
A Note on Auxiliary Particle Filters

Adam M. Johansen a,∗, Arnaud Doucet b

aDepartment of Mathematics, University of Bristol, UK

bDepartments of Statistics & Computer Science,

University of British Columbia, Vancouver, B.C., Canada

Abstract

The Auxiliary Particle Filter (APF) introduced by Pitt and Shephard (1999) is a
very popular alternative to Sequential Importance Sampling and Resampling (SISR)
algorithms to perform inference in state-space models. We propose a novel interpre-
tation of the APF as an SISR algorithm. This interpretation allows us to present
simple guidelines to ensure good performance of the APF and the first convergence
results for this algorithm. Additionally, we show that, contrary to popular belief,
the asymptotic variance of APF-based estimators is not always smaller than those
of the corresponding SISR estimators – even in the ‘perfect adaptation’ scenario.
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1 Introduction

Let t = 1, 2, ... denote a discrete-time index. Consider an unobserved X−valued
Markov process {Xt}t≥1 such that X1 ∼ µ (·) and Xt| (Xt−1 = xt−1) ∼ f ( ·|xt−1)
where f ( ·|xt−1) is the homogeneous transition density with respect to a suit-
able dominating measure. The observations {Yt}t≥1 are conditionally indepen-
dent given {Xt}t≥1 and distributed according to Yt| (Xt = xt) ∼ g ( ·|xt).

For any sequence {zt}t≥1, we use the notation zi:j = (zi, zi+1, ..., zj). In nu-
merous applications, we are interested in estimating recursively in time the
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sequence of posterior distributions {p (x1:t| y1:t)}t≥1 given by

p (x1:t| y1:t) ∝ µ (x1) g (y1| x1)
t∏

k=2

f (xk|xk−1) g (yk| xk) . (1)

When the model is linear Gaussian 1 , the posterior distributions are Gaussian
and their statistics can be computed using Kalman techniques. For non-linear
non-Gaussian methods, these distributions do not typically admit a closed-
form and it is necessary to employ numerical approximations. Recently, the
class of Sequential Monte Carlo (SMC) methods - also known as particle fil-
ters - has emerged to solve this problem; see [6,11] for a review of the lit-
erature. Two classes of methods are primarily used: Sequential Importance
Sampling and Resampling (SISR) algorithms [3,11,5] and Auxiliary Particle
Filters (APF) [12,1,13].

In the literature, the APF methodology is always presented as being signif-
icantly different to the SISR methodology. It was originally introduced in
[12] using auxiliary variables – hence its name. Several improvements were
proposed to reduce its variance [1,13]. In [8, p. 141], the APF is presented
without introducing any auxiliary variable and also reinterpreted as an SISR
algorithm. However, this SISR algorithm is non-standard as it relies on a pro-
posal distribution at time t on the path space X t which is dependent on all
the paths sampled previously.

We study here the version of the APF presented in [1] which only includes
one resampling step at each time instance. Experimentally this version out-
performs the original two-stage resampling algorithm proposed in [12] and is
widely used; see [1] for a comparison of both approaches and [7] for an ap-
plication to partially-observed diffusions. We propose a novel interpretation
of this APF as a standard SISR algorithm which we believe has two princi-
pal advantages over previous derivations/interpretations. First, it allows us to
give some simple guidelines to ensure good performance of the APF. These
guidelines differ from many practical implementations of the APF and explain
some of the poor performance reported in the literature. Second, there is no
convergence result available for the APF in the literature whereas there are
numerous results available for SISR algorithms; see [3] for a thorough treat-
ment. Via this novel interpretation, we can easily adapt these results to the
APF. We present here the asymptotic variance associated with APF-based
estimators and show that this asymptotic variance is not necessarily lower
than that of the corresponding standard SISR-based estimators – even in the
‘perfect adaptation’ case which is discussed further below.

1 In the sense that µ, f and g are all Gaussian distributions with means provided
by a linear function of the conditioning arguments.
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2 SISR and APF

2.1 A Generic SISR algorithm

Consider an arbitrary sequence of probability distributions {πt (x1:t)}t≥1. To
sample sequentially from these distributions, the SISR algorithm introduces
at time t an importance distribution qt (xt| xt−1) to impute Xt (and q1 (x1) at
time 1). Note that it is possible to use a distribution qt (xt|x1:t−1) but this
additional freedom is not useful for the optimal filtering applications discussed
here. The SISR algorithm proceeds as follows; see for example [6], [11, chapter
3] for variations:

At time 1.

Sampling Step

For i = 1 : N , sample X
(i)
1,1 ∼ q1 (·).

Resampling Step

For i = 1 : N , compute w1

(
X

(i)
1,1

)
=

π1

(
X

(i)
1,1

)

q1

(
X

(i)
1,1

) and W
(i)
1 =

w1

(
X

(i)
1,1

)

∑N

j=1
w1

(
X

(j)
1,1

) .

For i = 1 : N , sample X̌
(i)
1,1 ∼ ∑N

j=1 W
(j)
1 δ

X
(j)
1,1

(dx1), where δx(·) denotes the

singular distribution located at x.

At time t, t ≥ 2.

Sampling Step

For i = 1 : N , sample X
(i)
t,t ∼ qt

(
·| X̌(i)

t−1,t−1

)
.

Resampling Step

For i = 1 : N , compute wt

(
X̌

(i)
1:t−1,t−1, X

(i)
t,t

)
=

πt

(
X̌

(i)
1:t−1,t−1,X

(i)
t,t

)

πt−1

(
X̌

(i)
1:t−1,t−1

)
qt

(
X

(i)
t,t

∣∣∣X̌(i)
t−1,t−1

)

and W
(i)
t =

wt

(
X̌

(i)
1:t−1,t−1,X

(i)
t,t

)

∑N

j=1
wt

(
X̌

(j)
1:t−1,t−1,X

(j)
t,t

) .

For i = 1 : N , sample X̌
(i)
1:t,t ∼

∑N
j=1 W

(j)
t δ(

X̌
(j)
1:t−1,t−1,X

(j)
t,t

) (dx1:t) .
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The empirical measure

ρ̂N
t (dx1:t) =

1

N

N∑

i=1

δ(
X̌

(i)
1:t−1,t−1,X

(i)
t,t

) (dx1:t)

is an approximation of πt−1 (x1:t−1) qt (xt|xt−1) whereas

π̂N
t (dx1:t) =

N∑

i=1

W
(i)
t δ(

X̌
(i)
1:t−1,t−1,X

(i)
t,t

) (dx1:t)

is an approximation of πt (x1:t).

Whilst, in practice, one may also wish to employ a lower variance resampling
strategy such as residual resampling and to use it only when some criterion
indicates that it is necessary, results of the sort presented here are sufficient
to guide the design of particular algorithms and the additional complexity
involved in considering more general scenarios serves largely to produce sub-
stantially more complex expressions which obscure the important points.

2.2 APF as an SISR algorithm

The standard SISR algorithm for filtering corresponds to the case in which we
set πt (x1:t) = p (x1:t| y1:t). In this case, for any test function ϕt : X t → R, we
estimate ϕt =

∫
ϕt (x1:t) p (x1:t| y1:t) dx1:t by

ϕ̂N
t,SISR =

∫
ϕt (x1:t) π̂N

t (dx1:t) =
N∑

i=1

W
(i)
t ϕ

(
X̌

(i)
1:t−1,t−1, X

(i)
t,t

)
. (2)

The APF described in [1] corresponds to the case where we select

πt (x1:t) = p̂ (x1:t| y1:t+1) ∝ p (x1:t| y1:t) p̂ (yt+1| xt) (3)

with p̂ (yt+1|xt) an approximation of

p (yt+1|xt) =
∫

g (yt+1| xt+1) f (xt+1|xt) dxt+1

if p (yt+1| xt) is not known analytically. As the APF does not approximate
p (x1:t| y1:t) directly, we need to use importance sampling to estimate ϕt. We
use the importance distribution πt−1 (x1:t−1) qt (xt| xt−1) whose approximation
ρ̂N

t (dx1:t) is obtained after the sampling step. The resulting estimate is given
by

ϕ̂N
t,APF =

N∑

i=1

W̃
(i)
t ϕt

(
X̌

(i)
1:t−1,t−1, X

(i)
t,t

)
(4)
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where

W̃
(i)
t =

w̃t

(
X̌

(i)
t−1,t−1, X

(i)
t,t

)

∑N
j=1 w̃t

(
X̌

(j)
t−1,t−1, X

(j)
t,t

)

and

w̃t (xt−1:t) =
p (x1:t| y1:t)

πt−1 (x1:t−1) qt (xt|xt−1)
∝ g (yt|xt) f (xt|xt−1)

p̂ (yt|xt−1) qt (xt| xt−1)
. (5)

In both cases, we usually select qt (xt| xt−1) as an approximation to

p (xt| yt, xt−1) =
g (yt|xt) f (xt|xt−1)

p (yt|xt−1)
.

This distribution is often referred to as the optimal importance distribution
[6]. When it is possible to select qt (xt|xt−1) = p (xt|xt−1, yt) and p̂ (yt|xt−1) =
p (yt|xt−1), we obtain the so-called ‘perfect adaptation’ case [12]. In this case,
the APF takes a particularly simple form as the importance weights (5) are all
equal. This can be interpreted as a standard SISR algorithm where the order
of the sampling and resampling steps is interchanged. It is widely believed
that this strategy yields estimates with a necessarily smaller variance as it
increases the number of distinct particles at time t. We will show that this is
not necessarily the case.

2.3 APF Settings

It is well-known in the literature that we should select for qt (xt|xt−1) a distri-
bution with thicker tails than p (xt| yt, xt−1). However, this simple reinterpre-
tation of the APF shows that we should also select a distribution p̂ (x1:t−1| y1:t)
with thicker tails than p (x1:t−1| y1:t) as p̂ (x1:t−1| y1:t) is used as an importance
distribution to estimate p (x1:t−1| y1:t). Thus p̂ (yt|xt−1) should be more diffuse
than p (yt|xt−1). It has been suggested in the literature to set p̂ (yt| xt−1) =
g (yt|µ (xt−1)) where µ (xt−1) corresponds to the mode, mean or median of
f (xt| xt−1). However, this simple approximation will often yield an importance
weight function (5) which is not upper bounded on X × X and could lead to
an estimator with a large – or even infinite – variance. An alternative, and
preferable approach consists of selecting an approximation p̂ (yt, xt|xt−1) =
p̂ (yt|xt−1) p̂ (xt| yt, xt−1) of the distribution p (yt, xt|xt−1) = p (yt| xt−1) p (xt| yt, xt−1) =
g (yt|xt) f (xt|xt−1) such that the ratio (5) is upper bounded on X × X and
such that it is possible to compute p̂ (yt|xt−1) pointwise and to sample from
p̂ (xt| yt, xt−1).
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2.4 Convergence Results

There is a wide range of sharp convergence results available for SISR algo-
rithms [3]. We present here a Central Limit Theorem (CLT) for the SISR and
the APF estimates (2) and (4), giving the asymptotic variances of these es-
timates. The asymptotic variance of the CLT for the SISR estimate (2) has
been established several times in the literature. We present here a new repre-
sentation which we believe clarifies the influence of the ergodic properties of
the optimal filter on the asymptotic variance.

Proposition. Under the regularity conditions given in [2, Theorem 1] or [3,
Section 9.4, pp. 300-306], we have

√
N

(
ϕ̂N

t,SISR − ϕt

)
→ N

(
0, σ2

SISR (ϕt)
)
,

√
N

(
ϕ̂N

t,APF − ϕt

)
→ N

(
0, σ2

APF (ϕt)
)

where ‘→’ denotes convergence in distribution and N (0, σ2) is the zero-mean
normal of variance σ2. Moreover, at time t = 1 we have

σ2
SISR (ϕ1) = σ2

APF (ϕ1) =
∫

p (x1| y1)
2

q1 (x1)
(ϕ1 (x1) − ϕ1)

2
dx1

whereas for t > 1

σ2
SISR (ϕt) =

∫
p (x1| y1:t)

2

q1 (x1)

(∫
ϕt (x1:t) p (x2:t| y2:t, x1) dx2:t − ϕt

)2

dx1

+
t−1∑

k=2

∫
p (x1:k| y1:t)

2

p (x1:k−1| y1:k−1) qk (xk|xk−1)

(∫
ϕt (x1:t) p (xk+1:t| yk+1:t, xk) dxk+1:t − ϕt

)2

dx1:k

+

∫
p (x1:t| y1:t)

2

p (x1:t−1| y1:t−1) qt (xt| xt−1)
(ϕt (x1:t) − ϕt)

2
dx1:t,

(6)

and

σ2
APF (ϕt) =

∫
p(x1|y1:t)

2

q1(x1)

(∫
ϕt(x1:t)p(x2:t|y2:t, x1)dx2:t − ϕ̄t

)2

dx1

+
t−1∑

k=2

∫
p(x1:k|y1:t)

2

p̂(x1:k−1|y1:k)qk(xk|xk−1)

(∫
ϕt(x1:t)p(xk+1:t|yk+1:t, xk)dxk+1:t − ϕ̄t

)2

dx1:k

+

∫
p(x1:t|y1:t)

2

p̂(x1:t−1|y1:t)qt(xt|xt−1)
(ϕt(x1:t) − ϕ̄t)

2
dx1:t.

(7)

Sketch of Proof. Expression (6) follows from a straightforward but tedious
rewriting of the expression given in [3, Section 9.4, pp. 300-306]. We do not
detail these lengthy calculations here.
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The variance of the estimate
∑N

i=1 W
(i)
t ϕt

(
X̌

(i)
1:t−1,t−1, X

(i)
t,t

)
when πt (x1:t) is

given by (3) is given by an expression similar to (6) but with the terms
p̂ (x1:k| y1:t+1), p̂ (x1:k−1| y1:k) and p̂ (xk+1:t−1| yk+1:t+1, xk) replacing p (x1:k| y1:t),
p (x1:k−1| y1:k−1) and p (xk+1:t| yk+1:t, xk), respectively (and with ϕ̄t replaced by∫

ϕt(x1:t)p̂(x1:t|y1:t+1)dx1:t)). Then by the same argument as [2, Lemma A2] the

variance σ2
APF (ϕt) is equal to the variance of

∑N
i=1 W

(i)
t ϕ′

t

(
X̌

(i)
1:t−1,t−1, X

(i)
t,t

)

where

ϕ′
t (x1:t) =

p (x1:t| y1:t)

p̂ (x1:t| y1:t+1)
[ϕt (x1:t) − ϕ̄t]

and the expression (7) follows directly. A rigorous derivation can be found in
[9] or in further detail in [10]. ⊓⊔

Corollary. In the perfect adaptation scenario where p̂ (yt|xt−1) = p (yt| xt−1)
and qt (xt|xt−1) = p (xt| yt, xt−1), we have

σ2
APF (ϕt) =

∫
p(x1|y1:t)

2

p(x1|y1)

(∫
ϕt(x1:t)p(x2:t|y2:t, x1)dx2:t − ϕ̄t

)2

dx1

+
t−1∑

k=2

∫
p(x1:k|y1:t)

2

p(x1:k|y1:k)

(∫
ϕt(x1:t)p(xk+1:t|yk+1:t, xk)dxk+1:t − ϕ̄t

)2

dx1:k

+
∫

p(x1:t|y1:t) (ϕt(x1:t) − ϕ̄t)
2
dx1:t.

Remark. The asymptotic bias for the APF can also be established by a simple
adaptation of [4, Theorem 1.1]. Both the bias and variance associated with
ϕt (x1:t) = ϕt (xt) can be uniformly bounded in time using [4, Proposition
4.1.]; see also [2, Theorem 5].

One may interpret these variance expressions via a local error decomposition
such as that of [3, Chapters 7 & 9]. The error of the particle system estimate at
time t may be decomposed as a sum of differences, specifically, the difference
in the estimate due to propagating forward the particle system rather than
the exact solution from each time-step to the next. Summing over all such
terms gives the difference between the particle system estimate and the truth.
These variance expressions illustrate that, asymptotically at least, the variance
follows a similar decomposition.

Each term in the variance expressions matches an importance sampling vari-
ance. Loosely, it is the variance associated with estimating the integral of a
function under the smoothing distribution p(x1:k|y1:t) using as an importance
distribution the last resampling distribution propagated forward according
to the proposal; the functions being integrated correspond to propagating the
system forward to time t using all remaining observations and then estimating
the integral of ϕt. Thus, for ergodic systems in which some forgetting property
holds, the early terms in this sum will decay (at least when ϕt depends only
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Fig. 1. Asymptotic variance difference, σ2
APF (ϕ2)−σ2

SISR(ϕ2) for the example. This
is negative wherever the APF outperforms SISR.

upon the final time marginal) and the system will remain well behaved over
time.

3 Example

To illustrate the implications of these results, we employ the following binary
state-space model with common state and observation spaces:

X = {0, 1} p(x1 = 0) = 0.5 p(xt = xt−1) = 1 − δ yt ∈ X p(yt = xt) = 1 − ε.

This is an extremely simple state-space model and one could obtain the exact
solution without difficulty. However, the evolution of this system from t = 1 to
t = 2 provides sufficient structure to illustrate the important points and the
simplicity of the model enables us to demonstrate concepts which generalise
to more complex scenarios.

We consider the estimation of the function ϕ2(x1:2) = x2 during the second
iteration of the algorithms when the observation sequence begins y1 = 0, y2 =
1. The optimal importance distributions and the true predictive likelihood are
available in this case. Additionally, the model has two parameters which are
simple to interpret: δ determines how ergodic the dynamic model is (when δ
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is close to 0.5 the state at time t is largely unrelated to that at time t − 1;
when it approaches 0 or 1 the two become extremely highly correlated) and
ε determines how informative the observations are (when ε reaches zero, the
observation at time t specifies the state deterministically, and as it approaches
0.5 it provides no information about the state).

Figure 1 shows the difference between the asymptotic variance of the APF
and SISR algorithms in this setting; note that the function plotted is negative
whenever the APF outperforms SISR in terms of the asymptotic variance of
its estimates. A number of interesting features can be discerned. Particularly,
the APF provides better estimates when δ is small, but exhibits poorer per-
formance when δ ∼ 1 and ε ∼ 0.25. When δ < 0.5 the observation sequence
has low probability under the prior, the APF ameliorates the situation by
taking into account the predictive likelihood. The case in which ǫ and δ are
both small is, unsurprisingly, that in which the APF performs best: the prior
probability of the observation sequence is low, but the predictive likelihood is
very concentrated.

Whilst it may appear counter-intuitive that the APF can be outperformed
by SIR even in the perfect adaptation case, this can perhaps be understood
by noting that perfect adaptation is simply a one-step-ahead process. The
variance decomposition contains terms propagated forward from all previous
times and whilst the adaptation may be beneficial at the time which it is
performed it may have a negative influence on the variance at a later point.
We also note that, although the APF approach does not dominate SIR, it
seems likely to provide better performance in most scenarios.

Figure 2 shows experimental and asymptotic variances for the two algorithms.
The displayed experimental variances were calculated as N times the empirical
variance of 500 runs of each algorithm with N = 3, 000 particles. This provides
an illustration that the asymptotic results presented above do provide a useful
performance guide.

4 Discussion and Extension

The main idea behind the APF, that is modifying the original sequence of
target distributions to guide particles in promising regions, can be extended
outside the filtering framework. Assume we are interested in a sequence of
distributions {πt (x1:t)}. Instead of using the SISR algorithm to sample from
it, we use the SISR algorithm on a sequence of distributions {π̂t+1 (x1:t)} where
π̂t+1 (x1:t) is an approximation of

πt+1 (x1:t) =
∫

πt+1 (x1:t+1) dxt+1.
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We then perform inference with respect to πt (x1:t) by using importance sam-
pling with the importance distribution π̂t−1 (x1:t−1) qt (xt|x1:t−1) obtained after
the sampling step at time t.

We also note that it has been recommended in the literature by several authors
(e.g. [11, pp. 73-74]) to resample the particles not according to their normalized

weights associated to wSISR
t (x1:t) = πt(x1:t)

πt−1(x1:t−1)qt(xt|x1:t−1)
but according to a

generic score function wt (x1:t) > 0 at time t

wt (x1:t) = g
(
wSISR

t (x1:t)
)

,

where g : R
+ → R

+ is a monotonically increasing function; a common choice
being g (x) = xα where 0 < α ≤ 1. To the best of our knowledge, it has never
been specified clearly in the literature that this approach simply corresponds
to a standard SISR algorithm for the sequence of distributions

π′
t (x1:t) ∝ g

(
wSISR

t (x1:t)
)
πt−1 (x1:t−1) qt (xt|x1:t−1) .

The estimates of expectations with respect to πt (x1:t) can then be computed
using importance sampling. This approach is rather similar to the APF and
could also be easily studied.
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