
The Wright-Fisher Model

Consider a haploid population of fixed size N and consider only
two alleles a and A. In the neutral Wright-Fisher model without
mutation, parents are chosen uniformly at random and offspring
inherit their type. To add mutation and selection:

•Mutation - after choosing parent, flip a coin. If heads then the
offspring mutates, otherwise it retains type of their parent

•Selection - weight individuals by the relative fitness when choos-
ing parents
Example of WF Model with Mutation and Selection
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The Wright-Fisher Diffusion

Rescaling the Wright-Fisher model leads to the Wright-Fisher
diffusion:

1

N
Y N
btNc→ Xt

where the convergence is pathwise in D[0,1]([0,∞)), and X
satisfies the SDE

dXt =
1

2
(sXt(1−Xt)− θa→AXt + θA→a(1−Xt)) dt

+
√
Xt(1−Xt)dWt

s ∈ S is the selection parameter we wish to infer and
θa→A, θA→a > 0 are the corresponding mutation parameters
which we assume to be known.

Sample paths from a Wright-Fisher Diffusion
with s = 1, θa→A = 0.5, θA→a = 0.8
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The Inferential Setting

We observe one whole sample path (Xt)t∈[0,T ] continuously
through time, and consider the properties of the Bayesian
estimator s̃T for s in the asymptotic limit T →∞. We define

s̃T = arg min
s̄T
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s

[
`
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T (s̄T − s)
)]
p(s)ds

where p and l are a suitably chosen prior and loss function
respectively. The idea is to obtain bounds on what we can learn
from the data in the absence of observational error, as done in [1]
& [2]. The object of interest is the likelihood ratio function
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s+ u√
T
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where we look at an order 1√
T

perturbation around a fixed s.

Properties of the Bayesian Estimator

The Ibragimov-Has’minskii Conditions & Theorem

C1 : ∀K ⊂ Θ compact, ∃ a,B ∈ R s.t. ∀R > 0, ∀u1, u2

s.t. |u1| < R, |u2| < R, and q > 0
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C2 : ∀K ⊂ Θ compact, ∃gT(·) a suitable monotonically
increasing continuous function s.t.
∀u ∈ UT,s := {u : s+ u√

T
∈ Θ}
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C3 : The random functions ZT,s(u) have marginal distributions
which converge uniformly in s ∈ K as T →∞ to
those of the random function Zs(u)

C4 : The random function

ψ(v) =

∫
R
`(v − u)

Zs(u)∫
RZs(y)dy

du

attains its minimum value at the unique point ũ(s) = ũ
with probability 1

Theorem : If s̃T is the Bayesian estimator and C1-C4 hold, then
we have that s̃T :

• is uniformly consistent in s ∈ K
• is uniformly asymptotically normal
•displays moment convergence for any p > 0 uniformly on

compacts K ⊂ Θ
• is asymptotically efficient for a suitable choice of loss function
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