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Abstract

In Gapeev and Kühn (2005) [8], the Dynkin game corresponding to perpetual convertible bonds was
considered, when driven by a Brownian motion and a compound Poisson process with exponential jumps.
We consider the same stochastic game but driven by a spectrally positive Lévy process. We establish a
complete solution to the game indicating four principle parameter regimes as well as characterizing the
occurrence of continuous and smooth fit. In Gapeev and Kühn (2005) [8], the method of proof was mainly
based on solving a free boundary value problem. In this paper, we instead use fluctuation theory and an
auxiliary optimal stopping problem to find a solution to the game.
Crown Copyright c� 2011 Published by Elsevier B.V. All rights reserved.

MSC: 60J99; 60G40; 91B70
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1. Introduction

Let X = (Xt , t ≥ 0) be a Lévy process defined on a filtered probability space (Ω ,F, F, P),
where F := {Ft , t ≥ 0} is the filtration generated by X which is naturally enlarged (see, for
instance, Definition 1.3.38 in [4]). For x ∈ R denote by Px the law of X when it is starts at x ,
and write simply P0 = P. Accordingly, we shall write Ex and E for the associated expectation
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operators. In this paper we shall assume throughout that X is spectrally positive meaning here
that it has no negative jumps and that it is not a subordinator. It is well known that the latter
allows us to talk about the Laplace exponent ψ(θ) : [0, ∞) → R, i.e.

E
�
e−θ Xt

�
=: etψ(θ), t, θ ≥ 0,

and the Laplace exponent is given by the Lévy–Khintchine formula

ψ(θ) = µθ + b
2

2
θ2 +

�

(0,∞)

�
e−θx − 1 + θx1{x<1}

�
Π (dx), (1.1)

where µ ∈ R, b
2 ≥ 0 and Π is a measure on (0, ∞) called the Lévy measure of X and satisfies

�

(0,∞)
(1 ∧ x

2)Π (dx) < ∞.

The reader is referred to Bertoin [3] and Sato [14] for a complete introduction to the theory of
Lévy processes.

Denote by T0,∞ the family of all [0, ∞]-valued stopping times with respect to F. We are
interested in establishing a solution to a special class of stochastic games which are driven by
spectrally positive Lévy processes. Specifically, for α > 0 and β ≥ 0 and q, K > 0, let

Lt := e−qt+Xt +
�

t

0
e−qs(α + βeXs )ds,

and

Ut := e−qt (eXt ∨ K ) +
�

t

0
e−qs(α + βeXs )ds.

We are interested in the Dynkin game consisting of two players and expected payoff given by

Mx (τ, σ ) := Ex

�
Lτ1{τ<σ } + Uσ1{σ≤τ }

�
, (1.2)

for x ≥ 0. See [6] for the original source of this type of problem. The inf-player’s objective
is to choose some σ ∈ T0,∞ which minimizes (1.2), whereas the sup-player chooses some
τ ∈ T0,∞ which maximizes this quantity. We are principally interested in showing the existence
of a stochastic saddle point. That is, we want to find τ ∗ and σ ∗ such that

Mx (τ, σ
∗) ≤ Mx (τ

∗, σ ∗) ≤ Mx (τ
∗, σ ) for all τ, σ ∈ T0,∞. (1.3)

Note that (1.3) implies for each x ,

V (x) := sup
τ

inf
σ

Mx (τ, σ ) = inf
σ

sup
τ

Mx (τ, σ ), (1.4)

the value of the game. Recent work on stochastic games refers to the stochastic saddle point as
the Nash equilibrium and the value of the game the Stackelberg equilibrium; cf. [7,11]. Note that
for x ≥ log K

Mx (τ, 0) = ex = Mx (0, 0) = Mx (0, σ )

for any τ, σ , i.e. τ ∗ = 0 and σ ∗ = 0 form a stochastic saddle point whenever x ≥ log K with
V (x) = ex . In what follows, we assume

(A) : ψ(−1) < q.
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In that case, the Laplace exponent ψ is well defined on [−1, ∞) and moreover the
Lévy–Khintchine formula can be extended to the interval [−1, 0) (see for instance Lemma 26.4
in [14]). Without this condition the gain in the expectations in (1.2), that is to say U∞, is infinity
on the event {τ = σ = ∞}. Note however, the general theory of Dynkin games as described in
[7,11] also allows us to consider adaptations of the above stochastic games in which we allocate
a third payoff, say Z · on the event that {τ = σ } which is valued between L · and U·.

The problem of finding a stochastic saddle point solution to (1.4) was originally considered in
the setting of compound Poisson and exponentially distributed jumps by Gapeev and Kühn [8]. In
that paper the authors motivate the stochastic game from the point of view of financial modelling
as follows. One assumes that a firm issues a convertible bond at time zero. At each subsequent
time, the bondholder can decide whether to continue to hold the bond, thereby collecting coupons
at the rate α +βeXt , where we think of the process {eXt : t ≥ 0} as the value of some underlying
risky asset, or to convert it into a unit of the underlying. On the other hand, at any time the issuing
firm can redeem the bond at some call price K , but at the same time it has to offer the holder
to convert the bond instantly. Put differently, the firm can terminate the contract by paying the
amount max{K , eXt }.

Our interest in this stochastic game however comes more from a theoretical point of view and
in particular the possible effects of the more complex jump structure that can be found in the
underlying Lévy process. Technically speaking, the specific jump structure in [8] allowed them
to convert the problem into an integro-differential free boundary problem. In the present setting,
there is limited assistance one can gain from the theory of integro-differential free boundary
problems on account of the fact that they are poorly understood at the required degree of
generality. We turn instead to a mixture of probabilistic reasoning using the general theory of
optimal stopping problems together with potential analytic considerations for spectrally negative
Lévy processes which manifest themselves in the modern theory of scale functions.

2. Main results

Below, in Theorems 1–4 we give a qualitative and quantitative exposition of the solution to
(1.3). Before doing so, we need to give a brief reminder of a class of special functions which
appear commonly in connection with the study of spectrally positive Lévy processes. For each
p ≥ 0 we introduce the functions W

(p) : R → [0, ∞) which are known to satisfy for all
x, y ≥ 0,

E
�
e−pτ−

−x1{τ−
−x

<τ+
y }

�
= W

(p)(y)

W (p)(x + y)
, (2.5)

where

τ+
y

:= inf{t > 0 : Xt > y} and τ−
−x

:= inf{t > 0 : Xt < −x}

(cf. Chapter 8 of Kyprianou [9]). In particular W
(p)(x) = 0 for all x < 0 and further, it is known

that on (0, ∞), W
(p) is almost everywhere differentiable, there is right continuity at zero and

� ∞

0
e−βx

W
(p)(x)dx = 1

ψ(β) − p

for all β > Φ(p), where Φ(p) is the largest root of the equation ψ(θ) = p (of which there are
at most two). For convenience, we write W instead of W

(0).
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Associated to the functions W
(p) are the functions Z

(p) : R → [1, ∞) defined by

Z
(p)(x) = 1 + p

�
x

0
W

(p)(y)dy

for p ≥ 0. Together, the functions W
(p) and Z

(p) are collectively known as scale functions and
predominantly appear in almost all fluctuation identities for spectrally positive Lévy processes.
For example, it is known that for all y ∈ R

E
�
e−pτ+

y 1{τ+
y <∞}

�
= Z

(p)(y) − p

Φ(p)
W

(p)(y). (2.6)

We make the very mild assumption that Π has no atoms when X has paths of bounded variation.
This suffices to deduce (cf. [5]) that W

(p) ∈ C
1(0, ∞) and hence Z

(p) ∈ C
2(0, ∞) and further,

if X has a Gaussian component they both belong to C
2(0, ∞). It is also known that if X

has bounded variation with drift d , then limx↓0 W
(q)(x) =: W

(p)(0+) = 1/d and otherwise
W

(p)(0+) = 0. (Here and in what follows we take the canonical representation of a bounded
variation spectrally positive Lévy processes Xt = St −dt for t ≥ 0 where (St , t ≥ 0) is a driftless
subordinator and d is a strictly positive constant which is referred to as the drift.) Further, when
X has unbounded variation,

W
(p)�(0+) = 2/b

2 (2.7)

which is understood to be +∞ when b
2 = 0. Consider the exponential change of measure

dP(λ)

dP

�����
Ft

= e−λXt −ψ(λ)t , for λ ≥ −1. (2.8)

Under P(λ), the process X is still a spectrally positive Lévy process and we mark its Laplace
exponent and scale functions with the subscript λ. It holds that

ψλ(θ) = ψ(λ + θ) − ψ(λ)

for θ ≥ 0 and, by taking Laplace transforms, we find

W
(p)
λ (x) = e−λx

W
(p+ψ(λ))(x)

for p ≥ 0. The reader is otherwise referred to Chapter VII of Bertoin [3] or Chapter 8 of
Kyprianou [9] for a general overview of one-sided Lévy processes and scale functions.

It turns out that the solution to the stochastic game can fall in four different regimes, depending
on the value of the discount factor q. We remind the reader of the standing assumption (A).

Theorem 1. Suppose q ≤ α/K . Then a saddle point for the stochastic game (1.3) is given by

σ ∗ = 0, τ ∗ = τ+
log K

. In particular V (x) = K ∨ ex
for all x.

Theorem 2.

(i) As a function of q,

a
∗(q) := α(Φ(q) + 1)

Φ(q)(q − ψ(−1) − β)
,
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defined for q > β + ψ(−1), is strictly monotone decreasing with a
∗(β + ψ(−1)+) = ∞

and a
∗(∞) = 0. Define

q0 = sup
�

q ∈ (0, ∞) : a
∗(q) < K

�

(noting that q0 > β + ψ(−1) necessarily). It holds that q0 > α/K .

(ii) For all q ∈ [q0, ∞) a stochastic saddle point is given by the pair

τ ∗ = inf
�

t ≥ 0 : Xt > log a
∗(q)

�
and σ ∗ = inf

�
t ≥ 0 : Xt > log K

�
.

In particular,

V (x) = ex + α

Φ(q)
g(log(a∗(q)) − x),

where

g(z) = (Φ(q) + 1)

�
z

0
ey−z

W
(q)(y)dy − Φ(q)

�
z

0
W

(q)(y)dy.

(iii) For q ∈ [q0, ∞), there is smooth fit at log a
∗(q) if and only if X has paths of unbounded

variation and otherwise there is continuous fit.

Theorem 3.
(i) Assume that b

2 > 0. The set

�
q ∈ (0, q0) : 0 < K

b
2

2
+ α

Φ(q)

�
K

a∗(q)
− 1

��

is an interval whose infimum we denote by q1. It holds that q1 > α/K .

(ii) When b
2 > 0 and q ∈ [q1, q0], a saddle point for the stochastic game (1.3) is given by

τ ∗ = σ ∗ = inf
�

t ≥ 0 : Xt > log K

�
.

In particular,

V (x) = ex

�

1 + (q − ψ(−1))

� log K−x

0
ey

W
(q)(y)dy

− K
q − ψ(−1)

Φ(q) + 1
e−x

W
(q)(log K − x)

�

+ W
(q)(log K − x)

KΦ(q)

� log K

−∞

�
α + βey

�
eΦ(q)ydy

−
� log K

x

�
α + βey

�
W

(q)(y − x)dy.

(iii) When b
2 > 0 and q ∈ [q1, q0] there is smooth fit at log K if and only if q = q0 or q = q1.

(iv) When b
2 = 0, then the strategies τ ∗ = σ ∗ = inf{t ≥ 0 : Xt > log K } do not form a

stochastic saddle point when q < q0.

When b
2 = 0 the above theorem does not define a value of q1. For convenience of use in the

next theorem we shall simply set q1 := q0 when b
2 = 0.

Theorem 4. Suppose that α/K < q < q1.
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(i) The functional equation in a

q

Φ(q)
= 1

K

�
α

Φ(q)
+ β

Φ(q) + 1
ea

�
− 1

Φ(q)

� ∞

0
Π (dz + log K − a)(1 − e−Φ(q)z)

+ 1
Φ(q) + 1

� ∞

0
Π (dz + log K − a)ez(1 − e−(Φ(q)+1)z)

has a unique solution in (−∞, log K ) which we denote by c
∗(q).

(ii) A stochastic saddle point is given by the pair

τ ∗ = inf
�

t ≥ 0 : Xt > log K

�
and σ ∗ = inf

�
t ≥ 0 : Xt > c

∗(q)
�
.

It holds that, for x < c
∗(q)

V (x) = K

�

Z
(q)(c∗(q) − x) − q

Φ(q)
W

(q)(c∗(q) − x)

�

+
�

c

−∞

�
α + βey

��
e−Φ(q)(c∗(q)−y)

× W
(q)(c∗(q) − x) − W

(q)(y − x)
�

dy + eΦ(q)(x−c
∗(q))

� ∞

0
e−Φ(q)uΠ (du)

×
� 0

−∞
dy

�
W

(q)(c∗(q) − x) − e−Φ(q)y
W

(q)(c∗(q) − x + y)
�

× eΦ(q)(u+y)
�
ec

∗(q)+u+y − K
�
1{u+y+c∗(q)>log K }

and for x ≥ c
∗(q)

V (x) = ex ∨ K .

(iii) There is smooth fit at c
∗(q) if and only if X has paths of unbounded variation and otherwise

there is continuous fit.

The order in which we present these statements above (first q ≤ α/K , followed by q ≥
q0, q ∈ [q1, q0] when b

2 > 0, and finally q ∈ (α/K , q1)) is convenient with regard to the
dependency between their proofs. We also remark that careful consideration of the proof of
Theorem 2 reveals that we can also include the parameter choices α = β = 0; albeit that
the corresponding saddle point is somewhat uninteresting in that τ ∗ = 0 and σ ∗ = τ+

log K
. In

particular, one may think of a
∗(q) = 0, q0 = ∞ and q1 = 0 in this case.

The four theorems above can also be understood intuitively in terms of the discount rate q.
Because of the Markovian nature of the Dynkin game, as well as the fact that there is an infinite
horizon, it makes heuristic sense that both the inf-player and sup-player will seek threshold
strategies for the underlying process X which are time invariant. (This is also consistent with
other optimal stopping problems of this type.) From the sup-player’s point of view, the larger the
value of q the less time they are prepared to wait for a large value of X (and hence L) before
stopping as this severely discounts the ultimate payout they will receive. This results in a lower
threshold tolerance the higher the value of q . From the inf-player’s point of view, a small value
of q is bad as it means that payouts to the sup-player are relatively large and hence, in that case, it
makes sense to intervene and force a payout early before a large value of X becomes accessible.
In particular, Theorem 1 identifies α/K as a cut-off value in q below which the inf-player finds
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it preferential to simply stop immediately rather than incur any risk on the part of the sup-player.
Theorem 4 indicates that if q is still small enough but bigger than the aforementioned cut-off,
namely α/K < q < q1, then the inf-player has a lower degree of tolerance with regard to their
stopping threshold than the sup-player and the saddle point is controlled entirely by the behaviour
of the inf-player. In light of Theorem 3 one may think of the constant q1 as the level at which
the threshold for the inf-player, c

∗(q), equals log K . As the value of q rises above q1, Theorem 3
also says that, in the presence of a Gaussian coefficient, as long as q does not exceed the value
q0 > q1 both inf- and sup-player agree on stopping the game once the threshold log K has
been exceeded. If there is no Gaussian component, this agreement occurs uniquely at q0 which
is determined by Theorem 2. For q larger than q0, the stochastic game is controlled entirely by
the sup-player in the sense this player has a lower threshold tolerance on account of the heavier
discounting and is prepared to stop the game at log a

∗(q) < log K .
By comparison with the original paper of Gapeev and Kühn [8] the above qualitative summary

is essentially the same despite the fact that there is now a much more general class of processes
driving the stochastic game. This follows on account of the structure of the solution lying largely
with threshold tolerances which are largely determined by the degree of discounting. A difference
that the analysis here does bring out however is the extent to which smooth and continuous
pasting is determined by the small-time behaviour of the underlying Lévy process.

Recall that the issue of smooth or continuous pasting is a phenomenon which occurs in
most optimal stopping problems driven by Markov processes with jumps. Consistently with
the general theory given in [7,11], the value of the Dynkin game in this particular setting is
upper bounded by the function ex ∨ K and lower bounded by ex . According to the statements of
Theorems 1, 4, 3 and 2, when the inf-player has a lower threshold tolerance than the sup-player,
the value function ‘pastes’ on to the curve ex ∨ K at the inf-player’s stopping threshold. That is to
say, the value function is equal to the function ex ∨K on the upper half-line that describes the inf-
player’s stopping region and otherwise it is strictly bounded from above and below by ex ∨ K and
ex respectively. Similarly, when the sup-player has a lower threshold tolerance than the inf-player,
the value function pastes on to the function ex at the sup-player’s stopping threshold. For many
optimal stopping problems which are driven by diffusions it has been observed that a principle of
smooth pasting holds. In other words, the first derivative of the value function is continuous at the
point of pasting. Recent work on optimal stopping problems driven by Markov processes with
jumps suggests that the phenomenon of smooth pasting is not always observed. When smooth
pasting does not occur it is seen that there is just continuous pasting. See the discussion in [1] for
a recent overview of this phenomenon as well as a heuristic of why it occurs.

Consistently with the ‘rule of thumb’ conjectured in [1], it is the regularity of the boundary of
the stopping region for its interior which determines whether smooth pasting or just continuous
pasting occurs. Since all stopping regions correspond to an upper half-line and X is spatially
homogeneous, this boils down to the regularity of 0 for (0, ∞). Since X is a spectrally positive
Lévy process, the latter regularity happens to coincide with the situation that X has unbounded
variation. There is one exception to this rule however, the case that both the inf- and sup-player
agree on stopping at the same threshold level log K and a Gaussian component is present. Here
the interior of the stopping region is regular for its boundary point, however no smooth pasting
occurs when q ∈ (q1, q0) due to the kink in the pay-off function there.

The remainder of this paper is dedicated to proving Theorems 1–4 and is structured as follows.
In the next section we state a lemma which will be repeatedly used to implement proofs on the
basis of ‘guess and verify’ such as is common with solving optimal stopping problems. Thereafter
we prove the four main theorems above in the order that they are stated.
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3. Guess and verify

Following classical ideas in optimal stopping, we verify that a candidate solution solves
the stochastic game (1.3) by checking certain associated bounds and martingales properties.
Specifically, we will use the following verification lemma which is of a similar form in statement
and proof to Lemma 5 in [2]. For the sake of brevity we omit its proof.

Lemma 1 (Verification Lemma). Fix x ∈ R. Suppose that τ ∗ ∈ T0,∞ and σ ∗ ∈ T0,∞ are

candidate optimal strategies for the stochastic game (1.4) such that

sup
σ∈T0,∞

e−qσ+Xσ1{σ≤τ∗} (3.9)

has finite mean under Px . Let

V
∗(x) = Ex

�
Lτ∗1{τ∗<σ ∗} + Uσ ∗1{σ ∗≤τ∗}

�
.

Then (τ ∗, σ ∗) is a stochastic saddle point of (1.3) with value V
∗

if

(i) V
∗(x) ≥ ex

,

(ii) V
∗(x) ≤ ex ∨ K ,

(iii) V
∗(Xτ∗) = eXτ∗

almost surely on {τ ∗ < ∞},
(iv) V

∗(Xσ ∗) = eXσ∗ ∨ K almost surely on {σ ∗ < ∞},
(v) the process

�

e−q(t∧τ∗)
V

∗(Xt∧τ∗) +
�

t∧τ∗

0
e−qs(α + βeXs )ds, t ≥ 0

�

is a right continuous submartingale and

(vi) the process

�

e−q(t∧σ ∗)
V

∗(Xt∧σ ∗) +
�

t∧σ ∗

0
e−qs(α + βeXs )ds, t ≥ 0

�

is a right continuous supermartingale.

4. Proof of Theorem 1

Suppose q ≤ α/K . We claim that the process (Zt , t ≥ 0) defined by

Zt =
�

e−q(t∧τ+
log K

)
(K ∨ e

X
t∧τ+

log K ) +
�

t∧τ+
log K

0
e−qs(α + βeXs )ds, t ≥ 0

�

is a submartingale. Indeed, when x < log K , we have on {t < τ+
log K

}

dZt =
�
(α − q K )e−qt + βe−qt+Xt

�
dt

and

Zτ+
log K

− Zτ+
log K

− = e−qτ+
log K

�
e

X
τ+
log K − K

�
,

showing that, as β ≥ 0, Z is an adapted, strictly increasing process, i.e. a submartingale.
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We may now invoke the Verification Lemma, since the other properties are automatically
satisfied by taking σ ∗ = 0. Note in particular that the condition (3.9) is automatically satisfied
since

sup
σ∈T0,∞

e−qσ+Xσ1{σ≤τ+
log K

} ≤ e
−qτ+

log K
+X

τ+
log K 1{τ+

log K
<∞} + K

and

Ex

�
e
−qτ+

log K
+X

τ+
log K 1{τ+

log K
<∞}

�
= exE(−1)

x

�
e−(q−ψ(−1))τ+

log K

�
≤ ex .

5. Proof of Theorem 2

The basis of the proof of Theorem 2 is the assumption that the optimal strategies take the
form σ ∗ = inf{t > 0 : Xt > log K } and τ ∗ = inf{t > 0 : Xt > y

∗} for some optimally
chosen y

∗. Establishing the value function, V , would boil down to computing Hy∗ where for any
−∞ < y ≤ log K , Hy(x) := Ex

�
Lτ+

y

�
, that is to say,

Hy(x) := Ex

�
e
−qτ+

y
+X

τ+
y

�
+

� ∞

0
Ex

�
e−qs(α + βeXs )1{s≤τ+

y }
�

ds. (5.10)

We thus proceed by evaluating the above expression in terms of scale functions, then we choose
the value of y

∗ by blindly applying the principle of smooth and continuous fit respectively to
the cases that X has paths of unbounded and bounded variation and finally we verify that the
established strategy is indeed optimal with the help of the Verification Lemma.

With the help of the exponential change of measure, (2.8) and (2.6), the first term of the
right-hand side of the above expression for Hy satisfies

Ex

�
e
−qτ+

y
+X

τ+
y

�
= exE

�
e
−qτ+

y−x
+X

τ+
y−x

�

= exE(−1)
�

e−(q−ψ(−1))τ+
y−x

�
,

= ex

�
Z

(q−ψ(−1))
−1 (y − x) − q − ψ(−1)

Φ−1(q − ψ(−1))
ey−x

W
(q)(y − x)

�

= ex

�
1 + (q − ψ(−1))

�
y−x

0
ey

W
(q)(z)dz

− q − ψ(−1)

Φ−1(q − ψ(−1))
ey−x

W
(q)(y − x)

�
,

where Φ−1 is the right inverse of ψ−1.
On the other hand from Theorem 8.7 in [9], the second term of the right-hand side of (5.10)

satisfies
� ∞

0
Ex

�
e−qs(α + βeXs )1{s≤τ+

y }
�

ds =
� ∞

0
�E

�
e−qs(α + βex−Xs )1{s≤τ−

x−y
}
�

ds

=
� ∞

0

�
α + βey−z

��
e−Φ(q)z

W
(q)(y − x) − W

(q)(y − x − z)
�

dz

=
�

y

−∞

�
α + βez

��
e−Φ(q)(y−z)

W
(q)(y − x) − W

(q)(z − x)
�

dz,
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where �P denotes the law of the dual process �X = −X . Finally noting that Φ−1(q − ψ(−1)) =
Φ(q) + 1, we get

Hy(x) = ex

�
1 + (q − ψ(−1))

�
y−x

0
ez

W
(q)(z)dz − q − ψ(−1)

Φ(q) + 1
ey−x

W
(q)(y − x)

�

+
�

y

−∞

�
α + βez

�
e−Φ(q)(y−z)

W
(q)(y − x)dz −

�
y

x

�
α + βez

�
W

(q)(z − x)dz.

We also see in particular, making use of the fact that W
(q)(0−) = 0 and Z

(q)(0) = 1, that

Hy(x) = ex

for all x > y.
Having expressed Hy in terms of scale functions, we now turn our attention to making the

choice of y
∗ using the principle of smooth and continuous fit in line with the ‘rule of thumb’

conjectured in [1].
Bounded variation and continuous fit: In this case it is known that W

(q)(0+) = 1/d where
d > 0 is the drift term of the process X . It follows that

Hlog a(log a−) = a

�
1 − q − ψ(−1)

Φ(q) + 1
W

(q)(0+)

�

+ W
(q)(0+)a−Φ(q)

� log a

−∞

�
α + βey

�
eΦ(q)ydy

= a + aW
(q)(0+)

�
α

aΦ(q)
+ β

Φ(q) + 1
− q − ψ(−1)

Φ(q) + 1

�
. (5.11)

In order to avoid a discontinuity at a we choose it equal to the value a
∗ which satisfies

q − ψ(−1)

Φ(q) + 1
= α

aΦ(q)
+ β

Φ(q) + 1
.

Note that this is equivalent to requiring that

a
∗ = α(Φ(q) + 1)

Φ(q)(q − ψ(−1) − β)
(5.12)

provided q > ψ(−1) + β. In order to see the values of q for which a
∗ ≤ K we also need to

check how the function a
∗ = a

∗(q) varies with q. To this end, note that, for q > ψ(−1) + β,

d
dq

a
∗(q) = −(q − ψ(−1) − β)αΦ�(q) − α(Φ(q) + 1)Φ(q)

(Φ(q)(q − ψ(−1) − β))2 < 0,

hence a
∗(·) is strictly decreasing. Note also that

lim
q↓β+ψ(−1)

a
∗(q) = ∞ and lim

q→∞ a
∗(q) = 0,

which implies the existence of a unique q0 > β +ψ(−1) such that a
∗(q0) = K . Note that it also

turns out that q0 > α/K on account of the fact that for q ≤ α/K

a
∗(q) ≥ K

q

Φ(q)

Φ(q) + 1
q − ψ(−1) − β

≥ K
q

Φ(q)

Φ(q) + 1
q − ψ(−1)

= KE(eXeq ) > K
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where Xt = sup
s≤t

Xs and eq is an exponential random variable with parameter q which is
independent of X . It is important to note that in the equality we have appealed to the well-known
identity for one of the Wiener–Hopf factors of X (cf. Chapter 8 of [9]).

Unbounded variation and smooth fit: In this case it is known that W
(q)(0+) = 0 and hence in

the above analysis one sees that Hlog a(log a−) = a = Hlog a(log a+). In that case, the principle
of smooth fit can be implemented and we insist on there being no discontinuity in H

�
log a

at log a.
We have

H
�
log a

(x) = ex
Z

(q−ψ(−1))
−1 (log a − x) − ex (q − ψ(−1))W

(q−ψ(−1))
−1 (log a − x)

+ a
q − ψ(−1)

Φ(q) + 1
W

(q)�(log a − x) − W
(q)�(log a − x)a−Φ(q)

×
� log a

−∞

�
α + βey

�
eΦ(q)ydy

+ (α + βex )W
(q)(0+). (5.13)

Recall that W
(q)(0+) = 0 and that W

(q)�(0+) = 2/b
2 which should be interpreted as +∞ in the

case that the Gaussian coefficient b
2 = 0. We find

H
�
log a

(log a−)

= a +
�

a
q − ψ(−1)

Φ(q) + 1
− a

−Φ(q)

� log a

−∞

�
α + βey

�
eΦ(q)ydy

�

W
(q)�(0+). (5.14)

In order to obtain the smooth fit H
�
log a

(log a+) = a we must thus have that

a
q − ψ(−1)

Φ(q) + 1
= a

−Φ(q)

� log a

−∞

�
α + βey

�
eΦ(q)ydy,

which, after a simple integration on the right-hand side, gives the same expression of a
∗ as in the

bounded variation case. The same bounds on q0 are thus still applicable in this case too.
In both cases, we obtain our candidate value function

Hlog a∗(x) = ex
Z

(q−ψ(−1))
(−1) (log a

∗ − x) −
� log a

∗

x

�
α + βey

�
W

(q)(y − x)dy

= ex

�

1 + (q − ψ(−1))

� log a
∗−x

0
ey

W
(q)(y)dy

�

−
� log a

∗−x

0

�
α + βey+x

�
W

(q)(y)dy.

We now proceed to verify our candidate solution when q ≥ q0. That is to say, we shall verify
that

τ ∗ = τ+
log a∗ , σ ∗ = τ+

log K
and V

∗(x) = Hlog a∗(x)

fulfil the conditions of the Verification Lemma. Note in particular that τ ∗ ≤ σ ∗.
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Submartingale and supermartingale properties: To this end, note that (5.10) together with an
application of the Markov property gives us for all t ≥ 0,

Λt := Ex

�

e−qτ+
log a∗

V
∗(Xτ+

log a∗ ) +
� τ+

log a∗

0
e−qs(α + βeXs )ds

�����Ft

�

= e−q(t∧τ+
log a∗ )

V
∗(X

t∧τ+
log a∗ ) +

�
t∧τ+

log a∗

0
e−qs(α + βeXs )ds.

That is to say, Λ = (Λt : t ≥ 0) is a martingale. This confirms the submartingale property (v) in
the Verification Lemma.

An easy computation shows that

V
∗��(x) = ex

Z
(q−ψ(−1))
−1 (log a

∗ − x) − a
∗(q − ψ(−1))

×
�
W

(q)(log a
∗ − x) + W

(q)�(log a
∗ − x)

�

and hence V
∗ belongs to C

2(−∞, log a
∗). Moreover, the latter conclusion is sufficient to show

that Γ V
∗(x) is continuous on (−∞, log a

∗) where Γ is the infinitesimal generator of X , and in
particular,

Γ V
∗(x) = µV

∗�(x) + b
2

2
V

∗��(x)

+
�

(0,∞)

�
V

∗(x + y) − V
∗(x) − yV

∗�(x)1{y<1}
�
Π (dy).

(See for example the argument in Lemma 4.1 of [10]). For any −n ≤ x ≤ a < log a
∗, where

n ∈ N, the aforementioned facts concerning smoothness and continuity allow us to apply Itô’s
formula to Λ, but stopped at τ−

−n
, where τ−

−n
= inf{t > 0 : Xt < −n}, and deduce that

Λ
t∧τ−

−n

= V
∗(x) +

�
t∧τ−

−n
∧τ+

a

0
e−qs

�
(Γ − q)V

∗(Xs) + (α + βeXs )
�
ds + mt , (5.15)

where

mt = b
2

2

�
t∧τ−

−n
∧τ+

a

0
e−qs

V
∗�(Xs)dBs +

�
t∧τ−

−n
∧τ+

a

0
e−qs

V
∗�(Xs)dX

(1)
s

+
�

s≤t∧τ−
−n

∧τ+
a

e−qs
�
V

∗(Xs) − V
∗(Xs−) − �Xs V

∗�(Xs−)1{�Xs<1}
�

−
�

t∧τ−
−n

∧τ+
a

0
e−qs

�

(0,∞)

�
V

∗(Xs− + y) − V
∗(Xs−)

− yV
∗�(Xs−)1{y<1}Π (dy)

�
ds

is a local martingale such that B is the Gaussian component in X and X
(1) is the martingale

consisting of compensated jumps of size strictly less than unity. In fact, thanks to the boundedness
of V

∗� and Γ V
∗ on [−n, a], the process {mt : t ≥ 0} is a martingale. The latter, together with

the fact that Λ is a martingale, implies that the drift term in (5.15) must almost surely be equal
to zero. Taking expectations and writing R

(q)(x, dy; a, −n) for the q-resolvent measure of the
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process X when issued from x and killed on first entry into (−∞, −n) ∪ (a, ∞) we have for all
−n ≤ x ≤ a < log a

∗,
�

[−n,a]

�
(Γ − q)V

∗(y) + (α + βey)
�

R
(q)(x, dy; a, −n) = 0.

As R
(q)(x, dy; a, −n) is absolutely continuous with respect to Lebesgue measure with a strictly

positive density in (−∞, 0) (cf. Chapter 8 of Kyprianou [9]) it follows that

(Γ − q)V
∗(x) + (α + βex ) = 0 (5.16)

for Lebesgue almost every x < log a
∗. The latter can be upgraded to every x < log a

∗ as the
left-hand side of (5.16) is continuous. It is also trivial to check that V

∗(x) = ex on (log a
∗, ∞)

and hence it follows from q > ψ(−1) + β and the definition of a
∗ that

(Γ − q)V
∗(x) + (α + βex ) = (ψ(−1) − q + β)ex + α ≤ (ψ(−1) − q + β)a∗ + α ≤ 0

on (log a
∗, ∞).

Next, note that it is straightforward to see that V
∗ is twice continuously differentiable on

(−∞, log a
∗) ∪ (log a

∗, ∞) with the existence of a left and right derivative at log a
∗. We may

thus apply the Meyer–Itô formula (cf. Theorem 70 of Protter [13]) to the process V
∗(X

t∧τ+
log K

)

and then integrate by parts to obtain, in a similar vein to (5.15), that

e−q(t∧τ+
log K

)
V

∗(X
t∧τ+

log K

) +
�

t∧τ+
log K

0
e−qs(α + βeXs )ds

= V
∗(x) +

�
t∧τ+

log K

0
e−qs

�
(Γ − q)V

∗(Xs) + (α + βeXs )
�
ds

+ 1
2

�
t∧τ+

log K

0
e−qs

�
V

∗�(log a
∗+) − V

∗�(log a
∗−)

�
d�s + Mt ,

where M := (Mt : t ≥ 0) is a local martingale and � := (�t : t ≥ 0) is the semi-martingale local
time of X at log a

∗. Note that when b
2 = 0, the final integral is identically zero owing to the

fact that the local time process � is also identically zero and otherwise, when b
2 > 0, the final

integral is still identically zero thanks to smooth pasting. Note also that although the quantity
(Γ −q)V

∗(x)+ (α +βex ) is not defined at x = log a
∗, this is not a problem in the context of the

above calculus as the Lebesgue measure of the time that the process X spends at log a
∗ is zero.

Recalling that (Γ − q)V
∗(x) + (α + βex ) ≤ 0 on (−∞, log a

∗) ∪ (log a
∗, ∞), by taking

expectations with the help of a suitable localizing sequence of stopping times {Tn : n ≥ 1} for
M , Fatou’s lemma and monotone convergence, we obtain

Ex

�

e−q(t∧τ+
log K

)
V

∗(X
t∧τ+

log K

) +
�

t∧τ+
log K

0
e−qs(α + βeXs )ds

�

≤ lim
n↑∞

Ex

�

e−q(t∧Tn∧τ+
log K

)
V

∗(X
t∧Tn∧τ+

log K

) +
�

t∧Tn∧τ+
log K

0
e−qs(α + βeXs )ds

�

≤ V
∗(x) + lim

n↑∞
Ex

��
t∧Tn∧τ+

log K

0
e−qs

�
(Γ − q)V

∗(Xs) + (α + βeXs )
�
ds

�

≤ V
∗(x).
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The last inequality above together with the Markov property is sufficient to deduce the
supermartingale property (vi) in the Verification Lemma. Note that right continuity follows
immediately from the continuity of V

∗ and the fact that X has càdlàg paths.
Lower and upper bounds: The bounds (i) and (ii) in the Verification Lemma can be deduced

directly from the expression for V
∗. To this end, write

V
∗(x) = ex + α

Φ(q)
g(log a

∗ − x),

where

g(z) = (Φ(q) + 1)

�
z

0
ey−z

W
(q)(y)dy − Φ(q)

�
z

0
W

(q)(y)dy.

Note that g(0) = 0. Since V
∗(x) = ex for all x ≥ log a

∗, we have the required lower bound for
V

∗ if we can prove that g
�(z) > 0 for all z > 0. To this end we differentiate and find that

g
�(z) = e−z

�
ez

W
(q)(z) − (Φ(q) + 1)

�
z

0
ey

W
(q)(y)dy

�

= e−z

�
W(p)(z) − ϕ(p)

�
z

0
W(p)(y)dy

�
,

where p = q − ψ(−1),W(p)(z) = ez
W

(q)(z) = W
q−ψ(−1)
−1 (z) and

ϕ(p) = sup{θ ≥ 0 : ψ−1(θ) = p}
= sup{θ ≥ 0 : ψ(θ − 1) − ψ(−1) = q − ψ(−1)}
= sup{θ ≥ 0 : ψ(θ − 1) = q}
= Φ(q) + 1.

Finally, to show that g
�(z) > 0 we note from (8.20) of Kyprianou [9] that

0 <
ϕ(p)

p
P(−1)(−X ep

≤ z) = W(p)(z) − ϕ(p)

�
z

0
W(p)(y)dy,

where X
t
= infs≤t Xs .

For the upper bound on V
∗ it suffices to show in a similar vein to the lower bound that

V
∗�(x) ≥ 0. Calculations in the spirit of the ones above show that

V
∗�(x) = ex

a∗

�
a

∗ − α

Φ(q)

Φ(q) + 1
q − ψ(−1)

P(−1)(−X ep
≤ x − log a

∗)
�

≥ ex

a∗
α

Φ(q)

Φ(q) + 1
q − ψ(−1)

[1 − P(−1)(−X ep
≤ x − log a

∗)]
≥ 0,

where we have made use of (5.12).
Stopped values: Note that since V

∗(x) = ex for x ≥ log a
∗ both conditions (iii) and (iv) are

automatically satisfied.
Having now checked properties (i)–(vi) of the Verification Lemma, and noting that the

justification for (3.9) is the same as in the proof of Theorem 1, we may conclude that the proposed
triple (τ ∗, σ ∗, V

∗) is a stochastic saddle point. �
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6. Proof of Theorem 3

The proof of Theorem 3 relies on the following optimal stopping problem. Recall that for
q > 0

Ut = e−qt (eXt ∨ K ) +
�

t

0
e−qs(α + βeXs )ds.

Lemma 2. Let α/K < q ≤ q0. Define the function w(x) : R → R+
by

w(x) := inf
σ∈T0,∞

Ex

�
Uσ∧τ+

log K

�
. (6.17)

Then w has the following properties,

(i) w is non-decreasing,

(ii) w(x) ≤ ex ∨ K for x ∈ R,

(iii) there exists a c
∗ ≤ log K such that

w(x) = Ex

�

e−qτ+
c∗

�
e

X
τ+
c∗ ∨ K

�
+

� τ+
c∗

0
e−qs(α + βeXs )ds

�

,

(iv) w is continuous in x and w(c∗) = K ,

(v) w(x) ≥ ex
for x ∈ R,

(vi) w(Xτ+
log K

) = e
X

τ+
log K almost surely on {τ+

log K
< ∞},

(vii) w(Xτ+
c∗

) = e
X

τ+
c∗ ∨ K almost surely on {τ+

c∗ < ∞},
(viii) the process

�

e−q(t∧τ+
log K

)
w(X

t∧τ+
log K

) +
�

t∧τ+
log K

0
e−qs(α + βeXs )ds, t ≥ 0

�

is a right continuous submartingale and

(ix) the process

�

e−q(t∧τ+
c∗ )w(X

t∧τ+
c∗

) +
�

t∧τ+
c∗

0
e−qs(α + βeXs )ds, t ≥ 0

�

is a right continuous supermartingale.

Proof. (i) Denote X
∗
t

= X
t∧τ+

log K

for all t ≥ 0, and introduce the functional

At :=
�

t∧τ+
log K

0
e−qs(α + βeXs )ds, for all t ≥ 0.

Then the process Z := (Zt , t ≥ 0) given by

Zt := (t, At , X
∗
t
) for all t ≥ 0,

is Markovian and starts from (0, 0, x) under the measure Px . Thus the optimal stopping problem
(6.17) reads as follows

w(x) := W (0, 0, x) = inf
σ∈T0,∞

Ex

�
F(σ ∧ τ+

log K
, Aσ , X

∗
σ )

�
,
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where F(t, l, x) = e−qt (ex ∨ K )+l. Since F : R2
+ ×R → R+ is continuous and X

∗ is quasi-left
continuous we can deduce that w is upper semicontinuous. Furthermore, we have

Ex

�

sup
t≥0

F(t ∧ τ+
log K

, At , X
∗
t
)

�

≤ Ex

�� ∞

0
e−qs(α + βeXs )ds

�

+ Ex

�
e
−qτ+

log K
+X

τ+
log K

�
+ K

≤ K + α

q
+ β

q − ψ(−1)
+ ex

Z
(q−ψ(−1))
−1 (log K − x)

< ∞,

so we can apply a variant of Theorem 3.3 on p. 127 of Shiryaev [15] (see also Corollary 2.9 on
p. 46 of Peskir and Shiryaev [12]) to conclude that

τD = inf{t ≥ 0 : Zt ∈ D},
where D =

�
(t, l, x) ∈ R2

+ × R : W (t, l, x) = F(t, l, x)
�
, is an optimal stopping time and

W (t, l, x) = inf
σ∈T0,∞

Ex

�
F(t + σ ∧ τ+

log K
, l + Aσ , X

∗
σ )

�
.

Note that for all (t, l, x) ∈ R2
+ × R, the following identity holds

W (t, �, x) = e−qt
W (0, 0, x) + l,

and thus we deduce that D = {x ∈ R : w(x) = ex ∨ K } and τD = τ+
log K

∧ inf{t ≥ 0 : Xt ∈ D}.
In what follows, if ς is a stopping time for X we shall write ς(x) to show the dependence of

the stopping time on the value of X0 = x . Similarly, we denote

U
(x)
t = e−qt (eXt +x ∨ K ) +

�
t

0
e−qs(α + βeXs+x )ds, t ≥ 0.

For y ≥ x , we have that U
(y)
t ≥ U

(x)
t for all t ≥ 0 and thus, also appealing to the definition of w

as an infimum,

w(x) − w(y) = E
�
U

(x)
τD(x) − U

(y)
τD(y)

�
≤ E

�
U

(x)
τD(y) − U

(y)
τD(y)

�
≤ 0,

which implies that w is non-decreasing.
(ii) This property follows directly from the definition of w as an infimum and taking for

instance the stopping time σ = 0.
(iii) Recall that w is upper semicontinuous. Thus the set

C := {x ∈ R : w(x) < ex ∨ K }
is open. From (i i), we deduce that C = D

c and therefore D is a closed set. The fact that w

is non-decreasing and that D is a closed set implies that there exists a c
∗ ≤ log K such that

D = [c∗, ∞). In that case τD = τ+
c∗ .

(iv) We first note that from the definition of w as an infimum, we have

E
�
U

(y)

τ+
c∗−x

− U
(y)

τ+
c∗−y

�
≥ 0.
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Now, for y ≥ x , it holds that ex ∨ K − ey ∨ K ≥ ex − ey and τ+
c∗−x

≥ τ+
c∗−y

. Therefore

w(x) − w(y) = E
�
U

(x)

τ+
c∗−x

− U
(y)

τ+
c∗−x

+ U
(y)

τ+
c∗−x

− U
(y)

τ+
c∗−y

�

≥ (ex − ey)E
�

e
−qτ+

c∗−x
+X

τ+
c∗−x + β

� ∞

0
e−qs+Xs ds

�

+ E
�
U

(y)

τ+
c∗−x

− U
(y)

τ+
c∗−y

�

≥ K(c∗, β)(ex − ey),

for some constant K(c∗, β) > 0 which depends on c
∗ and β. Therefore, using part (i), we deduce

that w is continuous and moreover that w(c∗) = K .
(v) In what follows, for q > 0, it is convenient to denote the function w by w(x, q) and

Ut = Ut (q) for all t ≥ 0. Note that for any t ≥ 0, Ut (q) is non-increasing in q . Hence,

w(x, q) ≥ w(x, q0) = inf
σ∈T0,∞

Ex

�
Uσ∧τ+

log K

(q0)
�

for q < q0.

On the other hand, recall from Theorem 2 that when q = q0, a saddle point for the stochastic
game (1.3) is given by τ ∗ = σ ∗ = τ+

log K
, and in particular the value function satisfies

V (x, q0) = Ex

�
Uτ+

log K

(q0)
�
.

Therefore, appealing to the definition of V as an infimum and using the lower bound on the
solution to Theorem 2, we have

w(x, q) ≥ w(x, q0) = M(τ+
c∗ , τ

+
log K

) ≥ V (x, q0) ≥ ex .

(vi) and (vii) These are trivial statements.
(viii) and (ix) These are standard results from the theory of optimal stopping. See for example

Theorem 2.2 on p. 29 or Theorem 2.4 p. 37 of Peskir and Shiryaev [12]. �

According to the previous lemma and the Verification Lemma, a stochastic saddle point of the
Gapeev–Kühn game exists and is given by τ ∗ = τ+

log K
and σ ∗ = τ+

c∗ , for a given c
∗ ≤ log K .

(Note that the condition (3.9) is dealt with in the same way as before). Therefore the associated
value function is given by

V (x) = Ex

�

e−qτ+
c∗

�
e

X
τ+
c∗ ∨ K

�
+

� τ+
c∗

0
e−qs(α + βeXs )ds

�

.

The proof of Theorem 3 is thus complete as soon as we can characterize c
∗ as given in the

statement of the theorem.
Suppose that b

2 > 0. Our objective is to show that τ ∗ = σ ∗ = τ+
log K

is the stochastic saddle
point providing q is smaller than q0 but not too small (to be made precise below). We again do
this with the help of the Verification Lemma.

We show that c
∗ = log K if and only if H

�
log K

(log K−) ≥ 0. Note that from (5.13) we find
that

H
�
log K

(log K−) = K + 2α

Φ(q)b2

�
K e−a

∗(q) − 1
�

, (6.18)
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where we have used the fact that W
(q)(0+) = 0 and W

(q)�(0+) = 2/b
2 when b

2 > 0 (cf. Chapter
8 of Kyprianou [9]). Taking account of the monotonicity of Hlog K (x, q) in q this implies that
those q ∈ (0, q0) for which

K + 2α

Φ(q)b2

�
K e−a

∗(q) − 1
�

≥ 0

form an interval the left end point of which we shall denote by q1. First consider q > q1.
It then holds that H

�
log K

(log K−) > 0 and hence Hlog K (x, q) < Hlog K (log K , q) = K

for x ∈ [log K − ε, log K ) for some ε > 0. Now any choice of c
∗ < log K would imply

HlogK (x, q) < w(x) for some x < log K , since w(x) = K for all x ∈ [c∗, log K ]. This leads
to an immediate contradiction due to the fact that τ+

log K
is a feasible strategy for the optimal

stopping problem (6.17). We conclude that for q > q1 we have that c
∗ = log K .

Next, we show that c
∗ = log K also in the case when q = q1. For any q > q1 it holds that

Hlog K (x, q) ≤ K ∨ ex for all x and thus we find that Hlog K (x, q1) ≤ K ∨ ex due to continuity
of Hlog K (x, q) in q.

Furthermore, note that
�

e−q(t∧τ+
log K

)
w(X

t∧τ+
log K

) +
�

t∧τ+
log K

0
e−qs(α + βeXs )ds, t ≥ 0

�

(6.19)

is a martingale for q ∈ (q1, q0), as it is both a submartingale and a supermartingale due to items
(viii) and (ix) of Lemma 2. From monotone convergence it follows that (6.19) is also a martingale
when q = q1.

Next, we show that q1 > α/K . It seems unclear how to prove this inequality directly using
the definition of q1 and instead we argue by contradiction, hence suppose that q1 ≤ α/K .
Due to monotonicity in q in the definition of w and Theorem 1 it would then follow that
K ∨ ex ≥ w(x, q1) ≥ V (x, α/K ) = K ∨ ex for all x . Hence in this case

�

e−q1(t∧τ+
log K

)
(K ∨ e

X
t∧τ+

log K ) +
�

t∧τ+
log K

0
e−q1s(α + βeXs )ds, t ≥ 0

�

is a martingale. Recall from the proof of Theorem 1 however that when x < log K , the
process above is strictly increasing. We get a contradiction with the martingale property and
thus conclude that q1 > α/K .

From (6.18) it is clear that smooth pasting can only occur when H
�
log K

(log K−) = 0 or K .
This occurs precisely at the end points of the interval [q1, q0].

We conclude the proof by noting that when b
2 = 0, by considering (5.11) and (5.13) with

a = log K and recalling that W
(q)(0+) > 0 if X has bounded variation and W

(q)�(0+) = +∞ if
X has unbounded variation, the strategies τ ∗ = σ ∗ = inf{t ≥ 0 : Xt > log K } do not constitute
a stochastic saddle point when q < q0 as otherwise the necessary upper bound, K ∨ ex on the
value function V will not be respected. �

7. Proof of Theorem 4

The proof of Theorem 4 again relies on the optimal stopping problem introduced in the
previous section. Assume that α/K < q < q1.

Let us first address the issue of continuous and smooth fit. We know from Lemma 2 that the
value function V is always continuous and hence in particular there is always continuous fit at the
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point c
∗. Note that necessarily c

∗ < log K as otherwise c
∗ = log K and then from the previous

theorem, q = q1 which is a contradiction. As we shall see, this will be sufficient to uniquely
characterize the value c

∗ in the case that X has paths of bounded variation. When X has paths
of unbounded variation, consistently with prior experience, continuous fit is not enough and the
following lemma will be needed instead.

Lemma 3. When X has paths of unbounded variation it holds that V
�(c∗−) = V

�(c∗+) = 0.

Proof. Thanks to monotonicity of the value function we know that V (x) ≤ V (c∗) for all x ≤ c
∗

and hence

lim inf
x↑c∗

V (c∗) − V (x)

c∗ − x
≥ 0.

The proof is thus complete as soon as we show that

lim sup
x↑c∗

V (c∗) − V (x)

c∗ − x
≤ 0. (7.20)

To this end, let � > 0 and introduce τ+
c∗+� = inf{t > 0 : Xt > c

∗ + �}, τ−
c∗−� = inf{t > 0 :

Xt < c
∗ − �} and τ = τ+

c∗+� ∧ τ−
c∗−� . From parts (iv) and (viii) of Lemma 2, we have

Ec∗

�
e−qτ

V (Xτ ) +
� τ

0
e−qs(α + βeXs )ds

�

≥ V (c∗)Ec∗
�
e−qτ−

c∗−�1{τ−
c∗−�

<τ+
c∗+�

}
�

+ K

�
1 − Ec∗

�
e−qτ−

c∗−�1{τ−
c∗−�

<τ+
c∗+�

}
��

. (7.21)

On the other hand, we have with the help of spectral positivity of X , the fact that V (c∗) = K and
the upper bound on V that

Ec∗

�
e−qτ

V (Xτ ) +
� τ

0
e−qs(α + βeXs )ds

�

≤ V (c∗ − �)Ec∗
�
e−qτ−

c∗−�1{τ−
c∗−�

<τ+
c∗+�

}
�

+ KEc∗
�
e−qτ+

c∗+�1{τ+
log K

�=τ+
c∗+�

<τ−
c∗−�

}
�

+ Ec∗
�
e−qτ+

c∗+� e
X

τ+
c∗+�1{τ+

log K
=τ+

c∗+�
<τ−

c∗−�
}
�

+ Ec∗

�� τ

0
e−qs(α + βeXs )ds

�

≤ V (c∗ − �)Ec∗
�
e−qτ−

c∗−�1{τ−
c∗−�

<τ+
c∗+�

}
�

+ KEc∗
�
e−qτ+

c∗+�1{τ+
log K

�=τ+
c∗+�

<τ−
c∗−�

}
�

+ KP(−1)
c∗

�
τ+

log K
= τ+

c∗+� < τ−
c∗−�

�
+ (α + βec

∗+�)

q

�
1 − Ec∗

�
e−qτ

��
. (7.22)

Next, we claim that the last two terms on the right-hand side above are o(�) as � ↓ 0. For the first
of these two terms, the claim follows by Lemma 10 of Baurdoux and Kyprianou [2]. The second
of these two terms is proportional to (cf. Chapter 8 of Kyprianou [9])

1 − Ec∗
�
e−qτ

�
= q

W
(q)(�)

W (q)(2�)

� 2�

0
W

(q)(y)dy − q

� �

0
W

(q)(y)dy

which is o(�) as � ↓ 0 on account of the fact that W
(q) is monotone increasing with W

(q)(0+) =
0 (the latter is due to the assumption that X has paths of unbounded variation).
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Taking this into account and combining the inequalities (7.21) and (7.22) we get

V (c∗) − V (c∗ − �)

�
≤ K

Ec∗
�
e−qτ

�
− 1

�Ec∗
�
e−qτ−

c∗−�1{τ−
c∗−�

<τ+
c∗+�

}
� + o(�)

�

= q K

�

�
W

(q)(2�)

W (q)(�)

� �

0
W

(q)(y)dy −
� 2�

0
W

(q)(y)dy

�

+ o(�)

�
.

Lemma 11 in [2] states that lim sup�↓0 W
(q)(2�)/W

(q)(�) ≤ 2 and hence the expression in the
brackets on the right-hand side above is o(�). This in turn implies (7.20) and hence the proof is
complete. �

Define, for each c < log K , Gc(x) := Ex

�
Uτ+

c

�
, that is to say

Gc(x) = Ex

�
e−qτ+

c

�
eX

τ+
c ∨ K

��
+

� ∞

0
Ex

�
e−qs(α + βeXs )1{s≤τ+

c }
�
ds, (7.23)

and note that for x ≥ c, we have

Gc(x) = ex ∨ K .

We may now put the features of continuous and smooth fit to use and characterize the value of
c
∗. Our immediate aim is to give an explicit form of G(x), for x < c, in terms of scale functions

and the characteristics of X . We first note that the integral on the right-hand side of (7.23) has
been computed before and is equal to

�
c

−∞

�
α + βey

��
e−Φ(q)(c−y)

W
(q)(c − x) − W

(q)(y − x)
�

dy.

The first term on the right-hand side of (7.23) satisfies

Ex

�
e−qτ+

c

�
eX

τ+
c ∨ K

��
= KEx

�
e−qτ+

c

�
+ Ex

�
e−qτ+

c

�
eX

τ+
c − K

�
1{X

τ+
c

>log K }
�
. (7.24)

Recall that �P denotes the law of �X = −X . By Theorem 8.1 in [9], we get that the first term on
the right-hand side of (7.24) satisfies

Ex

�
e−qτ+

c

�
= �Ec−x

�
e−qτ−

0

�
= Z

(q)(c − x) − q

Φ(q)
W

(q)(c − x).

Now using the exponential change of measure (2.8) with λ = Φ(q), we write the second term in
the right-hand side of (7.24) as follows

Ex

�
e−qτ+

c

�
eX

τ+
c − K

�
1{X

τ+
c

>log K }
�

= EΦ(q)
x

�
eΦ(q)(X

τ+
c

−x)�eX
τ+
c − K

�
1{X

τ+
c

>log K }
�

= EΦ(q)
�
e
Φ(q)X

τ+
c−x

�
e

x+X
τ+
c−x − K

�
1{X

τ+
c−x

+x>log K }
�
.

Let f (y) = eΦ(q)y
�
ex+y − K

�
1{y+x>log K }. From Theorem 4.4 in [9] and since x < c < log K ,

we deduce

EΦ(q)
�

f
�
Xτ+

c−x

��
= EΦ(q)

�
f
�
Xτ+

c−x

�
1{X

τ+
c−x

>c−x}
�

= EΦ(q)

�� ∞

0
dt f

�
Xt

�
1{Xt−<c−x}1{Xt >c−x}

�
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= EΦ(q)
x−c

�� ∞

0
dt

� ∞

0
ΠΦ(q)(du) f

�
u + Xt− + c − x

�
1{τ+

0 >t}1{u+Xt−>0}

�

=
� ∞

0
ΠΦ(q)(du)

� ∞

0
dtEΦ(q)

x−c

�
f
�
u + Xt− + c − x

�
1{τ+

0 >t}1{u+Xt−>0}
�

=
� ∞

0
ΠΦ(q)(du)

� 0

−∞
RΦ(q)(x − c, dy; 0) f

�
u + y + c − x

�
1{u+y>0}

where RΦ(q)(z, dy; 0) plays the role of R(z, dy; 0) but under the measure PΦ(q)
z . Therefore, by

Corollary 8.8 in [9] we get

EΦ(q)
�

f
�
Xτ+

c−x

��
=

� ∞

0
ΠΦ(q)(du)

� 0

−∞
dy

�
WΦ(q)(c − x) − WΦ(q)(c − x + y)

�

× f
�
u + y + c − x

�
1{u+y>0}.

Finally, putting the pieces together, using in particular that ΠΦ(q)(dx) = e−Φ(q)xΠ (dx) and
WΦ(q)(x) = e−Φ(q)x

W
(q)(x), we obtain the following formula for Gc(x), when x < c,

Gc(x) = K

�

Z
(q)(c − x) − q

Φ(q)
W

(q)(c − x)

�

+
�

c

−∞

�
α + βey

��
e−Φ(q)(c−y)

W
(q)(c − x) − W

(q)(y − x)
�

dy

+ eΦ(q)(x−c)

� ∞

0
e−Φ(q)uΠ (du)

� 0

−∞
dy

×
�

W
(q)(c − x) − e−Φ(q)y

W
(q)(c − x + y)

�

× eΦ(q)(u+y)
�
ec+u+y − K

�
1{u+y+c>log K }.

Now that we have an expression for Gc we may find the one which corresponds to the optimal
solution by choosing c = c

∗ so that there is smooth or continuous fit accordingly with the path
variation of X .

Bounded variation case: In this case we know that W
(q)(0+) = 1/d > 0. Hence, checking

for a discontinuity at c we find that

Gc(c−) = K

�
1 − q

Φ(q)

1
d

�
+ e−Φ(q)c

d

�
α

Φ(q)
eΦ(q)c + β

Φ(q) + 1
e(Φ(q)+1)c

�

+ K

d

� ∞

0
Π (dz + log K − c) f (z), (7.25)

where

f (z) =






1
Φ(q) + 1

ez(1 − e−(Φ(q)+1)z) − 1
Φ(q)

(1 − e−Φ(q)z) if z ≥ 0

0 if z < 0.

(7.26)

It is important to note that

f (z) ∼ z
2 as z → 0, and f (z) ∼ 1

Φ(q) + 1
ez as z → ∞,
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thus from the hypothesis (A) and the fact that Π is a Lévy measure, we have
� ∞

0
Π (dz) f (z) < ∞.

So, we take

q

Φ(q)
= 1

K

�
α

Φ(q)
+ β

Φ(q) + 1
ec

�
− 1

Φ(q)

� ∞

0
Π (dz + log K − c)(1 − e−Φ(q)z)

+ 1
Φ(q) + 1

� ∞

0
Π (dz + log K − c)ez(1 − e−(Φ(q)+1)z). (7.27)

In order to show that this expression has a unique solution, it is more convenient to note from
(7.25) that

lim
c↓−∞

Gc(c−) = K − K q

Φ(q)d

�
1 − α

K q

�
< K

on account of the assumption that q > α/K . Moreover, as in the case of bounded variation paths,

ψ(θ) = dθ −
� ∞

0
(1 − e−θx )Π (dx),

and ψ(Φ(q)) = q , we may compute from (7.25)

lim
c↑log K

Gc(c−) = K + 1
d

�
α

Φ(q)
− K

(q − ψ(−1) − β)

(Φ(q) + 1)

�
> K ,

where the strict inequality follows from the fact q < q1 = q0. Thus, we get the existence of
the unique solution if we prove that G ·(·−) is continuous and increasing in (−∞, log K ]. The
continuity of G .(.−) follows from (7.25) and the fact that when the measure Π has an atom at
log K − c, the integrand on the right-hand side of (7.25) is equal to 0 at z = 0.

Now, note that

f
�(z) = 1

Φ(q) + 1
(ez − e−Φ(q)z) > 0 for all z > 0,

which implies that f is positive and increasing. Then from (7.25) it is clear that G .(.−) is
increasing in (−∞, log K ].

Unbounded variation case: In this case W
(q)(0+) = 0 and hence in the above analysis one

sees that Gc(c−) = K = Gc(c+). In that case, the principle of smooth fit can be implemented
and we insist on choosing c such that there is no discontinuity in G

�
c
(c−).

Recall that W
(p) ∈ C

1(0, ∞) and let x < c. Therefore, using a standard argument involving
dominated convergence to differentiate through the integral in the last term of Gc(x), we have

G
�
c
(x) = K

�
q

Φ(q)
W

(q)�(c − x) − qW
(q)(c − x)

�

+
�

c

−∞

�
α + βey

��
W

(q)�(y − x) − W
(q)�(c − x)

× e−Φ(q)(c−y)
�
dy + Φ(q)eΦ(q)(x−c)

� ∞

0
e−Φ(q)uΠ (du)

� 0

−∞
dy

×
�

W
(q)(c − x) − e−Φ(q)y

W
(q)(c − x + y)

�
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× eΦ(q)(u+y)
�
ec+u+y − K

�
1{u+y+c>log K }

+ eΦ(q)(x−c)

� ∞

0
e−Φ(q)uΠ (du)

×
� 0

−∞
dy

�
e−Φ(q)y

W
(q)�(c − x + y) − W

(q)�(c − x)
�

× eΦ(q)(u+y)
�
ec+u+y − K

�
1{u+y+c>log K }.

Also, recall that W
(q)(0+) = 0 and that W

(q)�(0+) = 2/b
2 which should be interpreted as +∞

in the case that the Gaussian coefficient b
2 = 0,

G
�
c
(c−) = K

q

Φ(q)
W

(q)�(0+) − W
(q)�(0+)e−Φ(q)c

�
c

−∞

�
α + βey

�
eΦ(q)ydy

− W
(q)�(0+)

� ∞

0
e−Φ(q)uΠ (du)

� 0

−∞
dyeΦ(q)(u+y)

�
ec+u+y − K

�
1{u+y+c>log K }.

In order to obtain the smooth fit G
�
c
(c+) = 0 we must have:

q

Φ(q)
= e−Φ(q)c

K

�
c

−∞

�
α + βey

�
eΦ(q)ydy + 1

K

� ∞

0
e−Φ(q)uΠ (du)

� 0

−∞
dyeΦ(q)(u+y)

×
�
ec+u+y − K

�
1{u+y+c>log K }.

After some algebra, we get

q

Φ(q)
= 1

K

�
α

Φ(q)
+ β

Φ(q) + 1
ec

�
− 1

Φ(q)

� ∞

0
Π (dz + log K − c)(1 − e−Φ(q)z)

+ 1
Φ(q) + 1

� ∞

0
Π (dz + log K − c)ez(1 − e−(Φ(q)+1)z), (7.28)

which is the same identity as in (7.27). In order to prove the existence of a unique solution of the
above identity we will follow similar arguments as those used in the bounded variation case. Let
us define

F(c) = K

�
1 − q

Φ(q)

�
+ e−Φ(q)c

�
α

Φ(q)
eΦ(q)c + β

Φ(q) + 1
e(Φ(q)+1)c

�

+ K

� ∞

0
Π (dz + log K − c) f (z), (7.29)

where f is defined as in (7.26). Note that c is a solution to (7.28) if and only if c solves F(c) = K .
Similarly to the bounded variation case, we have that

� ∞

0
Π (dz) f (z) < ∞.

Now, we note from (7.29) that

lim
c↓−∞

F(c) = K − K q

Φ(q)

�
1 − α

K q

�
< K
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on account of the assumption that q > α/K . Moreover, recall that

ψ(θ) = aθ + b
2

2
θ2 +

� ∞

0

�
e−θx − 1 + θx1{x<1}

�
Π (dx),

and ψ(Φ(q)) = q , then after some straightforward computations we get
� ∞

0
Π (dz) f (z) = ψ(−1) + a − b

2/2
Φ(q) + 1

+ q − aΦ(q) − b
2/2Φ2(q)

Φ(q)(Φ(q) + 1)
.

Hence from (7.29)

lim
c↑log K

F(c) = K +
�

α

Φ(q)
− K

(q − ψ(−1) − β)

(Φ(q) + 1)
− K

b
2

2

�
> K ,

where the strict inequality follows from the fact q < q1 (recall that q1 = q0 when b
2 = 0).

The existence of the unique solution now follows from the continuity and the monotonicity of F

which can be proved as in the bounded variation case.
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[3] J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge, 1996.
[4] K. Bichteler, Stochastic Integration with Jumps, Cambridge University Press, Cambridge, 2002.
[5] T. Chan, A.E. Kyprianou, M. Savov, Smoothness of scale functions for spectrally negative Lévy processes, Probab.
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[10] A.E. Kyprianou, V. Rivero, R. Song, Convexity and smoothness of scale functions and de Finetti’s control problem,
J. Theoret. Probab. 23 (2010) 547–564.

[11] G. Peskir, Optimal stopping games and Nash equilibrium, Theory Probab. Appl. 53 (2008) 623–638.
[12] G. Peskir, A. Shiryaev, Optimal Stopping and Free Boundary Value Problems, Birkhäuser Verlag, Basel, 2006.
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