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Abstract The aim of this work is to extend and study a family of transformations
between Laplace exponents of Lévy processes which have been introduced recently
in a variety of different contexts, Patie (Bull Sci Math 133(4):355–382, 2009;
Bernoulli 17(2):814–826, 2011), Kyprianou and Patie (Ann Inst H Poincar’ Probab
Statist 47(3):917–928, 2011), Gnedin (Regeneration in Random Combinatorial
Structures. arXiv:0901.4444v1 [math.PR]), Patie and Savov (Electron J Probab
17(38):1–22, 2012), as well as in older work of Urbanik (Probab Math Statist
15:493–513, 1995). We show how some specific instances of this mapping prove
to be useful for a variety of applications.
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1 Introduction

In this paper we are interested in a Lévy process with no positive jumps, possibly
independently killed at a constant rate, henceforth denoted by ξ = (ξt , t ≥ 0)
with law P. That is to say, under P, ξ is a stochastic process which has almost
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surely càdlàg paths, increments that are stationary and independent and killed at an
independent rate κ ≥ 0. The case that κ = 0 corresponds to no killing. Whilst it is
normal to characterise Lévy processes by their characteristic exponent, in the case
that the jumps are non-positive one may also comfortably work with the Laplace
exponent which satisfies,

E(euξt ) = eψ(u)t , t ≥ 0,

where u ≥ 0. It is a well established fact that the latter Laplace exponent is strictly
convex on [0,∞) and admits the following Lévy-Khintchine representation

ψ(u) = −κ + au+ 1
2
σ 2u2 +

∫

(−∞,0)
(eux − 1− ux1(|x|<1))%(dx), (1.1)

for u ≥ 0 where κ ≥ 0, a ∈ R, σ 2 ≥ 0 and % is a measure concentrated on
(−∞, 0) satisfying

∫
(−∞,0)(1 ∧ x2)%(dx) < ∞, see for example Bertoin [1].

Note in particular that our definition includes the case that −ξ is a (possibly killed)
subordinator. Indeed, when% satisfies

∫
(−∞,0)(1∧ |x|)%(dx) < ∞ and we choose

σ = 0 and a = −d+
∫
(−1,0) x%(dx) we may write for u ≥ 0,

ψ(u) = −κ − du−
∫

(0,∞)
(1− e−ux)ν(dx),

where ν(x,∞) = %(−∞,−x). When d ≥ 0, writing St = −ξt for t ≥ 0, d and ν
should be thought of as the drift and Lévy measure of the subordinator S = (St , t ≥
0) respectively. Moreover, writing φ(u) = −ψ(u) for u ≥ 0, we may think of φ as
the Laplace exponent of S in the classical sense, namely

E(e−uSt ) = e−φ(u)t , t ≥ 0.

In general we shall refer to () as the family of Laplace exponents of (possibly
killed) Lévy processes with no positive jumps which are killed at rate κ ≥ 0 and
are well defined on (),∞) for ) ≤ 0. Note that excluding the cases when −ξ is
not a subordinator then () boils down to the class of Laplace exponent of (possibly
killed) spectrally negative Lévy processes.

Our main objective is to introduce a parametric family of linear transformations
which serves as a mapping from the space of Laplace exponents of Lévy processes
with no positive jumps into itself and therewith explore how a family of existing
results for Lévy processes may be extrapolated further. The paper is structured
as follows. In the next section we introduce our three-parameters transformation
and derive some basic properties. We also describe its connection with some
transformations which have already appeared in the literature. The remaining part
of the paper deals with the applications of our transformation to different important
issues arising in the framework of Lévy processes and related processes. More
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specifically, in the third section we provide some ways for getting new expressions
for the so-called scale function of Lévy processes. Section 4 is devoted to the
exponential functional of Lévy processes and finally in the last section we develop
some applications to the study of positive self-similar Markov processes.

2 The Transformation Tδ,β

We begin with the definition of our new transformation and consider its properties
as a mapping on ().

Definition 2.1 Suppose that ψ ∈ () where ) ≤ 0. Then for δ,β ≥ 0, with the
additional constraint that ψ ′(0+) = ψ(0) = 0 if β = 0, let

Tδ,βψ(u) = u+ β − δ

u+ β
ψ(u+ β)− β − δ

β
ψ(β), u ≥ −β.

Let us make some immediate observations on the above definition. Firstly note that
Tδ,β is a linear transform. In the special case that δ = β we shall write Tβ in place
of Tβ,β . The transform Tβ was considered recently for general spectrally negative
Lévy processes in Kyprianou and Patie [23] and for subordinators (as a result of a
path transformation known as sliced splitting) in Gnedin [17]. Next note that, for
β, γ such that β + γ ≥ 0,

Tγ ◦ Tβ = Tγ+β .

In the special case that δ = 0 and β ≥ 0 we have Eβ := T0,β satisfies

Eβψ(u) = ψ(u+ β)− ψ(β), u ≥ −β,

where, as usual, ψ ∈ (). This is the classical Esscher transform for Lévy
processes with no positive jumps expressed in terms of Laplace exponents. It will
be convenient to note for later that if-(u) := ψ(u)/u then we may write

Tδ,βψ(u) = Eβψ(u) − δEβ-(u).

In particular we see that when β = 0, the assumption that ψ ′(0+) = 0 allows us to
talk safely about-(0+).

One may think of Tδ,β as one of the many possible generalisations of the Esscher
transform. For β ≥ 0, the latter is a well-known linear transformation which maps
() into itself and has proved to be a very effective tool in analysing many different
fluctuation identities for Lévy processes with no positive jumps. It is natural to ask if
Tδ,β is equally useful in this respect. A first step in answering this question is to first
prove that Tδ,β also maps () into itself. This has already been done for the specific
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family of transformations Tβ in Lemma 2.1 of [23] and also, for Lévy processes
with two sided jumps, in Proposition 2.1 in [33] .

Proposition 2.2 Suppose that ψ ∈ () where ) ≤ 0. Fix δ,β ≥ 0 with the
additional constraint that ψ ′(0+) = ψ(0) = 0 if β = 0. Then Tδ,βψ ∈ ()−β ⊆ ()

and has no killing component. Moreover, if ψ has Gaussian coefficient σ and jump
measure% then Tδ,βψ also has Gaussian coefficient σ and its Lévy measure is given
by

eβx
(
%(dx)+ δ%(x)dx

)+ δ
κ

β
eβxdx on (−∞, 0),

where %(x) = %(−∞, x) and we understand the final term to be zero whenever
κ = 0. Finally, one has Tβψ ∈ ()−β with l < β < 0 under the additional
requirements that κ = 0 and (eβx%(x))′ = eβx%(dx)+ βeβx%(x)dx is a positive
measure on (−∞, 0).

Proof Recall from earlier that Tδ,βψ(u) = Eβψ(u)− δEβ-(u). Moreover, from its
definition, it is clear that argument of Tδ,β may be taken for all u such that u+ β ≥
). It is well understood that Eβψ is the Laplace exponent of a spectrally negative
Lévy process without killing whose Gaussian coefficient remains unchanged but
whose Lévy measure is transformed from %(dx) to eβx%(dx). See for example
Chapter 8 of [21]. The proof thus boils down to understanding the contribution from
−δEβφ(u). A straightforward computation based on integration by parts shows that

-(u) = −κ

u
+ (a −%(−1))+ 1

2
σ 2u+

∫ 0

−∞
(1(|x|<1) − eux)%(x)dx.

From this it follows that

−δEβ-(u) = −δ κ
β

u

u+ β
− δ

2
σ 2u− δ

∫ 0

−∞
(1− eux)eβx%(x)dx

= − δ

2
σ 2u− δ

∫ 0

−∞
(1− eux)eβx%(x)dx − δ

κ

β

∫ ∞

0
(1− e−ux)e−βxdx.

Here we understand the final integral above to be zero if κ = 0. In that case we
see that −δEβψ(u) is the Laplace exponent of a spectrally negative Lévy process
which has no Gaussian component and a jump componentwhich is that of a negative
subordinator with jump measure given by δeβx%(x)dx+β−1κδeβxdx on (−∞, 0).
The last claim follows readily from the previous one by choosing δ = β and κ = 0.

*+
Whilst it is now clear that the mappings T γ

δ,β may serve as a way of generating
new examples of Lévy processes with no positive jumps from existing ones, our
interest is largely motivated by how the aforesaid transformation interacts with
certain path transformations and fluctuation identities associated to Lévy processes.
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Indeed, as alluded to above, starting with Urbanik [38], the formalisation of these
transformations is motivated by the appearance of particular examples in a number
of such contexts. On account of the diversity of these examples, it is worth recalling
them here briefly for interest. Kyprianou and Patie [23] use the transformation Tβ to
give a natural encoding for the Ciesielski-Taylor identity for a class of self similar
Markov processes (pssMp). In the setting of self-similar continuous-state branching
processes, [28, Proposition 4.11] uses the Tβ transformation to describe a family of
such processes with immigration. Finally, Gnedin [17] introduces a method of sliced
splitting the path of subordinators to generate new examples of subordinators. The
sliced splitting operation he used corresponds to the application of a special case of
the transformation introduced here.

3 Scale Functions for Spectrally Negative Lévy Processes

Scale functions have occupied a central role in the theory of spectrally negative Lévy
processes over the last ten years. They appear naturally in virtually all fluctuation
identities of the latter class and consequently have also been instrumental in solving
a number of problems from within classical applied probability. See Kyprianou [21]
for an account of some of these applications. Despite the fundamental nature of
scale functions in these settings, until recently very few explicit examples of scale
functions have been found. However in the recent work of Hubalek and Kyprianou
[18], Chaumont et al. [14], Patie [28], Kyprianou and Rivero [24] and the survey
paper [20], many new examples as well as general methods for constructing explicit
examples have been uncovered. We add to this list of contemporary literature by
showing that the some of transformations introduced in this paper can be used to
construct new families of scale functions from existing examples.

Henceforth we shall assume that the underlying Lévy process, ξ , is spectrally
negative, but does not have monotone paths. Moreover, we allow, as above, the case
of independent killing at rate κ ≥ 0. For a given spectrally negative Lévy process
with Laplace exponent ψ , its scale function Wψ : [0,∞) ,→ [0,∞) is the unique
continuous positive increasing function characterized by its Laplace transform as
follows. For any κ ≥ 0 and u > θ := sup{λ ≥ 0; ψ(λ) = 0},

∫ ∞

0
e−uxWψ (x)dx = 1

ψ(u)
.

In the case that κ > 0,Wψ is also known as the κ-scale function.
Below we show how our new transformation generates new examples of scale

functions from old ones; first in the form of a theorem and then with some examples.
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Theorem 3.1 Let x,β ≥ 0. Then,

WTβψ (x) = e−βxWψ (x)+ β

∫ x

0
e−βyWψ (y)dy. (3.1)

Moreover, if ψ ′(0+) ≤ 0, then for any x,β, δ ≥ 0, we have

WTδ,θ ψ (x) = e−θx
(
Wψ (x)+ δeδx

∫ x

0
e−δyWψ (y)dy

)

Proof The first assertion is proved by observing that

∫ ∞

0
e−uxWTβψ (x)dx = u+ β

uψ(u+ β)

= 1
ψ(u+ β)

+ β

uψ(u+ β)
, (3.2)

which agrees with the Laplace transform of the right hand side of (3.1) for which an
integration by parts is necessary. As scale functions are right continuous, the result
follows by the uniqueness of Laplace transforms.

For the second claim, first note that Tδ,θψ = u+θ−δ
u+θ ψ(u+ θ). A straightforward

calculation shows that for all u+ δ > θ , we have

∫ ∞

0
e−uxe(θ−δ)xWTδ,θ ψ (x)dx = u+ δ

uψ(u+ δ)
. (3.3)

The result now follows from the first part of the theorem. *+
When ψ(0+) > 0 and ψ(0) = 0, the first identity in the above theorem contains

part of the conclusion in Lemma 2 of Kyprianou and Rivero [24]. However, unlike
the aforementioned result, there are no further restrictions on the underlying Lévy
processes and the expression on the right hand side is written directly in terms of the
scale functionWψ as opposed to elements related to the Lévy triple of the underlying
descending ladder height process of ξ .

Note also that in the case that ψ is the Laplace exponent of an unbounded
variation spectrally negative Lévy process, it is known that scale functions are
almost everywhere differentiable and moreover that they are equal to zero at zero;
cf. Chapter 8 of [21]. One may thus integrate by parts the expressions in the theorem
above and obtain the following slightly more compact forms,

WTβψ (x) =
∫ x

0
e−βyW ′

ψ (y)dy and WTδ,θ ψ (x) = e−(θ−δ)x
∫ x

0
e−δyW ′

ψ (y)dy.

We conclude this section by giving some examples.
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Example 3.2 ((Tempered) Stable Processes) Let ψκ,c(u) = (u + c)α − cα − κ

where 1 < α < 2 and κ, c ≥ 0. This is the Laplace exponent of an unbounded
variation tempered stable spectrally negative Lévy process ξ killed at an independent
and exponentially distributed time with rate κ . In the case that c = 0, the underlying
Lévy process is just a regular spectrally negative α-stable Lévy process. In that case
it is known that

∫ ∞

0
e−uxxα−1Eα,α(κx

α)dx = 1
uα − κ

and hence the scale function is given by

Wψκ,0 (x) = xα−1Eα,α(κx
α), x ≥ 0,

whereEα,β(x) =
∑∞

n=0
xn

1(αn+β) stands for the generalized Mittag-Leffler function.
(Note in particular that when κ = 0 the expression for the scale function simplifies
to 1(α)−1xα−1). Since

∫ ∞

0
e−uxe−cxWψκ+cα ,0(x)dx = 1

(u+ c)α − cα − κ

it follows that

Wψκ,c (x) = e−cxWψκ+cα ,0(x) = e−cxxα−1Eα,α((κ + cα)xα).

Appealing to the first part of Theorem 3.1 we now know that for β ≥ 0,

WTβψκ,c (x) = e−(β+c)xxα−1Eα,α((κ+cα)xα)+β
∫ x

0
e−(β+c)yyα−1Eα,α((κ+cα)yα)dy.

Note that ψ ′
κ,c(0+) = αcα−1 which is zero if and only if c = 0. We may use the

second and third part of Theorem 3.1 in this case. Hence, for any δ > 0, the scale
function of the spectrally negative Lévy process with Laplace exponent Tδ,0ψ0,0 is

WTδ,0ψ0,0(x) =
1

1(α − 1)
eδx

∫ x

0
e−δyyα−2dy

= δα−1

1(α − 1)
eδx1(α − 1, δx)
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where we have used the recurrence relation for the Gamma function and 1(a, b)

stands for the incomplete Gamma function of parameters a, b > 0. Moreover, we
have, for any β > 0,

WT β
δ,0ψ0,0

(x) = 1
1(α − 1)

(
βα

β − δ
1(α − 1,βx)− e(β−δ)x

δα

β − δ
1(α − 1, δx)

)
.

Finally, the scale function of the spectrally negative Lévy process with Laplace
exponent T β

δ,0ψκ,0 is given by

WTδ,0ψκ,0(x) = (x/δ)α−1Eα,α−1

(
x; κ

δ

)

WT β
δ,0ψκ,0

(x) = β

β − δ
(x/β)α−1Eα,α−1

(
x; κ

β

)
− δ

β − δ
e−(β−δ)x (x/δ)α−1Eα,α−1

(
x; κ

δ

)

where we have used the notation

Eα,β (x; κ) =
∞∑

n=0

1(x; αn+ β)κn

1(αn + β)
.

4 Exponential Functional and Length-Biased Distribution

In this part, we aim to study the effect of the transformation to the law of the
exponential functional of some Lévy processes, namely for subordinators and
spectrally negative Lévy processes. We recall that this random variable is defined
by

Iψ =
∫ ∞

0
e−ξs ds.

Note that limt→∞ ξt = +∞ a.s. ⇔ Iψ < ∞ a.s. which is equivalent, in the
spectrally negative case, to E[ξ1] = ψ ′(0+) > 0. We refer to the survey paper of
Bertoin and Yor [7] for further discussion on this random variable. We also mention
that Patie in [29, 30] and [32], provides some explicit characterizations of its law
in the case ξ is a spectrally positive Lévy process. We recall that in [4], it has been
proved that the law of Iψ is absolutely continuous with a density denoted by fψ .

4.1 The Case of Subordinators

Let us first assume that ξ̃ = (ξ̃t , t ≥ 0) is a proper subordinator, that is a non-
negative valued Lévy process which is conservative. Let ξ be the subordinator ξ̃
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killed at rate κ ≥ 0 and we recall that the Laplace exponent φ of ξ is given by
φ(u) = −ψ(u), u ≥ 0. In that case we write Iφ in place of Iψ and if φ(0) = κ , we
have that

Iφ =
∫ ∞

0
e−ξs ds =

∫ eκ

0
e−ξ̃s ds

where eκ stands, throughout, for an exponential random variable of mean κ−1 >

0, independent of ξ (we have e0 = ∞). Before stating our result, we recall that
Carmona et al. [13] determine the law of Iφ through its positive entire moments as
follows

E[Inφ ] =
n!∏n

k=1 φ(k)
, n = 0, 1 . . . . (4.1)

Theorem 4.1 For any κ,β ≥ 0, the following identity

fTβφ(x) =
xβfφ(x)

E[Iβφ ]
, x > 0, (4.2)

holds.

Proof Carmona et al. [13], see also Maulik and Zwart [27, Lemma 2.1], determine
the law of Iφ by computing its positive entire moments which they derive from the
following recursive equation, for any s,β > 0 and κ ≥ 0,

E[I sTβφ] =
Tβφ(s)

s
E[I s−1

Tβφ ] (4.3)

= φ(s + β)

s + β
E[I s−1

Tβφ ].

On the other hand, we also have, for any s,β > 0,

E[I s+βφ ] = φ(s + β)

s + β
E[I s−1+β

φ ].

We get the first assertion by invoking uniqueness, in the space of Mellin transform
of positive random variable, of the solution of such a recurrence equation, given for
instance in the proof of [34, Theorem 2.4, p. 64]. *+

Before providing some new examples, we note from Theorem 4.1 that if Iφ
(d)=

AB for some independent random variables A,B then the positive entire moments
of ITβφ, β > 0, admit the following expression

E[InTβφ] =
E[An+β ]
E[Aβ ]

E[Bn+β ]
E[Bβ ] , n = 0, 1 . . . . (4.4)
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Example 4.2 (Poisson process) Let ξ be a Poisson process with mean c =
− log(q) > 0 with 0 < q < 1, i.e. φ(u) = − log(q)(1 − e−u), u ≥ 0. Biane
et al. [3] computed the law of Iφ by means of q−calculus. More precisely, they
show that its law is self-decomposable and is given by

fφ(dx) =
∞∑

n=0

(−1)ne−y/qn q
n(n−1)

2

(q; q)∞(q; q)n
dx, x > 0,

where

(a; q)n =
n−1∏

k=1

(1− aqj ), (q; q)∞ =
∞∏

k=1

(1− aqj )

and its Mellin transform is given, for any s > 0, by

E[I sφ] =
1(1+ s)(q1+s; q)∞

(q; q)∞
.

The image of ξ by the mapping Tβ is simply a compound Poisson process with
parameter c and jumps which are exponentially distributed on (0, 1) with parameter
β, i.e. Tβφ(u) = u

u+β (− log(q)(1− e−(u+β))). Thus, we obtain that the law of ITβφ
has an absolute continuous density given by

fTβφ(dx) =
xβ

E[Iβφ ]

∞∑

n=0

e−x/qn(−1)n
q

n(n−1)
2

(q; q)∞(q; q)n
dx, x > 0.

To conclude this example, we mention that Bertoin et al. [3] show that the
distribution of the random variable Lφ defined, for any bounded Borel function f ,
by

E[f (Lφ)] =
1

E[I−1
φ ]

E[I−1
φ f (I ′φI

−1
φ )]

with I ′φ an independent copy of Iφ , shares the same moments than the log normal
distribution. It is not difficult to check that such transformation applied to ITβφ does
not yield the same properties.

Example 4.3 (Killed compound Poisson process with exponential jumps) Let
ξ be a compound Poisson process of parameter c > 0 with exponential jumps of
mean b−1 > 0 and killed at a rate κ ≥ 0. Its Laplace exponent has the form φ(u) =
c u
u+b + κ and its Lévy measure is given by ν(dr) = cbe−brdr, r > 0. We obtain

from (4.1) that

E[Inφ ] =
n!1(n + b + 1)1(κb + 1)

((κ + c))n1(b + 1)1(n+ κb + 1)
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where we have set κb = κ
κ+c b. Then, noting that b − κb > 0, we get the identity in

distribution

Iφ
(d)= ((κ + c))−1e1B(κb + 1, b − κb)

where B(a, b) stands for a Beta random variable of parameters a, b > 0 and the
random variables on the right-hand side are considered to be independent. The case
κ = 0 was considered by Carmona et al. [12]. Finally, observing that, for any β ≥ 0,
Tβφ(u) = c u

u+b+β +κ u
u+β and its Lévy measure is νβ (dr) = e−βr (c(b+β)e−br+

κβ)dr, r > 0, we deduce from Theorem 4.1, the identity

ITβφ
(d)= (a(κ + 1))−1G(β + 1)B(κb + β + 1, b − κb)

whereG(a) is an independent Gamma random variable with parameter a > 0.

Example 4.4 (The α-stable subordinator) Let us consider, for 0 < α < 1,
φ(u) = uα, u ≥ 0 and in this case ν(dr) = αr−(α+1)

1(1−α) dr, r > 0. The law of Iφ has
been characterized by Carmona et al. [12, Example E and Proposition 3.4]. More
precisely, they show that the random variable Z = log Iφ is self-decomposable and
admits the following Lévy-Khintchine representation

logE[eiuZ] = log(1(1+ iu))1−α

= (1− α)

(
−iuCγ +

∫ 0

−∞
(eius − ius − 1)

es

|s|(1− es)
ds

)

where Cγ denotes the Euler constant. First, note that Tβφ(u) = (u+ β)α − β(u+
β)α−1 and νβ(dr) = 1

1(1−α)e
−βrr−(α+1)(α + βr)dr, r > 0. Thus, writing Zβ =

log(ITβφ), we obtain

logE[eiuZβ ] = log
(
1(1 + β + iu)

1(1 + β)

)1−α

= (1− α)

(

iuϒ(1+ β)+
∫ 0

−∞
(eius − ius − 1)

e(1+β)s

|s|(1− es)
ds

)

where ϒ stands for the digamma function, ϒ(z) = 1′(z)
1(z) . Observing that

limα→0 Tβφ(u) = u
u+β , by passing to the limit in the previous identity we recover

the previous example.

Example 4.5 (The Lamperti-stable subordinator) Now let φ(u) = φ0(u) =
(αu)α, u ≥ 0, with 0 < α < 1. This example is treated by Bertoin and Yor in
[7]. They obtain

Iφ
(d)= e1e−α1 .
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Hence, with Tβφ(u) = u
u+β (α(u+ β))α , we get

ITβφ
(d)= G(β + 1)G(β + 1)−α.

4.2 The Spectrally Negative Case

Let us assume now that ξ is a spectrally negative Lévy process. We recall that if
E[ξ1] < 0, then there exits θ > 0 such that

E[eθξ1] = 1 (4.5)

and we write ψθ (u) = ψ(u + θ). We proceed by mentioning that, in this setting,
Bertoin and Yor [6] determined the law of Iψ by computing its negative entire
moments as follows. If ψ(0) = 0 and ψ ′(0+) > 0, then, for any integer n ≥ 1,

E[I−n
ψ ] = ψ ′(0+)

∏n−1
k=1 ψ(k)

1(n)
, (4.6)

with the convention that E[I−1
ψ ] = ψ ′(0+). Next, it is easily seen that the strong

Markov property for Lévy processes yields, for any a > 0,

Iψ
(d)=
∫ Ta

0
e−ξs ds + e−aI ′ψ

where Ta = inf{s > 0; ξs ≥ a} and I ′ψ is an independent copy of Iψ , see e.g. [35].
Consequently, Iψ is a positive self-decomposable random variable and thus its law
is absolutely continuous with an unimodal density, see Sato [36]. We still denote its
density by fψ . Before stating our next result, we introduce the so-called Erdélyi-
Kober operator of the first kind and we refer to the monograph of Kilbas et al. [19]
for background on fractional operators. It is defined, for a smooth function f, by

Dα,δf (x) = x−α−δ

1(δ)

∫ x

0
rα(x − r)δ−1f (r)dr, x > 0,

whereRe(δ) > 0 andRe(α) > 0. Note that this operator can be expressed in terms
of the Markov kernel associated to a Beta random variable. Indeed, after performing
a change of variable, we obtain

Dα,δf (x) = 1(α + 1)
1(α + δ + 1)

E [f (B(α + 1, δ)x)]
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which motivates the following notation

Dα,δf (x) = 1(α + δ + 1)
1(α + 1)

Dα,δf (x). (4.7)

Theorem 4.6

(1) If ψ ′(0+) > 0, then for any β > 0, we have

fTβψ (x) =
x−βfψ (x)

E[I−βψ ]
, x > 0. (4.8)

In particular, Iψ is the length-biased distribution of IT1ψ .
(2) Assume that ψ ′(0+) < 0. Then, for any 0 < δ < θ , we have

ITδ,θ ψ
(d)= B−1(θ − δ, δ)Iψθ . (4.9)

This identity reads in terms of the Erdélyi-Kober operator as follows

fTδ,θ ψ (x) = Dθ−δ−1,δfψθ (x), x > 0.

In particular, we have

fTδ,θ ψ (x) ∼
1(θ)

1(δ)1(θ − δ)
E[I θ−δψθ

] xδ−θ−1 as x → ∞, (4.10)

(f (t) ∼ g(t) as t → a means that limt→a
f (t)
g(t) = 1 for any a ∈ [0,∞]).

Combining the two previous results, we obtain, for any 0 < δ < θ and β ≥ 0,

fT β
δ,θ ψ

(x) = x−β

E[I−βTδ,θ ψ ]
Dθ−δ−1,δfψθ (x), x > 0

and

fT β
δ,θ ψ

(x) ∼ 1(θ)

1(θ − δ)1(δ)

E[I−βψθ
]

E[I θ−δψθ
]
xδ−θ−β−1 as x → ∞.

Proof We start by recalling the following identity due to Bertoin and Yor [2]

Iψ/Iφ
(d)= e−Me1

where φ(u) = ψ(u)/u, u ≥ 0, that is φ is the Laplace exponent of the ladder height
process of the dual Lévy process, M = supt≥0{−ξt } is the overall maximum of the
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dual Lévy process and the random variables are considered to be independent. Thus,
recalling that E[e−sM ] = ψ ′(0+)/φ(s), we have, for any s > 0,

E[I−(s+1)
ψ ] = ψ ′(0+)1(s + 2)

φ(s + 1)E[I s+1
φ ]

= ψ ′(0+)1(s + 1)
E[I sφ]

= ψ(s)

s
E[I−s

ψ ] (4.11)

where we have used the recurrence relationship satisfied by Iφ , see (4.3). Similarly
to the case of subordinators, we have, for any s > 0,

E[I−(s+1)
Tβψ ] = Tβψ(s)

s
E[I−s

Tβψ ]

= ψ(s + β)

s + β
E[I−s

Tβψ ]

and

E[I−(s+β+1)
ψ ] = ψ(s + β)

s + β
E[I−(s+β+1)

ψ ].

The first claim follows by invoking again uniqueness, in the space of Mellin
transform of positive random variables, of the solution of such a recurrence
equation, given for instance in the proof of [34, Theorem 2.4, p. 64]. Next, we
have both ψ ′

θ (0
+) > 0 and Tδ,θψ ′(0+) = θ−δ

θ ψ ′
θ (0

+) > 0 as δ < θ . Thus, the
random variables Iψθ and ITδ,θ ψ are well defined. Moreover, from (4.6), we get, for
any integer n ≥ 1,

E[I−n
Tδ,θ ψ ] =

ψ ′(θ)(θ − δ)

θ

∏n−1
k=1 Tδ,θψ(k)

1(n)

= ψ ′(θ)(θ − δ)

θ

∏n−1
k=1

k+θ−δ
k+θ ψθ (k)

1(n)

= ψ ′(θ)
1(n+ θ − δ)1(θ)

1(θ − δ)1(n + θ)

∏n−1
k=1 ψθ (k)

1(n)
.
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The identity (4.9) follows by moments identification. Then, we use this identity to
get, for any x > 0,

fTδ,θ ψ (x) =
1(θ)

1(δ)1(θ − δ)

∫ 1

0
rθ−δ−1(1− r)δ−1fψθ (xr)dr

= x−θ1(θ)
1(δ)1(θ − δ)

∫ x

0
uθ−δ−1(x − u)δ−1fψθ (u)du

= Dθ−δ−1,δf (x).

Next, we deduce readily from (4.11) that the mapping s ,→ E[I−s
ψθ

] is analytic in the
right-half plane Re(s) > −θ . In particular, for any 0 < δ < θ , we have E[I θ−δψθ

] <
∞. Then, the large asymptotic behavior of the density is obtained by observing that

fTδ,θ ψ (x) =
xδ−θ−11(θ)

1(δ)1(θ − δ)

∫ x

0
uθ−δ(1− u/x)δ−1fψθ (u)du

∼ xδ−θ−11(θ)

1(δ)1(θ − δ)

∫ ∞

0
uθ−δfψθ (u)du as x → ∞,

which completes the proof. *+
Example 4.7 (the spectrally negative Lamperti-stable process) Let us consider
the Lamperti-stable process, i.e., for 1 < α < 2,ψ(u) = ((α−1)(u−1))α, u ≥ 0.
Recall that ψ(1) = 0, ψ1(u) = ((α− 1)u)α and that this example is investigated by
Patie [28]. We get

E[I−n
ψ1

] = ψ ′(0+)
1((α − 1)n+ 1)

1(α + 1)
.

Thus, Iψ1 = e−(α−1)
1 . Then, for any 0 < δ < 1,

ITδ,θ ψ
(d)= B(1 − δ, δ)−1e−(α−1)

1 ,

and for any β > 0

IT β
δ,θ ψ

(d)= B(1 + β − δ, δ)−1G(β + 1)−(α−1).

5 Entrance Laws and Intertwining Relations of pssMp

In this part, we show that the transformations Tδ,β appear in the study of the
entrance law of pssMps. Moreover, also they prove to be useful for the elaboration
of intertwining relations between the semigroups of spectrally negative pssMps. We
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recall that the Markov kernel 3 associated to the positive random variable V is the
multiplicative kernel defined, for a bounded Borelian function f , by

3f (x) = E[f (V x)].

Then, we say that two Markov semigroupsPt andQt are intertwined by the Markov
kernel3 if

Pt3 = 3Qt, t ≥ 0. (5.1)

We refer to the two papers of Carmona et al. [11] and [13] for a very nice account of
intertwining relationships. In particular, they show, by means of the Beta-Gamma
algebra, that the semigroup of Bessel processes and the one of the so-called self-
similar saw tooth processes are intertwined by the Gamma kernel. Below, we
provide alternative examples of such relations for a large class of pssMps with
stability index 1. Recall that the latter processes were defined in Sect. 2. We also
mention that for any α > −1, δ > 0, the linear operator Dα,δ defined in (4.7) is an
instance of a Markov kernel which is, in this case, associated to the Beta random
variable B(α + 1, δ). In what follows, when X is associated through the Lamperti
mapping to a spectrally negative Lévy process with Laplace exponentψ , we denote
by P

ψ
t its corresponding semigroup. When min(ψ(0),ψ ′(0+)) < 0 and θ < 1,

then P
ψ
t stands for the semigroup of the unique recurrent extension leaving the

boundary point 0 continuously. Using the self-similarity property ofX, we introduce
the positive random variable defined, for any bounded borelian function f , by

P
ψ
t f (0) = E[f (tJψ )].

Recall that Bertoin and Yor [5] showed that, when ψ ′(0+) ≥ 0, the random
variable Jψ is moment-determinate with

E
[
J n
ψ

]
=
∏n

k=1ψ(k)

1(n + 1)
, n = 1, 2 . . . (5.2)

Before stating the new intertwining relations, we provide some further infor-
mation concerning the entrance law of pssMps. In particular, we show that the
expression (5.2) of the integer moments still holds for the entrance law of the unique
continuous recurrent extension, i.e. when min

(
ψ(0),ψ ′(0+)

)
< 0 with θ < 1. We

emphasize that we consider both cases when the process X reaches 0 continuously
and by a jump.

Proposition 5.1 Let us assume that min
(
ψ(0),ψ ′(0+)

)
< 0 with θ < 1. Then, we

have the following identity in distribution

Jψ
(d)= B (1− θ, θ) /IT1−θψθ

(5.3)
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where B(a, b) is taken independent of the random variable IT1−θψθ
. Moreover, the

entrance law of the unique recurrent extension which leaves 0 continuously a.s. is
determined by its positive entire moments as follows

E
[
J n
ψ

]
=
∏n

k=1ψ(k)

1(n + 1)
, n = 1, 2 . . .

Proof We start by recalling that Rivero [35, Proposition 3] showed that the q-
potential of the entrance law of the continuous recurrent extension is given, for a
continuous function f , by

∫ ∞

0
e−qtE

[
f (tJψ )

]
dt = q−θ

Cθ

∫ ∞

0
f (u)E

[
e−quIψθ

]
u−θdu

where we have used the self-similarity property of X and set Cθ = 1(1 −
θ)E

[
I θ−1
ψθ

]
. Performing the change of variable t = uIψθ on the right hand side

of the previous identity, one gets

∫ ∞

0
e−qtE

[
f (tJψ )

]
dt = q−θ

Cθ

∫ ∞

0
e−qtE

[
f (tI−1

ψθ
)I θ−1
ψθ

]
t−θdt.

Choosing f (x) = xs for some s ∈ iR the imaginary line, we get

∫ ∞

0
e−qt tsdt E[J s

ψ ] = 1 (s + 1) q−s−1E[J s
ψ ]

where we have used the integral representation of the Gamma function 1(z) =∫∞
0 e−t tzdt,Re(z) > −1. Moreover, by performing a change of variable, we obtain

∫ ∞

0
tsE[e−qtIψθ ]t−1−θdt = q−s−θ−11 (s − θ + 1)E[I−s+θ−1

ψθ
]. (5.4)

Putting the pieces together, we deduce that

E[J s
ψ ] =

1 (s − θ + 1)

1 (s + 1)1
(
1− θ

α

)
E[I−s+θ−1

ψθ
]

E[I θ−1
ψθ

]
(5.5)
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and the proof of the first claim is completed by moments identification. Next, we
have

E
[
J n
ψ

]
= 1(n+ 1− θ)

1(n+ 1)1(1− θ)E
[
I θ−1
ψθ

]E
[
I−n+θ−1
ψθ

]

= 1(n+ 1− θ)

1(n+ 1)1(1− θ)
E
[
I−n
T1−θ ψθ

]

= 1(n+ 1− θ)

1(n+ 1)1(1− θ)

ψ(1)
1− θ

∏n−1
k=1

k
k+1−θ ψ(k + 1)

1(n)

= 1(n + 1− θ)1(n)1(2 − θ)

1(n+ 1− θ)1(n+ 1)1(1− θ)

ψ(1)
1− θ

∏n−1
k=1 ψ(k + 1)

1(n)

=
∏n

k=1ψ(k)

1(n + 1)

where we have used, from the second identity, successively the identities (5.5), (4.8),
(4.6) and the recurrence relation of the gamma function. We point out that under the
condition θ < 1, ψ(k) > 0 for any integer k ≥ 1. The proof of the Proposition is
then completed. *+

Before stating our next result, we recall a criteria given by Carmona et al. [11,
Proposition 3.2] for establishing intertwining relations between pssMps. If f and
g are functions of C0(R+), the space of continuous functions vanishing at infinity,
satisfying the condition:

∀t ≥ 0, Ptf (0) = Ptg(0) then f = g. (5.6)

Then the identity (5.1) is equivalent to the assertion, for all f ∈ C0(R+),

P13f (0) = Q1f (0).

Finally, we introduce the following notation, for any s ∈ C,

Mψ (s) = E
[
J is
ψ

]
.

Theorem 5.2

(1) Assume that ψ ′(0+) < 0 and Mψθ (s) 1= 0 for any s ∈ R. Then, for any
δ < θ + 1, we have the following intertwining relationship

P
ψθ
t Dθ,δ = Dθ,δP

Tδ,θ ψ
t , t ≥ 0
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and the following factorization

JTδ,θ ψ
(d)= B(1 + θ − δ, δ)Jψθ (5.7)

holds.
(2) Assume that min

(
ψ(0),ψ ′(0+)

)
< 0 with θ < 1, MT−θψθ

(s) 1= 0 for any
s ∈ R and that

(∫∞
0 e−θy%(dy + x)

)′ is a positive measure on R−. Then, we
have the following intertwining relationship

P
T−θψθ
t D1,θ = D1,θP

ψ
t , t ≥ 0

and

Jψ
(d)= B(1 − θ, θ)JT−θψθ

.

(3) Finally, assume that ψ ′(0+) = 0 andMψ (s) 1= 0 for any s ∈ R. Then, for any
δ < 1, we have the following intertwining relationship

P
ψ
t D1,δ = D1,δP

Tδ,0ψ
t , t ≥ 0

and

JTδ,0ψ
(d)= B(1 − δ, δ)Jψ .

Proof First, from the self-similarity property, we observe easily that the condition
(5.6) is equivalent to the requirement that the kernelMψθ associated to the positive
random variable Jψθ is injective. SinceMψθ (s) 1= 0 for any s ∈ R, we deduce that
the multiplicative kernelMψθ is indeed injective, see e.g. [8, Theorem 4.8.4]. Next,
note that ψ ′

θ (0
+) > 0 and under the condition δ < θ , Tδ,θψ ′(0+) > 0. Hence, from

(5.2), we deduce that, for any n ≥ 1,

E[J n
Tδ,θ ψ ] =

1(n + 1+ θ − δ)1(θ + 1)
1(1 + θ − δ)1(n+ θ + 1)

E[J n
ψθ
].

The identity (5.7) follows. Both processes being pssMps, the first intertwining
relation follows from the criteria given above. The proof of the Theorem is
completed by following similar lines of reasoning for the other claims. We simply
indicate that in the case (2), we note that if

e−θx
(∫ x

−∞
eθy%(dy)

)′
=
(∫ 0

−∞
eθy%(dy + x)

)′

is a positive measure onR− then according to Proposition 2.2, T−θψθ is the Laplace
exponent of a spectrally negative Lévy process. *+
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A nice consequence of the previous result is some interesting relationships
between the eigenfunctions of the semigroups of pssMps. Indeed, it is easily seen
from the intertwining relation (5.1) that if a function f is an eigenfunction with
eigenvalue 1 of the semigroup Pt then 3f is an eigenfunction with eigenvalue 1 of
the semigroupQt . We proceed by introducing some notation taken from Patie [29].
Set a0(ψ) = 1 and define for non-negative integers n

an(ψ)−1 =
n∏

k=1

ψ(k).

Next, we introduce the entire function Iψ which admits the series representation

Iψ (z) =
∞∑

n=0

an(ψ)zn, z ∈ C.

In [29, Theorem 1], it is shown that

LψIψ (x) = Iψ (x), x > 0, (5.8)

where, for a smooth function f , the linear operatorLψ is the infinitesimal generator
associated to the semigroup Pψ

t and takes the form

Lψf (x) = σ

2
xf ′′(x)+ bf ′(x) + x−1

∫ ∞

0
f (e−r x)− f (x) + xf ′(x)rI{|r|<1}ν(dr) − κxf (x).

From the Feller property of the semigroup ofX, we deduce readily that the identity
(5.8) is equivalent to

e−tP
ψ
t Iψ (x) = Iψ (x), t, x ≥ 0,

that is Iψ is 1-eigenfunction for Pψ
t . Hence, we deduce from Theorem 5.2 the

following interesting relationship between eigenfunctions.

Corollary 5.3

(1) Let ψ ′(0+) < 0. Then, for any δ < θ + 1, we have the following identity

Dθ,δIψθ (x) = ITδ,θ ψ (x).

(2) If ψ ′(0+) < 0 and θ < 1, then

D1,θIT−θψθ
(x) = Iψ (x).
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(3) Finally, if ψ ′(0+) = 0, then, for any δ < 1, we have

D1,δIψ (x) = ITδ,0ψ (x).

We illustrate this last result by detailing some interesting instances of such
relationships between some known special functions.

Example 5.4 (Mittag-Leffler type functions) Let us consider, for any 1 < α < 2,
the Laplace exponent ψ(u) = (α(u − 1/α))α . We easily check that θ = 1/α and
we have ψ1/α(u) = (αu)α . Observing that

n∏

k=1

ψ1/α(k) =
n∏

k=1

(αk)α = 1 (α(n+ 1))
1(α)

, n ≥ 1,

and using the fact that the random variable Jψθ is moment-determinate, we readily
check, from the expression (5.2), that

Mψθ (s) =
1(α(is + 1))
1(α)1(is + 1)

The pole of the gamma function being the negative integers, the condition
Mψθ (s) 1= 0 is satisfied for any s ∈ R. Moreover, we obtain

Iψ1/α (x) = 1(α)Eα,α(x)

where we recall that the Mittag-Leffler function Eα,α is defined in the Example 3.2.
Next, for any δ < 1+ 1/α, we have

ITδ,1/αψ (x) =
1(α)1(1/α + 1− δ)

1(1/α + 1)

∞∑

n=0

1(n + 1/α + 1)
1(n+ 1/α + 1− δ)1(αn + α)

xn

= 2F2

(
(1, 1/α + 1), (1, 1)

(1, 1/α + 1− δ), (α,α)

∣∣∣∣ x
)
,

where 2F2 is the Wright hypergeometric function, see e.g. Braaksma [9, Chap. 12].
Hence, we have

1(α)Dθ,δEα,α(x) = 2F2

(
(1, 1/α + 1), (1, 1)

(1, 1/α + 1− δ), (α,α)

∣∣∣∣ x
)
.

Example 5.5 Now, for any 1 < α < 2, we set ψ(u) = uα and we note that
ψ ′(0+) = 0. Proceeding as in the previous example, we get

Mψ (s) = 1α−1(is + 1)
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and hence the conditionMψ (s) 1= 0 is satisfied for any s ∈ R. We have

Iψ (x) =
∞∑

n=0

1
1α(n+ 1)

xn

and, for any δ < 1, we write

ITδ,0ψ (x) = 1(1− δ)

∞∑

n=0

1(n+ 1)
1(n + 1− δ)1α(n+ 1)

xn.

Consequently,

D1,δIψ (x) = ITδ,0ψ (x).
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