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We consider spectrally negative Lévy process and determine the joint
Laplace transform of the exit time and exit position from an interval
containing the origin of the process reflected in its supremum. In the literature
of fluid models, this stopping time can be identified as the time to buffer-
overflow. The Laplace transform is determined in terms of the scale functions
that appear in the two-sided exit problem of the given Lévy process. The
obtained results together with existing results on two sided exit problems are
applied to solving optimal stopping problems associated with the pricing of
Russian options and their Canadized versions.

1. Introduction. In this paper we consider the class of spectrally negative
Lévy processes. These are real valued random processes with stationary indepen-
dent increments which have no positive jumps. Among others Emery [12], Suprun
[28], Bingham [5] and Bertoin [4] have all considered fluctuation theory for this
class of processes. Such processes are often considered in the context of the theo-
ries of dams, queues, insurance risk and continuous branching processes; see, for
example, [5–7, 22]. Following the exposition on two sided exit problems in Bertoin
[4] we study first exit from an interval containing the origin for spectrally negative
Lévy processes reflected in their supremum (equivalently spectrally positive Lévy
processes reflected in their infimum). In particular, we derive the joint Laplace
transform of the time to first exit and the overshoot. The aforementioned stopping
time can be identified in the literature of fluid models as the time to buffer overflow
(see, e.g., [1, 14]). Together with existing results on exit problems we apply our re-
sults to certain optimal stopping problems that are now classically associated with
mathematical finance.

In Sections 2 and 3 we introduce notation and discuss and develop existing
results concerning exit problems of spectrally negative Lévy processes. In Sec-
tion 4 an expression is derived for the joint Laplace transform of the exit time and
exit position of the reflected process from an interval containing the origin. This
Laplace transform can be written in terms of scale functions that already appear in
the solution to the two sided exit problem. In Section 5 we outline an optimal stop-
ping problem which is associated with the pricing of Russian options. Section 6 is
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devoted to solving this optimal stopping problem in terms of scale functions that
appear in the afore mentioned exit problems. In Section 7 we consider a modifi-
cation of the optimal stopping problem known as Canadization (corresponding to
the case that the expiry date of the option contract is randomized with an indepen-
dent exponential distribution) and show that an explicit solution is also available
in terms of scale functions. Finally we conclude the paper with some examples of
the optimal stopping problems under consideration.

2. Spectrally negative Lévy processes. Let X = {Xt, t ≥ 0} be a Lévy
process defined on (�,F ,F = {Ft }t≥0,P), a filtered probability space which
satisfies the usual conditions. Restricting ourselves to spectrally negative Lévy
processes, the process X may be represented as

Xt = µt + σWt + J
(−)
t ,(1)

where W = {Wt, t ≥ 0} is a standard Brownian motion and J (−) = {J (−)
t , t ≥ 0} is

a spectrally negative Lévy process without a Gaussian component. Both processes
are independent. We exclude the case that X has monotone paths.

The jumps of J (−) are all nonpositive and hence the moment generating
function E[eθXt ] exists for all θ ≥ 0. A standard property of Lévy processes,
following from the independence and stationarity of their increments, is that, when
the moment generating function of the process at time t exists, it satisfies

E[eθXt ] = etψ(θ)(2)

for some function ψ(θ), the cumulant, which is well defined at least on the
nonnegative complex half plane and will be referred to as the Lévy exponent of X.
It can be checked that this function is strictly convex is zero at zero and tends
to infinity as θ tends to infinity (see [2], page 188).

We restrict ourselves to the Lévy processes which have unbounded variation or
have bounded variation and a Lévy measure which is absolutely continuous with
respect to the Lebesgue measure

�(dx) � dx.(AC)

We conclude this section by introducing for any Lévy process having X0 = 0
the family of martingales

exp
(
cXt − ψ(c)t

)
,

defined for any c for which ψ(c) = logE[exp cX1] is finite, and further the
corresponding family of measures {P c} with Radon–Nikodym derivatives

dP c

dP

∣∣∣∣
Ft

= exp
(
cXt − ψ(c)t

)
.(3)

For all such c (including c = 0) the measure P c
x will denote the translation of P c

under which X0 = x.
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REMARK 1. Under the measure P c the characteristics of the process X, which
is still a spectrally negative Lévy process, have changed. How they have changed
can be found out by looking at the cumulant of X under P c:

ψc(θ) := log
(
E

c[exp(θX1)])
= log

(
E
[
exp
(
(θ + c)X1 − ψ(c)

)])
(4)

= ψ(θ + c) − ψ(c), θ ≥ min{−c,0}.

3. Two-sided exit problems for Lévy processes.

3.1. Scale functions. Bertoin [4] studies two-sided exit problems of spectrally
negative Lévy processes in terms of a class of functions known as q-scale func-
tions. Here we give a slightly modified definition of these objects (Definition 2).

DEFINITION 1. Let q ≥ 0 and then define �c(q) as the largest root of
ψc(θ) = q .

DEFINITION 2. For q ≥ 0, the q-scale function W(q) : (−∞,∞) → [0,∞)

is the unique function whose restriction to (0,∞) is continuous and has Laplace
transform ∫ ∞

0
e−θxW(q)(x) dx = (

ψ(θ) − q
)−1

, θ > �(q),

and is defined to be identically zero for x ≤ 0. Further, we shall use the notation
W

(q)
c (x) to mean the q-scale function as defined above for (X,P c).

It is known that the q-scale function is increasing on (0,∞). Furthermore, if
X has unbounded variation or if X has bounded variation and satisfies (AC), the
restricted function W

(q)
v |(0,∞) is continuously differentiable (see [16] and [4]). For

every x ≥ 0, we can extend the mapping q �→ W
(q)
v (x) to the complex plane by the

identity

W(q)
v (x) =∑

k≥0

qkW�(k+1)
v (x),(5)

where W�k
v denotes the kth convolution power of Wv = W

(0)
v . The convergence of

this series is plain from the inequality

W�(k+1)
v (x) ≤ xkWv(x)k+1/k!, x ≥ 0, k ∈ N,

which follows from the monotonicity of Wv .
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REMARK 2. For each q > 0, a spectrally negative Lévy process X has an
absolutely continuous potential measure Uq(dx) = ∫∞

0 e−qt
P(Xt ∈ dx) dt . Its

density, say uq , is related to the q-scale function W(q). Indeed, in [5] it is shown
that there exists a version of the potential density uq such that for x > 0,

W(q)(x) = �′(q) exp(�(q)x) − uq(−x),

where �(q) = �0(q).

REMARK 3. By Corollary VII.1.5 in [2] limx↓0 Wv(x) = 0 if and only if X has
unbounded variation. By the expansion (5) it also follows that, under the same
condition, limx↓0 W

(q)
v (x) = 0.

REMARK 4. We have the following relationship between scale functions

W(u)(x) = evxW(u−ψ(v))
v (x)

for v such that ψ(v) < ∞ and u ≥ ψ(v). To see this, simply take Laplace
transforms of both sides. By analytical entension, we see that the identity remains
valid for all u ∈ C.

Equally important as far as the following discussion is concerned is the function
Z(q) which is defined as follows.

DEFINITION 3. For q ≥ 0 we define Z(q) : R → [1,∞) by

Z(q)(x) = 1 + q

∫ x

−∞
W(q)(z) dz.(6)

Keeping with our earlier convention, we shall use Z
(q)
c (x) in the obvious way.

Just like W(q), the function Z(q) may be characterized by its Laplace transform
and continuity on (0,∞). Indeed, we can check that∫ ∞

0
e−θxZ(q)(x) dx = ψ(θ)/θ

(
ψ(θ) − q

)
, θ > �(q).

Note that when q > 0 this function inherits some properties from W(q)(x).
Specifically it is strictly increasing and is equal to the constant 1 for x ≤ 0 and
Z(q)|(0,∞) ∈ C2(0,∞). When q = 0 then Z(0)(x) = Z(x) = 1. Also, by working

with the analytic extention of q �→ W
(q)
v (x) we can define q �→ Z

(q)
v (x) for all

q ∈ C.
We state the following result for the limit of Z(q)(x)/W(q)(x) as x tends to

infinity. For the formulation of this result and in the sequel, we shall understand
0/�(0) to mean limθ↓0 θ/�(θ) = 0 ∨ ψ ′(0).

LEMMA 1. For q ≥ 0, limx→∞ Z(q)(x)/W(q)(x) = q/�(q).
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PROOF. First suppose q > 0. The fact that θ �→ ψ(θ) is increasing for θ ≥
�(0) in conjunction with (4) implies that ψ ′

�(q)(0) = ψ ′(�(q)) > 0. Recalling
that 1/ψ�(q) is the Laplace transform of W�(q), we now deduce from a Tauberian
theorem (e.g., [2], page 10) that

0 < W�(q)(∞) := lim
x→∞W�(q)(x) = 1/ψ ′

�(q)(0) < ∞.(7)

Recall from Remark 4 that W(q)(x) is equal to exp(�(q)x) times W�(q)(x). By
integration by parts, we then find for x > 0,

Z(q)(x) = 1 + q
(
W(q)(x) − W(q)(0+)

)/
�(q) − q

∫ x

0
e�(q)yW ′

�(q)(y) dy
/

�(q),

where W(q)(0+) := limx↓0 W(q)(x). Then (7) in conjunction with dominated con-
vergence implies that the integral

∫ x
0 e�(q)(y−x)W ′

�(q)(y) dy/W�(q)(x) converges

to zero as x tends to ∞; hence Z(q)(x)/W(q)(x) converges to q/�(q).
Consider now the case q = 0. We know from, for example, [2] that �(0) > 0

if and only if X drifts to −∞. Recalling that by Remark 4 W(x) = exp(�(0)x) ×
W�(0)(x), we see that, if X drifts to −∞, the limit limx→∞ W(x)−1 = 0. If X does
not drift to −∞, we find by the same Tauberian theorem mentioned in the previous
paragraph that W(x)−1 ∼ xψ(x−1) as x → ∞. We complete the proof by noting
that ψ ′(0+) = 1/�′(0+), since ψ(�(q)) = q . �

3.2. Exit from a finite interval. The following proposition gives a complete
account of the two sided exit problem for the class of spectrally negative Lévy
processes we are interested in. Before stating the result, we first introduce the
following passage times.

DEFINITION 4. We denote the passage times above and below k for X by

T −
k = inf{t > 0 :Xt ≤ k} and T +

k = inf{t > 0 :Xt ≥ k}.(8)

PROPOSITION 1. Let q ≥ 0 and a < b. The Laplace transform of the two-
sided exit time T −

a ∧ T +
b on the part of the probability space where X, starting

in x ∈ (a, b), exits the interval (a, b) above and below are respectively given by

Ex

[
e−qT +

b I(T
+
b <T

−
a )

]
= W(q)(x − a)

W(q)(b − a)
,(9)

Ex

[
e−qT −

a I(T +
b >T −

a )

]
= Z(q)(x − a) − W(q)(x − a)

Z(q)(b − a)

W(q)(b − a)
.(10)

PROOF. This result can be extracted directly out of existing literature [see,
e.g., [2], Theorem VII.8 for a proof of (9)]. Combining this with [4], Corollary 1,
we find (10). Note, in [4] there is a small typographic mistake so that in (10) the
function

∫ x−a
0 W(q)(y) dy is used instead of q

∫ x−a
0 W(q)(y) dy. �
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REMARK 5. The strong Markov property, in conjunction with (9), is enough
to prove that

e−q(T +
b ∧T −

a ∧t)W(q)
(
XT +

b ∧T −
a ∧t − a

)
(11)

is a martingale. To see this let τ = T +
b ∧ T −

a and note that W(q)(Xτ − a)/

W(q)(b − a) is another way of writing the indicator of {T +
b < T −

a }. Thus by (9),

Ex

[
e−qτW(q)(Xτ − a)|Ft

]
= I(t≤τ)e

−qt
EXt

[
e−qτW(q)(Xτ − a)

]+ I(t>τ)e
−qτW(q)(Xτ − a)

= I(t≤τ)e
−qtW(q)(Xt − a) + I(t>τ)e

−qτW(q)(Xτ − a)

= e−q(τ∧t)W(q)(Xτ∧t − a).

Similarly, this technique can also be employed to prove that

e−q(T +
b ∧T −

a ∧t)

(
Z(q)(XT +

b ∧T −
a ∧t − a

)− Z(q)(b − a)

W(q)(b − a)
W(q)(XT +

b ∧T −
a ∧t − a

))
and hence (by linearity) e−q(T +

b ∧T −
a ∧t)Z(q)(XT +

b ∧T −
a ∧t − a) is a martingale.

4. Exit problems for reflected Lévy processes. Denote by X = {Xt, t ≥ 0},
with

Xt = max
{
s, sup

0≤u≤t

Xu

}
,

the nondecreasing process representing the current maximum of X given that,
at time zero, the maximum from some arbitrary prior point of reference in time
is s. Further, let us alter slightly our notation so that now Ps,x refers to the Lévy
process X which at time zero is given to have a current maximum s and position x.
The notation P c

s,x is also used in the obvious way. Further in the sequel, we shall
frequently exchange between P

c
s,x , P

c
(s−x),0 and P

c−(s−x) as appropriate.
We can address similar questions to those of the previous section of the process

Y = X − X. In this case, problems of two-sided exit from a finite interval [a, b] ⊂
(0,∞) for the process Y are the same as for the process X. In this section we study
one sided exit problems centred around the stopping time

τk := inf{t ≥ 0 :Yt /∈ [0, k)}
defined for k > 0.

THEOREM 1. For u ≥ 0 and v such that ψ(v) < ∞, the joint Laplace
transform of τk and Yτk

is given by

Es,x

[
e−uτk−vYτk

]
= e−vz

(
Z

(p)
v (k − z) − W

(p)
v (k − z)

pW
(p)
v (k) + vZ

(p)
v (k)

W
(p)′
v (k) + vW

(p)
v (k)

)
,

(12)
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where z = s − x ≥ 0 and p = u − ψ(v).

PROOF. Suppose first that u, v are such that u ≥ ψ(v) ∨ 0 and let z = s − x.
Denote by τ{0} the first time that Y hits zero. An application of the strong Markov
property of Y at τ{0} yields that Es,x[e−uτk−vYτk ] is equal to

Es,x

[
e−uτk−vYτk I(τk<τ{0})

]+ CEs,x

[
e−uτ{0}I(τk>τ{0})

]
,(13)

where C = Es,s[e−uτk−vYτk ] = E0,0[e−uτk−vYτk ]. Since

{Yt , t ≤ τ{0},Ps,x} d= {−Xt, t ≤ T +
0 ,P−z}(14)

and exp(vXT −
−k∧T +

0
− ψ(v)(T −

−k ∧ T +
0 ) + vz) is an equivalent change of measure

under P−z (since T −
−k ∧ T +

0 is almost surely finite), we can rewrite the first
expectation on the right-hand side of (13) as exp(−vz) times

E
v−z

[
e(ψ(v)−u)T −

−k I(T −
−k<T +

0 )

]
= Z(p)

v (k − z) − W(p)
v (k − z)

Z
(p)
v (k)

W
(p)
v (k)

(15)

from Proposition 1. By (14), Remark 4 and again Proposition 1 we find for the
second expectation on the right-hand side of (13)

E−z

[
e−uT

+
0 I(T −

−k>T +
0 )

]
= W(u)(k − z)

W(u)(k)
= e−vz W

(p)
v (k − z)

W
(p)
v (k)

.(16)

We compute C by excursion theory. To be more precise, we are going to make use
of the compensation formula of excursion theory. For this we shall use standard
notation (see [2], Chapter 4). Specifically, we denote by E the set of excursions
away from zero of finite length

E = {ε ∈ D :∃ ζ = ζ(ε) > 0 such that ε(ζ ) = 0 and ε(x) > 0 for 0 < x < ζ },
where D = D([0,∞)) denotes the space of all càdlàg functions on [0,∞).
Analogously, E (∞) denotes the set of excursions ε away from zero with infinite
length ζ = ∞. We are interested in the excursion process e = {et , t ≥ 0} of Y ,
which takes values in the space of excursions E ∪ E (∞) and is given by

et = {
Ys,L

−1(t−) ≤ s < L−1(t)
}
, if L−1(t−) < L−1(t),

where L−1 is the right inverse of a local time L of Y at 0. We take the running
supremum of X to be this local time (cf. [2], Chapter VII). The space E is
endowed with the Itô-excursion measure n. A famous theorem of Itô now states
that, if Y is recurrent, {et , t ≥ 0} is a Poisson point process taking values in E
with characteristic measure n; if Y is transient, {et , t ≤ L(∞)} is a Poisson point
process stopped at the first point in E (∞). This stopped Poisson point process has
the same characteristic measure n and is independent of L(∞), an exponentially
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distributed random variable with parameter �(0). For an excursion ε ∈ E with
lifetime ζ = ζ(ε), we denote by ε the supremum of ε, that is, ε = sups≤ζ ε(s). The
point process of maximum heights h = {ht : t ≤ L(∞)} of excursions appearing
in the process e is a Poisson point process (resp. stopped Poisson point process)
if Y is recurrent (resp. transient).

Following the proof of Theorem VII.8 in [2], we can also deduce the
characteristic measure of the process h. Suppose first Y is recurrent. The event
that X starting in 0 exits the interval (−x, y) at y is equal to the event A = {ht ≤
t + x ∀ t ≤ x + y}. Hence from Proposition 1 we find by differentiation that

W(x)/W(x+y) = exp
(
−
∫ y

0
n(ε ≥ t +x) dt

)
�⇒ n(ε ≥ k) = W ′(k)/W(k).

If Y is transient, we replace the event A by A′ = {ht ≤ t + x ∀ t ≤ x + y, x + y <

L(∞)}. Denoting by n(∞) the characteristic function of e on E ∪E (∞), we find that
n(∞)(ε ≥ k) = �(0)+n(ε ≥ k). Since �(0) > 0 precisely if Y is transient and the
stopped Poisson point process has the same characteristic measure n, we see that
above display remains valid if we replace everywhere n by n(∞), irrespective of
whether Y is transient or not. Hence in the sequel, we shall also write n for n(∞)

to lighten the notation.
Now let ρk = inf{t ≥ 0 : ε(t) ≥ k} and denote by εg the excursion starting at real

time g, that is, εg = {Yg+t ,0 ≤ t < ζ(εg)}. The promised calculation involving the
compensation formula is as follows:

E(e−uτk−vYτk ) = E

(∑
g

{
e−ugI(suph<g εh<k)

}{
I(εg≥k)e

−u(τk−g)−vYτk
})

= E

(∫ ∞
0

e−usI(suph<s εh<k)L(ds)

)∫
E

I(ε≥k)e
−uρk−vε(ρk)n(dε)

=
∫ ∞

0
E

(
e−uL−1

t I(sup
l<L

−1
t

el<k,t<L(∞))

)
dt

×
∫
E

e−uρk−vε(ρk)n(dε|ε ≥ k)n(ε ≥ k).

The suprema and the sum are taken over left starting points g of excursions. The
desired expectation is now identified as the product of the two items in the last
equality, say I1 and I2, which can now be evaluated separately. For the first, note
that L−1

t is a stopping time and hence an argument involving a change of measure
yields

I1 =
∫ ∞

0
E

(
e−uL−1

t +�(u)t I(sup
l<L

−1
t

el<k,t<L(∞))

)
e−�(u)t dt

=
∫ ∞

0
P

�(u)

(
sup

l<L−1
t

el < k, t < L(∞)

)
e−�(u)t dt.
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Since ψ ′
�(u)(0) = ψ(�(u)) > 0, the process X drifts to infinity under P�(u).

Thus, under P�(u), the reflected process Y is recurrent and L(∞) = ∞. Thus, the
probability in the previous integral is the chance that, in the Poisson point process
of excursions (indexed by local time), the first excursion of height greater or equal
to k occurs after time s. The intensity of the Poisson process (again indexed by
local time) counting the number of excursions with height not smaller than x

associated with measure P�(u) is W ′
�(u)(x)/W�(u)(x). We deduce that

P
�(u)

(
sup

l<L−1
t

el < k

)
= exp

{
−t

W ′
�(u)(k)

W�(u)(k)

}
,

so that

I1 =
∫ ∞

0
exp

{
−t

�(u)W�(u)(k) + W ′
�(u)(k)

W�(u)(k)

}
dt

= W�(u)(k)

�(u)W�(u)(k) + W ′
�(u)(k)

= W(u)(k)

W(u)′(k)
,

where the final identity follows from Remark 4. Note that I1 > 0, since W(u) is
an increasing nonnegative function on (0,∞). Now turning to I2, we begin by
noting from before that n(ε ≥ k) = W ′(k)/W(k). Our aim is now to prove that∫

E
e−uρk−vε(ρk)n(dε|ε ≥ k) = Z

(p)
v (k)W

(p)′
v (k)/W

(p)
v (k) − pW

(p)
v (k)

W ′(k)/W(k)
(17)

and hence that

I2 = Z(p)
v (k)W(p)′

v (k)/W(p)
v (k) − pW(p)

v (k).(18)

We start with setting the function f on (0,∞) equal to

f (z) := Z
(p)
v (k − z) − W

(p)
v (k − z)Z

(p)
v (k)/W

(p)
v (k)

1 − W(k − z)/W(k)
for z > 0(19)

and f (0) := limz↓0 f (z). By de l’Hôpital’s rule, we find that

f (0) = Z
(p)
v (k)W

(p)′
v (k)/W

(p)
v (k) − pW

(p)
v (k)

W ′(k)/W(k)
.(20)

To prove (17), we will show that, with ρθ = inf{t ≥ 0 : ε(t) ≥ θ},
Mθ = e−uρθ−vε(ρθ )f (ε(ρθ)), θ ∈ (0, k],

is a martingale under the measure n(·|ε ≥ k) with respect to the filtration {Gθ : θ ∈
(0, k]}, where Gθ = σ(ε(t) : t ≤ ρθ ). Note the exclusion of 0 in the martingale
parameter sequence is deliberate.
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Let η(·) = n(·|ε ≥ k). To show that the sequence {Mθ : θ ∈ (0, k]} is a martingale
consider first that

η(Mk|Gθ ) = n(e−uρk−vε(ρk)I(ρk<∞)|Gθ )

n(ρk < ∞|Gθ )
.

Using the strong Markov property for excursions, we have that given Gθ the law of
the continuing excursion is that of −X killed on entering (−∞,0) with entrance
law being that of ε(ρθ). Thus, we find that

n
(
e−uρk−vε(ρk)I(ρk<∞)

∣∣Gθ

)
= e−uρθ E−ε(ρθ )

(
e
−uT −

−k+vX
T

−
−k I(T −

−k<∞)I(T −
−k<T +

0 )

)
= e−uρθ−vε(ρθ )

(
e−pT −

−k I(T −
−k<T +

0 )

)
= e−uρθ−vε(ρθ )

(
Z(p)

v

(
k − ε(ρθ)

)− W(p)
v

(
k − ε(ρθ )

) Z(p)
v (k)

W
(p)
v (k)

)
,

(21)

and choosing u = v = 0 in the above calculation,

n(ρk < ∞|Gθ ) = 1 − W
(
k − ε(ρθ)

)/
W(k).

The martingale status of {Mθ : θ ∈ (0, k]} is proved. By this martingale property∫
E

e−uρk−vε(ρk)n(dε|ε ≥ k) = n(Mθ |ε ≥ k) for all θ ∈ (0, k].
If X has unbounded variation, almost all excursion ε leave continuously from zero
and by right-continuity of the paths ε(ρθ ) → ε(ρ0) = 0 n(·|ε ≥ k)-almost surely
as θ tends to zero. Noting that the function f defined in (19) and (20) is continuous
and bounded (since it takes the value 1 for z ≥ k), we find by bounded convergence
that

n(Mk|ε ≥ k) = lim
θ↓0

n(Mθ |ε ≥ k) = n(M0|ε ≥ k).

Putting the pieces together from I1 and I2 and noting Remark 4 implies

W(u)(k)/W(u)′(k) = W(p)
v (k)

/(
W(p)′

v (k) + vW(p)
v (k)

)
.

We find

C = −W(p)
v (k)

pW
(p)
v (k) + vZ

(p)
v (k)

W
(p)′
v (k) + vW

(p)
v (k)

+ Z(p)
v (k)(22)

and by substitution of (15), (16) and (22) in (13) a weaker version (in view of the
restrictions on u and v) of the theorem is proved for X having unbounded variation.

Suppose now we are still under the assumption that u ≥ ψ(v)∨0 and that X has
bounded variation. Note that one may now deduce that evxW

(p)
v (x) and evxZ

(p)
v (x)
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are positive eigenfunctions of the infinitesimal generator of X restricted to domains
of the form (0, a) for any a > 0. To see this apply the change of variable formula
(e.g., [23], Theorem II.31) to the martingales mentioned in Remark 5. Next, use
these facts when applying the change of variable formula again to the process

e−u(t∧τk)−vYt∧τk

×
(
Z

(p)
v

(
k − Yt∧τk

)− vZ
(q)
v (k) + pW

(p)
v (k)

W
(p)′
v (k) + vW

(p)
v (k)

W
(p)
v

(
k − Yt∧τk

))
,

(23)

t ≥ 0, to deduce that it is a martingale. The expectation of the terminal value of this
martingale must be equal to its initial value. This is the statement of the theorem.

The result is now established for X having both bounded and unbounded
variation and u, v such that u ≥ ψ(v) ∨ 0. Now fix any v such that 0 < ψ(v) < ∞
and note that the right-hand side of (12) can be extended (as a function of u) to
a neighborhood of the strictly positive reals. The left-hand side of (12) is also
analytic in u on the same domain. Indeed this follows by virtue of the fact that it
is finite. This is clear when v ≥ 0. To see finiteness when v < 0 note that for any
M > k the left-hand side can also be bounded above by

e−v(k+M) + Es,x

[∑
t≥0

e−ut−vYt I(infs<t Ys<k,�Yt>k+M−Yt− )

]

≤ e−v(k+M) + e−vk
Es,x

[∑
t≥0

e−ut−v�Yt I(�Yt>M)

]

= e−v(k+M) + e−vk
∫ ∞

0
dt e−ut

∫ −M

−∞
evy�(dy),

where � is the Lévy measure of X. Since it was assumed that ψ(v) < ∞, it follows
that the second integral on the right-hand side above is finite. It now follows by the
identity theorem that (12) holds for u > 0 and v such that ψ(v) < ∞. To get the
result with u = 0, take limits on both sides of (12) using monotone convergence
for the left-hand side. �

REMARK 6. When X has unbounded variation, one cannot use the method
in the proof used for the case of bounded variation on account of the fact that
the function W

(p)
v is not necessarily smooth enough to use in conjunction with

Itô’s formula. Having proved Theorem 1, however, following the comments in
Remark 5, it is not difficult to show that for all u, v as in Theorem 1, (23) is again
martingale, where, as before, p = u − ψ(v).

When X has bounded variation, the method of proof used for the case of
unbounded variation is valid up to establishing the identity (18) for I2. The method
can be pushed through in a similar way to the case of unbounded variation but, as
we shall now explain, the given technique in the proof is considerably quicker.
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For the case of bounded variation it is known that (e.g., [24] and more recently
[29] and [21]) an excursion ε starts with a jump almost surely and n(ε(ρ0) ∈ dx) =
d−1�(−dx), where � and d are the Lévy measure and drift of X, respectively.
The law of an excursion ε under n is then that of −X killed upon entering the
negative half-line with entrance law n(ε(ρ0) ∈ dx). Then by the computation
in (21),

I2 =
∫ 0

−∞
evx

(
Z(p)

v (k + x) − W(p)
v (k + x)

Z
(p)
v (k)

W
(p)
v (k)

)
d−1�(dx).(24)

By showing that the right-hand side of (24) and the right-hand side of (20) are
continuous in k and their Laplace transform with respect to k coincide, one checks
that these expressions are equal. But this boils down to the fact that evxW

p
v (x) and

evxZ
p
v (x) are positive eigenfunctions of the infinitesimal generator of X on finite

open intervals, which leads to the quicker martingale proof that was presented.

5. Russian options. Consider a financial market consisting of a riskless bond
and a risky asset. The value of the bond B = {Bt : t ≥ 0} evolves deterministically
such that

Bt = B0 exp(rt), B0 > 0, r ≥ 0, t ≥ 0.(25)

The price of the risky asset is modeled as the exponential spectrally negative Lévy
process

St = S0 exp(Xt ), S0 > 0, t ≥ 0.(26)

If Xt = µt + σWt where, as before, W = {Wt, t ≥ 0} is a standard Brownian
motion, we get the standard Black–Scholes model for the price of the asset.
Extensive empirical research has shown that this (Gaussian) model is not capable
of capturing certain features (such as skewness, asymmetry and heavy tails) which
are commonly encountered in financial data, for example, returns of stocks. To
accommodate for these problems, an idea, going back to [17], is to replace
the Brownian motion as model for the log-price by a general Lévy process X.
In this paper, we will retrict ourselves to the model where X is given by the
spectrally negative Lévy process given in (1). This restriction is mainly motivated
by analytical tractability and the availability of many results (such as those given
in the previous sections) which exploit the fact that X is spectrally negative.
It is worth mentioning, however, that in a recent study, Carr and Wu [9] have
offered empirical evidence (based on a study of implied volatility) to support the
case of a model in which the risky asset is driven by a spectrally negative Lévy
process. Specifically, a spectrally negative stable process of index α ∈ (1,2). See
the examples in the final section for further discussion involving this class of Lévy
process.

The model (25) and (26) for our market is free of arbitrage since there exists
an equivalent martingale measure, that is, there exists a measure (equivalent to
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the implicit measure of the risky asset) under which the process {St/Bt : t ≥ 0} is
a martingale. We can choose this measure so that X remains a spectrally negative
Lévy process under this measure. If σ > 0 and J (−) �= 0 or σ = 0 and J (−)

has more than one jump-size, the model is incomplete and has infinitely many
equivalent martingale measures. Which one to choose for pricing is an important
issue in which we do not indulge in this article. We refer the interested reader to the
paper of Chan [10] and references therein. We thus assume that some martingale
measure has been chosen and let P take the role of this measure. Note that this
necessarily implies that ψ(1) = r .

Russian options were originally introduced by Shepp and Shiryaev [25, 26]
within the context of the Black–Scholes market (the case that the underlying Lévy
process is a Brownian motion with drift). In this paper we shall consider perpetual
Russian options under the given model of spectrally negative Lévy processes. This
option gives the holder the right to exercise at any almost surely finite F-stopping
time τ yielding payouts

e−ατ max
{
M0, sup

0≤u≤τ

Su

}
, M0 ≥ S0, α > 0.

The constant M0 can be viewed as representing the “starting” maximum of the
stock price (say, the maximum over some previous period (−t0,0]). The positive
discount factor α is necessary in the perpetual version to guarantee that it is optimal
to stop in an almost surely finite time and the value is finite (cf. [25] and [26]).

Standard theory of pricing American-type options in the original Black–Scholes
market directs one to solving optimal stopping problems. For the Russian option,
the analogy in this context involves evaluating

Vr(M0, S0) := B0 sup
τ

ElogS0

[
B−1

τ · e−ατ max
{
M0, sup

0≤u≤τ

Su

}]
,(27)

where the supremum is taken over all almost surely finite F-stopping times. That
is, to find a stopping time which optimizes the expected discounted claim under
the chosen risk neutral measure. We refer to the optimal stopping problems (27)
as the Russian optimal stopping problem. In Section 6 we will solve (27) by
combining well-known optimal stopping theory with the results on exit problems
from Section 4. The real object of interest is of course the finite time version with
the extra constraint τ ≤ T , where T is a given expiration time (this is closely
related to the lookback option). Note however that Carr [8] has shown that a close
relative of the perpetual version lies at the basis of a very efficient approximation
for the finite time expiration option, justifying therefore the interest in perpetuals.
We shall address this matter in more detail in Section 7.

6. The Russian optimal stopping problem. When dealing with Russian
options, our method leans on the experience of Shepp and Shiryaev [25, 26], Duffie
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and Harrison [11], Graversen and Peskir [13] and Kyprianou and Pistorius [15]; all
of which deal with the perpetual Russian option within the standard Black–Scholes
market. The first thing to note is that the optimal stopping problem (27),
depending on the two-dimensional Markov process (X,X), can be reduced to
an optimal stopping problem depending only on the one-dimensional Markov
process Y = X − X, the reflection of X at its supremum. Indeed, by Shepp and
Shiryaev’s technique of performing a change of measure using the Px-martingale
exp{−rt − x}St , we get for all Px -a.s. finite F-stopping times τ

B0Ex

[
B−1

τ · e−ατ max
{
M0, sup

0≤u≤τ

Su

}]

= S0Ex

[
B0Sτ

BτS0
· e−ατ max

{
M0

Sτ

, sup
0≤u≤τ

Su

Sτ

}]
= ex

E
1
s,x

[
e−ατ+Xτ−Xτ

]
= ex

E
1
x−s[e−ατ+Yτ ],

where x = logS0 and s = logM0. Note that under P1
x−s the process Y starts in

Y0 = s − x. In this way we are led to the problem of finding a function wR and an
almost surely finite stopping time τ ∗ such that

wR(z) = sup
τ

E
1−z[e−ατ+Yτ ] = E

1−z[e−ατ∗+Yτ∗ ].(28)

The value function Vr(M0, S0) of the optimal stopping problem (27) is related
to wR by Vr(M0, S0) = S0 × wR(log(M0/S0)).

In view of the fact that the payoff in the modified optimal stopping problem (28)
is now Markovian, well-known theory of optimal stopping suggests that we should
now expect the optimal stopping time to be an upcrossing time of the reflected
process Y at a certain constant (positive) level k. Appealing to standard techniques
using martingale optimality and exploiting the fluctuation theory discussed in the
previous sections we are able to prove that this is indeed the case.

Our study of exit problems for the reflected Lévy processes in Section 4 yields
an expression for the value of stopping at τk .

COROLLARY 1. Suppose X is as in Theorem 1 with ψ(1) = r . Then, for k ≥ 0,
z ≥ 0, α > 0 and q = α + r ,

E
1−z

(
e−ατk+Yτk

)= ez

(
Z(q)(k − z) + Z(q)(k) − qW(q)(k)

W(q)′(k) − W(q)(k)
W(q)(k − z)

)
.(29)

PROOF. Noting that ψ1(−1) = ψ(0) − ψ(1) = −r , we may apply Theorem 1
with u = α,v = −1 and P replaced by P1. The proof is complete once we note that
p = α + r = q and

exex(W1)
(α+r)
−1 ≡ exW

(α)
1 ≡ W(q)
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each time by Remark 4. �

To complete the solution of the optimal stopping problem (28), we need to find
the optimal level k = κ∗. It turns out that the optimal level is given by

κ∗ = inf
{
x :Z(q)(x) ≤ qW(q)(x)

}
.(30)

Write wk for the function of z on [0,∞) given in (29). Since under (AC) W(q)

and Z(q) are differentiable on (0,∞), then so is the function wk on R \ {k}. In the
case of bounded variation and W(q)(0+) ∈ (0, q−1) one notes that the level κ∗ can
be achieved by a principle of continuous fit,

lim
z↑κ∗ wκ∗(z) = lim

z↓κ∗ wκ∗(z).

This principle was discovered by Peskir and Shiryaev [20] in their study of a
sequential testing problem for Poisson processes. If X has bounded variation and
W(q)(0+) ≥ q−1, we see that κ∗ = 0 and it is optimal to stop immediately.

On the other hand, if X has unbounded variation, W(q)(0+) = 0 and we find
that κ∗ can be recovered by a principle of smooth fit,

lim
z↑κ∗

1

z − κ∗
(
wκ∗(z) − wκ∗(κ∗)

)= lim
z↓κ∗

1

z − κ∗
(
wκ∗(z) − wκ∗(κ∗)

)
.

For the aforementioned sequential testing problem involving a Wiener process, the
principle of smooth fit was first discovered in 1955 by Mikhalevich which later
appeard in the publication [18] (see also Chapter 4 of [27]). We see that by this
choice of κ∗ the function wκ∗ is of class C2 on R \ {κ∗} and differentiable and
continuous in κ∗, respectively, according to whether X has unbounded or bounded
variation. The next theorem summarizes the solution of the optimal stopping
problem (28).

THEOREM 2. Define u : [0,∞) → [0,∞) by u(z) = ezZ(q)(κ∗ − z) with
κ∗ given in (30). Then the solution to (28) is given by wR = u, where τ ∗ = τκ∗ is
the optimal stopping time.

Before we start the proof we collect some useful facts:

LEMMA 2. Define the function f : [0,∞) → R by f (x) = Z(q)(x)−qW(q)(x)

and let κ∗ be as in Theorem 2. Then the following two assertions hold true:

(i) For q > r , f decreases monotonically to −∞.
(ii) If W(q)(0+) ≥ q−1, κ∗ = 0; otherwise κ∗ > 0 is the unique root of

f (x) = 0.
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PROOF. (i) By Remark 4, the function f has derivative in x > 0

f ′(x) = qW(q)(x) − qW(q)′(x) = qe�(q)x((1 − �(q)
)
W�(q)(x) − W ′

�(q)(x)
)
.

For x > 0 and q > r , this derivative is seen to be negative, since W�(q) is
positive and increasing on (0,∞) and �(q) > �(r) = 1 for q > r . By Lemma 1,
f (x)/(qW(q)(x)) tends to �(q)−1 − 1 as x → ∞. By Remark 4, W(q)(x) =
exp(�(q)x)W�(q)(x) tends to infinity and the statement follows.

(ii) If W(q)(0+) ≥ q−1, (i) implies that κ∗ = 0, whereas if W(q)(0+) < q−1, we
have existence and uniqueness of a positive root of Z(q)(x) = qW(q)(x). �

PROOF OF THEOREM 2. Suppose first W(q)(0+) = 0 (that is, X has
unbounded variation). From the properties of Z(q), we see that u lives in C1(R) ∩
C2(R \ {κ∗}). Hence Itô’s lemma implies that exp{−αt}u(Xt −Xt) can be written
as the sum of stochastic and Stieltjes’ integrals. The non-martingale component of
these integrals can be expressed as exp{−αt} times

(�̂1 − α)u(Xt − Xt) dt + u′(Xt − Xt) dXt = (�̂1 − α)u(Yt) dt,(31)

where �̂1 is the infinitesimal generator corresponding to the process −X under P1

and the equality follows from the fact that the process Xt only increments when
Yt = 0 (since Y reaches zero always by creeping in the absence of positive jumps
of X) and u′(0) = 0. From Remark 6 we know that exp{−α(t ∧ τκ∗)}u(Yt∧τκ∗ ) is
a martingale, which implies

(�̂1 − α)u(z) = 0 for z ∈ [0, κ∗).

Now recall that under the measure P1
s,x the process exp{−Xt + rt} is a martingale.

By a similar reasoning to the above, we can deduce that (�̂1 + r)(exp{z}) = 0.
Specifically, this implies for z > κ∗ that

(�̂1 − α)u(z) = (
�̂1 + r − (r + α)

)
(exp{z}) ≤ 0.

By the expression (31) for the non-martingale part of d(exp{−αt}u(Yt)), we
deduce that

E
1
s,x

[
e−αt+Yt Z(q)(κ∗ − Yt)

]≤ e(s−x)Z(q)(κ∗ − s + x).

An argument similar to the one presented in Remark 5 now shows that
exp{−αt}u(Yt) is a P1

s,x -supermartingale. Doob’s optional stopping theorem for
supermartingales together with the fact that exp{z} ≤ u(z) implies that for all al-
most surely finite stopping times τ ,

E
1
s,x[e−ατ+Yτ ] ≤ E

1
s,x[e−ατu(Yτ )] ≤ u(s − x).

Since the inequalities above can be made equalities by choosing τ = τκ∗ , the proof
is complete for the case of unbounded variation.
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If W(q)(0+) ∈ (0, q−1) (X has bounded variation) we see that u lives in
C0(R)∩C2(R\{κ∗}). Itô’s lemma for this case is nothing more than the change of
variable formula for Stieltjes’ integrals (cf. [23]) and the rest of the proof follows
exactly the same line of reasoning as above.

Finally the case W(q)(0+) ≥ q−1 (again X has bounded variation). Recall from
Lemma 2 that, if W(q)(0+) ≥ q−1, then for x > 0

Z(q)(x) − qW(q)(x) < 0 and W(q)(x) − W(q)′(x) < 0.

Hence, recalling that Z(q)(x) = 1 for x ≤ 0, we see from Corollary 1 that for any
k ≤ 0

E
1
s,x

(
e−ατk+Yτk

)= E
1
s,x

(
e−ατk+Yτk Z(q)(k − Yτk

))
≤ e(s−x)Z(q)(k − s + x).

As before we conclude that, for any k ≥ 0, {e−α(τk∧t)u(Yτk∧t )}t≥0 is a supermartin-
gale and hence using similar reasoning to the previous case, it is still the case
that {e−αtu(Yt)}t≥0 is a supermartingale. It follows that for all almost surely finite
F-stopping times τ ,

E
1
s,x(e

−ατ+Yτ ) ≤ E
1
s,x

(
e−ατ+Yτ Z(k − Yτ )

)≤ es−xZ(q)(k − s + x).

Taking k = 0, we see that for any a.s. finite stopping time τ ,

E
1
s,x(e

−ατ+Yτ ) ≤ es−x

with equality for τ = 0, which completes the proof. �

REMARK 7. Given that the optimal stopping time in (28) is of the form τk ,
here is another way of finding the optimal level κ∗ if W(q) is twice differentiable.
Let η(q) be an independent exponential random variable. Since Xη(q) has an
exponential distribution with parameter �(q) which is larger than 1 for q > r ,

E
[
e−qτk+Xτk

]= E
[
eXτk Iτk<η(q)

]≤ E
[
eXη(q)

]
< ∞,

where q > r . Thus, there exists a finite κ∗ such that for all z ≥ 0 the right-
hand side of (29) has its maximum at κ∗. By elementary optimization using the
assumed differentiability combined with Lemma 2, one then deduces that κ∗ is
given by (30).

7. Canadized Russian options. Suppose now we consider a claim structure
in which the holder again receives a payout like that of the Russian option.
However, we also impose the restriction that the holder must claim before some
time η(λ), where η(λ) is an F-independent exponential random variable with
parameter λ. If the holder has not exercised by time η(λ), then he/she is forced
a rebate equal to the claim evaluated at time η(λ). This is what is known in the
literature as Canadization (cf. [8]).



232 F. AVRAM, A. E. KYPRIANOU AND M. R. PISTORIUS

We are thus interested in a solution to the optimal stopping problem

wCR(z) = supE
1−z

[
e−α(τ∧η(λ))+Y(τ∧η(λ))

]
,(32)

where the supremum is taken over almost surely finite stopping times τ . Using the
fact that η(λ) is independent of the Lévy process, we can rewrite this problem in
the following form:

wCR(z) = sup
τ

E
1−z

[
e−(α+λ)τ+Yτ + λ

∫ τ

0
e−(α+λ)t+Yt dt

]
.

Given the calculations in [15], one should again expect to see that the optimal
stopping time is of the form τk for some k > 0.

From now we write p = α + λ + r .

LEMMA 3. For each k > 0,

E
1−z

[
e−α(τk∧η(λ))+Y(τk∧η(λ))

]
=
(

p − λ

p

)
ezZ(p)(k − z) + λ

p
ez(33)

+ ez (p − λ)(Z(p)(k) − pW(p)(k)) + λ

p(W(p)′(k) − W(p)(k))
W(p)(k − z).

PROOF. Consider the Itô’s formula applied to the process exp{−(α+λ)t +Yt }
on the event {t ≤ τk}. Denote by �1 the infinitesimal generator of X under P1.
Standard calculations making use of the fact that (�1 + r)(exp{−x}) = 0 yield

d
(
e−(α+λ)t+Yt

)= −(α + λ)e−(α+λ)t+Yt dt − re−(α+λ)t+Yt dt

+ e−(α+λ)t+Yt dXt + dMt,

where dMt is a martingale term. Taking expectations of the stochastic integral
given by the above equality we have

pE
1
s,x

[∫ τk

0
e−(α+λ)t+Yt dt

]
(34)

= e(s−x) − E
1
s,x

[
e−(α+λ)τk+Yτk

]+ E
1
s,x

[∫ τk

0
e−(α+λ)t+Yt dXt

]
.

The last term in the previous expression can be dealt with by taking account of the
fact that X = L, the local time at the supremum of the process X. Recall that τ{0}
is the first time that Y reaches 0 and note that dXt = 0 on the set where {t < τ{0}}.
Letting A ∈ Ft be the set

A =
{

sup
0≤u≤L−1

t

Yu < k, t < L(∞)

}
,
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we have by the strong Markov property of (X,X) and Propostion 1

E
1
s,x

[∫ τk

0
e−(α+λ)t+Yt dXtI(τk>τ{0})

]

= E
1−(s−x)

[
e−(α+λ)τ{0}I(τk>τ{0})

]
E

1
[∫ ∞

0
I(t<τk)e

−(α+λ)t+Yt dLt

]

= W
(α+λ)
1 (k − s + x)

W
(α+λ)
1 (k)

E
1
[∫ ∞

0
IAe−(α+λ)L−1

t dt

]

= W
(α+λ)
1 (k − s + x)

W
(α+λ)
1 (k)

∫ ∞
0

e−�1(α+λ)t
P

1+�1(α+λ)(A)dt,

(35)

where in the last equality we have applied a change of measue with respect to P1

using the exponential density exp{�1(α + λ)Xt − (α + λ)t}.
We can now apply techniques from excursion theory, similar to those in

the proof of Theorem 1. The number of heights of the excursions of Y away
from zero that exceed height k forms a Poisson process with intensity given by
W ′

1+�1(α+λ)(k)/W1+�1(α+λ)(k). The probability in the last line of (35) can now
be rewritten as

P
1+�1(α+λ)

(
sup

0≤u≤L−1
t

Yu < k, t < L(∞)

)
= exp

{
−t

W ′
1+�1(α+λ)(k)

W1+�1(α+λ)(k)

}
.

Completing the integral in (35) much in the same way the integral I1 was computed
in Theorem 1, we end up with

E
1
s,x

[∫ τk

0
e−(α+λ)t+Yt dXt

]
= e(s−x) W(p)(k − s + x)

W(p)′(k) − W(p)(k)
.

Substituting this term back in (34) and combining with Corollary 1, we end up
with the expression stated. �

Using continuous and smooth fit suggests that at the level

κ∗ = inf
{
x ≥ 0 :Z(p)(x) − pW(p)(x) ≤ −λ/(p − λ)

}
,

it is optimal to exercise the Canadized Russian. The next result shows this is indeed
the case.

THEOREM 3. Define h : [0,∞) → [0,∞) by

h(z) = (p − λ)ezZ(p)(κ∗ − z)/p + λez/p.

Then the solution to the optimal stopping problem (32) is wCR = h, where τ ∗ = τκ∗
is the optimal stopping time.
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The proof of the theorem uses the following observation:

LEMMA 4. Let h and κ∗ be as in Theorem 3. If W(p)(0+) ≥ p−1, then κ∗ = 0.
If W(p)(0+) < p−1, κ∗ > 0 is the unique root of Z(p)(x)−pW(p)(x) = −λ/p and
for t ≥ 0,

e−(α+λ)(τκ∗∧t)h
(
Yτκ∗∧t

)+ λ

∫ τκ∗∧t

0
e−(α+λ)s+Ys ds

is a P1
s,x -martingale.

PROOF. The statements involving κ∗ follow from Lemma 2. Note that h(s −
x) = exp{s − x} when s − x ≥ κ∗. Let for t ≥ 0,

Ut = e−(α+λ)th(Yt) + λ

∫ t

0
e−(α+λ)s+Ys ds.

It is a matter of checking that the special choice of κ∗ together with Lemma 3
imply that h(s − x) = E1

s,x[Uτκ∗ ] for all s − x ≥ 0.
Starting from this fact and making use of the strong Markov property, we can

prove that h(s − x) is equal to E1
s,x[Uτκ∗∧t ], in the same vein as Remark 5. The

martingale property of Ut∧τκ∗ will follow in a fashion similar to the proof of this
fact. �

PROOF OF THEOREM 3. First suppose W(p)(0+) = 0. We know that Uτκ∗∧t

is a P1
s,x -martingale from the previous lemma. As seen earlier, Z(p) is twice

differentiable everywhere with continuous derivatives except in κ∗ where it is just
continuously differentiable. The Itô formula applied to Uτκ∗∧t now implies that
necessarily on {t ≤ τκ∗}, and hence on {Yt < κ∗},(

�̂1 − (α + λ)
)
h(Yt ) dt + λe−(α+λ)t+Yt dt + h′(Yt−) dXt = 0,

P1
s,x-almost surely, where as before �̂1 denotes the infinitesimal generator of −X.

It can be easily checked that h′(0) = 0 by simple differentiation and use of the
definition of κ∗. Since, as before, Xt only increments when Xt− = Xt− (and this
when the process creeps), it follows that the integral with respect to dXt above is
zero.

Recall that (�̂1 + r)(exp{y}) = 0. Since, in the regime z ≥ κ∗ h(z) is equal to
exp{z}, we have on {Yt ≥ κ∗}(

�̂1 − (α + λ)
)
h(Yt−) dt + λe−(α+λ)t+Yt dt = eYt

(
λe−(α+λ)t − p

)
dt,

which is nonpositive. From these inequalities we now have, as before, that
E1

s,x(Ut) ≤ h(s − x) for all t ≥ 0 and s − x ≥ 0. Computations along the
lines in the previous lemma show that this is sufficient to conclude that Ut is
a P

1
s,x -supermartingale.
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We finish the proof of optimal stopping as in the previous optimal stopping
problem. Note that

h(z) = ez + (p − λ)ez
∫ κ∗−z

0
W(p)(y) dy ≥ ez.

By the supermartingale property and Doob’s optional stopping theorem, for all
almost surely finite stopping times τ , it follows that

E
1
s,x

[
e−(α+λ)τ+Yτ + λ

∫ τ

0
e−(α+λ)t+Yt dt

]
≤ E

1
s,x(Uτ ) ≤ h(s − x).

Since we can make these inequalities equalities by choosing τ = τκ∗ , we are done.
If W(p)(0+) ∈ (0, (p − λ)−1), the use of the change of variable formula is

justified by the same arguments as used in the proof of Theorem 2. The proof
then goes the same as above.

Finally, if W(p)(0+) ≥ (p − λ)−1, we see from Lemma 4 that Z(p)(x) −
pW(p)(x) ≤ −λ/p for all x positive and the proof runs analogously as the one
of Theorem 2. Indeed, one should find for all k ≥ 0 and almost surely finite
F-stopping times τ ,

E
1
s,x

[
e−α(τ∧η(λ))+Y(τ∧η(λ))

]≤ p − λ

p
es−xZ(p)(k − s + x) + λ

p
es−x.

Taking k = 0 in the previous display, we conclude that for all almost surely finite
stopping times τ

E
1
s,x

[
e−α(τ∧η(λ))+Y(τ∧η(λ))

]≤ es−x

with equality for τ = 0. �

8. Examples. In this section we provide some explicit examples of the
foregoing theory. We concentrate on new expressions that can now be produced
for Canadized Russian options. Needless to say, one can also recover existing
expressions in the literature (cf. [26] and [19]) via similar calculations.

8.1. Exponential Brownian motion. In the case of the classical Black–Scholes
geometric Brownian motion model the functions W(q) and Z(q) are given by

W(q)(x) = 2

σ 2ε
eγ x sinh(εx), Z(q)(x) = eγ x cosh(εx) − γ

ε
eγ x sinh(εx)

on x ≥ 0, where ε = ε(q) =
√

( r
σ 2 − 1

2 )2 + 2q

σ 2 and γ = 1
2 − r

σ 2 . Note γ ± ε are the

roots of σ 2

2 θ2 + (r − σ 2

2 )θ − q = 0.
Let κ∗ be the unique positive root of

(ε − γ + 1)(ε + γ )e−εx − (ε + γ − 1)(ε − γ )eεx − 2q−1ελe−γ x = 0,
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where ε = ε(p) for p = r + α + λ. Then we find the value function to be given by

wCR(s, x) = es

[
q

q + λ

(
ε + γ

2ε

(
es−x

eκ∗

)ε−γ

+ ε − γ

2ε

(
es−x

eκ∗

)−ε−γ)
+ λ

q + λ

]
for s − x ∈ [0, κ∗) and es otherwise.

8.2. Jump-diffusion with hyper-exponential jumps. Let X = {Xt, t ≥ 0} be a
jump-diffusion given by

Xt = (a − σ 2/2)t + σWt −
Nt∑
i=1

Yi,

where σ > 0, N is a Poisson process and {Yi} is a sequence of i.i.d. random
variables with hyper-exponantial distribution

F(y) = 1 −
n∑

i=1

Aie
−αiy, y ≥ 0,

where Ai > 0,
∑

i Ai = 1 and 0 < α1 < · · · < αn. The processes W,N and Y are
independent. We claim that for x ≥ 0 the function Z(q) of X is given by

Z(q)(x) =
n+1∑
i=0

Di(q)eθix,

where θi = θi(q) are the roots of ψ(θ) = q , where θn+1 > 0 and the rest of the
roots are negative, and where

Di(q) =
∏n

k=1(θi(q)/αk + 1)∏n+1
k=0,k �=i (θi(q)/θk(q) − 1)

.

Indeed, recall that ψ(λ)/λ(ψ(λ) − q)) is the Laplace transform of Z(q) and note
that

Di(q) = 1

θi(q)

∏n+1
k=0(−θk(q))∏n+1

k=0,k �=i(θk(q) − θi(q))

∏n
k=1(θi(q) + αk)∏n

k=1 αk

= q

θi(q)

∏n
k=1(θi(q) + αk)∏n+1

k=0,k �=i(θk(q) − θi(q))
= ψ(θi(q))

θi(q)

1

ψ ′(θi(q))

are the coefficients in the partial fraction expansion of ψ(λ)/(λ(ψ(λ)−q)). Hence
we find for the value function of the Canadized Russian option

wCR(s, x) = ex



α + λ

α + λ + r

n+1∑
i=0

Di(α + λ)

(
es−x

eκ∗

)1−θi(α+λ)

+ r

α + λ + r
es−x, s − x ∈ [0, κ∗),

es−x, s − x ≥ κ∗,
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where κ∗ is the root of

α + λ

α + λ + r

n+1∑
i=0

(
θi(α + λ) − 1

)
Di(α + λ)ekθi(α+λ) + r

α + λ + r
ek = − λ

α + r
.

8.3. Stable jumps. We model X as

Xt = σZt,

where Z is a standard stable process of index γ ∈ (1,2]. Its cumulant is given by
ψ(θ) = (σθ)γ . Note the martingale restriction amounts to 1 = σγ . By inverting
the Laplace transform (ψ(θ)− q)−1, Bertoin [3] found that the q-scale function is
given by

W(q)(x) = γ
xγ−1

σγ
E′

γ

(
q

xγ

σ γ

)
, x > 0

and hence Z(q)(x) = Eγ (q(x/σ )γ ) for x > 0, where Eγ is the Mittag–Leffler
function of index γ

Eγ (y) =
∞∑

n=0

yn

�(1 + γ n)
, y ∈ R.

From Theorems 2 and 3 we can find closed formulas for the (Canadized) Russian
option.
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