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Abstract

There exist only a few known examples of subordinators for which the transition probability density can
be computed explicitly along side an expression for its Lévy measure and Laplace exponent. Such examples
are useful in several areas of applied probability. For example, they are used in mathematical finance for
modeling stochastic time change. They appear in combinatorial probability to construct sampling formulae,
which in turn is related to a variety of issues in the theory of coalescence models. Moreover, they have also
been extensively used in the potential analysis of subordinated Brownian motion in dimension d ≥ 2. In this
paper, we show that Kendall’s classic identity for spectrally negative Lévy processes can be used to construct
new families of subordinators with explicit transition probability semigroups. We describe the properties of
these new subordinators and emphasize some interesting connections with explicit and previously unknown
Laplace transform identities and with complete monotonicity properties of certain special functions.
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1. Introduction

Subordinators with explicit transition semigroups have proved to be objects of broad interest
on account of their application in a variety of different fields. We highlight three of them
here. The first case of interest occurs in mathematical finance, where subordinators are used
to perform time-changes of other stochastic processes to model the effect of stochastic volatility
in asset prices, see for example [5,7]. A second application occurs in the theory of potential
analysis of subordinated Brownian motion in high dimensions, which has undergone significant
improvements thanks to the study of a number of key examples, see for example [26,15]. A
third area in which analytic details of the transition semigroup of a subordinator can lead to new
innovations is that of combinatorial stochastic processes. A variety of sampling identities are
intimately related to the range of particular subordinators, see for example [10]. Moreover this
can also play an important role in the analysis of certain coalescent processes, see [22].

In this paper we will use a simple idea based on Kendall’s identity for spectrally negative Lévy
processes to construct some new families of subordinators with explicit transition semigroup.
Moreover, we describe their properties, with particular focus on the associated Lévy measure
and Laplace exponent in each of our new examples. The inspiration for the main idea in this
paper came about by digging deeper into [4], where a remarkable identity appears in the analysis
of the relationship between the first passage time of a random walk and the total progeny of a
discrete-time, continuous-state branching process.

The rest of the paper is organized as follows. In the next section we remind the reader
of Kendall’s identity and thereafter, proceed to our main results. These results give a simple
method for generating examples of subordinators with explicit transition semigroups as well as
simultaneously gaining access to analytic features of their Lévy measure and Laplace exponent.
In Section 3 we put our main results to use in generating completely new examples. Finally, in
Section 4 we present some applications of these results to explicit Laplace transform identities
and complete monotonicity properties of certain special functions.

2. Kendall’s identity and main results

Let ξ be a spectrally negative Lévy process with Laplace exponent defined by

ψ(z) := ln E[exp(zξ1)], z ≥ 0. (1)

In general, the exponent ψ takes the form

ψ(z) = az +
1
2
σ 2z2

+


(−∞,0)

(ezx
− 1 − zx1(x>−1))Πξ (dx)

where a ∈ R, σ 2
≥ 0 and Πξ is a measure concentrated on (−∞, 0) that satisfies


(−∞,0)(1 ∧

x2)Πξ (dx) < ∞, and is called the Lévy measure. From this definition, it is easy to deduce that
ψ is convex on [0,∞), and it satisfies ψ(0) = 0 and ψ(+∞) = +∞. Hence, for every q > 0,
there exists a unique solution z = φ(q) ∈ (0,∞) to the equation ψ(z) = q. We will define
φ(0) = φ(0+). Note that φ(0) = 0 if and only if ψ ′(0) ≥ 0, which, by a simple differentiation
of (1), is equivalent to E[ξ1] ≥ 0.

Let us define the first passage times

τ+
x := inf{t > 0 : ξt > x}, x ≥ 0. (2)
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It is well-known (see Theorem 3.12 and Corollary 3.13 in [16]) that {τ+
x }x≥0 is a subordinator,

killed at rate φ(0), whose Laplace exponent, φ(q), satisfies

E

e−qτ+

x 1
{τ+

x <+∞}


= e−xφ(q), q ≥ 0.

In general, the Laplace exponent φ is a Bernstein function. In particular, it takes the form

φ(z) = κ + δz +


(0,∞)

(1 − e−zx )Π (dx), (3)

for some κ, δ ≥ 0 and measure, Π , concentrated on (0,∞), satisfying

(0,∞)

(1∧x)Π (dx) < ∞.
The constant κ is called the killing rate and δ is called the drift coefficient.

Kendall’s identity (see [3] and Exercise 6.10 in [16]) states that
∞

y
P(τ+

x ≤ t)
dx

x
=

 t

0
P(ξs > y)

ds

s
. (4)

If the distribution of ξt is absolutely continuous for all t > 0 then the measure P(τ+
x ∈ dt) is also

absolutely continuous and has the density

P(τ+
x ∈ dt) =

x

t
pξ (t, x)dt, x, t > 0, (5)

where pξ (t, x)dx = P(ξt ∈ dx). On the one hand, one may view Kendall’s identity as an an-
alytical consequence of the Wiener–Hopf factorization for spectrally negative Lévy processes.
On the other, its probabilistic roots are related to certain combinatorial arguments associated to
random walks in the spirit of the classical ballot problem.

Kendall’s identity gives a very simple way of constructing new subordinators with explicit
transition semigroup. Indeed, if we start with a spectrally negative process ξ for which the
transition probability density pξ (t, x) is known, then τ+

x is the desired subordinator with the
explicit transition density given by (5). One way to build a spectrally negative process with
known transition density (as indeed we shall do below) is as follows: start with a subordinator
X , which has an explicit transition probability density and then define the spectrally negative
process ξt = t − X t . This also gives us a spectrally negative process with explicit transition
probability density. The above approach was used in older statistics literature (see [14,17]) in
order to generate new examples of infinitely divisible distributions. Our goal in this paper is to
systematically apply this method to create new families of subordinators, describe their Lévy
measure and Laplace exponent, and to study their properties.

Before stating our main theorem, let us introduce some notation and definitions. We write N
for the class of all subordinators, started from zero, having zero drift and zero killing rate. The
Laplace exponent of a subordinator Y ∈ N is defined by ΦY (z) := − ln E


exp(−zY1)


, z ≥ 0.

From the Lévy–Khinchine formula we know that

ΦY (z) =


(0,∞)


1 − e−zxΠY (dx), z ≥ 0, (6)

where ΠY is the Levy measure of Y . When it exists, we will denote the transition probability
density function of Y as pY (t, x) :=

d
dx P(Yt ≤ x), x > 0.

Theorem 1. For X ∈ N and q > 0, define φ(q) as the unique solution to

z − ΦX (z) = q. (7)
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Define φ(0) = φ(0+). Then we have the following:

(i) The function ΦY (z) := φ(z)− φ(0)− z is the Laplace exponent of a subordinator Y ∈ N .
(ii) If the transition semi-group of X is absolutely continuous with respect to Lebesgue measure,

then the transition semi-group of Y is given by

pY (t, y) =
t

t + y
eφ(0)t pX (t + y, y) , y > 0, (8)

and the Levy measure of Y is given by

ΠY (dy) =
1
y

pX (y, y)dy, y > 0. (9)

Proof. The function φ(q) defines the Laplace exponent of the subordinator corresponding to the
first passage process (2). Moreover, appealing to the standard facts that the drift coefficient of φ
is equal to limq→∞ φ(q)/q and that φ(∞) = ∞, as well as the fact that X has zero drift, one
notes that

lim
q→∞

φ(q)

q
= lim

q→∞

φ(q)

φ(q)− ΦX (φ(q))
= lim

q→∞

1
1 − Φ(φ(q))/φ(q)

= 1.

Moreover, noting that φ(0) is another way of writing the killing rate of the subordinator corre-
sponding to φ, it follows that the function φY (z) = φ(z) − φ(0) − z belongs to the class N .
Formula (8) follows at once from Kendall’s identity as it appears in (5). The formula (9) follows
from the fact that

ΠY (dx) = lim
t→0+

1
t
P(Yt ∈ dx), x > 0, (10)

see for example the proof of Theorem 1.2 in [1]. �

In constructing new subordinators, the above theorem has deliberately eliminated certain scal-
ing parameters. For example, one may consider working more generally with the spectrally neg-
ative process ξt = λt − X t , t ≥ 0 for some λ > 0. However, this can be reduced to the case that
λ = 1 by factoring out the constant λ from ξ and noting that λ−1 X is still a subordinator.

Theorem 1 raises the following natural question concerning its iterated use. Suppose we have
started from a spectrally negative process, say ξ (1) and have constructed a corresponding subordi-
nator Y (1). Can we take this subordinator, define a new, spectrally negative Lévy process ξ (2)t :=

t − Y (1)t , t ≥ 0, and feed it back into Theorem 1 to obtain a new subordinator Y (2)? The answer
is essentially “no”: one can check that the subordinator Y (2) could also be obtained by one appli-
cation of this procedure starting from the scaled process θξct for appropriate constants θ, c > 0.
In other words, applying the Kendall identity trick twice does not give us fundamentally new
processes.

Recent potential analysis of subordinators has showed particular interest in the case of
complete subordinators, following their introduction in [25]. The class of complete subordinators
can be defined by the analytical structure of their Laplace exponents, which are also known as
complete Bernstein functions. In addition to the representation in (3), a function f on (0,∞) is
a complete Bernstein function (CBF) if

f (z) = c0 + c1z +
1
π


(0,∞)

z

z + s

m(ds)

s
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for some c0, c1 ≥ 0 and a σ -finite positive measure m on (0,∞) satisfying

(0,∞)

min(s−1,

s−2)m(ds) < ∞. Equivalently, f is the Laplace exponent of a (possibly killed) subordinator X ,
whose Lévy measure has a completely monotone density

πX (x) =


∞

0
e−xsm(ds).

Let us denote C+
:= {z ∈ C : Im(z) > 0} and similarly C−

:= {z ∈ C : Im(z) < 0}. It is
known (see Theorem 6.2 in [24]) that CBFs extend to analytic functions that map C \ (−∞, 0]

into C \ (−∞, 0] and belong to the class of Pick functions, that is functions g analytic in C+

such that g(z) ∈ C+ for all z ∈ C+. Conversely, any Pick function which takes nonnegative real
values on (0,∞) is a CBF. For more information on CBFs see [24].

Our next result below investigates sufficient conditions on ξ to ensure that the resulting
subordinator, Yt = τ+

t , is a complete subordinator.

Proposition 1. Let ξ be a spectrally negative process with a Lévy density πξ (x), x < 0. If
πξ (−x) is a completely monotone function, then the subordinator Y has a Lévy density, say
πY (x), and it is completely monotone.

Proof. The proof is based on the following result (see Proposition 2 in [19]): If Φ is a CBF and
φ is the inverse function of the strictly increasing function z ∈ (0,∞) → zΦ(z), then φ is also a
CBF.

Let H denote the descending ladder height process for ξ (which is a subordinator, possibly a
killed one), and let ΦH be its Laplace exponent. Then ψ(z) = (z − c)ΦH (z), where c = φ(0)
(see formula (9.1) in [16]). Theorem 2 in [23] tells us that if πξ (−x) is completely monotone,
then πH (x) is completely monotone, and therefore ΦH is a CBF. Let Φ̃H (z) = ΦH (z + c) and
ψ̃(z) = ψ(z + c), so that ψ̃(z) = zΦ̃H (z). Note that z = φ(q) if and only if ψ(z) = q ,
that is, ψ̃(z − c) = q . Therefore, φ(q) = ψ̃−1(q) + c. Since Φ̃H (z) is a CBF, by the above-
mentioned result, ψ̃−1 is a CBF. It follows that also φ is a CBF, and therefore πY (x) is completely
monotone. �

Remark 1. A curiosity that arises from the above result is that when ξ is a spectrally negative
Lévy process of unbounded variation and has a Lévy density which is completely monotone, then
it is automatically the case that there is a version of ξ ’s transition density for which pξ (t, 0)/t is
completely monotone. Indeed this follows directly from Kendall’s identity and (10). Referring to
the discussion following Proposition 2.2 in [1], it follows that the potential density of the inverse
local time at zero of ξ , which is proportional to pξ (t, 0), is therefore the product of a linear
function and a completely monotone function.

One corollary of Proposition 1 is that the transformation described in Theorem 1, which maps
a subordinator X into a subordinator Yt = τ+

t , preserves the class of complete subordinators.
As our next result shows, this transformation also preserves an important subclass of complete
subordinators. We define the class of Generalized Gamma Convolutions (GGC) as the family of
infinite divisible distributions on (0,∞) having Lévy density π(x), such that the function xπ(x)
is completely monotone. In other words,

xπ(x) =


∞

0
e−xyU (dy),
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for some σ -finite and positive measure U , which is called Thorin measure. The measure U must
satisfy the following integrability condition

∞

0


| ln(y)| ∧

1
y


U (dy) < ∞

in order for Π (dx) = π(x)dx to be a Lévy measure of a positive random variable. The class
of GGC can also be defined as the smallest class of distributions on (0,∞), which contains all
gamma distributions and which is closed under convolution and weak convergence. See [2,26]
for additional information on the class of GGC and its distributional properties. We say that a
subordinator X belongs to the Thorin class T if the distribution of X1 is GGC. The family T0 is
defined as the subclass of all subordinators in T which have zero linear drift.

Proposition 2. Assume that X ∈ T0 and Y is a subordinator constructed in Theorem 1. Then
Y ∈ T0, in particular the function yπY (y) = pX (y, y) is completely monotone.

Proof. We will need the following result (see Theorem 3.1.2 in [2]): Let η be a positive random
variable and define f (z) := ln E


e−zη


. Then η has a GGC distribution if and only if f ′(z) is a

Pick function.
Assume that X ∈ T0. According to the above result, −Φ′

X (z) is a Pick function. Let Y be a
subordinator constructed from X in Theorem 1. We recall that φ(q) is defined as the solution
to z − ΦX (z) = q and ΦY (z) = φ(z) − φ(0) − z. Since X ∈ T0, it has a completely
monotone Lévy density, thus according to Proposition 1, the same is true for Y . Therefore, the
three functions ΦX (z),ΦY (z) and φ(z) are Pick functions. Taking the derivative of the identity
φ(q)− ΦX (φ(q)) = q we find that

−φ′(q) = −
1

1 − Φ′

X (φ(q))
.

Since the composition of Pick functions is also a Pick function, and since the three functions

F : q → φ(q), G : z → −Φ′

X (z), H : w → −
1

1 + w

are Pick functions, we conclude that −φ′(q) = H(G(F(q))) is also a Pick function. Therefore,
−Φ′

Y (q) = −φ′(q)+ 1 is a Pick function, which implies Y ∈ T0. �

3. Examples

In this section we present several new families of subordinators possessing explicit transition
semigroups. Our first two examples are related to the Lambert W -function [8,9,20], and we will
start by reviewing some of its properties. The Lambert W -function is defined as the inverse to
the function w ∈ C → wew. When z ≠ 0, the equation wew = z has infinitely many solutions,
therefore we will have infinitely many branches of the Lambert W -function, which we will label
by Wk(z). See [8] for detailed discussion of branches of the Lambert W -function. We will be
only interested in two real branches of the Lambert W -function: W0(z) (the principal branch) and
W−1(z). For z > −1/e, these are defined as the real solutions to wew = z. It is easy to show that
the function wew is increasing for w > −1 and decreasing for w < −1, see Fig. 1. Therefore,
for z ≥ 0 there is a unique real solution, corresponding to W0(z), while for −1/e < z < 0 there
exist two real solutions W−1(z) < −1 < W0(z) < 0. The graphs of the two functions W0(z)
and W−1(z) are presented on Fig. 1(b) and (c). The function W0(z) is the principal branch of
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(a) The function z = wew . (b) W0(z): the solution to
wew = z.

(c) W−1(z): the solution to
wew = z.

Fig. 1. The two real branches of the Lambert W -function: W0(z) is an increasing function which maps [−1/e,∞) onto
[−1,∞), and W−1(z) is a decreasing function which maps [−1/e, 0) onto (−∞,−1].

the Lambert W -function, and it has received considerably more attention compared to its other
sibling, W−1(z). In many ways it is a simpler function, for example it is a classical example for
which the Lagrange inversion formula gives a very simple and explicit Taylor series at z = 0
(see formula (3.1) in [8]),

W0(z) =


n≥1

(−n)n−1 zn

n!
, |z| < 1/e. (11)

3.1. Poisson process

In this section we construct a subordinator starting from the spectrally negative process
ξt = t − Nct , where N is the standard Poisson process (i.e. with unit rate of arrival).

Proposition 3. For c > 0 the function ΦY (z) = W0

−ce−c−z


− W0


−ce−c


is the Laplace

exponent of a compound Poisson process. The distribution of Yt is supported on {0, 1, 2, . . .} and
is given by

P(Yt = n) = ct
(c(n + t))n−1

n!
e−c(n+t)+at , n ≥ 0, (12)

where a := 0 if c ≤ 1 and a := c + W0

−ce−c


if c > 1. The Lévy measure is given by

ΠY ({n}) =
nn−1

n!
cne−cn, n ≥ 1. (13)

Proof. Consider the spectrally negative Lévy process ξt = t − Nct , where N is the standard
Poisson process. Our goal is to compute the Laplace exponent, transition semigroup and the Lévy
measure of the subordinator {τ+

x }x≥0. On account of the fact that the paths of ξ are piecewise
linear, it is easy to see that {τ+

x }x≥0 is necessarily a compound Poisson process. Moreover,
as noted in the proof of Theorem 1, this subordinator must also have unit drift. Its jump size
distribution must also have support on positive integers. This is intuitively clear on account of
the fact that if exactly n jumps occur during an excursion of ξ from its maximum, then, since
each jump is of unit size and ξ has a unit upward drift, then it requires precisely n units of time
to return to the maximum. This is also clear from the analytical relation (9).
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In order to find the Laplace exponent φ(q) we need to solve the following equation

z − c(1 − e−z) = q.

Changing variables w = z − c − q we rewrite the above equation as

eww = −ce−c−q ,

which gives us

z = φ(q) = W

−ce−c−q

+ c + q,

where W is one of the two real branches of the Lambert W -function. We need to choose the
correct branch of the Lambert W -function. Since φ(q) − q − φ(0) and hence φ(q) − q is the
Laplace exponent of a subordinator, it must be increasing in q . Since W0(z) is increasing while
W−1(z) is decreasing, this shows that the correct branch is W = W0. Therefore we conclude

φ(q) = W0

−ce−c−q

+ c + q, q ≥ 0. (14)

Note that {τ+
x }x≥0 is killed at rate φ(0) = W0


−ce−c


+ c if c > 1, and, otherwise, at rate

φ(0) = 0 if c ≤ 1.
Next, let us find the transition semi-group of {τ+

x }x≥0. As we have discussed above, {τ+
x }x≥0

has unit drift and its jump distribution is concentrated on the positive integers. This implies that
the distribution of τ+

x is supported on {x, x +1, x +2, . . .}. Let us define pn(x) = P(τ+
x = n+x).

Then we find, for t, y > 0,
∞

y
P(τ+

x ≤ t)
dx

x
=


∞

y


n≥0

1{n+x≤t} pn(x)
dx

x
=


0≤n≤t−y

 t−n

y
pn(x)

dx

x
.

At the same time, t

0
P(ξs > y)

ds

s
=

 t

0
P(Ncs < s − y)

ds

s

=

 t

0


n≥0

1{n<s−y}

(cs)n

n!
e−cs ds

s

=


0≤n<t−y

 t

n+y

(cs)n

n!
e−cs ds

s

=


0≤n<t−y

 t−n

y
cs
(c(s + n))n−1

n!
e−c(s+n) ds

s
.

The above two equations combined with Kendall’s identity (4) give us

P(τ+
x = n + x) = cx

(c(n + x))n−1

n!
e−c(n+x), n ≥ 0. (15)

Now we define the subordinator Y , with zero drift coefficient and zero killing rate, via the Laplace
exponent ΦY (z) = φ(z)− z − φ(0). The formula for the transition semigroup (12) follows from
(15). �

When c ∈ (0, 1), the distribution given in (12) was introduced in 1973 by Consul and Jain [6],
who called it the generalized Poisson distribution (see also [20]). Note that this distribution
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changes behavior at c = 1. Using Stirling’s approximation for n! we find that

ΠY ({n}) =
1

√
2π

n−
3
2 e−(c−1−ln(c))n (1 + o(1)) , n → +∞,

therefore the jump distribution of Y has exponential tail when c ≠ 1 and a power-law tail (with
E[Y1] = +∞) for c = 1.

3.2. Gamma process

In this section we construct a subordinator using Theorem 1 by starting from a gamma sub-
ordinator. We recall that a gamma subordinator X is defined by the Laplace exponent ΦX (z) =

c ln(1 + θ z), z ≥ 0, where the constants c, θ > 0. It is well-known that X has zero drift and that
the transition probability density and the density of the Lévy measure are given by

pX (t, x) =
xct−1e−

x
θ

θct0(ct)
, πX (x) =

c

x
e−

x
θ , x, t > 0.

Proposition 4. The function

ΦY (z) := −cW−1


−

1
θc

exp


−
1 + θ z

θc


+ cW−1


−

1
θc

exp


−
1
θc


− z, z ≥ 0, (16)

is the Laplace exponent of a subordinator Y ∈ T0. The transition probability density of Y is

pY (t, y) =
cθ−1t

0(1 + c(t + y))

 y

θ

c(t+y)−1
e−

y
θ
+at , y, t > 0, (17)

where a := 0 if θc ≤ 1 and a := −1/θ − cW−1


−

1
θc e−

1
θc


if θc > 1. The density of the Lévy

measure is given by

πY (y) =
cθ−1

0(1 + cy)

 y

θ

cy−1
e−

y
θ , y > 0.

Proof. This result is a straightforward application of Theorem 1 and Proposition 2, we only need
to identify the function φ(q), which is the solution to z − c ln(1 + θ z) = q. Making change of
variables u = −1/(θc)− z/c we can rewrite this equation as

ueu
= −

1
θc

e−
1
θc −

q
c ,

therefore

u = W


−

1
θc

e−
1
θc −

q
c


,

where W is one of the two real branches of the Lambert W -function. Again, we need to choose
the correct branch, W0 or W−1. Let us consider

φ(q) = −
1
θ

− cu = −
1
θ

− cW


−

1
θc

e−
1
θc −

q
c


.
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We know that φ(q) is the Laplace exponent of a subordinator with drift rate equal to one,
therefore φ(q) is unbounded on q ∈ (0,∞). From the properties of W0 and W−1 (see Fig. 1) this
is only possible if we choose the branch W = W−1. Thus we obtain

φ(q) = −
1
θ

− cu = −
1
θ

− cW−1


−

1
θc

e−
1
θc −

q
c


.

Note that φ(0) = 0 if and only if θc ≤ 1. The rest of the proof follows from Theorem 1 and from
Proposition 2. �

The distribution given in (17) goes back to Kendall [14]. It is also known as Ressel
(or Kendall–Ressel) distribution (see [17,27]). Using Stirling’s approximation for the Gamma
function we find that

πY (y) =


c

2π
y−

3
2 e

−


ln(θc)−1+

1
θc


cy
(1 + o(1)) , y → +∞,

therefore the Lévy density of Y has exponential tail when θc ≠ 1 and a power-law tail (with
E[Y1] = +∞) for θc = 1.

3.3. Stable processes

In this section, we obtain new families of subordinators which are related to stable processes.
We define

g(x;α) :=
1
π


n≥1

(−1)n−10(1 + αn)

n!
sin(πnα)x−nα−1, x > 0, 0 < α < 1, (18)

and

g(x;α) :=
1
π


n≥1

(−1)n−10 (1 + n/α)

n!
sin


πn
α


xn−1, x ∈ R, α > 1. (19)

Note that, for α > 1, the function x → g(x;α) is entire and satisfies the identity

xg(x;α) = x−αg(x−α
;α−1), x > 0, α > 1. (20)

The function g(x;α) has the following probabilistic interpretation: for α ∈ (0, 1) {resp. α ∈

(1, 2)} it is the probability density function of a strictly stable random variable U defined by
E[exp(−zU )] = exp(−zα) {resp. E[exp(zU )] = exp(zα)}, see Theorem 2.4.2 in [28]. Identity
(20) is just a special case of the so-called Zolotarev duality, see Theorem 2.3.2 in [28]. It is known
that U has a GGC distribution, see Example 3.2.1 in [2].

When α is a rational number, the function g(x;α) can be given in terms of hypergeometric
functions, for example:

g


x;
1
3


=

x−
3
2

3π
K 1

3


2

3
√

3x


, g


x;

2
3


=


3
π

x−1e
−

2
27x2 W 1

2 ,
1
6


4

27x2


, x > 0,

where Kν(x) denotes the modified Bessel function of the second type and Wa,b(x) denotes the
Whittaker function (see [12]). The above two formulas can be found in [28] (see formula 2.8.31
and formula 2.8.33 with a slight normalizing correction 1/

√
3π →

√
3/π ).
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Proposition 5. Assume that α ∈ (0, 1) and c > 0. For q ≥ 0 define φ(q), q ≥ 0, as the unique

positive solution to the equation z − czα = q. Then the function ΦY (z) = φ(z) − c
1

1−α − z
is the Laplace exponent of a subordinator Y ∈ T0. The transition probability density of the
subordinator Y is given by

pY (t, y) = t exp


c
1

1−α t
 (c(t + y))−

1
α

t + y
g


y(c(t + y))−

1
α ;α


x, t > 0. (21)

The density of the Lévy measure is given by

πY (y) = c−
1
α y−

1
α
−1g


c−

1
α y1−

1
α ;α


, y > 0. (22)

Proof. Let X be an α-stable subordinator, having Laplace exponent ΦX (z) = czα . Due to

the scaling property a−
1
α Xat

d
= X t we find that the density of X t is given by pX (t, x) =

g(x(ct)−
1
α ;α)(ct)−

1
α . The rest of the proof is a straightforward application of Theorem 1,

Proposition 2 and the fact that φ(0) = c
1

1−α . �

Remark 2. We can also compute the mean of the subordinator Y , but without having to consider
the tail of the measure πY as in the previous examples. Recall that φ(q) satisfies ψξ (φ(q)) = q ,
for q ≥ 0. Differentiating, it follows that, for q > 0, φ′(q)ψ ′

ξ (φ(q)) = 1 and hence,

E[Y1] = lim
q→0

φ′(q)− 1 =
1

ψ ′
ξ (φ(0))

− 1.

It follows that the subordinator Y has infinite mean if and only if ψ ′(φ(0)) = 0. This happens if
and only if φ(0) = 0 and ψ ′(0+) = 0. When ψξ (z) = z − ΦX (z), Y has infinite mean if and
only if φ(0) = 0 and Φ′

X (0) = 1. One easily shows in this example that

E[Y1] =
1

1 − cα(c
1

1−α )α−1
− 1 =

α

1 − α
.

In the next proposition, we use Theorem 1 in combination with a choice of ξ which is not
the difference of a unit drift and a subordinator (and therefore a process of bounded variation).
Instead we choose ξ directly to be a spectrally negative stable process with unbounded variation
added to a unit positive drift.

Proposition 6. Assume that α ∈ (1, 2) and c > 0. For q ≥ 0 define ΦY (q) as the unique positive
solution to the equation z + czα = q. Then ΦY (q) is the Laplace exponent of an infinite mean
subordinator Y ∈ T0. The transition probability density of the subordinator Y is given by

pY (t, y) = c−
1
α t y−

1
α
−1g


(t − y)(cy)−

1
α ;α


y, t > 0. (23)

The density of the Lévy measure is given by

πY (y) = c−
1
α y−

1
α
−1g


−c−

1
α y1−

1
α ;α


, y > 0. (24)
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Proof. Let ξ̃ be a spectrally negative α-stable process, defined by the Laplace exponent
E[exp(zξ̃1)] = exp(czα), z ≥ 0. Consider the spectrally negative process ξt = ξ̃t + t . The
density of ξt is

pξ (t, x) = (ct)−
1
α g((x − t)(ct)−

1
α ;α), x ∈ R, t > 0.

We define the subordinator Yt = τ+
t , t ≥ 0. Formula (23) follows from Kendall’s identity (5) and

formula (24) follows from (9). Referring to the computations in Remark 2, it is straightforward
to see that E[Y1] = +∞. Let us prove that Y ∈ T0. The proof will follow the same path as the
proof of Proposition 2. Taking derivatives with respect to q on both sides of the identity

ΦY (q)+ cΦY (q)
α

= q

we find that

−Φ′

Y (q) = −
1

1 + αcΦY (q)α−1 .

According to Proposition 1, the function ΦY (q) is a Pick function, therefore −Φ′

Y (q) =

H(G(F(q))) is a composition of the three Pick functions

F : q → ΦY (q), G : z → zα−1, H : w → −
1

1 + αcw
.

This shows that −Φ′

Y (q) is a Pick function, therefore Y ∈ T0. �

Remark 3. The proof of Proposition 6 shows that the subordinator Y is the ascending ladder
time subordinator of an unbounded variation spectrally negative stable process with unit positive
drift. One could ask the following natural question: what if we consider the ascending ladder time
subordinator of an unbounded variation spectrally negative stable process with unit negative drift,
will we get a new family of subordinators? It turns out that in this case we would obtain (up to
scaling) the same family of subordinators as in Proposition 5. The details are left to the reader.
The case that we choose ξ to be just an unbounded variation spectrally negative stable process is
uninteresting. In that case Theorem 1 simply delivers the classical result that Y is the ascending
ladder time process which is a stable subordinator with index 1/α.

3.4. Bessel subordinator

A Bessel subordinator X is defined by the Laplace exponent

ΦX (z) = c ln


1 + θ z +


(1 + θ z)2 − 1


, z ≥ 0, (25)

where c > 0 and θ > 0. This process was introduced in [18], and it was shown that its transition
density and the density of the Lévy measure are respectively given by

pX (t, x) = ctx−1e−
x
θ Ict

 x
θ


, πX (x) = cx−1e−

x
θ I0

 x
θ


, t, x > 0,

where Iν(x) denotes the modified Bessel function of the first kind (see [12]). It is known that
X ∈ T0, see example 1.6.b in [13]. Applying Theorem 1 and Proposition 2, as well as taking note
of Remark 2, we obtain the following result.
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Proposition 7. For q > 0 define φ(q) as the unique solution to the equation

z − c ln


1 + θ z +


(1 + θ z)2 − 1


= q.

Then the function ΦY (z) = φ(z)−φ(0)−z is the Laplace exponent of a finite mean subordinator
Y ∈ T0. The transition probability density of the subordinator Y is given by

pY (t, y) = cty−1eφ(0)t−
y
θ Ic(t+y)

 y

θ


.

The density of the Lévy measure is given by

πY (y) = cy−1e−
y
θ Icy

 y

θ


.

3.5. Geometric stable subordinator

Assume that c > 0, θ > 0 and α ∈ (0, 1). Consider a geometric stable subordinator X , which
is defined by the Laplace exponent ΦX (z) = c ln(1 + (θ z)α) (see [26,21]). This process can be
constructed by taking an α-stable subordinator and subordinating it with the Gamma process.
The transition density and Lévy density of X are respectively given by

pX (t, x) =
αct

x


k≥0

(−1)k(1 + ct)k
0(1 + α(ct + k))k!

 x

θ

α(ct+k)
, πX (x) = cαx−1 Eα


−

 x
θ

α
,

t, x > 0,

where (a)k := a(a + 1) · · · (a + k − 1) denotes the Pochhammer symbol and

Eα(x) :=


k≥0

xk

0(1 + αk)

denotes the Mittag-Leffler function (see [26]). It is known that xπX (x) is a completely monotone
function (see [11]), thus X ∈ T0. Applying Theorem 1 and Proposition 2, and again making use
of Remark 2, we obtain the following family of subordinators.

Proposition 8. Assume that c > 0, θ > 0 and α ∈ (0, 1). For q > 0 define φ(q) as the unique
solution to the equation

z − c ln

1 + (θ z)α


= q.

Then the function ΦY (z) = φ(z)−φ(0)−z is the Laplace exponent of a finite mean subordinator
Y ∈ T0. The transition probability density of the subordinator Y is given by

pY (t, y) = eφ(0)t
αct

y


k≥0

(−1)k(1 + c(t + y))k
0(1 + α(c(t + y)+ k))k!

 y

θ

α(c(t+y)+k)
, y, t > 0.

The density of the Lévy measure is given by

πY (y) =
αc

y


k≥0

(−1)k(1 + cy)k
0(1 + α(cy + k))k!

 y

θ

α(cy+k)
, y > 0.
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3.6. Inverse Gaussian subordinator

If we consider an inverse Gaussian subordinator X , having Laplace exponent ΦX (z) =

c(
√

1 + θ z − 1), then it is easy to see that the subordinator Yt = τ+
t , constructed from X via

Theorem 1, is also in the class of inverse Gaussian subordinators. This is not surprising, since
the inverse Gaussian subordinator itself appears as the first passage time of the Brownian motion
with drift, and one can show that applying this construction repeatedly does not produce new
families of subordinators (see the discussion in Section 2).

4. Applications

The results that we have obtained in the previous sections have interesting and non-trivial
implications for Analysis and Special Functions. Every family of subordinators that we have
discussed above leads to an explicit Laplace transform identity of the form

∞

0
e−zyP(Yt ∈ dy) = e−tΦY (z), z ≥ 0, (26)

and it seems that in all of these cases (except for the first example involving Poisson process) we
obtain new Laplace transform identities. We do not know of a simple direct analytical proof of
these results (we have found one way to prove them, but this method is just a complex-analytical
counterpart of the original probabilistic proof of Kendall’s identity).

Below we present a number of analytical statements that follow from our results in Section 3.

Example 1. For r < 0 and t ∈ (0, e−1)
W−1(−t)

−t

r

= e−r W−1(−t)
= −


∞

−r
r
(w + r)w−1

0(1 + w)
twdw. (27)

This formula seems to be new, and it is a direct analogue of the known result
W0(−z)

−z

r

= e−r W0(−z)
=


n≥0

r
(n + r)n−1

n!
zn, r ∈ C, |z| < 1/e, (28)

which can be found in [9]. Formula (28) can be obtained in two ways. The first one is the clas-
sical analytical approach via the Lagrange inversion theorem (see [9]). The second approach
is via Proposition 3 and (26). This example seems to indicate that when the subordinator X in
Theorem 1 has support on the lattice, then Kendall’s identity is an analytical statement which
is equivalent to the Lagrange inversion formula. Formula (27) is obtained in a similar way from
Proposition 4, and we hypothesize that in the general case Kendall’s identity can be considered
as an integral analogue of the Lagrange inversion formula.

Example 2. Proposition 5 and (26) give us the following result: For q > 0 we have


∞

0


t + y

y3 K 1
3

2
3


(t + y)3

3y

 e−qydy =
3π
t

et (q−φ(q)), (29)

where φ(q) is the solution to z − z
1
3 = q.
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Example 3. Proposition 5 and (26) give us the following result: For q > 0 we have


∞

0

e
−

2
27
(t+y)3

y2

y(t + y)
W 1

2 ,
1
6


4

27
(t + y)3

y2


e−qydy =


π

3
1
t

et (q−φ(q)), (30)

where φ(q) is the solution to z − z
2
3 = q .

Example 4. From formula (20) we find that

g


x;
3
2


= x−

5
2 g


x−

3
2 ;

2
3


=


3
π

x−1e−
2
27 x3

W 1
2 ,

1
6


4

27
x3


.

Then Proposition 6 and (26) give us the following result: For q > 0 we have


∞

0

e
−

2
27
(t−y)3

y2

y(t − y)
W 1

2 ,
1
6


4

27
(t − y)3

y2


e−qydy =


π

3
1
t

e−tφ(q), (31)

where φ(q) is the solution to z + z
3
2 = q .

Example 5. Proposition 7 and (26) give us the following result: For q > 0, c > 0 we have
∞

0
e
−y


1
θ
+q


Ic(t+y)

 y

θ

 dy

y
=

1
ct

et (q−φ(q)), (32)

where φ(q) is the solution to z − c ln


1 + θ z +


(1 + θ z)2 − 1


= q .

Example 6. We recall that a subordinator X belongs to the Thorin class T0 if and only if xπX (x)
is a completely monotone function (where πX (x) is the Lévy density of X ). The fact that
subordinators constructed in Propositions 4–8 belong to the class T0 implies that the following
functions

f1(y) =
ycye−y

0(1 + cy)
, c > 0, y > 0,

f2(y) = y−
1
α g(y1−

1
α ;α), α ∈ (0, 1), y > 0,

f3(y) = y−
1
α g(−y1−

1
α ;α), α ∈ (1, 2), y > 0,

f4(y) = e−y Icy(y), c > 0, y > 0,

f5(y) =


k≥0

(−1)k(1 + cy)k
0(1 + α(cy + k))k!

yα(cy+k), c > 0, α ∈ (0, 1), y > 0,

are completely monotone. We are not aware of any simple analytical proof of this result.
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