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SENETA–HEYDE NORMING IN THE
BRANCHING RANDOM WALK

BY J . D. BIGGINS1 AND A. E. KYPRIANOU 2

University of S heffield
In the discrete-t ime supercr it ica l branching random walk, there is a

Kesten !St igum type resu lt for the mar t inga les formed by the Laplace
t ransform of the n th genera t ion posit ions. Roughly, th is says tha t for
su itable va lues of the argument of the Laplace t ransform the mar t inga les
converge in mean provided an ‘‘X log X ’’ condit ion holds. Here it is
established tha t when th is moment condit ion fa ils, so tha t the mar t inga le

Ž .converges to zero, it is possible to find a Seneta !Heyde renormaliza t ion
Ž .of the mar t inga le tha t converges in probability to a finite nonzero limit

when the process survives. As par t of the proof, a Seneta !Heyde renor-
Ž .maliza t ion of the genera l Crump!Mode!J agers branching process is

obta ined; in th is case the convergence holds a lmost surely. The resu lt s
rely heavily on a deta iled study of the funct iona l equa t ion tha t the
Laplace t ransform of the limit must sa t isfy.

1. In troduction . This paper considers the usua l supercr it ica l branching
random walk . Thus, ignor ing the spa t ia l element , the popula t ion grows like a
supercr it ica l Galton !Watson process. The in it ia l ancestor is a t the or igin of
the rea l line, !, and the posit ions of her ch ildren are given by a poin t process
Z . Each of these children has children in the same way, in tha t the posit ions
of each family rela t ive to the paren t a re given by an independent copy of Z ,
and so on . Individua ls a re labelled by their line of descent , so if u ! i """ i1 n
then u is the i th ch ild of the i th ch ild of . . . the i th ch ild of the in it ia ln n"1 1

! !ancestor . Now let u be the genera t ion in which u is born and write v " u if
v is a st r ict ancestor of u . Let TT be the set of a ll people ever born , which can
be viewed as a t ree, with the popula t ion members as the nodes. Sums,
products, set s and so on, defined with an index ranging over individua l’s
labels will be rest r icted to those actua lly born , without th is being made

" ! ! 4explicit . So u : u ! 1 is the set of ch ildren born to the in it ia l ancestor and is
" ! ! 4 " Ž .4more accura tely wr it ten as u : u ! 1, u # TT or u : u ! 1, 2, . . . , Z ! .

Denote the sigma-field genera ted by the process up to the n th genera t ion
by FF n. Let Z Žn . be the poin t process formed by the n th genera t ion , with
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" ! ! 4poin ts z : u ! n ; then , by definit ion , for any set Au

1 .1 Z Žn$1. A ! Z A " z ,Ž . Ž . Ž .Ý u u
! !u !n

where, given FF n , Z are independent copies of Z . In genera l, a subscr ipt uu
will be used to indica te quant it ies associa ted with u .
Suppose Z has in tensity measure # with Laplace!St ielt jes t ransform

m $ ! exp "$ x # dx ! E exp "$ x Z dx ! E exp "$ z .Ž . Ž . Ž . Ž . Ž . Ž .ÝH H u
! !u !1

The following assumpt ions will be in force except when explicit ly discarded.

" Ž . 4A1. in t %: m % " & is non-empty.
Ž .A2. m #m 0 $ 1.

Ž Ž . . .A3. P Z ! ! & ! 0 .
" Ž . 4A4. $ # in t %: m % " & .

A5. $ $ 0.

Ž .The condit ion A1 comfor tably ensures tha t convolu t ions of # are well
defined, and, in conjunct ion with A4, a llows ca lcu la t ions involving the Laplace
t ransform in a neighborhood of $ . The condit ion A2 is simply tha t the process
is supercr it ica l, so it survives for a ll genera t ions with posit ive probability. A3
insist s tha t family sizes are finite, which implies tha t every genera t ion is

Ž Ž Žn .Ž . . .finite i.e., P Z ! ! & ! 0 for a ll n . Fina lly, A5 is for convenience; cases
with $ " 0 are t ransformed to sa t isfy A5 by reflect ion of peoples’ posit ions
through the or igin .
It is well known and easily shown tha t

exp "$ zŽ .u"nŽn . Žn .W $ !m $ exp "$ x Z dx !Ž . Ž . Ž . Ž . ÝH nm $Ž .! !u !n

" n 4is a mar t inga le with respect to the sigma-fields FF . This mar t inga le is
Ž .posit ive and so has an a lmost sure limit W $ which , by Fatou’s lemma,

% Ž .&sa t isfies E W $ ' 1. When $ ! 0, the study of th is mar t inga le goes back a
long way, with the definit ive resu lt on the condit ions needed for it s L 1
convergence being given by the Kesten !St igum theorem .

Žn .Ž .The L convergence of the mar t inga le W $ , or var ian ts of it , has a lso1
Ž .been considered by severa l au thors; see in par t icu la r Kingman 1975 , Ka-

Ž . Ž . Ž . Ž .hane and Peyr iere 1976 , Biggins 1977a , Neveu 1988 , Lyons 1996 , Liu`
Ž . Ž .1997 , Waymire and Williams 1994, 1995, 1996 . The next resu lt is ex-

Ž .t racted from Biggins 1977a . To sta te it , a lit t le fur ther nota t ion is usefu l.
Ž . Ž .For a fixed $ , with m $ finite, let X $ be a random var iable such tha t

X $ " log m $ ($ has the dist r ibu t ionŽ . Ž .Ž .
1 .2Ž .

exp "z$ " log m $ # dz .Ž . Ž .Ž .
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Ž .The condit ion tha t EX $ $ 0 will appear quite often . It will be assumed
Ž .th roughout tha t EX $ is defined; th is is implied by A4 when the assump-

t ions are in force, and then

EX $ ! log m $ " $m % $ (m $ .Ž . Ž . Ž . Ž .

Žn .Ž . Ž .THEOREM 1.1. The m artingale W $ converges in L , so that EW $ ! 1,1
if and only if
1 .3 EX $ $ 0Ž . Ž .
and

Ž1. $ Ž1 .1 .4 E W $ log W $ " &,Ž . Ž . Ž .
Ž .and EW $ ! 0 otherwise.

In fact , under A1,

in t % : m % " & ) % : log m % " %m % % (m % $ 0" 4 " 4Ž . Ž . Ž . Ž .
Ž .is an open in terva l, so tha t , 1.3 with A4 simply rest r ict s $ to lie in th is

in terva l.
Ž . ŽWhen $ ! 0 only condit ion 1.4 mat ters the assumpt ions are a lso not

.needed; 1 "m " & suffices and then Theorem 1.1 is the Kesten !St igum
Ž .theorem . For tha t case it was established by Seneta 1968 tha t it is a lways

" 4 Žn .Ž .possible to find a sequence of constan ts c such tha t W 0 (c has a finiten n
Ž .nonzero limit in dist r ibu t ion ; Heyde 1970 st rengthened th is to a lmost sure

" 4convergence. Thus c provides the Seneta !Heyde norming for the mar t in-n
Žn .Ž . Ž . " 4gale W 0 . Of course when 1.4 holds, c must converge to a finiten

%nonzero constan t . It is more usua l to resca le the genera t ion size; tha t is,
Žn .Ž . Ž n Žn .Ž ..Z ! !m W 0 , defining the Seneta !Heyde norming to be, in the

nota t ion just in t roduced, m nc , bu t it will be more convenien t here to th ink inn
&t erms of resca ling the mar t inga le. The main object ive of th is paper is to find

Žn .Ž .a Seneta !Heyde norming for the mar t inga le W $ , tha t is, to prove the
following theorem .

Ž . " 4THEOREM 1.2. When EX $ $ 0 there exists a sequence of constants cn
such that

W Žn . $Ž .
! ' in probability ,

cn
where ' is a finite random variable which is strictly positive when the process
survives.

" 4In genera l c and ' both depend on $ . Not ice tha t the theorem onlyn
cla ims convergence in probability, ra ther than a lmost surely, for the renor-
malized mar t inga le. The proof suggests tha t there may be cases where th is is
the best tha t can be done without fur ther condit ions, bu t more work on th is
aspect is required. Almost sure convergence of Seneta !Heyde renormaliza-
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t ions for rela ted mar t inga les will resu lt from the method here. In par t icu la r ,
Ž .a new proof of the renormaliza t ion of the genera l C-M-J branching process,

Ž .obta ined by Cohn 1985 , will be given . In fact the resu lt obta ined here
Ž .Corolla ry 7.2 makes weaker assumpt ions than were used by Cohn .
To simplify the nota t ion , let

exp "$ zŽ .uy $ ! .Ž .u ! !um $Ž .
Fur thermore, since for many of the arguments $ is fixed, it will be omit ted
whenever possible. Thus, following th is convent ion , W Žn . ! Ý y .!u !!n u
Let us note st ra igh taway tha t , for fixed u ,

y exp "$ z " zŽ .Ž .u i u i u: i ! 1 , 2 , . . . , Z ! ! : i ! 1 , 2 , . . . , Z ! ,Ž . Ž .u u½ 5 ½ 5y m $Ž .u

!u ! " Ž .4which by definit ion , given FF , is a copy of y : v ! 1, 2, . . . , Z ! .v
By looking a t the branching processes stemming from each first genera t ion

person it is easily seen tha t

exp "$ zŽ .uŽn$1. Žn . Žn .W ! W ! y W ,Ý Ýu u um $Ž .! ! ! !u !1 u !1

where, given FF 1, W Žn . are independent copies of W Žn .. Therefore, providedu
" 4the constan ts c sa t isfy c (c ! 1, the random var iable ' ar ising inn n$1 n

Theorem 1.2 should sa t isfy the dist r ibu t iona l equa t ion

' ! y ' ,Ý u u
! !u !1

" ! ! 4where, given y : u ! 1 , ' are independent copies of '. Expressing th isu u
dist r ibu t iona l equa t ion in terms of the Laplace t ransform of ' it becomes

1 .5 ( x ! E ( xy .Ž . Ž . Ž .Ł u
! !u !1

This and simila r equa t ions have been much studied; see for example Kahane
Ž . Ž . Ž .and Peyr iere 1976 , Biggins 1977a , Durret t and Ligget t 1983 , Pakes`

Ž . Ž .1992 , Liu 1996 .
The following resu lt s on the funct iona l equa t ion , which are cent ra l to the

proof of the main resu lt and of independent in terest , will be established. In
Ž .them, for simplicity, a t ten t ion will be confined to solu t ions of 1.5 tha t lie in

the set of Laplace t ransforms of nonnega t ive var iables. There are in terest ing
problems, which we hope to consider elsewhere, associa ted with the possibil-
ity of a llowing the solu t ion to lie in some larger set . A nont r ivia l solu t ion to
Ž .1.5 is one tha t is the Laplace t ransform of a finite nonnega t ive var iable tha t
is not degenera te a t zero.

Ž . Ž .THEOREM 1.3. When EX $ $ 0, the functional equation 1.5 has a non -
trivial solu tion .
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Ž . Ž .THEOREM 1.4. When m $ " & and EX $ $ 0, any nontrivial solu tion (
Ž . Ž .% "1 Ž Ž ..&to the functional equation 1.5 is such that L x # x 1 " ( x is slowly

Ž .varying as x"0. A1!A5 are not needed .

Ž .THEOREM 1.5. When EX $ $ 0, the nontrivial solu tion to the functional
Ž . Ž .equation 1.5 is un ique up to a m ultiplicative constant in the argum ent .

Ž .Existence follows from Theorem 1 of Liu’s 1996 extension of the work of
Ž .Durret t and Ligget t 1983 , on a ra ther more genera l funct iona l equa t ion , but

will a lso be a by-product of resu lt s proved here; see Sect ion 2. Not ice tha t , in
the framework adopted here,

exp "$ zŽ .uE y ! E ! 1 ,Ý Ýu m $Ž .! ! ! !u !1 u !1

Ž . Ž . Ž . Ž . xso the funct ion ) in Liu 1996 is given by ) x !m $ x (m $ and the
condit ion on ) in Liu’s Theorem 1 is au tomat ica lly sa t isfied. Theorem 2 of Liu
Ž .1996 gives resu lt s on slow var ia t ion , but when specia lized to th is case it

Ž . %requires the ext ra condit ion tha t m 0 " &. For the t ransla t ion , note tha t
Ž . %Ž . Ž .log ) there is convex in x with der iva t ive a t x ! 1 given by $m $ (m $ "

Ž . & Ž .log m $ . The resu lt s in Liu 1996 on uniqueness with in cer ta in classes did
not go far enough for our purposes, bu t ana lysis of cer ta in mult iplica t ive
mar t inga les eventua lly establishes Theorem 1.5.

Ž .In the Galton !Watson case, the funct iona l equa t ion 1.5 becomes the
Ž . Ž Ž ..Poincare funct iona l equa t ion , ( x ! f ( x(m with f the probability gen-´

era t ing funct ion of the family size, the study of which goes back to the last
cen tury. For branching Brownian mot ion , the ana logue of the funct iona l

Ž .equa t ion is the Kolmogorov!Pet rovski!Piscounov or Fisher equa t ion . It was
Ž .Neveu’s 1988 use of solu t ions to the KPP equat ion to study branching

Brownian mot ion and in par t icu la r the mult iplica t ive mar t inga les used in his
study, tha t was the or igina l inspira t ion for th is study.
The proof of Theorem 1.2 is based on a method pioneered by Cohn in a

Ž .ser ies of papers; see Cohn 1985 , for example. The idea is to find a normaliza-
t ion which prevents any limit being degenera te a t zero or infinity, take a
subsequence a long which convergence in dist r ibu t ion holds, show tha t the
Laplace t ransform of the limit of th is subsequence sa t isfies the funct iona l
equa t ion , use proper t ies of the solu t ion to show tha t the convergence a long

Žth is subsequence can be st rengthened to convergence in probability Cohn
.usua lly phrases th is in terms of a law of la rge numbers and, fina lly, use

uniqueness of the solu t ion to show tha t convergence must hold a long the
whole sequence.
A cont inuous-t ime Markov version of the process, in which individua ls

move dur ing their lifet ime according to an independent increment process, is
Ž .descr ibed in the final sect ion of Biggins 1992 . It is fa ir ly st ra igh t forward to

establish the ana logue of Theorem 1.2 for such a process using the resu lt s
given here, essen t ia lly by a discrete skeleton argument . The deta ils of the
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Ž .argument can be found in Biggins and Kypr ianou 1996 , a long with a
discussion of the st ra tegy of the proof given here.

2. A law of large numbers . The first ingredien t in the proof of the
existence of Seneta !Heyde norming constan ts for the mar t inga les W Žn . is a
law of la rge numbers. An immedia te consequence will be tha t the funct iona l

Ž .equa t ion 1.5 does have nont r ivia l solu t ions. Before giving the law of la rge
numbers, th ree lemmas are needed; the second of these will figure a t severa l
other places in the discussion too.

" 4LEMMA 2.1. S uppose c is a sequence of nonnegative constants satisfyingi
" 4Ý c ! 1, with a !max c . S uppose Y are independent identically d is-i i i i

! !tribu ted copies of a nonnegative random variable Y with E Y " & and
EY ! 0. Then , for * " 1(2,

&2 1(a
! ! ! !P c Y $ * ' atP Y $ t d t $ P Y $ t d t .Ž . Ž .Ý H Hi i 2ž / ž /* 0 1(ai

Ž .This resu lt is a specia l case of Lemma 2.2 in Kur tz 1972 ; see in par t icu la r
the Remark a t the end of Sect ion 2 of tha t paper .

Let
l Žn . ! sup yu

! !u !n
and let

y l Žn .uŽn .L ! sup ! .Žn .Ý y W! ! ! v !!n vu !n

Both are taken to be zero if the process is ext inct by the n th genera t ion .

Ž . Ž Žn ..1( nLEMMA 2.2. i When EX & 0, l converges as n ! & to a lim it that is
strictly less than 1.

Ž . Žn .ii l ! 0.

PROOF. Let B be the posit ion of the left -most n th genera t ion person . Byn
Ž .the Corolla ry to Theorem 2 in Biggins 1977b , B (n converges a lmost surelyn

on the surviva l set to a constan t + , given by

+ ! in f a : in f m % exp %a $ 1 ;Ž . Ž .½ 5
a %

Ž . Ž .consequent ly, exp $+ m $ * 1. Hence
1(n

1(n exp "$ zŽ .usup y ! sup nuž / ž /m $Ž .! ! ! !u !n u !n

exp "$B (n 1Ž .n! ! .ž /ž /m $ exp $+ m $Ž . Ž . Ž .
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Ž . Ž . Ž . Ž .If exp $+ m $ ! 1 then exp %+ m % a t ta ins it s min imum when % ! $ and
Ž .ca lcu lus just ified by A4 shows tha t EX ! 0, a cont radict ion ; hence

Ž . Ž . Ž .exp $+ m $ $ 1, proving i . Note tha t

l Žn . ' y !W Žn . ! 0Ý u
! !u !n

Ž . Ž .when EX ! 0 by Theorem 1.1. Combining th is with i proves ii . !

It is possible to prove tha t l Žn . ! 0 without A1!A5, but the resu lt above
will suffice for th is study.

Ž Žn ..1( nLEMMA 2.3. When EX $ 0, L converges as n ! & when the process
survives, alm ost surely, to a lim it that is strictly less than 1; thus LŽn . ! 0.

PROOF. The numera tor in LŽn . is dea lt with by Lemma 2.2, so it is enough
to discuss the denomina tor . As par t of their Theorem 1, Chauvin and Rouault
Ž . Ž Žn ..1( n1996 show tha t , W ! 1 on the surviva l set , a lmost surely, when

Ž . %Ž . Ž . %log m $ " $m $ (m $ $ 0 which is equiva len t to EX $ 0 under A4, as
.has a lready been observed . Chauvin and Rouault assume throughout tha t

Ž .m % " & for a ll %, bu t th is condit ion is not needed in their proof of the resu lt
used here. !

THEOREM 2.4. When EX $ 0,

W Žn$1.

2 .1 ! 1 in probability ,Ž . Žn .W
on the survival set of the process.

" Žn . 4PROOF. Let SS be the surviva l set and let SS ! W $ 0 so tha t SS " SS .n n
Then

Žn$1. Žn$1.W W
n" 4 " 4E I SS I " 1 $ * ' E E I SS I " 1 $ * FF ,nŽn . Žn .½ 5 ½ 5W W

so it will suffice to show tha t the r igh t -hand side here converges to zero.
It is easy to see tha t on SS ,n

W Žn$1. yu Ž1 ." 1 ! W " 1 ,Ž .Ý uŽn . ž /Ý yW ! v !!n v! !u !n

where W Ž1. are independent copies of W Ž1., given FF n.u
Ž . Ž Ž1. . ! Ž1. ! Ž1.Let G t ! P W $ 1 $ t . Using Lemma 2.1 and W " 1 'W $ 1 it

follows tha t , on SS ,n
Žn$1.

&W 2 Žn .1(Ln Žn .P " 1 $ * FF ' L tG t d t $ G t dt .Ž . Ž .H HŽn . 2 ž /Žn .W * 0 1(L
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which , by Lemma 2.3 and domina ted convergence, converges to zero a lmost
surely as n ! &. The left -hand side here is a lso bounded by 1, so taking
expecta t ions and using domina ted convergence aga in gives the required
resu lt . !

Žn . Ž .PROOF OF THEOREM 1.3. Let the Laplace t ransform of W be , x .n
Ž .Take c to be such tha t , 1(c ! - , where - is fixed to be grea ter than then n n

ext inct ion probability but less than one. Choose a subsequence such tha t
W Žn .(c converges in dist r ibu t ion , with the t ransform of the limit being (.n
Note tha t

W Žn .
uŽn$1. Žn . Žn$1.W ! y W ! y W ,Ý Ýu u u u Žn$1.Wu! ! ! !u !1 u !1

so, dividing through by c , t aking Laplace t ransforms, let t ing n go ton$1
infinity through the selected subsequence, and using A3 and the law of la rge
numbers proved in Theorem 2.4, it follows tha t ( sa t isfies the funct iona l

Ž . Ž . Ž Ž ..equa t ion . Fur thermore, ( 0 must sa t isfy ( 0 ! f ( 0 where f is the
Ž . Ž .genera t ing funct ion of the family size and ( 0 * ( 1 ! - , which by ar -

Ž .rangement exceed the ext inct ion probability. Hence ( 0 ! 1 so the limit
a long any subsequence must be proper , and it cannot be degenera te a t zero

Ž . Ž .because ( 0 $ ( 1 . !

This shows tha t Theorem 1.3 holds whenever a resu lt of the form given in
Theorem 2.4 is ava ilable.

3. The functional equation and multip licative martingale s . The
next theorem shows tha t solu t ions to the funct iona l equa t ion lead immedi-

Ž .a tely to mar t inga les. Neveu 1988 ca lls these mar t inga les, which are formed
by taking suitable products, ‘‘mult iplica t ive mar t inga les’’ and ca lls the W Žn .

Ž‘‘addit ive mar t inga les’’ because they involve summing terms. The empty
.product is 1.

Ž .THEOREM 3.1. If ( is a solu tion to the functional equation 1.5 then , for
each x $ 0,

exp "$ zŽ .uŽn .M x # ( xy ! ( xŽ . Ž .Ł Ł nu ž /m $Ž .! ! ! !u !n u !n

" n 4is a m artingale with respect to FF .

Ž .PROOF. Split t ing the n $ 1 th genera t ion in to families yields
Žn$1. n n!E M x FF ! E ( xy FFŽ . Ž .Ł Ł u i

! ! iu !n

n! E ( xy y (y FFŽ .Ž .Ł Ł u u i u
! ! iu !n

! ( xy !M Žn . x ,Ž . Ž .Ł u
! !u !n
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where the th ird equa lity uses the funct iona l equa t ion and the fact tha t , given
n " Ž .4FF , for each n th genera t ion u , y (y : i ! 1, 2, . . . , Z ! is an independentu i u u

" ! ! 4copy of y : v ! 1 . !v

" Žn .Ž .4 Ž .The mar t inga le M x is bounded and so has an a lmost sure and L 1
Ž .limit M x ; thus the following corolla ry is immedia te.

COROLLARY 3.2. For any n ,

( x ! E ( xyŽ . Ž .Ł u
! !u !n

Ž . Ž .and EM x ! ( x .

4. L is s low ly varying . Both for the argument in th is sect ion and for
la ter ones, we need to be able to est imate expressions like

" 4E I y ' . y .Ý u u
! !u !n

This is facilit a ted by expressing them in terms of the random var iable X ,
Ž .defined a t 1.2 . Let S be the sum of n independent copies of X .n

Ž . Ž .LEMMA 4.1 A1!A5 are not required . S uppose $ $ 0 and m $ " &.
Ž . % Ž . 4i When $ # in t %: m % " & , the Laplace transform of X is

m 1 $ % $Ž .Ž ."% XEe ! .1$%m $Ž .

% &" 4ii E I y ' . y ! P S * "log . .Ž . Ý u u n
! !u !n

Ž .iii Given sets B , . . . , B ,1 n

! !E I "log y # B , v ' u , v ! 1 , . . . , n y" 4Ý v ! v ! u
! !u !n

! P S # B , j ! 1 , . . . , n .j j

PROOF. The first two par t s a re st ra igh t forward ca lcu la t ions; simila r re-
Ž .su lt s were used in Sect ion 2 of Biggins 1977a . The final par t is proved by

induct ion on n . The sum is split according to the first genera t ion , expecta-
t ions are taken condit iona l on FF 1 with the induct ion hypothesis and the
branching proper ty being used to compute the terms, then the overa ll expec-
ta t ion is computed and seen to be of the required form . !

" ! ! 4PROOF OF THEOREM 1.4. Suppose, temporar ily, tha t u ! n is ordered
Ž .arbit ra r ily by + , then , from Corolla ry 3.2 and the definit ion of L ,

1 " Ł ( xy 1 " ( xyŽ . Ž .!u !!n u uL x ! E ! E ( xy ,Ž . Ž .Ý Ł vx x v+u! !u !n
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where the second equa lity ar ises from a telescoping sum, giving the ident ity

L xyŽ .u4 .1 1 ! E y ( xy .Ž . Ž .Ý Łu vL xŽ . v+u! !u !n

Ž . %Because L x is a Laplace t ransform of a posit ive measure see Feller
Ž . & Ž .1971 , XIII.2 it is monotone decreasing as x increases. Suppose tha t L x is

" 4not slowly varying, so there exist s a constan t . " 1 and a sequence x withk
Ž . Ž .x "0 such tha t L x . (L x ! / $ 1; then , by monotonicity,k k k

L x yŽ .klim inf * / for a ll y ' . .
L xk!& Ž .k

" 4 Ž .Let t ing x"0 through x in 4.1 and using Fatou’s lemma givesk

" 4 " 41 * E / y I u : y ' . $ y I u : . " y ' 1 ,Ý Ýu u u u
! ! ! !u !n u !n

% &which , because E Ý y ! 1, implies tha t!u !!n u

" 4 " 4/ " 1 E I u : y ' . y ' E I u : y $ 1 y .Ž . Ý Ýu u u u
! ! ! !u !n u !n

Provided EX $ 0, the expecta t ion on the left tends to one and tha t on the
Ž .r igh t tends to zero, by Lemma 4.1 ii and the weak law of la rge numbers. This

forces / ! 1, which is a cont radict ion . !

5. The lim it of the multip licative martingale s .

LEMMA 5.1.

5 .1 " log M x ! lim xy L xy .Ž . Ž . Ž .Ý u u
n ! !u !n

PROOF. By Lemma 2.2, sup y ! l Žn ."0. For any * $ 0, provided n is!u !!n u
la rge enough to make l Žn . sufficien t ly small,

"log M Žn . x ! " log ( xyŽ . Ž .Ý u
! !u !n

* " 1 " ( xyŽ .Ž .Ý u
! !u !n

* " 1 " * log ( xy ! " 1 " * log M Žn . x .Ž . Ž . Ž . Ž .Ý u
! !u !n

Taking limit s here and using the definit ion of L completes the proof. !

%Ž . Ž . Ž . Ž .When ( 0 ! "1, L y #1 as y"0, so tha t 5.1 implies tha t "log M x
! xW , and hence, by Corolla ry 3.2, ( is the Laplace t ransform of W . In the

Ž . Ž . Ž .genera l case, if L xy in 5.1 could be approximated by L a for someu n
Ž . Žn . Ž .constan ts a , th is would imply tha t L a W converged a lmost surely ton n
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Ž ."log M 1 , solving the or igina l problem . This idea seems not to work as just
descr ibed, which , a t least on our present understanding, prevents us from
obta in ing a lmost sure convergence in Theorem 1.2. However , the slow var ia-
t ion of L does a llow the ident ifica t ion of ( as the Laplace t ransform of

Ž ."log M 1 as the next lemma shows.

Ž . Ž . Ž . xLEMMA 5.2. i M x !M 1 ;
Ž . Ž .ii " log M 1 has Laplace transform (;
Ž . Ž Ž . .iii P M x ! 0 ! 0;
Ž . " Ž . 4iv M x " 1 is the survival set , alm ost surely.

PROOF. Note first tha t

Ý y L xy Ý y L y L xy (L y " 1Ž . Ž . Ž . Ž .Ž .Ž .!u !!n u u !u !!n u u u u" 1 !
Ý y L y Ý y L yŽ . Ž .!u !!n u u !u !!n u u

L xyŽ .u' sup " 1 ,
L yŽ .! ! uu : u !n

which converges to zero as n ! &, because L is slowly varying and
sup y ! l Žn ."0 as n ! &, by Theorem 1.4 and Lemma 2.2, respect ively.!u !!n u

Ž . Ž . xBy Lemma 5.1, it follows tha t M x !M 1 , and taking expecta t ions of th is
% Ž . Ž .&using the fact noted in Corolla ry 3.2 tha t EM x ! ( x gives the second

Ž .asser t ion . Since ( is the Laplace t ransform of a proper var iable, iii holds.
" Ž . 4For the final par t , note tha t M x ! 1 must be a t least the set of ext inct ion ,

Ž Ž . . Ž . Ž Ž .. Ž . Ž .and tha t P M x ! 1 ! ( & which sa t isfies f ( & ! ( & , hence ( &
Ž .actua lly is the ext inct ion probability and iv must hold. !

To prove the uniqueness of solu t ions to the funct iona l equa t ion , other
mult iplica t ive mar t inga les have to be in t roduced. Their form is simila r to

Žn . " ! ! 4tha t of M , bu t the products, instead of being taken over u : u ! n , will be
taken over other set s of individua ls.

6. General mu ltip licative martingale s . This discussion draws on
Ž . Žideas and arguments in work on opt iona l stopping lines by Chauvin 1988,

. Ž .1991 and J agers 1989 .
Ž .A stopping line ll is a set of individua ls none of whom lies in the line of

descent of any other ; FF ll conta ins fu ll in format ion on the life h istor ies of a ll
individua ls tha t a re neither in ll nor a descendent of any member of ll . The

Ž .par t ia l order ing of TT by ‘‘is an ancestor of’’ " induces a par t ia l order on
Žlines, with ll ' ll when every member of ll is a descendent not necessar -1 2 2

.ily st r ict of some member of ll . An opt iona l line 0 is a random line with the1
" 4 llproper ty tha t , for any fixed line ll , 0 ' ll # FF , so, in tu it ively, the family

t rees descended from 0 ’s members have no par t in determining 0 . It tu rns out
tha t the mar t inga le in t roduced in Theorem 3.1 is best viewed as ar ising as a
par t icu la r case of products being taken over an increasing sequence of
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opt iona l lines. The genera l case is descr ibed a t the end of th is sect ion , a fter
the necessary technica l appara tus has been put in place.
The branching proper ty, tha t differen t individua ls in the same genera t ion

give r ise to independent copies of the or igina l t ree, extends to individua ls on
%Ž . &an opt iona l line, as is proved in J agers 1989 , Theorem 4.14 . To be more

precise, let TT be the t ree emanat ing from u viewed with u as the in it ia lu
0 "ancestor and let 0 be an opt iona l line. Then, condit ioned on FF , the t rees TT :u

4u # 0 are independent copies of the or igina l t ree TT. Thus, for u # 0 ,
" 4 0 " 4y (y : v has, given FF , the same dist r ibu t ion as y : v . It will be relevantu v u v
la ter tha t J agers’ resu lt is actua lly for the mult itype process with a genera l
set of types, in which the dist r ibu t ion of a t ree depends on the type of it s
in it ia l ancestor .
Given any opt iona l line 0 , let

M Ž0 . x ! ( xy .Ž . Ž .Ł u
u#0

To simplify nota t ion , the convent ion is adopted tha t products a re over u
when no var iable is specified, so the ‘‘u # ’’ will often be dropped in u # 0 ,

Ž .and so on . The argument ‘‘ x ’’ will a lso be suppressed when possible.
Ž .Nota t ion for cer ta in character ist ics of lines is now int roduced. Let E n be0

Ž .the members of 0 in the n th genera t ion , and let A n be the n th genera t ion0
Ž . Ž .members who have no ancestors including themselves in 0 . Let g 0 be

" Ž . 4 Ž .sup n : A n & ! , so g 0 is the la test genera t ion conta in ing a member with0
Ž . " ! ! 4 Ž .no ancestor in 0 , and let g 0 be inf u : u # 0 , so g 0 is the ear liest

Ž .genera t ion conta in ing a member of 0 . If g 0 is finite then 0 cuts r igh t across
the t ree.
In the next lemma and the following theorem, M is the limit of the

mar t inga le M Žn . in t roduced in Corolla ry 3.2.

Ž .LEMMA 6.1. Assum e that 0 is optional and g 0 is fin ite alm ost surely.
Then

! 0 Ž0 .% &E M FF !M .

PROOF. Using the nota t ion just in t roduced,
n

Žn . 0 0!% &E M FF ! E ( xy ( xy FF .Ž . Ž .Ł Ł Ł Łu v už /j!1 Ž . ! ! Ž .E j v !n"j A n0 0

Thus, pulling the FF 0-measurable par t s outside the expecta t ion and applying
the branching proper ty together with Corolla ry 3.2,

n yu vŽn . 0 0!% &E M FF ! E ( xy FF ( xyŽ .Ł Ł Ł Łu už /ž /ž /yj!1 Ž . ! ! Ž .E j v !n"j A nu0 0

n
! ( xy ( xy .Ž . Ž .Ł Ł Łu už /j!1 Ž . Ž .E j A n0 0
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% Ž . &In using the branching proper ty i.e., J agers 1989 , Theorem 4.14 two
n Ž . %Ž .t echnica l poin ts a r ise. First ly, " E j is a stopping line by J agers 1989j!1 0

& 0Proposit ion 4.10 , and it s associa ted sigma-field conta ins FF . Secondly, the
process must be considered as a mult itype one in which individua l u has type
y , thereby a llowing the funct ion tha t is to be eva lua ted on u ’s daughteru
process to depend on y . When n ! &, the left -hand side converges in L tou 1

0% ! & Ž .E M FF and, because g 0 is finite, the r igh t -hand side converges a lmost
surely to M Ž0 .. !

Ž . Ž % ..THEOREM 6.2. Let 0 t be an increasing sequence indexed by t # 0, & of
optional lines, with

6 .1 g 0 t " & for all t , alm ost surely .Ž . Ž .Ž .
Then
6 .2 M Ž0 Ž t .. x ! ( xyŽ . Ž . Ž .Ł u

Ž .u#0 t

Ž . " 0 Ž t .4is a bounded m artingale with respect to FF . Furtherm ore, provided

6 .3 g 0 t #& as t#&, alm ost surely ,Ž . Ž .Ž .

M Ž0 Ž t .. converges to M alm ost surely and in L and1

6 .4 lim y L y ! "log M 1 .Ž . Ž . Ž .Ý u u
t!& Ž .u#0 t

Ž .PROOF. Tha t 6.2 is a mar t inga le follows immedia tely from the previous
Ž0 Ž t .. % ! 0 Ž t .&lemma . For the second par t , note tha t , M ! E M FF !M , a lmost

Ž . Ž .surely, as t ! &, using 6.3 . Fina lly, when 6.3 holds, Lemma 2.2 implies
tha t

sup y "0 as t ! &,u
Ž .u#0 t

so the proof of the last par t is just like tha t of Lemma 5.1. !

Ž .7. The general branch ing proce ss . The genera l C-M-J branching
process will play an impor tan t par t in the study of the mult iplica t ive mar t in-
ga les. The nota t ion for th is process, and the main resu lt s needed about it , a re
in t roduced in th is sect ion .
The process is const ructed in the same way as a branching random walk .

Associa ted with each individua l is an independent copy of the reproduct ion
poin t process 1 which gives tha t mother ’s age a t the bir th of each of her
ch ildren . Individua ls’ bir th t imes are computed by the obvious recursion , by
adding the mother ’s age when tha t ch ild is born to the mother ’s own bir th
t ime. It is a lso usefu l to have the not ion of a character ist ic, which is a
mechanism for count ing the popula t ion . Each individua l has associa ted with
it an independent copy of some funct ion 2 , and th is funct ion measures the
cont r ibu t ion of the individua l, as she grows older , to a count of the process.
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These funct ions are zero for nega t ive ages. Suppose the bir th t ime of u is
denoted by b . The 2-counted process is defined to beu

3 2 ! 2 t " b .Ž .Ýt u u
u

Ž . " 4 2For example, if 2 a ! I a $ 0 , then 3 counts a ll those born before t . Moret
extensive, and more carefu l, descr ipt ions of the process can be found in

Ž . Ž . Ž .J agers 1975 , Nerman 1981 and Asmussen and Her ing 1983 .
The in tensity measure of the reproduct ion poin t process 1 is denoted by /,

"4 a Ž .and there is assumed to be an 4 $ 0 for which H e / da ! 1; so a t ten t ion
is fixed on supercr it ica l processes with Malthusian parameter 4 . Note tha t by
mult iplying a ll bir th t imes by 4 a supercr it ica l process with Malthusian
parameter 4 is t ransformed to one with Malthusian parameter equa l to one.
For the t rea tment here the impor tan t theorem from the theory of genera l

Ž .branching processes is the following, which is Theorem 6.3 of Nerman 1981
Ž .and is a lso given as Theorem X.5.1 in Asmussen and Her ing 1983 .

". a Ž .THEOREM 7.1. S uppose there is a . " 4 such that H e / da " &, that 5
". t Ž . ". t Ž .and 2 are two characteristics with E sup e 5 t and E sup e 2 t both

Ž .finite and with D-paths . Then , on the survival set of the process,

3 5 H& e"4 tE5 t d tŽ .t 0! a .s . as t ! &.2 & "4 t3 H e E2 t d tŽ .t 0

The coming genera t ion , which is, a t t ime t , those individua ls who are not
yet born but whose mothers are, is of par t icu la r impor tance in the theory of

Ž .the genera l branching process. Denote th is set of individua ls by CC t . Ner-
%Ž . &man 1981 , Proposit ion 2.4 shows tha t

exp "4 bŽ .Ý u
Ž .u#CC t

is a mar t inga le; th is mar t inga le can be writ ten as e"4 t3 2 when 2 is thet
character ist ic

&
4a "4 t" 42 a ! I a $ 0 e e 1 dt .Ž . Ž .H

a

%Also, the mar t inga le converges in L under an ‘‘X log X ’’ condit ion Nerman1
Ž . &1981 , Corolla ry 3.3 .
The following Seneta !Heyde resu lt will be a by-product of the discussion

in the next sect ion .

Ž .THEOREM 7.2. Consider a general C-M -J branching process with finite
fam ily sizes, reproduction in tensity m easure / and Malthusian param eter

" 4 Ž .4 $ 0, with birth tim es b and com ing generation CC t . S uppose that there isu
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Ž . Ž .a . " 4 such that H exp ".6 / d6 " &, then there is a slowly varying
function L such that

L e"4 t exp "4 bŽ . Ž .Ý u
Ž .u#CC t

Ž .has an alm ost sure lim it that is finite and nonzero when the process
survives.

Combining th is with Theorem 7.1 gives the cor responding resu lt for other
Ž .ways of count ing the process. This resu lt extends Theorem 6.1 of Cohn 1985 ,

where the same resu lt is proved under the addit iona l condit ion tha t / is a
finite measure.

8. An embedded general branch ing proce ss . To allow a good est ima-
Ž .t ion of the terms on the left -hand side of 6.4 it will be usefu l if the y do notu

Ž .vary too much on 0 t . We consider a sequence of stopping lines picked to t ry
Ž .to make sure th is is the case: let II t be the set of individua ls who are the

first in their line of descent to have y less than e"t , sou

II t ! u : y " e"t , bu t y * e"t for v " uŽ . " 4u v

! ! ! !! u : $ z $ u log m $ $ t , bu t $ z $ v log m $ ' t for v " u ." 4Ž . Ž .u v

Ž .When the poin t process Z is concent ra ted on 0, & and $ is such tha t
Ž .m $ ! 1 th is is just the coming genera t ion , defined in the previous sect ion

Ž . Ž .but a t t ime t($ ra ther than a t t . It will be shown, in Lemma 8.2, tha t II t
is a lways the coming genera t ion for a su itable genera l branching process.

Ž .LEMMA 8.1. Theorem 6.2 applies to the optional lines II t .

Ž .PROOF. It is clear from the definit ion tha t II t increases with t . Using
Lemma 2.2,

"t Žn . "t" 4g II t ' sup n : sup y $ e ! sup n : l $ e " &,Ž .Ž . u½ 5
! !u !n

Ž .so 6.1 holds. By A3, the n th genera t ion is finite, so for sufficien t ly la rge t ,

! ! "t ! !" 4u : u ' n , y * e ! u : u ' n" 4u

Ž Ž .. Ž .and, for such t , g II t * n ; thus 6.3 holds. !

Ž .The members of II 0 can now be considered to be the ‘‘ch ildren’’ of the
in it ia l ancestor , with in tervening members on the line of descent being

Ž .ignored. These will be ca lled the i-ch ildren i for indirect of the in it ia l
individua l, to dist inguish them from the or igina l ch ildren . Consider the

Ž . Ži-ch ild u in the or igina l labelling to be born when her i-mother the in it ia l
.ancestor has age

! !6 # "log y ! $ z $ u log m $ ,Ž .u u u
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Ž .which must be posit ive because u # II 0 . Let 1 be the poin t process of the
" Ž .4ages a t i-ch ild bear ing, so 1 has the poin ts "log y : u # II 0 , and let / beu

Ž .the in tensity measure of 1 . Because II 0 is an opt iona l line, the t rees
emanat ing from its members are, given FF II Ž0 ., independent copies of the

Ž .or igina l process. Hence each u # II 0 has associa ted with it the opt iona l line
Ž .II 0 of it s i-ch ildren , with associa ted bir ths, and it s reproduct ion poin tu

" Ž . Ž .4process, 1 , is given by "log y (y : v # II 0 . In th is way a genera lu u v u u
Ž .C-M-J branching process with reproduct ion poin t process 1 , embedded in
the or igina l process, is const ructed.
The bir th t ime, b , of a person u occur r ing in the embedded process is, ofu

course, obta ined by adding the ages of the i-mothers in her ancest ry when the
appropr ia te ch ild is born , so b ! "log y . However it is wor th st ressing tha tu u
not a ll individua ls in the or igina l process occur in the embedded one. In fact ,

Ž .as the proof of the next lemma or , bet ter , a picture shows, only those v
Ž . " 4giving a st r ict ascending ladder poin t of the sequence "log y : v ' uv

Žfigure in the embedded process. Note tha t th is sequence is indexed by the
.individua ls in the line of descent from the in it ia l ancestor down to u . Denote

the set of individua ls ever born in the embedded process by EE and, for u # EE ,
Ž .let m u be the i-mother of u . Then the coming genera t ion a t t for the

embedded genera l branching process is

CC t ! u : u # EE , b ' t " b ;" 4Ž . m Žu . u

the connect ion between th is and the opt iona l lines a lready in t roduced is very
simple.

Ž . Ž .LEMMA 8.2. CC t ! II t .

Ž .PROOF. Suppose tha t u # II t so tha t

8 .1 " log y $ t , and "log y ' t for v " u ;Ž . u v

Ž . " 4thus u is a st r ict ascending ladder epoch for the sequence "log y : v ' u .v
Ž . Ž . Ž .Let the ladder epochs of th is sequence be 0 ! v 0 " v 1 " """ " v p ! u .

Ž . Ž .Then, by definit ion , for v i " v " v i $ 1 ,

"log y (y ! " log y " log y " 0Ž . Ž .v v Ž i . v v Ž i .

and
"log y (y ! " log y " log y $ 0;Ž . Ž .v Ž i$1. v Ž i . v Ž i$1. v Ž i .

Ž . Ž . Ž .thus v i $ 1 # II 0 and so is an i-ch ild of v i . Therefore the ladderv Ž i .
epochs provide the ancestors for u in the embedded process, back to the
in it ia l ancestor , showing tha t u # EE . It remains to show tha t u is actua lly in
Ž .CC t , bu t th is is immedia te because b ! b ! "log y ' t andm Žu . v Ž p"1. v Ž p"1.

b ! "log y $ t .u u
Ž .Simila r ly, if u # CC t it s ancestors in the embedded process provide ladder

" 4 Ž .epochs for "log y : v ' u , which combine with b $ t * b to show 8.1 .v u m Žu .
!
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Ž . Ž .THEOREM 8.3 A1!A5 are not required . Assum e $ $ 0, m $ " & and
EX * 0. The em bedded general branching process has Malthusian param eter
1, that is to say

exp "6 / d6 ! E exp "6 1 d6 ! E exp "bŽ . Ž . Ž . Ž . Ž .ÝH H u
Ž .u#II 0

! E y ! 1 .Ý u
Ž .u#II 0

Ž .PROOF. Simply compute, using Lemma 4.1 iii , tha t

" 4E y ! E y I "log y $ t , "log y ' t for v " uÝ Ý Ýu u u v
Ž . n*1 ! !II t u !n

! P S $ t , S ' t for j " nÝ n j
n*1

% &! P S $ t for some n ,n

which is 1, provided EX * 0. !

" 4COROLLARY 8.4. Under the conditions of Theorem 8.3, Ý y is au # II Ž t . u
m artingale.

Ž . Ž .The correspondence between CC t and II t means tha t , because the
Ž .Malthusian parameter is 1 and y ! exp "b , th is is Proposit ion 2.4 ofu u

Ž .Nerman 1981 .

THEOREM 8.5. When EX $ 0, the Laplace transform of / converges for
som e value . " 1, that is, for som e . " 1,

.exp ".6 / d6 ! E exp ".6 1 d6 ! E y " &.Ž . Ž . Ž . Ž . Ž .ÝH H u
Ž .u#II 0

Ž .Furtherm ore, / is a finite m easure if m 0 " &.

PROOF. Temporar ily, $ needs to figure more fu lly in the nota t ion . Note
first tha t

! !. uexp "$ z m $.Ž . Ž .u..y ! y $ ! ! y .$ ,Ž . Ž . Ž .Ž .u u u! ! .u ž /ž / m $m $ Ž .Ž .
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Ž . Ž . Ž .so, using Lemma 4.1 ii bu t for X $. ra ther than X $ , and a Markov bound
Ž .for % $ 0 ,

! !um $.Ž ..E y ! E y .$Ž . Ž .Ý Ýu u .ž /m $Ž .Ž . Ž .II 0 II 0
! !um $.Ž .

! E y .$ I "log y $ $ 0 ,"Ž . Ž .Ý u u.ž /m $Ž .u

"log y $ ' 0 for v " u 4Ž .v

! !um $.Ž .
' E y .$ I vi ! u , "log y $ ' 0" 4Ž . Ž .Ý u v.ž /m $Ž .u

! !v! !u .m $. m $Ž . Ž .
! E y .$ I vi ! u , y .$ *Ž . Ž .Ý u v.ž / ½ 5ž /m $.Ž .m $Ž .u

n
m $. m $.Ž . Ž .

! P S $. ' n " 1 logŽ . Ž .Ý n"1. .ž / ž /m $ m $Ž . Ž .n*1

n Ž .% n"1m $. m $.Ž . Ž .n"1' E exp "%X .$Ž .Ž .Ý . .ž / ž /m $ m $Ž . Ž .n*1

n"1
m $. m 1 $ % $.Ž . Ž .Ž .

! .Ý. Ž .. 1$%ž /m $ m $Ž . Ž .n*1

Thus, to complete the proof of the first par t , . must be chosen near enough to
Ž .1 to ensure, by A4, tha t m $. is finite, and then % must be chosen so tha t

m 1 $ % $.Ž .Ž .
" 1 .Ž .. 1$%m $Ž .

Ž . Ž .7Stra igh t forward ca lcu lus establishes tha t , when EX $ 0, m $7 (m $ is
Ž .st r ict ly decreasing a t 7 ! 1. Hence, it is enough tha t 1 $ % . is sligh t ly

grea ter than 1.
Ž .For the last par t , let . "0 with % chosen so tha t 1 $ % . is a constan t

Ž .sligh t ly grea ter than 1, so tha t the sum above is convergent and fixed . Now
note tha t

.".6/ d6 ! E 1 d6 ! lim E e 1 d6 ! lim E y " &. !Ž . Ž . Ž . Ž .ÝH H H u
. "0 . "0 Ž .u# II 0

The next theorem provides the Seneta !Heyde renormaliza t ion for the
coming genera t ion mar t inga le.
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THEOREM 8.6. When EX $ 0,

L e"t y ! "log M 1Ž . Ž .Ý u
Ž .u#II t

as t ! &, alm ost surely.

PROOF. Lemma 8.1 shows tha t Theorem 6.2, applies to the opt iona l lines
Ž .II t , so

lim y L y ! "log M 1 .Ž . Ž .Ý u u
t!& Ž .u#II t

Ž . Ž . Ž .Following Nerman 1981 , decompose II t in to II t , c given by,

II t , c ! u : u # EE ,"log y ' t , "log y $ t $ c" 4Ž . m Žu . u

Ž .tha t is, those with overshoot a t least c and the remainder . Because L is
monotone decreasing it clear tha t , on the surviva l set ,

Ý y L yŽ .II Ž t . u u1 ' "tL e Ý yŽ . II Ž t . u

Ý y L yŽ .II Ž t . u u' "tL e Ý yŽ . II Ž t ., II Ž t , c. u

L e"Ž t$c. Ý y L yŽ . Ž .II Ž t , c. u u' $"t "tL e L e Ý yŽ . Ž . II Ž t ., II Ž t , c. u

L e"Ž t$c. Ý y L y (L e"tŽ . Ž . Ž .TT Ž t , c. u u! $"t Ý yL eŽ . II Ž t ., II Ž t , c. u

Ž "Ž t$c.. Ž "t .and, because L is slowly varying a t zero, L e (L e goes to 1 as t goes
to infinity. Thus the resu lt will be proved if

Ý et y L y (L e"tŽ . Ž .II Ž t , c. u u8 .2 lim lim ! 0Ž . tÝ e yc!& t!& II Ž t ., II Ž t , c. u

on the surviva l set a lmost surely, where the outer limit need only be through
the ra t iona ls.

%By the in tegra l represen ta t ion of a slowly varying funct ion see, e.g., VIII.9
Ž .&of Feller 1971 for any * , * , both st r ict ly posit ive, there is a 7 such tha t for1

a ll y " 1,

L yxŽ . "*sup ' 1 $ * y .Ž .1L xŽ .x"7
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Thus
L y L et y e"tŽ . Ž .Ž .u ut te y ! e yŽ . Ž .Ý Ýu u"t "tL e L eŽ . Ž .Ž . Ž .II t , c II t , c

1"*t' 1 $ * e y ,Ž . Ž .Ý1 u
Ž .II t , c

"t Ž .provided e " 7 . Thus it suffices to show, in place of 8.2 , tha t , for some
* $ 0,

1"*tÝ e yŽ .II Ž t , c. u8 .3 lim lim ! 0 .Ž . tc!& Ý e yt!& Ž .II Ž t ., II Ž t , c. u

ŽŽ .Ž ..The top line here can be writ ten as Ý exp t " b 1 " * , which isII Ž t , c. u
simply the embedded processes counted using the character ist ic

&
" 45 a ! I a $ 0 exp " 6 " a 1 " * 1 d6 ,Ž . Ž . Ž . Ž .Ž .H

a$c

and the denomina tor is the embedded process counted using the character -
ist ic

a$c
" 42 a ! I a $ 0 exp " 6 " a 1 d6 .Ž . Ž . Ž .Ž .H

a

It will now be shown tha t Theorem 7.1 applies to these two character ist ics,
provided * is small enough . Note first tha t Theorem 8.5 holds with . ! 1 " * ,
provided * is sufficien t ly small. With th is choice of . it remains to check the
supremum condit ion on the character ist ics. For 5 , note tha t , for a $ 0,

& &
exp "a. 5 a ! exp "6 1 " * 1 d6 ' exp "6 1 " * 1 d6Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .H H

a$c 0

&
! exp "6. 1 d6 ,Ž . Ž .H

0

which is independent of a and, using Theorem 8.5, has finite expecta t ion .
Simila r ly, for a $ 0,

a$c
exp "a. 2 a ! exp "a. exp " 6 " a 1 d6Ž . Ž . Ž . Ž . Ž .Ž .H

a

a$c &
' exp "6. 1 d6 ' exp "6. 1 d6 .Ž . Ž . Ž . Ž .H H

a 0
Thus

1"*t & &Ý e y H H exp " 1 " * 6 / d6 exp "a* daŽ . Ž . Ž .Ž .Ž .Ž .II Ž t , c. u 0 a$clim ! & a$ct H H exp "6 / d6 daÝ e yt!& Ž . Ž .0 aII Ž t ., II Ž t , c. u

& "6 Ž .a lmost surely. The denomina tor here converges to H 6 e / d6 , which is0
finite, and the numera tor goes to zero as c goes to infinity, provided * is
sufficien t ly small, using Theorem 8.5 in both cases. !
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Ž .When the under lying poin t process Z is concent ra ted on 0, & and has
Malthusian parameter equa l to one, the embedded process and the or igina l
one are the same, so Theorem 7.2 is a simple consequence of th is theorem .

Ž .PROOF OF THEOREM 1.5. Suppose we take two nont r ivia l solu t ions to 1.5 ,
( and ( . Both of these can be used to const ruct mult iplica t ive mar t inga les;1 2
hence, applying Theorem 8.6,

"log M 1 L e"t Ý y L e"tŽ . Ž . Ž .1 1 u # II Ž t . u 1! lim ! lim ! c,"t "t"log M 1 L e Ý y L et#& t #&Ž . Ž . Ž .2 2 u # II Ž t . u 2

Ž . Ž .where c must be a constan t . By Lemma 5.2 iv , both "log M 1 and1
Ž ."log M 1 are st r ict ly posit ive and finite on the surviva l set , so 0 " c " &.2

Ž . Ž . Ž . Ž .Thus log M 1 ! c log M 1 , so Lemma 5.2 ii , which shows tha t log M 11 2
has Laplace t ransform (, completes the proof. !

In par t icu la r th is establishes tha t the funct iona l equa t ion sa t isfied by the
Laplace t ransform of the limit var iable obta ined by Seneta !Heyde normaliza-

Ž .t ion of the genera l C-M-J branching process has a unique solu t ion .

9. Sene ta –Heyde norming constan ts in the BRW. As expla ined a l-
ready, ideas of Cohn’s are used to st rengthen the convergence in dist r ibu t ion
a long a subsequence to convergence in probability a long tha t subsequence.
The following lemma provides the key; it is simila r to Theorem 3.1 of Cohn
Ž .1985 .

" 4LEMMA 9.1. S uppose that Y is a sequence of nonnegative random vari-n
" n 4ables adapted to the increasing sigm a-fields GG . S uppose also that along a

" Ž . 4fixed subsequence n i : i ! 1, 2, . . . for each k and x $ 0, the conditional
% Ž . ! k &Laplace transform E exp "xY GG converges as i ! &. Denote the lim it byn Ž i .

Ž .5 x .k

Ž . " Ž .4i For each x $ 0, 5 x form s a bounded nonnegative m artingale withk
" k 4respect to GG .

Ž . " Ž .4 Ž .ii Denote the lim it of the m artingale 5 x by 5 x . If , for x $ 0,k
Ž . "x X Ž .5 x ! e for a finite random variable X that does not depend on x then

Y ! X in probability, as i ! &.n Ž i .

PROOF. Using the definit ion of 5 and domina ted convergence,k$1

k k$1 k! ! !E 5 x GG ! E lim E exp "xY GG GGŽ . Ž .k$1 n Ž i .
i

k$1 k! !! lim E E exp "xY GG GG ! 5 x ,Ž .Ž .n Ž i . k
i

Ž .proving i .
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Ž . Ž .It will be convenien t to let X ! "log 5 1 . Thus, because 5 x !k k k
Ž . "x X5 x ! e , X ! X a lmost surely, andk

x X k!1 ! 5 x e ! lim lim E exp "xY GG exp xXŽ . Ž .Ž .n Ž i . kž /k i

k!! lim lim E exp "x Y " X GG ;Ž .Ž .n Ž i . k
k i

" Ž .4thus there exist s a nonrandom sequence of in tegers k i such tha t

k Ž i .!lim E exp "x Y " X GG ! 1Ž .Ž .n Ž i . k Ž i .
i

in probability. If th is equa lity were main ta ined on taking uncondit iona l
expecta t ions then Y " X would converge in dist r ibu t ion , and hence inn Ž i . k Ž i .
probability, to zero, and the resu lt would be proved. In fact a sligh t ly modified

" 4Ž .argument is needed, where the convergence of I X ' u Y " X fork Ž i . n Ž i . k Ž i .
any u $ 0 is considered.

" 4 kBecause I X ' u is GG measurable it follows tha t , for any finite u ,k

k Ž i .!E exp "xI X ' u Y " X GG" 4 Ž .Ž .k Ž i . n Ž i . k Ž i .

k Ž i .!! I X ' u E exp "x Y " X GG $ I X $ u" 4 " 4Ž .Ž .k Ž i . n Ž i . k Ž i . k Ž i .

" 4 " 4! I X ' u $ I X $ u ! 1

in probability, as i goes to infinity. For x * 0, the var iables on the left a re
" x u 4bounded by max e , 1 , so taking uncondit iona l expecta t ions and applying

Ž . " 4domina ted convergence shows tha t , for any u , Y " X I X ' u con-n Ž i . k Ž i . k Ž i .
verges in dist r ibu t ion , and hence in probability, to zero, as i goes to infinity.
Now

! ! ! !lim sup P Y " X $ * ' lim sup P Y " X I X ' u $ *(2" 4Ž . Ž .n Ž i . n Ž i . k Ž i . k Ž i .
i i

! !$P X " X $ *(2 $ P X $ uŽ .Ž .k Ž i . k Ž i .

! 0 $ 0 $ P X $ uŽ .

which can be made arbit ra r ily small by taking u sufficien t ly la rge because, by
assumpt ion , X is finite a lmost surely. !

PROOF OF THEOREM 1.2. As in the proof of Theorem 1.3 in Sect ion 2, let
Žn . Ž .the Laplace t ransform of W be , x and take c to be such tha tn n

Ž ., 1(c ! - , where - is fixed to be grea ter than the ext inct ion probabilityn n
" Žn . 4but less than 1. The t ransform of the limit of any subsequence of W (cn
Ž .tha t converges in dist r ibu t ion must sa t isfy the funct iona l equa t ion 1.5 with

Ž .( 1 ! - . By Theorem 1.5, the solu t ion to the funct iona l equa t ion is unique,
" Žn . 4so W (c converges in dist r ibu t ion a long the fu ll sequence.n
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Let Y !W Žn .(c and GG n ! FF n. To see tha t Lemma 9.1 applies, note tha t ,n n
for k ' n ,

W Žn"k .
uŽn . Žn"k . Žn .W ! y W ! y W ,Ý Ýu u u u Žn .Wu! ! ! !u !k u !k

so, dividing through by c , t aking Laplace t ransforms, let t ing n go to infinityn
and using Theorem 2.4 gives tha t

Žn . k Žk .!lim E exp "xW (c FF ! ( xy !M x .Ž . Ž .Ž . Łn u
n ! !u !k

% Ž . & Ž .Thus Lemma 9.1 i is, in th is context , Theorem 3.1. Now, by Lemma 5.2 i
Ž . Ž .and iii , the mar t inga les limit s have the proper ty required for Lemma 9.1 ii

to hold, and the resu lt is proved. !

Ž .Note tha t the random var iable ' in Theorem 1.2 is "log M 1 .
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