Sequential Monte Carlo:
Selected Methodological Applications

Adam M. Johansen

a.m.johansen@warwick.ac.uk

Warwick University Centre for Scientific Computing
Outline

- Sequential Monte Carlo
- Applications
 - Parameter Estimation
 - Rare Event Simulation
 - Filtering of Piecewise Deterministic Processes
Background
Estimating π

- Rain is uniform.
- Circle is inscribed in square.
- $A_{\text{square}} = 4r^2$.
- $A_{\text{circle}} = \pi r^2$.
- $p = \frac{A_{\text{circle}}}{A_{\text{square}}} = \frac{\pi}{4}$.
- 383 of 500 “successes”.
- $\hat{\pi} = \frac{383}{500} = 3.06$.
- Also obtain confidence intervals.
The Monte Carlo Method

▶ Given a probability density, \(f \),

\[
I = \int_E \varphi(x)f(x)dx
\]

▶ Simple Monte Carlo solution:
 ▶ Sample \(X_1, \ldots, X_N \overset{iid}{\sim} f. \)
 ▶ Estimate \(\hat{I} = \frac{1}{N} \sum_{i=1}^{n} \varphi(X_N). \)

▶ Justified by the law of large numbers...
▶ and the central limit theorem.
Importance Sampling

- Given g, such that
 - $f(x) > 0 \Rightarrow g(x) > 0$
 - and $f(x)/g(x) < \infty$,

define $w(x) = f(x)/g(x)$ and:

$$I = \int \varphi(x)f(x)dx = \int \varphi(x)w(x)g(x)dx.$$

- This suggests the importance sampling estimator:

 - Sample $X_1, \ldots, X_N \overset{iid}{\sim} g$.
 - Estimate $\hat{I} = \frac{1}{N} \sum_{i=1}^{N} w(X_i)\varphi(X_i)$.
Markov Chain Monte Carlo

- Typically difficult to construct a good proposal density.
- MCMC works by constructing an ergodic Markov chain of invariant distribution π, X_n using it’s ergodic averages:

\[
\frac{1}{N} \sum_{i=1}^{N} \varphi(X_i)
\]

to approach $\mathbb{E}_\pi[\varphi]$.
- Justified by ergodic theorems / central limit theorems.
- We aren’t going to take this approach.
A Motivating Example: Filtering

- Let X_1, \ldots denote the position of an object which follows Markovian dynamics.
- Let Y_1, \ldots denote a collection of observations: $Y_i | X_i = x_i \sim g(\cdot | x_i)$.
- We wish to estimate, as observations arrive, $p(x_{1:n} | y_{1:n})$.
- A recursion obtained from Bayes rule exists but is intractable in most cases.
More Generally

- The problem in the previous example is really tracking a sequence of distributions.
- Key structural property of the smoothing distributions: increasing state spaces.
- Other problems with the same structure exist.
- Any problem of sequentially approximating a sequence of such distributions, p_n, can be addressed in the same way.
Importance Sampling in This Setting

- Given \(p_n(x_{1:n}) \) for \(n = 1, 2, \ldots \).
- We could sample from a sequence \(q_n(x_{1:n}) \) for each \(n \).
- Or we could let \(q_n(x_{1:n}) = q_n(x_n|x_{1:n-1})q_{n-1}(x_{1:n}) \) and re-use our samples.
- The importance weights become:

\[
 w_n(x_{1:n}) \propto \frac{p_n(x_{1:n})}{q_n(x_{1:n})} = \frac{p_n(x_{1:n})}{q_n(x_n|x_{1:n-1})q_{n-1}(x_{1:n-1})} = \frac{p_n(x_{1:n})}{q_n(x_n|x_{1:n-1})p_{n-1}(x_{1:n-1})} w_{n-1}(x_{1:n-1})
\]
Sequential Importance Sampling

At time 1.
For \(i = 1 : N \), sample \(X_1^{(i)} \sim q_1(\cdot) \).
For \(i = 1 : N \), compute \(W_1^i \propto w_1(X_1^{(i)}) = \frac{p_1(X_1^{(i)})}{q_1(X_1^{(i)})} \).

At time \(n, n \geq 2 \).

Sampling Step
For \(i = 1 : N \), sample \(X_n^{(i)} \sim q_n(\cdot \mid X_{n-1}^{(i)}) \).

Weighting Step
For \(i = 1 : N \), compute

\[
 w_n\left(X_{1:n-1}^{(i)}, X_n^{(i)}\right) = \frac{p_n(X_1^{(i)}, X_n^{(i)})}{p_{n-1}(X_1^{(i)}, X_{n-1}^{(i)}) q_n(X_n^{(i)} \mid X_{n-1}^{(i)})}
\]

and \(W_n^{(i)} \propto W_{n-1}^{(i)} w_n\left(X_{1:n-1}^{(i)}, X_n^{(i)}\right) \).
Sequential Importance Resampling

At time n, $n \geq 2$.

Sampling Step
For $i = 1 : N$, sample $X_{n,n}^{(i)} \sim q_n \left(\cdot | \tilde{X}_{n-1}^{(i)} \right)$.

Resampling Step
For $i = 1 : N$, compute

$$w_n \left(\tilde{X}_{n-1}^{(i)}, X_{n,n}^{(i)} \right) = \frac{p_n \left(\tilde{X}_{n-1}^{(i)}, X_{n,n}^{(i)} \right)}{p_{n-1} \left(\tilde{X}_{n-1}^{(i)} \right) q_n \left(X_{n,n}^{(i)} | \tilde{X}_{n-1}^{(i)} \right)}$$

and $W_n^{(i)} = \frac{w_n \left(\tilde{X}_{n-1}^{(i)}, X_{n,n}^{(i)} \right)}{\sum_{j=1}^{N} w_n \left(\tilde{X}_{n-1}^{(j)}, X_{n,n}^{(j)} \right)}$.

For $i = 1 : N$, sample $\tilde{X}_n^{(i)} \sim \sum_{j=1}^{N} W_n^{(j)} \delta \left(\tilde{X}_{n-1}^{(j)}, X_{n,n}^{(j)} \right) (dx_{1:n})$.
SMC Samplers

Actually, these techniques can be used to sample from any sequence of distributions (Del Moral et al., 2006).

- Given a sequence of target distributions, η_n, on $E_n \ldots$,
- construct a synthetic sequence $\tilde{\eta}_n$ on spaces $\bigotimes_{p=1}^{n} E_p$
- by introducing Markov kernels, L_p from E_{p+1} to E_p:

$$
\tilde{\eta}_n(x_{1:n}) = \eta_n(x_n) \prod_{p=1}^{n-1} L_p(x_{p+1}, x_p),
$$

- These distributions
 - have the target distributions as time marginals,
 - have the correct structure to employ SMC techniques.
Sequential Monte Carlo

SMC Outline

- Given a sample \(\{X_{1:n-1}^{(i)}\}_{i=1}^{N} \) targeting \(\tilde{\eta}_{n-1} \),
- sample \(X_{n}^{(i)} \sim K_{n}(X_{n-1}^{(i)}, \cdot) \),
- calculate
 \[
 W_{n}(X_{1:n}^{(i)}) = \frac{\eta_{n}(X_{n}^{(i)})L_{n-1}(X_{n}^{(i)}, X_{n-1}^{(i)})}{\eta_{n-1}(X_{n-1}^{(i)})K_{n}(X_{n-1}^{(i)}, X_{n}^{(i)})}.
 \]
- Resample, yielding: \(\{X_{1:n}^{(i)}\}_{i=1}^{N} \) targeting \(\tilde{\eta}_{n} \).
- Hints that we’d like to use
 \[
 L_{n-1}(x_{n}, x_{n-1}) = \frac{\eta_{n-1}(x_{n-1})K_{n}(x_{n-1}, x_{n})}{\int \eta_{n-1}(x_{n-1}')K_{n}(x_{n-1}', x_{n})}.
 \]
Parameter Estimation in Latent Variable Models

Joint work with Arnaud Doucet and Manuel Davy.
Maximum \{Likelihood|a Posteriori\} Estimation

- Consider a model with:
 - parameters, θ,
 - latent variables, x, and
 - observed data, y.

- Aim to maximise Marginal likelihood

$$p(y|\theta) = \int p(x, y|\theta)dx$$

or posterior

$$p(\theta|y) \propto \int p(x, y|\theta)p(\theta)dx.$$

- Traditional approach is Expectation-Maximisation (EM)
 - Requires objective function in closed form.
 - Susceptible to trapping in local optima.
A Probabilistic Approach

▶ A distribution of the form

\[\pi(\theta|y) \propto p(\theta)p(y|\theta)^\gamma \]

will become concentrated, as \(\gamma \to \infty \) on the maximisers of \(p(y|\theta) \) under weak conditions (Hwang, 1980).

▶ **Key point:** Synthetic distributions of the form:

\[\bar{\pi}_\gamma(\theta, x_{1:\gamma}|y) \propto p(\theta) \prod_{i=1}^{\gamma} p(x_i, y|\theta) \]

admit the marginals

\[\bar{\pi}_\gamma(\theta|y) \propto p(\theta)p(y|\theta)^\gamma. \]
Maximum Likelihood via SMC

- Use a sequence of distributions $\eta_n = \pi_{\gamma_n}$ for some $\{\gamma_n\}$.
- Has previously been suggested in an MCMC context (Doucet et al., 2002).
 - Requires extremely slow “annealing”.
 - Separation between distributions is large.
- SMC has two main advantages:
 - Introducing bridging distributions, for $\gamma = [\gamma] + \langle \gamma \rangle$, of:

$$\bar{\pi}_\gamma(\theta, x_{1:[\gamma]+1}|y) \propto p(\theta)p(x_{[\gamma]+1}, y|\theta)^{\langle \gamma \rangle} \prod_{i=1}^{[\gamma]} p(x_i, y|\theta)$$

 - is straightforward.
 - Population of samples improves robustness.
Three Algorithms

- A generic SMC sampler can be written down directly...
- Easy case:
 - Sample from \(p(x_n|y, \theta_{n-1}) \) and \(p(\theta_n|x_n, y) \).
 - Weight according to \(p(y|\theta_{n-1})^{\gamma_n-\gamma_{n-1}} \).
- General case:
 - Sample existing variables from a \(\eta_{n-1} \)-invariant kernel:
 \[
 (\theta_n, X_{n,1:\gamma_{n-1}}) \sim K_{n-1}((\theta_{n-1}, X_{n-1}), \cdot).
 \]
 - Sample new variables from an arbitrary proposal:
 \[
 X_{n,\gamma_{n-1}+1:\gamma_n} \sim q(\cdot|\theta_n).
 \]
 - Use the composition of a time-reversal and optimal auxiliary kernel.
 - Weight expression does not involve the marginal likelihood.
Toy Example

- Student t-distribution of unknown location parameter θ with $\nu = 0.05$.
- Four observations are available, $y = (-20, 1, 2, 3)$.
- Log likelihood is:

$$\log p(y|\theta) = -0.525 \sum_{i=1}^{4} \log \left(0.05 + (y_i - \theta)^2 \right).$$

- Global maximum is at 1.997.
- Local maxima at $\{-19.993, 1.086, 2.906\}$.
It actually works...
Example: Gaussian Mixture Model – MAP Estimation

- Likelihood $p(y|x, \omega, \mu, \sigma) = \mathcal{N}(y|\mu_x, \sigma^2_x)$.
- Marginal likelihood $p(y|\omega, \mu, \sigma) = \sum_{j=1}^{3} \omega_j \mathcal{N}(y|\mu_j, \sigma^2_j)$.
- Diffuse conjugate priors were employed.
- All full conditional distributions of interest are available.
- Marginal posterior can be calculated.
Example: GMM (Galaxy Data Set)
Rare Event Simulation

Joint work with Pierre Del Moral and Arnaud Doucet.
Problem Formulation

- Consider the canonical Markov chain:

\[
\Omega = \prod_{t=0}^{\infty} E_t, \mathcal{F} = \prod_{t=0}^{\infty} \mathcal{F}_t, (X_t)_{t \in \mathbb{N}}, \mathbb{P}_{\mu_0}
\]

- The law \(\mathbb{P}_{\mu_0} \) is defined by its finite dimensional distributions:

\[
\mathbb{P}_{\mu_0} \circ X_0^{-1}(dx_0:p) = \mu_0(dx_0) \prod_{i=1}^{p} M_i(x_{i-1}, dx_i).
\]

- We are interested in rare events.
Static Rare Events

We term the first type of rare events which we consider static rare events:

- The first $P + 1$ elements of the canonical Markov chain lie in a rare set, \mathcal{T}.
- That is, we are interested in

$$P_{\mu_0} (x_0:P \in \mathcal{T})$$

and

$$P_{\mu_0} (x_0:P \in dx_0:P | x_0:P \in \mathcal{T})$$

- We assume that the rare event is characterised as a level set of a suitable potential function:

$$V: \mathcal{T} \to [\hat{V}, \infty), \text{ and } V: E_{0:P \setminus \mathcal{T}} \to (-\infty, \hat{V}).$$
Dynamic Rare Events

The other class of rare events in which we are interested are termed *dynamic rare events*:

- A Markov process hits some rare set, \mathcal{T}, before its first entrance to some recurrent set \mathcal{R}.
- That is, given the stopping time $\tau = \inf \{ p : X_p \in \mathcal{T} \cup \mathcal{R} \}$, we seek

$$P_{\mu_0} (X_\tau \in \mathcal{T})$$

and the associated conditional distribution:

$$P_{\mu_0} (\tau = t, X_{0:t} \in dx_{0:t} | X_\tau \in \mathcal{T})$$
Intuition

- Principle novelty: applying an efficient sampling technique which allows us to operate directly on the path space of the Markov chain.

- Two components to this approach:
 - Constructing a sequence of synthetic distributions
 - Applying sequential importance sampling and resampling strategies.
Static Rare Events: Our Approach

- Initialise by sampling from the law of the Markov chain.
- Iteratively obtain samples from a sequence of distributions which moves “smoothly” towards the target.
- Proposed sequence of distributions:

\[\eta_n(dx_0:P) \propto \mathbb{P}_{\mu_0}(dx_0:P)g_{n/T}(x_0:P) \]

\[g_\theta(x_0:P) = \left(1 + \exp\left(-\alpha(\theta)\left(V(x_0:P) - \hat{V}\right)\right)\right)^{-1} \]

- Estimate the normalising constant of the final distribution and correct via importance sampling.
Path Sampling [See ⋆⋆ or Gelman and Meng, 1998]

Given a sequence of densities $p(x|\theta) = q(x|\theta)/z(\theta)$:

$$\frac{d}{d\theta} \log z(\theta) = \mathbb{E}_\theta \left[\frac{d}{d\theta} \log q(\cdot|\theta) \right] \quad (\star)$$

where the expectation is taken with respect to $p(\cdot|\theta)$.

Consequently, we obtain:

$$\log \left(\frac{z(1)}{z(0)} \right) = \int_0^1 \mathbb{E}_\theta \left[\frac{d}{d\theta} \log q(\cdot|\theta) \right]$$

In our case, we use our particle system to approximate both integrals.
Approximate the path sampling identity to estimate the normalising constant:

\[
\hat{Z}_1 = \frac{1}{2} \exp \left[\sum_{n=1}^{T} (\alpha(n/T) - \alpha((n-1)/T)) \frac{\hat{E}_{n-1} + \hat{E}_n}{2} \right]
\]

\[
\hat{E}_n = \sum_{j=1}^{N} W_n^{(j)} \frac{V\left(X_n^{(j)}\right) - \hat{V}}{1 + \exp\left(\alpha_n\left(V\left(X_n^{(j)}\right) - \hat{V}\right)\right)}
\]

Estimate the rare event probability:

\[
p^* = \hat{Z}_1 \frac{\sum_{j=1}^{N} W_T^{(j)} \left(1 + \exp(\alpha(1)(V\left(X_T^{(j)}\right) - \hat{V}))\right) \mathbb{I}(\hat{V}, \infty) \left(V\left(X_T^{(j)}\right)\right)}{\sum_{j=1}^{N} W_T^{(j)}}.
\]
Example: Gaussian Random Walk

- A toy example: $M_t(R_{t-1}, R_t) = \mathcal{N}(R_t|R_{t-1}, 1)$.
- $\mathcal{T} = \mathbb{R}^P \times [\hat{V}, \infty)$.
- Proposal kernel:

$$K_n(X_{n-1}, X_n) = \sum_{j=-S}^{S} \alpha_{n+1}(X_{n-1}, X_n) \prod_{i=1}^{P} \delta_{X_{n-1,i}+ij\delta(X_{n,i})},$$

where the weighting of individual moves is given by

$$\alpha_n(X_{n-1}, X_n) \propto \eta_n(X_n).$$

- Linear annealing schedule.
- Number of distributions $T \propto \hat{V}^{3/2}$ ($T=2500$ when $\hat{V} = 25$).
Example: Gaussian Random Walk

Gaussian Random Walk Example Results

- True Values
- IPS(100)
- IPS(1,000)
- IPS(20,000)
- SMC(100)
Example: Gaussian Random Walk
Example: Gaussian Random Walk

Typical IPS Run -- Particles Which Hit The Rare Set

Markov Chain State Value vs Markov Chain State Number
Filtering of Piecewise Deterministic Processes

Joint work with Nick Whiteley and Simon Godsill.
Motivation: Observing a Manoeuvring Object

- For $t \in \mathbb{R}_0^+$, consider object with position s_t, velocity v_t and acceleration a_t
- Summarise state by $\zeta_t = (s_t, v_t, a_t)$
- From initial condition ζ_0, state evolves until random time τ_1, at which acceleration jumps to a new random value, yielding ζ_{τ_1}
- From ζ_{τ_1}, evolution until τ_2, state becomes ζ_{τ_2}, etc.
- Observation times, $(t_n)_{n \in \mathbb{N}}$, at each t_n a noisy measurement of the object’s position is made
Filtering of PD Processes
An Abstract Formulation

- Pair Markov chain \((\tau_j, \theta_j)_{j \in \mathbb{N}}, \tau_j \in \mathbb{R}^+, \theta_j \in \Theta\)

\[p(d(\tau_j, \theta_j)|\tau_{j-1}, \theta_{j-1}) = q(d\theta_j|\theta_{j-1}, \tau_j, \tau_{j-1})f(d\tau_j|\tau_{j-1}), \]

- Count the jumps \(\nu_t := \sum_j \mathbb{I}[\tau_j \leq t]\)

- Deterministic evolution function \(F : \mathbb{R}_0^+ \times \Theta \rightarrow \Theta\), s.t. \(\forall \theta \in \Theta,\)

\[F(0, \theta) = \theta \]

- Signal process \((\zeta_t)_{t \in \mathbb{R}_0^+},\)

\[\zeta_t := F(t - \tau_{\nu_t}, \theta_{\nu_t}) \]
Filtering 1

- This describes a Piecewise Deterministic Process.
- It’s partially observed via observations \((Y_n)_{n \in \mathbb{N}}\), e.g.,

\[
Y_n = G(\zeta_{t_n}) + V_n
\]

and likelihood function \(g_n(y_n|\zeta_{t_n})\)

- Filtering: given observations, \(y_{1:n}\), estimate \(\zeta_{t_n}\).
- How can we approximate \(p(\zeta_{t_n}|y_{1:n})\), \(p(\zeta_{t_{n+1}}|y_{1:n+1})\), ... ?
Filtering of PD Processes

Filtering 2

- Sequence of spaces \((E_n)_{n \in \mathbb{N}}\),

\[
E_n = \bigcup_{k=0}^{\infty} \{k\} \times T_{n,k} \times \Theta^{k+1},
\]

\[
T_{n,k} = \{\tau_{1:k} : 0 < \tau_1 < \tau_2 < \ldots < \tau_k \leq t_n\}.
\]

- Define \(k_n := \nu_{t_n}\) and \(X_n = (\zeta_0, k_n, \tau_{1:k_n}, \theta_{1:k_n}) \in E_n\)

- Sequence of posterior distributions \((\eta_n)_{n \in \mathbb{N}}\)

\[
\eta_n(x_n) \propto q(\zeta_0) \prod_{j=1}^{k_n} f(\tau_j | \tau_{j-1}) q(\theta_j | \theta_{j-1}, \tau_j, \tau_{j-1})
\]

\[
\times \prod_{p=1}^{n} g_p(y_p | \zeta_{t_p}) S(\tau_{k_n}, t_n)
\]
SMC Filtering

- Recall $X_n = (\zeta_0, k_n, \tau_1:k_n, \theta_1:k_n)$ specifies a path $(\zeta_t)_{t \in [0,t_n]}$
- If forward kernel K_n only alters the recent components of x_{n-1} and adds new jumps/parameters in $E_n \setminus E_{n-1}$, online operation is possible

$$p(d\zeta_{tn}|y_{1:n}) \approx \sum_{i=1}^{N} W_{n}^{(i)} \delta_{F(t_{n-\tau_{kn}^{(i)},\theta_{kn}^{(i)}})}(d\zeta_{tn})$$

- A mixture proposal

$$K_n(x_{n-1}, x_n) = \sum_{m} \alpha_{n,m}(x_{n-1})K_{n,m}(x_{n-1}, x_n),$$
SMC Filtering

- When K_n corresponds to extending x_{n-1} into E_n by sampling from the prior, obtain the algorithm of (Godsill et al., 2007).
- This is inefficient as involves propagating multiple copies of particles after resampling.
- A more efficient strategy is to propose births and to perturb the most recent jump time/parameter, (τ_k, θ_k)
- To minimize the variance the importance weights, we would like to draw from $\eta_n(\tau_k, \theta_k | x_{n-1} \setminus (\tau_k, \theta_k))$, or sensible approximations thereof.
Filtering of PD Processes
Filtering of PD Processes

<table>
<thead>
<tr>
<th>N</th>
<th>RMSE / km</th>
<th>CPU / s</th>
<th>RMSE / km</th>
<th>CPU / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>42.62</td>
<td>0.24</td>
<td>0.88</td>
<td>1.32</td>
</tr>
<tr>
<td>100</td>
<td>33.49</td>
<td>0.49</td>
<td>0.66</td>
<td>2.62</td>
</tr>
<tr>
<td>250</td>
<td>22.89</td>
<td>1.23</td>
<td>0.54</td>
<td>6.56</td>
</tr>
<tr>
<td>500</td>
<td>17.26</td>
<td>2.42</td>
<td>0.51</td>
<td>12.98</td>
</tr>
<tr>
<td>1000</td>
<td>12.68</td>
<td>5.00</td>
<td>0.50</td>
<td>26.07</td>
</tr>
<tr>
<td>2500</td>
<td>6.18</td>
<td>13.20</td>
<td>0.49</td>
<td>67.32</td>
</tr>
<tr>
<td>5000</td>
<td>3.52</td>
<td>28.79</td>
<td>0.48</td>
<td>142.84</td>
</tr>
</tbody>
</table>

Root mean square filtering error and CPU time, over 200 runs.
Convergence

- This framework allows us to analyse algorithm of Godsill et al. 2007
- \(\mu_n(\varphi) := \int \varphi(\zeta_{tn}) p(d\zeta_{tn} | y_{1:n}) \) and \(\mu_n^N(\varphi) \) the corresponding SMC approximation
- Under standard regularity conditions
 \[
 \sqrt{N}(\mu_n^N(\varphi) - \mu_n(\varphi)) \Rightarrow N(0, \sigma_n^2(\varphi))
 \]
- Under rather strong assumptions*
 \[
 \mathbb{E} \left[|\mu_n^N(\varphi) - \mu_n(\varphi)|^p \right]^{1/p} \leq \frac{c_p(\varphi)}{\sqrt{N}}
 \]
*which include: \((\zeta_{tn})_{n \in \mathbb{N}} \) is uniformly ergodic Markov, likelihood bounded above and away from zero uniformly in time
Summary
SMCTC: C++ Template Class for SMC Algorithms

- Implementing SMC algorithms in C/C++ isn’t hard.
- Software for implementing general SMC algorithms.
- C++ element largely confined to the library.
- Available (under a GPL-3 license from)

 www2.warwick.ac.uk/fac/sci/statistics/staff/academic/johansen/smctc/

 or type “smctc” into google.
- Example code includes estimation of Gaussian tail probabilities using the method described here.
- Particle filters can also be implemented easily.
In Conclusion

- Monte Carlo Methods have uses beyond the calculation of posterior means.
- SMC provides a viable alternative to MCMC.
- SMC is effective at:
 - ML and MAP estimation;
 - rare event estimation;
 - filtering outside the standard particle filtering framework.
 - ...
- Other published applications include: approximate Bayesian computation, Bayesian estimation in GLMMs, options pricing and estimation in partially observed marked point processes.
- A huge amount of work remains to be done...
References

Path Sampling Identity

Given a probability density, \(p(x|\theta) = q(x|\theta)/z(\theta) \):

\[
\frac{\partial}{\partial \theta} \log z(\theta) = \frac{1}{z(\theta)} \frac{\partial}{\partial \theta} z(\theta)
= \frac{1}{z(\theta)} \frac{\partial}{\partial \theta} \int q(x|\theta) dx
= \int \frac{1}{z(\theta)} \frac{\partial}{\partial \theta} q(x|\theta) dx
= \int \frac{p(x|\theta)}{q(x|\theta)} \frac{\partial}{\partial \theta} q(x|\theta) dx
= \int p(x|\theta) \frac{\partial}{\partial \theta} \log q(x|\theta) dx = \mathbb{E}_{p(\cdot|\theta)} \left[\frac{\partial}{\partial \theta} \log q(x|\theta) \right]
\]

wherever \(\star\star \) is permissible. Back to \(\star \).