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(But see Aldous and Shun 2010.)
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Further results:

@ Logarithmic upper bound for “mean connection distance

minus Euclidean distance” using Poisson line process.
(Steinhaus estimator for distance, study intersections of original Poisson
line process and independent copy, focus on a certain Poisson polygon);

© Proof that logarithmic upper bound is of correct order.
(Stereological estimation using 50-year-old refinements of Mills ratio
inequality);

© Controlling fluctuations by bounding variance of excess

connection distance.
(represent perimeter of a Poisson polygon using theory of Lévy processes
and self-similar processes).

@ Statistics of flows in the network based on the invariant
Poisson line process.

This uses an unusual anisotropic improper Poisson line process.
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Random Line Processes

Brief description of geometry of Poisson line processes:
Poisson line processes in RY:

@ Parametrize by @ “direction” of (undirected) line
(point on “hemisphere” - actually, projective space!),

and x location on perpendicular hyperplane.
@ Invariant measure ¢c;jdx X v4_1(dw).
Coordinate x “twisted” by @: unseen by measure theory.

@ Variant parametrization replaces x by p, intersection of ¥
with reference hyperplane.

Invariant measure now c;sin@ dp X v4_1 (dw).
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Scale-invariant Random Spatial Networks (SIRSN)

Google holidays for cats

Aldous (2014) axiomatic approach:
@ Input: set of nodes xi, ..., Xp;
@ Output: random network N(xi,..., X,) connecting nodes.

(1) Scale-invariance: L (N(Axy,...,AXxn)) = L(AN(X1,...,Xn))
for each Euclidean similarity A.

(2) Let Dy be length of fastest route between two points at
unit distance apart. We want E[D; ] < oo.

(3) Weak SIRSN property: consider network connecting
points of an independent unit intensity Poisson point
process. Average length per unit area of resulting
“fastest route” network should be finite.
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Models for SIRSN

SIRSN axioms have many interesting consequences. Models
need to be hierarchical in some sense (fast versus slow).
Paths exhibit “portal-like” behaviour.

Examples:

@ Hierarchical binary model (randomized direction and
location; Aldous 2014; Aldous and Ganesan 201 3);

@ Improper Poisson line process (also proposed by Aldous).
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Improper Poisson line process model

Line process is marked by random speeds, and defined by a
o -finite measure:

@ each line marked with positive speed-limit v;

@ representing space is now parametrized by v, r, 6 (more
generally, in d dimensions, v, x, W);

@ to achieve scale-invariance, invariant measure is
yz;]v‘y dvdrdofory>1 (more generally,
cily —NHvYdvdrxvg(dw)).

@ The line process is dense throughout the plane
(respectively, R9), but lines of speed exceeding threshold
vo form proper Poisson line process if y > 1 (y > d).

Use lines to go from A to B as fast as legally possible.
For which y might we get a decent network?
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What is a path? (1)

Seek shortest-time paths (“temporal geodesics” or
IT-geodesics) built using line process II.
Require y > 1, or fast lines will go everywhere.

@ Introduce maximum speed limit, upper-semi-continuous
V:RY - [0, ).
@ A Il-path is locally Lipschitz, integrates measurable
orientation field determined by II, obeys speed limit.
o If y > d then:
o there is an a priori random bound on distance travelled
by IT-path in fixed time;
e space of paths up to time T is closed, weakly closed in
Sobolev space L'2([0, T) — RY),
@ paths up to time T, beginning in a compact set, together
form a weakly compact set.
Consequence: II-geodesics exist if [I-paths exist.
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What is a path? (ll)
Suppose one wishes to connect two points & and &; in R by
a IT-path. Suppose y > d (turns out to be essential).
@ Construct small balls around &; and &;;
@ Connect balls by fastest line £ intersecting both balls;

@ Construct daughter nodes on ¥ closest to & and &;;
@ Recurse.
@ Borel-Cantelli, et cetera: establish almost sure existence

of resulting path.

@ This yields a binary tree representation of the path. Note
that this is unavoidable if d > 2!

A similar but more complicated argument almost surely
allows simultaneous construction of paths between all
possible pairs £ and & in R,

Exercise: Visualize such paths in case d = 3.
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Construction to connect two points
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What is a path? (lll)
Exponential moments for powers of II-diameters
Kahn (2015), improving on WSK (2015, Theorem 3.6) has
proved results of which the following is a simple example:

@ Consider ball(o, R), a ball of Euclidean radius R.

@ Let Tg be the supremum of the minimum times for a
I1-path to pass from one point of ball(o, R) to another;

Tr = sup inf{T :
x,y€<ball(o,R)

some IT-path & : [0, T] — B satisfies £(0) = x,&E(T) = y}.

We call Ty the II-diameter of ball(o, R).
@ For explicit 6g > 0, Kg < o0,

[E[exp(cSRT,}{_])] < Kp < .
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Simulations (approximate!) of a typical set of routes

Casey =16
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Are I1-geodesics unique? (I)

Suppose now d = 2 and y > 2, and we fix & and & € R2. If
IT is to generate a network between a finite set of points,
then we need to know the II-geodesic between &; and &; is
almost surely unique.

@ Theorem: All non-singleton intersections of II-geodesic
with lines £ of IT are “line meets line”.

e First, reduce to case of £ being fastest line in region,
with speed w.
e Now change focus from high speed v to low “cost”,

where
) , cscO cotd
cost” = - .
v w

where 0 is angle of line with £.
e Argue that I1-geodesic hits £ using line of finite cost.
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Are I1-geodesics unique? (Il)
So IT-geodesics between & and &, are made up of countable
collection of intervals of lines of II.

@ Fix a given £ from II, and consider the set S of such
intervals lying in .

e Consider two different finite collections S; € S and
S, C S, each composed of non-overlapping intervals.

o Probability density argument: the total lengths of S; and
S2 have a joint density, unless one is empty.

e Conditioning on time spent off £, almost surely two
II-paths using S7 and S, respectively must have different
total travel times.

o Almost surely two IT-geodesics between &; and & must
use the same finite collection of non-overlapping
intervals from each £ of II.

e But we can reconstruct the II-geodesic uniquely from the
collections of intervals of each line £ in II.

@ Theorem: given &; and &;, almost surely there is just
one II-geodesic between them. § ¥ Statistios
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Do II-geodesics have finite mean length?

Suppose again that d = 2 and y > 2.
@ Techniques for showing existence of II-paths show finite
mean of length of Il-geodesic if lying in a fixed ball.

@ Could fast geodesics generate long lengths outside
balls? (Oxford — Cambridge by motorway via London?
or Edinburgh? . ..)

@ Time spent by IT-geodesic can be bounded above by
time spent on a circuit of a “racetrack” construction
around &; and & using fastest lines.

@ We can upper-bound distance travelled outside a ball by
using the “idealized path” construction employed above.

@ The resulting perpetuity can be combined with the
“racetrack” bound to establish finite mean length.
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Diagram to prove Pre-SIRSN property

@ A careful construction, together with a Borel-Cantelli
argument, shows that re-scaled small perturbations of
the following diagram (for suitable re-scaled speeds
1 < a< b<c)can be found at all length scales:

Speed ¢ > b F|C

[Speed b > a

Speed less than 1
within large square

E? B

} Speed c > b on large square perimeter

If c>10b > 59a/3 > 354/3, red segment is only exit. {#5uicice

IT-paths
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Kahn (2015) has now produced a proof of the strong SIRSN
property for all dimensions d and all y > d, using the
exponential inequality mentioned above for powers of
[1-diameters

Elexp (378 )] = Ko < .

This can be used to show that I[I-geodesics must make
substantial re-use of shared lines: for all [I-geodesics
bridging a suitable annulus, the exponential inequality forces
each II-geodesic to make substantial use of a limited number
of “fast” lines. SIRSN follows by using a measure-theoretic
version of the pigeonhole principle.

Kahn (2015) deploys further ingenious arguments to obtain
uniqueness (essential if above argument is to work) and finite
mean-length of [1-geodesics in case d > 2.
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Conclusion

@ We obtain scale-invariant random metric spaces in R4 for
y > d (but visualizing paths in d > 2 is ... interesting).

@ The improper line process construction delivers a SIRSN
for finite sets of points in the plane with y > 2.

@ Thanks to Jonas Kahn (2015), we even have the following
Result: the SIRSN property holds in all dimensions (for
y > d), particularly Average specific length of resulting
“fastest long-distance route” network is finite.

@ Consider a [I-geodesic when d = 2. Can it ever come to a
complete stop strictly between source and destination?

@ Links to Brownian maps? Kahn (2015) highlights the
Poisson line SIRSN with y = 3, d = 2.

Some reading: Aldous and WSK (2008), Aldous and
Ganesan (2013), Aldous (2014), WSK (2011, 2014,
2015), Kahn (2015).
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