Ancestral lines under selection and recombination

Ellen Baake

Bielefeld University

joint work with Frederic Alberti

- 1. The selection-recombination equation (forward in time)
 - 2. Its solution via genealogical thinking
 - 3. The dual process

Sequences and selection

individual: sequence of n sites, $S = \{1, ..., n\}$

types:
$$x := (x_1, \dots, x_n) \in X_i = X_i = X_i = \{0, 1\}$$

marginal types: $x_U := (x_i)_{i \in U}, \ U \subseteq S$

reproduction and selection:

- single selected site: $i_* \in S$ (all others 'neutral')
- types x with $x_{i_*} = 1$: reproduce at rate 1 ('bad, less fit')
- types x with $x_{i_*} = 0$: reproduce at rate 1 + s ('good, fit')

Ordering the sites

partial order on S:

- $i \preccurlyeq j$ if either $i_* \leqslant i \leqslant j$ or $i_* \geqslant i \geqslant j$
- \bullet $i \prec j$ if $i \preccurlyeq j$ and $i \neq j$
- *i* maximal element that precedes *i* (predecessor)
- $D_i := \{j \in S \mid i \preccurlyeq j\}$ (i-tail), $C_i := S \setminus D_i$ (i-head), $i \in S \setminus i_*$

- $\leadsto i_* \in C_i$
- (single-crossover) recombination between C_i and D_i , $i \in S \setminus i_*$ (partitions S into C_i and D_i) at rate ϱ_i

Sequences and recombination

Moran model with selection and recombination


```
N(=5) individuals, n=4 sites, selected site i_*=3

\longrightarrow neutral reproduction, rate 1 (for all individuals)

\longrightarrow selective reproduction, rate s (for (**0*) ind.'s)

\overbrace{CiD}
 reco at site i, rate \varrho_i, i \in S \setminus i_* (for all individuals)
```

Selection-recombination equation

- $Z_t^N = (Z_t^N(x))_{x \in X}$ counting measure on X
- $Z_t^N(x) \sharp$ individuals of type x at time $t, x \in X$
- deterministic limit (dynamical law of large numbers): $N \to \infty$ w/o rescaling of parameters or time \leadsto

$$\frac{1}{N}(Z_t^N)_{t\geqslant 0} \longrightarrow (\omega_t)_{t\geqslant 0}$$

• $\omega_t = (\omega_t(x))_{x \in X}$ probability measure on X solves selection-recombination equation (SRE)

$$\begin{split} \dot{\omega}_t(x) &= s \big[(1 - x_{i_*}) - \omega_t(*, 0, *) \big] \, \omega_t(x) \\ &+ \sum_{i \in S \setminus i_*} \varrho_i \big[\omega_t(x_{C_i}, *) \, \omega_t(*, x_{D_i}) - \omega_t(x) \big], \quad x \in X \end{split}$$

Selection-recombination equation

- $Z_t^N = (Z_t^N(x))_{x \in X}$ counting measure on X
- $Z_t^N(x) \sharp$ individuals of type x at time $t, x \in X$
- deterministic limit: $N \to \infty$ w/o rescaling of parameters or time \rightsquigarrow

$$\frac{1}{N}(Z_t^N)_{t\geqslant 0} \longrightarrow (\omega_t)_{t\geqslant 0}$$

• $\omega_t = (\omega_t(x))_{x \in X}$ probability measure on X solves selection-recombination equation (SRE)

$$\begin{split} \dot{\omega}_t(x) &= s \big[(1 - x_{i_*}) - \omega_t(*, 0, *) \big] \omega_t(x) \\ &+ \sum_{i \in S \setminus i_*} \varrho_i \big[\omega_t(x_{C_i}, *) \omega_t(*, x_{D_i}) - \omega_t(x) \big], \quad x \in X \end{split}$$

Recombinators

• canonical projection: for $\varnothing \neq U \subseteq S$,

$$\pi_U: X \to \underset{i \in U}{\times} X_i = X_U, \quad \pi_U(x) = (x_i)_{i \in U} = x_U$$

• marginal measure wrt sites in U: for $\nu \in \mathcal{P}(X)$,

$$\pi_U.\nu = \nu \circ \pi_U^{-1} =: \nu^U$$

type distribution of sites in U for $x_U \in X_U$: $\nu^U(x_U) = \nu(x_U, *)$

• recombinator: for $i \in S \setminus i_*$,

$$\mathcal{P}(X) \longrightarrow \mathcal{P}(X) \ R_i(\nu) := \nu^{C_i} \otimes \nu^{D_i} \ ig(R_i(\nu)ig)(x) =
u(x_{C_i}, *) \cdot
u(*, x_{D_i})$$

distribution of sequences randomly pieced together from *i*-heads and *i*-tails

Selection-recombination equation

$$\begin{split} \dot{\omega}_{t}(x) &= s \big[(1 - x_{i_{*}}) - \omega_{t}^{\{i_{*}\}}(0) \big] \, \omega_{t}(x) \\ &+ \sum_{i \in S \setminus i_{*}} \varrho_{i} \big[\omega_{t}(x_{C_{i}}, *) \, \omega_{t}(*, x_{D_{i}}) - \omega_{t}(x) \big], \quad x \in X \end{split}$$

or

$$\dot{\omega}_t = s(F - f(\omega_t))\omega_t + \sum_{i \in S \setminus i_*} \varrho_i(R_i - 1)\omega_t$$

with

$$F\omega(x) = (1 - x_{i_*})\omega(x)$$

and

$$f(\omega) := \omega^{\{i_*\}}(0)$$

(proportion of fit individuals = proportion of individuals with 0 at selected site)

Research context

- hitchhiking: neutral x_i ($i \neq i_*$) selectively favoured if linked with $x_{i.} = 0$
- recombination and selection on same time scale (unlike Cuthbertson, Etheridge, Yu 2012; Pfaffelhuber, Studeny 2007; Bossert, Pfaffelhuber 2017)
- Stephan, Song, Langley 2006: approximate solution forward in time (n = 3, wild approximations, technical result, not generalisable)

Recursive solution

- $(i_k)_{0 \le k < n}$ non-decreasing permutation of S (sensu \le)
- $i_0 = i_*$
- $C^{(k)} = C_{i_k}, D^{(k)} = D_{i_k}, \varrho^{(k)} := \varrho_{i_k}$

hierarchy of solutions:

- $(\omega_t^{(0)})_{t\geqslant 0}$ solution of SRE with $\varrho^{(\ell)}=0$ for all ℓ (pure selection equation)
- $(\omega_t^{(k)})_{t\geqslant 0}$ solution of SRE truncated at k (with $\varrho^{(\ell)}=0$ for all $\ell>k$), $1\leqslant k< n$

Recursive solution

Theorem

The solution of the pure selection equation is given by

$$\omega_t^{(0)} = \frac{e^{stF}\omega_0}{e^{st}f(\omega_0) + 1 - f(\omega_0)},$$

and the solutions $\omega_t^{(k)}$ can be computed via the recursion

$$\omega_t^{(k)} = \mathrm{e}^{-\varrho^{(k)}t}\omega_t^{(k-1)} + \pi_{C^{(k)}}.\omega_t^{(k-1)} \otimes \int_0^t \varrho^{(k)} \mathrm{e}^{-\varrho^{(k)}\tau} \pi_{D^{(k)}}.\omega_\tau^{(k-1)} \; d\tau.$$

analytical proof √

genealogical content?

Genealogical approach

Moran model:

Genealogical approach

Ancestral selection-recombination graph (ASRG):

Genealogical approach

Ancestral selection-recombination graph (ASRG):

$N \to \infty$ limit of ASRG

- no coalescence → branches conditionally independent
- every line branches at rate s, splits at rates ϱ_i , $i \in S \setminus i_*$ (here $i_* = 1$)
- pecking order and 'heads up' order

$N \to \infty$ limit of ASRG

- run ASRG backward
- ullet sample types according to ω_0 (iid)
- propagate forward by pecking and glueing
- $\mathcal{X} \sim \omega_t$
- ancestral lines

Selection only: $\omega_t^{(0)}$

- $\varrho^{(\ell)} = 0$, for all $\ell \rightsquigarrow$ pure branching \rightsquigarrow Yule process at rate s ('ASG')
- $(K_t)_{t\geqslant 0}$ line-counting process
- $\mathbb{P}(K_t = k) = e^{-st}(1 e^{-st})^{k-1}$
- $\mathbb{E}(K_t) = e^{st}$

•
$$f(\omega_t) = 1 - \mathbb{E}[(1 - f(\omega_0))^{K_t}] = \frac{e^{st} f(\omega_0)}{e^{st} f(\omega_0) + 1 - f(\omega_0)}$$

Selection only: $\omega_t^{(0)}$

$$\begin{aligned} \omega_t^{(0)} &= \mathcal{L}(\mathcal{X}) = \mathbb{E}\left[\left(1 - f(\omega_0)\right)^{K_t}\right] \omega_0(. \mid \widetilde{\mathcal{X}}_{i_*} = 1) \\ &+ \left(1 - \mathbb{E}\left[\left(1 - f(\omega_0)\right)^{K_t}\right]\right) \omega_0(. \mid \widetilde{\mathcal{X}}_{i_*} = 0)\right] \\ &= \frac{\mathrm{e}^{stF}\omega_0}{\mathrm{e}^{st}f(\omega_0) + 1 - f(\omega_0)} \end{aligned}$$

Selection only: $\omega_t^{(0)}$

$$\begin{aligned} \omega_t^{(0)} &= \mathcal{L}(\mathcal{X}) = \mathbb{E}\left[\left(1 - f(\omega_0)\right)^{K_t}\right] \omega_0(. \mid \widetilde{\mathcal{X}}_{i_*} = 1) \\ &+ \left(1 - \mathbb{E}\left[\left(1 - f(\omega_0)\right)^{K_t}\right]\right) \omega_0(. \mid \widetilde{\mathcal{X}}_{i_*} = 0)\right] \\ &= \frac{\mathrm{e}^{stF}\omega_0}{\mathrm{e}^{st}f(\omega_0) + 1 - f(\omega_0)} \end{aligned}$$

Truncated and collapsed ASRG

- ASRG^(k): ASRG truncated at k ($\varrho^{(\ell)} = 0$ for $\ell > k$)
- cASRG^(k): collapsed ASRG^(k) (ASRG^(k-1) decorated with i_k -squares at rate $\varrho^{(k)}$ on every line)
- \leadsto ASRG_t^(k) = cASRG_t^(k) with independent ASRG^(k) attached to every i_k -square in a cASRG_t^(k) for the remaining time

Induction step: $\omega_t^{(k-1)} \to \omega_t^{(k)}$

- \mathcal{Y} type at root of $\mathsf{ASRG}_t^{(k-1)}$ ($\sim \omega_t^{(k-1)}$)
 = type at root of $\mathsf{cASRG}_t^{(k)}$ when ignoring the i_k -squares
- T time of rightmost i_k -square on line ancestral to $D^{(k)}$ in $\mathsf{ASRG}^{(k-1)}_t$; if no such square, $T := \Delta$
- \mathcal{Z} type at root of $\mathsf{ASRG}^{(k)}_{t-T} \ (\sim \omega^{(k)}_{t-T})$
- $\mathcal{X} = \mathbbm{1}_{T=\Delta} \mathcal{Y} + \mathbbm{1}_{T\neq\Delta} (\pi_{C^{(k)}}(\mathcal{Y}), \pi_{D^{(k)}}(\mathcal{Z}))$ type at root of $\mathsf{ASRG}^{(k)}_{+} (\sim \omega_{+}^{(k)})$

Induction step: $\omega_t^{(k-1)} \to \omega_t^{(k)}$

$$\mathcal{X} = \mathbb{1}_{T=\Delta}\mathcal{Y} + \mathbb{1}_{T\neq\Delta}\big(\pi_{C^{(k)}}(\mathcal{Y}), \pi_{D^{(k)}}(\mathcal{Z})\big)$$

$$\rightsquigarrow \ldots \rightsquigarrow \mathcal{X} = \mathbb{1}_{\widetilde{\boldsymbol{T}} = \Delta} \mathcal{Y} + \mathbb{1}_{\widetilde{\boldsymbol{T}} \neq \Delta} (\pi_{C^{(k)}}(\mathcal{Y}), \pi_{D^{(k)}}(\widetilde{\mathcal{Z}}))$$

 $\widetilde{\mathbf{Z}}$ type at root of $\mathsf{ASRG}_{t-\widetilde{T}}^{(k-1)}$ $(\sim \omega_{t-\widetilde{T}}^{(k-1)})$

$$\omega_t^{(k)} = \mathcal{L}(\mathcal{X}) = \mathbb{E}\left[\mathcal{L}(\mathcal{X} \mid \widetilde{T})\right]$$

$$= e^{-\varrho^{(k)}t}\omega_t^{(k-1)} + \pi_{C^{(k)}}.\omega_t^{(k-1)} \otimes \pi_{D^{(k)}}.\int_0^t \varrho^{(k)} e^{-\varrho^{(k)}\tau}\omega_\tau^{(k-1)} d\tau$$

(via symmetry of Poisson process)

Synchronising the ASRG

• expand cASRG⁽¹⁾ along ancestral line

until new copy has no i_1 -square on ancestral line

• only i_1 -squares on the ancestral line of $D^{(1)}$ relevant \rightsquigarrow synchronise i_1 -squares across lines:

Synchronised ASRG

only i_1 -squares on the ancestral line of $\mathcal{D}^{(1)}$ relevant

- → identical distribution across lines matters, but independence does not
- \rightsquigarrow ASG decorated by i_1 -bars laid down at rate $\varrho^{(1)}$
- → new tail attached to whichever 'head-line' is ancestral

Labelling and pruning

Labelling and pruning

• label every line with the set A of sites to which it is potentially ancestral $\leadsto A$ splits into $A \cap C_{i_1}$ and $A \cap D_{i_1}$ at i_1 -bar

Labelling and pruning

- label every line with the set A of sites to which it is potentially ancestral $\rightsquigarrow A$ splits into $A \cap C_{i_1}$ and $A \cap D_{i_1}$ at i_1 -bar
- delete i_1 -bar when $A \subseteq C_{i_1}$

Iteration

Iteration

add i_2 -bars at rate ϱ_{i_2} on every ASG, label, prune and so forth

Dual process: Weighted partitioning process

- $(\Sigma_t, V_t)_{t\geqslant 0}$ weighted partitioning process
- $(\Sigma_t)_{t\geqslant 0}$ partitioning process ('ARG') on set of interval (or ordered) partitions of S
- V_t assigns an integer to every part of Σ_t (the number of lines in its ASG)

Dual process: Weighted partitioning process

if
$$(\Sigma_t, V_t) = (\mathcal{A}, v)$$
,
 $\mathcal{A} = \{A_1, \dots, A_m\}, \ v = (v_A)_{A \in \mathcal{A}}$:

- $\mathcal{A} \to \{A_1, \dots, A_j \cap C_i, A_j \cap D_i, \dots, A_m\},\ v \to (v_{A_1}, \dots, v_{A_i}, 1, v_{A_{i+1}}, \dots, v_{A_m}), \text{ at rate } \varrho_i, i \in S \setminus i_*$
- independently of Σ_t :
 - $v_A o v_A + 1$ at rate sv_A for every $A \in \mathcal{A}$ ('Yule')
 - $v_A o 1$ at rate $\sum_{\ell \preccurlyeq \min(A)} \varrho_\ell$ for every $A \in \mathcal{A}$ ('reset' at any split between A and i_*)

Duality

duality function:

$$\begin{split} H\big((\mathcal{A}, \mathbf{v}), \omega\big) &:= \bigotimes_{A \in \mathcal{A}} \Big[\big(1 - (1 - f(\omega))^{\mathbf{v}_A} \big) \omega^A \big(\, . \mid \widetilde{\mathcal{X}}_{i_*} = 0 \big) \\ &+ (1 - f(\omega))^{\mathbf{v}_A} \omega^A \big(\, . \mid \widetilde{\mathcal{X}}_{i_*} = 1 \big) \Big] \end{split}$$

Theorem

$$\mathbb{E}_{\omega_0}\big[H\big((\mathcal{A},\mathbf{v}),\omega_t\big)\big] = \mathbb{E}_{(\mathcal{A},\mathbf{v})}\big[H\big((\Sigma_t,V_t),\omega_0\big)\big]$$

in particular,

$$\omega_t = \mathbb{E}_{(\{S\},1)}[H((\Sigma_t, V_t), \omega_0)]$$