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Abstract

The usual direct method of simulation for cluster processes requires the
generation of the parent point process over a region larger than the ac-
tual observation window, since one has to allow for all possible parents
giving rise to observed daughter points, and some of these parents may
fall outwith the observation window. When there is no a priori bound on
the distance between parent and child then one has to take care to con-
trol approximations arising from edge effects. In this paper we present a
simulation method which requires simulation only of those parent points
actually giving rise to observed daughter points, thus avoiding edge ef-
fect approximation. The idea is to replace the cluster distribution by one
which is conditioned to plant at least one daughter point in the observa-
tion window, and to modify the parent process to have an inhomogeneous
intensity exactly balancing the effect of the conditioning. We furthermore
show how the method extends to cases involving infinitely many poten-
tial parents, for example gamma—Poisson processes and shot-noise G-Cox
processes, allowing us to avoid approximation due to truncation of the
parent process.

Keywords: COX PROCESS, SHOT-NOISE PROCESS, GAMMA—POISSON PRO-
CESS.

1 Introduction

Many applications give rise to point patterns exhibiting clustering. For example
point patterns of positions of trees and plants often show clustering, either be-
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cause plants tend to emerge where the soil has particular properties or because
of seed setting mechanisms [5, 4, 12]. Such clustered point patterns have tradi-
tionally been modelled by Cox processes or cluster point processes. A classical
example concerns the spatial distribution of insect larvae, typically exhibiting
clustering around the egg masses from which the larvae are hatched [10]. Ney-
man and Scott [11] introduced the use of cluster processes in the study of clusters
in locations of galaxies.

Cox processes [0] are Poisson processes with a random intensity and are
natural models to consider when clustering is due to spatially varying features
such as soil properties.

Cluster point processes are generated by first constructing a point process of
unobserved (perhaps marked) parent points, each of which give rise to a random
number of observed daughter points. The process of daughter points is the
cluster process; it arises naturally as a model for point patterns where clustering
is due to mechanisms such as seed setting. The construction is reminiscent of
the Boolean model for a random set and so cluster point processes are sometimes
viewed as germ-grain random set processes which happen to have grains which
are random point patterns.

Sometimes the two classes of point processes coincide. This is the case for
Neyman-Scott processes [11] (cluster processes in which the parent process is
a homogeneous Poisson process and the daughters are dispersed independently
around their parent according to some density function k) in the particular case
when the number of daughter from each parent follows a Poisson distribution.
Such a Coz Poisson cluster process can be viewed as a Cox process in which
the random intensity A is the sum of the intensity functions centred around the
parent points:

M) = YkC—a) (1)

where the sum is over all points = in the random pattern of parent points. A
further generalization of Cox Poisson cluster processes is the class of shot-noise
Cox processes [3, 4, 14]. For such processes the parent process is a general
marked Poisson process, and the clusters are themselves Poisson processes with
intensities allowed to depend on the mark of the parent point. Again such
processes can be viewed as Cox processes.

Note that marking the cluster parents allows us to consider parent Poisson
processes producing locally dense infinite realizations of marked parent points,
so long as the final intensity of daughter points is almost surely bounded on
bounded regions (this amounts to a requirement that most of the marks m lead
to very low intensities of daughter points).

Having chosen a cluster process model to model some biological phenomenon,
there is commonly a requirement to simulate realisations from this process (this
arises for purposes of inference such as envelope generation or simulated maxi-
mum likelihood estimation, or to enable one to study the types of point patterns
arising from a particular model). The conventional direct means of simulation
requires generation of parent points over a region larger than the observation
window, since parents outside the observation window can give rise to daughters



within. If the daughter density k has unbounded support then any such reali-
sation will be approximate, because of the edge effects arising from neglecting
parents outside the simulation region. Moreover, when simulating shot-noise
Cox processes yielding infinite numbers of parent points in bounded regions, it
is not only necessary to simulate the parent process on a larger region but also
to truncate the parent process to a finite number of points. It can be awkward
to make quantitative assessment of the effects of truncation or edge effects.

In this paper we present a method for simulating Cox Poisson cluster point
processes or shot-noise Cox processes which avoids incurring edge or truncation
effects. The method is based on thinning and exploits the observation that the
point processes under study are both cluster point processes and Cox processes.
In a nutshell, we simulate only those parents giving rise to daughters in the
observation window. In this way the simulation requirement is reduced so as to
concern only finitely many parents.

In order to provide a clear understanding of the method we start by develop-
ing the method in the simple Neyman-Scott case with independent marks. After
presenting the theory for the method in a general framework, we then show how
the method can be applied so as to avoid numerical integration of the offspring
dispersion intensity k. Finally we show how to use the method to conduct exact
simulation from shot-noise Cox processes with infinitely many possible parents
in bounded regions. Examples include gamma—Poisson processes [14] and shot-
noise G-Cox processes [3]. After the development of each case of the method we
present the algorithm in pseudo—code and we conclude the paper by presenting
three illustrative examples and a discussion of the results.

2 Simulation procedure

In this section we describe how to avoid edge-effects when simulating a clus-
ter point process (or more generally a germ-grain process) within a bounded
observation window. We do this by simulating only those points of the par-
ent process which actually contribute daughters lying within the observation
window, and we further modify the simulation by using rejection sampling to
modify the family-size distribution accordingly. We begin by formulating the
method in its simplest form, which is the easiest to understand but which re-
quires calculations of various integrals which are potentially burdensome. In
Section 2.2 we then describe the theoretical framework, and in Subsection 2.3
we use this together with rejection sampling to show how to avoid calculations
of burdensome integrals. In Subsection 2.4 we show how to apply the method to
the case in which the parent point pattern is no longer locally finite. This last
generalisation enables us to avoid both edge-effects and truncation errors when
simulating e.g. Gamma-Poisson [14] and shot-noise G Cox processes [3, 1], where
the parent processes give rise to only finitely many points in bounded subsets
albeit producing infinitely many effects (mostly very small) at shot-noise level.



2.1 The method in its simplest form

Let ¥ be a homogeneous marked Poisson process on R? with positive intensity
A and with points marked independently by non-negative marks of distribution
M. Thus ¥ can be viewed as a Poisson process on R? x R, with intensity
measure A x area X M. Following stochastic geometry notation [13] we write a
typical marked point of U as [x;m].

The process ¥ will serve as the parent process of a cluster process ®, and
we now impose requirements to ensure that & is locally finite.

We require that the mark distribution has a finite mean:

Efm] = /mM(dm) < .

Consider a kernel K from R? to R2, subject to the further finiteness condition
that [, K(z, A)dz < oo for bounded subsets A C R?, and use this to define a
random measure v based on the marked point process ¥ by

v(Ad) = > mK(x,A). (2)

[z;m]eT

Note that the finiteness conditions lead to the following requirement on the
random measure v:

Ep(A))=E| Y mK(A)| < oo. (3)
[z;m]eT

The kind of process in which we are primarily interested is a Cox process
® with random intensity measure v, and we suppose our requirement is to
simulate only the restriction of ® to a fixed bounded window W C R2. We do
this by representing the Cox process ® as a cluster process (in fact, a Neyman-
Scott process) based on ¥. In the following we will use the following standard
terminology: (marked) points [x;m] of U are called parent points, points y
of ® are called daughter points, and for convenience we will assume that the
kernel K has a density k with respect to the Lebesgue measure, i.e. K(x, A) =
fA k(z,u)du. One can think of ® as a germ-grain process with the germs of ¥
being the parent points, and the grains being the locally finite sets of daughters.

Every parent point in W has the potential to contribute daughters to ®
within W, but ® is finite so only finitely many parents actually do contribute.
The number of daughters lying within W and contributed by a given parent
[z;m] € ¥ follows a Poisson distribution with mean mK (x, W) (conditional on
the marked parent point [z;m]), and the daughters are distributed indepen-
dently over K with density proportional to k(z,-). Condition (3) is equivalent
to the requirement that the accumulated point pattern of daughters of all par-
ents is locally finite. Integrating out the mark m, we arrive at the conditional
probability p(z) that a parent point located at x contributes daughters to ®



within the window W:

p(z) = 1_./11& exp(—mK(z,W))dM(m) = 1- Ly (K(z,W)),

where £); is the Laplace transform of the mark distribution M.

The marks are independent, so the restriction of the parent point process ¥
to U’ (those unmarked parent points which end up contributing daughters to
®) can be considered as produced by independent position-dependent thinning
of the parent points lying in ¥ with retention probability p(-). Independent
thinning of a Poisson process yields a Poisson process; therefore ¥ is an inho-
mogeneous Poisson process with intensity function

file) = plz) = MNl-2Lu(K(W))],  zeR”. (4)

The total number of parent points of ¥ contributing daughters to ® within W
is thus Poisson distributed with mean [,, fi(x)dz, and the daughters from a
contributing parent 2’ € ¥’ form a conditioned randomized Poisson process on
W such that the unconditioned variant has intensity m’k(2’, )y (-), where the
mark m’ is randomized with distribution M. The condition to be applied is
that the process is non-null within W (the trivial realization ® = () arises when
no parent points of ¥ contribute daughters within W).

We can now state the most direct version of the simulation procedure, sup-
posing we have already been given a function InhomogeneousPoisson(f1, W)
which returns a set of points forming a realization of a Poisson process on W
with intensity function fi(-):

def SimpleSim(\k,W M):
define f1:xz— A[1 — £ (K (z,W))]
U = InhomogeneousPoisson(f,IV)
=10
for x in U:
® = & U SimDaughters(k,W x,M)

return ¢
L J

where the function SimDaughters is given by:

def SimDaughters(k, W ,z,M):
n =70
while n is nonzero:
draw m using M
draw n using Poisson(mp)
draw y1,...,y, using k(x,-) restricted to W

return {y1,...,yn}
\k J

Here we have presented the simplest possible version of SimDaughters, based
on naive rejection sampling. Notice that InhomogeneousPoisson has to be



implemented either by employing a general (and possibly expensive) rejection-
sampling approach or by using transformation methods based on special prop-
erties of fi.

2.2 The theoretical framework

Suppose that X and ) are Euclidean spaces (more general formulations are
possible, but we omit these). We think of X' as the set of possible locations
for parents (including their marks if relevant), and ) as the set of possible
locations for daughters. Let p be a nonnegative measure on X: we use this
as an intensity measure to produce a Poisson process ¥ of parent points. Let
K (z,-) be a probability kernel from X to Y, so that K(x, A) is a probability
measure for each fixed parent x € X, and is a measurable function of = for each
measurable subset A C ). We shall use K(x,A) to produce a Poisson point
sub-pattern of daughters in ) for each parent x.

Thus we obtain a cluster process ® in ) as the union of all the Poisson
sub-patterns produced as x ranges over the Poisson pattern of parents. As is
well-known, such a cluster process is also a Cox process with random intensity

measure
Z K(x,-)
eV

obtained by summing over the parent points.

We are interested in simulating that part of this cluster process ® which lies
in a fixed measurable window W C ). A thinning argument shows that the
sub-pattern of parents each with at least one daughter in W is also Poisson but
with intensity measure

(1 — exp(=K(z, W))) u(dx).

Each of these retained parents x possesses a family of daughters lying in W:
the pattern of locations of daughters is given by a Poisson process of intensity
measure K (z,-) restricted to W, but conditioned to have at least one point.
Consequently the pattern of locations of daughters of & can be simulated by
sampling the total number N from a Poisson distribution of mean K (z, W)
conditioned to be positive (this can be implemented simply as a rejection algo-
rithm, or in more sophisticated ways); then distributing each of the N daughters
independently and identically over W using the probability distribution which
is the renormalization of K (x,-) restricted to W.

This is the simplest version of the method. The variant discussed in the
previous Subsection 2.1 is adapted to allow for marks for the parent points. In
abstract terms we write the parent space as X x R, the intensity measure of
U as v ® M where M is the marginal probability distribution for the marks,
and suppose the kernel is of the form K([z;m],-) = mK(z,-). Discarding the
marks, the parent locations contributing daughters form a Poisson process on
X with intensity measure

- /R exp(—mEK (z,W)) dM(m)



as described in Eq.(4) above. Each contributing parent x then contributes
daughters to W according to a conditioned randomized Poisson process as de-
scribed in Subsection 2.1 above, with unconditioned random intensity measure

mK(z,-NW)

where m is random with distribution M.

Now we consider how rejection techniques might be used to finesse away
calculations of integrals (such as those used to renormalize each of the K(z,-)
restricted to W). Suppose in the unmarked case that K(z,-) is a nonnegative
kernel dominating K (x, ), by which we mean that we can write

K(z,4) = /A ol y) K (x, dy) (5)

for each measurable A C W, for some p < 1. Suppose that K satisfies the
unmarked version of condition (3). It may be possible to choose a kernel K (-),
and a window W, D W (possibly depending on the parent z), such that K (z,-)
dominates K (z,-) on W and it is much easier to carry out the above construction
for I}'() and W,.

Theorem 2.1 Consider the point pattern P of daughters § produced from par-
ents © € U by applying the above procedure using dominating kernel f((ax)
and dominating window W,. We shall refer to this as the dominating pro-
cess. Suppose each daughter point y € U is thinned with retention probability
p(x, §)Iw (§), where x is the parent point; this thinning to be an independent
thinning when considered as applied to the point process of daughters marked by
their parents. The resulting pattern of retained daughters, has the distribution
of a realization of an application of the procedure using kernel K(x,-) and fived
window W.

Proof: The most immediate proof uses simple coupling ideas. To each of
the daughters § € ® in the dominating process, assign an independent mark
Uy uniformly distributed over [0,1]. Implement an independent thinning by
retaining § daughter of & whenever p(z,§) < Uy. The resulting cluster pro-
cess produces daughter patterns using kernel K (z,-) by virtue of Eq.(5). Each
daughter pattern is a realization of an inhomogeneous Poisson process, since
this property is preserved under independent thinning. If parents are thinned
by retaining only those parents which contribute daughters to W then we ob-
tain the construction giving rise to the direct method in Subsection 2.1 above.
On the other hand exactly the same result is obtained by using the thinning
criterion p(z,9) < Ugly, (y) and then intersecting the result with the original
window W, and this is as specified in the theorem. O

We describe the algorithmic implications in the next subsection. Because
we have formulated this for differing parent and daughter spaces X and ), we
can apply the method to the case in which parent points are marked, even



including cases such as shot-noise Cox processes represented as Neyman-Scott
processes with locally infinite parent patterns, for which however only finitely
many parents contribute daughters to any bounded window.

Corollary 2.1 Consider the case of marked parent points; we write the parent
space as X xR, the intensity measure of ¥ as v®@ M where M is now some non-
negative measure, and suppose the kernel is of the form K([z;m], ) = mK (x,-),
still satisfying condition (3). Let K([z;m)], ) = mK (z,-) be a dominating kernel
also satisfying condition (3), so that

K(r,A) = /A ol y) Kz, dy)

as in Eq.(5) above, and let W, be a window with W C W,. Then the thinning
construction of Theorem 2.1 may be applied: consider the point pattern P of
daughters produced using the dominating kernel mf((w, ). Suppose daughter
y € ® of parent x is thinned with retention probability p(x, )y (§). Then the
retained daughters form a point pattern which has the distribution which would
be produced by using the original kernel mK (x,-).

The strength of this corollary lies in the fact that we need take no account of
the mark m in the thinning procedure. We discuss the algorithmic implications
in Subsection 2.4.

2.3 The modified method

The method of Subsection 2.1 is simple and appealing, but it involves calcula-
tion of integrals of k (evaluation of K (z, W) in the definition of fi(z)) which
will either require special properties of f; or use potentially expensive rejec-
tion sampling. We now describe how the simulation procedure can be modified
using the framework of Subsection 2.2 so that calculation of the integrals can
be avoided or at least simplified, at the expense of using rejection sampling
at a lower level of the algorithm (hopefully in an efficient form, depending on
precise details of the process). Working out the method of Subsection 2.2 in a 2-
dimensional Euclidean context, consider a larger window W C R? with W C W
and a dominating kernel K with density &, i.e. k(z,u) < l;:(a:,u) for all u e W
and x € R? (for simplicity we suppose here that W does not depend on the
parent in question). The window W and kernel K should be chosen so that
K(x, W) can be evaluated cheaply for all z € R? and so that Jgz f2(z) dz can
be evaluated, where

folz) = A1- Sy (K(z,W))], z € R%

Moreover we need to be able to draw from the probability distribution given
by normalization of fs. In the examples given below, W is chosen to be a disc
containing W and k to be a constant on W, whereby we get a usable expression
for K (z, W).

The modified method consists of:



e replacing W and K by W and K in the method described in Section 2.1,
i.e. first simulate a cluster process ® with daughter intensity kon W,

e then thinning ® to produce a cluster process ® 7, with daughter intensity
kon W

e and finally restricting ®;, to W in order to get a realisation of ® on W.

Theorem 2.1 assures us that the result has the correct distribution. The impor-
tant implementation point is that k(x,u) is involved only in evaluation of the
ratios k(z,u)/ INc(:c, w); this offers us the chance of avoiding potentially expensive
integration of k.

In order to present the modified method in pseudo-code we assume a function
Thin(®P, p), which independently thins the points of the process ® with retention
probability p(-), where p : R? — [0,1]. (Of course Thin(®, p) itself is easy to
code.) The modified procedure can then be described as follows.

def ModifiedSim(\, k, k, W, W, M):
define fo(z) — A[1 — En (K (z, W))]

¥ = InhomogeneousPoisson(f2, V)
® =0
for z in U:
®y = SimDaughters(k,W,z,M) "W
® = ®U Thin(P,k(, )/1;( )
return ¢

\. J
Here SimDaughters is implemented as described in Subsection 2.1.

2.4 The general method

The marked point process ¥ used to construct the process ® in the previous
sections can be viewed as a random measure on R?, placing an atom at each
point x € ¥ with corresponding atom mass given by the respective mark m.
Passing to an infinitely divisible discrete random measure, the random intensity
measure v for the Cox process ® can be generalised to

v(A) = K(z,A)d¢(z) = > mK(z,A),  (6)

R? md.is an atom of ¢

where ( = > md, is a discrete random measure such that the parameters (z,m)
of its atoms form an inhomogeneous Poisson process on R? x R,. Since ( is
a discrete random measure we get a representation similar to that of Equation
(2), but with the difference that ¢ can have infinitely many atoms in bounded
areas. The finiteness condition (3) can be rewritten as

E > mK(z, A)| = E[RzK(%A)dg(a:)] < oo, (7)

mdzis an atom of ¢



where the d{ term takes the weight of each atom into consideration, to ensure
convergence of the sum over countably many atoms mostly of diminishingly
small weight.

Consider e.g. the case where ( is a gamma measure, i.e. a completely random
measure where ((A) follow a gamma distribution for every bounded A [7]. This
is an example of a measure that is purely atomic, with an infinite number
of atoms in any bounded set, but only finitely many atoms of mass greater
than a fixed e > 0. Wolpert and Ickstadt [14] have used Cox processes with
intensity measures of the form (6) and ¢ a gamma measure to model positions
of trees. Other examples of general random measures ( arise from the shot-noise
G measure as defined in [3] and used for weed modelling in [1]. We follow [3] and
use the term shot-noise Cox process for a Cox process with intensity measure
of the form (6).

Both [141] and [3] describe how to simulate shot-noise Cox processes using
the techniques developed in [2]. Just as with the simple cluster process model it
is necessary to simulate ¢ on a larger region than W, but furthermore it is only
possible to simulate a finite number of atoms in any bounded area (see [3] for a
further discussion of this). Using a generalisation of the methods described in
the previous section it is, however, possible to simulate shot-noise Cox processes
without edge effects and without having to truncate (. Generalizing the simple
case, the atoms md, contributing daughters to W can be represented as an
inhomogeneous Poisson process of points x,m on R? x R with intensity

fa(z,m) = Az,m)[l —exp(—mK(z,W))].

(In effect we have absorbed the mark into the three-dimensional locations of
the points.) Note that the intensity of the locations (x,m) is now allowed to
be inhomogeneous. The expected total number of daughter points, contributed
by all of the infinitely many potential parent points taken together, is given by
Jge fR+ f3(x,m)dmdx, and this is finite as a consequence of the finiteness con-
dition (7). Furthermore the daughters contributed to W by a point (x, m) of this
inhomogeneous Poisson process themselves form a Poisson process with inten-
sity mk(z, ) but then thinned in accordance with a conditioning that they have
each to place a positive number of points in W, following the procedure indi-
cated in Corollary 2.1. It is simple to modify ModifiedSim accordingly: one has
to simulate marks as well as locations as the result of InhomogeneousPoisson
and to pass a constant mark to SimDaughters rather than a mark distribution.
In effect we are generating the intensity measure for the Cox process ® using
a Poisson process of parent points stretching over a three-dimensional space
R2 x R, and such that marks for the resulting parent points are determined as
functions of the point locations rather than being random.

10



def GeneralSim(\, k, W, wW):
define fs(z,m) — Az, m)[1 — exp(—mK (z,W))]
¥ = InhomogeneousPoisson(fs,W x R.)
o =0
for (Z,/m) in U:
®y = SimDaughters(k,W,i,0:) "W
® = ®U Thin(Pg, k(Z,-)/k(E, -))
return ¢

Notice that we dispense with the integration previously implicit in the use of
the Laplace transform in the functional argument to InhomogeneousPoisson;
this reflects the fact that the marks are now deterministic components of the
point locations in R? x R,

3 Examples

Here are three brief descriptions of simulation examples using these ideas.

3.1 Deterministic marks

Our first example concerns simulation of a simple Neyman-Scott process on
the square W = [-0.5,0.5]%. Specifically the process ¥ of parent points is
a homogeneous Poisson process with positive intensity A, the marks are non-
stochastic and of common value 1, and the dispersion intensity for the daughter
process is Gaussian, i.e.

¥ 1
k(z,u) = 5oz XP (—wﬂu - x||2> .

We apply the modified method specified in Section 2.3.
Construct W = {x € R? : ||z|| < 1/v/2} as the smallest disc that covers W,
and choose for the dominating kernel density

k(z,u) = HW(u)xrréa‘%k(m,u)

2
— I x e (T (o) x = (el - 35)°)

Figure 1 graphs the kernel density and the dominating kernel density for = =
1.05, v =10 and o = 0.25.

Since the marks are all identically equal to 1, their Laplace transform is
£a(s) = exp(—s), and a simple integration of k(z,u) with respect to u shows
that the intensity of parents contributing daughters in W is given by

Bl = A [1 — exp (—ngexp (—Wz) < 50 (el - ) ))] .

11



25 I
20 T
15 / |
10 " |

-1.5 -1 -0.5 0 0.5 1 1.

Figure 1: Profiles of the dispersion kernel density k ((1.05,0), (+,0))
(dotted) and the dominating density & ((1.05,0),(-,0)) (solid). W

is indicated by the thick line from —1 / V2 to 1 / V2. The density

k ((1.05,0),(-,0)) only needs to dominate k ((1.05,0),(-,0)) in the
region W.

The function f5 is well-behaved (radially symmetric, decays fast to zero), allow-
ing the efficient use of numerical integration in InhomogeneousPoisson to find
the intensity of parent points that contribute daughters to W. Figure 2 shows
a realisation of the Neyman-Scott process with A = 10, v = 10 and ¢ = 0.25,
with each daughter point linked to the corresponding parent point. Figure 3
shows the realization of the daughters alone without the parents.

3.2 Gamma distributed marks

Suppose that in the previous example we replace the constant marks by inde-
pendent and identically distributed marks. Then we can use the same k and
W. Assume that the marks are independent and gamma distributed with shape

parameter w and scale parameter 3, then the Laplace transform of the marks is
La(s) = (14 Bs)™%, and fo becomes

M- <1 + %exp (HWC(:E) x % (||x|| _ \}5) ))

Figure 4 shows a realisation of the resulting point process using parameters
of the previous example and mark parameters § = 0.25, w = 4 together with
links of daughters to their parent points. (Parameters are chosen to maintain
the same overall intensity of points between examples, though random variation

is markedly increased.) Figure 5 shows the realization of the daughters alone
without the parents.

fa(z)

12



Figure 2: Realisation of Neyman-Scott process (dots); parent points
which contribute daughters are presented as linked to their offspring.
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Figure 3: Realisation of Neyman-Scott process without links to par-

ents.

3.3 Gamma-Poisson processes

As an example of how to simulate a general shot-noise Cox process without edge
effects and truncation error, consider a gamma-Poisson process as defined in [14]
and [3]. The parent process is a Poisson process on R? x R, with intensity

Mz, m) = km™ exp(—m/B), k,3>0

13
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Figure 4: Realisation of case with gamma-distributed marks (dots);
parent points which contribute daughters are presented as linked to
their offspring.
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Figure 5: Realisation of case with gamma-distributed marks without
links to parents.

If we choose k and W as in the first example, we can use the same k and W,
and the intensity of the point pattern of parents contributing points to W is

fa(x,m) = Az,m) [1 — exp(—mK (z, VT/))}

14



While the original intensity A(z,m) has infinite integral over A x R for any
bounded A C R2, the singularity at m = 0 is removed on multiplication by
1 — exp(—mK (x,W)) (which also vanishes at m = 0). This allows us to use
a thinning method to simulate the inhomogeneous Poisson process of parents
conditioned to contribute to the dominating disk under the dominating kernel.

Figure 6 shows a realisation of the resulting point process using parameters
of the previous example and mark parameters 8 = 0.25, kK = 40 together with
links of daughters to their parent points. Figure 7 shows all potential parent
points (as determined by whether or not they contribute to the dominating disk
under the dominating kernel), with attached segments indicating the size of
their marks. Figure 8 shows the realization of the daughters alone without the
parents.
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Figure 6: Realisation of gamma-Poisson process (dots); parent
points which contribute daughters are presented as linked to their
offspring.

4 Discussion

We remark that there is a direct generalization of the above to cover the case of
a general Neyman-Scott cluster process with family size distribution F', proba-
bility generating function G(s). In that case the pattern of parents contributing
daughters to the observation window W is inhomogeneous Poisson with intensity
function

fil) = 1-GUH(W)),

where H(x,-) is the dispersion probability kernel for the daughters (in the un-
marked Poisson case, K(x,-) = G'(1)H(z,-)). For each contributing parent a
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Figure 7: Potential parents, with attached segments indicating size

of marks.

L3 .
d ° X e o r
o ° (X
. .." ° .
° 0,0 %, ¢
. e
L4 .
L4 LIRS 0.0::
° .

Figure 8: Realisation of gamma-Poisson process (dots) without links

to parents.

daughter pattern has to be simulated:
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def SimNonPoissonDaughters(H,W z,F):
repeat:
draw N using F
draw {y1,...,yn} using H(zx,-)
until {y1,...,yn} NW is non—empty

return {y1,...,yn} NW
\§ y,

This is of course substantially more clumsy as we lose invariance under in-
dependent thinning.

Wolpert and Ickstadt [14] demonstrate the use of Markov chain Monte Carlo
to estimate posterior statistics, such as the intensity function governing observed
daughter locations. The ideas discussed here allow us to adapt their method to
provide a treatment which avoids truncation and edge-effects: we will discuss
this in further work.

It is of course the case that in practical circumstances one can avoid the use
of the methods discussed here simply by taking a large enough guard region
(and, in the case of Subsection 3.3, by sampling parents with marks exceeding a
small enough threshold): careful choice of this will control the resulting errors.
However the methods described here allow us to give a treatment exact in at
least this respect, without undue effort or complexity.

Finally we note the resemblance of the methods described here to those of
" perfect simulation in space” for lattice and spatial interaction models as found
in [1, 8, 9]. Both situations can be viewed as potentially infinite simulation
tasks, which are rendered feasible because all but a finite amount of work can
be shown irrelevant to what one requires to observe. However the problem for
interaction models is rendered more challenging because interactions propagate
from one unobserved point to another: the cluster processes considered here are
much simpler to deal with.
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