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Summary

The Auxiliary Particle Filter (APF) introduced by Pitt and Shephard (1999) is

a very popular alternative to Sequential Importance Sampling / Resampling (SISR)

algorithms to perform inference in state-space models. We propose a novel interpre-

tation of the APF as an SISR algorithm. This interpretation allows us to present

simple guidelines to ensure good performance of the APF and the first convergence

results for this algorithm. Additionally, we show that, contrary to popular belief, the

asymptotic variance of APF-based estimators is not always smaller than those of

the corresponding SISR – even in the ‘perfect adaptation’ scenario. We also explain

how similar concepts can be applied to general Sequential Monte Carlo Samplers

and provide similar results in this context.
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1. Introduction

The principle purpose of this report is to reinterpret the auxiliary particle filter (APF)

of [15, 16] in a manner which makes no use of auxiliary variables.

We begin in section 2 by presenting a novel interpretation of the APF and show-

ing that this interpretation allows us to employ now standard analysis techniques to

demonstrate convergence and other asymptotic results easily. This is illustrated with

a central limit theorem together with an easy to interpret asymptotic variance decom-

position. Such results have until now been absent from the literature.

In section 3 we show that this interpretation allows us to extend the technique

employed by the APF from the domain of filtering to the more general sampling regime

of the sequential Monte Carlo sampler of [4] and, again, the analysis is straightforward;

a general central limit theorem is provided for this class of algorithms which includes

those considered in section 2 as particular cases.

Sections 2 and 3 are each intended to be largely self contained. The intention is

that it should be possible to read either independently whilst duplication is minimised.

Section 2 contains interesting particular cases of the results with direct proofs. The

results presented in section 3 cover a broader range of algorithms and some method-

ological extensions are proposed; this section illustrates that is is possible to analyse a

wide range of algorithms within a common framework but introduces a few additional

complications in doing so. Both sections contain a central limit theorem and variance

expression for the APF.
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2.1 Introduction

Let t = 1, 2, ... denote a discrete-time index. Consider an unobserved X−valued Markov

process {Xt}t≥1 such that X1 ∼ µ (·) and Xt| (Xt−1 = xt−1) ∼ f ( ·|xt−1) where

f ( ·|xt−1) is the homogeneous transition density with respect to a suitable dominating

measure. The observations {Yt}t≥1 are conditionally independent given {Xt}t≥1 and

distributed according to Yt| (Xt = xt) ∼ g ( ·|xt).

For any sequence {zt}t≥1, we use the notation zi:j = (zi, zi+1, ..., zj). In numer-

ous applications, we are interested in estimating recursively in time the sequence of

posterior distributions {p (x1:t| y1:t)}t≥1 given by

p (x1:t| y1:t) ∝ µ (x1) g (y1|x1)

t∏

k=2

f (xk|xk−1) g (yk|xk) . (2.1)

When the model is linear Gaussian, the posterior distributions are Gaussian and

their statistics can be computed using Kalman techniques. For non-linear non-Gaussian

methods, these distributions do not typically admit a closed-form and it is necessary

to employ numerical approximations. Recently, the class of Sequential Monte Carlo

(SMC) methods - also known as particle filters - has emerged to solve this problem;

see [7, 14] for a review of the literature. Two classes of methods are primarily used: Se-

quential Importance Sampling / Resampling (SISR) algorithms [3, 14, 8] and Auxiliary

Particle Filters (APF) [15, 1, 16].

In the literature, the APF methodology is always presented as significantly differ-

ent from the SISR methodology. It was originally introduced in [15] using auxiliary

variables hence its name. Several improvements were proposed to reduce its variance

[1, 16]. In [11], the APF is presented without introducing any auxiliary variable and

also reinterpreted as an SISR algorithm. However, this SISR algorithm is non-standard

as it relies on a proposal distribution at time t on the path space X t which is dependent

on all the paths sampled previously.

We study here the version of the APF presented in [1] which only includes one

resampling step at each time instance. Experimentally this version outperforms the

original two stage resampling algorithm proposed in [15] and is widely used; see

[1] for a comparison of both approaches and [9] for an application to partially-
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observed diffusions. We propose a novel interpretation of this APF as a standard

SISR algorithm which we believe has two principal advantages over previous deriva-

tions/interpretations. First, it allows us to give some simple guidelines to ensure good

performance of the APF. These guidelines differ from many practical implementations

of the APF and explain some of the poor performance reported in the literature. Sec-

ond, there is no convergence result available for the APF in the literature whereas

there are numerous results available for SISR algorithms; see [3] for a thorough treat-

ment. Via this novel interpretation, we can easily adapt these results to the APF. We

present here the asymptotic variance associated with APF-based estimators and show

that this asymptotic variance is not necessarily lower than that of the correspond-

ing standard SISR-based estimators – even in the ‘perfect adaptation’ case which is

discussed further below.

2.2 SISR and APF

2.2.1 A Generic SISR algorithm

Consider an arbitrary sequence of probability distributions {πt (x1:t)}t≥1. To sample

sequentially from these distributions, the SISR algorithm introduces at time t an im-

portance distribution qt (xt|xt−1) to impute Xt (and q1 (x1) at time 1). Note that it

is possible to use a distribution qt (xt|x1:t−1) but this additional freedom is not useful

for the optimal filtering applications discussed here. The SISR algorithm proceeds as

follows; see for example [7], [14, chapter 3] for variations:

At time 1.

Sampling Step

For i = 1 : N , sample X
(i)
1,1 ∼ q1 (·).

Resampling Step

For i = 1 : N , compute w1

(
X

(i)
1,1

)
=

π1

“
X

(i)
1,1

”

q1

“
X

(i)
1,1

” and W
(i)
1 =

w1

“
X

(i)
1,1

”

P
N
j=1 w1

“
X

(j)
1,1

” .

For i = 1 : N , sample X̌
(i)
1,1 ∼

∑N
j=1W

(j)
1 δ

X
(j)
1,1

(dx1) .

At time t, t ≥ 2.

Sampling Step

For i = 1 : N , sample X
(i)
t,t ∼ qt

(
·| X̌(i)

t−1,t−1

)
.

Resampling Step

For i = 1 : N , compute wt

(
X̌

(i)
1:t−1,t−1,X

(i)
t,t

)
=

πt

“
X̌

(i)
1:t−1,t−1,X

(i)
t,t

”

πt−1

“
eX(i)
1:t−1,t−1

”
qt

“
X

(i)
t,t

˛̨
˛X̌(i)

t−1,t−1

”

and W
(i)
t =

wt

“
eX(i)
1:t−1,t−1,X

(i)
t,t

”

P
N
j=1 wt

“
X̌

(j)
1:t−1,t−1,X

(j)
t,t

” .

For i = 1 : N , sample X̌
(i)
1:t,t ∼

∑N
j=1W

(j)
t δ“

X̌
(j)
1:t−1,t−1,X

(j)
t,t

” (dx1:t) .

The empirical measure

ρN
t (dx1:t) =

1

N

N∑

i=1

δ“
X̌

(i)
1:t−1,t−1,X

(i)
t,t

” (dx1:t)

is an approximation of πt−1 (x1:t−1) qt (xt|xt−1) whereas

πN
t (dx1:t) =

N∑

i=1

W
(i)
t δ“

X̌
(i)
1:t−1,t−1,X

(i)
t,t

” (dx1:t)
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is an approximation of πt (x1:t).

Whilst, in practice, one may also wish to employ a lower variance resampling strat-

egy such as residual resampling and to use it only when some criterion indicates that

it is necessary, results of the sort presented here are sufficient to guide the design of

particular algorithms and the additional complexity involved in considering more gen-

eral scenarios serves largely to produce substantially more complex expressions which

obscure the important points.

2.2.2 APF as an SISR algorithm

The standard SISR algorithm for filtering corresponds to the case in which we set

πt (x1:t) = p (x1:t| y1:t). In this case, for any test function ϕt : X t → R, we estimate

ϕt =
∫
ϕt (x1:t) p (x1:t| y1:t) dx1:t by

ϕ̂N
t,SISR =

∫
ϕt (x1:t)π

N
t (dx1:t) =

N∑

i=1

W
(i)
t ϕ

(
X̌

(i)
1:t−1,t−1,X

(i)
t,t

)
. (2.2)

The APF described in [1] corresponds to the case where we select

πt (x1:t) = p̂ (x1:t| y1:t+1) ∝ p (x1:t| y1:t) p̂ (yt+1|xt) (2.3)

with p̂ (yt+1|xt) an approximation of

p (yt+1|xt) =

∫
g (yt+1|xt+1) f (xt+1|xt) dxt+1

if p (yt+1|xt) is not known analytically. As the APF does not approximate directly

p (x1:t| y1:t), we need to use importance sampling to estimate ϕt. We use the im-

portance distribution πt−1 (x1:t−1) qt (xt|xt−1) whose approximation ρN
t (dx1:t) is ob-

tained after the sampling step. The resulting estimate is given by

ϕ̂N
t,APF =

N∑

i=1

W̃
(i)
t ϕt

(
X̌

(i)
1:t−1,t−1,X

(i)
t,t

)
(2.4)

where

W̃
(i)
t =

w̃t

(
X̌

(i)
t−1,t−1,X

(i)
t,t

)

∑N
j=1 w̃t

(
X̌

(j)
t−1,t−1,X

(j)
t,t

)

and

w̃t (xt−1:t) =
p (x1:t| y1:t)

πt−1 (x1:t−1) qt (xt|xt−1)
∝ g (yt|xt) f (xt|xt−1)

p̂ (yt|xt−1) qt (xt|xt−1)
. (2.5)

In both cases, we usually select qt (xt|xt−1) as an approximation to

p (xt| yt, xt−1) =
g (yt|xt) f (xt|xt−1)

p (yt|xt−1)
.

This distribution is often referred to as the optimal importance distribution [7]. When

it is possible to select qt (xt|xt−1) = p (xt| yt, xt−1) and p̂ (yt|xt−1) = p (yt|xt−1),

we obtain the so-called ‘perfect adaptation’ case [15]. In this case, the APF takes a

particularly simple form as the importance weights (2.5) are all equal. This can be

interpreted as a standard SISR algorithm where the order of the sampling and resam-

pling steps is interchanged. It is widely believed that this strategy yields estimates

with a necessarily smaller variance as it increases the number of distinct particles at

time t. We will show further that this is not necessarily the case.
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2.2.3 APF Settings

It is well-known in the literature that we should select qt (xt|xt−1) as a distribu-

tion with thicker tails than p (xt| yt, xt−1). However, this simple reinterpretation of

the APF also shows that we should select a distribution p̂ (x1:t−1| y1:t) with thicker

tails than p (x1:t−1| y1:t) as p̂ (x1:t−1| y1:t) is used as an importance distribution to

estimate p (x1:t−1| y1:t). Thus p̂ (yt|xt−1) should be more diffuse than p (yt|xt−1).

It has been suggested in the literature to set p̂ (yt|xt−1) = g (yt|µ (xt−1)) where

µ (xt−1) corresponds to the mode, mean or median of f (xt|xt−1). However, this

simple approximation will often yield an importance weight function (2.5) which is

not upper bounded on X × X and could lead to an estimator with a large/infinite

variance. An alternative, and preferable approach consists of selecting an approxima-

tion p̂ (yt, xt|xt−1) = p̂ (yt|xt−1) p̂ (xt| yt, xt−1) of the distribution p (yt, xt|xt−1) =

p (yt|xt−1) p (xt| yt, xt−1) = g (yt|xt) f (xt|xt−1) such that the ratio (2.5) is upper

bounded on X × X and such that it is possible to compute p̂ (yt|xt−1) pointwise and

to sample from p̂ (xt| yt, xt−1).

2.2.4 Convergence Results

There is a wide range of sharp convergence results available for SISR algorithms [3].

We present here a Central Limit Theorem (CLT) for the SISR and the APF estimates

(2.2) and (2.4), giving the asymptotic variances of these estimates. The asymptotic

variance of the CLT for the SISR estimate (2.2) has been established several times

in the literature. We present here a new representation which we believe clarifies the

influence of the ergodic properties of the optimal filter on the asymptotic variance.

Proposition 2.2.1. Under the regularity conditions given in [2, Theorem 1] or [3,

Section 9.4, pp. 300-306], we have

√
N
(
ϕ̂N

t,SISR − ϕt

)
→ N

(
0, σ2

SISR (ϕt)
)
,

√
N
(
ϕ̂N

t,APF − ϕt

)
→ N

(
0, σ2

APF (ϕt)
)

where ‘→’ denotes convergence in distribution and N
(
0, σ2

)
is the zero-mean normal

of variance σ2. Moreover, at time t = 1 we have

σ2
SISR (ϕ1) = σ2

APF (ϕ1) =

∫
p (x1| y1)2
q1 (x1)

(ϕ1 (x1)− ϕ1)
2
dx1

whereas for t > 1

σ
2
SISR (ϕt) =

Z
p (x1| y1:t)

2

q1 (x1)

„Z
ϕt (x1:t) p (x2:t| y2:t, x1) dx2:t − ϕt

«2

dx1

+

t−1X

k=2

Z
p (x1:k| y1:t)

2

p (x1:k−1| y1:k−1) qk (xk|xk−1)

„Z
ϕt (x1:t) p (xk+1:t| yk+1:t, xk) dxk+1:t − ϕt

«2

dx1:k

+

Z
p (x1:t| y1:t)

2

p (x1:t−1| y1:t−1) qt (xt|xt−1)
(ϕt (x1:t)− ϕt)

2
dx1:t,

(2.6)

and
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σ
2
APF (ϕt) =

Z
p(x1|y1:t)

2

q1(x1)

„Z
ϕt(x1:t)p(x2:t|y2:t, x1)dx2:t − ϕ̄t

«2

dx1

+

t−1X

k=2

Z
p(x1:k|y1:t)

2

p̂(x1:k−1|y1:k)qk(xk|xk−1)

„Z
ϕt(x1:t)p(xk+1:t|yk+1:t, xk)dxk+1:t − ϕ̄t

«2

dx1:k

+

Z
p(x1:t|y1:t)

2

p̂(x1:t−1|y1:t)qt(xt|xt−1)
(ϕt(x1:t)− ϕ̄t)

2
dx1:t.

(2.7)

Sketch of Proof. Expression (2.6) follows from a straightforward but tedious rewriting of

the expression given in [3, Section 9.4, pp. 300-306]. We defer these lengthy calculations

to appendix A.

The variance of the estimate
∑N

i=1W
(i)
t ϕt

(
X̌

(i)
1:t−1,t−1,X

(i)
t,t

)
when πt (x1:t) is given

by (2.3) is given by an expression similar to (2.6) but with the terms p̂ (x1:k| y1:t+1),

p̂ (x1:k−1| y1:k) and p̂ (xk+1:t−1| yk+1:t+1, xk) replacing p (x1:k| y1:t) , p (x1:k−1| y1:k−1)

and p (xk+1:t| yk+1:t, xk), respectively (and with ϕ̄t replaced by
∫
ϕt(x1:t)p̂(x1:t|y1:t+1)dx1:t)).

Then by the same argument as [2, Lemma A2] the variance σ2
APF (ϕt) is equal to the

variance of
∑N

i=1W
(i)
t ϕ′

t

(
X̌

(i)
1:t−1,t−1,X

(i)
t,t

)
where

ϕ′
t (x1:t) =

p (x1:t| y1:t)
p̂ (x1:t| y1:t+1)

[ϕt (x1:t)− ϕ̄t]

and the expression (2.7) follows directly. Full details can be found in appendix A.

Corollary. In the perfect adaptation scenario where p̂ (yt|xt−1) = p (yt|xt−1) and

qt (xt|xt−1) = p (xt| yt, xt−1), we have

σ2
APF (ϕt) =

∫
p(x1|y1:t)2
p(x1|y1)

(∫
ϕt(x1:t)p(x2:t|y2:t, x1)dx2:t − ϕ̄t

)2

dx1

+
t−1∑

k=2

∫
p(x1:k|y1:t)2
p(x1:k|y1:k)

(∫
ϕt(x1:t)p(xk+1:t|yk+1:t, xk)dxk+1:t − ϕ̄t

)2

dx1:k

+

∫
p(x1:t|y1:t) (ϕt(x1:t)− ϕ̄t)

2
dx1:t.

Remark. The asymptotic bias for the APF can also be established by a simple

adaptation of [6, Theorem 1.1]. Both the bias and variance associated to ϕt (x1:t) =

ϕt (xt) can be uniformly bounded in time using [6, Proposition 4.1.]; see also [2, The-

orem 5].

One may interpret these variance expressions via a local error decomposition such

as that of [3, Chapters 7 & 9]. The error of the particle system estimate at time t

may be decomposed as a sum of differences, specifically, the difference in the estimate

due to propagating forward the particle system rather than the exact solution from

that time-step to the next. Summing over all such terms gives the difference between

the particle system estimate and the truth. These variance expressions illustrate that,

asymptotically at least, the variance follows a similar decomposition.

Each term in the variance expressions matches an importance sampling variance.

Loosely, it is the variance of estimating the integral of a function under the smoothing

distribution p(x1:k|y1:t) using as an importance distribution the last resampling distri-

bution propagated forward according to the proposal; the functions being integrated

correspond to propagating the system forward to time t using all remaining observa-

tions and then estimating the integral of ϕt. Thus, for ergodic systems in which some
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Fig. 2.1. Asymptotic variance difference, σ2
APF (ϕ2) − σ2

SISR(ϕ2) for the example. This is

negative wherever the APF outperforms SISR.

forgetting property holds, the early terms in this sum will decay (at least when ϕt

depends only upon the final time marginal) and the system will remain well behaved

over time.

2.3 Example

To illustrate the implications of these results, we employ the following binary state-

space model with common state and observation spaces:

X = {0, 1} p(x1 = 0) = 0.5 p(xt = xt−1) = 1− δ yt ∈ X p(yt = xt) = 1− ε.

This is an extremely simple state-space model and one would could obtain the exact

solution without difficulty. However, the evolution of this system from t = 1 to t = 2

provides sufficient structure to illustrate the important points and the simplicity of the

model enables us to demonstrate concepts which generalise to more complex scenarios.

We consider the estimation of the function ϕ2(x1:2) = x2 during the second itera-

tion of the algorithms when y1 = 0, y2 = 1. The optimal importance distributions and

the true predictive likelihood are available in this case. Additionally, the model has two

parameters which are simple to interpret: δ determines how informative the dynamic

model is (when δ is close to 0.5 the state at time t is largely unrelated to that at time

t − 1; when it approaches 0 or 1 the two become extremely highly correlated) and ε

determines how informative the observations are (when ε reaches zero, the observation

at time t specifies the state deterministically, and as it approaches 0.5 it provides no

information about the state).

Figure 2.1 shows the difference between the asymptotic variance of the APF and

SISR algorithms in this setting; note that the function plotted is negative whenever
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Fig. 2.2. Comparative variance graph: empirical and asymptotic results for the example.

the APF outperforms SISR in terms of the asymptotic variance of its estimates. A

number of interesting features can be discerned. Particularly, the APF provides better

estimates when δ is small, but exhibits poorer performance when δ ∼ 1 and ε ∼ 0.25.

When δ < 0.5 the observation sequence has low probability under the prior, the APF

ameliorates the situation by taking into account the predictive likelihood. The case in

which ǫ and δ are both small in, unsurprisingly that in which the APF performs best:

the prior probability of the observation sequence is low, but the predictive likelihood

is very concentrated.

Whilst it may appear counter-intuitive that the APF can be outperformed by SIR

even in the perfect adaptation case, this can perhaps be understood by noting that

perfect adaptation is simply a one-step-ahead process. The variance decomposition

contains terms propagated forward from all previous times and whilst the adaptation

may be beneficial at the time which it is performed it may have a negative influence

on the variance at a later point. We also note that, although the APF approach does

not dominate SIR, it seems likely to provide better performance in most scenarios.

Figure 2.2 shows experimental and asymptotic variances for the two algorithms.

The displayed experimental variances were calculated asN times the empirical variance

of 500 runs of each algorithm with N = 3, 000 particles. This provides an illustration

that the asymptotic results provided above do provide a useful performance guide.

2.4 Discussion and Extension

The main idea behind the APF, that is modifying the original sequence of targets

distributions to guide particles in promising regions, can be extended outside the fil-

tering framework. Assume we are interested in a sequence of distributions {πt (x1:t)}.
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Instead of using the SISR algorithm to sample from it, we use the SISR algorithm on

a sequence of distributions {π̂t+1 (x1:t)} where π̂t+1 (x1:t) is an approximation of

πt+1 (x1:t) =

∫
πt+1 (x1:t+1) dxt+1.

We then perform inference with respect to πt (x1:t) by using importance sampling with

the importance distribution π̂t−1 (x1:t−1) qt (xt|x1:t−1) obtained after the sampling

step at time t. This is discussed in more detail in section 3.

We also note that it has been recommended in the literature by a few authors (e.g.

[14, pp. 73-74]) to resample the particles not according to their normalized weights

associated to wSISR
t (x1:t) = πt(x1:t)

πt−1(x1:t−1)qt(xt|xt−1)
but according to a generic score

function wt (x1:t) > 0 at time t

wt (x1:t) = g
(
wSISR

t (x1:t)
)

where g : R
+ → R

+ is a monotone function; a common choice being g (x) = xα where

0 < α ≤ 1. To the best of our knowledge, it has never been specified clearly in the

literature that this approach simply corresponds to a standard SISR algorithm for the

sequence of distributions

π′
t (x1:t) ∝ g

(
wSISR

t (x1:t)
)
πt−1 (x1:t−1) qt (xt|xt−1) .

The estimates of expectations with respect to πt (x1:t) can then be computed using

importance sampling. This approach is rather similar to the APF and could also be

easily studied.



3. Auxiliary Sequential Monte Carlo

Samplers

In this section we introduce a general framework for a class of algorithms which incor-

porates a number of previously proposed filtering and sampling procedures, as well as

the auxiliary SMC sampler which will be introduced in section 3.4.2.

In section 2, we demonstrated that, in order to allow standard analysis techniques

to be applied to the auxiliary particle filter, it is useful to consider it from an angle

slightly different to that from which it is usually viewed. Rather than appealing to an

auxiliary variable technique, we view it as a technique which invokes a sequence of

auxiliary distributions which are related to those of interest but which do not corre-

spond to them. This sequence of distributions is then used as a sequence of importance

distributions: a collection of weighted samples from these distributions is reweighted

to provide a collection of weighted samples from the filtering distributions.

We further note that, as we are interested in the integrals of test functions ϕt under

a sequence of measures πt which admit a density with respect to µt which we term W̃t,

we may view the integral of ϕt under πt as being the integral of W̃tϕt under µt. Thus

we may view estimating the integral of ϕt from a collection of samples from auxiliary

distribution µt as estimating the integral of the transformed function W̃tϕt under the

sampling distribution. This leaves us obtaining a collection of samples from a sequence

of distributions via a sequential importance resampling strategy and then using this

sequence of samples to estimate the integral of functions.

With this interpretation we are able to treat the APF in very much the same was

as SIR and to apply results from the field of Feynman-Kac formulae, it will also allow

us to incorporate the APF into the general analytic framework which is introduced in

section 3.2. The section has a number of purposes:

– To illustrate that this technique may be extended to the more general SMC samplers

framework.

– To show that results obtained for SISR algorithms or SMC samplers can easily

be transferred to the other system by noting that SMC samplers are simply SISR

algorithms on a larger space, whilst any SISR algorithm may be embedded within

the SMC samplers framework.
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3.1 Background

The SMC samplers framework of [4] is a very general method for obtaining a set of

samples from a sequence of distributions which can exist on the same or different

spaces. This is a generalisation of the standard SMC method (commonly referred to

as particle filtering and summarised by [7]) in which the target distribution exists on

a space of strictly increasing dimension and no mechanism exists for updating the

estimates of the state at earlier times after receiving new data.

Given a sequence of distributions (µt)t≥1 on a sequence of measurable spaces

(Et, E)t≥1 from which we wish to obtain sets of weighted samples, we construct a

sequence of distributions on a sequence of spaces of increasing dimension which admit

the distributions of interest as marginals, by defining:

µ̃t(x1:t) = µt(xt)

1∏

s=t−1

Ls(xs+1, xs)

where Ls is an arbitrary Markov kernel from space Es+1 to Es (these act, in some sense,

backwards in time). It is clear that standard SMC methods can now be applied on this

space, by propagating samples forward from one distribution to the next according to

a sequence of Markov kernels, (Kt)t≥2, and correcting for the discrepancy between the

proposal and the target distribution by importance sampling. As always it is important

to ensure that a significant fraction of the particle set have non-negligible weights. The

effective sample size (ESS), introduced by [13], is an approximation obtained by Taylor

expansion of a quantity which describes the effective number of iid samples to which

the set corresponds. The ESS is defined as ESS =
[∑N

i=1W
(i)−2

]−1

where
{
W (i)

}
are

the normalized weights. This approximation, of course, fails if the particle set does not

accurately represent the support of the distribution of interest. Resampling should be

carried out after any iteration which causes the ESS to fall below a reasonable threshold

(typically around half of the total number of particles), to prevent the sample becoming

degenerate with a small number of samples having very large weights.

The rapidly increasing dimension raises the concern that the variance of the impor-

tance weights will be extremely high. It can be shown (again, see [4]) that the optimal

form for the Markov kernels Ls – in the sense that they minimise the variance of the

importance weights if resampling occurs at every time step – depends upon the distri-

butions of interest and the importance sampling proposal kernels Kt in the following

way:

Lopt
t (xt+1, xt) =

µt(xt)Kt+1(xt, xt+1)∫
µt(x)Kt+1(x, xt+1)dx

(3.1)

In practice it is important to choose a sequence of kernels which are as close to the op-

timal case as possible to prevent the variance of the importance weights from becoming

extremely large.

3.2 A Class of Sequential Samplers

We consider a broad class of sequential samplers which we shall term auxiliary SMC

(ASMC) samplers. We will show that as well as being of some interest in its own right,
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studying the general properties of this class of samplers will allow statements to be

made about several particularly interesting classes of samplers which are widely used

at present, using a strong law of large numbers and central limit theorem as exemplar

results.

Definition 3.2.1 (Auxiliary SMC Samplers). An auxiliary SMC sampler for a

sequence of distributions πt on (Et, Et) consists of:

– a “conventional” SMC sampler targeting some auxiliary sequence of distributions µt

from which a sequence of samples are obtained at each iteration.

– a sequence of importance weights W̃t proportional to the density of πt with respect

to µt.

Given an N -particle set of weighted samples from the ASMC sampler, we identify

the following pair of random measures with the two weighted empirical distributions

of interest:

µN
t (·) =

t∑
i=1

W
(i)
t δ

X
(i)
t

(·)
t∑

i=1

W
(i)
t

πN
t (·) =

t∑
i=1

W̃
(i)
t W

(i)
t δ

X
(i)
t

(·)
t∑

i=1

W̃
(i)
t W

(i)
t

,

noting that for measurable function ϕn, we may write:

∫
ϕn(xn)πN

t (xn)dxn =

∫
W̃t(xn)ϕn(xn)µN

t (xn)dxn∫
W̃t(xn)µN

t (xn)dxn

.

Although this appears complex, in practice this amounts to the machinery for

constructing a SMC sampler for the auxiliary sequence of distributions µt – which

can be done according to the guidelines for kernel selection in [4]. The only additional

complication with this method is choosing the sequence of auxiliary distributions µt

for which to construct the sampler. This is precisely the problem which is addressed,

in the filtering case, by the APF and we present a general analogue below. Algorithm 1

illustrates the minimal additional complexity introduced, relative to the SMC sampler.

Algorithm 1 ASMC Sampler
1: t = 1

2: for i = 1 to N do

3: X
(i)
1 ∼ K1(·)

4: W
(i)
1 ∝

µ1(X
(i)
1

K1(X
(i)
1 )

5: end for

6: Resample

7:
R

ϕt(xt)πt(dxt) ≈
Pt

i=1 W
(i)
t

fW (i)
t ϕt(X

(i)
t )

P
t
i=1 W

(i)
t

fW (i)
t

.

8: t← t + 1

9: for i = 1 to N do

10: X
(i)
t ∼ Kt(X

(i)
t−1, ·)

11: W
(i)
t ∝W

(i)
t−1

µt(X
(i)
t )Lt−1(X

(i)
t ,X

(i)
t−1)

µt−1(X
(i)
t−1)Kt(X

(i)
t−1,X

(i)
t )

12: end for

13: Go to step 6
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3.3 Convergence Results

Here we provide convergence results for ASMC sampler estimates of integrals, before

showing in section 3.4 that this sampler is sufficiently general that it may be used to

describe the other sampling frameworks of interest. The approach which is taken is to

make use of an appropriate Feynman-Kac flow (one for which the particle system of

interest may be considered a mean field approximation), thereby allowing us to apply

more or less directly the pioneering work of [3]. Although the mathematical novelty

is limited (indeed, we take essentially the same approach as that used by [5] in the

analysis of the SMC sampler) our principle contribution lies predominantly within the

interpretation of the auxiliary variable technique and the results obtained here should

have real practical implications. In this section we simply present the results of interest

together with an intuitive explanation. The proofs are deferred to appendix B.

The following collection of assumptions is made in order to obtain these convergence

results:

Assumption 1. Resampling is conducted at every step according to the multinomial re-

sampling scheme which corresponds to sampling, with replacement, from the weighted

collection of particles to obtain an unweighted collection with the same distribution.

Assumption 2. The importance weight is such that the estimator is always well defined.

In the simplest case, one may assume that:

∀xt−1 : ess infWt(xt−1, ·) > 0

ess supWt(xt−1, ·) <∞

where the essential infimum and supremum is taken with respect to K(xt−1, ·).

Assumption 3. The auxiliary weight is bounded: 0 < W̃t <∞.

Assumption 4. ϕt satisfies the regularity conditions given in [3, Chapter 9].

3.3.1 Strong Law of Large Numbers

In order to simplify the presentation and to present results of the form usually seen

within statistics, we provide a strong law of large numbers for the integrals of bounded

measurable functions. We note, however, that the result which we utilise in order to

do this is somewhat more general and we could, in fact, present the convergence of

the empirical distribution itself under a broad class of Zolotarev semi-norms with no

additional complications.

Theorem 3.3.1 (SLLN). Given an ASMC sampler, and a bounded measurable func-

tion ϕ : Et → R, at all iterations t ≥ 1 the following holds, providing that assumptions

1, 2 and 3 are satisfied:

lim
N→∞

(∫
ϕt(xt)π

N
t (dxt)−

∫
ϕt(xt)πt(dxt)

)
a.s.→ 0.

Whilst it is convenient and appealing to obtain this result for a broad class of

algorithms within a unified framework, it is the next theorem which illustrates the real

power of the approach. Via the central limit theorem we obtain a quantified estimate

of the variation of the estimator about the true value for ASMC samplers.
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3.3.2 Central Limit Theorem

Here we are able to show that, under weak regularity conditions, asymptotically, as

the number of particles employed in the sampler tends to infinity, the estimate of

the integral of bounded measurable functions provided by an ASMC sampler obeys a

central limit theorem with a particular asymptotic variance expression.

Theorem 3.3.2 (CLT). Given an ASMC sampler, the following central limit theo-

rem holds under weak regularity conditions, for bounded measure ϕt : Et → R :

√
N

(∫
ϕt(xt)π

N
t (dxt)−

∫
ϕt(xt)πt(dxt)

)
d→ N

(
0, σ2

ASMC (ϕt)
)
, (3.2)

where

σ2
ASMC(ϕt) =

∫
π̃t(x1)

2

K1(x1)

[∫
ϕt(xt)π̃xt|1(t|x1)dxt − ϕ̄πt

t

]2
dx1+

t−1∑

k=2

∫
[π̃t(xk)Lk−1(xk, xk−1)]

2

µk−1(xk−1)Kk(xk−1, xk)

[∫
ϕt(xt)π̃t|k(xt|xk)dxt − ϕ̄πt

t

]2
dxk−1:k,

+

∫
[πt(xt)Lt−1(xt, xt−1)]

2

µt−1(xt−1)Kt(xt−1, xt)
[ϕt(xt)− ϕ̄πt

t ]
2
dxt−1:t. (3.3)

where, for the sake of definiteness:

π̃t(x1:t) = πt(xt)

t−1∏

k=1

L(xk+1, xk)

π̃t(xk) =

∫
π̃t(x1:t)dx1:k−1dxk+1:t

π̃t|k(xt|xk) =
1

π̃t(xk)

∫
π̃t(x1:t)dx1:k−1dxk+1:t−1,

and throughout this section1 we define ϕ̄πt

t =
∫
ϕt(xt)πt(dxt), and we will subsequently

make use of ϕ̄µt

t =
∫
ϕt(xt)µt(dxt).

This variance expression has a very clear interpretation. Indeed, each term in the

summation corresponds to precisely the variance of an importance sampling estima-

tor (see, for example, [10]). Thus the variance at any time in the algorithm may be

decomposed into a collection of random variables each of which corresponds to the

difference obtained by propagating forward the existing, sampled particle set rather

than the true measure; each of which may asymptotically be viewed as an importance

sampling estimator. This is a particular case of a very general result for interacting

particle systems which evolve under the action of sampling and resampling (see [3,

Chapters 7-9]).

3.4 Examples

The formulation and convergence results presented above allow us to provide an anal-

ysis of the asymptotic behaviour of a class of sampling algorithms.

1 There is a very slight formal difference between this definition and that adopted in appendix

2 which arises from the slightly different formulation of the problem employed in this

section. We prefer to retain this notation as it retains the intention of the notation and

the symbol fulfills the same rôle in both places.
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We consider two applications of the suggested sampling framework: the first is par-

ticle filtering by various techniques, including the auxiliary particle filter. The second

is the more recent SMC sampler, for which we present an enhancement which is to the

SMC sampler as the APF is to the SIR algorithm. We provide asymptotic variance

expressions for all of the algorithms consider, obtaining these directly from the central

limit theorem for the ASMC class of samplers.

3.4.1 Application 1: Particle Filtering

It is possible, if apparently overly complicated, to characterise both SIR and the APF

as particular cases of the framework described here. The benefit of doing this is that

it is possible to analyse both of these approaches within the same framework, allowing

their asymptotic variances to be compared, for example. This provides a clear charac-

terisation of the ease with which both SMC samplers and particle filtering algorithms

can be analysed concurrently. Note that the following identifications allow us to recover

the asymptotic variance expressions obtained directly in section 2.

Sequential Importance Resampling. It is reasonably apparent that the SIR algo-

rithm for approximate filtering can be interpreted within the SMC samplers framework

by making suitable identifications. Any SMC sampler then has an interpretation as

an ASMC sampler, as explained in section 3.4.2. Consequently, with the following

identifications, we obtain an ASMC sampler which corresponds precisely to the SIR

algorithm described above (note that, formally, we operate on an increasing sequence

of spaces which parameterise the full path of the filtering distribution at each time):

πt(x1:t) = µt(x1:t) = p(x1:t|y1:n)

Kt(x1:t−1, x
′
1:t) = δx1:t−1

(x′1:t−1)qt(x
′
t|xt−1)

Lt−1(x
′
1:t, x1:t−1) =

πt−1(x1:t−1)Kt(x1:t−1, x
′
1:t)∫

πt−1(z1:t−1)Kt(z1:t−1, x′1:t)dz1:t

Wt(x1:t−1, x
′
1:t) =

πt(x
′
1:t)δx1:t−1

(x′1:t−1)

πt−1(z1:t−1)Kt(z1:t−1, x′1:t)dz1:t
=
g(yt|x′t)f(x′t|x′t−1)

qt(xt|xt−1)

W̃t(x1:t) = 1(x1:t),

we note that in this case, as in all cases in which the proposal kernel simply extends

an estimate of the state vector up to time t − 1 to one up to time t, it is possible to

use the optimal form for the auxiliary kernel of the SMC sampler, and this reduces

the effective space upon which importance sampling is performed to that of the time

marginal.

If we further employ the conditional prior as the proposal distribution, setting

qt(xt|xt−1) = f(xt|xt−1) then we obtain the bootstrap filter.

Auxiliary Particle Filters. In the case of the auxiliary particle filter, if we once

again allow πt(x1:t) = p(x1:t|y1:n) but construct an SMC sampler for the sequence of

auxiliary distributions µn defined as follows, we obtain the interpretation which we

require with the following definitions:
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µt(x1:t) = πt(x1:t)p̂t+1(yt+1|xt)

Kt(x1:t−1, x
′
1:t) = δx1:t−1

(x′1:t−1)qt(x
′
t|xt−1)

Lt−1(x
′
1:t, x1:t−1) =

µt−1(x1:t−1)Kt(x1:t−1, x
′
1:t)∫

µt−1(z1:t−1)Kt(z1:t−1, x′1:t)dz1:t

Wt(x1:t−1, x
′
1:t) =

µt(x
′
1:t)δx1:t−1

(x′1:t−1)

µt−1(z1:t−1)Kt(z1:t−1, x′1:t)dz1:t
∝ g(yt|x′t)f(x′t|x′t−1)p̂t+1(yt+1|x′t)

qt(x′t|xt−1)p̂t(xt|yt−1)

W̃t(x
′
1:t) ∝ p̂t+1(yt+1|x′t)−1,

again, it is possible to use the optimal auxiliary kernel.

3.4.2 Application 2: SMC Samplers

In comparison with section 3.4.1 this application seems relatively natural. SMC sam-

plers, and an extension thereof, both fit directly into the proposed framework, allowing

us to reproduce the familiar expression for the variance of the SMC sampler (this is

essentially the same result as that presented in [4]) and to provide an asymptotic

variance expression for a novel algorithm which we term the auxiliary variable SMC

sampler, which combines elements of the SMC sampler with the auxiliary variable

strategy of the APF.

SMC Samplers. In order to cast the standard SMC sampler into the present frame-

work, one simply selects µt = πt and the additional weight function is then the unit

function, W̃t(xt) = 1.

This provides, as one would expect, the usual asymptotic variance expression:

σ2
SMC,t(ϕt) =

∫
π̃t(x1)

2

K1(x1)

(∫
ϕt(xt)π̃t|1(xt|x1)dxt − ϕ̄πt

t

)2

dx1+

t−1∑

k=2

∫
π̃t(xk)2Lk−1(xk, xk−1)

2

πk−1(xk−1)Kk(xk−1, xk)

(∫
ϕt(xt)π̃t|k(xt|xk)dxt − ϕ̄πt

t

)2

dxk−1,k

+

∫
π̃t(xt)

2Lt−1(xt, xt−1)
2

πt−1(xt−1)Kt(xt−1, xt)
(ϕt(xt)− ϕ̄πt

t )
2
dxt−1,t.

Auxiliary Variable SMC Samplers. An obvious extension of the SMC sampler

follows by considering how to emulate the approach of the APF within a more general

framework. Essentially one constructs an SMC sampler for an auxiliary sequence of

distributions which is defined implicitly by a pre-weighting at time t− 1 which, after

resampling, is intended to place more mass in regions which lead to good solutions at

time t.

A Simple Example. As has been previously noted, [4], in a setting in which one has a

fixed state space, Et = E at every iteration, and employs a MCMC kernel of invariant

distribution πt as the proposal, and makes use of the auxiliary kernel:

Lt−1(xt, xt−1) =
πt(xt−1)Kt(xt−1, xt)

πt(xt)
,

the importance weights are simply Wt(xt−1, xt) = πt(xt−1)/πt−1(xt−1) which is inde-

pendent of the proposed state, xt.

Consequently, it is intuitively clear that one should resample before proposing new

states in the interests of maximising sample diversity. This has been observed previ-

ously, [12]. Here we are able to incorporate this approach into our general framework
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and provide convergence results and an asymptotic variance expression. By making the

following identifications, we obtain an ASMC sampler which coincides exactly with this

approach:

µt(xt) = πt+1(xt)

Lt−1(xt, xt−1) =
µt−1(xt−1)Kt(xt−1, xt)

µt−1(xt)
=
πt(Xt−1)Kt(Xt−1,Xt)

πt(Xt)

Wt(xt−1, xt) =
µt(xt)

µt−1(xt)
=
πt+1(xt)

πt(xt)

W̃t(xt) = µt−1(xt)/µt(xt) = πt(xt)/πt+1(xt),

note that in this particular special case Wt(xt−1, xt)W̃t(xt) = 1 and the weights used

in the importance sampling step of the algorithm are uniform (of course, this is not

the case for the resampling weights, Wt(xt−1, xt)). We have, in this case, that:

σ2
ASMC,t(ϕt) =

∫
π̃t(x1)

K1(x1)

[∫
ϕt(xt)π̃t|1(xt|x1)dxt − ϕ̄πt

t

]2
dx1+ (3.4)

t−1∑

k=2

∫
π̃t(xk)2

πk(xk)

[∫
ϕt(xt)π̃t|k(xt|xk)dxt − ϕ̄πt

t

]2
dxk (3.5)

+

∫
πt(xt) [ϕt(xt)− ϕ̄πt

t ]
2
dxt. (3.6)

where the independence of the importance weights from the state after the mutation

step is exhibited in the decoupling of the terms in the asymptotic variance expression.

A More General Approach:. In general one seeks a sequence of auxiliary distributions

µt and associated proposal and auxiliary kernels Kt and Lt−1 which are such that the

importance sampling weights which are obtained:

Wt(xt−1, xt)W̃t(xt) =
µt(xt)Lt−1(xt, xt−1)

µt−1(xt−1)Kt(xt−1, xt)

πt(xt)

µt(xt)
=

πt(xt)Lt−1(xt, xt−1)

µt−1(xt−1)Kt(xt−1, xt)
,

have lower variance than those which would be obtained by using a standard SMC

sampler targeting πt directly.

To distinguish these approaches from the ASMC sampler introduced above, we

term it the auxiliary variable SMC (AvSMC) sampler, and it may be interpreted in

very much the same manner as the auxiliary variable particle filter. The asymptotic

variance expression for the fully general case cannot be given in a simpler form than

that presented in theorem 3.3.2.
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A. Inductive Proofs

We present proofs of the results presented in section 2 obtained by applying the results

of [2]. We decompose the proof of proposition 2.2.1 into two parts: Initially, we show

that the recursive variance expression obtained in [2] may be written as an explicit

sum and that this recursion holds for any sufficiently regular sequences of sampling

distributions. We then show that the importance sampling estimator provided by the

APF also obeys a central limit theorem whose variance can be obtained by the same

techniques.

A.1 SIR Variance

We begin by illustrating that the variance recursion of [2] may be rewritten explicitly in

a form reminiscent of that obtained by the direct study of the underlying Feynman-Kac

flow.

Given an SIR algorithm targeting the sequence of distributions {πt} using q1 as the

initial proposal distribution and {qt}t≥2 as the transition kernel proposals, [2, Section

2.3] illustrates that the following three sequences of empirical measures obey central

limit theorems:

ρN
t (dx1:t) =

1

N

N∑

i=1

δ“
X̌

(i)
1:t−1,t−1,X

(i)
t,t

” (dx1:t)

πN
t (dx1:t) =

N∑

i=1

W
(i)
t δ“

X̌
(i)
1:t−1,t−1,X

(i)
t,t

” (dx1:t)

π̃N
t (dx1:t) =

1

N

N∑

i=1

δ“
X̌

(i)
1:t,t

” (dx1:t)

corresponding to the particle system after mutation (sampling from the importance dis-

tribution), correction (importance weighting) and selection (resampling), respectively.

Both πN
t and π̃N

t provide approximations to the target measure πt, whilst ρN
t (dx1:t)

approximates ρt(dx1:t) := πt−1(dx1:t−1)qt(dxt|xt−1).

The central limit theorem of [2] tells us that under mild regularity conditions, the

following central limit theorem holds for a broad class of test functions ϕt : E1:t → R:

√
N

[∫
ϕt(x1:t)π

N
t (dx1:t)−

∫
ϕt(x1:t)πt(dx1:t)

]
d→ N (0, Vt(ϕt))
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where the variance expression is obtained from the following recursion1:

Ṽt(ϕt) = V̂t−1 (Eρt
[ϕt |σ(X1:t−1) ]) + Eρt

[Varρt
[ϕt |σ(X1:t−1) ]]

Vt(ϕt) = Ṽt (Wt (ϕt − Eπt
[ϕt]))

V̂t(ϕt) = Vt(ϕt) + Varπt
[ϕt] .

Proposition A.1.1. We will show, inductively, that W̃t(ϕt) may be written in a

closed form as:

Vt(ϕ3) =

t−1∑

k=1

Varρk
[Wk (Eπt

[ϕt |σ(X1:k) ]− ϕ̄πt

t )] +

Varρt
[Wt(ϕt − ϕ̄πt

t )] . (A.1)

where it has been convenient to define ϕ̄πt

t =
∫
ϕt(x1:t)πt(dx1:t) (we will further define

ϕ̄ρt

t =
∫
ϕt(x1:t)ρt(dx1:t)).

Proof. We begin by considering the initialisation. At time 1, we have a self-normalised

importance sampling estimator and so (see [10]):

V1(ϕ1) = Varρ1
[W1(ϕ1 − ϕ̄π1

1 )] ,

and after resampling we have:

V̂1(ϕ1) = Varρ1
[W1(ϕ1 − ϕ̄π1

1 )] + Varπ1
[ϕ1] .

At iteration two, we obtain:

Ṽ2(ϕ2) =V̂1 (Eρ2
[ϕ2 |σ(X1) ]) + Eρ2

[Varρ2
[ϕ2 |σ(X1) ]]

=Varρ1
[W1 (Eρ2

[ϕ2 |σ(X1) ]− ϕ̄ρ2

2 )] +

Varπ1
[Eρ2

[ϕ2 |σ(X1) ]] + Eρ2
[Varρ2

[ϕ2 |σ(X1) ]]

=Varρ1
[W1 (Eρ2

[ϕ2 |σ(X1) ]− ϕ̄ρ2

2 )] + Varρ2
[ϕ2]

where the final line follows from two observations:

– The marginal distribution of X1 under the target measure at time 1 and the uncor-

rected measure at time two are identical: ρ2(dx1) = π1(dx1).

– As is well known, given any σ-algebra, F , and any function ϕ one has Var [ϕ] =

E [Var [ϕ|F ]] + Var [E [ϕ|F ]].

After correction, noting that Eρ2
[W2(ϕ2 − ϕ̄π2

2 )] = 0, we obtain the asymptotic vari-

ance of interest at t = 2:

V2(ϕ2) = Ṽ2 (W2 (ϕ2 − ϕ̄π2
2 ))

= Varρ1
[W1Eρ2

[W2 (ϕ2 − ϕ̄π2
2 ) |σ(X1) ]] + Varρ2

[W2 (ϕ2 − ϕ̄π2
2 )]

= Varρ1
[W1Eπ2

[ϕ2 − ϕ̄π2
2 |σ(X1) ]] + Varρ2

[W2 (ϕ2 − ϕ̄π2
2 )] .

And, after resampling:

1 This has been written in a slightly different form to the original to emphasize the rôle of

ρt for reasons which will become apparent.
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V̂2(ϕ2) = Varρ1
[W1Eπ2

[ϕ2 − ϕ̄π2
2 |σ(X1) ]] + Varρ2

[W2 (ϕ2 − ϕ̄π2
2 )] + Varπ2

[ϕ2] .

As a final preliminary we will obtain the variance expression for t = 3 directly as this

will simplify the induction process.

Ṽ3(ϕ3) =V̂2 (Eρ3
[ϕ3 |σ(X1:2) ]) + Eρ3

[Varρ3
[ϕ3 |σ(X1:2) ]]

=Varρ1
[W1Eπ2

[Eρ3
[ϕ3 |σ(X1:2) ]− ϕ̄ρ3

3 |σ(X1) ]] +

Varρ2
[W2 (Eρ3

[ϕ3 |σ(X1:2) ]− ϕ̄ρ3

3 )] +

Varπ2
[Eρ3

[ϕ3 |σ(X1:2) ]] + Eρ3
[Varρ3

[ϕ3 |σ(X1:2) ]]

=Varρ1
[W1 (Eρ3

[ϕ3 |σ(X1) ]− ϕ̄ρ3

3 )] +

Varρ2
[W2 (Eρ3

[ϕ3 |σ(X1:2) ]− ϕ̄ρ3

3 )] +

Varρ3
[ϕ3] ,

which just leaves the correction step (noting that Eρ3
[W3(ϕ3 − ϕ̄π3

3 )] = 0):

V3(ϕ3) =Ṽ3 (W3 (ϕ3 − ϕ̄π3
3 ))

=Varρ1
[W1 (Eπ3

[ϕ3 |σ(X1) ]− ϕ̄π3
3 )] +

Varρ2
[W2 (Eπ3

[ϕ3 |σ(X1:2) ]− ϕ̄π3
3 )] +

Varρ3
[W3(ϕ3 − ϕ̄π3

3 )] .

Now, assume that equation (A.1) holds at t, then:

V̂t(ϕt) =

t−1∑

k=1

Varρk
[Wk (Eπt

[ϕt |σ(X1:k) ]− ϕ̄πt

t )] +

Varρt
[Wt(ϕt − ϕ̄πt

t )] + Varπt
[ϕt]

and after the proposal step at time t+ 1, we obtain:

Ṽt+1(ϕt+1) =V̂t

(
Eρt+1

[ϕt+1 |σ(X1:t) ]
)

+ Eρt+1

[
Varρt+1

[ϕt+1 |σ(X1:t) ]
]

=

t−1∑

k=1

Varρk

[
Wk

(
Eπt

[
Eρt+1

[ϕt+1 |σ(X1:t) ] |σ(X1:k)
]
− ϕ̄ρt+1

t+1

)]
+

Varρt

[
Wt

(
Eρt+1

[ϕt+1 |σ(X1:t) ]− ϕ̄ρt+1

t+1

)]
+

Varπt

[
Eρt+1

[ϕt+1 |σ(X1:t) ]
]
+ Eρt+1

[
Varρt+1

[ϕt+1 |σ(X1:t) ]
]

=

t∑

k=1

Varρk

[
Wk

(
Eρt+1

[ϕt+1 |σ(X1:k) ]− ϕ̄ρt+1

t+1

)]
+

Varρt+1
[ϕt+1]

all that remains now is the correction step:

Vt+1(ϕt+1) = Ṽt+1

(
Wt+1

(
ϕt+1 − ϕ̄πt+1

t+1

))

=

t∑

k=1

Varρk

[
WkEρt+1

[
Wt+1

(
ϕt+1 − ϕ̄πt+1

t+1

)
|σ(X1:k)

]]
+

Varρt+1

[
Wt+1(ϕt+1 − ϕ̄πt+1

t+1 )
]

=

t∑

k=1

Varρk

[
Wk

(
Eπt+1

[ϕt+1 |σ(X1:k) ]− ϕ̄πt+1

t+1

)]
+

Varρt+1

[
Wt+1(ϕt+1 − ϕ̄πt+1

t+1 )
]
.
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This completes the induction argument.

A.1.1 Standard SIR

Note that the estimator used in the standard SIR algorithm is precisely that studied

in proposition A.1.1 in which:

πt(dx1:t) = p(dx1:t|y1:t)
ρt(dx1:t) = p(dx1:t−1|y1:t−1)q(dxt|xt−1)

and, as always, Wt(x1:t) = dπt

dρt
(x1:t). Substituting these expressions into equation

(A.1), and noting that all of the variances are of centred quantities, we obtain:

σ
2
SISR(ϕt) = Vt(ϕt)

=

t−1X

k=1

Varρk
[Wk (Eπt [ϕt |σ(X1:k) ]− ϕ̄

πt
t )] + Varρt [Wt(ϕt − ϕ̄

πt
t )] .

=

Z
p(x1|y1:t)

2

q(x1)

Z
(ϕt(x1:t)− ϕ̄t)

2
p(x2:t|y2:t, x1)dx2:tdx1+

t−1X

k=2

Z
p(x1:k|y1:t)

2

p(x1:k−1|y1:k−1)qk(xk|xk−1)

Z
(ϕt(x1:t)− ϕ̄t)

2
p(xk+1:t|yk+1:t, xk)dxk+1:tdx1:k+

Z
p(x1:t|y1:t)

2

p(x1:t−1|y1:t−1)qt(xt|xt−1)
(ϕt(x1:t − ϕ̄t)

2
dx1:t,

which is the first part of proposition 2.2.1

A.1.2 APF via SIR

In the case of the APF, the underlying SIR flow is constructed with:

πt(dx1:t) = p̂(dx1:t|y1:t+1)

ρt(dx1:t) = p̂(dx1:t−1|y1:t)q(dxt|xt−1),

and so we obtain from proposition A.1.1,

Vt(ϕt) =

∫
p̂(x1|y1:t+1)

2

q1(x1)

(∫
ϕt(x1:t)p̂(x2:t|y2:t+1, x1)dx2:t − ϕ̂t

)2

dx1

+
t−1∑

k=2

∫
p̂(x1:k|y1:t+1)

2

p̂(x1:k−1|y1:k)qk(xk|xk−1)

(∫
ϕt(x1:t)p̂(xk+1:t|yk+1:t+1, xk)dxk+1:t − ϕ̂t

)2

dx1:k

+

∫
p̂(x1:t|y1:t+1)

2

p̂(x1:t−1|y1:t)qt(xt|xt−1)
(ϕt(x1:t)− ϕ̂t)

2
dx1:t.

We can obtain the corresponding asymptotic variance for the importance sampling

estimate under p by an additional application of Chopin’s correction lemma (A2) as

this importance sampling step takes precisely the same form as the standard one. If

we do this, noting that in our case this importance weight function is proportional to

W̃t(x1:t) = p(x1:t|y1:t)/p̂(x1:t|y1:t+1), we note that:

σ2
APF (ϕt) = Vt

(
W̃t[ϕt − ϕ̄t]

)
, (A.2)

where ϕ̄t =
∫
ϕt(x1:t)p(x1:t|y1:t). Substituting ϕt ← W̃t[ϕt − ϕ̄t] into the appropriate

variance expression, noting that in this instance ϕ̂t = 0, we obtain for the first of the

three terms in this variance expression:
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∫
p̂(x1|y1:t+1)

2

q1(x1)

(∫
[ϕt(x1:t)− ϕ̄t]

p(x1:t|y1:t)
p̂(x1:t|y1:t+1)

p̂(x2:t|y2:t+1, x1)dx2:t

)2

dx1

=

∫
p̂(x1|y1:t+1)

2

q1(x1)

(∫
[ϕt(x1:t)− ϕ̄t]

p(x1|y1:t)p(x2:t|y2:t, x1)

p̂(x1|y1:t+1)p̂(x2:t|y2:t+1, x1)
p̂(x2:t|y2:t+1, x1)dx2:t

)2

dx1

=

∫
p(x1|y1:t)2
q1(x1)

(∫
[ϕt(x1:t)− ϕ̄t]

p(x2:t|y2:t, x1)

p̂(x2:t|y2:t+1, x1)
p̂(x2:t|y2:t+1, x1)dx2:t

)2

dx1

=

∫
p(x1|y1:t)2
q1(x1)

(∫
[ϕt(x1:t)− ϕ̄t]p(x2:t|y2:t, x1)dx2:t

)2

dx1.

The elements of the second term becomes
Z

p̂(x1:k|y1:t+1)
2

p̂(x1:k−1|y1:k)qk(xk|xk−1)

„Z
p(x1:t|y1:t)

p̂(x1:t|y1:t+1)
[ϕt(x1:t)− ϕ̄t]p̂(xk+1:t|yk+1:t+1, xk)dxk+1:t

«2

dx1:k

=

Z
p̂(x1:k|y1:t+1)

2

p̂(x1:k−1|y1:k)qk(xk|xk−1)
„Z

p(x1:k|y1:t)p(xk+1:t|yk+1:t, xk)

p̂(x1:k|y1:t+1)p̂(xk+1:t|yk+1:t+1, xk)
[ϕt(x1:t)− ϕ̄t]p̂(xk+1:t|yk+1:t+1, xk)dxk+1:t

«2

dx1:k

=

Z
p(x1:k|y1:t)

2

p̂(x1:k−1|y1:k)qk(xk|xk−1)

„Z
[ϕt(x1:t)− ϕ̄t]p(xk+1:t|yk+1:t, xk)dxk+1:t

«2

dx1:k.

Finally, the third term is:

∫
p̂(x1:t|y1:t+1)

2

p̂(x1:t−1|y1:t)qt(xt|xt−1)

(
p(x1:t|y1:t)
p̂(x1:t|y1:t+1)

[ϕt(x1:t)− ϕ̄t]

)2

dx1:t

=

∫
p(x1:t|y1:t)2

p̂(x1:t−1|y1:t)qt(xt|xt−1)
(ϕt(x1:t)− ϕ̄t)

2
dx1:t.

This gives as a variance expression:

σAPF (ϕt) =

∫
p(x1|y1:t)2
q1(x1)

(∫
[ϕt(x1:t)− ϕ̄t]p(x2:t|y2:t, x1)dx2:t

)2

dx1

+

t−1∑

k=2

∫
p(x1:k|y1:t)2

p̂(x1:k−1|y1:k)qk(xk|xk−1)

(∫
[ϕt(x1:t)− ϕ̄t]p(xk+1:t|yk+1:t, xk)dxk+1:t

)2

dx1:k

+

∫
p(x1:t|y1:t)2

p̂(x1:t−1|y1:t)qt(xt|xt−1)
(ϕt(x1:t)− ϕ̄t)

2
dx1:t.

This completes the proof of proposition 2.2.1 and we obtain the corollary by direct

substitution: in the case of perfect adaptation we have:

σAPF (ϕt) =

∫
p(x1|y1:t)2
p(x1|y1)

(∫
[ϕt(x1:t)− ϕ̄t]p(x2:t|y2:t, x1)dx2:t

)2

dx1

+

t−1∑

k=2

∫
p(x1:k|y1:t)2
p(x1:k|y1:k)

(∫
[ϕt(x1:t)− ϕ̄t]p(xk+1:t|yk+1:t, xk)dxk+1:t

)2

dx1:k

+

∫
p(x1:t|y1:t) (ϕt(x1:t)− ϕ̄t)

2
dx1:t.
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We present proofs of the general results presented in section 3 obtained by applying

the results of [3]. It is, in fact, possible to use the same technique employed in the proof

of the filtering results in appendix A to obtain the more general results obtained here.

However, the approach employed here illustrates an elegant and powerful alternative.

The general proof strategy is to consider the sequence of distributions of the histor-

ical process X1:t under the action of a sequence of proposals and importance weights

as a Feynman-Kac flow in which the proposals correspond to the mutation kernel and

the importance weights to potential functions. The particle approximation proposed

here may then be treated as a mean field approximation to a suitable McKean inter-

pretation of that flow. This is not a new idea and has been widely used in the study of

interacting particle systems. See [3] for further details. Having made this connection,

the proofs which we present below require little more than that we are able to verify the

conditions of various general results on the particle interpretations of Feynman-Kac

flows for the particular case of interest.

B.1 Strong Law of Large Numbers

Proof (Strong Law of Large Numbers). Theorem 3.3.1 follows by a direct analogue

(simplified slightly as, by construction, the particle system constructed here never

“dies”) of [3, Theorem 7.4.3 and Corollary 7.4.2], using the decomposition:

∫ (
πN

t (xt)− πt(xt)
)
ϕt(xt)dxt

=

∫ (
µN

t (xt)∫
µN

t (x′t)W̃t(x′t)dx
′
t

− µt(xt)∫
µt(x′t)W̃t(x′t)dx

′
t

)
W̃t(xt)ϕt(xt)dxt

=

∫
µt(x

′
t)W̃t(x

′
t)dx

′
t∫

µN
t (x′t)W̃t(x′t)dx

′
t

∫
µN

t (xt)W̃t(xt)∫
W̃t(x′t)µt(x′t)dx

′
t

(ϕt(xt)− ϕ̄πt

t ) dxt, (B.1)

which follows by noting that the normalising constant associated with the importance

weight function cancels in this ratio and hence we may use the normalised version for

simplicity of calculation.



B. Feynman-Kac Proofs 27

B.2 Central Limit Theorem

Proof (Theorem 3.3.2: Central Limit Theorem). The approach of the proof is closely

related to that of [3, 4]. We begin by considering decomposition (B.1), noting that

µt corresponds to a normalised time marginal of a Feynman-Kac flow1, and hence

allowing us to use the result that:
∫
µt(x

′
t)W̃t(x

′
t)dx

′
t∫

µN
t (x′t)W̃t(x′t)dx

′
t

p→ 1,

together with a simple application of the central limit theorem [3, Proposition 9.4.1]

which tells us that:
∫

µN
t (xt)W̃t(xt)∫

W̃t(x′t)µt(x′t)dx
′
t

(ϕt(xt)− ϕ̄πt

t ) dxt
d→ τ2

t (W̃tϕt),

where the variance function is defined by the expression:

τ2
t (ϕt) =EK1

[
W 2

1Q2:t(ϕt − ϕ̄µt

t )
]
+

t−1∑

k=2

Eµk−1⊗Kk

[
W 2

k ×Qk+1:t(ϕt − ϕ̄µt

t )2
]
+

Eµt−1⊗Kt

[
W 2

t × (ϕt − ϕ̄µt

t )2
]
.

where, given some function Wt : Et−1 × Et → R and a second function ψt : Et → R

we write Wt × ψ to denote the function (Wt × ψt)(xt−1, xt) = Wt(xt−1, xt)ψt(xt); the

product measure (µk−1⊗Kp)(xk−1, xp) = µk−1(xk−1)Kp(xk−1, xp) and the semigroup,

Qk+1:t is defined by:

Qk+1:t(ϕt) = Qk+1 ◦ · · · ◦Qt(ϕt)

Qt(ϕt)(xt−1) = EKt(xt−1,·) [(Wt × ϕt)(xt−1, ·)] .

Before obtaining the final result, it is useful to rewrite this expression in a form

which is somewhat easier to interpret. Beginning by noting that:

Qt(ϕt)(xt−1) =

∫
Kt(xt−1, xt)

µt(xt)Lt−1(xt, xt−1)

µt−1(xt−1)Kt(xt−1, xt)
dxt

=
µ̃t(xt−1)

µt−1(xt−1)

∫
ϕt(xt)µ̃t(xt|xt−1),

and proceeding inductively we obtain:

Qk+1:t(ϕt)(xk) =
µ̃t(xk)

µk(xk)

∫
ϕt(xt)µ̃t(xt|xk).

And this allows us to write each of the central terms in the variance decomposition in

the form:

Eµk−1⊗Kk

[
W 2

k ×Qk+1:t(ϕt − ϕ̄µ)t
t )2

]

=

∫
µk(xk)2Lk−1(xk, xk−1)

2

µk−1(xk−1)Kk(xk−1, xk)

µ̃t(xk)2

µk(xk)2

(∫
[ϕt(xt)− ϕ̄µt

t ]µ̃t(xt|xk)dxt

)2

dxk−1:k

=

∫
µ̃t(xk)2Lk−1(xk, xk−1)

2

µk−1(xk−1)Kk(xk−1, xk)

(∫
[ϕt(xt)− ϕ̄µt

t ]µ̃t(xt|xk)dxt

)2

dxk−1:k.

1 In fact, a number of the results follow here from noting that the ratio of two integrals

under the normalised marginals corresponds to the ratio of the same functions integrated

under the unnormalised marginals. However, for simplicity, we avoid introducing the un-

normalized measures here.
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Applying Slutzky’s theorem to these two convergence results, and noting that the

first and last terms in the variance decomposition may be handled similarly, tells us

that the quantity of interest obeys a central limit theorem, with variance given by:

σ
2
t (ϕt) = τ

2
t (fWtϕt)

=

Z eµt(x1)
2

K1(x1)

„Z h
fWt(xt)ϕt(xt)− Eµt

h
W̃tϕt

ii
eµt(xt|x1)dxt

«2

dx1+

t−1X

k=2

Z eµt(xk)2Lk−1(xk, xk−1)
2

µk−1(xk−1)Kk(xk−1, xk)

„Z h
fWt(xt)ϕt(xt)− Eµt

h
W̃tϕt

ii
eµt(xt|xk)dxt

«2

dxk−1:k

+

Z
µt(xt)

2Lt−1(xt, xt−1)
2

µt−1(xt−1)Kt(xt−1, xt)

“
fWt(xt)ϕt(xt)− Eµt

h
W̃tϕt

i”2

dxk−1:k

= +

Z eπt(x1)
2

K1(x1)

„Z
[ϕt(xt)− ϕ̄

πt
t ] eπt(xt|x1)dxt

«2

dx1+

t−1X

k=2

Z eπt(xk)2Lk−1(xk, xk−1)
2

µk−1(xk−1)Kk(xk−1, xk)

„Z
[ϕt(xt)− ϕ̄

πt
t ] eπt(xt|xk)dxt

«2

dxk−1:k

+

Z
πt(xt)

2Lt−1(xt, xt−1)
2

µt−1(xt−1)Kt(xt−1, xt)
(ϕt(xt)− ϕ̄

πt
t )2 dxk−1:k,

which is precisely the result.


