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Background / History



A Very Selective History

e Branching systems date back to the dawn of Monte Carlo
(Kahn and Harris, 1951).

e Filtering applications led to popularisation in engineering and
statistics (Gordon et al., 1993; Stewart and McCarty Jr,
1992)

e Rigous formulation and analysis “begins” with Del Moral
(1995); see Del Moral (2004) and Del Moral (2013).

e Good textbook treatment provided by Chopin and
Papaspiliopoulos (2020).

e Recent introductions include Doucet and Johansen (2011)
(generic with filtering and smoothing focus); Doucet and Lee
(2018); (graphical models); Dai et al. (2022) (SMC
samplers).



What is Sequential Monte Carlo?

Sequential Monte Carlo (SMC)

Approximating each of a sequence! of distributions using

(weighted) empirical distributions of a particle system
undergoing mutation and selection dynamics.

SMC =~(mean field) particle approximation (of a Feynman-Kac flow)
~particle filters
~cloning
~~genealogical interacting particle systems
~ “go-with-the-winner"

~(simple) genetic algorithms

1| focus on discrete time / generational algorithms but there are continuous
time analogues.



An Abstract Framework



Discrete-time Feynman-Kac Formulae: a framework

e Ingredients: Markovian dynamics + environment

e ‘“Initial distribution”, w

e “Transition kernels”, K>, K3, ...

e “Potential functions”, Gy, Go, ...
e Describes the law of a particle (X;) evolving in a potential.
e Typically interested in:

e Average product of potentials experienced up to time t

Zt =E

/Z




A Concrete Example

Single particle moving in an absorbing medium.

e 1, — distribution of initial location

Ki(xt—1, dx¢) — stochastic dynamics over time interval t
G¢(x) — probability particle is not absorbed at x
The normalizing constant corresponds to survival probability:

t

Z; =E [H Gs(Xs)
s=1

The law of a particle conditional upon its survival is then:

nt(A) _fA u(x1)G(x) Hi:z Ks(Xs—1, Xs) Gs(Xs)dxq:t

[ 1) G0) Tlema Ks(xs—1, x6) G (x6) e
_ P(X: € A, survive to t)
~ P(survive to t)

= //J.(Xl)G(Xl) H Ks(XsfleS)GS(XS)dXLt




A Simple SMC Algorithm “sequential importance resampling”

SMC / SIR

t = 1: initialize

e sample X{, ..., XN~ p
t > 1: iterate
e sample

" Z_jN:]_ thl(X{—l)Kt(X{—lv ‘)
Zl/:lzl Gt—l(th—l)

e Approximate 7¢(dx¢), Z¢ with

Zszl Gt(X{)axi 1 N
(o) =~y = GlX
E;(VZI Gt(th) H Z

s=1 j:l



Iteration 2




Iteration 3




Iteration 4
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Continuous Time

Require finite representations to store trajectories:

e Exploit specific properties of trajectories
e Tractable transition density (e.g. discretely oberved OU
processes)
e Pure jump processes (e.g., cloning; Angeli et al. (2021))
e Exact simulation (e.g. filtering; Fearnhead et al. (2008))

e ¢-strong simulation (e.g. rare event simulation; Hodgson
et al. (2022))

e Discretise time and apply discrete-time algorithm

e Develop apparently continuous-time algorithms but
implement discretizations — see Del Moral and Miclo
(2000).
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Some Improvements




Better Selection Mechanisms

Generational whole population selection:

e Better resampling schemes, see Gerber et al. (2019):
residual, stratified, systematic(?), sorted versions, tree-based

branching approximation, ...

e Adaptive resampling

Localized selection events (birth/death; natural in continuous

time):
e Continuous time variants — see Rousset (2006)

e Cloning mechanisms — see Angeli et al. (2021)
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Better “proposal distributions”

e Strutural stability: If
Ke(Xe—1, dxt) Ge(xe) = f(t(xt_l, dxt)@t(xt) for every t then
{Kt, Gt} and {f(t, G:} define essentially the same model.
e Locally optimal proposals (Doucet et al., 2000): choose
f(t ox Gt - K¢; leads to

“Gt(Xt):/Kt(Xt1vdXt)Gt(Xf)”

but this is easily made rigorous?.

e Auxiliary particle methods (Pitt and Shephard, 1999;
Johansen and Doucet, 2008).

e Marginal particle methods (Klass et al., 2005; Crucinio and
Johansen, 2023).

2Spatial extension; or slight model redefinition — in reality, essential.
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Changing the Model/Algorithm — Twisting

What about the future?

Information propagates through time. . .

e Twisted particle methods (Whiteley and Lee, 2014).

e Lookahead methods (incl. piloting, stochastic piloting; cf.
Lin et al. (2013)).

e Block-sampling methods (Doucet et al., 2006).

e Controlled-methods (Guarniero et al., 2017; Heng et al.,
2020)
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Path and Parameter Estimation

Improving trajectory estimates (see, e.g. Briers et al. (2010)):

e Forward-backward algorithms
e Backward-information filters

e Fixed-lag methods
Estimating static parameters (cf. Kantas et al. (2015)):

e Stochastic gradient methods

e Particle MCMC (Andrieu et al., 2010); SMC? (Chopin et al.,
2013)
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Some (Useful?) Theory




What can be shown

A version of the fist six can be extracted from Del Moral (2004).

Moment bounds on errors.

Strong (and weak) Laws of Large Numbers.

Weak convergence of measures.

Central Limit Theorems (and Berry-Esseen, Donsker,
functional forms. . .)

Propagation of chaos.

Bias bounds.

Variance can be estimated from a single run (Lee and
Whiteley, 2018)

Two main techniques: dynamic semigroup methods and explicit
recursive formulations (e.g. Crisan and Doucet (2002); Chopin
(2004); Douc and Moulines (2008)).
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Reflections




Reflections

e Many of these things has close analogues in the neutron
transport setting.

e There may be significant opportunities for both communities
to benefit from better communication.
e Some open methodological problems include:

e How to effective perform online filtering, smoothing and
parameter estimation in high-dimensional hidden Markov
Models.

e How best to perform online parameter estimation in
statistical settings.

e How to leverage the power of block-sampling or controlled
methods in greater generality.

e How to avoid discretisation in greater generality.
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