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MORE ON HYPERGEOMETRIC LÉVY PROCESSES

BY EMMA L. HORTON AND ANDREAS E. KYPRIANOU

Abstract

Kuznetsov and co-authors in 2011–14 introduced the family of hypergeometric Lévy
processes. They appear naturally in the study of fluctuations of stable processes when one
analyses stable processes through the theory of positive self-similar Markov processes.
Hypergeometric Lévy processes are defined through their characteristic exponent, which,
as a complex-valued function, has four independent parameters. In 2014 it was shown
that the definition of a hypergeometric Lévy process could be taken to include a greater
range of the aforesaid parameters than originally specified. In this short article, we push
the parameter range even further.
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1. Introduction

Recall that a (killed) general one-dimensional Lévy process is a stochastic process issuing
from the origin with stationary and independent increments and almost surely right-continuous
paths. We write X = {Xt : t ≥ 0} for its trajectory and P for its law. The law P of a Lévy
process is characterised by its one-time transition probabilities. In particular, there always exists
a quadruple (q, a, σ,�), where q ≥ 0 is the killing rate, a ∈ R is the linear coefficient, σ ≥ 0
is the Gaussian coefficient, and � is a measure on R\{0} satisfying

∫
R
(1 ∧ x2)�( dx) < ∞,

which gives the rate at which jumps of different sizes arrive, such that E[eizXt ] = etψ(iz) for
z ∈ R, where the Laplace exponent ψ(z) is given by the Lévy–Khintchine formula

ψ(z) = −q + az+ 1

2
σ 2z2 +

∫
R

(ezx − 1 − zx1(|x|<1))�(dx).

The (spatial) Wiener–Hopf factorisation of a Lévy process ξ with Laplace exponent ψ
consists of the equation ψ(z) = −κ(−z)κ̂(z) for z ∈ iR, where κ and κ̂ are the Laplace
exponents of subordinatorsH and Ĥ , respectively, this time in the sense that E[e−λHt ] = e−tκ(λ)
and E[e−λĤt ] = e−t κ̂(λ) for Re λ ≥ 0. The subordinators H and Ĥ are respectively known as
the ascending and descending ladder-height processes, and are related via a time change to the
running maximum and running minimum of the process ξ . The Wiener–Hopf factorisation has
long been valued as the insight into a great many fluctuation identities and, accordingly, has
proved to be enormously important in the general theory of Lévy processes. See the books [6]
and [1] for more on the factorisation and the central role it plays in the analysis of a rich variety
of problems.

There are relatively few instances where one finds concrete examples of Lévy processes
for which explicit identities exist for the characteristic exponent, the underlying quadruple
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(q, a, σ,�) as well as for the Wiener–Hopf factors. This is especially the case for Lévy
processes with two-sided jumps. One family of Lévy processes for which this degree of
tractability is available is the four-parameter family of so-called hypergeometric Lévy processes.

We say that ξ with parameters (β, γ, β̂, γ̂ ) belongs to the hypergeometric class of Lévy
processes if it has Laplace exponent which satisfies

ψ(z) = −
(1 − β + γ − z)


(1 − β − z)


(β̂ + γ̂ + z)


(β̂ + z)
, z ∈ iR. (1.1)

It is known that the hypergeometric class of Lévy processes admits parameter combinations in
the domain A1 ∪ A2, where

A1 = {β ≤ 1, γ ∈ (0, 1), β̂ ≥ 0, γ̂ ∈ (0, 1)}
and

A2 = {β ∈ [1, 2], γ, γ̂ ∈ (0, 1), β̂ ∈ [−1, 0]; 1 − β + β̂ + γ ≥ 0, 1 − β + β̂ + γ̂ ≥ 0}.
These processes were introduced by Kuznetsov et al. [5] and Kuznetsov and Pardo in [3], and
given a slightly more inclusive definition in [7] by extending the parameter range. The authors
in [3] also showed that, in the parameter regime A1, the density of the Lévy measure can be
written explicitly in terms of the 2F1 hypergeometric function (which motivates the name of this
class). Moreover, it was shown that, for λ ≥ 0, the Wiener–Hopf factors of a hypergeometric
Lévy process are given by

κ(λ) = 
(1 − β + γ + λ)


(1 − β + λ)
, κ̂(λ) = 
(β̂ + γ̂ + λ)


(β̂ + λ)
. (1.2)

In [7] it was shown that, for the parameter regime A2, whilst the Lévy density remains the same
as in the regime A1, the Wiener–Hopf factors can be written, for λ ≥ 0, as

κ(λ) = (λ− β̂)

(1 − β + γ + λ)


(2 − β + λ)
, κ̂(λ) = (β − 1 + λ)


(β̂ + γ̂ + λ)


(1 + β̂ + λ)
.

Our objective in this short article is to show that the parameter range for which (1.1) represents
the characteristic exponent of a Lévy process may be extended further.

2. Extending the parameter domain further

We first define the two sets of admissible parameters that we would like to include in the
definition of hypergeometric Lévy processes:

A3 =
∞⋃
n=0

{β ∈ [0, 1], γ, γ̂ ∈ (0, 1), β̂ ∈ [−(n+ 1),−n];

1 − β + β̂ + γ̂ + n ≤ 0, 1 − β + β̂ + γ + n ≥ 0}
and

A4 =
∞⋃
n=1

{β̂ ∈ [0, 1], γ, γ̂ ∈ (0, 1), β ∈ [n, n+ 1]; n−β+ β̂+ γ̂ ≥ 0, n−β+ β̂+ γ ≤ 0}.
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Theorem 2.1. There exists a Lévy process ξ with Laplace exponent ψ as given in (1.1), where
(β, γ, β̂, γ̂ ) take values in A3 ∪ A4. Let η = 1 − β + β̂ + γ + γ̂ .

(i) In the parameter regime A3, for λ ≥ 0, the Wiener–Hopf factors are given by

κ(λ) = 
(1 − β + γ + λ)


(1 − β + λ)

n∏
j=0

−β̂ − j + λ

−β̂ − γ̂ − j + λ

and κ̂(λ) = 
(n+ 1 + β̂ + γ̂ + λ)


(n+ 1 + β̂ + λ)
.

Its Lévy density is given by

π(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 
(η)


(−γ̂ )
(η − γ )
e(β̂+γ̂ )x

n∑
k=0

(1 + γ̂ )k(η)k

(η − γ )k

ekx

k!
− 
(η)


(η − γ̂ )
(−γ )e−(1−β+γ )x
2F1(1 + γ, η; η − γ̂ ; e−x), x > 0,

− 
(η)


(−γ̂ )
(η − γ )
e(β̂+γ̂ )x ∑

k≥n+1

(1 + γ̂ )k(η)k

(η − γ )k

ekx

k! , x < 0

(using the notation (z)k = z(z+ 1) · · · (z+ k − 1)).

(ii) In the parameter regime A4, for λ ≥ 0, the Wiener–Hopf factors are given by

κ(λ) = 
(1 + n− β + γ + λ)


(1 + n− β + λ)
and κ̂(λ) = 
(β̂ + γ̂ + λ)


(β̂ + λ)

n∏
j=1

β − j + λ

β − γ − j + λ
.

Its Lévy density is given by

π(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 
(η)


(−γ )
(η − γ̂ )
e−(1−β+γ )x ∑

k≥n

(1 + γ )k(η)k

(η − γ̂ )k

e−kx

k! , x > 0,

− 
(η)


(−γ )
(η − γ̂ )
e−(1−β+γ )x

n−1∑
k=0

(1 + γ )k(η)k

(η − γ̂ )k

e−kx

k!
− 
(η)


(−γ̂ )
(η − γ )
e(β̂+γ̂ )x

2F1(1 + γ̂ , η; η − γ ; ex), x < 0.

For all parameter sets, the process is killed at rate

q = 
(1 − β + γ )
(β̂ + γ̂ )


(1 − β)
(β̂)
.

Furthermore, the process ξ has no Gaussian component. When γ + γ̂ ∈ (0, 1) (respectively
γ + γ̂ ∈ [1, 2)) ξ has paths of bounded variation and no drift (respectively paths of unbounded
variation).

Remark 2.1. Note that the parameter ranges A
β̂
EHG and A

β
EHG defined in [7, Remark 3] are

included in the parameter ranges A3 and A4, respectively.

Remark 2.2. Let ξ be a Lévy process as defined in (2.1) whose parameters lie in A4. Note that
the ascending Wiener–Hopf factor belongs to the class of β-subordinators. The same objects
for the descending ladder exponent κ̂ are somewhat more complicated. Similar remarks can be
made for κ and κ̂ for the parameter regime A3.
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3. Proof of Theorem 2.1

We prove (i), first working under the assumption that 1−β+ β̂+ γ̂ +n < 0 and 1−β+ β̂+
γ +n > 0. The functionψ has simple poles at the points {1−β+γ +k,−β̂− γ̂ −k : k ∈ N0}
and simple roots at the points {1 − β + k,−β̂ − k : k ∈ N0} (where N0 = {0, 1, 2, . . . }).

For a given choice of parameters (β, γ, β̂, γ̂ ) ∈ A3, there are n+ 1 positive poles, say ρ∗
j ,

of the form −β̂ − γ̂ − j for j = 0, . . . , n with the rest of the positive poles, say ρ∗∗
l , being of

the form −β + γ + l for l ∈ N. Similarly, there are n + 1 positive roots, say ζ ∗
j , of the form

−β̂ − j for j = 0, . . . , n with the rest of the positive roots, say ζ ∗∗
l , being of the form −β + l

for l ∈ N. The conditions 1 − β + β̂ + γ̂ < 0, 1 −β+ β̂+ γ > 0 mean that the positive poles
and roots interlace as follows:

0 < ζ ∗∗
1 < ρ∗

0 < ζ ∗
0 < ρ∗∗

1 < ζ ∗∗
2 < ρ∗

1 < · · · < ζ ∗
n < ρ∗∗

n+1 < ζ ∗∗
n+2 < ρ∗∗

n+2 < · · · . (3.1)

For k ∈ N, denote the ordered (i.e. in order of interlacement) positive poles and roots by ρk
and ζk , respectively. Then, for z ∈ C such that the left-hand side is well defined,

∏
k≥1

1 + z/ζk

1 + z/ρk
=

∏
l≥1

1 + z/ζ ∗∗
l

1 + z/ρ∗∗
l

n∏
j=0

1 + z/ζ ∗
j

1 + z/ρ∗
j

=
∏
l≥1

1 + z/(−β + l)

1 + z/(−β + γ + l)

n∏
j=0

1 + z/(−β̂ − j)

1 + z/(−β̂ − γ̂ − j)

≈ 
(1 − β + γ + z)


(1 − β + z)

n∏
j=0

−β̂ − j + z

−β̂ − γ̂ − j + z

=: κ(z), (3.2)

where ‘≈’ means ‘up to a constant’. Thanks to the representation of κ on the left-hand side of
(3.2) and the interlacement in (3.1), it follows from Lemma 1 of [4] (see also Equations (16)
and (17) in that paper) that κ(λ) is a special Bernstein function.

Now denote the negative poles by ρ̂k . For k ≥ 1, they take the form β̂ + γ̂ + k + n.
Similarly, the roots ζ̂k take the form β̂ + k + n. Note that these poles and roots interlace in the
following way: · · · < −ρ̂2 < −ζ̂2 < −ρ̂1 < −ζ̂1 < 0. Therefore,

∏
k≥1

1 + z/ζ̂k

1 + z/ρ̂k
=

∏
k≥1

1 + z/(n+ β̂ + γ̂ + k)

1 + z/(n+ β̂ + k)
≈ 
(n+ 1 + β̂ + γ̂ + z)


(n+ 1 + β̂ + z)
=: κ̂(z).

A similar argument to that used in the previous paragraph shows that κ̂(λ) is also a special
Bernstein function.

Next, using the relation 
(x + 1) = x
(x) repeatedly, one easily verifies that, for the
expression given in (1.1), ψ(z) = −κ(−z)κ̂(z). We can now appeal to Vigon’s theory of
philanthropy [8, Chapter 7] (see also Section 6.6 of [6]), which shows that ψ(z) is the Laplace
exponent of a Lévy process. Specifically, Vigon’s theory of philanthropy states that if two
subordinators have Laplace exponents φi(λ), λ ≥ 0, i = 1, 2, each of which has absolutely
continuous and nonincreasing Lévy density, then they belong together in a Wiener–Hopf
factorisation (they become ‘friends’). That is, φ1(−iθ)φ2(iθ), θ ∈ R, is the characteristic
exponent of a Lévy process.
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To show that ξ is a meromorphic Lévy process, apply [4, Theorem 1(v)] in the killed case
and [4, Corollary 2] in the un-killed case. For Lévy processes in the meromorphic class, it is
known that their Lévy measure has a density, π , of the form

π(x) = 1{x>0}
∑
n≥1

anρne−ρnx + 1{x<0}
∑
n≥1

ânρ̂neρ̂nx, x ∈ R. (3.3)

We will now compute the coefficients akρk and âkρ̂k in representation (3.3) and accordingly
prove that π is equivalent to the expression given in the statement of the theorem.

First, note that the poles (ρk : 1 ≤ k ≤ n+1) derive from the first ratio of gamma functions in
(1.2) and the remaining poles (ρk : k ≥ n+2) derive from the second ratio of gamma functions
in (1.2). Using the relation akρk = −Res(ψ(z) : z = ρk), we find that, for 1 ≤ k ≤ n+ 1,

akρk = − (−1)k−1

(k − 1)!
1


(1 − γ̂ − k)


(η − 1 + k)


(η − γ − 1 + k)
,

and, for k ≥ n+ 2,

akρk = − (−1)k−n−2

(k − n− 2)!
1


(2 − γ − k + n)


(η − 2 − n+ k)


(η − 2 − γ̂ − n+ k)
.

A similar analysis of negative poles allows us to compute the coefficients âkρ̂k in a similar
fashion. Substituting these expressions into (3.3) and, recalling the series representation of
the 2F1 hypergeometric function, we obtain the density of the Lévy measure as stated in the
theorem.

Now suppose that at least one of the following two equalities holds:

1 − β + β̂ + γ̂ + n = 0, 1 − β + β̂ + γ + n = 0.

Then a finite number of the roots and poles are equal, so cancel each other out in the product
representation of the Wiener–Hopf factors. The remaining roots and poles still interlace in the
required fashion, so all of the expressions previously calculated still hold. However, this means
that the coefficients corresponding to the poles that have vanished are no longer present in the
calculation for π.

One can prove part (ii) of the theorem in a similar way to part (i); we omit the details for
the sake of brevity. The expression for the killing rate follows by noting that q = −ψ(0). The
proof of the claim about bounded and unbounded variation follows along the same lines as the
proof of Proposition 1 of [7].

Remark 3.1. A fuller version of the proof, with diagrams to illustrate the interlacing of zeros
and poles, is posted as [2].
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