm{e}^{-\int_{0}^{t} \frac{\mathcal{J} h\left(\hat{\xi}_{s}\right)}{h\left(\hat{\xi}_{s}\right)} \mathrm{d} s} \frac{h\left(\hat{\xi}_{t}\right)}{h(x)}
$$

where \mathcal{J} is the generator of $\hat{\xi}$.

- Then

$$
\psi_{t}[g](x)=h(x) \mathbf{E}_{x}^{h}\left[\mathrm{e}^{\int_{0}^{t} \gamma\left(\hat{\xi}_{s}\right)+\frac{\mathcal{J} h\left(\hat{\xi}_{s}\right)}{h\left(\hat{\xi}_{s}\right)} \mathrm{d} s} \frac{g\left(\hat{\xi}_{t}\right)}{h\left(\hat{\xi}_{t}\right)}\right]
$$

- Cox, A. M. G., Harris, S. C., Kyprianou, A. E., \& Wang, M. (2022). Monte Carlo methods for the neutron transport equation. SIAM/ASA Journal on Uncertainty Quantification, 10(2), 775-825.

Monte Carlo methods: Importance sampling

- Instead, let's make a "guess" for φ, say h.
- Define the change of measure

$$
\left.\frac{\mathrm{d} \mathbf{P}_{x}^{h}}{\mathrm{~d} \hat{\mathbf{P}}_{x}}\right|_{\mathcal{G}_{t}}:=\mathrm{e}^{-\int_{0}^{t} \frac{\mathcal{J} h\left(\hat{\xi}_{s}\right)}{h\left(\hat{\xi}_{s}\right)} \mathrm{d} s} \frac{h\left(\hat{\xi}_{t}\right)}{h(x)}
$$

where \mathcal{J} is the generator of $\hat{\xi}$.

- Then

$$
\psi_{t}[g](x)=h(x) \mathbf{E}_{x}^{h}\left[\mathrm{e}^{\int_{0}^{t} \gamma\left(\hat{\xi}_{s}\right)+\frac{\mathcal{J} h\left(\hat{\xi}_{s}\right)}{h\left(\hat{\xi}_{s}\right)} \mathrm{d} s} \frac{g\left(\hat{\xi}_{t}\right)}{h\left(\hat{\xi}_{t}\right)}\right]
$$

- Cox, A. M. G., Harris, S. C., Kyprianou, A. E., \& Wang, M. (2022). Monte Carlo methods for the neutron transport equation. SIAM/ASA Journal on Uncertainty Quantification, 10(2), 775-825.

Toy model

- $D=(-L, L), V=\{-1,+1\}$.
- We consider a system governed by the following NTE:

$$
\begin{aligned}
\frac{\partial}{\partial t} \psi_{t}(r, v)=v & \nabla \\
& \nabla \psi_{t}(r, v)-\left(\Sigma_{\mathrm{s}}+\Sigma_{\mathrm{f}}\right) \psi_{t}(r, v) \\
+ & \frac{\Sigma_{\mathrm{s}}}{2}\left(\psi_{t}(r, v)+\psi_{t}(r,-v)\right) \\
& +\frac{\Sigma_{\mathrm{f}} \nu}{2}\left(\psi_{t}(r, v)+\psi_{t}(r,-v)\right)
\end{aligned}
$$

- Boundary condition: $\psi_{t}(L, 1)=0=\psi_{t}(-L,-1)$.

Toy model

- Standard ODE techniques allow one to solve the associated eigenvalue problem explicitly.
- Critical case:

$$
L_{c}=\frac{\arctan (1 / \sqrt{\bar{c}-1})}{\left(\Sigma_{\mathrm{s}}+\Sigma_{\mathrm{f}}\right) \sqrt{\bar{c}-1}} .
$$

- Eigenfunctions:

$$
\begin{aligned}
\varphi(r, v) & \propto \phi(r) \mathbf{1}_{\{v=+1\}}+\phi(-r) \mathbf{1}_{\{v=-1\}} \\
\eta(r, v) & \propto \phi(-r) \mathbf{1}_{\{v=+1\}}+\phi(r) \mathbf{1}_{\{v=-1\}}
\end{aligned}
$$

where

$$
\phi(r)=\cos \left(\alpha_{1} r\right)-\sin \left(\alpha_{1} r\right) \cot \left(\alpha_{1} L\right) .
$$

Toy model

Joint work with Eric Dumonteil and Andrea Zoia, CEA.

Toy model

Joint work with Eric Dumonteil and Andrea Zoia, CEA.

Toy model

Cox et. al., Monte Carlo methods for the neutron transport equation.

Toy model

Cox et. al., Monte Carlo methods for the neutron transport equation.

Monte Carlo methods: Fleming Viot

- Let $\left(Y_{t}\right)_{t \geq 0}$ be a time-homogeneous Markov process on $E \cup\{\partial\}$ with probabilities $\left(\mathbf{P}_{x}^{\dagger}, x \in E\right)$ and semigroup $\left(\mathrm{P}_{t}^{\dagger}\right)_{t \geq 0}$.
- Assume that $\tau_{\partial}:=\inf \left\{t>0: X_{t}=\partial\right\}<\infty, \mathbf{P}_{x}^{\dagger}$-almost surely for all $x \in E$.
- Assume further that for all $x \in E, \mathbf{P}_{x}^{\dagger}\left(t<\tau_{\partial}\right)>0$.

Monte Carlo methods: Fleming Viot

Simulate $N \geq 1$ independent copies of (Y, \mathbf{P}^{\dagger}) until one of the particles is absorbed.

Fleming Viot particle system

Monte Carlo methods: Fleming Viot

When this happens, duplicate one of the remaining $N-1$ particles and return to the previous step.

Fleming Viot particle system

Monte Carlo methods: Fleming Viot

Fleming Viot particle system

Monte Carlo methods: Fleming Viot

- Let $\left\{Y_{t}^{i}, i=1, \ldots, N\right\}$ denote the configuration of the Fleming Viot system at time $t \geq 0$.
- Let A_{t} denote the number of rebirths up to time t.

Monte Carlo methods: Fleming Viot

- Let $\left\{Y_{t}^{i}, i=1, \ldots, N\right\}$ denote the configuration of the Fleming Viot system at time $t \geq 0$.
- Let A_{t} denote the number of rebirths up to time t.

Theorem (Villemonais '14)

Assume that for any $x \in E$ and $t \geq 0$,

- $\mathbf{P}_{x}^{\dagger}\left(\tau_{\partial}=t\right)=0$,
- $A_{t}<\infty$ almost surely.

For any continuous, bounded function $f: E \rightarrow[0, \infty)$, we have

$$
\frac{1}{N} \sum_{i=1}^{N} \delta_{Y_{t}^{i}} \rightarrow \mathbf{E}_{\mu_{0}}\left[f\left(Y_{t}\right) \mid t<\tau_{\partial}\right]
$$

in law, as $N \rightarrow \infty$.

Monte Carlo methods: Fleming Viot

- Let $\left\{Y_{t}^{i}, i=1, \ldots, N\right\}$ denote the configuration of the Fleming Viot system at time $t \geq 0$.
- Let A_{t} denote the number of rebirths up to time t.

Theorem

Assume that for any $x \in E$ and $t \geq 0$,

- $\mathbf{P}_{x}^{\dagger}\left(\tau_{\partial}=t\right)=0$,
- $A_{t}<\infty$ almost surely.

Then, for any $f \in B^{+}(E)$ and $T>0$,

$$
\mathbf{E}_{x}^{\dagger}\left[f\left(Y_{T}\right)\right]=\mathbb{E}_{x}\left[\left(\frac{N-1}{N}\right)^{A_{T}^{N}} \frac{1}{N} \sum_{i=1}^{N} f\left(Y_{T}^{i}\right)\right] .
$$

Monte Carlo methods: Fleming Viot

Idea of proof:

- Define $\nu_{t}^{f}=\left(\frac{N-1}{N}\right)^{A_{t}} \frac{1}{N} \sum_{i=1}^{N} \mathrm{P}_{T-t}^{\dagger}[f]\left(Y_{t}^{i}\right)$.
- Martingale decomposition:

$$
\begin{equation*}
\nu_{T}^{f}-\nu_{0}^{f}=\int_{0}^{T}\left(\frac{N-1}{N}\right)^{A_{s-}^{N}} \mathrm{~d} \mathbb{M}_{s}+\frac{N}{N-1} \int_{0}^{T}\left(\frac{N-1}{N}\right)^{A_{s-}^{N}} \mathrm{~d} \mathcal{M}_{s} \tag{2}
\end{equation*}
$$

- Taking expectations yields the result.

Monte Carlo methods: Fleming Viot

Recall that we can create a subMarkov process from the branching process via

$$
\mathrm{e}^{-\bar{\gamma} t} \psi_{t}[g](x)=\mathrm{e}^{-\bar{\gamma} t} \hat{\mathbf{E}}_{x}\left[\mathrm{e}^{\int_{0}^{t} \gamma\left(\hat{\xi}_{s}\right) \mathrm{ds}} g\left(\hat{\xi}_{t}\right) \mathbf{1}_{t<\tau}\right]=\mathbf{E}_{x}^{\dagger}\left[g\left(\hat{\xi}_{t}\right)\right] .
$$

Monte Carlo methods: Fleming Viot

Recall that we can create a subMarkov process from the branching process via

$$
\mathrm{e}^{-\bar{\gamma} t} \psi_{t}[g](x)=\mathrm{e}^{-\bar{\gamma} t} \hat{\mathbf{E}}_{x}\left[\mathrm{e}^{\int_{0}^{t} \gamma\left(\hat{\xi}_{s}\right) \mathrm{ds}} g\left(\hat{\xi}_{t}\right) \mathbf{1}_{t<\tau}\right]=\mathbf{E}_{x}^{\dagger}\left[g\left(\hat{\xi}_{t}\right)\right] .
$$

Then, playing the same game, we have

$$
\mathbb{E}_{\delta_{x}}\left[X_{t}[g]\right]=\mathrm{e}^{\bar{\gamma} t} \mathbb{E}\left[\left(\frac{N-1}{N}\right)^{A_{t}} \frac{1}{N} \sum_{i=1}^{N} f\left(X_{t}^{i}\right)\right]
$$

and

$$
\lambda_{*}=\bar{\gamma}+\lim _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}\left[\frac{1}{N}\left(\frac{N-1}{N}\right)^{A_{t}}\right]
$$

Sequential Monte Carlo

- Sequential Monte Carlo
- Particle filters
- Genetic algorithms
- Evolutionary population
- Diffusion Monte Carlo
- Quantum Monte Carlo
- Sampling Algorithms

Sequential Monte Carlo

- Sequential Monte Carlo \rightsquigarrow Sampling + Resampling
- Particle filters \rightsquigarrow Prediction + Updating
- Genetic algorithms \rightsquigarrow Mutation + Selection
- Evolutionary population \rightsquigarrow Exploration + Branching-selection
- Diffusion Monte Carlo \rightsquigarrow Free evolution + Absorption
- Quantum Monte Carlo
- Sampling Algorithms
\rightsquigarrow Transition proposals + Accept-reject-recycle

Sequential Monte Carlo

\bullet
\bullet
\bullet

Sequential Monte Carlo

Sequential Monte Carlo

- Initiate a set of N particles, $\xi_{0}^{i} \sim \mu$.
- Evolve each particle independently according to a Markov semigroup M, until some time T.
- Compute weights $G_{T}\left(\xi_{T}^{i}\right)$ for each $i=1, \ldots, N$.
- Select the new population according to:

$$
G_{T}\left(\xi_{T}^{i}\right) \delta_{\xi_{T}^{i}}+\left(1-G_{T}\left(\xi_{T}^{i}\right)\right) \sum_{j \neq i} \frac{G_{T}\left(\xi_{T}^{j}\right)}{Z_{T}^{N}} \delta_{\xi_{T}^{j}} .
$$

Sequential Monte Carlo

- Fleming Viot:
- Motion: $\left(Y, \mathbf{P}^{\dagger}\right)$,
- Time step: $T=\min _{i=1, \ldots, N} \inf \left\{t>0: Y_{t}^{i}=\partial\right\}$,
- Weight: $G(x)=\mathbf{1}_{E}(x)$.
- Confinements:
- Motion: discrete time random walk, $\left(Y_{n}\right)_{n \geq 0}$, in \mathbb{Z}^{d},
- Time step: $T=1$,
- Weight: $G(x)=\mathbf{1}_{[-L, L]}(x)$.
- Self avoiding walks:
- Motion: $\mathbf{Y}_{n}=\left(Y_{0}, \ldots, Y_{n}\right)$,
- Time step: $T=1$,
- Weight: $G_{n}(\mathbf{x})=\mathbf{1}_{x_{n} \notin\left\{x_{0}, \ldots, x_{n-1}\right\}}$.

Literature

$4 \square 1$

Future work

- Systematic comparison of MC methods for simulating branching processes.
- Developing SMC methods that incorporate branching.
- Understanding the genealogy of SMC algorithms.
- Rare events.
- Time inhomogeneous systems.
- Machine learning.
- ...

¡Gracias!

