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Abstract

In the last few years there has been renewed interest in the classical control problem of
de Finetti (1957) for the case where the underlying source of randomness is a spectrally
negative Lévy process. In particular, a significant step forward was made by Loeffen
(2008), who showed that a natural and very general condition on the underlying Lévy
process which allows one to proceed with the analysis of the associated Hamilton–Jacobi–
Bellman equation is that its Lévy measure is absolutely continuous, having completely
monotone density. In this paper we consider de Finetti’s control problem, but with the
restriction that control strategies are absolutely continuous with respect to the Lebesgue
measure. This problem has been considered by Asmussen and Taksar (1997), Jeanblanc-
Picqué and Shiryaev (1995), and Boguslavskaya (2006) in the diffusive case, and Gerber
and Shiu (2006) for the case of a Cramér–Lundberg process with exponentially distributed
jumps. We show the robustness of the condition that the underlying Lévy measure has a
completely monotone density and establish an explicit optimal strategy for this case that
envelopes the aforementioned existing results. The explicit optimal strategy in question
is the so-called refraction strategy.
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1. Introduction and main result

Recently, there has been a growing body of literature which explores the interaction of
classical models of ruin and fluctuation theory of Lévy processes; see, for example, [4], [8], [12],
[17], [18], [20], [23], [24], and [25]–[28]. Of particular note in this respect is the application
of the theory of scale functions for spectrally negative Lévy processes. This work adds to the
aforementioned list by addressing a modification of de Finetti’s classical dividend problem
through the theory of scale functions. Before turning to our main results, let us first attend to
the basic definitions of the mathematical objects that we are predominantly interested in.
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Recall that a spectrally negative Lévy process is a stochastic process issued from the origin
which has càdlàg paths and stationary and independent increments such that there are no positive
discontinuities. To avoid degenerate cases in the forthcoming discussion, we shall additionally
exclude from this definition the case of monotone paths. This means that we are not interested
in the case of a deterministic increasing linear drift or the negative of a subordinator.

Henceforth, we assume that X = {Xt : t ≥ 0} is a spectrally negative Lévy process under P
with Lévy triplet given by (γ, σ, ν), where γ ∈ R, σ ≥ 0, and ν is a measure concentrated on
(0,∞) satisfying ∫

(0,∞)

(1 ∧ z2)ν(dz) < ∞.

The Laplace exponent of X is given by

ψ(λ) = log E[eλX1 ] = γ λ+ 1

2
σ 2λ2 −

∫
(0,∞)

(1 − e−λz − λz1{0<z≤1})ν(dz),

which is well defined for λ ≥ 0. Here E denotes the expectation with respect to P. The
reader will note that, for convenience, we have arranged the representation of the Laplace
exponent in such a way that the support of the Lévy measure is positive even though the
process experiences only negative jumps. As a strong Markov process, we shall endow X with
probabilities {Px : x ∈ R} such that, under Px , we have X0 = x with probability 1. Note that
P0 = P.

It is well known thatX has paths of bounded variation if and only ifσ = 0 and
∫ 1

0 zν(dz)< ∞.
In this case X can be written as

Xt = ct − St , t ≥ 0, (1)

where c = γ + ∫ 1
0 zν(dz) and {St : t ≥ 0} is a driftless subordinator. Note that necessarily

c > 0 and ν �≡ 0, since we have ruled out the case that X has monotone paths. Moreover,
when ν(0,∞) < ∞, then X is known in the actuarial mathematics literature as the classical
Cramér–Lundberg risk process. This process is often used to model the surplus wealth of an
insurance company.

The classical theory of ruin concerns itself with the path of the stochastic risk process until
the moment that it first passes below the level 0; the event corresponding to ruin. An offshoot of
the classical ruin problem was introduced by de Finetti [11]. His intention was to make the study
of ruin more realistic by introducing the possibility that dividends are paid out to shareholders
up to the moment of ruin. Furthermore, the payment of dividends should be made in such a
way as to optimize the expected net present value of the total dividends paid to the shareholders
from time 0 until ruin. Mathematically speaking, de Finetti’s dividend problem amounts to
solving a control problem which we state in the next paragraph. Although de Finetti’s dividend
problem has its origin in insurance mathematics, there are several papers [6], [7], [30] that have
considered this problem in the context of corporate finance.

Letπ = {Lπt : t ≥ 0} be a dividend strategy, meaning that it is a left-continuous, nonnegative,
nondecreasing process adapted to the (completed and right-continuous) filtration F := {Ft : t ≥
0} of X. The quantity Lπt thus represents the cumulative dividends paid out up to time t by
the insurance company whose risk process is modelled by X. An additional constraint on π is
that Lπt+ − Lπt ≤ max{Uπt , 0} for t ≥ 0 (i.e. lump sum dividend payments are always smaller
than the available reserves). The π -controlled Lévy process is thus Uπ = {Uπt : t ≥ 0}, where
Uπt = Xt − Lπt . Write σπ = inf{t > 0 : Uπt < 0} for the time at which ruin occurs when the
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dividend payments are taken into account. Suppose that � denotes some family of admissible
strategies, which we shall elaborate on later. Then the expected net present value of the dividend
policy π ∈ � with discounting at rate q > 0 and initial capital x ≥ 0 is given by

vπ(x) = Ex

[∫
[0,σπ ]

e−qt dLπt

]
,

where Ex denotes the expectation with respect to Px and q > 0 is a fixed rate. De Finetti’s
dividend problem consists of characterising the optimal value function,

v∗(x) := sup
π∈�

vπ(x), (2)

and, further, if it exists, establishing a strategy π∗ such that v∗(x) = vπ∗(x).
In the case that � consists of all strategies as described at the beginning of the previous

paragraph, de Finetti’s dividend problem belongs to the class of singular stochastic control
problems; the term ‘singular’ refers to the property that the controls are allowed to be singular
(with respect to the Lebesgue measure) in time. For this case, there are now extensive results
in the literature, most of which have appeared in the last few years. Initially, this problem was
considered by Gerber [14], who proved that, for the Cramér–Lundberg model with exponentially
distributed jumps, the optimal value function is the result of a reflection strategy. That is to say,
a strategy of the form Lat = (a ∨ X̄t )− a for some, optimally chosen, barrier a ≥ 0, where
X̄t := sups≤t Xs . In that case the controlled process Uat = Xt − Lat is a spectrally negative
Lévy process reflected at the barrier a. However, a sequence of innovative works [4], [5],
[24], [25], [26], [28] have pushed this conclusion much further into the considerably more
general setting where X is a spectrally negative Lévy process. Of particular note amongst
these references is the paper of Loeffen [25] in which the optimality of the reflection strategy is
shown to depend in a very subtle way on the shape of the so-called scale functions associated
to the underlying Lévy process. Indeed, Loeffen’s new perspective on de Finetti’s control
problem leads to very easily verifiable sufficient conditions for the reflection strategy to be
optimal. Loeffen showed that it suffices for the Lévy measure ν to be absolutely continuous
with a completely monotone density. Though this assumption seems quite restrictive at first
sight, there are actually plenty of examples of general spectrally negative Lévy processes that
are used in risk theory and satisfy this assumption; see [25, pp. 1677–1678]. Through largely
technical adaptations of Loeffen’s method, this sufficient condition was relaxed in [24] and
[28]. It is important to note that in general a barrier strategy is not always an optimal strategy;
an explicit counterexample was provided in [5].

In this paper we are interested in addressing an adaptation of de Finetti’s dividend problem
by considering a smaller class of admissible strategies. Specifically, we are interested in the
case where, in addition to the assumption that strategies are nondecreasing and F -adapted, �
only admits absolutely continuous strategies π = {Lπt : t ≥ 0} such that

Lπt =
∫ t

0
�π (s) ds, (3)

and, for t ≥ 0, �π (t) satisfies
0 ≤ �π (t) ≤ δ, (4)

where δ > 0 is a ceiling rate. Moreover, we make the following assumption.

(H) δ < γ + ∫ 1
0 zν(dz) if X has paths of bounded variation.
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Note that, for a reflection strategy, whenX has paths of unbounded variation, the corresponding
dividend process is supported by increase times that are singular with respect to the Lebesgue
measure, and when X has paths of bounded variation, the dividend process is supported by
increase times which are absolutely continuous with respect to the Lebesgue measure with
rate c (cf. Section 6.1 of [21]). Recalling decomposition (1) and assumption (H), we see that
the reflection strategy is therefore not included in the smaller class of admissible controls and
we are left with a truly different control problem. A particular motivation for studying this kind
of modification is that if a reflection strategy is applied then the company will be ruined in finite
time with probability 1, which is seen as an undesirable consequence; cf. [15]. By restricting
the set of admissible strategies in the way described above and provided that E[X1] > δ, we
make sure that there is a strictly positive probability that ruin will never occur no matter which
admissible dividend strategy is applied.

The reader familiar with optimal control problems of this kind will recognize that the
optimal strategy should be of bang–bang type, i.e. depending on the value of the controlled
process, dividends should either be paid out at the maximum rate δ or at the minimum rate 0.
A particularly simple bang–bang strategy is the one that we refer to here as a refraction strategy,
which, in words, is the strategy where dividends are paid out at the maximum rate when the
controlled process is above a certain level b ≥ 0 and at the minimum rate when below b.
Mathematically, a refraction strategy at b is the strategy which corresponds to the controlled
process taking the form of the unique strong solution to the following stochastic differential
equation:

dUbt = dXt − δ1{Ubt >b} dt, t ≥ 0. (5)

In the case of absolutely continuous control strategies forX, it has been shown byAsmussen and
Taksar [2], Jeanblanc-Picqué and Shiryaev [19], and Boguslavskaya [9] in the diffusive case,
and by Gerber and Shiu [16] for the case of a Cramér–Lundberg process with exponentially
distributed jumps that a refraction strategy, where b ≥ 0 is optimally chosen, is optimal. This
particular control problem is also discussed in the review papers of Avanzi [3] and Albrecher
and Thonhauser [1], and in the book of Schmidli [31].

In the spirit of earlier work for the more general class of admissible strategies, the point
of view we shall take here is to deal with a general spectrally negative Lévy process and give
sufficient conditions under which a refraction strategy of the form (5) is optimal. Note that
when X is a general spectrally negative Lévy process, the strong existence and uniqueness of
solutions to (5) under (H), so-called refracted Lévy processes, were established in [22]. Our
main result is the following.

Theorem 1. Suppose that the Lévy measure has a completely monotone density. Let � be the
class of admissible dividend strategies satisfying (3), (4), and (H). Then an optimal strategy,
i.e. a strategy which attains the supremum in (2), is formed by a refraction strategy.

Given the special cases for which Theorem 1 is already known, recent developments on the
singular version of de Finetti’s problem, and recent developments concerning refracted Lévy
processes, the statement of Theorem 1 (and the nature of its proof) should not come as a great
surprise. However, a particular step of the proof, namely Lemma 7 below, turned out to be quite
a difficult puzzle to solve. This is mainly due to the fact that the expression, written in terms of
scale functions, for the value function of a refraction strategy is substantially more complicated
than that of a reflection strategy; compare Equation (10.25) of [22] with Proposition 1 of [4].
The above theorem offers the same sufficient condition on the Lévy measure as Loeffen [25]
for the larger, general class of admissible strategies. Although, as alluded to above, weaker
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assumptions have been established in that case, the technical details of our method appear not to
allow us to follow suit. To illustrate the difference between the two cases, we give in Example 1
a specific example of X and q for which no refraction strategy can be optimal in the restricted
case for a certain choice of the ceiling rate δ, whereas a reflection strategy is optimal within
the general class of admissible dividend strategies. We also remark that in fact our method
allows us to give a more quantitative result than Theorem 1 in the sense that we are able to
characterise the threshold b∗ associated with the optimal refraction strategy. As some more
notation is needed to do this, it is given at the end of the paper in Corollary 1.

We close this section with a brief summary of the remainder of the paper. In the next section
we show the role played by scale functions in giving a workable identity for the expected
net present value of the paid out dividends until ruin in the case where a refraction strategy
is applied. We also use this identity to describe an appropriate candidate for the threshold
associated with the optimal refraction strategy. Then in the final section we put together a
series of technical lemmas which allow us to verify the optimality of the identified threshold
strategy. The assumption that ν has a completely monotone density will repeatedly play a very
significant role in the aforementioned lemmas.

2. Scale functions and refraction strategies

As alluded to above, a key element of the forthcoming analysis relies on the theory of so-
called scale functions. We therefore devote some time in this section reminding the reader of
some fundamental properties of scale functions as well as their relevance to refraction strategies.

For each q ≥ 0, the so-called q-scale function of X, W(q) : R → [0,∞), is the unique
function such thatW(q)(x) = 0 for x < 0, and on [0,∞) is a strictly increasing and continuous
function whose Laplace transform is given by∫ ∞

0
e−θxW(q)(x) dx = 1

ψ(θ)− q
, θ > �(q). (6)

Here
�(q) = sup{λ ≥ 0 : ψ(λ) = q},

which is well defined and finite for all q ≥ 0 as a consequence of the well-known fact that ψ is
a strictly convex function satisfying ψ(0) = 0 and ψ(∞) = ∞. Note that there is an abuse of
notation here as the parameter q of the scale functions has also been used to denote the discount
rate. However, since we will only need the q-scale function (and�(q)) with the corresponding
parameter q being equal to the discount rate, this should not cause too much confusion.

Shape and smoothness properties of the scale functionsW(q) will be of particular interest in
the forthcoming analysis. In the discussion below we shall consider the behaviour of W(q) at
the origin and infinity as well as describing qualitative features of its shape on (0,∞). We start
with some standard facts concerning the behaviour of the scale function in the neighbourhood
of the origin. Recall that we have defined the constant

c = γ +
∫ 1

0
zν(dz)

in the case that X has bounded variation paths.
The following result is well known and can easily be deduced from (6). See, for example,

Chapter 8 of [21].
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Lemma 1. As x ↓ 0, the value of the scale function W(q)(x) and its right derivative are
determined for every q ≥ 0 as follows:

W(q)(0+) =
⎧⎨
⎩

1

c
when σ = 0 and

∫ 1
0 zν(dz) < ∞,

0 otherwise,

W(q)′(0+) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

σ 2 when σ > 0,

ν(0,∞)+ q

c2 when σ = 0 and ν(0,∞) < ∞,

∞ otherwise.

In general, it is known that one may always write, for q ≥ 0,

W(q)(x) = e�(q)xW�(q)(x), (7)

whereW�(q) plays the role of a 0-scale function of an auxiliary spectrally negative Lévy process
with Laplace exponent given byψ�(q)(λ) = ψ(λ+�(q))− q. Note that the fact thatψ�(q) is
the Laplace exponent follows by an exponential tilting argument; see, for example, Chapter 8
of [21]. In the same reference we also see that limx↑∞W�(q)(x) < 1/ψ ′(�(q)) < ∞, which
suggests that, when q > 0, the function W(q)(x) behaves like the exponential function e�(q)x

for large x. It is therefore natural to ask whether W(q)(x) is convex for large values of x. This
very question was addressed by Loeffen [25], [26]. In these papers it was found that, due to
quite a deep connection between scale functions and potential measures of subordinators, a
natural assumption which allows one to address the issue of convexity, and, in fact, say a lot
more (cf. Lemma 2 below), is that the Lévy measure ν is absolutely continuous with completely
monotone density. In the next lemma we collect a number of consequences of this assumption,
lifted from the aforementioned two papers. We first need some more notation. Recalling that
W(q) is continuously differentiable on (0,∞) as soon as ν has no atoms (see, for example, the
discussion in [10]), a key quantity in the lemma is the constant

a∗ = sup{a ≥ 0 : W(q)′(a) ≤ W(q)′(x) for all x ≥ 0},
where W(q)′(0) stands for W(q)′(0+). Furthermore, a∗ < ∞ since, by (7), we have
limx↑∞W(q)′(x) = ∞. We record here the following result taken from [26, Theorem 2 and
Corollary 1]; note that �′(q) = 1/ψ ′(�(q)).

Lemma 2. Suppose that the Lévy measure has a completely monotone density and q > 0.
Then the q-scale function can be written as

W(q)(x) = �′(q)e�(q)x − f (x), x > 0,

where f is a nonnegative, completely monotone function. Moreover,W(q)′ is strictly log-convex
(and, hence, convex) on (0,∞). Since W(q)′(∞) = ∞, a∗ is thus the unique point at which
W(q)′ attains its minimum so thatW(q)′ is strictly decreasing on (0, a∗) and strictly increasing
on (a∗,∞).

Let us now progress to a description of the role played by scale functions in connection
with the value of a refraction strategy. In addition to the scale function W(q) associated to the
spectrally negative Lévy processX, we shall also define, for eachq ≥ 0, the scale functions W

(q)

which are associated to the linearly perturbed spectrally negative Lévy processY = {Yt : t ≥ 0},
where Yt = Xt − δt for t ≥ 0; recall that δ stands for the ceiling rate. Note that, because of
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assumption (H), the aforementioned process does not have monotone paths. Furthermore, we
denote by ϕ(q) the right inverse of the Laplace exponent of Y , i.e.

ϕ(q) = inf{λ ≥ 0 : ψ(λ)− δλ = q}.
The value function of the refraction strategy at level b, henceforth denoted by vb, can now be
written explicitly in terms ofW(q), W

(q), and ϕ(q)with the parameter q > 0 being the discount
rate. Indeed, it was shown in Equation (10.25) of [22] that

vb(x) = −δ
∫ x−b

0
W
(q)(y) dy + W(q)(x)+ δ

∫ x
b

W
(q)(x − y)W(q)′(y) dy

h(b)
, x ≥ 0, (8)

where h(b) is given by

h(b) = ϕ(q)eϕ(q)b
∫ ∞

b

e−ϕ(q)yW(q)′(y) dy = ϕ(q)

∫ ∞

0
e−ϕ(q)uW(q)′(u+ b) du. (9)

Note that

vb(x) = W(q)(x)

h(b)
for x ≤ b. (10)

We also need to have a candidate optimal threshold, say b∗, in combination with the
expression for vb if we are to check for optimality. To this end, define b∗ as the largest
argument at which h attains its minimum. That is,

b∗ = sup{b ≥ 0 : h(b) ≤ h(x) for all x ≥ 0}.
Under the same conditions as Theorem 1, we are able to say some more about b∗.

Lemma 3. Suppose that ν has a completely monotone density. Then b∗ ∈ [0, a∗) and it is
the unique point at which h attains its minimum. Moreover, b∗ > 0 if and only if one of the
following three cases hold:

(i) σ > 0 and ϕ(q) < 2δ/σ 2,

(ii) σ = 0, ν(0,∞) < ∞, and ϕ(q) < δ(ν(0,∞)+ q)/c(c − δ), or

(iii) σ = 0 and ν(0,∞) = ∞.

Proof. We begin by showing that b∗ < ∞. Note that

h(b) = (ϕ(q))2
∫ ∞

0
e−ϕ(q)y(W(q)(y + b)−W(q)(b)) dy

= (ϕ(q))2e�(q)b
∫ ∞

0
e−ϕ(q)y(e�(q)yW�(q)(y + b)−W�(q)(b)) dy

≥ (ϕ(q))2e�(q)bW�(q)(b)

∫ ∞

0
e−ϕ(q)y(e�(q)y − 1) dy

= W(q)(b)
ϕ(q)�(q)

ϕ(q)−�(q)
,

where we have used a change of variables and an integration by parts for the first equality,
and (7) for the second and third. Since W(q)(∞) = ∞ and ϕ(q) > �(q), it follows that
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limb→∞ h(b) = ∞. The latter implies that b∗ < ∞ as b∗ is defined as the supremum of all
the global minimizers of h.

From (9), we see that h is continuously differentiable and that

h′(b) = ϕ(q)(h(b)−W(q)′(b)). (11)

It follows immediately that h′(b) > 0 if and only if h(b) > W(q)′(b) and h′(b) < 0 if and
only if h(b) < W(q)′(b). Thanks to Lemma 2, we know thatW(q)′ is a strictly convex function
satisfyingW(q)′(∞) = ∞, and, since h(∞) = ∞, it follows that there is a unique b∗ ∈ [0,∞)

for which the minimum of h is attained and h(b) < W(q)′(b) for b < b∗ and h(b) > W(q)′(b)
for b > b∗. Moreover, when b∗ > 0, we have h(b∗) = W(q)′(b∗).

Let us now show that b∗ < a∗. Suppose for contradiction that b∗ > a∗. In that case, since
W(q)′′(b) > 0 for all b ≥ b∗ andh′(b∗) = 0, it follows that there exists a sufficiently small ε > 0
such thatW(q)′(b) > h(b) for all b ∈ (b∗, b∗ + ε). However, this last statement contradicts the
earlier conclusion that W(q)′(b) < h(b) for all b > b∗. Now suppose, also for contradiction,
that b∗ = a∗. Considering the second equality in (9), since W(q)′(u+ a∗) > W(q)′(a∗) for all
u > 0, it is straightforward to show that h(a∗) > W(q)′(a∗), which again contradicts our earlier
conclusion that h(b∗) = W(q)(b∗).

Finally, given that b∗ characterises the single crossing point of the function h over the
function W(q)′, we have b∗ > 0 if and only if h(0) < W(q)′(0+). Note from (9) that

h(0) = ϕ(q)

(
ϕ(q)

ψ(ϕ(q))− q
−W(q)(0)

)
= ϕ(q)

(
1

δ
−W(q)(0)

)
, (12)

where we have used the facts that, for q > 0, by integration by parts in (6),∫
[0,∞)

e−θxW(q)(dx) = θ

ψ(θ)− q
, θ > �(q), (13)

and that ϕ(q) > �(q). The three cases that are equivalent to b∗ > 0 now follow directly from
the right-hand side of (12) compared with the expression given for W(q)′(0+) in Lemma 1.

3. Verification

For the remainder of the paper, we will focus on verifying the optimality of the refraction
strategy at threshold level b∗ under the condition that ν has a completely monotone density.

Given the spectrally negative Lévy process X, we call a function f (defined on at least the
positive half-line) sufficiently smooth if f is continuously differentiable on (0,∞) when X
has paths of bounded variation and is twice continuously differentiable on (0,∞) when X has
paths of unbounded variation. We let � be the operator acting on sufficiently smooth functions
f , defined by

�f (x) = γf ′(x)+ σ 2

2
f ′′(x)+

∫
(0,∞)

[f (x − z)− f (x)+ f ′(x)z1{0<z≤1}]ν(dz).

The following lemma constitutes standard technology as far as optimal control is concerned.
For this reason, its proof, which requires only a technical modification of Lemma 1 of [26], is
deferred to Appendix A.
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Lemma 4. Suppose that π̂ is an admissible dividend strategy such that vπ̂ is sufficiently smooth
on (0,∞), right continuous at 0, and, for all x > 0,

sup
0≤r≤δ

�vπ̂ (x)− qvπ̂ (x)− rv′
π̂
(x)+ r ≤ 0. (14)

Then vπ̂ (x) = v∗(x) for all x ≥ 0 and, hence, π̂ is an optimal strategy.

As we wish to work with this lemma for the case that vπ̂ = vb∗, we show next that vb∗ is
sufficiently smooth.

Lemma 5. Under the assumption of Theorem 1, the value function vb∗ is sufficiently smooth.

Proof. Recall from Lemma 2 that when ν has a completely monotone density, it follows
that both W(q) and W

(q) are infinitely differentiable.
Now suppose that b∗ = 0. Then from (8) it follows that

v0(x) = −δ
(∫ x

0
W
(q)(y) dy − 1

ϕ(q)
W
(q)(x)

)
, x ≥ 0, (15)

which is clearly sufficiently smooth.
Next suppose that b∗ > 0. By differentiating (8) we obtain

v′
b∗(x) = −δW(q)(x−b∗)+ (1 + δW(q)(0))W(q)′(x)+ δ

∫ x
b∗ W

(q)′(x − y)W(q)′(y) dy

W(q)′(b∗)
. (16)

Using an integration by parts in (16) leads to

v′
b∗(x) = W(q)′(x)+ δ

∫ x
b∗ W

(q)(x − y)W(q)′′(y) dy

W(q)′(b∗)
, (17)

which is continuous in x. Differentiating (17) leads to

v′′
b∗(x) = W(q)′′(x)+ δW(q)(0)W(q)′′(x)+ δ

∫ x
b∗ W

(q)′(x − y)W(q)′′(y) dy

W(q)′(b∗)
. (18)

The expression on the right-hand side is clearly continuous in x whenX has paths of unbounded
variation as W

(q)(0) = 0.

Inspired by the cases that X is diffusive or a Cramér–Lundberg process with exponentially
distributed jumps, for which a solution to the control problem at hand is known, we move
next to the following two lemmas which convert the Hamilton–Jacobi–Bellman inequality in
Lemma 4 into a more user friendly sufficient condition.

Lemma 6. Under the assumption of Theorem 1, the value function vb∗ satisfies (14) if and only
if

v′
b∗(x)

{
≥ 1 if 0 < x ≤ b∗,
≤ 1 if x > b∗.

(19)

Proof. We first establish the following two equalities:

(� − q)vb∗(x) = 0 for 0 < x ≤ b∗,
(� − q)vb∗(x)− δv′

b∗(x)+ δ = 0 for x > b∗.
(20)
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Recalling (10) and the fact that vb∗ is sufficiently smooth, the first part of (20) is proved in
Lemma 4 of [4] (see also [8]). In a similar way, the second part follows after we show that
M = {Mt, t ≥ 0} given by

Mt = e−q(t∧τ−
b∗ )

(
vb∗(Yt∧τ−

b∗
)− δ

q

)
, t ≥ 0,

is a Px-martingale for x > b∗; here τ−
b∗ stands for τ−

b∗ = inf{t > 0 : Yt < b∗} and Px is the law
ofY whenY0 = x. Indeed, the martingale property follows by the two proceeding computations
and the tower property of conditional expectation (cf. [33, Section 9.7]). First we have, for
x > b∗ by the strong Markov property,

Ex

[
e−qτ−

b∗
(
vb∗(Yτ−

b∗
)− δ

q

) ∣∣∣∣ Ft

]
= Ex

[
1{t<τ−

b∗ }e
−qτ−

b∗
(
vb∗(Yτ−

b∗
)− δ

q

) ∣∣∣∣ Ft

]

+ Ex

[
1{t≥τ−

b∗ }e
−qτ−

b∗
(
vb∗(Yτ−

b∗
)− δ

q

) ∣∣∣∣ Ft

]

= 1{t<τ−
b∗ }e

−qt
EYt

[
e−qτ−

b∗
(
vb∗(Yτ−

b∗
)− δ

q

)]
+ 1{t≥τ−

b∗ }Mt.

Here Ex denotes the expectation with respect to Px . Recall that Ub
∗

is the refracted Lévy
process given by (5) with threshold b∗. Let

σb
∗ = inf{t > 0 : Ub∗

t < 0} and κ−
b∗ = inf{t > 0 : Ub∗

t < b∗}.
Then

1{t<τ−
b∗ }Mt = 1{t<τ−

b∗ }e
−qt EYt

[
δ

∫ σb
∗

0
e−qs1{Ub∗s ∈(b∗,∞)} ds − δ

q

]

= 1{t<τ−
b∗ }e

−qt EYt

[
δ

∫ σb
∗

κ−
b∗

e−qs1{Ub∗s ∈(b∗,∞)} ds − δ

q
e−qκ−

b∗
]

= 1{t<τ−
b∗ }e

−qt
EYt

[
e−qτ−

b∗
(
vb∗(Yτ−

b∗
)− δ

q

)]
,

where in the last line we used the fact that, given Y0 = U0, {Yt , 0 ≤ t ≤ τ−
b∗} is equal in law to

{Ub∗
t , 0 ≤ t ≤ κ−

b∗}.
We now continue with the proof of the lemma. It is easily seen that condition (14) is

equivalent to
(� − q)vb∗(x) ≤ 0 if v′

b∗(x) ≥ 1,

(� − q)vb∗(x)− δv′
b∗(x)+ δ ≤ 0 if v′

b∗(x) < 1.
(21)

Suppose now that (19) holds. If v′
b∗(x) > 1 then (19) implies that x ≤ b∗ and so, by

(20), (� − q)vb∗(x) = 0. If v′
b∗(x) < 1 then (19) implies that x > b∗ and so, by (20),

(� − q)vb∗(x)− δv′
b∗(x)+ δ = 0. If v′

b∗(x) = 1 then we have, by (20), (� − q)vb∗(x) = 0.
Hence, (21) holds.

Suppose now that (21) holds. Let 0 < x ≤ b∗, and suppose that v′
b∗(x) < 1. Then (20)

and (21) imply that −δv′
b∗(x)+ δ ≤ 0, which implies that v′

b∗(x) ≥ 1, yielding a contradiction.
Hence, we deduce that v′

b∗(x) ≥ 1. Now let x > b∗ and suppose that v′
b∗(x) > 1. Then (20)

and (21) imply that δv′
b∗(x)− δ ≤ 0, which implies that v′

b∗(x) ≤ 1, yielding a contradiction.
Hence, we deduce that v′

b∗(x) ≤ 1.
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The following lemma forms the most difficult part of the proof of the main theorem. It is
here that Lemma 2 and, thus, the assumption of complete monotonicity on the density of the
Lévy measure is most crucially needed. In particular, we need here the representation of the
scale function as the difference of an exponential term and a completely monotone function
(cf. Lemma 2), instead of the weaker property that the derivative of the scale function is log-
convex (see also the discussion below Theorem 1.2 of [28]) or the even weaker property that
the derivative of the scale function is increasing on (a∗,∞) (see also Theorem 2 of [25] and
Example 1 below); note that the latter is already sufficient for optimality of the barrier strategy
for the control problem with general admissible strategies.

Lemma 7. Suppose that the Lévy measure has a completely monotone density. Then the
function vb∗ satisfies (19).

Proof. Suppose first that b∗ = 0. In other words, from Lemma 3, assume that either

(i) σ > 0 and ϕ(q) ≥ 2δ/σ 2, or

(ii) σ = 0, ν(0,∞) < ∞, and ϕ(q) ≥ δ(q + ν(0,∞))/c(c − δ).

Then, for x > 0, we deduce from (15) that

v′
b∗(x) = v′

0(x) = −δ
(

W
(q)(x)− 1

ϕ(q)
W
(q)′(x)

)
.

By the decomposition of the scale function given in Lemma 2, v′
0 is completely monotone

and, thus, in particular decreasing on (0,∞). Hence, if b∗ = 0, it is enough to show that
v′

0(0+) ≤ 1, or, equivalently,

δW(q)′(0+)
1 + δW(q)(0)

≤ ϕ(q). (22)

Taking account of Lemma 1 we see that this requirement is automatically satisfied in cases (i)
and (ii). Hence, we have proved (19) if b∗ = 0.

Assume now that b∗ > 0. Then, for x ≤ b∗, v′
b∗(x) = W(q)′(x)/W(q)′(b∗). From this, it

follows that v′
b∗(x) ≤ 1 since, by Lemma 3, b∗ ≤ a∗ and, by Lemma 2,W(q)′ is decreasing for

x ≤ b∗.
Suppose now that x > b∗. Differentiating twice the first displayed equation in Section 8 of

[22] gives us the identity

δ

∫ x

0
W
(q)′(x − y)W(q)′(y) dy = (1 − δW(q)(0))W(q)′(x)− (1 + δW(q)(0))W(q)′(x).

Hence, revisiting (16) we obtain the expression

v′
b∗(x) = −δW(q)(x − b∗)+ (1 − δW(q)(0))W(q)′(x)− δ

∫ b∗
0 W

(q)′(x − y)W(q)′(y) dy

W(q)′(b∗)
.

Appealing to Lemma 2 and writing W
(q)(x) = ϕ′(q)eϕ(q)x − f (x), where f is completely
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monotone, we obtain

v′
b∗(x) = δf (x − b∗)+ −(1 − δW(q)(0))f ′(x)+ δ

∫ b∗
0 f ′(x − y)W(q)′(y) dy

W(q)′(b∗)

− δϕ′(q)eϕ(q)(x−b∗) + 1

W(q)′(b∗)

(
(1 − δW(q)(0))ϕ′(q)ϕ(q)eϕ(q)x

− δ

∫ b∗

0
ϕ′(q)ϕ(q)eϕ(q)(x−y)W(q)′(y) dy

)
.

Using (13) and recalling that ϕ(q) > �(q), we also have

∫ b∗

0
e−ϕ(q)yW(q)′(y) dy = −

∫ ∞

b∗
e−ϕ(q)yW(q)′(y) dy +

∫ ∞

0
e−ϕ(q)yW(q)′(y) dy

= −
∫ ∞

b∗
e−ϕ(q)yW(q)′(y) dy + 1

δ
−W(q)(0).

Hence, this gives

v′
b∗(x) = δf (x − b∗)+ −(1 − δW(q)(0))f ′(x)+ δ

∫ b∗
0 f ′(x − y)W(q)′(y) dy

W(q)′(b∗)

− δϕ′(q)eϕ(q)(x−b∗) + δeϕ(q)xϕ′(q)ϕ(q)
∫ ∞
b∗ e−ϕ(q)yW(q)′(y) dy

W(q)′(b∗)
,

and recalling that

W(q)′(b∗) = h(b∗) = ϕ(q)eϕ(q)b
∗
∫ ∞

b∗
e−ϕ(q)yW(q)′(y) dy,

we obtain the simpler expression

v′
b∗(x) = δf (x − b∗)+ −(1 − δW(q)(0))f ′(x)+ δ

∫ b∗
0 f ′(x − y)W(q)′(y) dy

W(q)′(b∗)
.

Since f is completely monotone, by Bernstein’s theorem (cf. [13, Theorem 1a, Section XIII.4]),
it can be written in the form f (x) = ∫ ∞

0 e−xtµ(dt) for some measure µ. Therefore, using
Tonelli’s theorem (cf. [32, Theorem 4.1.5]), we arrive at the identity

v′
b∗(x) =

∫ ∞

0
e−xt

{
δeb

∗t + 1 − δW(q)(0)

W(q)′(b∗)
t − δ

W(q)′(b∗)

∫ b∗

0
teytW(q)′(y) dy

}
µ(dt).

For t > 0, denote by g(t) the expression in the curly brackets. Thus,

g′′(t) = δ(b∗)2eb
∗t − 2δ

W(q)′(b∗)

∫ b∗

0
yeytW(q)′(y) dy − δt

W(q)′(b∗)

∫ b∗

0
y2eytW(q)′(y) dy.

Since W(q)′(y) ≥ W(q)′(b∗) for y ∈ (0, b∗), we have, also using integration by parts,

δt

W(q)′(b∗)

∫ b∗

0
y2eytW(q)′(y) dy ≥ δt

∫ b∗

0
y2eyt dy = δy2eyt |b∗

0 − 2δ
∫ b∗

0
yeyt dy,
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and, hence, again using the fact that W(q)′(y) ≥ W(q)′(b∗) for y ∈ (0, b∗),

g′′(t) ≤ − 2δ

W(q)′(b∗)

∫ b∗

0
yeytW(q)′(y) dy + 2δ

∫ b∗

0
yeyt dy ≤ 0.

In conclusion, g is a concave function, and in particular there exists 0 ≤ p1 ≤ ∞ such that
g is increasing on (0, p1) and decreasing on (p1,∞). Since g(0) = δ, it follows that there
exists 0 < p2 ≤ ∞ such that g is positive on (0, p2) and negative on (p2,∞). Consequently,
e−(x−b∗)t g(t) ≥ e−(x−b∗)p2g(t) for all t > 0 and, thus (noting that we are allowed to switch
the derivative and the integral),

v′′
b∗(x) = −

∫ ∞

0
e−(x−b∗)te−b∗t tg(t) dt

≤ −e−(x−b∗)p2

∫ ∞

0
e−b∗t tg(t) dt

= e−(x−b∗)p2v′′
b∗(b∗+). (23)

From (18) we easily deduce that

v′′
b∗(b∗+) = (1 + δW(q)(0))W(q)′′(b∗)

W(q)′(b∗)
≤ 0,

where the inequality is a result of the fact that b∗ < a∗ and, hence, by Lemma 2,W(q)′′(b∗) ≤ 0.
In combination with (23), it follows that v′

b∗ is decreasing on (b∗,∞) and since v′
b∗(b∗) = 1,

we deduce that v′
b∗(x) ≤ 1 for x > b∗, as required.

Finally, we can put all the pieces together to establish our main result.

Proof of Theorem 1. By Lemmas 6 and 7, it follows that vb∗ satisfies (14). Since, in addition,
vb∗ is right continuous at 0 and is sufficiently smooth by Lemma 5, it follows by Lemma 4 that
vb∗ equals the optimal value function v∗ and, thus, the refraction strategy with threshold level
b∗ is an optimal strategy.

Example 1. Here we give the example mentioned at the end of Section 1. Let ν(dz) =
10ze−z dz, γ = 20.67 − ∫ 1

0 zν(dz), and q = 0.1. That is, X is a Cramér–Lundberg risk
process with premium rate 20.67, jump arrival rate 10, and a Gamma(2, 1) claim distribution.
The scale function for X, via the method of partial fractions, is given by

W(q)(x) =
3∑
i=1

Die
θix, x ≥ 0,

where {θi : i = 1, 2, 3} are the (distinct) roots of λ �→ ψ(θ) − q with θ1 > 0 and θ2, θ3 <

0, and {Di : i = 1, 2, 3} are given by Di = 1/ψ ′(θi). The scale function of Y can be
similarly calculated. If one plots the second derivative ofW(q) then one sees thatW(q)′′(x) > 0
on (0,∞) and, therefore, by Theorem 2 of [25], the reflection strategy at the barrier 0 is
optimal for the control problem with general admissible dividend strategies. If we now
consider the case with absolutely continuous dividend strategies and choose the upper bound
δ equal to 20.59, then we can check that the function h is strictly increasing and, thus,
v0(0) = W(q)(0)/h(0) > W(q)(0)/h(b) = vb(0) for all b > 0. This means that the only
refraction strategy that can be optimal is the one with threshold level equal to 0. However, one
can calculate that v′

0(3.15) = 1.0005 > 1 and so v0 does not satisfy (19) and, consequently,
by Lemma 6, v0 does not satisfy (14). Since we are in the Cramér–Lundberg setting with a
continuous claim distribution, we can deduce from Theorem 2.32 of [31] that the optimal value
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function v∗ has to satisfy (14) and, therefore, v0 �= v∗. We conclude that for this particular
example we have the remarkable property that the optimal strategy in the case with no extra
restrictions on the controls is to always pay out the maximum amount of dividends that is
allowed, whereas in the restricted case with this particular value of δ, it is not optimal to always
pay out dividends at the maximum rate. Furthermore, as for this example W(q)′ is increasing
on (a∗,∞), it follows that this latter condition is not sufficient for a refraction strategy to be
optimal amongst the class of dividend strategies satisfying (3) and (4); this is in contrast with
the singular optimal dividends problem; cf. Theorem 2 of [25].

On a final note, we present the following corollary of the proof of Theorem 1, giving a
characterisation of the optimal threshold; cf. Lemma 3.

Corollary 1. The threshold for the optimal refraction strategy in Theorem 1 is characterised
as the unique point b∗ ∈ [0, a∗) such that

b∗ = sup{b ≥ 0 : h(b) ≤ h(x) for all x ≥ 0},
where

h(b) = ϕ(q)eϕ(q)b
∫ ∞

b

e−ϕ(q)yW(q)′(y) dy.

Moreover, b∗ > 0 if and only if

(i) σ > 0 and ϕ(q) < 2δ/σ 2,

(ii) σ = 0, ν(0,∞) < ∞, and ϕ(q) < δ(ν(0,∞)+ q)/c(c − δ), or

(iii) σ = 0 and ν(0,∞) = ∞;

otherwise, b∗ = 0.

Appendix A. Proof of Lemma 4

By the definition of v∗, it follows that vπ̂ (x) ≤ v∗(x) for all x ≥ 0. We write w := vπ̂ and
show that w(x) ≥ vπ(x) for all π ∈ � and all x ≥ 0. First we suppose that x > 0. We define,
for π ∈ �, the stopping time σπ0 by σπ0 = inf{t > 0 : Uπt ≤ 0} and denote by�0 the following
set of admissible dividend strategies:

�0 =
{
π ∈ � : vπ(x) = Ex

[∫ σπ0

0
e−qt dLπt

]
for all x > 0

}
.

We claim that any π ∈ � can be approximated by dividend strategies from �0 in the sense
that, for all ε > 0, there exists πε ∈ �0 such that vπ(x) ≤ vπε (x)+ ε and, therefore, it is
enough to show that w(x) ≥ vπ(x) for all π ∈ �0. Indeed, we can take πε to be the strategy
where you do not pay out any dividends until the stopping time κ := inf{t > 0 : Lπt ≥ ε}, then
from that time point κ onwards follow the same strategy as π until ruin occurs for the latter
strategy, at which point you stop paying out dividends. Note that πε ∈ �0 because if σπε0 < κ

then σπε0 = σπε since, until the first dividend payment is made, the process Uπε is equal to X
and, for the spectrally negative Lévy process X, the first entry time in (−∞, 0] is equal almost
surely to the first entry time in (−∞, 0), provided that X0 > 0. Furthermore, if σπε0 ≥ κ and
κ < ∞, then σπε0 ≥ σπ and so, by construction, there are no dividends paid out in the time
interval (σπε0 , σπε ).
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We now assume without loss of generality that π ∈ �0. Let (Tn)n∈N be the sequence
of stopping times defined by Tn = inf{t > 0 : Uπt > n or Uπt < 1/n}. Since Uπ is a semi-
martingale and w is sufficiently smooth, we can use the change of variables/Itô’s formula (cf.
[29, Theorems II.31 and II.32]) on e−q(t∧Tn)w(Uπt∧Tn) to deduce, under Px ,

e−q(t∧Tn)w(Uπt∧Tn)− w(x) = −
∫ t∧Tn

0+
e−qsqw(Uπs−) ds +

∫ t∧Tn

0+
e−qsw′(Uπs−) d(Xs − Lπs )

+
∑

0<s≤t∧Tn
e−qs[�w(Uπs− +�Xs)− w′(Uπs−)�Xs],

where we have used the notation �Uπs = Uπs − Uπs− and �w(Uπs ) = w(Uπs )− w(Uπs−).
Rewriting the above equation leads to

e−q(t∧Tn)w(Uπt∧Tn)− w(x)

=
∫ t∧Tn

0+
e−qs(� − q)w(Uπs−) ds −

∫ t∧Tn

0+
e−qsw′(Uπs−) dLπs

+
{∫ t∧Tn

0+
e−qsw′(Uπs−) d

[
Xs −

(
c −

∫ 1

0
xν( dx)

)
s −

∑
0<u≤s

�Xu1{|�Xu|>1}
]}

+
{ ∑

0<s≤t∧Tn
e−qs[�w(Uπs− +�Xs)− w′(Uπs−)�Xs1{|�Xs |≤1}]

−
∫ t∧Tn

0+

∫ ∞

0+
e−qs[w(Uπs− − y)− w(Uπs−)+ w′(Uπs−)y1{0<y≤1}]ν(dy) ds

}
.

By the Lévy–Itô decomposition, the expression between the first pair of curly brackets is a zero-
mean martingale and, by the compensation formula (cf. [21, Corollary 4.6]), the expression
between the second pair of curly brackets is also a zero-mean martingale. Hence, we derive at

w(x) = −
∫ t∧Tn

0
e−qs[(� − q)w(Uπs−)− �π (s)w′(Uπs−)+ �π (s)] ds

+
∫ t∧Tn

0
e−qs�π (s) ds + e−q(t∧Tn)w(Uπt∧Tn)+Mt,

where {Mt : t ≥ 0} is a zero-mean Px-martingale. Using w ≥ 0 and (14) leads to (since
0 ≤ �πs ≤ δ)

w(x) ≥
∫ t∧Tn

0
e−qs�π (s) ds +Mt.

Now taking expectations and letting t and n go to ∞ and using the monotone convergence
theorem we obtain, noting that Tn ↗ σπ0 , Px-almost surely and that π ∈ �0,

w(x) ≥ Ex

[∫ σπ

0
e−qs�π (s) ds

]
= vπ(x).

Hence, we have proved w(x) ≥ v∗(x) for all x > 0.
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To finish the proof, note that v∗ is an increasing function (in the weak sense) and, hence,
because w is right continuous at zero, v∗(0) ≤ limx↓0 v∗(x) ≤ limx↓0 w(x) = w(0).
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