
The Annals of Applied Probability
2006, Vol. 16, No. 1, 91–106
DOI: 10.1214/105051605000000647
© Institute of Mathematical Statistics, 2006

OVERSHOOTS AND UNDERSHOOTS OF LÉVY PROCESSES

BY R. A. DONEY AND A. E. KYPRIANOU

University of Manchester and Heriot Watt University

We obtain a new fluctuation identity for a general Lévy process giving a
quintuple law describing the time of first passage, the time of the last maxi-
mum before first passage, the overshoot, the undershoot and the undershoot of
the last maximum. With the help of this identity, we revisit the results of Klüp-
pelberg, Kyprianou and Maller [Ann. Appl. Probab. 14 (2004) 1766–1801]
concerning asymptotic overshoot distribution of a particular class of Lévy
processes with semi-heavy tails and refine some of their main conclusions.
In particular, we explain how different types of first passage contribute to the
form of the asymptotic overshoot distribution established in the aforemen-
tioned paper. Applications in insurance mathematics are noted with emphasis
on the case that the underlying Lévy process is spectrally one sided.

1. Lévy processes and ladder processes. This paper concerns overshoots
and undershoots of Lévy processes at first upwards passage of a constant boundary.
We will therefore begin by introducing some necessary but standard notation.

In the sequel X will always denote a Lévy process defined on the filtered space
(�,F ,F,P ), where the filtration F = {Ft : t ≥ 0} is assumed to satisfy the usual
assumptions of right continuity and completion. Its characteristic exponent will be
given by �(θ) := − logE(eiθX1) and its jump measure by �X . We will work with
the probabilities {Px :x ∈ R} such that Px(X0 = x) = 1 and P0 = P . The proba-
bilities {P̂x :x ∈ R} will be defined in a similar sense for the dual process, −X.

Denote by {(L−1
t ,Ht ) : t ≥ 0} and {(L̂−1

t , Ĥt ) : t ≥ 0} the (possibly killed) bi-
variate subordinators representing the ascending and descending ladder processes.
Denote by κ(α,β) and κ̂(α,β) their joint Laplace exponents for α,β ≥ 0. For
convenience, we will write

κ(0, β) = q + ξ(β) = q + cβ +
∫
(0,∞)

(1 − e−βx)�H(dx),

where q ≥ 0 is the killing rate of H so that q > 0 if and only if limt↑∞ Xt = −∞,
c ≥ 0 is the drift of H and �H is its jump measure. The quantity ξ is a true
subordinator Laplace exponent. Similar notation will also be used for κ̂(0, β) by
replacing q , ξ , c and �H by q̂ , ξ̂ , ĉ and �Ĥ . Note that, when q > 0, we necessarily
have q̂ = 0.
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Associated with the ascending and descending ladder processes are the bivariate
renewal functions U and Û. The former is defined by

U(dx, ds) =
∫ ∞

0
dt · P(Ht ∈ dx,L−1

t ∈ ds)

and taking double Laplace transforms shows that∫ ∞
0

∫ ∞
0

e−βx−αsU(dx, ds) = 1

κ(α,β)
for α,β ≥ 0,(1)

with a similar definition and relation holding for Û. These bivariate renewal
measures are essentially the Green’s measures of the ascending and descending
ladder processes. By U(dx) and Û (dx), we will denote the marginal measures
U(dx, [0,∞)) and Û(dx, [0,∞)), respectively. Note that local time at the maxi-
mum is defined only up to a multiplicative constant. For this reason, the exponent
κ can only be defined up to a multiplicative constant and, hence, the same is true
of the measure U (and then obviously this argument applies to Û).

Let
�Xt := sup

u≤t
Xu and Xt := inf

u≤t
Xu.

The symbol eq will always denote a random variable which is independent of X

and distributed according to an exponential distribution with parameter q > 0. In
addition, define, for each x ∈ R,

τ+
x = inf{t > 0 :Xt > x} and τ−

x = inf{t > 0 :Xt < x}.
2. Asymptotic overshoots. Let us now move to the setting of Klüppelberg,

Kyprianou and Maller [10] and, in part, the motivation for this paper. For this it
will be necessary to introduce some more notation.

For each α ≥ 0, S(α) will denote the class of nonlattice convolution equivalent
distributions. That is, to say distributions, F , with a nonlattice support on [0,∞)

such that �F(x) := 1 − F(x) > 0 for all x > 0 satisfying

lim
u↑∞

�F(u − x)

�F(u)
= eαx for each x ∈ R,

(2)

lim
u↑∞

�F ∗2(u)

�F(u)
= 2M for some M > 0.

There are several additional facts which follow from this definition. The constant
M was identified as equal to

∫
[0,∞) e

αxF (dx) (and, hence, the latter Laplace–
Stieltjes transform is necessarily finite); see [4, 5, 11, 12]. Condition (2) implies
that F(dx)/�F(x) converges in the weak sense to an exponential distribution with
parameter α. It can also be shown that any measure � which is tail equivalent
to a distribution F ∈ S(α), that is, to say ��(u) := �(u,∞) ∼ �F(u) as u ↑ ∞ for
F ∈ S(α), also belongs to S(α); see [7].

The following assumptions are included in the set-up in [10].
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ASSUMPTION 1. Fix α > 0.

(i) X0 = 0, limt↑∞ Xt = −∞ almost surely and supp� ∩ (0,∞) 
= ∅,

(ii) ��H ∈ S(α) and
(iii) q + ξ(−α) > 0.

One of the main contributions of Klüppelberg, Kyprianou and Maller [10] was
the following result.

THEOREM 2. Under Assumption 1 we have

lim
x↑∞P

(
Xτ+

x
− x > u|τ+

x < ∞) = �G(u),

where

�G(u) = e−αu

q

(
q + ξ(−α) +

∫
(u,∞)

(eαy − eαu)�H(dy)

)
.(3)

In this paper we aim to recapture and explain in more detail the above result
by proving stronger versions of asymptotic results concerning the overshoot and
undershoot of both X and �X. Specifically, we will show that the two components

e−αu

q

(
q + ξ(−α)

)
and

e−αu

q

(∫
(u,∞)

(eαy − eαu)�H(dy)

)
in (3) are the consequence of two types of asymptotic overshoot; namely, first
passage occurring as a result of the following:

• an arbitrarily large jump from a finite position after a finite time, or
• a finite jump from a finite distance relative to the barrier after an arbitrarily large

time,

respectively.
Our method appeals directly to a new fluctuation identity for a general Lévy

process at first passage over a fixed level which specifies the following quintuple
law of:

• the time of first passage relative to the time of the last maximum at first passage,
• the time of the last maximum at first passage,
• the overshoot at first passage,
• the undershoot at first passage and
• the undershoot of the the last maximum at first passage.

This quintuple law can be expressed entirely in terms of the quantities �X ,
U and Û.

Once this identity is established, it becomes a straightforward exercise to deal
with the asymptotic behavior of this quintuple law conditional on first passage
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occurring under Assumption 1. Indeed, what will prevail in our analysis is the use
of the facts that, under this assumption, U(·,∞) and ��+

X(·) both belong to S(α).
These two facts can be deduced from the combined conclusions of Proposition 2.5,
Lemma 3.5, Theorem 4.1 and Proposition 5.3 in [10]. Specifically, it was proved
that when Assumption 1(i) and (iii) hold, then U(·,∞), ��H(·) and ��+

X(·) are all
in S(α) simultaneously or not at all. In the case they all belong to S(α),

U(u,∞) ∼ 1

(q + ξ(−α))2
��H(u) ∼ 1

(q + ξ(−α))2ξ̂ (α)
��+

X(u)(4)

as u tends to infinity.
The outline of the remainder of the paper is as follows. In the next section we

prove the new fluctuation identity for first passage of a general Lévy process over
a fixed level. In Section 4 we consider the asymptotic joint laws of the space–
time overshoot of X, the undershoot of X and the space–time undershoot of �X,
all under Assumption 1. We conclude with some additional remarks, in particular,
with regard to applications in insurance mathematics.

3. A quintuple law for overshoots and undershoots. The main purpose of
this section is to prove the following quintuple law for space–time positions of
overshoots and undershoots. We will use the notation

�Gt = sup{s ≤ t :Xs ∨ Xs− = �Xs−} and Gt = sup{s ≤ t :Xs ∧ Xs− = Xs−}.

THEOREM 3. Suppose that X is not a compound Poisson process. Then for a
suitable choice of normalizing constant of the local time at the maximum, for each
x > 0, we have on u > 0, v ≥ y, y ∈ [0, x], s, t ≥ 0,

P
(
τ+
x − �Gτ+

x − ∈ dt, �Gτ+
x − ∈ ds,Xτ+

x
− x ∈ du, x − Xτ+

x − ∈ dv, x − �Xτ+
x − ∈ dy

)
= U(x − dy, ds)Û(dv − y, dt)�X(du + v),

where �X is the Lévy measure of X.

Before going to the proof, let us give some intuition behind the statement of
this result by discussing its analogue for random walks. The latter turns out to be
relatively simple to establish.

Suppose then that S = {Sn :n ≥ 0} is a random walk on the probability space
(�,F ,P). That is, S0 = 0 and Sn = ∑n

i=1 ξi , where {ξi : i ≥ 1} are independent
and identically distributed with some law F . Define the random variables

�Sn = max(0, S1, . . . , Sn),

θ̄n = max{k ≤ n :Sk = �Sn},
σx = min{n ≥ 1 :Sn > x}.
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Let {(T ′
n,H

′
n) :n ≥ 0} be the weak ascending ladder process and {(T̂n, Ĥn) :n ≥ 0}

be the strict descending ladder height process of S. Associated with each of these
ladder processes are their Green measures

U
′(dx, i) := ∑

n≥0

P(H ′
n ∈ dx,T ′

n = i) and Û(dx, j) = ∑
n≥0

P(Ĥn ∈ dx, T̂n = j)

for x ≥ 0 and i, j ∈ Z≥0. The equivalent quintuple law for random walks takes the
following form.

THEOREM 4. For each x > 0, we have on u > 0, v ≥ y, y ∈ [0, x], i, j,∈ Z≥0,

P
(
σx − 1 − θ̄ σx−1 = i, θ̄σx−1 = j,

Sσx − x ∈ du, x − Sσx−1 ∈ dv, x − �Sσx−1 ∈ dy
)

(5)

= U
′(x − dy, j)Û(dv − y, i)F (du + v).

PROOF. Note first that, by duality,

Û(dv − y, i) = P(Sm < 0,1 ≤ m < i,Si ∈ y − dv),

so that the

RHS of (5)

= P(Sn < x − y,1 ≤ n < j,Sj ∈ x − dy)

× P(Sm < 0,1 ≤ m < i,Si ∈ y − dv)P(S1 ∈ v + du)

= P(Sn < x − y,1 ≤ n < j,Sj ∈ x − dy,

Sj+m < x − y,1 ≤ m < i,Sj+i ∈ x − dv,Sj+i+1 ∈ x + du)

= LHS of (5),

thus completing the proof. �

REMARK 5. From the analysis above, if we let θ̄n = min{k :Sk = �Sn}, then
one can reason similarly that, for each x > 0, we have on u > 0, v ≥ y, y ∈ [0, x],
i, j,∈ Z≥0,

P
(
σx − 1 − θ̄σx−1 = i, θ̄σx−1 = j,

Sσx − x ∈ du, x − Sσx−1 ∈ dv, x − �Sσx−1 ∈ dy
)

= U(x − dy, j)Û′(dv − y, i)F (du + v).

Here we have the subtle difference that U and Û
′ are the Green’s measures of the

strict ascending and weak descending ladder processes.

Note that hints concerning the quintuple law for the random walk case can al-
ready be seen in the discussion on the Wiener–Hopf factorization in [3].

We now move to the proof of the quintuple law for Lévy processes.
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PROOF OF THEOREM 3. We prove the result in three steps.

Step 1. Let us suppose that m,k,f, g and h are all positive, continuous func-
tions with compact support satisfying f (0) = g(0) = h(0) = 0. We prove

E
(
m

(
τ+
x − �Gτ+

x −
)
k
(�Gτ+

x −
)
f

(
Xτ+

x
− x

)
g
(
x − Xτ+

x −
)
h
(
x − �Xτ+

x −
))

(6)

= Êx

(∫ τ−
0

0
m(t − Gt)k(Gt)h(Xt)w(Xt) dt

)
,

where w(z) = g(z)
∫
(z,∞) �X(du)f (u − z).

The proof of this result follows by an application of the compensation formula
applied to the point process of jumps with intensity measure dt ×�(dx). We have

E
(
m

(
τ+
x − �Gτ+

x −
)
k
(�Gτ+

x −
)
f

(
Xτ+

x
− x

)
g
(
x − Xτ+

x −
)
h
(
x − �Xτ+

x −
))

= E

( ∑
t<∞

m(t − �Gt−)k(�Gt−)g(x − Xt−)h(x − �Xt−)

× 1(x−�Xt−>0)f (Xt− + �Xt − x)1(�Xt>x−Xt−)

)

= E

(∫ ∞
0

dt · m(t − �Gt−)k(�Gt−)g(x − Xt−)h(x − �Xt−)

× 1(x−�Xt−>0)

∫
(x−Xt−,∞)

�X(dφ)f (Xt− + φ − x)

)

= E

(∫ ∞
0

dt · m(t − �Gt−)k(�Gt−)h(x − �Xt−)1(x−�Xt−>0)w(x − Xt−)

)
= Êx

(∫ ∞
0

dt · 1(t<τ−
0 )m(t − Gt)k(Gt)h(Xt)w(Xt)

)
,

which is equal to the right-hand side of (6). In the last equality we have rewritten
the previous equality in terms of the path of −X. Note that the condition f (0) =
g(0) = h(0) = 0 has been used implicitly to exclude from the calculation the case
of first passage by creeping.

Step 2. Next we prove that

Ex

(∫ τ−
0

0
m(t − Gt)k(Gt)h(Xt)w(Xt) dt

)
=

∫
[0,∞)

∫
[0,∞)

U(dφ, dt)(7)

×
∫
[0,x]

∫
[0,∞)

Û(dθ, ds)m(t)k(s)h(x − θ)w(x + φ − θ).
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(Note, however, that this result will be applied in conjunction with the conclusion
of step 1 to the process −X.)

The statement and proof of (7) is a generalization of Theorem VI.20 in [2]. For
q > 0,

Ex

(∫ τ−
0

0
dt · m(t − Gt)k(Gt)h(Xt)w(Xt)e

−qt

)
= q−1Ex

(
m

(
eq − Geq

)
k
(
Geq

)
h
(
Xeq

)
w

(
Xeq − Xeq

+ Xeq

); eq < τ−
0

)
= q−1

∫
[0,x]

∫
[0,∞)

P
(−Xeq

∈ dθ,Geq
∈ ds

)
k(s)

×
∫
[0,∞)

∫
[0,∞)

P
(
Xeq − Xeq

∈ dφ, eq − Geq
∈ dt

)
(8)

× m(t)h(x − θ)w(x + φ − θ)

= q−1
∫
[0,x]

∫
[0,∞)

P
(−Xeq

∈ dθ,Geq
∈ ds

)
k(s)

×
∫
[0,∞)

∫
[0,∞)

P
(�Xeq ∈ dφ, �Geq ∈ dt

)
× m(t)h(x − θ)w(x + φ − θ),

where the Wiener–Hopf factorization and duality have been used in the second
and third equalities respectively. Next note that, for a suitable normalization of the
local time at the maximum, we have

q = κ(q,0)κ̂(q,0)

(cf. equation (3) of Chapter VI in [2]). Further, it is also known from the Wiener–
Hopf factorization that

1

κ(q,0)
E

(
e−α�Geq −β�Xeq

) = 1

κ(α + q,β)

(cf. equation (1), Chapter VI of [2]) and, hence, recalling (1), it follows that

lim
q↓0

1

κ(q,0)
P

(�Xeq ∈ dφ, �Geq ∈ dt
) = U(dφ, dt)

in the sense of vague convergence. A similar convergence holds for P(−Xeq
∈

dθ,Geq
∈ ds)/κ̂(q,0). Equality (7) thus follows by taking limits in (8).
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Step 3. We combine the conclusions of steps 1 and 2 to conclude that

E
(
m

(
τ+
x − �Gτ+

x −
)
k
(�Gτ+

x −
)
f

(
Xτ+

x
− x

)
g
(
x − Xτ+

x −
)
h
(
x − �Xτ+

x −
))

=
∫
u>0,y∈[0,x],0<y≤v,s≥0,t≥0

m(t)k(s)f (u)g(v)h(y)

P
(
τ+
x − �Gτ+

x − ∈ dt, �Gτ+
x − ∈ ds,

Xτ+
x

− x ∈ du, x − Xτ+
x − ∈ dv,

x − �Xτ+
x − ∈ dy

)
=

∫
[0,∞)

∫
[0,∞)

Û(dφ, dt)

∫
[0,x]

∫
[0,∞)

U(dθ, ds)m(t)k(s)

× h(x − θ)g(x + φ − θ)

×
∫
(x+φ−θ,∞)

�X(dη)f
(
η − (x + φ − θ)

)
.

Substituting y = x − θ , then y + φ = v and finally, η = v + u in the right-hand
side above yields

E
(
m

(
τ+
x − �Gτ+

x −
)
k
(�Gτ+

x −
)
f

(
Xτ+

x
− x

)
g
(
x − Xτ+

x −
)
h
(
x − �Xτ+

x −
))

=
∫
[0,∞)

∫
[0,x]

U(x − dy, ds)

∫
[0,∞)

∫
[y,∞)

Û(dv − y, dt)

×
∫
(0,∞)

�X(du + v)m(t)k(s)f (u)g(v)h(y)

and the statement of the theorem follows. �

The missing case of a compound Poisson process, excluded from Theorem 3,
can be handled similarly to the random walk case.

As a consequence of the above identity, we also obtain the following corollary
which relates �(dt, dh), the Lévy measure of (L−1,H), to �X .

COROLLARY 6. For all t, h > 0, we have

�(dt, dh) =
∫
[0,∞)

Û(dθ, dt)�X(dh + θ).

PROOF. The result will follow by first proving the following auxiliary result
for the ascending ladder process at its first passage time Tx := inf{t > 0 :Ht > x}.
Let �L−1

Tx
= L−1

Tx
− L−1

Tx−, then

P
(
�L−1

Tx
∈ dt,L−1

Tx− ∈ ds, x − HTx− ∈ dy,HTx − x ∈ du
)

(9) = U(x − dy, ds)�(dt, du + y)



OVERSHOOTS AND UNDERSHOOTS 99

for t > 0, s > 0, y ∈ [0, x], u > 0. The proof follows from a straightforward cal-
culation using the compensation formula along the lines of the proof of Proposi-
tion III.2 in [2]. We omit the technicalities for the sake of brevity.

To finish the proof of the corollary, note that �L−1
Tx

= τ+
x − �Gτ+

x −, L−1
Tx− =

�Gτ+
x −, x −HTx− = x −Xτ+

x − and HTx − x = Xτ+
x

− x. Hence, from the quintuple
law, we also know that

P
(
�L−1

Tx
∈ dt,L−1

Tx− ∈ ds, x − HTx− ∈ dy,HTx − x ∈ du
)

= U(x − dy, ds)

∫
[y,∞)

Û(dv − y, dt)�X(du + v)

and from here, by comparing with (9), the statement of the theorem follows. �

Note that, by integrating out dt in the conclusion of the above corollary, we
recover the recent identity of Vigon [14] for the Lévy measure of the ascending
ladder height process.

We conclude this section with examples of Lévy processes for which new, ex-
plicit identities can be obtained. Before doing so we make the remark that there are
limited examples of Lévy processes for which the exponents κ and κ̂ are known
explicitly in terms of elementary or special functions. Further, of these known ex-
amples, there are no known cases for which the inversion in (1) can be performed
to give the bivariate measures U and Û explicitly. Not surprisingly then, our ex-
amples do not explore the quintuple law to its full generality.

EXAMPLE 7 (Strictly stable processes). Suppose that X is a strictly stable
process with index γ ∈ (0,2). That is to say, a Lévy process satisfying the scaling

property Xt
d= t1/γ X1 for all t > 0. The Lévy measure is given (up to a multiplica-

tive constant) by

�X(dx) = 1(x>0)

c+

x1+γ
dx + 1(x<0)

c−

|x|1+γ
dx,

where c+ and c− are two nonnegative real numbers. To avoid trivialities, we take
c+ > 0.

For such processes it is known that the ladder process H is a stable subor-
dinator with index γρ, where ρ = P(X1 ≥ 0) and, hence, up to a multiplica-
tive constant κ(0, β) = βγρ for β ≥ 0. Similarly, up to a multiplicative constant
κ̂(0, β) = βγ (1−ρ). For these facts, the reader is again referred to Bertoin [2].

Inverting (1) when α = 0, we find that (up to a multiplicative constant)

U(dx) = xγρ−1

�(γρ)
dx,



100 R. A. DONEY AND A. E. KYPRIANOU

with a similar identity holding for Û (dx) except that ρ is replaced by 1 − ρ. Mar-
ginalizing the quintuple law to a triple law, we now obtain a new identity for stable
processes. Namely,

P
(
Xτ+

x
− x ∈ du, x − Xτ+

x − ∈ dv, x − �Xτ+
x − ∈ dy

)
= const.

(x − y)γρ−1(v − y)γ (1−ρ)−1

(v + u)1+γ
dy dv du

for y ∈ [0, x], v ≥ y and u > 0, where the normalizing constant makes the right-
hand side a distribution (note that stable processes do not creep and, hence, there
is no atom on the event {Xτ+

x
= x} to take care of ). Performing a triple integral

one may show that the constant is thus equal to

sinαρπ

π

�(α + 1)

�(αρ)�(α(1 − ρ))
.

EXAMPLE 8 (Spectrally positive processes). In this case, the downward ladder
height process is a linear drift with gradient 1 killed at rate q̂ ≥ 0. For this reason
it follows that Û (dx) = e−q̂x dx. This gives the triple law

P
(
Xτ+

x
− x ∈ du, x − Xτ+

x − ∈ dv, x − �Xτ+
x − ∈ dy

)
= e−q̂(v−y)U(x − dy)�X(du + v) dv

for y ∈ [0, x], v ≥ y and u > 0.
The Wiener–Hopf factors for spectrally positive Lévy processes are well under-

stood (cf. Chapter VII in [2]). Indeed, it is known that κ̂(α,β) = �(α) + β , where
� is the inverse of the Laplace exponent ψ(β) = logE(e−βX1) for β ≥ 0. The
identification of U via its Laplace transform in (1) thus simplifies to∫

[0,∞)
e−βxU(dx) = β

ψ(β)
.(10)

When, in addition, X has bounded variation and drifts to minus infinity, it is
possible to give a more explicit identity for the measure U and, hence, for the
above expression. In this case X is the difference of a subordinator and a positive
drift of rate c such that E(X1) < 0. It is known then that q̂ = 0 and q = |E(X1)|
(see, e.g., Section 6 of [10]). By taking Laplace transforms, we see from (10) that

U(dx) = 1

c

∑
n≥0

ν∗n(dx),

where we understand ν∗0(dx) = δ0(dx) and

ν(dx) = 1

c
�X(x,∞) dx.

[Note that the assumption E(X1) < 0 ensures that c−1 ∫
(0,∞) �X(y,∞) dy < 1.]
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Our triple law now takes the form

P
(
Xτ+

x
− x ∈ du, x − Xτ+

x − ∈ dv, x − �Xτ+
x − ∈ dy

)
= 1

c

∑
n≥0

ν∗n(x − dy)�X(du + v) dv

for y ∈ [0, x], v ≥ y and u > 0.

REMARK 9. The latter example is relevant to insurance mathematics. One
may compare against similar results in the papers of Gerber and Shiu [8], Dickson
and Drekic [6] and Sun and Yang [13], which concern the classical Cramér–
Lundberg process (which in our setting is a spectrally positive compound Poisson
process drifting to minus infinity).

4. The asymptotic role of undershoots in overshoots. In the following two
theorems, we consider the asymptotic overshoot and undershoot in space and time
at first passage of X, conditional on making first passage, as the barrier tends to
infinity. The spatial undershoot is measured, in the first case, backward from the
barrier and, in the second case, upward from the origin.

THEOREM 10. Under Assumption 1:

(i) For t ≥ 0, y ≥ 0, v ≥ y and u > 0,

lim
x↑∞P

(
τ+
x − �Gτ+

x − ∈ dt,Xτ+
x

− x ∈ du,

x − Xτ+
x − ∈ dv, x − �Xτ+

x − ∈ dy|τ+
x < ∞)

= α

q
eαy dy · Û(dv − y, dt)�X(du + v).

(ii) For u > 0, we have∫
v∈(0,∞)

lim
x↑∞P

(
Xτ+

x
− x ∈ du, x − Xτ+

x − ∈ dv|τ+
x < ∞)

= α

q

∫ ∞
0

eαy�H(du + y)dy.

PROOF. (i) Starting with the main identity given in Theorem 3, marginalizing
out �Gτ+

x − and recalling the Pollaczek–Khintchine identity,

P(τ+
x < ∞) = qU(x,∞)

(cf. Proposition 2.5 of [10]), we see that the required asymptotic is equal to

lim
x↑∞

U(x − dy)

qU(x,∞)
Û(dv − y, dt)�X(du + v).
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Note that U(·,∞) ∈ S(α) by Assumption 1 and so by the associated property of
weak convergence, the limit follows.

(ii) In the spirit of the calculations in part (i), we may also marginalize the
quintuple law to a bivariate law of the overshoot and undershoot and compute,
with the help of weak convergence,

lim
x↑∞P

(
Xτ+

x
− x ∈ du, x − Xτ+

x − ∈ dv|τ+
x < ∞)

= lim
x↑∞

∫
y∈[0,v]

U(x − dy)

qU(x,∞)
Û(dv − y)�X(du + v)

=
∫ ∞

0
dy · α

q
eαy1(y≤v)Û (dv − y)�X(du + v).

Finally integrating with respect to v ∈ (0,∞), the result follows by applying
Fubini’s theorem and invoking Vigon’s identity (as a special case of Corollary 6)
in the form

�H(du + y) =
∫
[y,∞)

Û (dv − y)�X(du + v),

thus concluding the proof. �

THEOREM 11. Under Assumption 1:

(i) For s, t ≥ 0, u > 0, θ ≥ 0 and φ ≤ θ ,

lim
x↑∞P

(
τ+
x − �Gτ+

x − ∈ dt, �Gτ+
x − ∈ ds,

Xτ+
x

− x ∈ du,Xτ+
x − ∈ dφ, �Xτ+

x − ∈ dθ |τ+
x < ∞)

= U(dθ, ds)Û(θ − dφ, dt)
α(q + ξ(−α))2ξ̂ (α)

q
e−α(u−φ) du.

(ii) For u > 0,∫
φ∈(0,∞)

lim
x↑∞P

(
Xτ+

x
− x ∈ du,Xτ+

x − ∈ dφ|τ+
x < ∞)

= αe−αu (q + ξ(−α))

q
du.

PROOF. (i) With a change of variable in the main identity of Theorem 3, we
have

P
(
τ+
x − �Gτ+

x − ∈ dt, �Gτ+
x − ∈ ds,

Xτ+
x

− x ∈ du,Xτ+
x − ∈ dφ, �Xτ+

x − ∈ dθ |τ+
x < ∞)

(11)

= U(dθ, ds)Û(θ − dφ, dt)
�X(du + x − φ)

qU(x,∞)
,
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for θ ∈ [0, x) and φ ∈ (−∞, θ ]. From (4) and the associated weak convergence,
we have that

lim
x↑∞

�X(du + x − φ)

qU(x,∞)
= (q + ξ(−α))2ξ̂ (α)α

q
e−α(u−φ) du

and the result follows.
(ii) From (11) we have that

lim
x↑∞P

(
Xτ+

x
− x ∈ du,Xτ+

x − ∈ dφ|τ+
x < ∞)

= lim
x↑∞

∫
θ∈[φ,x]

U(dθ)Û(θ − dφ)
�X(du + x − φ)

qU(x,∞)

=
∫
θ∈[φ,∞)

U(dθ)Û(θ − dφ)
(q + ξ(−α))2ξ̂ (α)α

q
e−α(u−φ) du

=
∫
θ∈[0,∞)

U(dθ)eαθ1(θ≥φ)Û (θ − dφ)e−α(θ−φ)

× (q + ξ(−α))2ξ̂ (α)α

q
e−αu du.

Finally integrating out with respect to φ ∈ (−∞, θ ], the second part follows by
Fubini’s theorem and the facts

α

∫ ∞
0

e−αxÛ(x) dx = 1

ξ̂ (α)

and

α

∫ ∞
0

eαxU(x) dx = 1

q + ξ(−α)
;

these are special cases of (1) and the corresponding result for X̂. �

We conclude with some additional remarks following from the results above.

Asymptotic independence. Note that in the last theorem we see an intuitively
obvious independence appearing between the overshoot and the undershoot.

Decomposing the law of the asymptotic overshoot. The conclusions of Theo-
rems 10 and 11 both reprove and provide an interesting explanation for the iden-
tity in Theorem 2. A straightforward calculation on the identity in Theorem 10(ii)
shows that ∫

v∈(0,∞)
lim
x↑∞P

(
Xτ+

x
− x > u,x − Xτ+

x − ∈ dv|τ+
x < ∞)

= e−αu

q

{∫ ∞
u

(eαy − eαu)�H(dy)

}
.
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Similarly, from Theorem 11(ii), we have∫
φ∈(0,∞)

lim
x↑∞P

(
Xτ+

x
− x > u,Xτ+

x − ∈ dφ|τ+
x < ∞) = e−αu

q

(
q + ξ(−α)

)
.

Adding these two identities together recovers the conclusion of Theorem 2. It also
shows that the distribution of the conditional asymptotic overshoot has a contri-
bution coming from an arbitrarily large jump at a finite position and after a finite
time, or a finite jump from a finite distance relative to the barrier after an arbitrarily
large time. Note also from part (i) of the two theorems in this section that, when,
asymptotically, the undershoot is close to the barrier, the time of occurrence of the
last maximum prior to first passage was historically close to the first passage time.
Further, when there is asymptotic first passage due to an arbitrarily large jump, this
jump happens early on in the path of the Lévy process.

For further results concerning asymptotic overshoots of Lévy processes (spec-
trally positive compound Poisson processes) with subexponential tails, see [1].

Other identities. There are a number of other identities one can extract from
Theorems 10 and 11. For example, one can obtain an expression for the joint law
of the asymptotic overshoot of X and undershoot of H measured from the barrier
or measured from zero. In the latter case, with an appropriate marginalization of
the quintuple law, one easily recovers the identity given in Theorem 4.2(iii) of [10].
This identity says that

lim
x↑∞P

(�Xτ+
x − ≤ z|τ+

x < ∞) = (q + ξ(−α))2

q

∫
[0,z]

eαθU(dθ).

The proof is straightforward and left as an exercise.

Asymptotic creeping. From the distribution G given in Theorem 2, one sees
that there is an atom at zero of mass αc/q . This atom corresponds to the asymptotic
conditional probability of creeping over the barrier as it tends to infinity. This can
also be derived directly by noting from [9] that, when the drift c of H is positive,
U is absolutely continuous and

P
(
Xτ+

x
= x

) = cu(x),

where u(x) = dU(x)/dx. Weak convergence of U(dx)/U(x,∞) under Assump-
tion 1 now ensures that

lim
x↑∞P

(
Xτ+

x
= x|τ+

x < ∞) = lim
x↑∞

cu(x)

qU(x,∞)
= cα

q
.
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Applications to insurance mathematics. The motivation for the work in [10]
came from insurance mathematics and, in particular, the classical ruin problem.
The refinements of their results given here also offer direct insight into ruinous
behavior.

Within the current context, one may think of −X as the capital of an insurance
firm, the so-called risk process. In which case the event of ruin with an initial cap-
ital of x units corresponds to the process X starting at the origin and making first
passage at x. Understanding the conditional asymptotics as x tends to infinity thus
gives information about how ruin occurs when the initial revenue of the insurance
firm is extremely large.

The classical risk process is the Cramér–Lundberg model which corresponds
to X being a spectrally positive compound Poisson process with negative drift.
A more suitable generalization, however, corresponds to the case that X is a gen-
eral spectrally positive Lévy process. In this case, recalling the Lévy–Itô decom-
position, one sees a more realistic feature as follows. Large jumps (of magnitude
greater than one) correspond to large claims offset by premiums collected at a
constant rate corresponding to linear drift. Large jumps occur spaced out by inde-
pendent exponentially distributed periods of time and, thus, reasonably correspond
to disasters. The compensated small jumps which occur with countable, but none
the less, unbounded frequency correspond to minor claims; their compensation can
be understood as the aggregate of premiums called in to offset the high intensity
of claims.

The case that X is spectrally positive also has the advantage that many of the
identities given above simplify further. Write ψ(θ) = logE(e−θX1) for the Laplace
exponent. Since the descending ladder height process is nothing more than linear
drift, we also have Û (dx) = dx, ξ̂ (α) = α and q + ξ(−α) = −ψ(−α)/α. From
the latter, it is also straightforward to deduce that q = |E(X1)| < ∞; see [10] for
further details. Our earlier results now tell us, for example, that

lim
x↑∞P

(
Xτ+

x
− x ∈ du, x − Xτ+

x − ∈ dv, x − �Xτ+
x − ∈ dy|τ+

x < ∞)
= α

|E(X1)|e
αy dy · dv · �X(du + v)

for y ≥ 0, v ≥ y and u > 0, and

lim
x↑∞P

(
Xτ+

x
− x ∈ du,Xτ+

x − ∈ dφ, �Xτ+
x − ∈ dθ |τ+

x < ∞)
= ψ(−α)2

|E(X1)| e
−α(u−φ)U(dθ) · dφ · du

for θ ≥ 0, φ ≤ θ , u > 0. Note also that the renewal measure U can now be identi-
fied directly in terms of ψ , namely,∫ ∞

0
e−βxU(dx) = β

ψ(β)
for β > 0.
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