
Examples Frustration Lines SIRSN Π-paths Conclusion References

Google maps and improper
Poisson line processes

Simons Conference on Networks and Stochastic Geometry
University of Texas at Austin

Wilfrid Kendall (w.s.kendall@warwick.ac.uk)

18th May 2015

Examples Frustration Lines SIRSN Π-paths Conclusion References

Frustrated optimization
for Roman Roads

Examples Frustration Lines SIRSN Π-paths Conclusion References

Google holidays
for cats

Examples Frustration Lines SIRSN Π-paths Conclusion References

Improving a network
for example, Roman Roads

Network connecting N cities in rectangle side
√

N.

A Measure efficiency by minimizing connecting stuff?
(Steiner tree)

B Measure efficiency by average excess of connection
distance over Euclidean? (Complete planar graph)

Aldous and WSK (2008): start with Steiner tree:
Add sparse set of random lines;
Add sparse rectilinear grid connecting lines and tree;
Add some box structures to avoid hotspots.

Resulting network (large N) is economical with
connection stuff, but the average excess is only
logarithmic in N.

Debunks a “natural” statistic for network efficiency.

(But see Aldous and Shun 2010.)
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Further results:

1 Logarithmic upper bound for “mean connection distance
minus Euclidean distance” using Poisson line process.
(Steinhaus estimator for distance, study intersections of original Poisson
line process and independent copy, focus on a certain Poisson polygon);

2 Proof that logarithmic upper bound is of correct order.
(Stereological estimation using 50-year-old refinements of Mills ratio
inequality);

3 Controlling fluctuations by bounding variance of excess
connection distance.
(represent perimeter of a Poisson polygon using theory of Lévy processes
and self-similar processes).

4 Statistics of flows in the network based on the invariant
Poisson line process.
This uses an unusual anisotropic improper Poisson line process.
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Random Line Processes

Brief description of geometry of Poisson line processes:

Poisson line processes in Rd:

Parametrize by $ “direction” of (undirected) line
(point on “hemisphere” – actually, projective space!),

and x location on perpendicular hyperplane.

Invariant measure cd d x × νd−1(d$).
Coordinate x “twisted” by $: unseen by measure theory.

Variant parametrization replaces x by p, intersection of `
with reference hyperplane.

Invariant measure now cd sinθ d p × νd−1(d$).
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Scale-invariant Random Spatial Networks (SIRSN)
Google holidays for cats

Aldous (2014) axiomatic approach:

Input: set of nodes x1, . . . , xn;

Output: random network N(x1, . . . , xn) connecting nodes.

(1) Scale-invariance: L (N(λx1, . . . , λxn)) = L (λN(x1, . . . , xn))
for each Euclidean similarity λ.

(2) Let D1 be length of fastest route between two points at
unit distance apart. We want E [D1] <∞.

(3) Weak SIRSN property: consider network connecting
points of an independent unit intensity Poisson point
process. Average length per unit area of resulting
“fastest route” network should be finite.

Examples Frustration Lines SIRSN Π-paths Conclusion References

Models for SIRSN

SIRSN axioms have many interesting consequences. Models
need to be hierarchical in some sense (fast versus slow).
Paths exhibit “portal-like” behaviour.

Examples:

Hierarchical binary model (randomized direction and
location; Aldous 2014; Aldous and Ganesan 2013);

Improper Poisson line process (also proposed by Aldous).
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Improper Poisson line process model

Line process is marked by random speeds, and defined by a
σ -finite measure:

each line marked with positive speed-limit v;

representing space is now parametrized by v, r, θ (more
generally, in d dimensions, v, x, $);

to achieve scale-invariance, invariant measure is
γ−1

2 v−γ d v d r dθ for γ > 1 (more generally,
cd(γ − 1)v−γ d v d r × νd−1(d$)).
The line process is dense throughout the plane
(respectively, Rd), but lines of speed exceeding threshold
v0 form proper Poisson line process if γ > 1 (γ > d).

Use lines to go from A to B as fast as legally possible.

For which γ might we get a decent network?
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What is a path? (I)

Seek shortest-time paths (“temporal geodesics” or
Π-geodesics) built using line process Π.
Require γ > 1, or fast lines will go everywhere.

Introduce maximum speed limit, upper-semi-continuous
V : Rd → [0,∞).
A Π-path is locally Lipschitz, integrates measurable
orientation field determined by Π, obeys speed limit.

If γ > d then:
there is an a priori random bound on distance travelled
by Π-path in fixed time;
space of paths up to time T is closed, weakly closed in
Sobolev space L1,2([0,T )→ Rd),
paths up to time T , beginning in a compact set, together
form a weakly compact set.

Consequence: Π-geodesics exist if Π-paths exist.
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What is a path? (II)

Suppose one wishes to connect two points ξ1 and ξ2 in Rd by
a Π-path. Suppose γ > d (turns out to be essential).

Construct small balls around ξ1 and ξ2;

Connect balls by fastest line ` intersecting both balls;

Construct daughter nodes on ` closest to ξ1 and ξ2;

Recurse.

Borel-Cantelli, et cetera: establish almost sure existence
of resulting path.

This yields a binary tree representation of the path. Note
that this is unavoidable if d > 2!

A similar but more complicated argument almost surely
allows simultaneous construction of paths between all
possible pairs ξ1 and ξ2 in Rd.

Exercise: Visualize such paths in case d = 3.
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Construction to connect two points
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What is a path? (III)
Exponential moments for powers of Π-diameters

Kahn (2015), improving on WSK (2015, Theorem 3.6) has
proved results of which the following is a simple example:

Consider ball(o,R), a ball of Euclidean radius R.

Let TR be the supremum of the minimum times for a
Π-path to pass from one point of ball(o,R) to another;

TR = sup
x,y∈ball(o,R)

inf{T :

some Π-path ξ : [0,T ]→ B satisfies ξ(0) = x, ξ(T ) = y} .

We call TR the Π-diameter of ball(o,R).
For explicit δR > 0, KR <∞,

E
[
exp

(
δRT

γ−1
R

)]
≤ KR < ∞ .
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Simulations (approximate!) of a typical set of routes

Case γ = 16
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Are Π-geodesics unique? (I)

Suppose now d = 2 and γ > 2, and we fix ξ1 and ξ2 ∈ R2. If
Π is to generate a network between a finite set of points,
then we need to know the Π-geodesic between ξ1 and ξ2 is
almost surely unique.

Theorem: All non-singleton intersections of Π-geodesic
with lines ` of Π are “line meets line”.

First, reduce to case of ` being fastest line in region,
with speed w.
Now change focus from high speed v to low “cost”,
where

“cost” = cscθ
v
− cotθ

w
.

where θ is angle of line with `.
Argue that Π-geodesic hits ` using line of finite cost.
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Are Π-geodesics unique? (II)
So Π-geodesics between ξ1 and ξ2 are made up of countable
collection of intervals of lines of Π.

Fix a given ` from Π, and consider the set S of such
intervals lying in `.

Consider two different finite collections S1 ⊂ S and
S2 ⊂ S, each composed of non-overlapping intervals.
Probability density argument: the total lengths of S1 and
S2 have a joint density, unless one is empty.
Conditioning on time spent off `, almost surely two
Π-paths using S1 and S2 respectively must have different
total travel times.
Almost surely two Π-geodesics between ξ1 and ξ2 must
use the same finite collection of non-overlapping
intervals from each ` of Π.
But we can reconstruct the Π-geodesic uniquely from the
collections of intervals of each line ` in Π.

Theorem: given ξ1 and ξ2, almost surely there is just
one Π-geodesic between them.
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Do Π-geodesics have finite mean length?

Suppose again that d = 2 and γ > 2.

Techniques for showing existence of Π-paths show finite
mean of length of Π-geodesic if lying in a fixed ball.

Could fast geodesics generate long lengths outside
balls? (Oxford → Cambridge by motorway via London?
or Edinburgh? . . . )

Time spent by Π-geodesic can be bounded above by
time spent on a circuit of a “racetrack” construction
around ξ1 and ξ2 using fastest lines.

We can upper-bound distance travelled outside a ball by
using the “idealized path” construction employed above.

The resulting perpetuity can be combined with the
“racetrack” bound to establish finite mean length.
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Diagram to prove Pre-SIRSN property

A careful construction, together with a Borel-Cantelli
argument, shows that re-scaled small perturbations of
the following diagram (for suitable re-scaled speeds
1 < a < b < c) can be found at all length scales:

If c > 10b > 59a/3 > 354/3, red segment is only exit.
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Kahn (2015) has now produced a proof of the strong SIRSN
property for all dimensions d and all γ > d, using the
exponential inequality mentioned above for powers of
Π-diameters

E
[
exp

(
δRT

γ−1
R

)]
≤ KR < ∞ .

This can be used to show that Π-geodesics must make
substantial re-use of shared lines: for all Π-geodesics
bridging a suitable annulus, the exponential inequality forces
each Π-geodesic to make substantial use of a limited number
of “fast” lines. SIRSN follows by using a measure-theoretic
version of the pigeonhole principle.
Kahn (2015) deploys further ingenious arguments to obtain
uniqueness (essential if above argument is to work) and finite
mean-length of Π-geodesics in case d > 2.
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Conclusion

We obtain scale-invariant random metric spaces in Rd for
γ > d (but visualizing paths in d > 2 is . . . interesting).

The improper line process construction delivers a SIRSN
for finite sets of points in the plane with γ > 2.

Thanks to Jonas Kahn (2015), we even have the following
Result: the SIRSN property holds in all dimensions (for
γ > d), particularly Average specific length of resulting
“fastest long-distance route” network is finite.

Consider a Π-geodesic when d = 2. Can it ever come to a
complete stop strictly between source and destination?

Links to Brownian maps? Kahn (2015) highlights the
Poisson line SIRSN with γ = 3, d = 2.

Some reading: Aldous and WSK (2008), Aldous and
Ganesan (2013), Aldous (2014), WSK (2011, 2014,
2015), Kahn (2015).
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