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1 Introduction

Recently there has been a growing body of literature concerning actuarial mathemat-
ics which explores the interaction of classical models of risk and fine properties of
Lévy processes with a view to gaining new results on both sides (see, for example, [2,
7, 12–15, 17, 19, 21, 24]). At the same time, there has been considerable progress in
the potential analysis of subordinators, in particular with the identification of a natural
class of subordinators known as special subordinators (see, for example, [22, 23]). In
this paper, we shall marry some of these developments together. We will use new
potential analytic considerations found in, for example, [22, 23] to understand better
smoothness properties of scale functions for spectrally negative Lévy processes. This
builds on other recent developments which closely link the theory of scale functions
to potential analysis of subordinators, see [11] and [18]. In turn, this will allow us to
solve de Finetti’s classical actuarial control problem for a much larger class of driving
spectrally negative Lévy processes than previously known. For the remainder of this
introduction, we shall elaborate on the latter in more detail before moving on to our
results and their proofs.

Henceforth we assume that X = (Xt : t ≥ 0) is a spectrally negative Lévy process
with Lévy triplet given by (γ, σ,Π), where γ ∈ R, σ ≥ 0 and Π is a measure on
(0,∞) satisfying

∫ ∞

0
(1 ∧ x2)Π(dx) < ∞.

The Laplace exponent of X is given by

ψ(θ) = log
(
E

(
eθX1

)) = γ θ + 1

2
σ 2θ2 −

∫ ∞

0

(
1 − e−θx − θx1{0<x<1}

)
Π(dx).

The reader will note that, for convenience, we have arranged the representation of the
Laplace exponent in such a way that the support of the Lévy measure is positive even
though the process experiences only negative jumps. In this article, we shall only
consider the case that Π is absolutely continuous with respect to Lebesgue measure,
in which case we shall refer to its density as π .

Let Φ(0) be the largest real root of ψ and recall that Φ(0) > 0 if and only if X

drifts to −∞, or equivalently ψ ′(0+) < 0. The restriction ψ : [Φ(0),∞) → [0,∞)

is a bijection whose inverse will be denoted by Φ. Now let φ be the Laplace expo-
nent of the descending ladder height subordinator Ĥ = (Ĥs, s ≥ 0) associated to X.
Standard theory dictates that φ and ψ are related by the Wiener–Hopf factorization

ψ(θ) = (
θ − Φ(0)

)
φ(θ), θ ≥ 0,

where φ satisfies

φ(θ) = κ + dθ +
∫ ∞

0

(
1 − e−θx

)
Υ (x)dx, θ ≥ 0, (1.1)
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with d = σ 2/2, κ ≥ 0, κΦ(0) = 0 and Υ : (0,∞) → (0,∞) a function such that∫ ∞
0 (1 ∧ x)Υ (x)dx < ∞. Moreover,

Π(x) :=
∫ ∞

x

Π(dx) and

Υ (x) :=
∫ ∞

x

Υ (z) dz = eΦ(0)x

∫ ∞

x

e−Φ(0)zΠ(z) dz, x > 0,

where the last equality is also a well established fact. The Wiener–Hopf factorization
for ψ, in its Laplace transform form, also states that ψ, Φ and the Laplace exponent
of the bivariate descending ladder processes, say κ̂ : R

+ × R
+ �→ R, are related by

the equation

κ̂(α,β) = c
α − ψ(β)

Φ(α) − β
, α,β ≥ 0, (1.2)

where c > 0 is an arbitrary constant depending on the normalization of local time at
the infimum. Without loss of generality, we can and will suppose that it is equal to 1.

A key object in the fluctuation theory of spectrally negative Lévy processes and
its applications is the scale functions. For each q ≥ 0 the so called q-scale function
of X, W(q) : R → [0,∞), is the unique function such that W(q)(x) = 0 for x < 0 and
on [0,∞) is a strictly increasing and continuous function whose Laplace transform
is given by ∫ ∞

0
e−θxW(q)(x) dx = 1

ψ(θ) − q
, θ > Φ(q).

In the last 10 years or so, the use of scale functions has proved to be of great im-
portance in a wide variety of applied probability models driven by spectrally negative
Lévy processes. We refer to [11, 16] and [18] for a recent overview of their presence
in the literature. As alluded to above, we are concerned here in particular with their
importance in one of the most classical problems of modern actuarial mathematics –
de Finetti’s control problem.

Recall that the classical Cramér–Lundberg risk process corresponds to a spectrally
negative Lévy process X taking the form of a compound Poisson process with arrival
rate λ > 0 and negative jumps, corresponding to claims, having common distribution
function F with finite mean 1/μ as well as a drift c > 0, corresponding to a steady
income due to premiums. It is usual to assume the net profit condition c − λ/μ > 0
which says nothing other than ψ ′(0+) > 0.

An offshoot of the classical ruin problem for the Cramér–Lundberg process was
introduced by de Finetti [6]. His intention was to make the study of ruin under the
Cramér–Lundberg dynamics more realistic by introducing the possibility that divi-
dends are paid out to shareholders up to the moment of ruin. Further, the payment of
dividends should be made in such a way as to optimize the expected net present value
of the total dividends paid to the shareholders from time zero until ruin. Mathemat-
ically speaking, de Finetti’s dividend problem amounts to solving a control problem
which we state in the next paragraph but within the framework of the general Lévy
insurance risk process. The latter process is nothing more than a general spectrally
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negative Lévy process which respects the analogue of the net profit condition, namely
ψ ′(0+) > 0 (although the latter is not necessary in what follows).

Suppose that X is a general spectrally negative Lévy process (no assumption is
made on its long term behavior) with probabilities {Px : x ∈ R} such that under Px

we have X0 = x with probability one. (For convenience, we shall write P0 = P.) Let
ξ = {Lξ

t : t ≥ 0} be a dividend strategy consisting of a left-continuous non-negative
non-decreasing process adapted to the (completed and right continuous) filtration
{Ft : t ≥ 0} of X. The quantity L

ξ
t thus represents the cumulative dividends paid

out up to time t by the insurance company whose risk process is modeled by X.
The controlled risk process when taking into account of the dividend strategy ξ is
thus Uξ = {Uξ

t : t ≥ 0} where U
ξ
t = Xt − L

ξ
t . Write σ ξ = inf{t > 0 : U

ξ
t < 0} for

the time at which ruin occurs when the dividend payments are taken into account.
A dividend strategy is called admissible if at any time before ruin a lump sum div-
idend payment is smaller than the size of the available reserves; in other words,
L

ξ
t+ − L

ξ
t ≤ max{Uξ

t ,0} for t < σ ξ . Denoting the set of all admissible strategies
by Ξ , the expected value discounted at rate q > 0 of the dividend policy ξ ∈ Ξ with
initial capital x ≥ 0 is given by

vξ (x) = Ex

(∫
[0,σ ξ ]

e−qt dL
ξ
t

)
,

where Ex denotes expectation with respect to Px and q > 0 is a fixed rate. De Finetti’s
dividend problem consists of solving the following stochastic control problem: char-
acterize

v∗(x) := sup
ξ∈Ξ

vξ (x) (1.3)

and, further, if it exists, establish a strategy ξ∗ such that v∗(x) = vξ∗(x).
This problem was considered by Gerber [8] who proved that, for the Cramér–

Lundberg model with exponentially distributed jumps, the optimal value function is
the result of a barrier strategy. That is to say, a strategy of the form La

t = a ∨ Xt − a

for some a ≥ 0 where Xt := sups≤t Xs . In that case, the controlled process Ua
t =

Xt − La
t is a spectrally negative Lévy process reflected at the barrier a.

This result has been re-considered very recently in [3] for Cramér–Lundberg
processes with a general jump distribution. In the latter paper, it was shown that for
an appropriate choice of jump distribution, the above described barrier strategy is not
optimal. In much greater generality, the paper [2] focuses on the spectrally negative
case and finds sufficient conditions for the optimal strategy to consist of a simple bar-
rier strategy. It is in the latter paper that we first begin to see the connection with scale
functions, as the sufficient conditions given in [2] are phrased in terms of a variational
inequality involving the value of a barrier strategy which itself can be expressed in
terms of the associated scale function W(q). Indeed, when the optimal strategy be-
longs to the class of barrier strategies and the optimal barrier level is a∗ ≥ 0, then [2]
showed that

v∗(x) =
{

W(q)(x)/W(q)′(a∗), −∞ < x ≤ a,

x − a∗ + W(q)(a∗)/W(q)′(a∗), ∞ > x > a∗.
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In a remarkable development shortly thereafter, Loeffen [19] made a decisive state-
ment connecting the shape of the scale function W(q) to the existence of an optimal
barrier strategy. Loeffen’s result begins by requiring that the scale function W(q) is
sufficiently smooth meaning that it belongs to C1(0,∞) if X is of bounded variation
and otherwise belongs to C2(0,∞). Loeffen’s theorem reads as follows.

Theorem 1.1 Suppose that X is such that its scale functions are sufficiently smooth.
Let

a∗ = sup
{
a ≥ 0 : W(q)′(a) ≤ W(q)′(x) for all x ≥ 0

}
,

(which is necessarily finite) where we understand W(q)′(0) = W(q)′(0+). Then the
barrier strategy at a∗ is an optimal strategy if

W(q)′(a) ≤ W(q)′(b) for all a∗ ≤ a ≤ b < ∞. (1.4)

The condition (1.4) is tantamount to saying that the scale function W(q) is convex
beyond the global minimum of its first derivative. An intriguing result in itself, it
is, however, arguably not a particularly practical condition to verify. Nonetheless,
[19] makes one further striking step by providing a very natural class of Lévy risk
processes for which (1.4) holds. More precisely, it is shown that (1.4) holds when the
Lévy measure Π is absolutely continuous with a completely monotone density.

Thanks then to Theorem 1.1 a clear mandate is set with regard to finding as broad
a class of Lévy processes as possible for which the barrier strategy is optimal through
smoothness and convexity properties of the scale functions W(q). Motivated by this
problem, the current paper aims at establishing a larger class of Lévy processes for
which the barrier strategy is optimal in de Finetti’s control problem. Specifically, our
main result reads as follows.

Theorem 1.2 Suppose that X has a Lévy density π that is log-convex then the barrier
strategy at a∗ (specified in Theorem 1.1) is optimal for (1.3).

A key element which enables us to prove the above result is the following technical
conclusion regarding smoothness and convexity of the scale function.

Theorem 1.3 Suppose that X has a Lévy density π which is log-convex (and hence
non-increasing). Then for q > 0 the functions W(q) and W(q)′ are continuous and
strictly convex in the interval (a∗,∞), where

a∗ = sup
{
a ≥ 0 : W(q)′(a) ≤ W(q)′(y) for all y ≥ 0

}
< ∞.

Moreover, if in addition X has a Gaussian component then W(q) ∈ C2(0,∞).

We close this section with a brief summary of the remainder of the paper. The next
section deals with the proof of Theorem 1.3. In the section following that, we make
some general remarks on Theorem 1.2. In particular, we discuss in more detail the
point that Theorem 1.2 does not necessarily follow directly from the amalgamation of
the above theorem together with Theorem 1.1 on account of the fact that the issue of
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sufficient smoothness of W(q) is not entirely addressed. In the final section, we give
the proof of Theorem 1.2 which, for the most part, requires a more sensitive analysis
of the Hamilton–Jacobi–Bellman inequality and the stochastic calculus that it entails
on account of the fact that W(q) is not sufficiently smooth. Here the analytical in-
formation provided in Theorem 1.3 turns out to be a subtle but key element of the
reasoning.

2 Convexity and Smoothness of Scale Functions

The proof of Theorem 1.3 follows as a trivial corollary of the following theorem
which, although seemingly more elaborate, can, in fact, be established with no extra
cost in terms of the length or complexity of its proof. Indeed, the below theorem
merely lists a number of other interesting facts which one has to pass through, or gets
for free, in proving Theorem 1.3.

Theorem 2.1 If the function

Π(x) :=
∫ ∞

x

π(s) ds, x > 0

is log-convex, then for any q ≥ 0 the function gq(x) := e−Φ(q)xW(q)(x), x > 0, is
concave.

(i) If Φ(0) = 0 (equiv., ψ ′(0+) ≥ 0) and q = 0 then W ′ is convex. Furthermore, if
X has a Gaussian component then W ∈ C2(0,∞).

(ii) If Φ(0) > 0 (equiv., ψ ′(0+) < 0) or q > 0, and if furthermore the function π is
log-convex (and hence non-increasing) then Π(x) is log-convex, the first deriv-
ative of gq is non-increasing and convex, and the functions W(q) and W(q)′ are
continuous and strictly convex in the interval (a∗,∞), where

a∗ = sup
{
a ≥ 0 : W(q)′(a) ≤ W(q)′(y) for all y ≥ 0

}
< ∞.

Moreover, if in addition X has a Gaussian component then W(q) ∈ C2(0,∞).

As will become clear from its proof, the key innovation is the connection between
scale functions, potential densities of subordinators and older work on Volterra equa-
tions found in [9, 10]. In this light, recall that a subordinator H is said to be special
if there exists another subordinator H ∗, the so-called conjugate, such that if h and h∗
are their respective Laplace exponents then

θ = h(θ)h∗(θ), θ ≥ 0.

We refer to [23] for a recent account of properties of this subclass of subordinators.
The proof of Theorem 2.1 relies on the following two technical lemmas. Their

proofs will be postponed to the Appendix.
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Lemma 2.2 Let H be a subordinator whose Lévy density, say Υ (x), x > 0, is log-
convex (and hence non-increasing) then the restriction of its potential measure to
(0,∞) has a non-increasing and convex density. If furthermore, the drift of H is
strictly positive then the density is in C1(0,∞).

In the next lemma, the term q/Φ(q) is to be understood in the limiting sense,
namely ψ ′(0+), when q = 0 and Φ(0) = 0.

Lemma 2.3 For each q ≥ 0, the function κ̂(q, ·) is a Bernstein function and its killing
term is given by

κ̂(q,0) = q

Φ(q)
,

its drift term is given by

lim
θ→∞

κ̂(q, θ)

θ
= d

and the tail of its Lévy measure is given by

Υ q(x) := eΦ(q)x

∫ ∞

x

e−Φ(q)yΠ(y)dy, x > 0.

Furthermore, if π is non-increasing then for q ≥ 0, the Lévy density associated to
κ̂(q, ·) is non-increasing.

We now feed these two lemmas into the proof of Theorem 2.1

Proof of Theorem 2.1 Let q ≥ 0. We have by assumption that the function Π is
log-convex, which implies that e−Φ(q)xΠ(x), x > 0 is also log-convex. Hence, it
follows from the first paragraph in the proof of Theorem 2 in [9] that Υ q as defined in
Lemma 2.3 is log-convex, and thus by Theorem 2.4 in [23] we have that the potential
density associated to the Bernstein function κ̂(q, ·) has a non-increasing density in
(0,∞). We denote the latter by uq. It follows from Lemmas 1 and 2 in [18] that the
function κ̂(q,Φ(q) + ·) is still a Bernstein function such that its potential measure
admits the function e−Φ(q)xuq(x) as its density in (0,∞). It now follows that the
later function is non-increasing and limx→∞ e−Φ(q)xuq(x) = 0.

It is well known that the q-scale function W(q) satisfies W(q)(x) =
eΦ(q)xWΦ(q)(x), x > 0, where WΦ(q) is the 0-scale function of the spectrally nega-
tive Lévy process with Laplace exponent given by ψq(θ) = ψ(θ +Φ(q))−q, θ ≥ 0;
see, e.g., Lemma 8.4 in [16] for a proof of this fact. By the Wiener–Hopf factoriza-
tion, we have that ψq is given by

ψq(θ) = θκ̂
(
q,Φ(q) + θ

)
, θ ≥ 0.

This implies in turn that

θ

ψq(θ)
= 1

κ̂(q,Φ(q) + θ)
= d∗

q +
∫ ∞

0
e−θxe−Φ(q)xuq(x) dx, θ ≥ 0,
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where d∗
q = limθ→∞ 1/̂κ(q,Φ(q) + θ) ≥ 0. By the definition of 0-scale functions

and integration by parts in the latter equation, it follows that

1

ψq(θ)
=

∫ ∞

0
e−θxWΦ(q)(x) dx =

∫ ∞

0
e−θx

(
d∗
q +

∫ x

0
e−Φ(q)zuq(z) dz

)
dx,

θ ≥ 0.

Thus the uniqueness of the Laplace transform implies that

WΦ(q)(x) = d∗
q +

∫ x

0
e−Φ(q)zuq(z) dz, x ≥ 0.

Now the first claim immediately follows from the earlier mentioned facts that
WΦ(q)(x) = e−Φ(q)xW(q)(x) and e−Φ(q)xuq(x) is decreasing. Note also that in the
case that Φ(0) = q = 0 we see that W ′ = u0 on (0,∞) and we may also invoke
Lemma 2.2 and deduce the statement in (i).

For the proof of (ii), we henceforth assume that q > 0 or q = 0 and Φ(0) > 0.
The statement about Π is again a consequence of the first paragraph in the proof of
Theorem 2 in [9]. For the remaining statements we note that under the assumption that
π is log-convex Lemma 2.3 implies that the Lévy density of the Bernstein function
κ̂(q, ·) is

Υq(x) = Π(x) − Φ(q)eΦ(q)x

∫ ∞

x

e−Φ(q)yΠ(y)dy, x > 0.

We claim that the latter is log-convex. Indeed, since by assumption π is a log-convex
Lévy density (and hence non-increasing), we know that for β ≥ 0 the functions x �→
e−βxπ(x), and (yet again, by the first paragraph of the proof of Theorem 2 in [9])
the function

∫ ∞
x

e−βzπ(z) dz, x > 0, are log-convex. It then follows that the function
x �→ eβx

∫ ∞
x

e−βzπ(z) dz, x > 0, is log-convex. Choosing β = Φ(q) and comparing
the latter function against the expression for Υq(x) after integrating it by parts, the
claim follows.

We may now apply Lemma 2.2 to deduce that uq is a non-increasing convex func-
tion and, whenever the Gaussian coefficient, equivalently the linear term in κ̂, is
strictly positive, we have uq ∈ C1(0,∞). By elementary arguments, it follows that
e−Φ(q)xuq(x), x > 0, satisfies the same properties. Thus gq is a concave function
whose first derivative is convex and continuous in (0,∞).

To prove the claim about the convexity of W(q) and W(q)′, we observe that as
W(q)′ is given by

W(q)′(x) = Φ(q)W(q)(x) + uq(x), x > 0; (2.1)

and, since uq is convex, we will automatically get that W(q)′ is continuous and ulti-
mately convex once we have proved that W(q) is ultimately convex. Indeed, we have
that

W(q)′′(x) = (
Φ(q)

)2
W(q)(x) + Φ(q)uq(x) + u′

q(x), a.e. x > 0. (2.2)
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Then as u′
q increases and W(q) grows exponentially fast it follows that ultimately

W(q)′′ > 0. Hence, W(q) and W(q)′ are ultimately strictly convex. Furthermore, be-
cause W(q)′ tends to infinity as x tends to ∞, it follows that a∗ < ∞. Now, let
α1 < α2 be points at which W(q)′ reaches a local minimum. Because of the con-
vexity of uq we know that the right and left derivatives of uq exist everywhere and
they satisfy that u′−

q (α1) ≤ u′+
q (α1) ≤ u′−

q (α2) ≤ u′+
q (α2). As a consequence the right

and left derivatives of W(q)′ exist everywhere and satisfy

W(q)′′−(αi) = Φ(q)W(q)′(αi) + u′−
q (αi) ≤ 0,

W(q)′′+(αi) = Φ(q)W(q)′(αi) + u′+
q (αi) ≥ 0,

for i = 1,2. These facts together imply that

0 ≤ Φ(q)
(
W(q)′(α1) − W(q)′(α2)

) + u′+
q (α1) − u′−

q (α2),

and hence W(q)′(α1) − W(q)′(α2) ≥ 0. This implies that the last place where W(q)′
reaches a local minimum is also the last place where it hits its global minimum. More-
over, for x > 0 we have that W(q)′(a∗) ≤ W(q)′(x). It thus follows that the following
inequalities

0 ≤ Φ(q)W(q)′(a∗) + u′+
q

(
a∗) ≤ Φ(q)W(q)′(x) + u′−

q (x) ≤ Φ(q)W(q)′(x) + u′+
q (x),

hold for x > a∗. Actually, the second inequality is a strict one. Indeed, if there existed
x∗ > a∗ such that Φ(q)W(q)′(a∗)+u′+

q (a∗) = Φ(q)W(q)′(x∗)+u′−
q (x∗), then since

u′−
q (x∗) − u′+

q (a∗) ≥ 0, we would have that W(q)′(a∗) ≥ W(q)′(x∗), which would be

a contradiction to the fact that a∗ is the largest value where W(q)′ attains its global
minimum. It follows that W(q)′ is strictly increasing for x > a∗. That is, W(q) is
strictly convex in (a∗,∞) and, from (2.1), we deduce that W(q)′ is also strictly convex
for x > a∗. Finally, (2.2) proves also that, when furthermore the Gaussian coefficient
is strictly positive, then W(q) ∈ C2(0,∞) as in this case we already proved that uq ∈
C1(0,∞). �

3 Remarks on Theorem 1.2

Before proceeding to the proof of Theorem 1.2, let us first make some remarks.

1. In principle, the proof of Theorem 1.2 follows directly from Theorem 1.3 and The-
orem 1.1 if one can verify that W(q) is sufficiently smooth. This is possible in most
cases, but not all. The outstanding case is the focus of the proof of Theorem 1.2
and we identify it below by excluding the cases for which sufficient smoothness
can be established.

If a∗ = 0 then necessarily, either σ > 0, or σ = 0 and Π(0,∞) < ∞ simulta-
neously. Other types of spectrally negative Lévy processes are not possible when
a∗ = 0 since then necessarily W(q)(0+) = ∞. In the case σ > 0, we see that
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W(q) ∈ C2(0,∞) by Theorem 1.3, and when σ = 0 and Π(0,∞) < ∞ simulta-
neously we also see that W(q) ∈ C1(0,∞) from the same theorem. Thus, when
a∗ = 0, we have that W(q) is sufficiently smooth.

Suppose now that a∗ > 0. If X is of bounded variation or σ > 0 then, similar
to the previous paragraph, we may again deduce from Theorem 1.3 that W(q) is
sufficiently smooth.

The outstanding case is thus given by a∗ > 0, X is of unbounded variation and
σ = 0.

2. Recall that Theorem 3 of [19] states that if X has a Lévy density π which is com-
pletely monotone then W(q)′ is convex on (0,∞) and hence the barrier strategy at
a∗ is an optimal strategy. Theorem 1.2 is an improvement on this result on account
of the fact that any completely monotone function density is log-convex. Below
are some examples of Lévy densities which meet the criteria of Theorem 1.2 but
not of Theorem 3 of [19].

Suppose that f and g both map (0,∞) to [0,∞) and that they are both non-
increasing and log-convex. Suppose moreover that for some (and hence every)
ε > 0,

∫ ε

0 x2f (x)dx < ∞ and
∫ ∞
ε

g(x) dx < ∞. Further, for some fixed α > 0,

we have f (α) = g(α) and

f ′−(α)

f (α)
≤ g′+(α)

g(α)
.

Then

π(x) :=
{

f (x), x ∈ (0, α),

g(x), x ∈ [α,∞)

is an example of a decreasing, log-convex function which is not completely
monotone, in general. Specific cases in which π is not completely monotone may
be taken to be
(i) f (x) = x−(1+λ1), g(x) = x−(1+λ2), α = 1 where 0 < λ2 < λ1 < 2.

(ii) f (x) = e2−x , g(x) = e1−λx , α = 1/(1 − λ) where 0 < λ < 1.
3. The proof of Theorem 1.2, given in the next section, is lengthy, requiring some

auxiliary results first. Scanning the proof, it is not immediately clear where the
need for convexity on (a∗,∞) is needed. The precise point at which this property
is required is embedded in the proof of Lemma 4.3 below and we have indicated
that in the proof. Note also that we have used convexity properties of the scale
function in, for example, Lemma 4.1 below.

4 Proof of Theorem 1.2

Following the first remark in the previous section, we shall assume throughout this
section that a∗ > 0, X is of unbounded variation and σ = 0. Moreover, we shall
assume that the conditions of Theorem 1.2 are in force.
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We define an operator (Γ, D(Γ )) as follows. D(Γ ) stands for the family of func-
tions f ∈ C1(0,∞) such that the integral

∫
(0,∞)

[
f (x − y) − f (x) + yf ′(x)1{y≤1}

]
Π(dy)

is absolutely convergent for all x > 0. For any f ∈ D(Γ ), we define

Γf (x) = γf ′(x) +
∫

(0,∞)

[
f (x − y) − f (x) + yf ′(x)1{y≤1}

]
Π(dy).

Recall that for any a > 0, the expected value discounted at rate q > 0 of the barrier
strategy at level a is given by

va(x) := Ex

(∫
[0,σ a ]

e−qt dLa
t

)
=

{
W(q)(x)/W(q)′(a), −∞ < x ≤ a,

x − a + W(q)(a)/W(q)′(a), ∞ > x > a

where σa = inf{t > 0 : Ua
t < 0}. The second equality is taken from [2].

Lemma 4.1 For any a > 0, va ∈ D(Γ ). Furthermore, the function x �→ Γ va(x) is
continuous in (0, a).

Proof We have proved in Sect. 2 that W(q) is in C1(0,∞), hence we know that va is
in C1(0,∞). To show that va ∈ D(Γ ), we only need to show that the integral in the
definition of Γ va is absolutely convergent for all x > 0. It is easy to check that this
is true for x > a, so we are going to concentrate on x ∈ (0, a). Note that it suffices
to consider W(q) instead of va . For each x ∈ (0, a) we may write the integral in the
definition of Γ W(q) as

∫
(ε,∞)

(
W(q)(x − y) − W(q)(x) + yW(q)′(x)1{y≤1}

)
Π(dy)

+
∫

(0,ε)

(
W(q)(x − y) − W(q)(x) + yW(q)′(x)

)
Π(dy) (4.1)

where the value of ε = ε(x) ∈ (0,1) is chosen for each x such that x − 2ε > 0. The
absolute convergence of the first integral as well as its continuity in x follows in a
straightforward way as a consequence of the continuity and boundedness of W(q)′ on
bounded intervals and dominated convergence in the case of continuity. With regard
to the second integral, recall that W(q)′(x) = Φ(q)W(q)(x) + uq(x). Using the mean
value theorem and the fact that uq is convex and non-increasing, we get that for all
y ∈ (0, ε)

∣∣W(q)(x − y) − W(q)(x) + yW(q)′(x)
∣∣

= y
∣∣W(q)′(x) − W(q)′(x − ξ(y)

)∣∣ where ξ(y) ∈ (0, y)

≤ Φ(q)y
∣∣W(q)(x) − W(q)

(
x − ξ(y)

)∣∣ + y
∣∣uq(x) − uq

(
x − ξ(y)

)∣∣
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≤ Φ(q)y2 sup
z∈[−ε,ε]

W(q)′(x + z) + y

∫ x

x−ξ(y)

∣∣u′
q(y)

∣∣dy

≤ Φ(q)y2 sup
z∈[−ε,ε]

W(q)′(x + z) + y2
∣∣u′

q(x − ε)
∣∣

≤ y2 sup
z∈[−ε,ε]

(
Φ(q)W(q)′(x + z) + ∣∣u′

q(x + z)
∣∣).

This estimate shows both that the second integral is uniformly integrable in (4.1) and
continuous in x by dominated convergence. �

Lemma 4.2 For any a > 0 we have

(Γ − q)va(x) = 0, x ∈ (0, a).

Proof It is well known that e−q(t∧τ+
a ∧τ−

0 )W(q)(Xt∧τ+
a ∧τ−

0
) is a Px -martingale for

each x ∈ (0, a) (cf. [1]), thus e−q(t∧τ+
a ∧τ−

0 )va(Xt∧τ+
a ∧τ−

0
) is a Px -martingale for each

x ∈ (0, a). Appealing to the Meyer–Itô formula (cf. Theorem 70 of [20]), we have on
{t < τ+

a ∧ τ−
1/n}

va(Xt ) − va(x) = mt +
∫ t

0
Γ va(Xs) ds +

∫
R

v′′
a (y)�(y, t) dy Px-a.s., (4.2)

where �(y, ·) is the semimartingale local time at y of X and, with X(1) as the martin-
gale part of X consisting of compensated jumps of size less than or equal to unity,

mt =
∑
s≤t

[
�va(Xs) − �Xsv

′
a(Xs−)1{|�Xs |≤1}

]

−
∫ t

0

∫
(0,∞)

[
va(Xs− − y) − va(Xs−) + yv′

a(Xs−)1{y≤1}
]
Π(dy)ds

+
∫ t

0
v′
a(Xs−) dX(1)

s

is a local martingale which is also a true martingale on account of the fact that W(q)′
is bounded on [1/n, a]. Note that we have used that the integral part of Γ va(y) is
absolutely convergent for each y ∈ (0, a) in order to meaningfully write down the
compensation in the expression for the martingale mt . The occupation formula for
the semimartingale local time of X says that

∫
R

�(y, t)g(y) dy = σ 2
∫ t

0
g(Xs) ds Px-a.s.,

where g is a bounded Borel measurable function. This implies that for Lebesgue al-
most every y, �(y, ·) is identically zero almost surely. Taking this into account, the
last integral in (4.2) is almost surely zero. Using the semimartingale decomposition
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in (4.2), one may now use stochastic integration by parts for semimartingales to de-
duce that on {t < τ+

a ∧ τ−
1/n}

e−qt va(Xt ) − va(x) = λt +
∫ t

0
e−qs(Γ − q)va(Xs) ds Px-a.s.,

where λt = ∫ t

0 e−qs dms is a martingale.
Next, use uniform boundedness of (Γ − q)va(x) on (α,β) ⊂ [0, a] and the mar-

tingale property of e
−q(t∧τ+

β ∧τ−
α )

va(Xt∧τ+
β ∧τ−

α
) to get

0 = Ex

[∫ τ+
β ∧τ−

α

0
e−qs(Γ −q)va(Xs) ds

]
=

∫
(α,β)

(Γ −q)va(y)u(q)(x, y) dy, (4.3)

where u(q)(x, y) dy = ∫ ∞
0 e−qs

Px(Xs ∈ dy; t < τ+
β ∧ τ−

α ) is the strictly positive re-
solvent density of the process X killed on exiting (α,β) (see [5] for more details). As
(α,β) is arbitrary and (Γ − q)va(x) is continuous, it follows that the latter is identi-
cally zero on (0, a). This is due to a classical argument by contradiction. If the claim
is false then by continuity of (Γ − q)va and strict positivity of u(q), there exists an
interval (α′, β ′) ⊂ [0, a] such that (without loss of generality) (Γ − q)va(x) > 0 on
(α′, β ′). Then the equality (4.3) would be violated. �

For convenience, we use v to denote the function va∗ , U to denote Ua∗
and L to

denote La∗
. Then we have the following result.

Lemma 4.3 For any x > 0 we have (Γ − q)v(x) ≤ 0.

Proof There is nothing to prove when x ∈ (0, a∗) because of Lemma 4.2 applied to
the case a = a∗. Thanks to the continuity given by Lemma 4.1, this maybe extended
to (0, a∗]. Finally, the inequality can be proved to hold on (a∗,∞) by following
verbatim the arguments in the proof of Theorem 2 in [19], although it is not necessary
to replicate the behavior of second derivatives in that proof, since we have σ = 0.

It is important to note that the use of the convexity of W(q) on (a∗,∞) appears in
Theorem 2 of [19] and therefore in this paper the use of convexity is hidden in the
latter part of the proof. �

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2 Recall that we are assuming that a∗ > 0, X is of unbounded
variation and σ = 0. Also recall we use v to denote the function va∗ , U to denote
Ua∗

and L to denote La∗
. The idea of the proof are similar to that of [2] and [19];

however, it is necessary to revisit the main line of reasoning and provide more sen-
sitive arguments that accommodate for the fact that, in the present case W(q) is not
sufficiently smooth, it is twice continuously differentiable almost everywhere but is
not in C2(0,∞).

Now let ξ be an admissible strategy and let L
ξ

be the cadlag modification of the
process Lξ . Note that it is still adapted as the usual conditions have been assumed on
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the natural filtration, and hence U
ξ = X − L

ξ
is a semimartingale. Since the integral

in the definition of Γ v is absolutely convergent for every x > 0 and the second deriv-
ative of v is well defined Lebesgue almost everywhere, we can apply the Meyer–Itô

formula (cf. Theorem 70 of [20]) to the process v(U
ξ
) to get, after some straightfor-

ward manipulation, that on {t < σ ξ },
v
(
U

ξ

t

) − v
(
U

ξ

0

) = M
ξ
t +

∫ t

0
Γ v

(
U

ξ

s−
)
ds

+
∑
s≤t

1{�L
ξ
s >0}

{
v
(
U

ξ

s− + �Xs − �L
ξ

s

) − v
(
U

ξ

s− + �Xs

)}

−
∫

(0,t]
v′(U

ξ

s−
)
dL

ξ,c

s + 1

2

∫
R

v′′(x)�ξ (x, t) dx (4.4)

such that

M
ξ
t =

∑
s≤t

1{|�Xs |>0}
[
v
(
U

ξ

s− + �Xs

) − v
(
U

ξ

s−
) − �Xsv

′(U
ξ

s−
)
1{|�Xs |≤1}

]

−
∫ t

0

∫
(0,∞)

[
v
(
U

ξ

s− − y
) − v

(
U

ξ

s−
) + yv′(U

ξ

s−
)
1{y≤1}

]
Π(dy)ds

+
∫ t

0
v′(U

ξ

s−
)
dX(1)

s

is a local martingale with M
ξ
0 = 0, where X(1), the martingale part of X, consists of

compensated jumps of size less than or equal to unity. Moreover, L
ξ,c

is the contin-

uous part of L
ξ

and �ξ (x, ·) is the semimartingale local time at x of U
ξ
. We have

used, in particular, the absolute convergence of the integral part of Γ v in order to
make sense of M

ξ
t as a compensated stochastic integral. Similarly as before, the oc-

cupation formula for the semimartingale local time of U
ξ

reads∫
R

�ξ (x, t)g(x) dx = σ 2
∫ t

0
g
(
U

ξ

s

)
ds,

where g is a bounded Borel measurable function. Also similarly as before, since
σ = 0 this implies that, for Lebesgue almost every x, �ξ (x, ·) is identically zero al-
most surely. Taking this into account, the last integral in (4.4) is almost surely zero.
Stochastic integration by parts now gives us on {t < σ ξ }

e−qt v
(
U

ξ

t

) − v
(
U

ξ

0

)

= �
ξ
t +

∫ t

0
e−qs(Γ − q)v

(
U

ξ

s−
)
ds

+
∑
s≤t

1{�L
ξ
s >0}e

−qs
{
v
(
U

ξ

s− + �Xs − �L
ξ

s

) − v
(
U

ξ

s− + �Xs

)}

−
∫

(0,t]
e−qsv′(U

ξ

s−
)
dL

ξ,c

s , (4.5)

where �
ξ
t = ∫ t

0 e−qsdM
ξ
s is a local martingale.
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Now note that by inspection, using the properties of a∗, we see v′(x) ≥ 1 and

moreover, on {�L
ξ

s > 0},

v
(
U

ξ

s− + �Xs − �L
ξ

s

) − v
(
U

ξ

s− + �Xs

) = −
∫ U

ξ
s−+�Xs

U
ξ
s−+�Xs−�L

ξ
s

v′(x) dx ≤ −�L
ξ

s .

Note also that
∫

(0,t]
e−qs dL

ξ

s =
∫

[0,t]
e−qs dLξ

s − L
ξ
0+,

and, by the mean value theorem and the fact that v′(x) ≥ 1, we also have under Px

that v(U
ξ

0) ≤ v(x) − L
ξ
0+. Recalling the property that (Γ − q)v ≤ 0 for all x > 0 it

follows that for any appropriate localization sequence of stopping times {Tn : n ≥ 1}
we have under Px

v(x) − L
ξ
0+ ≥ −�

ξ

σξ∧Tn
+

∫
(0,σ ξ ∧Tn]

e−qs dL
ξ

s + e−q(σ ξ ∧Tn)v
(
U

ξ

σξ ∧Tn

)

≥ −�
ξ

σξ∧Tn
+

∫
[0,σ ξ ∧Tn]

e−qs dLξ
s − L

ξ
0+.

Taking expectation and then limits as n ↑ ∞ and recalling that ξ is an arbitrary
strategy in Ξ , we thus deduce that

v(x) ≥ sup
ξ∈Ξ

Ex

(∫
[0,σ ξ ]

e−qt dL
ξ
t

)
= v∗(x).

On the other hand, thanks to the expression

v(x) := Ex

(∫
[0,σ a∗ ]

e−qt dLa∗
t

)
,

the upper bound is attained by the barrier strategy at a∗ and the proof is complete. �

Appendix: Proof of Lemmas 2.2 and 2.3

Proof of Lemma 2.2 As has been repeatedly used in Sect. 2, we may appeal to the
arguments in the first paragraph in the proof of Theorem 2 in [9] and get that Υ (x) =∫ ∞
x

Υ (y)dy, x > 0, is log-convex as a consequence of the same being true of Υ .
Then, by Theorem 2.4 in [23], we know that H is a special subordinator, and therefore
the restriction of its potential measure to (0,∞) has a non-increasing density. It is also
know, for example from [22], that the function u satisfies the following equation

du(t) +
∫ t

0

{
Υ (t − s) + κ

}
u(s) ds = 1, t > 0,
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where d ≥ 0 is the drift of Ĥ and κ is the killing rate. Now, when d = 0, we can
apply Theorem 3 of [10] to conclude that the function u is convex. When d > 0, we
can apply Theorem 2 of [9] combined with the first two sentences of Sect. 4 in [9] to
conclude that u is convex and in C1(0,∞). �

Proof of Lemma 2.3 We recall that the right continuous inverse of the local time at
0 for X reflected at its supremum, L−1, and that of X reflected at its infimum, say
L̂−1, are possibly killed subordinators whose Laplace exponents are given by Φ(·),
and κ̂(·,0), respectively. It follows by the time–space Wiener–Hopf factorization that

q = Φ(q)̂κ(q,0), q ≥ 0,

see, e.g., [4] Chap. VII. Thus κ̂(q,0) = q/Φ(q), q ≥ 0. We recall that κ̂(·, ·) is the
Laplace exponent of the bivariate descending ladder subordinator, and hence it can
be represented as

κ̂(λ,β) = κ(λ,0) + d1β +
∫

(0,∞)2
μ−(dt, dh)

(
e−λt − e−λt−βh

)
, β,λ ≥ 0,

where d1 ≥ 0 and μ− is the Lévy measure of the bivariate descending ladder sub-
ordinator. It follows that, for q ≥ 0, fixed κ̂(q, ·) is a Bernstein function. Since
κ̂(0, β) = φ(β) for β ≥ 0 and the formula in the last display holds for every λ ≥ 0,

we get that d1 = d. That is, the drift term of the Bernstein function κ̂(q, ·) is equal
to d. Moreover, it has been proved in Corollary 6 in [7] that the measure μ− can be
written as

μ−(dt, dh) =
∫

[0,∞)

U+(dt, ds)Π(dh + s), t, h > 0,

where U+ denotes the potential measure of the ascending ladder subordinator. In our
case, X is spectrally negative, and hence, due to the absence of positive jumps, this
formula becomes

μ−(dt, dh) =
∫

[0,∞)

U+(dt, ds)Π(dh + s) =
∫

[0,∞)

dsP
(
L−1

s ∈ dt
)
Π(dh + s),

see, e.g., Exercise 7.5 in [16]. This allows us to write

∫
(0,∞)2

μ−(dt, dh)
(
e−qt − e−qt−βh

)

=
∫∫∫

(0,∞)3
dsP

(
L−1

s ∈ dt
)
Π(dh + s)

(
e−qt − e−qt−βh

)

=
∫∫

(0,∞)×(0,∞)

dsΠ(dh + s)
(
e−sΦ(q) − e−sΦ(q)−βh

)

=
∫ ∞

0

(
1 − e−βh

)∫ ∞

0
e−sΦ(q)Π(dh + s) ds, β ≥ 0.
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As a consequence, for q ≥ 0 fixed, the tail of the Lévy measure of κ̂(q, ·) is given by

Υq(z,∞) :=
∫ ∞

z

∫ ∞

0
e−sΦ(q)Π(dh + s) ds = eΦ(q)z

∫ ∞

z

due−Φ(q)uΠ(u,∞),

which z > 0.
This proves the claim about the tail of the Lévy measure. Using it we get that the

Lévy measure of κ̂(q, ·) has a density given by

υq(x) := Π(x) − Φ(q)eΦ(q)x

∫ ∞

x

e−Φ(q)yΠ(y)dy, x > 0.

To prove that υq is non-increasing we observe first that an integration by parts leads
to the equality

υq(x) = Π(x) −
(

Π(x) − eΦ(q)x

∫ ∞

x

e−Φ(q)zπ(z) dz

)

= eΦ(q)x

∫ ∞

x

e−Φ(q)zπ(z) dz, (5.1)

for x > 0. Owing to the fact that π is non-increasing, thanks to the assumption that it
is a log-convex Lévy density, we have that for 0 < x < y

υq(x) − υq(y)

= Φ(q)eΦ(q)x

∫ y

x

e−Φ(q)zπ(z) dz + (
eΦ(q)x − eΦ(q)y

)
Φ(q)

∫ ∞

y

e−Φ(q)zπ(z) dz

≥ π(y)eΦ(q)x
(
e−Φ(q)x − e−Φ(q)y

) + π(y)
(
eΦ(q)x − eΦ(q)y

)
e−Φ(q)y = 0,

that is, υq is non-increasing. �
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