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Abstract: Particle methods are a category of Monte Carlo algorithms that have become popular
for performing inference in non-linear non-Gaussian state-space models. The class of “Rao-
Blackwellised” particle filters exploits the analytic marginalisation that is possible for some state-
space models to reduce the variance of the Monte Carlo estimates. Despite being applicable to
only a restricted class of state-space models, such as conditionally linear Gaussian models, these
algorithms have found numerous applications. In scenarios where no such analytical integration
is possible, it has recently been proposed in Chen et al. [2011] to use “local” particle filters to
carry out this integration numerically. We propose here an alternative approach also relying on
“local” particle filters which is more broadly applicable and has attractive theoretical properties.
Proof-of-concept simulation results are presented.
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1. INTRODUCTION

Let {(Xn, Zn)}n≥1 ∈ (X × Z)
N

be an unobserved homo-
geneous Markov process characterized by its initial density

(X1, Z1) ∼ µ (·) (1)

and transition probability density

(Xn, Zn) |(Xn−1 = xn−1, Zn−1 = zn−1) ∼ f (·|xn−1, zn−1)
(2)

w.r.t to a dominating measure, e.g. Lebesgue, denoted
abusively dxndzn. The observations {Yn}n≥1 ∈ YN are as-

sumed to be conditionally independent given {(Xn, Zn)}n≥1,
and their common marginal probability density is given by

Yn| (Xn = xn, Zn = zn) ∼ g ( ·|xn, zn) (3)

w.r.t. to a dominating measure denoted dyn.

Hereafter, for any generic sequence {un}, ui:j will denote
(ui, ui+1, . . . , uj). From the model definition, we have the
following joint density

p (x1:n, z1:n, y1:n) = µ (x1, z1) g (y1|x1, z1) (4)
n∏

k=2

f (xk, zk|xk−1, zk−1) g (yk|xk, zk) .

In this context, we are interested in the sequence of pos-
terior probability densities {p (x1:n, z1:n| y1:n)}n≥1 which
satisfies

p (x1:n, z1:n| y1:n) = p (x1:n| y1:n) p (z1:n|x1:n, y1:n)

where, for n ≥ 2, we have
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p (x1:n| y1:n) =
p (xn, yn|x1:n−1, y1:n−1) p (x1:n−1| y1:n−1)

p (yn| y1:n−1)
(5)

and

p (z1:n|x1:n, y1:n) = p (z1:n−1|x1:n−1, y1:n−1) (6)

×g (yn|xn, zn) f (xn, zn|xn−1, zn−1)

p (xn, yn|x1:n−1, y1:n−1)
.

For non-linear non-Gaussian state-space models, we do not
generally have a closed-form expression for these densities
and it is usual to rely on Monte Carlo methods.

Standard particle filters (PF) approximate the associated
sequence of probability distributions with weighted em-
pirical distribution associated with a set of N random

samples
{
Xi

1:n, Z
i
1:n

}N
i=1

termed particles. When it is possi-

ble to obtain closed form expressions for p (z1:n|x1:n, y1:n)
and p (xn, yn|x1:n−1, y1:n−1), but p (x1:n| y1:n) is unavail-
able, Rao-Blackwellised particle filters (RBPF) exploit the
available structure by approximating only the marginal
p (x1:n| y1:n) through Monte Carlo methods. The Monte
Carlo approximation being performed in a space of lower
dimension, for common marginal proposals and sample
sizes the asymptotic variance of the Rao-Blackwellised
particle estimates never exceeds that of standard particle
estimates [Chopin, 2004, Theorem 3]. The conditionally
linear-Gaussian state-space model [Chen and Liu, 2000,
Doucet et al., 2000, 2001, Fearnhead and Clifford, 2003] in
which f (xn, zn|xn−1, zn−1) factorises as

f (xn|xn−1)N (zn;A (xn) zn−1,Σ (xn))

and
g (yn|xn, zn) = N (yn;C (xn) zn,Ξ (xn))



is one popular application, for which

p (xn, yn|x1:n−1, y1:n−1) = f (xn|xn−1) p (yn|x1:n, y1:n−1) .

Both p (z1:n| y1:n, x1:n) and p (yn|x1:n, y1:n−1) are Gaus-
sian densities whose statistics can be computed us-
ing Kalman recursions. Another common application is
the partially observed Gaussian state-space model [An-
drieu and Doucet, 2002, Schön et al., 2005]; in which
f (xn, zn|xn−1, zn−1) = N (zn;Azn−1,Σ)N (xn;Czn,Ξ)
and g (yn|xn, zn) = g (yn|xn) in which case

p (xn, yn|x1:n−1, y1:n−1) = g (yn|xn) p (xn|x1:n−1) .

Then p (z1:n| y1:n, x1:n) = p (z1:n|x1:n) and p (xn|x1:n−1)
are also Gaussian densities whose statistics can be com-
puted using Kalman recursions.

We consider here the scenario in which it is not possible
to obtain a closed-form expression for p (z1:n|x1:n, y1:n)
and p (xn, yn|x1:n−1, y1:n−1). Hence it is not possible to
implement the Rao-Blackwellised particle filter. In this
case a strategy one can adopt is to approximate the
Rao-Blackwellised particle filter by a hierarchical Monte
Carlo algorithm. At the upper level of the hierarchy,

we approximate p (x1:n| y1:n) using particles
{
Xi

1:n

}N
i=1

and for each higher level-particle Xi
1:n we approximate

p
(
z1:n|Xi

1:n, y1:n
)

and p
(
Xi

n, yn
∣∣Xi

1:n−1, y1:n−1
)

using a

“local” particle filter using lower-level particles
{
Zi,j
1:n

}M

j=1
.

A related approach has been proposed in Chen et al.
[2011] but their algorithm approximates the ideal algo-
rithm differently and requires that the conditional prior
f (zn|xn−1, xn, zn−1) is known analytically and has cost
of O(NM2) (the algorithm below requires only the more
tractable joint transition and has cost O(NM)). Addition-
ally, it is only guaranteed to provide a consistent estimate
of the target distribution p (x1:n, z1:n| y1:n) when both
N →∞ and M →∞.

In this paper, our main contribution is to present a new
Approximate Rao-Blackwellised particle filter which is ap-
plicable to the general class of models defined by (1)-(2)-
(3). Our algorithm is “exact” in the sense that it does
provide a consistent approximation of p (x1:n, z1:n| y1:n) as
N →∞ whatever number, M ≥ 1, of particles is used by
the local particle filters. The proof of this result relies on an
extension of the construction presented in Andrieu et al.
[2010]. We also propose various methodological extensions.
Related ideas have been proposed more recently in scenar-
ios where a static parameter, θ, is the object inferred by
the top level algorithm, rather than the Markov process
{Xn}n≥1 [Chopin et al., 2011, Fulop and Li, 2011].

An obvious question at this stage is: why implement a
Monte Carlo approximation of a Rao-Blackwellised Parti-
cle Filter? A Monte Carlo approximation of an algorithm
which differs from the standard particle filter in that it
admits some analytic integration is not the most obvious
construction, it is true. All of the arguments employed
to motivate the approach of Chen et al. [2011] could be
employed here — in particular, the parallelisation of these
algorithms is extremely straightforward and very efficient
implementation is possible on parallel architectures by
exploiting the fact that a very high proportion of the
execution cost is associated with parallelizable steps (cf.
Amdahl [1967]). The benefits of parallel implementation

of appropriate Sequential Monte Carlo algorithms has re-
cently been demonstrated by Lee et al. [2010]. The precise
approach which we propose admits a simple importance
sampling interpretation which provides an immediate for-
mal justification for the proposed approach (which does
not rely on asymptotic arguments beyond those used to
justify the standard particle filter).

We have a further motivation for the approach which we
propose: it allows for a hierarchically segmented imple-
mentation in which dedicated, efficient particle filters of
different types are employed at each level. This also allows
computational effort to be divided between different parts
of the filtering problem, concentrating resources in the
more difficult areas. We touch on some specific instances
of this type of algorithm in Section 3, in particular when
the state space is a product of discrete and continuous
components (see Section 3.1). Note that we present here
a case in which there are two levels: a top-level and a
local-level; in principle a larger number of levels could be
employed to allow for a finer factorisation of the state-
space. Such a strategy may prove useful when the state
space or associated dynamics are complex but can be
factorised in such a way that efficient (conditional) particle
filters can be implemented.

2. EXACT APPROXIMATION OF
RAO-BLACKWELLISED PARTICLE FILTERS

2.1 Rao-Blackwellised Particle Filter

Algorithm 1 Rao-Blackwellised Particle Filter

At time n = 1
• Sample Xi

1 ∼ qx ( ·| y1) then compute p
(
z1|Xi

1, y1
)

and p
(
Xi

1, y1
)
.

• Compute and normalise the weights

wx
1

(
Xi

1

)
:=

p
(
Xi

1, y1
)

qx
(
Xi

1|y1
) , W x,i

1 :=
wx

1

(
Xi

1

)∑N
k=1 w

x
1

(
Xk

1

) .
(7)

At times n ≥ 2

• Resample
{
W x,i

n ,
(
Xi

1:n−1, p(z1:n−1|Xi
1:n−1, y1:n−1)

)}
i

to obtain
{

1
N ,
(
X̃i

1:n−1, p(z1:n−1|X̃i
1:n−1, y1:n−1)

)}
i
.

• Sample Xi
n ∼ qx(·|X̃i

1:n−1, y1:n) and set

Xi
1:n := (X̃i

1:n−1, X
i
n).

• Compute p
(
z1:n|Xi

1:n, y1:n
)
and

p
(
Xi

n, yn
∣∣ X̃i

1:n−1, y1:n−1

)
based on

p
(
z1:n−1| X̃i

1:n−1, y1:n−1

)
using (6).

• Compute and normalise the weights

wx
n

(
Xi

1:n

)
:=
p
(
Xi

n, yn
∣∣ X̃i

1:n−1, y1:n−1

)
qx(Xi

n|X̃i
1:n−1, y1:n)

,

W x,i
n :=

wx
n

(
Xi

1:n

)∑N
k=1 w

x
n

(
Xk

1:n

) . (8)

For completeness, we first describe the standard Rao-
Blackwellised particle filter in general terms. Our presen-
tation is slightly non-standard but will generalise naturally
later. Note that in order to alleviate the notational burden



we adopt the convention that whenever the index i is
used we mean “for all i ∈ {1, ..., N} ,”. This algorithm
relies on the importance densities qx (x1|y1) at time 1 and
qx(xn|x1:n−1, y1:n) at times n ≥ 2.

As presented, Algorithm 1 would require the storage,

at time n, of the particles
{
Xi

1:n, p
(
z1:n|Xi

1:n, y1:n
)}N

i=1
.

In most applications of Rao-Blackwellised particle fil-
ters, we are interested in estimating only the marginal
p (xn, zn| y1:n) and we can limit ourselves to storing{
Xi

n, p
(
zn|Xi

1:n, y1:n
)}N

i=1
where p

(
zn|Xi

1:n, y1:n
)

is char-
acterized by a fixed-dimensional sufficient statistic.

2.2 Approximate Rao-Blackwellised Particle Filter

Consider now the scenario in which it is not possible to
obtain closed-form expressions for p (z1:n|x1:n, y1:n) and
p (xn, yn|x1:n−1, y1:n−1) . Hence it is not possible to imple-
ment the Rao-Blackwellised particle filter described above.
However, conditional upon a particle Xi

1:n, we can run a

“local” particle filter using particles
{
Zi,j
1:n

}M

j=1
to approx-

imate p
(
z1:n|Xi

1:n, y1:n
)

and p
(
Xi

n, yn
∣∣ X̃i

1:n−1, y1:n−1

)
as originally suggested in Chen et al. [2011]. These lo-
cal particle filters rely on the importance distributions
qz (z1|x1, y1) at time 1 and qz(zn|x1:n, y1:n, z1:n−1) at
times n ≥ 2. Local importance weights are expressed in
terms of the readily-evaluated joint distributions:

p(x1, y1, z1) =g (y1|x1, x1)µ (x1, z1) and

p(xn, yn, zn|xn−1, zn−1) =f(xn, zn|xn−1, zn−1)g(yn|xn, zn).

Whenever the indices i, j are used, the statement applies
“for all i ∈ {1, . . . , N} and j ∈ {1, ...,M}, respectively”.

Algorithm 2 shows the proposed algorithm in detail. As
presented, it would require that, at time n, the particles{
Xi

1:n

}N
i=1

and
{
Zi,j
1:n

}N,M

i=1,j=1
all be available in memory.

In most applications, we are interested in estimating only
the marginal p (xn, zn| y1:n) and we can limit ourselves

to storing
{
Xi

n

}N
i=1

and
{
Zi,j
n

}N,M

i=1,j=1
. In this scenario,

we can think of
{
Zi,j
n

}M
j=1

as the finite-dimensional “suffi-

cient” statistics associated with p
(
zn|Xi

1:n, y1:n
)
.

2.3 Validity of The ARBPF Algorithm

The validity of the approximate Rao-Blackwellised particle
filter (ARBPF) is established by showing that it can
be reinterpreted as a standard particle algorithm on an
extended space targetting a sequence of distributions, the
nth of which admits the marginal posterior p (x1:n| y1:n)
as a marginal. Furthermore, it is straightforward to obtain
an estimate of the joint posterior p (x1:n, z1:n| y1:n). The
arguments used here are based on a slight extension of the
construction proposed in Andrieu et al. [2010]; see also
Chopin et al. [2011].

Preliminaries We require notation and an interpretation
of the algorithm which allows us to keep track of the full
collection of random variables used during the running of
the algorithm. This is a formal representation of precisely

Algorithm 2 Approximate Rao-Blackwellised PF

At time n = 1
• Sample Xi

1 ∼ qx ( ·| y1).

• Sample Zi,j
1 ∼ qz

(
·|Xi

1, y1
)
.

• Compute and normalise the local weights

wz
1

(
Xi

1, Z
i,j
1

)
: =

p(Xi
1, y1, Z

i,j
1 )

qz
(
Zi,j
1

∣∣∣Xi
1, y1

)

W z,i,j
1 : =

wz
1

(
Xi

1, Z
i,j
1

)
∑N

k=1 w
z
1

(
Xi

1, Z
i,k
1

) ,
define p̂(Xi

1, y1) : =
1

M

M∑
j=1

wz
1

(
Xi

1, Z
i,j
1

)
.

• Compute and normalise the top-level weights

wx
1

(
Xi

1

)
:=

p̂(Xi
1, y1)

qx
(
Xi

1|y1
) , W x,i

1 :=
wx

1

(
Xi

1

)∑N
k=1 w

x
1

(
Xk

1

) .
(9)

At times n ≥ 2
• Resample{

W x,i
n−1,

(
Xi

1:n−1,
{
W z,i,j

n−1 , Z
i,j
1:n−1

}
j

)}
i

to obtain{
1

N
,

(
X̃i

1:n−1,
{
W

z,i,j

n−1, Z
i,j

1:n−1

}
j

)}
i

.

• Resample {W z,i,j

n−1, Z
i,j

1:n−1}j to obtain { 1
M , Z̃i,j

1:n−1}j .
• Sample Xi

n ∼ qx(·|X̃i
1:n−1, y1:n); set

Xi
1:n := (X̃i

1:n−1, X
i
n).

• Sample Zi,j
n ∼ qz

(
·|Xi

1:n, y1:n, Z̃
i,j
1:n−1

)
; set

Zi,j
1:n := (Z̃i,j

1:n−1, Z
i,j
n ).

• Compute and normalise the local weights

wz
n

(
Xi

1:n, Z
i,j
1:n

)
:=

p
(
Xi

n, yn, Z
i,j
n

∣∣∣X̃i
n−1, Z̃

i,j
n−1

)
qz
(
Zi,j
n

∣∣∣Xi
1:n, y1:n, Z̃

i,j
1:n−1

) ,
p̂(Xi

n, yn
∣∣ X̃i

1:n−1, y1:n−1) : =
1

M

M∑
j=1

wz
n

(
Xi

1:n, Z
i,j
1:n

)
,

W z,i,j
n : =

wz
n

(
Xi

1:n, Z
i,j
1:n

)
∑M

k=1 w
z
n

(
Xi

1:n, Z
i,k
1:n

) .
• Compute and normalise the top-level weights

wx
n

(
Xi

1:n

)
:=
p̂(Xi

n, yn
∣∣ X̃i

1:n−1, y1:n−1)

qx(Xi
n|X̃i

1:n−1, y1:n)
,

W x,i
n :=

wx
n

(
Xi

1:n

)∑N
k=1 w

x
n

(
Xk

1:n

) . (10)

This algorithm reduces to a standard particle filter when
M = 1 and approaches the RBPF when M →∞.



the algorithm described in the previous section which is
not required in the implementation of ARBPFS.

To describe the full set of variables used in the execution
of the particle filter it is useful to view resampling as a
process by which each of the particles, at the beginning of
iteration n, draws a parent indicator from an appropriate
distribution. The parents of the top-level particles at time
n can be denoted Ax,i

n−1 with i running from 1 up to N ;
whilst, for any given i, we have M parent indicators for the

local particles at this generation, denoted A
z,Ax,i

n−1
,j

n−1 where
the multiple indexing arises because the parents of the
local particles are attached to the parent of the associated
top-level particle and leads to a consistent interpretation
of the two sets of indices. In this description, the variable
Ax,i

n−1 represents the index of the ‘parent’ at time n− 1 of

particle Xi
1:n whereas A

z,Ax,i
n−1

,j

n−1 represents the index of the

‘parents’ of particle Zi,j
1:n; i.e. particle Zi,j

1:n has two parents,
a high-level ‘parent’ corresponding to the local particle
filter Ax,i

n−1 associated to Xi
1:n it descends from and a low-

level ‘parent’ which is a particle within this local particle
filter. In the case of multinomial resampling, we can view
the top-level resampling as drawing

(Ax,i
n−1)Ni=1 ∼M

(
N,W x,1:N

n−1

)
,

and the low-level resampling admits a similar representa-
tion, for each i ∈ {1, . . . , N}:

(A
z,Ax,i

n−1
,j

n−1 )Mj=1 ∼M
(
M,W

z,Ax,i
n−1

,1:M

n−1

)
where M ( ·|n,p) denotes the multinomial distribution of
parameters n and p = (p1, ..., pJ) .

To connect this with the algorithmic description, we may
identify:

X̃i
n−1 =X

Ax,i
n−1

n−1 Z̃i,j
n−1 =Z

Ax,i
n−1

,A
z,A

x,i
n−1

,j

n−1

n−1
This provides a slightly finer description than is required to
justify the algorithm, but such a representation is required
in order to employ the algorithm within a Particle MCMC
framework (see section 3.2).

Remark: Other resampling schemes, including those in
which resampling is performed at times which depend on
the particle configuration (the arguments of Del Moral
et al. [2012] apply directly in the present setting), may
be used and justified by similar arguments to those used
here; the use of multinomial resampling slightly simplifies
the notation and clarifies the core argument but is far from
essential. Note that by resampling the top level particles
and then resampling within the local particle filters, it
is possible to attach a genealogical tree structure to the
algorithm: the top-level filter evolves through time as a
collection of random trees just as the standard particle
filter does; each root-leaf path through this collection of
random trees has a collection of random trees associated
with it describing the evolution of the local particle filters.
The local random trees for any collection of top-level
particles which coincide for part of their evolution also
coincide for that part of their temporal evolution.

Marginal Target Distribution We first establish the form
of the target distribution using a simple importance sam-

pling argument which matches the intuition behind the
development of the algorithm, before considering a more
subtle construction which gives a more precise characteri-
sation of the algorithm.

We initially ignore resampling of the top-level particles{
Xi

n

}N
i=1

and consider the resulting sequential importance

sampling (SIS) algorithm. In this case, the importance
sampling (proposal) distribution at time n is given by

qn

(
x1:n, a

z,1:M
1:n−1, z

1:M
1:n

∣∣∣ y1:n) (11)

= qn (x1:n| y1:n) qn

(
az,1:M1:n−1, z

1:M
1:n

∣∣∣x1:n, y1:n)
where

qn (x1:n| y1:n) = qx (x1| y1)

n∏
m=2

qx (xm|x1:m−1, y1:m)

and, if we assume that multinomial resampling is used
within the local particle filters, then the conditional distri-

bution qn

(
az,1:M1:n−1, z

1:M
1:n

∣∣∣x1:n, y1:n) may be expanded as:

M∏
j=1

{
qz
(
zj1

∣∣x1, y1
) n∏
m=2

W
z,a

z,j
m−1

m−1 qz

(
zjm
∣∣x1:m, y1:m, z

a
z,j
m−1

1:m−1

)}
.

We have suppressed the i-index in this description as
it arises directly from drawing N iid samples from this
distribution. The importance weight function associated
with this distribution is the product of the incremental
weights (9)-(10), that is

wn

(
x1:n, a

z,1:M
1:n−1, z

1:M
1:n

)
= (12)

p̂(x1, y1)

qx (x1|y1)

n∏
m=2

p̂ (xm, ym|x1:m−1, y1:m−1)

qx(xm|x1:m−1, y1:m)
,

in the absence of top-level resampling. The target distribu-
tion at time n corresponds to the product of the proposal
distribution and the importance weight function:

πn

(
x1:n, a

z,1:M
1:n−1, z

1:M
1:n

)
∝wn

(
x1:n, a

z,1:M
1:n−1, z

1:M
1:n

)
qn

(
x1:n, a

z,1:M
1:n−1, z

1:M
1:n

∣∣∣ y1:n)
∝ p̂(x1:n, y1:n)qn

(
az,1:M1:n−1, z

1:M
1:n

∣∣∣x1:n, y1:n)
where

p̂(x1:n, y1:n) := p̂(x1, y1)

n∏
m=2

p̂ (xm, ym|x1:m−1, y1:m−1)

It is now well-known that the marginal likelihood estimate
provided by a particle filter is unbiased [Del Moral, 2004];
i.e. ∑

az,1:M
1:n−1

∫
p̂(x1:n, y1:n) qn

(
az,1:M1:n−1, z

1:M
1:n

∣∣∣ y1:n, x1:n) dz1:M1:n

=p (x1:n, y1:n) .

It follows straightforwardly that the marginal target is:

πn (x1:n) =
∑

az,1:M
1:n−1

∫
πn

(
x1:n, a

z,1:M
1:n−1, z

1:M
1:n

)
dz1:M1:n

=p (x1:n| y1:n) .



n=1

n=2

n=3

Fig. 1. Ancestral lines: the b-formulation, n = 3. In this
cartoon representation, the particle indices coincide
with their position in the horizontal ordering and now
trajectories cross. We have b23 = 2, b22 = 1 and b21 = 1
for the dashed trajectory; b43 = 4, b42 = 3 and b41 = 3
for the dash-dotted trajectory and b63 = 6, b62 = 5 and
b61 = 4 in the case of the dotted path.

Joint Target Distribution It is possible to obtain a more
precise result by considering explicitly the joint artificial
target distribution. After manipulations similar to those
of Andrieu et al. [2010], Chopin et al. [2011], we obtain

πn

(
x1:n, a

z,1:M
1:n−1, z

1:M
1:n

)
= p(x1:n|y1:n)

Mn−1

× 1
M

∑M
j=1 p

(
zj1:n

∣∣∣x1:n, y1:n)
 M∏

k=1,k 6=bj1

qz
(
zk1
∣∣x1, y1)


×

n∏
m=2

{
M∏

k=1,k 6=bjm

W
az,k
m−1

m−1 q
z

(
zkm
∣∣x1:m, y1:m, zaz,k

m−1

1:m−1

)}
where

(
bj1, ..., b

j
n

)
is the ancestral lineage of zj1:n which is

implicitly dependent upon the current iteration, n, and

is defined recursively: bjn = j and bjk = a
z,bj

k+1

k ; that is

zj1:n =

(
z
bj1
1 , z

bj2
2 , ..., z

bjn
n

)
. This notation is simpler than

it may at first seem and is illustrated in Figure 1. It
is possible to simply modify this target to introduce an
additional discrete random variable L ∈ {1, ...,M} such
that

πn
(
x1:n, a

1:M
1:n−1, l, z

1:M
1:n

)
=

p
(
x1:n, z

l
1:n

∣∣ y1:n)
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k=1,k 6=bj1

qz
(
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
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k=1,k 6=bjm

W
ak
m−1

m−1 q
z

(
zkm
∣∣x1:m, y1:m, zaz,k

m−1

1:m−1

) .

This provides use with an estimate of the joint distribution
of interest p (x1:n, z1:n| y1:n).

Both of these descriptions of the algorithm without the
top level resampling step clearly justify the use of the
algorithm with resampling by the usual arguments un-
derlying the sequential importance resampling algorithm
(see Del Moral [2004] for a detailed study). A precise
characterisation of the algorithm with both resampling
steps is possible, indeed it follows by applying essentially
the same construction described here at the top level of the
algorithm. However, the resulting expressions are rather

cumbersome and are not necessary in order to implement
or understand the basic algorithm.

It should be noted that in addition to allowing standard
results to be applied directly, interpreting the algorithm
as a simple SIR algorithm on a suitably augmented state
also illustrates that in the context of online inference, this
hierarchical approach to particle filtering will not require
that the size of the local particle filters increases with the
length of the state sequence to maintain a given quality of
approximation of the filtering distributions, in contrast to
the parameter estimation case [Chopin et al., 2011].

3. EXTENSIONS AND VARIATIONS

For clarity of presentation we have employed only a very
simple particle filter in the above description of the algo-
rithm. It should be understood that the vast majority of
extensions to the particle filter which have appeared in
the literature could be very easily included in ARBPFs.
Incorporating MCMC moves to improve sample diversity
Gilks and Berzuini [2001] is straightforward (indeed par-
ticle MCMC-type moves could be employed to rejuvenate
the subsidiary particle filters if required).

In particular, the precise structure of the top-level particle
filter does not enter into the construction used to justify
the algorithm and indeed any particle filtering algorithm
could be used at this level; at the lower level we require
only that we are able to represent the algorithm in the
appropriate form. In this section we sketch a number of
particularly interesting directions which warrant further
study (and are currently under investigation).

3.1 Exact Approximation of Discrete Particle Filters

One practically important scenario is that in which X , the
space Xn takes values in, is a finite set. In this case, a
very efficient discrete particle can be implemented at the
top-level by using the algorithm of Fearnhead and Clifford
[2003] within the ARBPF framework described above. As
our construction does not depend upon any particular
properties of the top-level algorithm this leads directly to
a valid algorithm.

This approach to particle filtering for small discrete state
spaces has been found to be highly efficient but it has
not, until now, been obvious how to combine it with
other strategies in order to deal with mixed continuous-
discrete state spaces (for example, switching models with
complex, {Zn}-dynamics in a continuous state space that
cannot be analytically marginalised which depend upon
the current value of a regime-indicator, Xn, that is well-
modelled by a finite-space Markov chain). The possibility
of this combination is one of the most promising avenues
of research arising from the ARBPF construction.

3.2 Approximate Rao-Blackwellised Particle Filters for
Particle Markov chain Monte Carlo Methods

As the ARBPF can be viewed as an algorithm for generat-
ing a large collection of random variables (describing all of
the trajectories generated during the course of the running
of the algorithm and all of the ancestral lines associated
with the resampling of all particles, including those which
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Fig. 2. Monte Carlo Mean Squared Error of ARBPFs and
RBPFs. Dashed lines show RBPF errors for each N ;
solid lines ARBPF errors as a function of M .

have been eliminated before the current time) it is possible
to use arguments similar to those of Andrieu et al. [2010]
to embed ARBPF proposals within a PMCMC framework,
using the trajectories obtained from the PF algorithm as
proposals within an MCMC framework.

Further extensions are also possible: It is naturally possible
to combine Particle MCMC with the ABRPF algorithm in
settings with partially discrete state spaces, embedding the
efficient discrete particle filter within the PMCMC algo-
rithm by employing a construction of the sort considered
by Whiteley et al. [2010]. It may also be fruitful to embed
ARBPFs within the SMC2 approach [Chopin et al., 2011].

3.3 Other Settings

Similar techniques can also be employed in a number of
other settings. In addition to those which have already
been discussed in the literature, the use of “local” particle
filters to provide approximations of proposal distributions
within a block-sampling framework is effective and can be
justified as a standard Sequential Monte Carlo algorithm
defined upon an extended space by employing further
extensions of the auxiliary variable construction used here
[Johansen and Doucet, 2012].

4. EXAMPLE

A simple example demonstrates that the performance of
the ABRPF rapidly approaches that of the correspond-
ing RBPF (the ideal algorithm it approximates) as M
increases. We compare the Monte Carlo approximations
to the Kalman filter to quantify the Monte Carlo error.

We use a simulated sequence of 100 observations from the
model defined by the densities:

µ(x1, z1) =N
(
(x1, z1)T;0, I2

)
f(xn, zn|xn−1, zn−1) =N

(
(xn, zn)T; (xn−1, zn−1)T, I2

)
g(yn|xn, zn) =N

(
yn; (xn, zn)

T
, I2

)
where I2 denotes the 2 × 2 identity matrix. We consider
the time-averaged squared deviation between the posterior
mean filtering estimates of the first coordinate provided by
the ARBPF/RBPF and the mean of the optimal filter (i.e.
the error arising from the Monte Carlo approximation). We
consider only the “bootstrap” ARBPF/RBPF (i.e. using
the joint/marginal prior as the proposal) with systematic

resampling employed (at both levels in the ARBPF case)
every iteration. Figure 2 shows values averaged over 100
replicate of each filter as well as over time. Even small
values of M can yield good performance. This illustrates
the validity of the algorithm and lends some support to its
use in parallel settings; optimal implementations for real
problems are under consideration.

REFERENCES

G. Amdahl. Validity of the single processor approach to
achieving large-scale computing capabilities. In Proc. of
AFIPS, volume 30, pages 483–485. ACM, 1967.

C. Andrieu and A. Doucet. Particle filtering for partially
observed Gaussian state space models. J. R. Stat. Soc.
Ser. B, 64(4):827–836, 2002.

C. Andrieu, A. Doucet, and R. Holenstein. Particle
Markov chain Monte Carlo. J. R. Stat. Soc. Ser. B,
72(3):269–342, 2010.

R. Chen and J. S. Liu. Mixture Kalman filters. J. R. Stat.
Soc. Ser. B, 62(3):493–508, 2000.

T. Chen, T. Schön, H. Ohlsson, and L. Ljung. Decentral-
ized particle filter with arbitrary state decomposition.
IEEE Trans. Sig. Proc., 59(2):465–478, 2011.

N. Chopin. Central limit theorem for sequential Monte
Carlo methods and its applications to Bayesian infer-
ence. Ann. Stat., 32(6):2385–2411, 2004.

N. Chopin, P. Jacob, and O. Papaspiliopoulos. SMC2.
ArXiv Mathematics e-prints, 1101.1528, 2011.

P. Del Moral. Feynman-Kac formulae: genealogical and in-
teracting particle systems with applications. Probability
and Its Applications. Springer Verlag, New York, 2004.

P. Del Moral, A. Doucet, and A. Jasra. On adaptive resam-
pling procedures for sequential Monte Carlo methods.
Bernoulli, 18(1):252–278, 2012

A. Doucet, S. Godsill, and C. Andrieu. On sequential
simulation-based methods for Bayesian filtering. Stat.
and Comput., 10(3):197–208, 2000.

A. Doucet, N. Gordon, and V. Krishnamurthy. Particle fil-
ters for state estimation of jump Markov linear systems.
IEEE Trans. Sig. Proc., 49:613–624, 2001.

P. Fearnhead and P. Clifford. On-line inference for hidden
Markov models via particle filters. J. R. Stat. Soc. Ser.
B, 65(4):887–899, 2003.

A. Fulop and J. Li. Robust and efficient learning: A
marginalize resample-move approach. Techn. rep., ES-
SEC Busines School, 2011.

W. R. Gilks and C. Berzuini. Following a moving target –
Monte Carlo inference for dynamic Bayesian models. J.
R. Stat. Soc. Ser. B, 63:127–146, 2001.

A. M. Johansen and A. Doucet Mitigating Path Degener-
acy: A Local Particle Filter Approach CRiSM Working
Paper, in preparation, 2012 .

A. Lee, C. Yau, M. B. Giles, A. Doucet, and C. C. Holmes.
On the utility of graphics card to perform massively par-
allel simulation with advanced Monte Carlo methods. J.
Comput. Graph. Stat., 19(4):769–789, 2010.

T. Schön, F. Gustafsson, and P. Nordlund. Marginalized
particle filters for mixed linear/nonlinear state-space
models. IEEE Trans. Sig. Proc., 53:2279–2289, 2005.

N. Whiteley, C. Andrieu, and A. Doucet. Efficient
Bayesian inference for switching state-space models us-
ing discrete particle Markov chain Monte Carlo meth-
ods. Res. Rep. 10:04, University of Bristol, 2010.


