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Abstract We show that in homogeneous fragmentation processes the largest fragment at
time t has size

e−t�′(p)t−
3
2 (log�)′(p)+o(1),

where � is the Lévy exponent of the fragmentation process, and p is the unique solution
of the equation (log�)′( p̄) = 1

1+ p̄ . We argue that this result is in line with predictions
arising from the classification of homogeneous fragmentation processes as logarithmically
correlated random fields.

1 Introduction

There has been considerable interest in the past couple of years in a universality class of
stochastic models called logarithmically correlated fields. This class includes branching
Brownian motion [6,13,30], branching random walks [1,2,4], the Gaussian free field on
a planar lattice domain [15–17], the logarithmically correlated random energy model [21],
Gaussian 1/ f -noise [22], nested conformal loops [3], and Gaussian multiplicative chaos [26,
29] to name just a few. Plenty of interesting features arise from conjectured membership of
combinatorial and probabilistic objects such as eigenvectors of random matrix ensembles
in this class, conjectures of Fyodorov et al. [19,20] on the maximum of the Riemann zeta
function on an interval of the critical line and of the characteristic polynomial of random
unitary matrices being well-known examples, see [5] for a survey.

Let us briefly describe some of the heuristic features of this class, as sketched, for example,
in [18]. Characteristic of these models is that, loosely speaking, at a large fixed level n they
can be described as a centred field (V (x) : x ∈ 2−n

Z
d ∩ (0, 1)d) with correlations obeying
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The Largest Fragment of a Homogeneous Fragmentation Process 1227

a scaling of the type

E
[
V (x)V (y)

] ∼ −d � ′′(0) log |x − y|, if 2−n � |x − y| � 1, (1.1)

where � is a characteristic exponent given as

E
[
epV (x)] ∼ 2dn(�(p)−1).

The conjectured behaviour that the models in this universality class have in common relates
to their extremal geometry. It has been argued (at varying levels of detail and rigour) that the
highest peak at level n in a logarithmically correlated field satisfies

max
x∈2−nZd∩[0,1]d

V (x) = � ′(q̄)(d log 2)n − 3

2
(log�)′(q̄) log n + O(1) (1.2)

in probability, where q̄ solves the equation � ′(q̄) = �(q̄)
q̄ . In some cases finer results have

been obtained, including the precise distribution of the asymptotic random constant of order
one in the expansion of max V (x) and fine results on the peaks seen from the largest peak,
see for example [2,6,14].

An alternative approach to logarithmically correlated fields comes from the work of Fyo-
dorov et al. [21]. They look at randomfields satisfying amultifractal formalismand conjecture
that, under natural conditions, the disorder-inducedmultifractality implies a logarithmic scal-
ing of the correlations. The highest peak then satisfies

max
x∈2−nZd∩[0,1]d

V (x) = α+(d log 2) n + 3

2

(
f ′(α+)

)−1 log n + O(1), (1.3)

where f (α) = dim{x : lim 1
n V (x) = α(d log 2)

}
> 0 is the multifractal spectrum on

the domain (α−, α+) with boundary values given by f (α−), f (α+) = 0. The multifractal
formalism relates the spectrum to the characteristic exponent through the Legendre transform
�(q) = max{ f (α) + qα}.

The purpose of the present paper is to align the class of homogeneous fragmentation
processes with the universality class of logarithmically correlated fields by describing the
processes’ extremal behaviour and arguing that the rigorous result we obtain is consistentwith
the predictions obtained from the heuristics above. This makes homogeneous fragementation
processes one of very few examples of a non-Gaussian fieldwhere the universality hypothesis
can be verified. It also gives non-rigorous evidence that further properties of the class of of
logarithmically correlated fields, such as convergence of the constant order term in (1.3) to a
random variable of a particular shape and existence of a freezing transition, also hold in this
case, but we will not give technical proofs of this.

Fragmentation processes represent the (typically) continuous splitting of an object into
smaller parts. We describe a fragmentation process by means of a random family {Ix (t) : x ∈
(0, 1), t ≥ 0} of intervals such that Ix (t) ⊆ (0, 1) is the interval containing x at time t . We
assume that the following consistency relations are satisfied:

1. x ∈ Ix (t);
2. Ix (t) ⊆ Ix (s) if s < t; and
3. if y ∈ Ix (t), then Ix (t) = I y(t).

The random evolution of the fragmentation is given by a dislocation measure ν defined
on the partitions of the unit interval. Every interval Ix (t) decomposes independently at rate
ν(du) into parts whose relative sizes are given by the partition u. If the measure ν is finite
then the process (log I x (t) : t > 0), is a random walk for every x ∈ (0, 1) and the entire
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1228 A. Kyprianou et al.

system is a branching random walk. Our interest is therefore mostly on the case of infinite
dislocation measure when both particle movement and branching become instantaneous and
classical results on branching random walk cannot be applied. A rigorous definition of the
process in the infinite dislocation measure case will be given in Sect. 2 of this paper.

We let υ be uniformly distributed in the unit interval and define the Lévy exponent, when
it is finite, as

�(p) := − logE
[|Iυ(1)|p] < ∞,

or, equivalently, in terms of the dislocation measure as

�(p) =
∫ (

1 −
∞∑

i=1

|ui |p+1
)

ν(du),

where (ui : i ∈ N) is an enumeration of the partition sets of u, see [7] for details. Our main
result, Theorem 2.2, describes the size of the largest fragment at time t ↑ ∞ as

max
x∈[0,1] |I

x (t)| = e−t�′( p̄)t−
3
2 (log�)′( p̄)+o(1),

where p̄ is the unique solution of the equation (log�)′( p̄) = 1
1+ p̄ .

2 Preliminaries and Main Result

Before stating the main result of this paper, we briefly discuss the definition of conserva-
tive homogeneous interval fragmentation processes and some of their basic properties. An
informal description of such a process is as follows. The process starts from some initial con-
figuration of fragments (i.e. subsets of (0, 1)), which break up independently of one another
as time passes. In general, these fragmentation events occur instantaneously in time. Looking
at a single fragment at a given time, its subsequent evolution (after scaling to unit length)
looks precisely the same as the fragmentation of any other (similarly scaled) particle. This
means, in particular, that our fragmentations are time-homogeneous - the rate of ‘breaking
up’ is independent of particle size. Finally, we allow no loss of mass; the sum of the lengths
of the fragments at any given time equals the sum of the lengths of the fragments in the initial
configuration.

Let us now briefly state the formal definition of a conservative homogeneous interval frag-
mentation process, referring to [7] for proofs and further details. Let U denote the space of
open subsets of (0, 1), which serves as our state-space. Each set u ∈ U has a unique decompo-
sition into disjoint, non-empty, open intervals. The intervals comprising this decomposition
are referred to as the fragments or particles of the set, and represent the ‘pieces’ of the object
that ‘falls apart at random’. For u, v ∈ U , we define the distance between u and v to be the
Hausdorff distance between (0, 1) \ u and (0, 1) \ v (see [10]). We also endow U with the
σ -algebra generated by the open sets corresponding to this distance, which we denote by
B(U).

Our basic data are a family (qt : t > 0) of probability measures defined on (U,B(U)).
We fix an interval I := (a, b) ⊆ (0, 1) and write I for the set of open subsets of I (with the
distance inherited from U and the corresponding σ -algebra). We introduce the affine map
gI : (0, 1) → I , and retain the notation gI for its natural extension to a map from U to I. We
write q I

t for the image measure of qt under the map gI , so that q I
t is a probability measure

on I. Given an open set u ∈ U and a measurable enumeration (ui : i ∈ N) of the intervals
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The Largest Fragment of a Homogeneous Fragmentation Process 1229

in its decomposition, we write qut for the distribution of ∪Xi where the Xi are independent
random variables with laws quit respectively.

Definition 2.1 A Markov process U := (U (t) : t ≥ 0) taking values in U is called a
conservative homogeneous interval fragmentation if it has the following properties:

1. U is continuous in probability;
2. U is nested in the sense that s > t ⇒ U (s) ⊆ U (t);
3. Fragmentation property: there exists some family (qt : t > 0) of probability measures

on U such that

∀t ≥ 0 ∀s > t ∀A ∈ B(U) P
(
U (s) ∈ A

∣
∣U (t)

) = qU (t)
s−t (A);

4. |U (t)| = 1 for all t ≥ 0.

The filtration generated by U is denoted by F := (Ft : t ≥ 0), and the law of the
fragmentation started from u ∈ U by Pu , with corresponding expectation operator Eu . We
define P := P(0,1) with expectation operator E.

Denoting by u∗ the largest interval component of u ∈ U we call a measure ν on U a
dislocation measure if it satisfies ν((0, 1)) = 0 and

∫

U

(
1 − |u∗|) ν(du) < ∞, (2.1)

c.f. Definition 2.6 of [7]. Given a homogeneous interval fragmentationwe obtain a dislocation
measure ν by letting, for u ∈ B(U) and I = (0, 1),

ν(u) = lim
t↓0

1

t

(
q I
t (u) − q I

0 (u)
)
.

The measure ν is called the dislocation measure corresponding to U , and it characterises
the law of U .

Next we introduce the collection of tagged fragments. Given a fragmentation process U
and x ∈ (0, 1), the x-tagged process is simply the process of intervals inU containing x . We
write Ix (t) for this fragment at time t ≥ 0, and I x (t) for its length. We also introduce the
family of processes (ξ x : x ∈ (0, 1)), where ξ x (t) := − log I x (t). Lettingυ denote a uniform
random variable on (0, 1)which is independent of all the random variables introduced above,
the processes (It ), (It ) and (ξt ) are defined by replacing x with υ in the preceding definitions.
These are the corresponding randomly tagged processes. Importantly, ξ is a subordinator.
We denote its Laplace exponent by �(p) := − logE(e−pξ(1)), which exists and is infinitely
differentiable on the interval (p,∞) for some p ∈ [−1, 0].

Using the concavity of �, it is easy to show that the equation

�(p)

1 + p
= �′(p) (2.2)

has a unique solution p ∈ (p,∞), and that this solution is positive. The value p has great
importance in the present context. For instance, with cp := �′(p), we have

lim
t→∞

inf x∈(0,1) ξ xt

t
= cp a.s.,

giving the first term in the asymptotic expansion of the size of the largest particle (see, for
example, [11]).

We are now ready to state the main result of this paper, which identifies the second term
of this asymptotic expansion in terms of p :
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1230 A. Kyprianou et al.

Theorem 2.2 Starting from any initial configuration in U ,
inf x∈(0,1) ξ x (t) − cpt

log t
−→ 3

2
(p + 1)−1 =: l in probability ast ↑ ∞.

The proof is based on martingale methods and is close in spirit to that of [4]. Roughly
speaking, we will define random variables that count the number of particles that are too
large or small. Using two tools—a Many-to-One Lemma and a change of measure (to be
introduced shortly)—we will estimate the moments of these random variables using the
fluctuation theory of Lévy processes.

To be precise, let us introduce the processes ζ x
t := ξ xt − cpt for each x ∈ (0, 1), t ≥ 0,

and the corresponding randomly tagged process ζt := ξt − cpt for t ≥ 0. For each p > p
we also define the process (Ep(t) : t ≥ 0) by

Ep(t) := exp
(
�(p)t − pξt

)
.

This process is a unit mean (F , P)-martingale, allowing us to define the family of probability
measures

(
Qp : p > p) by

dQp

dP

∣∣∣∣
F t

= Ep(t) for t ≥ 0.

In fact we will only use Q := Qp . This is because, as a consequence of the equation
defining p, (2.2), the spectrally positive Lévy process (ζ, Q) has zero mean. It is also well-
known that ζ has finite moments of all orders under Q. These special properties allow us to
use results on Lévy processes with zero mean and finite variance, which are collected in the
appendix.

For a set A ⊂ (0, 1), we use the notation
∑

[x]t :A to represent sums taken over the
(countable) collection of distinct fragments at time t that are subsets of A. We also write∑

[x]t for
∑

[x]t :(0,1), the sum taken over all distinct fragments at time t . For a Borel set
B ⊂ R, |B| stands for the Lebesgue measure of B. Using this notation, we make the simple
observation that for any u ∈ U , t ≥ 0, and measurable non-negative function F on paths of
tagged fragments, we can write

Eu

∑

[x]t
F(ξ xs : s ≤ t) =

∞∑

i=1

Eu

∑

[x]t :ui
F(ξ xs : s ≤ t)

=
∞∑

i=1

E
∑

[x]t :(0,1)
F(ξ xs − log |ui | : s ≤ t)

=
∞∑

i=1

E
(
I−1
t F(ξs − log |ui | : s ≤ t)

)
,

where the sums in i should be regarded as finite in case u consists of finitely many blocks.
To illustrate the notation,

∑
[x]t :ui sums over distinct particles at time t which result from

the fragmentation of the interval ui . In the second equality we have used the fragmentation
property. To get from second to third, we introduce the factor I xt · (I xt )−1 inside the second
sum, which can then be interpreted as a size-biased pick. Proceeding to make the change of
measure E → Q, we obtain the following Many-to-One lemma:
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The Largest Fragment of a Homogeneous Fragmentation Process 1231

Lemma 2.3 (MT1) For any measurable, non-negative function F on paths of tagged frag-
ments and any u = (u1, u2, . . .) ∈ U we have

Eu

∑

[x]t
F(ζ x

s : s ≤ t) =
∞∑

i=1

Q
(
eζt (p+1)F(ζs − log |ui | : s ≤ t)

)
,

In particular,

E
∑

[x]t
F(ζ x

s : s ≤ t) = Q
(
eζt (p+1)F(ζs : s ≤ t)

)
.

To prove 2.2, it suffices to prove the following statement two statements for arbitrary
u ∈ U :

Pu

(
inf

x∈(0,1)
ζ x (t) ≤ α log t

)
→ 0 as t ↑ ∞ for all α < l; (2.3)

lim sup
t→∞

infx∈(0,1) ζ x (t)

log t
≤ l Pu − almost surely. (2.4)

The structure of the remainder of the paper is as follows. In Sect. 3 we prove (2.3), and
in Sect. 4 we prove (2.4), the more challenging result. The arguments are analogous to those
in [4], but there are significant differences on the technical level, occuring particularly in the
proof of (2.4). The analogous part of the proof in [4] makes certain moment assumptions that
are not satisfied in our framework. We do not need these moment assumptions, as we are able
to exploit the special features of our fragmentation processes - namely, that particles decrease
in size, and no mass is lost. In Sect. 5 we align our result with heuristics on logarithmically
correlated fields. Our proof relies on fine results on Lévy processes, which are provided in
the appendix, Sect. 6.

3 Proof of (2.3)

Fix an arbitrary α ∈ (0, l), k ∈ N and u = (u1, u1, . . .) ∈ U . Define, for t ≥ 0, the random
variable

Zk
t :=

∑

[x]t
1
(
ζ x
t ≤ α log t, ζ x

t
≥ −k

)
, (3.1)

where ζ x
t

:= inf0≤s≤t ζ
x
s . This random variable counts the number of ‘bad’ particles (with a

truncation we will remove later).
We estimate the mean of Zk

t under Eu as follows, recalling that ζ is the randomly tagged
process corresponding to the family of processes (ζ x : x ∈ (0, 1)):

Eu Z
k
t =

∞∑

i=1

Q
(
eζt (p+1)1

(
ζt − log |ui | ≤ α log t, ζ

t
− log |ui | ≥ −k

))

≤ tα(p+1)
∑

i

|ui |p+1Q
(
ζt − log |ui | ≤ α log t, ζ

t
− log |ui | ≥ −k

)
. (3.2)

In the first line we use MT1 (Lemma 2.3) , and in the second we bound the exponential
factor using the indicator. Recalling that (ζ, Q) is a spectrally positive Lévy process with
zero mean and finite variance, we can estimate a typical probability on the right-hand side
of the previous inequality using 6.5:
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1232 A. Kyprianou et al.

Q
(
ζt − log |ui | ≤ α log t, ζ

t
− log |ui | ≥ −k

)
≤ γ t−3/2(k − log |ui | + 1)(k + α log t)2

≤ γk t
−3/2(log t)2(1 − log |ui |), (3.3)

for some constants γ, γk > 0 (where the latter depends on k). Putting this back into (3.2),
we find that

Eu Z
k
t ≤ γk t

α(p+1)t−3/2(log t)2
∑

i

|ui |p+1(1 − log |ui |). (3.4)

Since p > 0, the function x �→ x p(1 − log x) has an upper bound K > 0 on (0, 1), so
the sum on the right-hand side is bounded by K

∑ |ui | = K . We deduce that

Eu Z
k
t ≤ Kγk t

α(p+1)t−3/2(log t)2. (3.5)

Since α(p + 1) < l(p + 1) = 3/2, this quantity goes to zero as t → ∞.
To complete this part of the proof we must remove the truncation ζ x

t
≥ −k in (3.1). To

this end, we introduce the intrinsic additive martingale corresponding to p,

Mt := e�(p)t
∑

[x]t
I x (t)1+p =

∑

[x]t
exp

( − (1 + p)ζ x
t

)
.

By the martingale convergence theorem, Mt converges to a finite limit Pu-almost surely
as t → ∞. Noting that p > 0, we get inf t≥0 inf x∈(0,1) ζ x

t > −∞ Pu-a.s. Letting Bk :={
inf t≥0 inf x∈(0,1) ζ x

t ≥ −k
}
for each k ∈ N, it follows that

lim
k→∞ Pu(Bk) = 1. (3.6)

Next fix an arbitrary ε > 0, and (using (3.6)) select k = k(ε) ∈ N so large that Pu(Bk) ≥
1 − ε. Observing that Zk

t ≥ 1Bk
∑

[x]t 1(ζ x
t ≤ α log t) for all t ≥ 0, we may then write,

Pu(Z
k
t = 0) ≤ Pu

[
Bk ∩

{∑

[x]t
1
(
ζ x
t ≤ α log t

) = 0
}]

+ Pu(B
c
k )

≤ Pu

[∑

[x]t
1
(
ζ x
t ≤ α log t

) = 0

]
+ ε, (3.7)

for all t ≥ 0. We have already shown that Eu(Zk
t ) → 0 as t → ∞, and so, since Zk

t
takes values in {0, 1, 2, . . .}, we deduce that Pu(Zk

t = 0) → 1 as t ↑ ∞. Combining this
observation with (3.7) we conclude that

1 = lim inf
t→∞ Pu(Z

k
t = 0) ≤ lim inf

t→∞ Pu

[∑

[x]t
1
(
ζ x
t ≤ α log t

) = 0

]
+ ε.

Since ε > 0 was arbitrary, we get 1 = limt→∞ Pu

[∑
[x]t 1

(
ζ x
t ≤ α log t

) = 0
]
. Finally,

observe that
{∑

[x]t
1(ζ x

t ≤ α log t) = 0

}
⊆

{
inf

x∈(0,1)
ζ x
t > α log t

}
,

so that Pu
(
inf x∈(0,1) ζ x

t > α log t
) → 1 as t ↑ ∞, which implies that (2.3) holds. ��
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The Largest Fragment of a Homogeneous Fragmentation Process 1233

4 Proof of (2.4)

In this part of the proof, we can work under P without loss of generality. To see why, note
that we are now trying to show the existence of ‘big’ particles (in the sense made precise by
(2.4)). This means that, starting the fragmentation from general u ∈ U , we can immediately
look only at the largest particle at time t descending from u∗, whose size we call Bu∗

t . Let Bt

denote the size of the largest fragment at time t in a fragmentation issued from (0, 1). The
fragmentation property implies that (Bu∗

t , Pu) is equal in law to (|u∗|Bt , P). The numerator in
(2.4) corresponding to these two processes will therefore only differ by the additive constant
− log |u∗|, which goes to zero in the limit upon division by log t .

Let C > 0 be the larger of the two constants provided by 6.6 and 6.3. Introduce the
following intervals:

Js(t) :=
⎧
⎨

⎩

[−1,∞) if 0 ≤ s ≤ t
[l log t,∞) if t < s < 2t
[l log t, l log t + 2C] if s = 2t.

(4.1)

For x ∈ (0, 1) and u, v ∈ [0, 2t], define the events Ax
2t,[u,v] := {ζ x

s ∈ Js(t)∀s ∈ [u, v]},
and write Ax

2t := Ax
2t,[0,2t]. In what follows, A2t (with no superscript) means Aυ

2t , where υ

is the uniformly distributed random tag in (0, 1) in the definition of ζ . Finally, define the
random variable Zt := ∑

[x]2t 1Ax
2t
.

The first step is to bound EZt from below. Using MT1 (Lemma 2.3), we obtain

EZt = Q
(
eζt (p+1) 1A2t

) ≥ γ t3/2 Q(A2t ) ≥ γ ′ > 0,

for some γ, γ ′ > 0 and all large t . In the first inequality we have used the indicator to bound
the exponential factor from below; the second uses 6.6.

Next, we bound the second moment of Zt from above. To this end we introduce the
notation Ds to denote the random set of all fragmentation times in [0, s], which, in general,
is almost surely dense in [0, s]. For r ∈ Ds write B[z]r for the event that the interval Iz

r−
shatters at time r . Note that for r ∈ Ds precisely one of the indicators 1B[z]r− over all distinct
fragments [z]r− ⊂ (0, 1) takes the value 1 (simultaneous fragmentations of distinct blocks
is a null event). We then make the decomposition

Z2
t = Zt + �t , (4.2)

where

�t :=
∑

r∈D2t

∑

[z]r−:(0,1)
1Az

[0,r−]1B[z]r
∑

[x]r ,[y]r :[z]r−[x]r �=[y]r

∑

[u]2t :[x]r[v]2t :[y]r

1Au[r,2t]1Av[r,2t] (4.3)

=
∑

r∈D2t

∑

[z]r−:(0,1)
�z

r , (4.4)

where the second line defines�z
r . As we are temporarily regarding t as fixed, we have written

Aw[u,v] for Aw
2t,[u,v]. This decomposition is similar to the one used in [4], but we have the added

complication that the sum in r is over a random (dense) set. To explain this decomposition,
first note that Z2

t = ∑
[u]2t 1Au

2t
· ∑[v]2t 1Av

2t
. The Zt in (4.2) comes from the terms in this

product where Iu
2t = Iv

2t . When Iu
2t �= Iv

2t , we find their most recent common ancestor
Iz
r− just before it fragments (at time r ) into the distinct ancestors Ix

r and I y
r of Iu

2t and Iv
2t

respectively.
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Our aim is to boundE�t fromabove.Thefirst part of the calculation uses the fragmentation
property to make the summand indexed by r in (4.3) measurable with respect to Fr . To this
end, we first show that, for all s > 0, the setDs almost surely has an enumeration (r1, r2, . . .)
with the property that each ri is an F-stopping time. Fix s > 0, and a strictly increasing
(deterministic) sequence (ai ) ⊂ [0, 1) with a1 = 0 and lim ai = 1. If [z]r− (for some
z ∈ (0, 1)) is the particle that shatters at time r ∈ Ds , then the fragments at time r resulting
from this fragmentation event are given by an affine image of some ur ∈ U . We write u∗

r for
the largest interval component of ur . We then introduce the sets Ds,n := {r ∈ Ds : |u∗

r | ∈
[an, an+1)}. Of course, Ds = ⋃

n∈N Ds,n , and, as we will now show, Ds,n := #Ds,n < ∞
almost surely, for all n ∈ N. To this end, we rewrite Ds,n as follows:

Ds,n =
∑

0≤r≤s

1B[z]r 1( |u∗
r |∈[an ,an+1)

) .

Using the compensation formula (see [25, p. 99]), we deduce that EDs,n = s ν
(
u∗ ∈

[an, an+1)
)
. It remains to note that, for all n ∈ N,

ν
(
u∗ ∈ [an, an+1)

) ≤ (1 − an+1)
−1

∫

U

(
1 − |u∗|) ν(du) < ∞.

The desired enumeration is then obtained by listing the elements of each (almost surely finite)
set Ds,n in order of increasing size, and concatenating the resulting sequences.

Using the enumeration (r1, r2, . . .) constructed above (with s = 2t) and the non-negativity
of the terms in (4.3), we can now take the first step towards estimating E�t , writing

E�t =
∞∑

i=1

E
∑

[z]ri−:(0,1)
�z

ri =
∞∑

i=1

EEFri

∑

[z]ri−:(0,1)
�z

ri . (4.5)

In the second equality we have conditioned the term in the sum labelled by ri on the
sigma-algebra Fri . Next we calculate these conditional expectations. Fixing r = ri for some
i ∈ N, we have

EFr

∑

[z]r−:(0,1)
�z

r =
∑

[z]r−:(0,1)
1Az

[0,r−]1B[z]r
∑

[x]r ,[y]r :[z]r−[x]r �=[y]r

EFr

∑

[u]2t :[x]r[v]2t :[y]r

1Au[r,2t]1Av[r,2t] . (4.6)

where we have used the fact that r is Fr -measurable. We then write

EFr

∑

[u]2t :[x]r[v]2t :[y]r

1Au[r,2t]1Av[r,2t] =
⎛

⎝EFr

∑

[u]2t :[x]r
1Au[r,2t]

⎞

⎠

⎛

⎝EFr

∑

[v]2t :[x]r
1Av[r,2t]

⎞

⎠ (4.7)

for x, y ∈ (0, 1) such that Ix
2t �= I y

2t , using the independent evolution of distinct particles.
Now we calculate a typical factor on the right-hand side of (4.7) (explanations follow the
calculation):

EFr

∑

[u]2t :[x]r
1Au[r,2t] = EFr

∑

[u]2t :[x]r
1(

ζ us ∈Js (t)∀s∈[r,2t]
)

= EFr

∑

[u]2t :[x]r

I u2t
I xr

I xr
I u2t

1(
ζ us ∈Js (t)∀s∈[r,2t]

)
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=
(

E I−1
2t−r1(

α+ζs∈Js+r (t)∀s∈[0,2t−r ]
)
) ∣
∣
∣
∣
α=ζ x

r

=
(

Q eζ2t−r (p+1)1(
α+ζs∈Js+r (t)∀s∈[0,2t−r ]

)
) ∣
∣
∣∣
α=ζ x

r

= F(ζ x
r ),

where, for α ∈ R,
F(α) := Q eζ2t−r (p+1)1(

α+ζs∈Js+r (t)∀s∈[0,2t−r ]
).

In the first line we just write down the definition of the events Au[r,2t]; the second artificially
introduces a size-based pick; the third makes use of the size-biased pick together with the
fragmentation property; and the final line makes the change of measure E → Q. So far,
we’ve shown that

EFr

∑

[z]r−:(0,1)
�z

r =
∑

[z]r−:(0,1)
1Az

[0,r−]1B[z]r
∑

[x]r ,[y]r :[z]r−[x]r �=[y]r

F(ζ x
r )F(ζ

y
r ). (4.8)

Putting this expression back into (4.5) and exchanging the summation and expectation,
we arrive at

E�t = E
∑

r∈D2t

∑

[z]r−:(0,1)
1Az

[0,r−]1B[z]r
∑

[x]r ,[y]r :[z]r−[x]r �=[y]r

F(ζ x
r )F(ζ

y
r ). (4.9)

We have now succeeded in making the r -indexed summand Fr -measurable, which will
allow us to use the compensation formula (see [25, p. 99]). To this end, define the function
G : R × U → [0,∞] by

G(α, u) :=
∑

au �=bu

F(α − log |au |)F(α − log |bu |)

where the sum is over the distinct interval components au, bu ⊂ u.1 Using the compensation
formula, we can move from (4.9) to

E�t =
∫ 2t

0
dr · E

⎛

⎝
∑

[z]r−:(0,1)
1Az

[0,r−]

∫

U
G(ζ z

r−, u)ν(du)

⎞

⎠

=
∫ 2t

0
dr · Q

(
eζr−(p+1)1A[0,r−]

∫

U
G(ζr−, u)ν(du)

)

=
∫ 2t

0
dr · λ(r), (4.10)

where the final equality defines λ(r) as the integrand of the previous line. Here, ν is the
dislocation measure introduced in Sect. 2, which satisfies the integrability condition (2.1).

Notation In the remainder of this section, positive constants (independent of t) will be
denoted by γ > 0, the value of which will change from one inequality to another. We state
the next part of the proof as a lemma:

1 The functionG canbe constructed in ameasurablewaybyordering the interval components ofu ∈ U in order
of decreasing length, (u1, u2, . . .), and then writing the sum as

∑∞
i=1

∑
j �=i F(α − log |ui |)F(α − log |u j |).
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1236 A. Kyprianou et al.

Lemma 4.1 E�t =
∫ 2t

0
λ(r)dr = O

(
(log t)3

)
as t ↑ ∞.

Proof First we estimate F(α − log |au |) for interval components au of u ∈ U and α ∈ R:
using the indicator to bound the exponent we have

F(α − log |au |) = Q eζ2t−r (p+1)1(
α−log |au |+ζs∈Js+r (t)∀s∈[0,2t−r ]

)

≤ γ t3/2 |au |p+1e−α(p+1) f (α − log |au |), (4.11)

for some γ > 0, with

f (θ) := Q
(

θ + ζs ∈ Js+r (t)∀s ∈ [0, 2t − r ]
)

, forθ ∈ R.

We estimate f in two different ways, depending on the value of r . For r ∈ [t, 2t], 6.3
provides the estimate

f (θ) ≤ Q
(

ζ2t−r ∈ [l log t − θ, l log t − θ + 2C]
)

≤ γ n2t−r ,

with nθ := θ−1/2 ∧ 1 for θ ≥ 0. Referring back to (4.10), this leads to the bound

∫ 2t

t
λ(r) dr ≤ γ I1 t

3
∫ 2t

0
dr · n22t−rQ

(
e−ζr (p+1)1A[0,r−]

)
, (4.12)

where

I1 :=
∫

U
ν(du) ·

∑

au �=bu

|au |p+1|bu |p+1.

Let us check that I1 is finite. Indeed,
∑

au �=bu

|au |p+1|bu |p+1 ≤
∑

au �=bu

|au ||bu | =
∑

au

|au |(1 − |au |)

≤ (1 − |u∗|) +
∑

au �=u∗
|au |

= 2(1 − |u∗|).
In the first inequality we use the facts that |au |, |bu | < 1 and p > 0; in the first equality we
fix an interval component au of u ∈ U and sum over the interval components bu �= au of
u; and in the second inequality we use the fact that |au | ∈ (0, 1). The finiteness of I1 then
follows from (2.1). It remains to estimate the expectation in (4.12):

Q
(
e−ζr−(p+1)1A[0,r−]

) ≤ γ t−3/2 Q
(
1A[0,r−] 1(ζr−≤2 l log t)

) + γ Q
(
e−ζr−(p+1)1A[0,r−] 1(ζr−>2 l log t)

)

≤ γ t−3/2Q
(
ζ
r− ≥ −1, ζr− ≤ 2l log t

) + γ t−3

≤ γ t−3/2(r−3/2 ∧ 1)(log t)2 + γ t−3.

In the first line we split the event {ζr− ≥ l log t} ⊂ A[0,r−] into the events {ζr− > 2l log t}
and {l log t ≤ ζr− ≤ 2l log t}. In the second line, we discard some information from the
indicator on the interval [t, r ] and estimate the exponential factor in the second term using
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the indicator 1(ζr−>2 l log t). In the final line, we use 6.5 to estimate the remaining expectation.
Returning to (4.12), we conclude that

∫ 2t

t
λ(r) dr ≤

∫ 2t

t
dr · [γ (log t)2 t3/2 (r−3/2 ∧ 1) n22t−r + γ n22t−r

]
.

Elementary analysis allows us to conclude that
∫ 2t

t
λ(r)dr = O

(
(log t)3

)
, as required.

Now we look at λ(r) for r ∈ [0, t]. This time we make the estimate

f (θ) ≤ Q
(
ζ
2t−r

≥ −1 − θ, ζ2t−r ∈ [l log t − θ, l log t − θ + 2C]
)

≤ γ (1 + θ) (log t) (2t − r)−3/2

≤ γ (1 + θ) (log t) t−3/2.

In the first inequality we throw away some information from the indicator on the interval
[t, 2t − r); in the second we use 6.5; and the final inequality uses the fact that r ∈ [0, t].
Making the substitution θ = α − log |au |, we arrive at

f (α − log |au |) ≤ γ (1 + α − log |au |) (log t) t−3/2

≤ 2γ (2 + α) (1 − log |au |) (log t) t−3/2

for α ≥ −1 (recall we intend to make the substitution α = ζr− ≥ −1). This leads to the
bound

λ(r) ≤ γ I2 (log t)2 Q
(
e−ζr (p+1)(2 + ζr−)21A[0,r−]

)
,

where

I2 :=
∫

U
ν(du) ·

∑

au ,bu

|au |p+1|bu |p+1(1 − log |au |)(1 − log |bu |).

This time we note that the function x �→ x p(1− log x) is bounded on [0, 1], since p > 0.
This allows us to write I2 ≤ K

∫
U ν(du) ·∑ |au ||bu | (for some K > 0), which is finite by the

same arguments we used for I1. To complete the proof we define τ−
0 := inf{s ≥ 0 : ζs < 0},

and let Q1 denote the law of 1 + ζt under Q. We note then that

∫ t

0
dr · Q

(
(2 + ζr−)2e−ζr−(p+1)1A[0,r−]

)
≤ ep+1 Q1

∫ τ−
0

0
(1 + ζr−)2e−ζr−(p+1) dr .

Defining the function h : [0,∞) → [0,∞) by h(θ) := (1 + θ)2 e−(p+1)θ , and bearing in
mind that ζ is spectrally positive, we apply Theorem 20 [9, p. 196] to make the following
calculation:

Q1

∫ τ−
0

0
(1 + ζr−)2e−ζr−(p+1) dr = Q1

∫ τ−
0

0
h(ζr−) dr

= γ

∫ ∞

0
dy ·

∫ 1

0
dz · h(1 + y − z)

for some γ > 0. It remains to note that the right-hand side of the previous display is bounded
by K

∫ ∞
0 e−wdw < ∞, for some finite constant K > 0 (since 1 + p > 1). ��
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Let us collect together the facts we have established in this section so far: for some
γ1, γ2 > 0, we have

E(Zt ) ≥ γ1; and (4.13)

Z2
t = Zt + �t , with (4.14)

E�t ≤ γ2(log t)
3, (4.15)

for all large t . Following [4, p. 7], we make the following simple calculation, valid for all
large t :

E(Z2
t ) ≤ γ2(log t)

3 + E(Zt ) ≤
[

γ2

γ1
(log t)3 + 1

]
E(Zt ) ≤

[
γ2

γ1
(log t)3 + 1

]
1

γ1
E(Zt )

2,

(4.16)
where the first inequality uses (4.14) and (4.15), and the next two inequalities use (4.13).
First making use of the Paley–Zygmund inequality, and then of (4.16), we find that

P(Zt > 0) ≥ E(Zt )
2

E(Z2
t )

≥ γ

(log t)3
.

We then note that {
min

x∈(0,1)
ζ2t > l log t + 2C

}
⊆ {Zt = 0}

so that, for all sufficiently large t , we have

P
{

min
x∈(0,1)

ζ x
t > l log t + 2C

}
≤ P

{
min

x∈(0,1)
ζ x
t > l log

t

2
+ 2C

}

≤ 1 − γ

(log t)3
. (4.17)

Nowwe need to know the rate at which the number of exceptionally large particles grows.
To be precise define, in the notation of [24], sets Gc,α,β(t) := {Ix (t) : x ∈ (0, 1), αe−ct <

I x (t) < βe−ct } for 0 < α < 1 < β and c ∈ R. A result from [12] shows that for
c ∈ (cp,�′(p+)) there exists ρ̃(c) > 0, depending only on c, and not on α or β, such that

lim
t→∞

1

t
log #Gc,α,β(t) = ρ̃(c) a.s.

We fix a small δ > 0 and c := cp + δ, and define setsN (t) := {Ix (t) : ξ xt − ct ≤ 1}. We
deduce that for ρ = ρ̃(c) > 0 we have

lim
t→∞

1

t
log #N (t) ≥ ρ P − a.s. (4.18)

Next, fix an arbitrary ε > 0 and define Tn := T (n, ε) := inf{t ≥ 0 : #N (t) ≥ nε}. We
choose the �nε� largest elements ofN (Tn) and label them {In, j : 1 ≤ j ≤ �nε�} in order of
increasing size. We then write ξ

n, j,x
t to denote the − log of the size of the particle containing

x ∈ In, j at each time t ≥ Tn . Note, for instance, that ξ
n, j,x
Tn

= − log I n, j for all x ∈ In, j .
For all n ∈ N we have
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P

(

max
s∈[ n2 ,n]∩N

min
1≤ j≤�nε� min

x∈In, j
ξ
n, j,x
Tn+s − cp(Tn + s) > max

1≤ j≤�nε� ξn, j − cpTn + l log n + 2C

)

≤
∑

s∈[ n2 ,n]∩N
P
(

inf
x∈(0,1)

ξ xs − cps > l log t + 2C

)�nε�
≤

∑

s∈[ n2 ,n]∩N

(
1 − γ

(log s)3

)�nε�

≤ n

2

(
1 − γ

(log n)3

)nε−1

. (4.19)

The final expression is summable in n (see 6.7). By the Borel–Cantelli lemma, we deduce
that, P-almost surely,

max
s∈[ n2 ,n]∩N

min
1≤ j≤�nε� min

x∈In, j
ξ
n, j,x
Tn+s − cp(Tn + s) ≤ max

1≤ j≤�nε� ξn, j − cpTn + l log n + 2C

≤ 1 + (cp + δ)Tn − cpTn + l log n + 2C

= δTn + l log n + 2C + 1. (4.20)

The final ingredient we need to finish the proof is to show that

lim
n→∞

T (n, ε)

log n
≤ ε

ρ
P − a.s. (4.21)

To do this, fix ε′ ∈ (0, ρ). Then, by (4.18), there is some almost-surely finite random
variable T ≥ 0 such that, almost surely, t ≥ T implies #N (t) ≥ e(ρ−ε′)t . Consequently, for
all t ≥ T we know that

T (n, ε) ≤ inf
{
t ≥ 0 : e(ρ−ε′)t ≥ nε

}
= ε log n

ρ − ε′ .

This yields (4.21). Combining (4.20) and (4.21) we find that P-almost surely, for all large n,
we have

max
s∈[ n2 ,n]∩N

min
1≤ j≤n

min
x∈In, j

ξ
n, j,x
Tn+s − cp(Tn + s) ≤

(
2εδ

ρ
+ l

)
log n + 2C + 1.

By (4.21), we can write almost surely that Tn = ε · O(log n). We immediately deduce
that for all large n we have

inf
x∈(0,1)

ξ xn+Tn − cp(n + ε O(log n)) ≤
(
2εδ

ρ
+ l

)
log n + 2C + 1P − a.s.

Noting that Tn ≥ 0 and that t �→ ξ xt is monotonically increasing, we deduce that, for all
large n,

inf
x∈(0,1)

ξ xn − cpn ≤
(
2εδ

ρ
+ l

)
log n + ε O(log n)P − a.s.

Since ε > 0 can be made arbitrarily small, we conclude that

lim sup
N�n→∞

inf x∈(0,1) ξ xn − cpn

log n
≤ lP − a.s.

By monotonicity of t �→ ξ xt we see that the limit can be taken through all real values,
completing the proof of (2.4). ��
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5 Physical Heuristics

In this section we argue informally how our result can be put in line with the predictions
described for logarithmically correlated random fields in the introduction. To cast the model
into this framework we let

V (x) = log |Ix (t)| − E log |Ix (t)|, for x ∈ 2−n
Z ∩ [0, 1] and t = n log 2

�′(0)
,

where the choice of time scale comes from matching the spatial scale 2−n to e−t�′(0), which
is the typical length of a tagged fragment at time t and hence the scale on which V needs to
be sampled. We have

e−t�(p) = E
[∣∣Iυ(t)

∣
∣p] ≈

∑

x∈2−nZ∩(0,1)

E
∣
∣Ix (t)

∣
∣p+1 ≈ exp

(
(p + 1)E log |Iυ(t)|

+(n log 2)�(p + 1)
)
.

Observing that E log |Iυ(t)| ∼ −t�′(0) we get

�(p + 1) = 1 + p − �(p)

�′(0)
.

We introduce, for x, y ∈ (0, 1), the stopping time T = T (x, y) := inf{t ≥ 0 : Ix
t �= I y

t }, the
time when x and y are first split apart. Fixing an arbitrary t > 0 and abbreviating τ = t ∧ T
we can decompose

|Ix (t)| = |Ix (τ−)| × �x
τ × |Ĩ x̃ (t − τ)|,

where �x
s := |Ix (s)|/|Ix (s−)|, the process (Ĩx (s) : s ≥ 0) is a fragmentation process,

which is independent of what happened up to time t , and x̃ ∈ (0, 1) is the relative posi-
tion of x in Ix (t). Taking log on both sides of the decomposition and centering gives
V (x, t) ∼ V (x, τ−) + Ṽ (x̃, t − τ), as t ↑ ∞, where we define V (z, t) = log |Iz(t)| −
E log |Iz(t)|. Taking expectations and using the independence we get E[V (x, t)V (y, t)

] ∼
E
[
V (x, τ−)V (y, τ−)].UsingWald’s identity (see [23, Theorem 3]) we calculate the expec-

tation on the right and obtain

E
[
V (x, t)V (y, t)

] ∼ E
[
t ∧ T

]
�′(0)� ′′(0).

Recalling that t = n log 2
�′(0) we look at a regime where

t�′(0) = n log 2 � − log |x − y|.
Observe that the right-hand side is at least − log |Ix (T−)| ∼ T�′(0) and hence E[t ∧ T ] ∼
E[T ]. We obtain

E
[
V (x)V (y)

] ∼ E
[
T (x, y)

]
�′(0)� ′′(0) if 2−n � |x − y| � 1. (5.1)

This is a result of the type (1.1), if the distance of points x, y on the interval is measured not
with the euclidean metric, but with respect to the natural random metric coming from our
problem, defined by d(x, y) = |Ix (T (x, y)−)| and therefore− log d(x, y) ∼ �′(0)T (x, y).
The result can also be partially claimed for the euclidean set-up, as log |x − y| ≤
log |Ix (T (x, y)−)| ∼ log d(x, y)�′(0) butwewill see below thatworking in this framework
will lead to a loss of accuracy.
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The physicist’s prediction (1.2) hence gives

max
x

log |Ix (t)| + t�′(0) ≈ � ′(q̄)n log 2 − 3

2
(log�)′(q̄) log n.

Recalling that �(p + 1) = 1 + p − �(p)
�′(0) we get q̄ = p̄ + 1 and hence

max
x

log |Ix (t)| ≈ −�′( p̄)
�′(0)

n log 2 − 3

2

1

p̄ + 1
log n ∼ −�′( p̄)t − 3

2

1

p̄ + 1
log t,

which is in line with our rigorous result.
To relate our story to the multifractal approach of Fyodorov et al. [21] we first recall the

multifractal spectrum for homogeneous fragmentation processes obtained by Berestycki [8]
and refined by Krell [24]. We define qβ by �′(qβ) = β. Then, for every β making the
right-hand side below positive, almost surely,

dim|·|
{
x ∈ (0, 1) : lim

t↑∞ −1

t
log |Ix (t)| = β

} = 1 + qβ − �(qβ)

β
.

Perhaps surprisingly, this formula does not put our result in line with the prediction of
Fyodorov, Le Doussal and Rosso. The prediction can however be reconciled with our results,
if one moves to the appropriate metric, which in our case is again the randommetric d . While
for fixed intervals the ratio of lengths with respect to d and the Euclidean metric are typically
bounded from zero and infinity, the optimal coverings implicit in the Hausdorff dimension
above use random intervals for which these diameters are radically different. Indeed, given
β the covering intervals I for the corresponding set have metric diameters given by their
length to the power �′(0)/β (see for example [27]). As a result the multifractal spectrum in
the intrinsic random metric becomes

dimd
{
x ∈ (0, 1) : lim

t↑∞ −1

t
log |Ix (t)| = β

} = β

�′(0)

(
1 + qβ

)
− �(qβ)

�′(0)
.

This can be translated as

dimd
{
x ∈ (0, 1) : V (x) ≈ α(log 2)n

} = �(pα) − αpα =: f (α),

where pα is given by � ′(pα) = α. Hence f ′(α) = −pα . The right end of the spectrum, α+,
is characterised by the equation �(pα+) = pα+� ′(pα+), hence pα+ = q̄ and α+ = � ′(q̄)

aligning the prediction of (1.3) with our result.

6 Appendix on Lévy Processes

In this section we extend the lemmas found in the appendix of [4] from random walks to
Lévy processes with finite variance and zero mean. The proofs proceed by contradiction:
we assume that the various statements do not hold for appropriate Lévy processes, and then
generate a randomwalk contradicting the results in [4] by discretization. We begin by stating
two elementary lemmas which will be of use in carrying out such arguments. The first is a
topological lemma whose proof can be found in [28]. The second is a simple observation,
recorded for convenience. Throughout this section we write X for the process (Xt )t≥0.

Lemma 6.1 Let U ⊆ [0,∞) be open and unbounded. Then there exists h > 0 such that
nh ∈ U for infinitely many n ∈ N.
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1242 A. Kyprianou et al.

Lemma 6.2 Let X be a real-valued stochastic process issued from zero with almost surely
right-continuous paths. Then

∀ε > 0 ∀δ > 0 ∃a > 0 such that P
(||X ||[0,a] > δ

)
< ε,

where ||X ||[0,a] := sup0≤t≤a |Xt | .
Now we state the first of our results on Lévy processes.

Proposition 6.3 Let X be a Lévy process with zero mean and finite variance. Then

∃C0 > 0 ∃c > 0 such that ∀h ≥ C0 ∀t > 0 sup
r∈R

P
(
r ≤ Xt ≤ r + h

) ≤ c
h

t1/2
.

Proof Assume the above statement is not true, i.e. for some such Lévy process X

∀n ∈ N ∃hn ≥ n ∃tn > 0 ∃rn ∈ R such that P
(
rn ≤ Xtn ≤ rn + hn

)
> n

hn

t1/2n

.

(6.1)
Now select an a > 0 corresponding to the choices ε = 1

2 and δ = 1 in 6.2. Evidently, for
all n ∈ N,

P
(
rn − 1 ≤ Xt ≤ rn + hn + 1∀t ∈ [tn, tn + a]) ≥ P

(
rn ≤ Xtn ≤ rn + hn, ||Xt − Xtn ||t∈[tn ,tn+a] < 1

)

≥ 1

2
P
(
rn ≤ Xtn ≤ rn + hn

) ≥ n

2

hn

t1/2n

,

where in the second inequality we have used theMarkov property of the Lévy process at time
tn . Let U := ⋃∞

n=1(tn, tn + a), which is an open set. Note that, to prevent the probability
in (6.1) exceeding one we must have tn ≥ n4, proving that U is unbounded. Lemma 6.1
therefore supplies an h > 0 and two strictly increasing sequences (m j ) and (n j ) of natural
numbers with the property that, for all j ∈ N we have m jh ∈ [tn j , tn j + a]. Note that

tn j /m j → h as j → ∞. In particular, there exists K > 0 such that K/m1/2
j < 1/t1/2n j for all

j ∈ N. Now define a random walk on R by Sn := Xnh , and note that this random walk has
zero mean and finite variance. We estimate

P
(
rn j − 1 ≤ Sm j ≤ rn j + hn j + 1

) ≥ P
(
rn j − 1 ≤ Xt ≤ rn j + hn j + 1 ∀t ∈ [tn j , tn j + a])

≥ K

2
n j

hn j

m1/2
j

.

Taking suprema and assuming without loss of generality that hn j ≥ 2 for all j ∈ N, we
find that, for all j ∈ N,

sup
r∈R

P(r ≤ Sm j ≤ r + hn j + 2) ≥ K

4
n j

hn j + 2

m1/2
j

,

contradicting (A.1) in [4]. ��
Proposition 6.4 Let X be a Lévy process with zero mean and finite variance. Then, with
Xt := inf0≤s≤t Xs , we have

lim sup
t→∞

t1/2 sup
u≥0

1

u + 1
P
(
Xt ≥ −u

)
< ∞.
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Proof The statement in the proposition is equivalent to the following statement:

∃C > 0 ∃T > 0 such that t ≥ T ⇒ sup
u≥0

1

u + 1
P
(
Xt ≥ −u

) ≤ C

t1/2
.

For a contradiction, let us assume the converse of this statement holds. Then

∀n ∈ N ∃tn ≥ n ∃un ≥ 0 such that
1

un + 1
P
(
Xtn ≥ −un

) ≥ n

t1/2n

.

As in 6.3, select a > 0 with the following property:

1

un + 1
P
(
Xt ≥ −un − 1 ∀t ∈ [tn, tn + a]) ≥ n

2t1/2n

.

Now choose sequences (m j ) and (n j ), and K > 0 precisely as in the proof of 6.3. Select
furthermore an M > 0 with the property that 1

u ≤ M
u+1 ∀u ≥ 1 . Defining the random walk

(Sn)n∈N as in 6.3, we estimate

K

2
n j

1

m1/2
j

≤ 1

un j + 1
P
(
Xt ≥ −un j − 1 ∀t ∈ [tn j , tn j + a]) ≤ 1

un j + 1
P
(
Sm j

≥ −un j − 1
)

≤ sup
u≥0

1

u + 1
P
(
Sm j

≥ −u − 1
) = sup

u≥1

1

u
P
(
Sm j

≥ −u
)

≤ M sup
u≥1

1

u + 1
P
(
Sm j

≥ −u
) ≤ M sup

u≥0

1

u + 1
P
(
Sm j

≥ −u
)
.

This contradicts (A.3) in [4]. ��

With 6.3 and 6.4 in hand, the proof of the following corollary follows verbatim from the
proof of Lemma A.1 of [4].

Corollary 6.5 Let C0 be the constant whose existence is guaranteed by 6.3. Then there exists
c > 0 such that, for any f : R+

0 → R
+
0 bounded away from 0, and any g : R+

0 → R such
that g(t) ≥ − f (t)∀t ∈ R

+
0 , we have

∀t ≥ 0 P
(
g(t) ≤ Xt ≤ g(t) + C0, Xt ≥ − f (t)

)

≤ c

{(
f (t) + 1

) ∧ t1/2
}{(

g(t) + f (t) + 1
) ∧ t1/2

}

t3/2
,

for all t ≥ 0 where x ∧ y := min{x, y}. In particular, there exists c′ > 0 such that for all
such f and g we have, for all t ≥ 0,

P
(
Xt ≤ g(t), Xt ≥ − f (t)

)
≤ c′

{(
f (t) + 1

) ∧ t1/2
}{(

g(t) + f (t) + 1
)2 ∧ t

}

t3/2
.

Proposition 6.6 Let X be a Lévy process of the form (Yt − ct)t≥0, where Y is a pure-jump
subordinator and c > 0. Assume that X has zero mean and finite variance. For α > 0 let
Xα
t := Xt + α. Then there exists C > 0 such that, for any f : [0,∞) → R satisfying

lim supt→∞ t−1/2 f (t) < ∞ and f (t) ≥ α, for all large t, we have

lim inf
t→∞ t3/2P

(
Xα
t ≥ 0, min

t≤s≤2t
Xα
s ≥ f (t), f (t) ≤ Xα

2t < f (t) + C
)

> 0. (6.2)
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Proof Let us assume that there exists no such constant C > 0, and fix an α > 0. Select an
a > 0 corresponding to the choices ε = 1

2 and δ = 1 in Lemma 6.2. Finally, choose an
h ∈ (0, 1

4 min{a, α
c }). Define a random walk (Sn) by Sn := Xnh and note that (Sn) satisfies

the hypotheses of Lemma A.3 in [4]. Let K denote the positive constant corresponding to
(Sn) whose existence is guaranteed by Lemma A.3 in [4] (there, K is called 2C), and pick
C̃ > K +1+α. Since, in particular, we are assuming that (6.2) does not hold for C = C̃ , we
infer the existence of a sequence (tk) ⊆ [0,∞) such that limk→∞ tk = ∞ with the property

∀k ∈ N

(
tk
h

)3/2

P
(
Xα
tk ≥ 0, inf

tk≤s≤2tk
Xα
s ≥ f (tk), f (tk) ≤ Xα

2tk < f (tk) + C̃
)

<
1

k
.

(6.3)
Now define nk := � tk−1

h �. Note in particular that (nk + 1)h ∈ [tk − h, tk]; this will allow us
to ensure that Xα

tk ≥ f (tk) in the following computation. Define ank := f (tk) + α for each
k ∈ N, and an := 0 whenever there is no k such that n = nk . The important thing to note is
that for any j, k ∈ N with j ≤ k and all r ≥ 0 we have

min
s∈[ jh, jh+r ] X

α
s ≥ S j − rc + α ≥ Sk − rc + α ≥ Sk whenever r ≤ α

c
.

Consequently, whenever r ≤ α
c we find, for any k ∈ N, that Xα

kh+r ≥ Sk Recalling that
nkh ∈ [tk − 2h, tk − h], we can write tk = nkh + r for some rh ∈ [h, 2h]. Consequently, we
deduce that

Xα
tk = Xα

nkh+r ≥ Snk provided rh ≤ α

c
,

and the condition on rh holds because we have selected h < α
2c . We will use this in the

computation below, where we require {Snk ≥ 0} ⊆ {Xα
tk ≥ 0}. By the same considerations,

we have also have the inclusion
{

inf
tk≤s≤2tk

Xα
s ≥ f (tk)

}
⊆

{
min

nk< j≤2nk
S j ≥ f (tk) + α

}
,

since we have in fact picked h < α
4c . We can therefore estimate

(
tk
h

)3/2

P
(
Xα
tk ≥ 0, inf

tk≤s≤2tk
Xα
s ≥ f (tk), f (tk) ≤ Xα

2tk < f (tk) + C̃
)

≥ n3/2k P
(
Snk ≥ 0, min

nk< j≤2nk
S j ≥ f (tk) + α, f (tk) + α ≤ S2nk < f (tk) + C̃ − 1,

||Xt − X2nkh ||t∈[2nkh,2tk ] < 1
)

≥ 1

2
n3/2k P

(
Snk ≥ 0, min

nk< j≤2nk
S j ≥ ank , ank ≤ S2nk < ank + K

)
. (6.4)

In the second inequality we used the fact that h < a
4 and the Markov property of Xα at

time 2nkh. Combining (6.3) and (6.4), we find that, for all k ∈ N, we have

n3/2k P
(
Snk ≥ 0, min

nk< j≤2nk
S j ≥ ank , ank ≤ S2nk < ank + K

)
≤ 2

k
,

contradicting Lemma A.3 in [4]. ��

We finish this appendix with an arithmetic fact required in Sect. 4.
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Lemma 6.7 For any α, γ > 0 and k ∈ N we have

∞∑

n=4

n

(
1 − 1

(log n)k

)nα

< ∞.

Proof It suffices to show that
∫ ∞

4
x
(
1 − (log x)−k

)xα

dx =
∫ ∞

log 4
e2x

(
1 − x−k

)eαx

dx < ∞.

To prove this integrability, we show that the second integrand is o(e−x ) as x → ∞, or,
equivalently, that eαx

(
log(xk) − log(xk − 1)

)−3x → ∞ as x → ∞. For all t > 1 we have
log′(s) ≥ 1

t ∀s ∈ [t − 1, t], so log(xk) − log(xk − 1) ≥ 1
xk

for all x > 1. It remains to note

that x−keαx − 3x → ∞ as x → ∞. ��
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