# Modelling haplotype effects based on phylogeny

Maria L. Selle<sup>\*</sup> (maria.selle@ntnu.no), Ingelin Steinsland<sup>\*</sup>, Finn Lindgren<sup>†</sup> and Gregor Gorjanc<sup>‡</sup> \*Norwegian University of Science and Technology, <sup>†</sup>The University of Edinburgh, <sup>‡</sup>The Roslin Institute

- In quantitative genetics accurate estimation of haplotype effects with low frequency is challenging
- Haplotypes often differ only due to few mutations
- Leveraging similarities between haplotypes could improve estimation



## Model

- Autoregressive model for haplotype effects leveraging phylogeny
- Phylogeny from tree or network
   → haplotype network model
- Gaussian effects with covariance matrix from phylogeny  $\rightarrow$  sparse precision matrix
- Used as model component in phenotype model
- Full Bayesian inference using INLA



### Results and conclusion

- Simulation study:
  - Improves estimates compared to independent model
- Case study with mitochondrial haplotypes in dairy cattle
- Allows prediction of unobserved haplotypes



### Modelling haplotype effects based on phylogeny



Maria L. Selle<sup>\*</sup> (maria.selle@ntnu.no), Ingelin Steinsland<sup>\*</sup>, Finn Lindgren<sup>†</sup> and Gregor Gorjanc<sup>‡</sup> \*Norwegian University of Science and Technology, <sup>†</sup>The University of Edinburgh, <sup>‡</sup>The Roslin Institute

#### Conclusion

- Including the haplotype phylogeny when modelling haplotype effects improves estimates compared to assuming independent haplotypes, especially when few observations for specific haplotypes
- The proposed approach performs similarly to modeling haplotype effects using the mutation model

#### Background and aim

- Accurate estimation of haplotypes with low frequency is challenging
- Most mutations have no causal effect
- Leveraging similarities between haplotypes could improve estimation
- 1. Propose sparse latent hierarchical model for haplotype effects by leveraging phylogeny between haplotypes
- 2. Compare the proposed model with a model assuming independent haplotypes and the mutation model

#### The haplotype network model Assume conditional independence between haplotypes $h_j | h_{p(j)} \sim \mathcal{N}(\rho h_{p(j)}, \sigma_h^2),$ $h_i$ haplotype effect one mutation away from parent haplotype $h_{p(i)}$ . The conancestral haplotype effect distributed as $h_{anc} \sim \mathcal{N}(0, \sigma_0^2)$ , $\sigma_h^2 = \sigma_0^2 (1 - \rho^2).$ Joint density of $h = (h_1, ..., h_n)^T$ Gaussian, $h | \rho, \sigma_h^2 \sim \mathcal{N}(\mathbf{0}, Q(\rho, \sigma_h^2)^{-1})$ Precision matrix Q sparse, and derived from the phylogeny The dependency parameter, $\rho$ Determines similarity between haplotype Prior distribution close to 1 Real data application Posterior haplotype effects Model $y = Xeta + \gamma + a + Zh +$ Post. mean 0.25 Data 381 cattle, milk yield as p type, information about age at ca 0.00 county, herd, year and season of ca -0.25 Mitogenome haplotypes with phyle -0.50 consisting of 63 unique haplot where 16 of the haplotypes were Post. sd served in the cows 0=0+0-1 0.2 -• 0.2 1+0+0+ Inference INLA 0.3 Severa Once 0.4 Result Sharing of information between observed (1) and non-observed haplotypes (0)

#### 0000000 1000100 0100001 1000110 (a) (d) (e) 0110001 1001100 Mutations uniquely identify haplotypes on which they appeared, which creates "network" known as genealogy or phylogeny

Example phylogeny

|                   | Simulation study                                                                               |
|-------------------|------------------------------------------------------------------------------------------------|
|                   | Compare models:                                                                                |
|                   | <ul> <li>Haplotype network (HN)</li> </ul>                                                     |
|                   | • Mutation model (MM), $m{h} = m{U}m{v},$                                                      |
| mmon              | $\boldsymbol{v} \sim \mathcal{N}(\boldsymbol{0}, \sigma_v^2 \boldsymbol{I})$                   |
|                   | • IID haplotype effects (IH),                                                                  |
|                   | $m{h} \sim \mathcal{N}(m{0}, \sigma_h^2 m{I})$<br>Results                                      |
| es                | • HN and MM similar in CRPS, and both better than IH                                           |
|                   | <ul> <li>Improvement largest when haplo-<br/>types observed only once or not at all</li> </ul> |
| ε                 | 0.6                                                                                            |
| -                 | Model                                                                                          |
| heno-             | 0.5 HN                                                                                         |
| alving,<br>alving | g 0.4 — IH                                                                                     |
| ogeny             | S dela                                                                                         |
| types,<br>re ob-  | 0.3 - 0.5                                                                                      |
|                   |                                                                                                |



### Extensions

- · Extend to multiple phylogenies for different regions due to recombination • Time as distance rather than mutation (Ornstein–Uhlenbeck process)
- Allow ρ to vary

· Sparsity disappears if have polyploid individuals, or if much recombination

Limitations

· Only focused on biallelic SNPs