A SIMPLE PROOF OF KRAMKOV'S RESULT ON UNIFORM SUPERMARTINGALE DECOMPOSITIONS

SAUL JACKA 1,2

University of Warwick

Abstract: we give a simple proof of Kramkov's uniform optional decomposition in the case where the class of density processes satisfies a suitable closure property. In this case the decomposition is previsible.

Keywords: UNIFORM SUPERMARTINGALE; UNIFORM OPTIONAL DECOMPOSITION; UNIFORM PREDICTABLE DECOMPOSITION

AMS subject classification: 60G15

§1 Introduction

In [2], Kramkov showed that for a suitable class of probability measures, \mathcal{P} , on a filtered measure space $(\Omega, \mathcal{F}, \mathcal{F}_t; t \geq 0)$, if S is a supermartingale under all $\mathbb{Q} \in \mathcal{P}$, then there is a uniform optional decomposition of S into the difference between a \mathcal{P} -uniform local martingale and an increasing optional process. In this note we give (in Theorem 2.1) a simple proof of this result in the case where the density processes of the p.m.s in \mathcal{P} (taken with respect to a suitable reference p.m.) are closed under scalar multiplication (and hence continuous).

The applications in [2] refer to the financial set-up, where \mathcal{P} is the collection of Equivalent Martingale Measures for a collection of discounted securities \mathcal{X} , and S is the payoff to a superhedging problem for an American option, so that

$$S_t = \operatorname{ess\,sup}_{\mathbb{Q}\in\mathcal{P}}\operatorname{ess\,sup}_{\operatorname{optional}\ \tau>t}\mathbb{E}[X_{\tau}|\mathcal{F}_t],$$

where X is the claims process for the option.

Other examples are a multi-period coherent risk-measure where the risk measure ρ_t is given by

$$\rho_t(X) = \operatorname{ess\,sup}_{\mathbb{O}\in\mathcal{P}}\mathbb{E}[X|\mathcal{F}_t]$$

(see [3]) and the Girsanov approach to a control set-up, where S is given by the same formula, but \mathcal{P} corresponds to a collection of costless controls on X (see, for example, [1]).

§2 Uniform supermartingale decomposition

We assume that we are given a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$, satisfying the usual conditions, and a collection, \mathcal{P} , of probability measures on (Ω, \mathcal{F}) such that $\mathbb{Q} << \mathbb{P}$, for all $\mathbb{Q} \in \mathcal{P}$.

We note that, since $\mathbb{Q} << \mathbb{P}$, $\Lambda_t^{\mathbb{Q}} \stackrel{def}{=} \frac{d\mathbb{Q}}{d\mathbb{P}}|_{\mathcal{F}_t}$ is a non-negative \mathbb{P} -martingale, with $\Lambda_0^{\mathbb{Q}} = 1$, and hence we may write it as $\Lambda_t^{\mathbb{Q}} = \varepsilon(\lambda^{\mathbb{Q}})_t$, where ε is the Doleans-Dade exponential and $\lambda_t^{\mathbb{Q}} = \int_0^t \frac{d\Lambda^{\mathbb{Q}}_s}{\Lambda_{s_-}^{\mathbb{Q}}}$, so that $\lambda^{\mathbb{Q}}$ is a \mathbb{P} -local martingale with jumps bounded below by -1. We denote by \mathcal{L} the collection $\{\lambda^{\mathbb{Q}}; \mathbb{Q} \in \mathcal{P}\}$ and by \mathcal{L}^{loc} the usual localisation of \mathcal{L} .

¹ Postal address: Department of Statistics, University of Warwick, Coventry CV4 7AL, UK.

 $^{^2}$ E-mail: s.d.jacka@warwick.ac.uk

Theorem 2.1 Suppose that

- $i) \mathbb{P} \in \mathcal{P};$
- ii) \mathcal{L}^{loc} is closed under scalar multiplication;

then any \mathcal{P} -uniform local supermartingale, S, possesses a class-uniform Doob-Meyer predictable decomposition, i.e. we may write S uniquely as

$$S = M - A$$

where M is a P-uniform local martingale and A is a locally integrable predictable increasing process with $A_0 = 0$.

Remark: Notice that condition (ii) implies that every element of \mathcal{L}^{loc} is continuous, since if $\delta\lambda \in \mathcal{L}^{loc}$ for all $\delta \in \mathbb{R}$ the jumps of λ must be of size zero.

Proof of Theorem 2.1: take $\mathbb{Q} \in \mathcal{P}$, with $\Lambda^{\mathbb{Q}} = \varepsilon(\lambda^{\mathbb{Q}})$. Now S is a \mathbb{Q} -local supermartingale iff $S\Lambda^{\mathbb{Q}}$ is a \mathbb{P} -local supermartingale so, taking the Doob-Meyer decomposition of S with respect to \mathbb{P} : S = M - A, we must have that

$$S\Lambda^{\mathbb{Q}} = S_0 + \int S_{t-} d\Lambda_t^{\mathbb{Q}} + \int \Lambda_t^{\mathbb{Q}} dS_t + \langle S, \Lambda^{\mathbb{Q}} \rangle$$

= $S_0 + \int S_{t-} d\Lambda_t^{\mathbb{Q}} + \int \Lambda_t^{\mathbb{Q}} dM_t + \int \Lambda_t^{\mathbb{Q}} (d \langle \lambda^{\mathbb{Q}}, M \rangle_t - dA_t)$ (2.1)

is a \mathbb{P} -supermartingale. Now since the first two terms in the last line of (2.1) are local martingales, whilst the last is a predictable process of integrable variation on compacts, it follows that the last term must be decreasing. For this to be true, we must have

$$<\lambda^{\mathbb{Q}}, M>^+<< A, \text{ with } \frac{d<\lambda^{\mathbb{Q}}, M>^+}{dA} \le 1,$$
 (2.2)

where $<\lambda^{\mathbb{Q}}, M>^+$ and $<\lambda^{\mathbb{Q}}, M>^-$ are, respectively, the increasing processes corresponding to the positive and negative components in the Hahn decomposition of the signed measure induced by $<\lambda^{\mathbb{Q}}, M>$.

Now \mathcal{L}^{loc} is closed under scalar multiplication so that, localising if necessary, we may assume that $\delta\lambda\in\mathcal{L}$ and so, defining \mathbb{Q}^{δ} by $\Lambda^{\mathbb{Q}^{\delta}}\stackrel{def}{=}\varepsilon(\delta\lambda^{\mathbb{Q}})$, we see that (2.2) holds with $\lambda^{\mathbb{Q}}$ replaced by $\delta\lambda^{\mathbb{Q}}$ for any $\delta\in\mathbb{R}$. Letting $\delta\to\infty$ we see that $\frac{d<\lambda^{\mathbb{Q}},M>^+}{dA}=0$, whilst letting $\delta\to-\infty$ we see that $\frac{d<\lambda^{\mathbb{Q}},M>^-}{dA}=0$. It follows immediately that

$$<\lambda^{\mathbb{Q}}, M>\equiv 0$$

To complete the proof we need simply observe that

$$M\Lambda^{\mathbb{Q}} = M_0 + \int M_{t-} d\Lambda_t^{\mathbb{Q}} + \int \Lambda_t^{\mathbb{Q}} dM_t + \int \Lambda_t^{\mathbb{Q}} d < M, \lambda^{\mathbb{Q}} >_t,$$

and hence M is a \mathbb{Q} -local martingale and since \mathbb{Q} is arbitrary, the result follows

Remark: We note that if \mathcal{P} consists of the EMMs (or local EMMS) for a vector-valued martingale M and the underlying filtration supports only continuous martingales (for example if it is the filtration of a multi-dimensional Wiener process), then the conditions

of Theorem 2.1 are satisfied. This follows since, under these conditions, if λ is a \mathbb{P} -local martingale then $\lambda \in \mathcal{L}^{loc} \Leftrightarrow <\lambda, M>=0$, and the same then holds for any multiple of λ .

REFERENCES

- [1] Benes, V: Existence of Optimal Stochastic Control Laws (1971), SIAM J. of Control and Optim. 9, 446-472.
- [2] Kramkov, D: Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets (1996), *Prob. Th & Rel. Fields* **105**, 459-479.
- [3] Reidel, F: Dynamic Coherent Risk Measures (2004), Stoch. Proc. and Appl. 112, 185-200.