Current—voltage characteristics of nonplanar cold field emitters

Christopher John Edgcombe?

Department of Physics, University of Cambridge, Cambridge CB3 OHE and Granta Electronics Ltd.,
25 St. Peter’s Road, Coton Cambridge CB3 7PR, United Kingdom

Adam Michael Johansen

Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
(Received 6 January 2003; accepted 19 May 2003; published 31 July 2003)

Conventional Fowler—Nordheim theory assumes that the emitter is planar, while most tips used in
practice have curved emitting surfaces. Using a revised potential distribution, standard image theory
and a dimensionless parameter x, we express the experimental current as a multiple o of the current
calculated using standard free-electron supply. A plot of o(x) for one carbon emitter shows a
maximum at a value of x corresponding to the known emitter radius. The calculated field strength
at the emitter surface varies little with x. The values found for o are sensitive to the accuracy of
calculation and, to test the theory further, it is desirable both to improve the modelling of image
effects and to obtain measurements of current—voltage characteristics and emitting radii together for
more types of emitter. © 2003 American Vacuum Society. [DOI: 10.1116/1.1591748]

I. INTRODUCTION

Conventional Fowler—Nordheim (FN) theory for a planar
surface does not represent accurately the experimental be-
havior of single cold field emitters. For example, when an
amorphous carbon tip was considered,' the work function
deduced from the FN plot by planar theory was 66% of the
value measured by Kelvin probe microscopy. Also the emit-
ter radius deduced from the intercept of the same plot was
about 260% of the value measured by scanning electron mi-
croscopy.

We therefore looked for modifications of the established
theory to give a better description of real emitters. There are
many ways in which the simple theory might be improved to
provide a more accurate model of their behavior. One obvi-
ous weakness of the known theory is that it applies to planar
surfaces, while most field emitting surfaces used in practice
are curved, typically with a radius of curvature between 1 nm
and 1 um. Here we consider the emission calculated from a
potential distribution typical of a spherical surface supported
on a tapered shank. We require a model for the potential
which is accurate in the barrier region, that is within a dis-
tance of the order of 1 nm from the emitter surface.

Il. POTENTIAL IN THE BARRIER REGION
A. Analytical models of potential

A solution to Laplace’s equation for the potential ¢ in a
rotationally symmetric system can be obtained in spherical
coordinates as

A ! V+B r P 7 1

¢_ "\ a v\ a V(COS )’ ( )
where P, represents a Legendre polynomial of degree v, and
a, A,, and B, are constants. The general solution consists of
a sum or integral of products of functions of r and 6, of the
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form shown in Eq. (1), over all values of v. The constants are
determined by the boundary conditions. If the emitter surface
consisted of a perfect cone of semiangle «, with the origin of
coordinates taken as the apex of this cone, then it would be
possible to use only those values of v for which

P (cos(7m—a))=0. (2)

This condition makes the potential zero at all values of r on
the conical surface. Hence if such a surface is defined to
coincide with the shank of a real emitter, it cannot give a
good model of the potential on the axis near the real emitting
surface.

Ideally, we wish to ensure that the potential is constant
over a shape fitting the surface of an emitter, by choice of all
A, and B, . A way of achieving this was described by Dyke
and Dolan,”> who considered the union of two conducting
volumes: a cone of semiangle « and a sphere of radius a
centered at the apex of the cone. A potential that is constant
over the surface of this structure is, subject to condition (2),

r\ 7 r —v—1
¢=A,,((—) _<Z) )PV(cos 0). 3)

a

The form of the zero equipotential of this ‘““‘core structure”
(r=a or 8= a) is unlikely to be used for an emitter in prac-
tice, but some of the other equipotentials generated outside
this structure do resemble typical shapes of practical emit-
ters. Hence, in principle, the potential given by Eq. (3) is
usable to model emission. The values of a and v needed for
this model differ from those for the hemispherical cap and
shank of the real emitter, and the relation between them has
to be found for each shape of emitter; also since the value of
v is likely to be between 0 and 0.5, P, is only available as an
infinite sum, not a polynomial. Thus in practice appreciable
computation is needed to use relation (3) directly. In view of
this, we decided to seek simpler functions of r and @ that
would provide acceptable approximations to ¢ within the
barrier region.
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FiG. 1. Geometry and notation for tip.

B. Approximation for potential near the emitter

As in earlier computations1 of field enhancement factor,
we modeled the emitter as a spherical cap of physical radius
a, supported on a conical shank of total length L and semi-
angle «, as shown in Fig. 1. From the computed distribution
of potential ¢, we calculated F = d¢p/Jr, the negative of the
radial electric field, on the axis (#=0), as a function of
distance r from the center of curvature of the emitter, as
shown in Fig. 2. This plot shows that the radial field on the
axis of a curved emitter is not constant, as is assumed when
planar theory is applied. Instead it falls off approximately as
(alr)?, where a is the radius of curvature of the emitting
surface.

We also examined the dependence of F at the emitter
surface on angle @ to the axis, as shown in Fig. 3. It can be
seen that, over the range #<70°, F/F can be fitted approxi-
mately by cos @/2. This result agrees with a calculation of
Dyke and Dolan,? as shown in their Fig. 7 for their emitter
shape B, which is very similar to our sphere-on-cone model.
Thus we have, over the limited ranges of r and 6 that are of
interest for calculating emission
on =0,

dplar~F(alr)*

d¢/dr (on axis) vs. r/a
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FiG. 2. Calculated variation of radial field on the axis of a curved emitter,
with distance from the center of curvature.
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FiG. 3. Calculated variation of field strength at the surface of a curved
emitter, with angle from the axis.

onr=a,
dpldr~Fcos(6/2),

where F is the value of F at r=a on the axis.
When the general solution for ¢ is expressed in the form

¢=20 R,(r)0,(0).
then the corresponding expression for F is
F=>, (dR,19r)0O ().

In general, R, and dR,/dr are different functions of v, and
so ¢ and F can be expected to vary differently with 6. How-
ever, if ¢ is represented, accurately or approximately, by a
single product of functions of r and 6, then ¢ and d¢/dr are
given by

$=R(r)0(0),

Hence when ¢ can be represented by a single product of
functions of r and of 6, then ¢ and d¢/Jdr have the same
dependence on 6.

From the dependence of d¢/dr on 6 at r=a as found
above, @ (6)=cos 6/2. Also from the dependence of d¢/dr
on r at =0, dR/Jdr=Fy(a/r)*. Hence we can obtain R(r)
by integrating Fo(a/r)* with respect to r, subject to the con-
dition that R is to be zero on r=a. The resulting expression
for ¢ is

dpldr=(dRI/3r)O(0).

a
¢(r,6)=aF0( 1- 7) cos 6/2, 4)
where F is the magnitude of field strength at the emitter

surface, on the axis. Since F=F cos 6/2, Eq. (4) can also be
written as

a
¢(r,t9)=aF(1—7>

and this form will be used where it is not necessary to show
the dependence on 6 explicitly.
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C. Image potential

The image potential was approximated by that of an elec-
tron of charge — e near a sphere of radius a (coinciding with
the spherical part of the emitter surface). Additional charge
was included at the center of the sphere to keep the total
induced charge equal to that of the electron. The image
charges used were thus +ea/r at radius a’/r, and +e(l

—alr) at the center of curvature, giving an image potential
e r? : U 24 a?
= —_—— + —_— .
P 8mega| | a? roor?

D. Total potential
The total potential energy V used was thus
a 2 a )

+ —— —
r I‘2

a
V(r,0)=W—aeF< 1- 7) — Wagq o

2ol
ol N>=1"p p2)

where W is the work function of the surface,

cos( 6/2
o
X

w r
sz» P=
and
o2
1= §me0aW”

lll. TOTAL EMITTED CURRENT

With these approximations, and after integrating over 6,
the total emitted current can be written as®*

— ;WS (x,q)
Fox

oQa’c F}
S W)
Here o is the ratio of experimental current to that calculated

from the free-electron supply function, () is the effective
solid angle of emission (which accounts for the variation of

. 5)

exp
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current density with angle), and ¢; and ¢, are standard con-
stants. The functions f(x,g) and w(f) are defined by

ettt
X p qp2_l p p2 P

d d
flx,q)+ 2x£ — 2q£} /3x.

3 (p2
f(x’Q): E f:

w(f)=

The limits p; and p, are values of p, greater than unity, at
which the integrand is zero.

The ratio f/x is used in place of the function v(y) used in
earlier theory; likewise, w(x,gq) replaces t(y). The product
(Fx) does not depend on F, so the exponent in Eq. (5) can
also be written as [ — c,ae W"2f(x,q9)].

The factor o has been included explicitly in Eq. (5) to
show the relation between experimental current and that de-
duced using the free-electron supply function. Its value for a
particular experiment can be estimated if W, a, and F are
known. However, often the values of one or more of these
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FIG. 5. o as a function of x for three values of work function W.
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FIG. 6. o as a function of x for three multiples of g found by iteration.

parameters is not known, and the question arises: within
what range(s) can values of o and the other parameters be
determined from the experimental results ?

IV. PROBLEM OF EXTRACTION OF PARAMETERS
FROM /- V RESULTS (WHEN W, a OR F,
IS UNKNOWN)

The theory given above includes the radius of curvature
of the emitter, and so has one parameter more than the planar
theory. If more than two parameters are unknown they can-
not be evaluated directly from the slope and intercept of the
conventional FN plot using the relations above. However, we
can use a pair of experimental values of the FN slope and
intercept, together with the mid-range anode voltage and the
known or assumed work function, to find o, a, and F as
functions of the dimensionless parameter x (with iteration for
the value of g). Then if any one of o, a, or F is known, the
others can also be found.

We have investigated this calculation using data for two
emitters for which some information was known about the
radii of curvature. These emitters were: (a) an amorphous
carbon tip made by Antognozzi et al’ using e-beam deposi-
tion and (b) a carbon nanotube with current—voltage (I-V)
characteristic as shown in Fig. 6.3 of the thesis by Fransen.®
We also calculated results for (c) a pointed tungsten emitter
with I—V characteristics shown as Fig. 6.7 of the thesis by
James.”
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FIG. 7. o as a function of x for three emitters.
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FIG. 8. Detail of tip of nanotube studied by Fransen (from Ref. 6).

In addition to calculating o, a, and F, as functions of x,
we have investigated the sensitivity of these calculations to
variations in W and gq.

The functions f and w were evaluated numerically for
given values of x, with iteration for g. It was found neces-
sary to evaluate f with great accuracy, both to keep the cal-
culation of w accurate and to ensure consistent convergence.

A. Amorphous carbon tip—o, field strength,
and radius of curvature

Results for o, a, and F as functions of x for an amor-
phous carbon tip are shown in Fig. 4. The calculated emitter
radius a falls rapidly as x increases, but the field strength F,
remains within a much smaller range.

The maximum o for the amorphous carbon tip occurs at
x=0.18, for which the calculated tip radius is 4.8 nm. This
agrees well with the measured value of 5.0+ 1.5 nm. The
good agreement suggests that the maximum of o might con-
veniently be used to indicate the value of x corresponding to
the experimental value of a. However, in this case the cal-
culated value of o at its maximum exceeds 1, implying that
the current available exceeds that from the free-electron
model. It seems possible that the free-electron density may
be exceeded if there is an appreciable density of surface
states. It is clearly desirable to compare radii calculated in
this way with measured values, for other emitters of known
dimensions.

1. Variation of o with W

Figure 5 shows the effect on ¢ of varying W, using data
for the amorphous carbon tip. The value of x at which o is
maximum varies by less than 0.005 for the change of
*0.5eV in work function.

2. Variation of o with q

The effect on o of varying the image parameter ¢, using
data for the amorphous carbon tip, is shown in Fig. 6. The
value of x at which o is maximum varies by less than 0.005
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for the change of +10% in g. However, the value of o at the
maximum varies by a factor of about 1.5. The calculation of
o is thus sensitive to the accuracy of estimation of the image
potential.

V. COMPARISON OF EMITTERS

Figure 7 shows o for three emitters (using a log scale for
o) as functions of x. By considering the form of ¢ from Eq.
(5), it can be seen that the shape of the curve plotted is that
of a function like x2 exp|(constant) af(x,q)]; as x increases,
a decreases so the curve passes through a maximum. The
smaller the radius of the experimental emitter is, the greater
will be the value of x at which the maximum occurs.

The two forms of carbon yield graphs of very similar
shapes. This suggests that the emitters tested have similar
radii of curvature. The maximum values of o differ by a
factor of about 14. This appears to indicate that the mid-
range current drawn from the nanotube was smaller than that
from the amorphous tip, at their respective anode voltages,
by the same factor.

For the nanotube, the value of a corresponding to the
maximum of o is 5.4 nm, which is appreciably less than half
the measured diameter of 44 nm. That this small value for a
is possible can be seen from a micrograph of the end of the
same nanotube (Fig. 8). The micrograph shows that the tip
profile is not a smooth hemisphere, but is irregular and so
may indeed emit principally from a radius smaller than half
the diameter.

VI. CONCLUSIONS

Conventional Fowler—Nordheim (FN) theory for a planar
surface does not represent accurately the experimental be-
havior of single cold field emitters with curved emitting sur-
faces.

Using (1) an analytic approximation to the computed po-
tential near the emitter, (2) the image potential for a spherical
surface, and (3) the free-electron density of states, and taking
into account (4) the variation of current density over the
emitter, we have written the total current as a function of
parameters x and g and the ratio o of the experimental and
theoretical values of current.

From experimental measurements of the current—voltage
relation, o, the field strength F and the emitter radius a can
be calculated as functions of x, with ¢ determined by itera-
tion. We find that F increases slowly, and a falls rapidly, as
x increases. In one case the ratio o has a maximum at the
value of x corresponding to the experimental emitter radius,
but it is not yet clear whether this result occurs more gener-
ally.

For these calculations, the image potential has been ob-
tained from the image in a sphere whose surface coincides
with the emitting surface of the tip. This obviously does not
account for the presence of the shank of the tip. Inaccuracy
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of the image potential of the order of 10% is thus a possible
reason why the experimental value of supply function (or
density of states) appears to exceed the free-electron value,
in this amorphous carbon emitter. A better model for the
image potential is desirable.

To determine further how useful the technique outlined
here may be for extracting information from FN plots, it is
desirable to obtain measurements of both the /—V character-
istic and emitter radius together, for individual tips, of both
metallic and other types of emitter.
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APPENDIX: APPROXIMATIONS FOR FUNCTIONS
f, w AND Q

In an earlier article,* certain approximations were given
for functions f and w. More accurate approximations for
small x are now available, as follows:

f(x,0)~x+4x%/5,
w(x,q)~1+4x/3+2q/3x.

In a still earlier article,’ an approximate expression for the
effective angle was given. In that article, following Eq. (22),
the relation containing B should have read

Fo=BV,.

When the effective angle is evaluated using the approxima-
tion for w(x,q) given above, the approximation becomes
(ignoring terms of order g2)

0t 1+4x0 2 4q/3x, 1 8xy/3
TOMIAT 3T | T 6=s1v, T 5—=SIV, 4-SIV,
16x%/9
T3Tew,

In the same article,’ the graphs plotted in Fig. 3 show
2g(x,q) and approximations to it, not g (x,g) as stated.
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