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Abstract

We show for the branching L!evy process that it is possible to construct two classes of mul-
tiplicative martingales using stopping lines and solutions to one of two source equations. The
"rst class, similar to those martingales of Chauvin (1991, Ann. Probab. 30, 1195–1205) and
Neveu (1988, Seminar on Stochastic Processes 1987, Progress in Probability and Statistics, vol.
15, Birkha#user, Boston, pp. 223–241) have a source equation which provides travelling wave
solutions to a generalized version of the K-P-P equation. For the second class of martingales,
similar to those of Biggins and Kyprianou (1997, Ann. Probab. 25, 337–360), the source equa-
tion is a functional equation. We show further that under reasonably broad circumstances, these
equations share the same solutions and hence the two types of martingales are one and the same.
This conclusion also tells us something more about the nature of the solutions to the "rst of our
two equations. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The branching L!evy process is de"ned as follows. An initial ancestor begins its
existence at the origin of both the real line and time. It lives for ! units of time where
! is exponentially distributed with mean 1=". During its lifetime, it moves according to
a L!evy process, X (t). At the instant of its death, the initial ancestor scatters a random
number of children in space relative to its death point according to the point process
{#i: i=1; : : : ;$(R)}. Attached to each of these children is an independent copy of the
triple (!; X;$) so that they live, move and reproduce independently of one another and
in a manner that is stochastically identical to the initial ancestor, and so on. We will
assume in this presentation that the process is non-explosive (see for example Athreya
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and Ney (1972, Chapter III) for necessary and su$cient conditions) and supercritical
(E$(R) = m¿ 1).
This process has been considered recently in the context of martingale convergence

by Biggins (1992) and Biggins and Kyprianou (1996). There are also other examples of
where this process has been studied in a more speci"c context. When X is a Brownian
motion and #i = 0 for all i = 1; : : : ;$(R), then we have branching Brownian motion,
see for example Athreya and Ney (1972). When there is no movement, so that X ≡ 0
then we have a process whose spatial growth was studied by Uchiyama (1982). If in
this case we were to make further the restriction that the life length distribution ! is
equal to 1 with probability one, then we have returned to the branching random walk;
although the Markovian nature has been lost.
In this report we will bring the results of Neveu (1988), Chauvin (1991) and Biggins

and Kyprianou (1997), all of whom explored certain types of multiplicative martingales
structured from spatial branching processes, into the context of the branching L!evy
process. By doing so we will demonstrate the existence of a class of functions that
may be expressed simultaneously as the unique solution of two apparently very di%erent
types of equations.
The results of Neveu that were followed by Chauvin’s re"nements deal with the

case of branching Brownian motion. (We should also add here that independently and
in parallel Lalley and Sellke (1987) produced results similar to Neveu’s). Biggins
and Kyprianou then developed the theory of these martingales for the branching ran-
dom walk. In their case, multiplicative martingales were used as an essential tool to
help prove the existence of Seneta–Heyde norming constants for a class of additive
martingales. In both types of processes the multiplicative martingales were constructed
from the branching process using two main ingredients; stopping lines and a function
% : R→ [0; 1] satisfying a particular source equation. Loosely speaking, stopping lines
may be considered as special subsets of the realized branching tree that are measur-
able in some sense analogous with the concept of stopping times and further have the
predominant feature that no two individuals in a stopping line can be a descendent or
ancestor to one another; a more precise de"nition will follow however in the next sec-
tion. The source equation for the function % is di%erent for each of the two processes.
In the case of branching Brownian motion with f(s) = E(s$(R)), we have that % is a
travelling wave solution to the K-P-P equation @u=@t=(1=2)@2u=@x2 +"[f(u)−u] with
boundary conditions. That is to say that % satis"es

1
2%

′′ + &%′ + "[f(%)− %] = 0 such that %(∞) = 1 and %(−∞) = 0; (1)

where & is the wave speed. In the branching random walk, this equation is replaced
by the functional equation (also known as a smoothing transform)

%(x) = E

[ $(R)∏

i=1

%(e−'(#i+L(')))

]

(2)

where L(') = ' −1 logE(
∑$(R)

i=1 exp{−'#i}).
The multiplicative martingale is constructed by "rst de"ning a special sequence of

stopping lines (whose index also acts as the index of the martingale). Then for each
index, we multiply over every individual in the stopping line a copy of the function %;
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with its argument weighted in a special way by the spatial position of that individ-
ual. More explicit details of this weighting are dealt with in the third and fourth
sections.
Apart from inducing a deeper understanding of growth through branching, the study

of these martingales has provided insight into the nature of solutions to ordinary dif-
ferential equations and functional equations of the type (1) and (2), respectively. So-
lutions to the travelling wave solution equation (1) have applications, for example,
in genetic theory (see Kolmogorov et al., 1937; Fisher, 1937), and also in statistical
physics (see Derrida and Spohn, 1988). Examples of applications of the functional
equation (2) include Kahane and Peyri&ere (1976) who studied this equation in rela-
tion to turbulence models, Chauvin and Rouault (1997) who studied its solutions in
relation to overlaps in the branching random walk and the Boltzmann-Gibbs measure
and Liu (1998) who considered the functional equation in the context of smoothing
transforms.
We begin in the next section by refreshing our knowledge on stopping lines. We

discuss how the Markovian nature of the process and the de"nitions and properties of
stopping lines rigorously outlined by Chauvin (1991) for branching Brownian motion
still apply in this case. In the subsequent two sections we will develop separately mul-
tiplicative martingales using appropriate generalizations of the source equations (1) and
(2). Section 3 is based on ideas that appear mainly in Chauvin (1991) and Section 4
on work appearing in Biggins and Kyprianou (1997). We then demonstrate in the "nal
section that under reasonably broad conditions the two classes of martingales are in
fact one and the same because their source equations share the same solutions. This
link allows us to exchange information about solutions to the two source equations and
thus we obtain new results concerning the existence and uniqueness of solutions to a
generalized version of (1).

2. A refresher on stopping lines

For the construction and de"nition of stopping lines we shall use the Ulam–Harris
labelling system. De"ne the space of all possible nodes

I = f ∪
∞⋃

n=1

Nn

where f is the label we use for the initial ancestor. A node is labelled u=(i1; i2; : : : ; in),
meaning that u is the inth child of the in−1th child of : : : of the i1th child of f. The
branching process is considered to be a random tree of nodes, T, rooted at f, where
any realization of T is a subset of I. For each u ∈ T we refer to the generation in
which u resides to be |u|. There is a partial ordering of individuals on the branching
tree in that we can write u¡v if u is a strict ancestor of v. We also refer to an
individual as uv if that individual is a descendant of u and has label v in the subtree
rooted at u.
The birth time of an individual u ∈ T is written as (u ((f = 0) and thus the death

time of the same individual will be (u+!u. The birth position is labelled pu (pf=0)
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and thus the birth position of the ith child of u can be expressed as

pui = pu + Xu(!u) + #(u)i

where Xu is the independent copy of X attached to u and #(u)i is the ith point of the
point process $u; which is itself an independent copy of $. The position of u at age
s, where s6!u is )u(s):=pu + Xu(s).
We are now ready to de"ne a stopping line. Let Bu(s) be the sigma algebra con-

taining information about the biography of individual u up to and including age s
together with the biographies of all of u’s ancestry. In particular we have that (u; pu,
and )u(s′) (06s′6s), are all Bu(s)-measurable. Suppose that * : I → [0;!]I is an
ensemble of maps such that *u ∈ [0;!u] for each u ∈ T. The set of individuals
L(*)⊆T is a stopping line if
(i) for each u; v ∈ L(*) such that u (= v; u! v and u" v,
(ii) *u ¡!u and
(iii) *u is a stopping time for Bu(·).
A more intuitive construction would be to imagine selecting and pruning branches

of the tree T according to a decision rule * in which, moving from root upwards,
our decision to prune is based purely on what we have seen in moving from the root
to that point in the tree. (It is natural in this context that pruned branches can never
correspond to individuals who are ancestral/descendent to one another). The branches
and points at which we would prune, comprise the stopping line L(*).
In what follows we will often omit the dependency of L on * unless we wish to

emphasize its importance.
Jagers (1989) o%ers a less stringent de"nition for stopping lines using the nodes of

a branching tree only. Suppose ‘ is a subset of I with property (i), let F‘ be the
sigma algebra containing information about the full life histories of individuals that are
neither in nor a descendent of ‘. Jagers de"ned a stopping line L to be a random
set of individuals with property (i) for which {∀u ∈ ‘; ∃v ∈ L: v6u} ∈ F‘ for all
possible ‘. The equivalent of this de"nition for the branching L!evy processes would
allow for a greater correlation between the mappings *u than in the structure of *
outlined above; an individual’s presence in a stopping line may well be dependent on
the presence of another individual in the stopping line rather than just the history of
its ancestry to date.
For use later on we de"ne

DL:={u ∈ T: ∃v¡u; v ∈ L};

the set of individuals who have a strict ancestor on the line L and

AL(n):={u ∈ T: |u|= n; @v6u; v ∈ L};

the set of individuals in the nth generation who have no ancestor (including themselves)
on the stopping line. A stopping line L is called dissecting if sup{n:AL(n) (= ∅}¡∞
almost surely. Intuitively this implies that any line of descent emanating from the initial
ancestor will either die out or meet the stopping line (whichever happens "rst) with
probability one. For two stopping lines, L1 and L2 we say that L2 dominates L1 if
for each u ∈ L2 there exists a v ∈ L1 such that v6u. A sequence of stopping lines
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{Lt}t¿0 is said to be increasing to in"nity if Lt dominates Ls for all 06s6t and
limt↑∞inf{|u|: u ∈ Lt} =∞ almost surely. We should note brie'y here that because
the movement of individuals is not necessarily continuous, not all dissecting stopping
lines in branching Brownian motion have a dissecting equivalent in the branching L!evy
process. Consider for example those individuals who are "rst in their line of descent
to cross the space–time line y = x − at. This is a stopping line constructed from the
mapping * such that

*u = +u*̃u + (1− +u)!u

where +u = I(*v = !v; ∀v¡u) and *̃u = inf{s ∈ [0;!u): )u(s) = x − a((u + s)} if it
exists and !u otherwise. (Note that although this is a rather complicated expression
for *, conceptually the idea of "rst crossings is quite simple.)
There is a natural sigma algebra associated with the stopping line L

GL =
∨

u %∈DL

Bu(*u):

This sigma algebra gives information about the biographies of all individuals on the
line L, up to the age at which they meet the stopping line, the biographies of the
lives of all the ancestry of all these individuals and the biographies of the lives of all
individuals who are part of a line of descent that never meets the stopping line. Using
this sigma algebra Chauvin (1991, 1986) and Neveu (1988) have developed a Strong
Markov branching property on stopping lines for the case of branching Brownian
motion. We claim the same result here for the case of branching L!evy processes. No
proof is o%ered however since the Markovian nature of the process ensures that the
justi"cations for this claim do not di%er from those of its original proof in branching
Brownian motion.

Theorem 1. Let L (=L(*)) be a stopping line. Given GL; the trees emanating from
each u ∈ L at age *u are independent stochastic copies of T. This is expressed by
the following identity:

E

(
∏

u∈L

fu ◦ Tu;*u(x + ·)

∣∣∣∣∣
GL

)

=
∏

u∈L

E(fu(x + )u(*u) + ·) |GL);

where Tu;*u is the shift operator that renders u ∈ T at age *u the initial ancestor.

Chauvin (1991, 1986) also established the following lemma that illuminates further
the Markovian structure present in sequences of stopping lines. In the same way as
above, we claim that the lemma, presented below, is equally valid for branching L!evy
processes.

Lemma 2. Suppose L1 (=L1(*)) and L2 are two stopping lines such that L2

dominates L1. Then L2 can be partitioned exhaustively and uniquely into mutually
exclusive subsets

L(v)
2 :={u ∈ L2: u¿v ∈ L1}

such that conditional on GL1 ; L
(v)
2 is a stopping line on the tree T ◦ Tv;*v .
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The key element to note of the proof of this lemma is that by gluing independent
copies of T onto the points {)v(*v)}v∈L1 it becomes clear that conditions (i)–(iii)
are satis"ed locally on these trees. This is because criteria for an individual to be in
L(v)
2 requires now only its ancestral history as far back as individual v at age *v. We

claim here that this insight also shows that the equivalent lemma is not necessarily
true for the stopping lines outlined by Jagers. In his de"nition one can accommodate
for su$ciently strong dependencies between {*u: u ∈ L2} conditional on GL1 to the
extent that the L(v)

2 are correlated and thus cannot necessarily be locally stopping lines
on the trees emanating from each v ∈ L1.

3. Martingales from travelling waves

Let C be the set of measurable functions %:R → [0; 1] with the property that
% is twice di%erentiable and continuous with its derivatives such that %(∞) = 1 and
%(−∞)=q, where q is the probability of extinction. Let Q be the in"nitesimal generator
of X with domain D(Q). It is known that C⊆ D(Q) (see, for example, Bertoin, 1996).
We assume for the remainder of this section that % ∈ C is a travelling wave solution
with wave speed & to the generalized K-P-P di%usion equation @,(x; t)=@t =Q,(x; t) +
"
[
E
∏

|u|=1 ,(x + #u; t)− ,(x; t)
]
. That is to say that % satis"es

Q%+ &%′ + "



E
∏

|u|=1

%(·+ #u)− %



= 0: (3)

One notices that when the L!evy process is a straightforward Brownian motion, then
Eq. (3) becomes (1) and thus gives travelling wave solutions to the K-P-P equation.
There is of course the issue over whether such a solution exists. This will be dealt
with later on in Section 5. For the time being we will assume that at least one solution
does exist. The main result of this section follows.

Theorem 3. Let {Lt}t¿0 be an increasing sequence of dissecting stopping lines tend-
ing to in!nity. The multiplicative structure

M [&;Lt](x):=
∏

u∈Lt

%(x + )u(*u(t)) + &((u + *u(t))) (4)

is a GLt -martingale; converging almost surely and in expectation to the same variable
irrespective of the choice of {Lt}t¿0.

To prove this theorem we need the following lemma.

Lemma 4. For each t ¿ 0;

E



I(!¿t)%(x + X (t) + &t) + I(!6t)
∏

|u|=1

%(x + #u + X (!) + &!)



= %(x):
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Proof. Breaking the expectation so that we "rst average over $ and then !, we are
left to evaluate the expectation of

It; x:=e−"t%(x + X (t) + &t) +
∫ t

0
E




∏

|u|=1

%(x + #u + X (s) + &s)



 "e−"s ds:

Recalling that % is a travelling wave solution to the generalized K-P-P equation, we
have, de"ning -(t; x) = exp(−"t)%(x + &t); that

It; x = -(t; x + X (t))−
∫ t

0

(
@
@t
+ Q

)
-(t; x + X (s)) ds: (5)

The proof can now be completed easily by observing from Stroock (1975) that X is
characterized by its operator Q via the Martingale problem. That is to say that It; x
is a martingale with respect to the natural "ltration F(t) = ((X (s): s6t) and thus
EIt; x = EI0; x = %(x).

In proving an equivalent result for branching Brownian motion, Chauvin (1991,
Lemma 3:2) referred to a computation involving the Itô formula. Indeed in this case,
working via the Itô formula, it is also possible to obtain the result. The necessary steps
are to substitute the two-dimensional Itô formula for the L!evy process, (see, for exam-
ple, Protter, 1991) and the speci"c form of the operator Q (see, for example, Bertoin,
1996) in the "rst and second terms of (5), respectively. Taking expectations, the result
follows by a tedious process of expansion and cancellation of terms. Note, however, in
the case of branching Brownian motion, the computation will be considerably simpler
as there are no jump or drift terms to deal with.

Proof of Theorem 3. Let L be any dissecting stopping line. De"ne the approximation
to M [&;L](x),

M (n)[&;L](x) =
∏

|u|6n
u∈L

%(x + )u(*u) + &((u + *u))

×
∏

u∈AL(n)

∏

|v|=1

%(x + #v + )u(!u) + &((u + !u)):

Let Fn be the biography of all individuals in the nth generation and their ancestry. We
begin by showing that M (n)[&;L](x) is an Fn-martingale. Since L is dissecting we
then have that M (n)[&;L](x) converges almost surely and in expectation to M [&;L](x)
as n ↑ ∞ and hence %(x)=EM (0)[&;L](x)=EM [&;L](x). So, to show the martingale
property, consider the following decomposition:

E[M (n+1)[&;L](x) |Fn]

=
∏

|u|6n
u∈L

%(x + )u(*u) + &((u + *u))
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×EFn

∏

|u|=n+1
u %∈DL




I(!u ¿ *u)%(x + pu + Xu(*u) + &((u + *u))

+ I(!u6*u)
∏

|v|=1

%(x + #v + pu + Xu(!u) + &((u + !u))





:

Let Q(.) be the stopping line with .u = 0 if u (∈ DL and |u| = n + 1; .u = *u if
u ∈ L and |u|6n and .u=!u, otherwise. Noting that pu and (u are all Fn-measurable,
Lemma 2 applied to the stopping lines L and Q, Theorem 1 and the previous lemma,
we conclude that the expectation on the right-hand side is equal to

∏

|u|=n+1
u %∈DL

%(x + pu + &(u) =
∏

u∈AL(n)

∏

|v|=1

%(x + puv + &(uv)

=
∏

u∈AL(n)

∏

|v|=1

%(x + )u(!u) + #v + &((u + !u))

hence the result follows. For 06s6t; members of Lt may be divided exhaustively into
groups of descendents, labelled L(u)

s; t , from each member of u ∈ Ls. Hence Lemma 2
and Theorem 1 combined give the following identity:

E(M [&;Lt](x) |GLs) =
∏

u∈Ls

E(Mu[&;L
(u)
s; t ](x + )u(*u(s)) + &((u + *u(s))) |GLs)

(6)

where given GLs ; Mu[&; ·](·) is an independent copy of M [&; ·](·). Finally our
previous conclusion that EM [&;L](x) = %(x) completes the proof that M [&;Lt](x)
is a martingale.
To prove that the martingale limit is sequence independent, we consider {Lt}t¿0

and {Kt}t¿0 satisfying the conditions of the theorem. The respective associated mul-
tiplicative martingales have limits (by the bounded martingale convergence theorem)
which we shall label ML[&](x) and MK[&](x). For each t ¿ 0 it is possible to "nd
a stopping time T (Lt) with respect to {GLt}t¿0 such that KT (Lt)+s dominates Lt

for all s¿ 0. Likewise we can "nd a stopping time T (Kt) ful"lling a symetrical role
to T (Lt). Consequently, M [&;Lt](x) = E(M [&;KT (Lt)+s](x) |GLt ) and M [&;Kt](x) =
E(M [&;LT (Kt)+s](x) |GKt ). Taking limits as s ↑ ∞ the bounded convergence theorem
implies

M [&;Lt](x) = E(MK[&](x) |GLt ) and M [&;Kt](x) = E(ML[&](x) |GKt );

the consequence of which is that M [&;Lt](x) and M [&;Kt](x) have the same limit as
t ↑ ∞.

4. Martingales from the functional equation

Before proceeding to our construction of our second type of multiplicative martin-
gales, we will consider the functional equation from which we will build them.



A.E. Kyprianou / Stochastic Processes and their Applications 82 (1999) 1–14 9

By de"ning the map * such that

*u = +u(t − (u) + (1− +u)!u

where +u= I((u6t ¡ (u+!u), it can be checked that the corresponding stopping line,
which we shall label Nt , is dissecting and consists of individuals alive at time t. In
this section, we will assume that % is a solution to the equation

%(x) = E

[
∏

u∈Nt

%(x + )u(t − (u) + &t)

]

for all t ¿ 0 (7)

and some & ∈ R. By making the transform %(x) = /(exp(−'x)) one can see that
this functional equation is a continuous version of the functional equation (2). The
existence of solutions to this functional equation again is an issue that needs to be
dealt with; however again, we leave that for the remaining section. Thus follows the
main result of this section.

Theorem 5. Theorem 3 still holds when (7) is the source equation for M [&;Lt](x).

The proof of this theorem is motivated by arguments that appear in Biggins and
Kyprianou (1997).

Proof of Theorem 5. Using the decomposition (6) speci"cally for the stopping line
Nt we have, noting that (u + *u(t) = t,

M [&;Nt+s](x) =
∏

u∈Nt

Mu[&;N(u)
s ](x + )u(t − (u) + &t)

where given GNt ; N
(u)
s is an independent copy of Ns. Since % satis"es (7) it follows

with the help of Theorem 1 that M [&;Nt](x) is a martingale. Note further that this
martingale converges almost surely and in expectation to some variable we will label
M [&](x) which has mean %(x).
Consider now the following decomposition of M [&;Nt](x) according to the inter-

section of Nt with any other dissecting stopping line L.

M [&;Nt](x) =
∏

u∈AL(t)

%(x + )u(t − (u) + &t)

×
∏

u∈L
(u+*u6t

Mu[&;N
(u)
t−((u+*u)](x + )u(*u) + &((u + *u)):

Here, AL(t) takes a similar de"nition to AL(n); the set of individuals alive at time t
that have no ancestors (including themselves) in L. Since L is a dissecting stopping
line it has an almost surely "nite number of members, each of whom has an almost
surely "nite time of death. Therefore it follows that AL(t) converges to the empty set
as t ↑ ∞. Combining this conclusion with the bounded convergence theorem, the fact
that M [&;Nt](x) is a martingale and Theorem 1, we have that

E(M [&](x) |GL) = lim
t↑∞

E(M [&;Nt](x) |GL)



10 A.E. Kyprianou / Stochastic Processes and their Applications 82 (1999) 1–14

= lim
t↑∞

∏

u∈AL(t)

%(x + )u(t − (u) + &t)

×
∏

u∈L
(u+*u6t

E(Mu[&;N
(u)
t−((u+*u)](x + )u(*u) + &((u+*u)) |GL)

=
∏

u∈L

%(x + )u(*u) + &((u+*u))

=M [&;L](x): (8)

It now follows directly from (8) with the assistance of the ladder property of condi-
tional expectation that M [&;Lt](x) is a martingale. Taking unconditional expectations
of (8) reveals that the martingale expectation is %(x). Further, the proof that the limit
of the martingale is independent of the choice of sequence of stopping lines follows
as in the proof of Theorem 3.

5. Common solutions to the source equations

Before we can make any conclusions about the commonality of solutions to the
source equations, we must be sure that at least one solution to either (3) or (7) exists.
We will prove so for the latter as it follows as a simple consequence of a Seneta–Heyde
norming result established in Biggins and Kyprianou (1996).
De"ne Z (t) to be the point process describing the positions of individuals alive at

time t. Let &(0)=0−1 logE[
∫
exp{−0p}Z (1)(dp)] and R be the set of all measurable

functions /:R /→ [0; 1], such that x−1[1−/(x)] is monotone decreasing. For compu-
tational purposes it should be noted that &(0) can be written 0−1["b(0)− " + a(0)]
where b(0) = E

∫
exp(−0u)$(du) and a(0) is the L!evy–Khintchine exponent of the

Laplace transform of X (see Biggins, 1992).

Theorem 6. When ' ∈ int{0: &(0)¡∞}; assumed to be a non-empty set; and
&′(')¡ 0; there exists a unique solution (up to a multiplicative constant) in R to the
functional equation

/(x) = E

[
∏

u∈Nt

/(xe−'()u(t−(u)+&(')t))

]

for every t ¿ 0 (9)

Proof. The following proof is an adaptation of a method used in Biggins and
Kyprianou (1996) to demonstrate the existence of a sequence of Seneta–Heyde norming
constants for the martingale W (t)('):=

∫
exp{−0x}Z (t)(dx). By considering a skele-

ton of time steps on the lattice {n1}n¿0 (1¿ 0), there exists a branching random
walk embedded within the branching L!evy process. (This statement can be justi"ed
more rigorously by simply applying Theorem 1 and Lemma 2 to the stopping lines
{Nn1}n¿0). Under the conditions stated, it can trivially be checked that the Seneta–
Heyde norming result of Biggins and Kyprianou (1997) holds on the embedded pro-
cess (for each 1¿ 0) so that there exist a sequence of constants {C(1)n (')} such that
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limt↑∞ C
(1)
n (') W (n1)(') = 21(') where its Laplace transform is the unique solution in

R to the functional equation (9) with t=1. With the reasoning in Section 6 of Biggins
and Kyprianou (1996) we can use this result on the embedded process to show that
indeed there exist constants C(1)t ('):=C

(1)
[t] (') such that limt↑∞ C

(1)
t (') W (t)(')=21(')

for each 1¿ 0. Since any two sequences of norming constants must be asymptotically
equivalent the limits 21(') must be equal up to a constant of proportionality (dependent
on 1) and thus the result follows.

We can make Theorem 6 more suitable to the context of our multiplicative mar-
tingales, by making the transformation %(x) = /(exp(−'x)). We have then, under
the conditions of the above theorem, a unique solution in the class of functions
R':={%(x) =/(e−'x): / ∈ R} to Eq. (7). It is possible however to say even more
as a direct consequence of taking expectations of Eq. (8).

Corollary 7. Under the conditions of Theorem 6 there exists a unique solution (up to
an additive constant) in R' that satis!es the functional equation

%(x) = E

[
∏

u∈L

%(x + )u(*u) + &(')((u + *u))

]

(10)

for any dissecting stopping line L.

We now state the main conclusion of this section.

Theorem 8. The function % ∈ C is a solution to the functional equation (10) for any
dissecting stopping line L if and only if it is a solution to the integro-di"erential
equation (3).

Quite clearly, under the conditions of this theorem, both types of martingales become
one and the same. The next Corollary follows immediately from this theorem and the
proof of Theorem 6.

Corollary 9. When ' ∈ int{0: &(0)¡∞}; assumed to be a non-empty set; and
&′(')¡ 0; there exists a positive variable 2(') such that

%(x) = E[exp(−e−'x2('))]

is the unique solution (up to an additive constant) in R' to (3) for & = &(') with
boundary condition %(∞) = 1 and %(−∞) = q.

Note that when X is a basic Brownian motion and $ is concentrated at the origin then
this result is consistent with Theorem 3:4 of Chauvin (1991) although the conditions
here are di%erent. Chauvin has a class broader than R'; namely C (but with %(−∞)=
0) and also she accommodates for the case that &′(') = 0 (note that in branching
Brownian motion &(') parameterizes the wave speeds and a short computation shows
&′(') = 0 corresponds to the minimal wave speed

√
2"(m− 1)). The result presented

here identi"es speci"cally 2 to be that of the limiting variable in the Seneta–Heyde
norming problem discussed in Biggins and Kyprianou (1996).
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It is not unreasonable to conjecture that Corollary 9 can be strengthened by replacing
the set R' by C. The way forward lies with a better understanding of asymptotics of
common solutions to the source equations. Either in the light of Uchiyama (1978) and
Bramson (1983) or Kyprianou (1998) the slow variation of ex'[1 − %(x)] as x ↑ ∞
for % ∈ C should be established from (3) or (7), respectively. As was demonstrated
by both Chauvin (1991) and Biggins and Kyprianou (1997) this leads to the relation
−logM [&](x) =−e−'x logM [&](1). Hence we have that % is the Laplace transform of
−logM [&](1) and falls also in the class of functions R' for which we know we have
uniqueness.
In order that we may prove Theorem 8 (and thus close this paper) we must "rst

prove the following lemma.

Lemma 10. Let % ∈ C; then

,(x; t) = E

[
∏

u∈Nt

%(x + )u(t − (u))

]

is in D(Q); di"erentiable with respect to t and is a solution to the generalized K-P-P
equation

@,(x; t)
@t

= Q,(x; t) + "



E
∏

|u|=1

,(x + #u; t)− ,(x; t)





with initial data ,(x; 0) = %(x).

This lemma resembles very much results found in McKean (1975) and Bramson
(1978). Indeed, when X is a Brownian motion, $ is concentrated at the origin and
%(x)=I (x¿0), the results here agree with the aforementioned results. Not surprisingly
the proof we o%er here follows a similar logic to that of Bramson (1978, Appendix A).

Proof of Lemma 10. We begin by decomposing , according to whether the initial
ancestor has deceased by time t; so that after some straightforward computation and
rearrangement

,(x; t) = e−"tE[%(x + X (t))]

+
∫ t

0
"e−"(t−z)E

(
∏

v∈Nt

%(x + )v(t − (v))

∣∣∣∣∣
!= t − z

)

dz: (11)

De"ne g(x; t) = E[%(x + X (t))]. Noting that g(x; t) ∈ D(Q), one can construct an
argument using Dynkin’s formula (similar to Theorem 8:1 of Iksendal (1995) for
example) to show that Qg(·; t) = @g(·; t)=@t. Further, de"ning h(x; t; z) as the second
expectation in (11) it is not di$cult to see that since the product is over an almost
surely "nite number of terms, h(·; t; z) is di%erentiable in the sense that it is a member of
D(Q) and thus the same argument used above shows that also Qh(·; t; z)=@h(·; t; z)=@t.



A.E. Kyprianou / Stochastic Processes and their Applications 82 (1999) 1–14 13

Let us now call the two parts in the sum of Eq. (11) S1 and S2. A straightforward
calculation shows

@S1
@t
= e−"tQE[%(x + X (t))]− "e−"tE[%(x + X (t))]; (12)

@S2
@t
= "E




∏

|u|=1

,(x + #u; t)





−
∫ t

0
"2e−"(t−z)E

(
∏

v∈Nt

%(x + )v(t − (v))

∣∣∣∣∣
!= t − z

)

dz

+
∫ t

0
"e−"(t−z)QE

(
∏

v∈Nt

%(x + )v(t − (v))

∣∣∣∣∣
!= t − z

)

dz (13)

thus showing that , is di%erentiable with respect to t. In the "nal term of (13) we can
move Q to the left of the integral by fundamental theorems of calculus (c.f Bertoin
(1996), Q may be expressed as linear combination of di%erential and integral operators).
Collecting and tidying terms from (12) and (13) using the decomposition (11) the result
follows.

Proof of Theorem 8. Suppose that % ∈ C is a travelling wave solution satisfying (3)
then from the "rst half of the proof of Theorem 3, for any dissecting stopping line
L; EM [&;L](x) = %(x) and hence % is also a solution to the functional equation
(10) for all dissecting stopping lines. Suppose now that % ∈ C is a solution to the
functional equation (10) for all dissecting stopping lines. By the previous lemma we
thus have that %(x − &(')t) = ,(x; t) solves the generalized K-P-P equation and thus
% is a travelling wave solution to (3).

Theorem 8 shows a parallel between the two source equations from the point of view
of building multiplicative martingales. It also shows us however the parallel between
the known results of the right most particle problem for branching Brownian motion
and the equivalent anticipated (but not yet proven) results for the right most particle
problem for the branching random walk. In branching Brownian motion, it has been
shown by Bramson (1983) that there exists a sequence of centering constants ct such
that for the displacement of the right most individual alive at time t; Bt , we have that
Bt − ct converges in distribution. The limiting distribution function is also a travelling
wave solution to the K-P-P equation. For the branching random walk, it is expected
(see, for example, Kyprianou (1998) or Dekking and Host (1991)) that in the analogous
case, the limiting distribution does not satisfy an ordinary di%erential equation, but the
functional equation (2). The results here show that the two cases would then be true
contemporaries.
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