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Introduction: the thematic problem of coupling

Wikipedia (2010) on (probabilistic) coupling:
“A proof technique that allows one to compare two unrelated variables
by ‘forcing’ them to be related in some way”.

Thematic problem:

Construct processes to start differently but end identically.

Other flavours of coupling problems:
representation, approximation, monotonicity, connection ...

@ Maximal coupling
(Griffeath 1975; Pitman 1976; Goldstein 1978)

Contrast: Shift-coupling (Thorisson 1994)
@ Co-adapted or immersed coupling

Contrast: Shy coupling (Benjamini, Burdzy, and Chen 2007, et seq.)
@ Co-immersed coupling (Emery 2005)
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Examples: specific examples

Notions of synchronous and reflection couplings for random

walk / Brownian motion.

Lindvall (1982) preprint
“On coupling of Brownian motions”.

Brownian motion is a very special case: an immersed
coupling which is maximal.

Contrast Ornstein-Uhlenbeck process
(Connor 2007, PhD. Thesis).

Restrict attention to diffusions.
Elliptic case

@ Brownian motion
@ Diffusions
@ Riemannian Brownian motion

“Efficient coupling” (Burdzy and WSK 2000)
Work on “maximal Markovian couplings” by Kuwada, Sturm, et al.

Hypo-elliptic case
@ BM + time integral(s)
@ BM? + Lévy stochastic area
@ BM” +<;_’) Lévy stochastic areas
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Simplest hypoelliptic example:

Brownian motion and time integral

Fall Brownian Rise

b,

a

Brownian Rise " Fall
Horizontal axis: W = B — A;
Vertical axis: V = [ Wdt.
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Local Time: Representation

Recall Tanaka formula:
if X is standard Brownian motion then

d|X| sgn(X)d X + dL'® .

Consequence:
L(L9—1x,L9) = £(8Y9)

where B is standard Brownian motion and

St = sup{Bs: s < t}.

Take S =L and B= — [sgn(X)dX.

Strictly speaking, the Brownian motions and local time
must begin at 0. But we can fix this up.

coupling problem. It suffices to couple real Brownian
motion and its supremum process.

Think of this as providing a new coordinate chart for the
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Why couple Local Time?

This talk is about:
coupling real Brownian motion and local time at zero.

Motivating reasons:

1. Develop further intuition about coupling functionals of

Brownian motion;

2. The example is amenable to calculations, and yields
exact answers, so may be a useful model for other
situations;

3. The example highlights the difference between
immersed and co-immersed coupling;

4. There is a significant application to the theory of
filtrations.
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Local Time: Reflected / Synchronized algorithm
A simple exercise in basic theory of Brownian motion!
We wish to couple (B, S) and (B, 3). Suppose By > Bo.
@ Reflection coupling till B = B at time T;.
@ Synchronous coupling till B = B hits the level Sp A Eo at
time T, and then St; A 3‘0 at T3 (the coupling time).
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Local Time: Rate of coupling (l)

We can compute the rate of coupling! Suppose that By > Bo.
@ Coupling occurs at

T3 = H'(-5(Bo—Bo)) +H ((So ASo) —3(Bo — Bo))

+H' (S, — (S0 A So)),

where H' (a) has the law of hitting time of a for standard
Brownian motion.

@ The third hitting time depends on St, hence in fact on
the first hitting time.

@ Compute P[T3 < Exponential(«x)] using Markov and
memory-less properties and excursion theory, to
determine the moment generating function (MGF) of Ts.
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Local Time: Comparison with maximal coupling (I)

@ The joint distribution of B; and S; can be computed
explicitly using the reflection principle (Revuz and Yor
1991, Exercise (3.14) part 2).

@ Hence we can compute the meet of the joint densities of
(B¢, St) and (B¢, St). (Sub-probability density which is
minimum of two densities.)

@ No coupling can happen faster than the total integral of
the meet! (Aldous inequality.)

@ Compute MGF of (one minus the total integral of) the
meet numerically and compare to MGF of reflected /
synchronized coupling time.
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Local Time: Rate of coupling (I)
Specifically,
@ Suppose Sop = By = .N§o as well as By > §o-
@ Set b= %(Bo — Bp), and o* = /2«
@ Compute using standard excursion-theoretic arguments

as in the illustrative example supplied by Rogers and
Williams (1987, Volume I, §56):

Elexp (—xT3)] = 1—sinh((x*b)logcoth(;a*b).

.....................................

Height n(x) = 1/(2|x|); BES® out; BES® back.
BES? hitting times and Poisson point processes . ...
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Local Time: Comparison with maximal coupling (ll)

1. Solid red line: MGF of maximal coupling time;

2. Dotted blue line: MGF of reflected / synchronized
coupling time.

3. Reflected / synchronized coupling is not maximal.
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Local Time: Optimality of immersed coupling

@ It seems “obvious” that the reflected / synchronized
coupling is optimal amongst immersed couplings.
@ Key idea: starting with synchronous coupling
(a) risks effectively increasing So A _NS"o,
and (b) (more significantly) wastes time.
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@ Prove “bang-bang” approximation result to make this
rigorous.

@ So for this problem there is an optimal immersed
coupling, which nevertheless is not maximal.

...but thatis not all ...
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BKR diffusion: the key question

Are there co-immersed couplings
of Brownian motion and local time?
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BKR diffusion

@ The BKR diffusion (X, Y) (Benes, Karatzas, and Rishel

1991) arose in a study of a wide-sense control problem
which has no strict-sense optimal control: X, Y satisfy

sgn(X)dX +sgn(Y)dY = 0

where d X and d Y must be Brownian differentials.
Emery (2009) treated this as a case study, exemplifying
general issues from filtration theory.

The underlying filtration is in fact Brownian: Emery
(2009) pointed out that an illuminating proof would
follow if one could produce a successful co-immersed
coupling of two distinct copies of (X, Y).

It is straightforward to use the local time reflected /
synchronized coupling to produce a immersed coupling
for the BKR diffusion ...

... but this is clearly not co-immersed.

BKR diffusion

Sketch of a co-immersed coupling of
Brownian motion and local time (I)

Without loss of generality, suppose By > Eo.
For simplicity take So = By > So.

@ Express earlier coupling strategy using It6 calculus:

fort < T =inf{s: Bs = %(Bo-i-ﬁo)},
forTy <t<T3=inf{s:Bs=5Sn}.

H B —1
N

B and E, but not co-immersed for filtrations of X and X
(all those +1 signs of excursions!).
Indeed:

dX = sgn(X)Hsgn(X)dX.

@ Clue: delay choice of signs.
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@ The coupling d B = Hd B is co-immersed for filtrations of
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Sketch of a co-immersed coupling of
Brownian motion and local time (I)

@ Choose deterministic (t) > 0 tending fast to zero.
@ Introduce delays

Or = sup{s<t:|Xs|>uys},
O = sup{s<t:|Xsl > ys}.

@ Replace sgn(X;) and sgn(X;) by sgn(Xy,) and sgn()N(gt).
@ New “delayed” coupling is

dX = sgn()N(g,)Hsgn(Xg) dXx.

@ Coefficient of d X adapted to both X and X filtrations.

@ The coupling will fail at time T3, but only by a small
amount: keep re-running algorithm. If ¢/ (t) — 0 quickly
enough, then X will converge to X in finite time
(compare coupling of Brownian time-integral!).
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Conclusion

1. Coupling of (]1X],L©): a model example in which

e immersed coupling is not maximal;
o there is an optimal immersed coupling.

2. Application to BKR diffusion:
e Distinction between immersed and co-immersed is

important;
o Coupling techniques are useful in modern filtration
theory!
QUESTIONS?
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