Tropical polyhedra are equivalent to mean payoff games

Marianne Akian

(INRIA Saclay - Île-de-France and CMAP, École Polytechnique)

joint work with Stéphane Gaubert (INRIA Saclay and CMAP) and Alexander Guterman (Moscow State Univ.), see arXiv:0912.2462

EPSRC Symposium Workshop on Game theory for finance, social and biological sciences (GAM)
14-17 April 2010
Max-plus or tropical algebra (semiring)

\[\mathbb{R}_{\text{max}} := (\mathbb{R} \cup \{ -\infty \} , \max , + , -\infty , 0) \]

\[\oplus \quad \otimes \quad 0 \quad 1 \]

\[\lor \quad + \]

“+” concatenation

- \(2 \oplus 3 = 3, 2 \otimes 3 = 5. \)
- \(a \oplus b = a \lor b = "a + b"; \)
- \(a \otimes b = a + b = "ab". \)
- \(\mathbb{R}_{\text{max}} \) is idempotent: \(a \oplus a = a. \)
- Hence there are no opposites,
- The natural order \((a \leq b \text{ if } a \oplus b = b) \) is the usual order and all numbers are \(\geq 0. \)
A max-plus linear operator $A : \mathbb{R}^n_{\text{max}} \to \mathbb{R}^m_{\text{max}}$ can be represented by a matrix $A \in \mathbb{R}^{m \times n}$:

$$(Ax)_i = \max_{j \in [n]} (A_{ij} + x_j), \quad i \in [n] := \{1, \ldots, n\}.$$

Several ways to define a hypersurface:

- with two-sided equations:

 $$S = \{x \in \mathbb{R}^n_{\text{max}} \mid \max_{j \in [n]} (a_j + x_j) = \max_{j \in [n]} (b_j + x_j)\}$$

- with “one-sided” equations, as in tropical geometry:

 $$S = \{x \in \mathbb{R}^n_{\text{max}} \mid \text{the max in } \max_{j \in [n]} (a_j + x_j) \text{ is attained at least twice}\}$$

 denoted “$\sum_j a_jx_j = 0$” or “$\max_j(a_j + x_j) = 0$”.

Example

- The tropical line “\(x + y + 1 = 0\)” is the set of points where \(\max(x, y, 0)\) is attained at least twice:

- this is the limit of the amoeba:
 \[
 \lim_{t \to 0^+} \left\{ -\frac{1}{\log t} (\log(|x|, \log|y|); \ ax + by + c = 0 \right\} \text{ where } a, b, c \in \mathbb{C}.
 \]

See Gelfand, Kapranov & Zelevinsky, Passare . . .
Tropical segments:

$$[f, g] := \{ (\lambda + f) \lor (\mu + g) \mid \lambda, \mu \in \mathbb{R}_{\text{max}}, \lambda \lor \mu = 0 \}.$$
$C \subset \mathbb{R}_{\text{max}}^n$ is a tropical convex set if $f, g \in C \implies [f, g] \in C$

Tropical convex cones \iff subsemimodules over $\mathbb{R}_{\text{max}}^n$.
A **tropical half-space** is a set of the form

$$H = \{ x \in \mathbb{R}^n_{\max} \mid \max_j (a_j + x_j) \leq \max_j (b_j + x_j) \}$$

It is also the union of sectors (usual convex sets) delimited by the tropical hyperplane: “$$\max_j (c_j + x_j) = 0$$” with $$c_j = a_j \lor b_j$$.

From the **separation theorem**, we have:

Theorem

Every closed tropical convex cone of $$\mathbb{R}^n_{\max}$$ is the intersection of tropical half-spaces:

$$C = \{ x \in \mathbb{R}^n_{\max} \mid Ax \leq Bx \}$$

with $$A, B \in \mathbb{R}^{I \times [n]}_{\max}$$, and $$I$$ possibly infinite.

See for instance [Zimmermann 77], [Cohen, Gaubert, Quadrat 01 and LAA04].
Tropical polyhedral cones are defined as the intersection of finitely many tropical half-spaces \((I = [m])\), or equivalently, the convex hull of finitely many rays. See the works of [Gaubert, Katz, Butkovič, Sergeev, Schneider,...]. See also the tropical geometry point of view [Sturmfels, Develin, Joswig, Yu,...].
Tropical convex cones and games

- $Ax \leq Bx \iff x \leq f(x)$ with $f(x) = A^\#Bx$:
 $$(f(x))_j = \inf_{i \in I} (-A_{ij} + \max_{k \in [n]} (B_{ik} + x_k)) .$$

- f is the dynamic programming operator of a zero-sum two player deterministic game: the states and actions are in I and $[n]$, Min plays in states $j \in [n]$, choose a state $i \in I$ and receive A_{ij} from Max, Max plays in states $i \in I$, choose a state $j \in [n]$ and receive B_{ij} from Min.
 The vector of values v_j^N of the game after N turns (Min + Max) starting in state j satisfies:
 $$v^N = f(v^{N-1}), \ v^0 = 0 .$$

- f is a min-max function [Olsder 91] when I is finite, and $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ when the columns of A and the rows of B are not $\equiv -\infty$.
- f is order preserving ($x \leq y \Rightarrow f(x) \leq f(y)$) and additively homogeneous ($f(\lambda + x) = \lambda + f(x)$).
Every order preserving and additively homogeneous map $g : \mathbb{R}^n \rightarrow \mathbb{R}^n$ can be written as the dynamic programming operator of a zero-sum two player deterministic game (with infinite action space I):

$$[g(x)]_j = \inf_{i \in I} \max_{k \in [n]} (r_{ijk} + x_k)$$

(take $I = \mathbb{R}^n$ and $r_{jyk} = g(y)_j - y_k$) [Kolokoltsov; Gunawardena, Sparrow; Rubinov, Singer].

Every dynamic programming operator g as above can be written as $g(x) = A^\# Bx$ for some (infinite) matrices $A, B \in \mathbb{R}^{I' \times [n]}$ (take $I' = I \times [n]$, $A_{(i,\ell),j} = \delta_{\ell,j}$, $B_{(i,\ell),j} = r_{\ell,i,j}$).

Thus $C := \{ x \in (\mathbb{R} \cup \{-\infty\})^n \mid x \leq g(x) \}$ is a tropical convex cone.
Corollary

Every dynamic programming operator of a deterministic game (resp. every order preserving additively homogeneous map) yields an external representation of a closed tropical convex cone, and vice versa. In this correspondence, games with finite action spaces, or equivalently min-max functions, are mapped to polyhedral cones.
Perron-Frobenius tools for order preserving homogeneous maps

exp : \(x \mapsto (\exp(x_j))_{j \in [n]} \) maps \(\mathbb{R}^n_{\max} \) to the positive cone \(\mathbb{R}^n_+ \) of \(\mathbb{R}^n \), and send order preserving additively homogeneous maps of \((\mathbb{R} \cup \{-\infty\})^n \) into order preserving positively homogenous maps of \(\mathbb{R}^n_+ \).

Spectral radius, Collatz-Wielandt number, and dual CW number:

\[
\rho(f) := \max\{\lambda \in \mathbb{R}_{\max} | \exists u \in \mathbb{R}^n_{\max \setminus \{-\infty\}}, f(u) = \lambda + u\},
\]

\[
cw(f) := \inf\{\mu \in \mathbb{R} | \exists w \in \mathbb{R}^n, f(w) \leq \mu + w\},
\]

\[
cw'(f) := \sup\{\lambda \in \mathbb{R}_{\max} | \exists u \in \mathbb{R}^n_{\max \setminus \{-\infty\}}, f(u) \geq \lambda + u\}.
\]

Theorem (see [Nussbaum, LAA 86] for general cones of \(\mathbb{R}^n \))

Let \(f \) be a continuous, order preserving and additively homogeneous self-map of \((\mathbb{R} \cup \{-\infty\})^n \), then

\[
\rho(f) = cw(f).
\]
Proposition

The following limit exists and is independent of the choice of x:

$$
\bar{\chi}(f) := \lim_{N \to \infty} \max_{j \in [n]} f_j^N(x)/N,
$$

and we have:

$$
cw'(f) = \rho(f) = cw(f) = \bar{\chi}(f).
$$

Moreover, there is at least one coordinate $j \in [n]$ such that

$$
\chi_j(f) := \lim_{N \to \infty} f_j^N(x)/N
$$

exists and is equal to $\bar{\chi}(f)$.

See [Vincent 97, Gunawardena, Keane 95, Gaubert, Gunawardena 04] for the existence of $\bar{\chi}$ when f preserves \mathbb{R}^n.

$\chi_j(f)$ is the mean payoff of the game starting in state j.

When f is a min-max function which preserves \mathbb{R}^n, this can be shown also using Kohlberg's theorem (80) on the existence of invariant half-lines $f(u + t\eta) = u + (t + 1)\eta$ for t large. Then $\chi_j(f)$ exists for all j and $\bar{\chi}(f) = \max_{j \in [n]} \chi_j(f)$.
\[C := \{ x \mid \max_{j \in [n]} (A_{ij} + x_j) \leq \max_{j \in [n]} (B_{ij} + x_j), \quad i \in I \} \]

Theorem

\[\exists x \in C \setminus \{0\} \text{ iff Max has at least one winning position in the mean payoff game with dynamic programming operator} \]

\[f_j(x) = (A^\# B x)_j = \inf_{i \in I} (-A_{ij} + \max_{k \in [n]} (B_{ik} + x_k)) , \]

i.e., \(\exists j \in [n], \chi_j(f) \geq 0. \)
$A = \begin{pmatrix} 2 & -\infty \\ 8 & -\infty \\ -\infty & 0 \end{pmatrix} \quad B = \begin{pmatrix} 1 & -\infty \\ -3 & -12 \\ -9 & 5 \end{pmatrix}$

players receive the weight of the arc
\[2 + x_1 \leq 1 + x_1\]
\[8 + x_1 \leq \max(-3 + x_1, -12 + x_2)\]
\[x_2 \leq \max(-9 + x_1, 5 + x_2)\]
\[2 + x_1 \leq 1 + x_1 \]
\[8 + x_1 \leq \max(-3 + x_1, -12 + x_2) \]
\[x_2 \leq \max(-9 + x_1, 5 + x_2) \]

\[\chi(g) = (-1, 5), \ x = (-\infty, 0) \ \text{solution} \]
Theorem
When C is a polyhedron, the set of winning initial positions
\[\{ j \in [n] \mid \chi_j(f) \geq 0 \} \]
is exactly the union of supports (indices of finite entries) of the elements of C.
The proof relies on Kohlberg’s theorem of existence of invariant half-lines.

Corollary
Whether an (affine) tropical polyhedron
\[\{ x \mid \max_{j \in [n]} \max (A_{ij} + x_j), c_i) \leq \max_{j \in [n]} \max (B_{ij} + x_j), d_i), i \in [m] \} \]
is non-empty reduces to whether a specific state of a mean payoff game is winning.
Corollary

Each of the following problems:

1. Is an (affine) tropical polyhedron empty?
2. Is a prescribed initial state in a mean payoff game winning?

Can be transformed in linear time to the other one.

One can then compute $\chi(f)$ by dichotomy solving the emptiness problem for convex polyhedra.
It follows that all these problems

- belong to $\text{NP} \cap \text{co-NP}$ ([Condon 92], [Zwick and Paterson 96])
- can be solved in pseudo-polynomial time (value iteration).
- other algorithms with experimentally fast average execution time:
 - pumping algorithm [Gurvich, Karzanov, and Khachiyan 88],
 - policy iteration ([Cochet, Gaubert, Gunawardena 98],....), parity game algorithm of [Jurdziński and Vöge 00], but the number of iterations may be exponential, see [Fridman, 2009].

- the existence of a polynomial algorithm is an open problem.
Mean payoff games associated to linear independence

Let $A \in M_{m,n}(\mathbb{R}_{\text{max}})$. The columns of A are *tropically linearly dependent* if we can find scalars $x_1, \ldots, x_n \in \mathbb{R}_{\text{max}}$, not all equal to $-\infty$, such that “$Ax = 0$”, that is for all $i \in [m]$, when evaluating the expression

$$\max_{j \in [n]} (A_{ij} + x_j)$$

the maximum is attained (at least) twice.

Equivalently, the rows of A belongs to the tropical hyperplane

$$\{ z \mid \max_{j \in [n]} z_j + x_j \text{ attained twice} \}.$$
We define the game with dynamic programming operator

\[g_j(x) = \min_{i \in [m], (i,j) \in E} \left(-A_{ij} + \max_{k \in [n], k \neq j} (A_{ik} + x_k) \right), \]

where \(E = \{(i,j) | A_{ij} \neq -\infty \} \).
\(k \neq j \): the backspace move is forbidden for Max. So \(\chi(g) \leq 0 \).

Theorem

The columns of A are linearly dependent if and only if Max has at least one winning position in the game with operator g.
We define the game with dynamic programming operator

\[
g_j(x) = \min_{i \in [m], (i,j) \in E} \left(-A_{ij} + \max_{k \in [n], k \neq j} (A_{ik} + x_k) \right),
\]

where \(E = \{ (i,j) \mid A_{ij} \neq -\infty \} \).

\(k \neq j \): the backspace move is forbidden for Max. So \(\chi(g) \leq 0 \).

Theorem

The columns of \(A \) are linearly dependent if and only if Max has at least one winning position in the game with operator \(g \).

Idea of the proof. If in \((Au)_i\) the max is attained only once, then, there is an index \(j \) such that \(A_{ij} + u_j > \max_{k \neq j} A_{ik} + u_k \). We deduce that \(u_j > g_j(u) \).
\[a = (0 \ 2 \ 0) \ b = (0 \ 3 \ 2) \ c = (0 \ 1 \ 1) \ d = (1 \ 3 \ 0) \]
\(a = (0, 2, 0) \quad b = (0, 3, 2) \quad c = (0, 1, 1) \quad e = (1, 1, 0) \)
If one replaces \(d \) by \(e \), we leave it to the reader to check that Max looses at all states.
A $n \times n$ matrix B is tropically nonsingular iff the optimal assignment problem

$$\max_{\sigma} \sum_{i \in [n]} B_{i\sigma(i)}$$

has a unique optimal solution. We get a game proof of what follows:

Corollary

If $m \geq n$, the columns of A are linearly independent if and only if there is a $n \times n$ tropically nonsingular submatrix (unique optimal assignment).

[Develin, Santos, Sturmels 05]: mixed subdivision proof (special case finite entries), see also [Izhakian, Rowen 09]. Can we find this matrix in polynomial time?
Concluding remarks

- Tropical convexity yields a geometrical point of view on mean payoff games.
- Several tropical problems reduce to mean payoff games. See also current works of Gaubert and co-authors.
- Mean payoff deterministic games with finite action spaces \iff tropical linear programming.
- Can we find new algorithms for mean payoff games using the correspondance with tropical polyhedra?
- Can we find polynomial algorithms for all these problems?