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ABSTRACT

We describe a method for inferring tree-like vascular struc-
tures from 2D imagery. A Markov Chain Monte Carlo
(MCMC) algorithm is employed to sample from the poste-
rior distribution given local feature estimates, derived from
likelihood maximisation for a Gaussian intensity profile. A
multiresolution scheme, in which coarse scale estimates are
used to initialise the algorithm for finer scales, has been im-
plemented and used to model retinal images. Results are
presented to show the effectiveness of the method.

1. INTRODUCTION

The problem of inferring vascular structure from image data
is an important one, especially in the area of surgical plan-
ning, which requires both efficient computation and effec-
tive use of prior knowledge. Previous work in the area has
tended to focus on the modelling of specific vascular fea-
tures [1] or to use approaches such as adaptive thresholding
[4].

The aim of the work described here is to formulate a
general method for the inference, which can be applied in
two or three dimensions and makes effective use of prior
knowledge, yet which is sufficiently general to be applied
to a wide range of problems. The common statistical meth-
ods for such medical image analysis have typically used
likelihood techniques, such as Expectation-Maximisation
(EM) [6, 5]. Although EM methods can be efficient com-
putationally, they have only limited scope for incorporat-
ing prior knowledge. A more powerful way of including
prior information is to use a Bayesian method, such as max-
imum a posteriori (MAP) estimation. The principal diffi-
culty with Bayesian techniques is computational: they nor-
mally require the use of Markov chain Monte Carlo algo-
rithms, which may run for hundreds of thousands of iter-
ations to yield reliable results [3]. This has restricted their
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use in applications involving large data sets, such as medical
images.

The method we have adopted combines local likelihood
maximisation using a Gaussian model of the spatial inten-
sity profile, on a multiresolution grid and global structure
determination using a Bayesian technique derived from a
general model of vasculature as a collection of tree struc-
tures. By approaching the problem in this way, we combine
the computational efficiency of likelihood techniques with
the power and generality of a Bayesian approach. After a
brief description of the estimation algorithms, we present
results of two dimensional structure inference on real data.
The paper is concluded with some observations on the tech-
nique.

2. A STATISTICAL MODEL OF VASCULAR
STRUCTURE

To draw inferences about global structure, we employ a
Bayesian formalism: the data are modelled as a random
tree-like structure and we then use an MCMC algorithm [2]
to sample from the posterior distribution, which is condi-
tioned on the data. The sampling distribution is an approxi-
mate equilibrium of a random process whose configuration
space is the space of tree-like structures and whose equi-
librium is designed to be the target conditional distribution.
As well as gaining information about the global structure,
variation in the posterior samples enables us to quantify un-
certainties about the image interpretation.

The prior distribution defines the global structure as a for-
est of a random number of trees. Each such tree is binary:
branches divide only into two sub-branches at any given
position. A physical realisation of such a tree needs each
vertex to be located in space. Unfortunately, the simplis-
tic approach of displacing each vertex from its parent by
a Gaussian displacement of zero mean (a “random-walk”
tree) leads to a tangled local structure (left hand figure 1).
We therefore introduce a correlation by allowing the mean



displacement to be a small linear multiple of the displace-
ment of the parent vertex from the grandparent vertex (an
“AR(1)” tree) (right hand of figure 1). To model intensity,
with each vertex in the tree we associate a Gaussian ker-
nel that represents the spatial grey level profile of the corre-
sponding vessel segment.
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penalises the number of trees; in the examples, a Poisson
distribution was used. This ensures that a ‘minimal’ expla-
nation of the data is found. %A@ � % � � %(B are the probabilities
defining the degree of the branching process and C �D4 �EGF
is the degree of the vertex 4 . , �H- � � - / �	0I1J3 �54 �	� is the
distribution of the parameters of the vertex, - � . In the ex-
amples, this is an autoregressive (AR(1)) process. The pa-
rameters - � represent the positions of vertices, K � , and the
amplitude and width parameters of the edges, while 8 � �L:&���
is the likelihood function. The observation model is based
on the approximation of linear structures by a sum of Gaus-
sian kernels:
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where O � is a magnitude scale factor and K � �=V � the mean
and covariance parameters of the kernel. Rather than sample
directly on the covariance parameters, they are sampled in
a normalised form, in terms of the orientation and the stan-
dard deviations of their principal components. The orienta-
tion is defined by the line joining a vertex with its parent.
The likelihood is then computed based on a normal model
of the observations within a region
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where X � K;� respresents the noise in the observations, which
again is assumed to be normally distributed, with zero mean
and independent at each pixel. The simulation, whose con-
figuration at any one time is a collection of random trees,
is designed to have moves which take it from one configura-
tion to the next. In order to arrive at a Maximum a Posteriori
(MAP) estimate from a given image, it is necessary to sam-
ple from the above posterior distribution. This is done by
a simulation involving a number of different moves, affect-
ing the state of the forest at each iteration. As long as each
move has an ‘opposite’ (e.g. add versus delete, split versus

Fig. 1. Illustration of a random-walk tree and an AR(1) tree

graft) and the chances of each move are balanced against
its opposite, it is straightforward to compute the required
equilibrium distribution and to design the move probabili-
ties to give the required posterior as equilibrium, using the
Metropolis-Hastings technique (MH) [3]. The MH method
iterates in two steps: the first proposes a move from the col-
lection of moves and the second accepts or rejects the move
so as to ensure that the equilibrium coincides with the de-
sired posterior. The randomised decision whether to accept
or reject a move depends on whether the resulting new tree
will be a more adequate representation from the posterior
than the current tree.

The efficiency of the algorithm depends crucially on the
proposed moves. As all moves influence the likelihood only
locally, the likelihood evaluation can be implemented ef-
ficiently. Global structure that can be inferred with high
certainty locally will lead to a tree structure that is stable
over time, while low local certainty results in a volatile tree-
structure that alternates between different explanations for
the global structure. A summary of the moves currently im-
plemented for the algorithm is shown in figure 2.

Each iteration of the sampler consists of the random se-
lection of one such move and its random acceptance or re-
jection, according to posterior probability.

3. EXPERIMENTS

Figure 3 illustrates results of the ML model estimation. We
have used part of a 2D retinal angiographic image size 4047 404 pixels (fig. 3(a)) for our 2D experiments. To im-
prove the efficiency of the estimation, we start from a set of
maximum likelihood local feature estimates, based on the
Gaussian kernel of (3), within a multiresolution framework,
combined with a piecewise linear model of the background
intensity to account for the obvious large scale variation in
intensity across the images such as fig. 3(a). In other words,
each region in a quadtree tessellation of the image is mod-
elled as the sum of a linear background term and a Gaussian
intensity profile, whose parameters are estimated using an



Fig. 2. Moves used in MCMC simulation on trees.

iterative, EM-type algorithm to maximise likelihood
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where the data � � K;� are windowed with a cosine window,
whose size is twice the block width at a given scale, to
give the data �	� � KA� used in the estimator. The index 

denotes iteration number; typically 4-5 iterations are suf-
ficient to give accurate estimates. Figures 3(b)-(c) show
reconstructions using the 2D Gaussians in each block (at
corresponding block sizes) based on the ML feature esti-
mates at block sizes of �	� 7 �� and F�� 7 F�� respectively.
Clearly, at lower spatial resolutions, the model cannot eas-
ily describe the presence of multiple vessels within the win-
dow, such as occur at bifurcations, and the resulting low-
amplitude, isotropic Gaussians are locally the ‘best’ de-
scription of these regions. However, these blocks can be
modelled accurately at higher spatial resolutions. The sec-
ond set of images shows how the local estimates from dif-
ferent window scales is used in a coarse-fine stochastic sim-
ulation, in order to get a Bayesian estimate of the forest

structure. After the first 200 iterations, the scale is halved
and the appropriate local feature estimates are used to guide
the sampler; after 3000, the scale is halved again, as it is
after 6000 iterations, at which point, the highest spatial res-
olution is reached. This approach has been found to speed
convergence to the equilibrium distribution, while avoiding
becoming trapped in local modes, in a similar manner to
many coarse-fine algorithms. Note that one iteration con-
sists of the generation and acceptance of a single proposal
(for ‘editing’ the tree). In other words, 100000 iterations
is comparable, in terms of computation, to a single scan
through the image. It has been noted from experiments that
equilibrium is reached in approximately 50000 iterations, a
comparatively low burden computationally.

4. CONCLUSIONS

Some encouraging preliminary results have been achieved
using the approach described in section 2, demonstrating
its potential for modelling vascular structure globally in a
computationally efficient way. Fine-tuning the algorithm
will lead to significant improvements. These will include,
for example, the use of the local estimates to produce initial
configurations for the MCMC algorithm. Such improve-
ments are currently being implemented. The work is also
being tested on other types of data and extended to three
dimensions.
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Fig. 3. (a) 2D retinal angiogram size 404 7 404 pixels.
(b) Reconstruction of data from model parameters estimates�����

for block sizes of 64 and (c) 16.

(a)
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(c)

Fig. 4. Estimates from the tree-based sampler, at (a) 200, (b)
1000 and (c) 50000 iterations, showing how use is made of
the local multiresolution feature estimates, in a coarse-fine
approach to the MCMC algorithm. After 50000 iterations,
few changes occur.
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223: Symbolic Itô calculus: an overview.
231: The radial part of a Γ-martingale and a non-implosion theorem.
236: Computer algebra in probability and statistics.
237: Computer algebra and yoke geometry I: When is an expression a tensor?
238: Itovsn3: doing stochastic calculus with Mathematica.
239: On the empty cells of Poisson histograms.
244: (with M. Cranston and P. March) The radial part of Brownian motion

II: Its life and times on the cut locus.
247: Brownian motion and computer algebra (Text of talk to BAAS Science

Festival ’92, Southampton Wednesday 26 August 1992, with screen-
shots of illustrative animations).

257: Brownian motion and partial differential equations: from the heat equa-
tion to harmonic maps (Special invited lecture, 49th session of the ISI,
Firenze).

260: Probability, convexity, and harmonic maps II: Smoothness via proba-
bilistic gradient inequalities.



261: (with G. Ben Arous and M. Cranston) Coupling constructions for hy-
poelliptic diffusions: Two examples.

280: (with M. Cranston and Yu. Kifer) Gromov’s hyperbolicity and Picard’s
little theorem for harmonic maps.

292: Perfect Simulation for the Area-Interaction Point Process.
293: (with A.J. Baddeley and M.N.M. van Lieshout) Quermass-interaction

processes.
295: On some weighted Boolean models.
296: A diffusion model for Bookstein triangle shape.
301: COMPUTER ALGEBRA: an encyclopaedia article.
308: Perfect Simulation for Spatial Point Processes.
319: Geometry, statistics, and shape.
321: From Stochastic Parallel Transport to Harmonic Maps.
323: (with E. Thönnes) Perfect Simulation in Stochastic Geometry.
325: (with J.M. Corcuera) Riemannian barycentres and geodesic convexity.
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