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Abstract

In recent work, Chaumont et al. (2013) showed that is possible to condition a stable process with
index α ∈ (1, 2) to avoid the origin. Specifically, they describe a new Markov process which is the Doob
h-transform of a stable process and which arises from a limiting procedure in which the stable process is
conditioned to have avoided the origin at later and later times. A stable process is a particular example of
a real self-similar Markov process (rssMp) and we develop the idea of such conditionings further to the
class of rssMp. Under appropriate conditions, we show that the specific case of conditioning to avoid the
origin corresponds to a classical Cramér–Esscher-type transform to the Markov Additive Process (MAP)
that underlies the Lamperti–Kiu representation of a rssMp. In the same spirit, we show that the notion
of conditioning a rssMp to continuously absorb at the origin also fits the same mathematical framework.
In particular, we characterise the stable process conditioned to continuously absorb at the origin when
α ∈ (0, 1). Our results also complement related work for positive self-similar Markov processes in
Chaumont and Rivero (2007).
c⃝ 2018 Elsevier B.V. All rights reserved.

1. Introduction

This work concerns conditionings of real self-similar Markov processes (rssMp) and so we
start by characterising this class of stochastic processes.
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A rssMp with index of self-similarity α > 0 is a standard Markov process X = (X t )t≥0 (in
the sense of [6]) with probability laws (Px )x∈R and filtration (Ft )t≥0, which satisfies the scaling
property that for all x ∈ R \ {0} and c > 0,

the law of (cX tc−α )t≥0 under Px is Pcx .

In the language of the classical paper by Lamperti [24], where self-similar Markov processes
were first analysed at depth, this corresponds to the class of semi-stable Markov process with
order (or Hurst index) 1/α. The structure of real self-similar Markov processes has been
investigated by [11] in the symmetric case, and [10] in general. Here, we give an interpretation
of these authors’ results in terms of Markov additive process (MAP) with a two-state modulating
Markov chain and therefore we make an immediate digression to introduce such processes.

1.1. Markov additive processes

Let E be a finite state space and (Gt )t≥0 a standard filtration. A càdlàg process (ξ, J ) in R× E
with law P is called a Markov additive process (MAP) with respect to (Gt )t≥0 if (J (t))t≥0 is
a continuous-time Markov chain in E , and the following property is satisfied, for any i ∈ E ,
s, t ≥ 0:

given {J (t) = i}, the pair (ξ (t + s) − ξ (t), J (t + s)) is independent of Gt ,
and has the same distribution as (ξ (s) − ξ (0), J (s)) given {J (0) = i}. (1)

Aspects of the theory of Markov additive processes are covered in a number of texts, among
them [5] and [4]. More classical work includes [12,13,3] amongst others. We will mainly use the
notation of [15], where it was principally assumed that ξ is spectrally negative; the results which
we quote are valid without this hypothesis, however.

Let us introduce some notation. For x ∈ R, write Px,i = P(· | ξ (0) = x, J (0) = i). If µ is a
probability distribution on E , we write Px,µ =

∑
i∈Eµi Px,i . We adopt a similar convention for

expectations.
It is well-known that a Markov additive process (ξ, J ) also satisfies (1) with t replaced by a

stopping time, albeit on the event that the stopping time is finite. The following proposition gives
a characterisation of MAPs in terms of a mixture of Lévy processes, a Markov chain and a family
of additional jump distributions; see [4, §XI.2a] and [15, Proposition 2.5].

Proposition 1.1. The pair (ξ, J ) is a MAP (as described above) if and only if, J is a continuous-
time Markov chain in E, for each i, j ∈ E, there exist a sequence of iid Lévy processes (ξ n

i )n≥0
and a sequence of iid random variables (∆n

i, j )n≥0, independent of the chain J , such that, if
σ0 = 0 and (σn)n≥1 are the jump times of J , then the process ξ has the representation

ξ (t) = 1(n>0)(ξ (σn−) + ∆n
J (σn−),J (σn )) + ξ n

J (σn )(t − σn), t ∈ [σn, σn+1), n ≥ 0.

For each i ∈ E , it will be convenient to define ξi as a Lévy process whose distribution is the
common law of the ξ n

i processes in the above representation; and similarly, for each i, j ∈ E ,
define ∆i, j to be a random variable having the common law of the ∆n

i, j variables.
Henceforth, we confine ourselves to irreducible (and hence ergodic) Markov chains J . Let the

state space E be the finite set {1, . . . , N }, for some N ∈ N. Denote the transition rate matrix of
the chain J by Q = (qi, j )i, j∈E . For each i ∈ E , the Laplace exponent of the Lévy process ξi will
be written ψi . To be more precise, for all z ∈ C for which it exists,

ψ(z) := log
∫
R

ezx P(ξ (1) ∈ dx).
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For each pair of i, j ∈ E , define the Laplace transform G i, j (z) = E[ez∆i, j ] of the jump
distribution ∆i, j , whenever this exists. Write G(z) for the N × N matrix whose (i, j)th element
is G i, j (z). We will adopt the convention that ∆i, j = 0 if qi, j = 0, i ̸= j , and also set ∆i i = 0 for
each i ∈ E .

The multidimensional analogue of the Laplace exponent of a Lévy process is provided by the
matrix-valued function

F(z) = diag(ψ1(z), . . . , ψN (z)) + Q ◦ G(z), (2)

for all z ∈ C such that the elements on the right are defined, where ◦ indicates elementwise
multiplication, also called Hadamard multiplication. It is then known that

E0,i (ezξ (t)
; J (t) = j) =

(
eF(z)t)

i, j , i, j ∈ E, t ≥ 0,

such that the right-hand side of the equality is defined. For this reason, F is called the matrix
exponent of the MAP (ξ, J ). Note, using standard convexity properties of regular Laplace
transforms, if we can guarantee, for a, b ∈ R with a < b, that F(a),F(b) are defined and
finite (element wise), then, F(z) is well defined and finite (element wise) for Re(z) ∈ (a, b).

The role of F is analogous to the role of the Laplace exponent of a Lévy process. Similarly in
this respect, one might also regard the leading eigenvalue associated to F (sometimes referred to
as the Perron–Frobenius eigenvalue, see [4, §XI.2c] and [15, Proposition 2.12]) as also playing
this role.

Proposition 1.2. Suppose that z ∈ R is such that F(z) is defined. Then, the matrix F(z) has
a real simple eigenvalue χ (z), which is larger than the real part of all its other eigenvalues.
Furthermore, the corresponding right-eigenvector v = (v1(z), . . . , vN (z)) may be chosen so that
vi (z) > 0 for every i = 1, . . . , N, and normalised such that

π · v(z) = 1 (3)

where π = (π1, . . . , πN ) is the equilibrium distribution of the chain J .

One sees the leading eigenvalue appearing in a number of key results. We give two such below
that will be of pertinence later on. The first one is the strong law of large numbers for (ξ, J ), in
which the leading eigenvalue plays the same role as the Laplace exponent of a Lévy process does
in analogous result for that setting. The following result is taken from [4, Proposition 2.10].

Proposition 1.3. If χ ′(0) is well defined (either as a left or right derivative), then we have

lim
t→∞

ξ (t)
t

= χ ′(0) = E0,π [ξ (1)] :=

∑
i∈E

π i E0,i [ξ (1)] (4)

almost surely. In that case, there is a trichotomy which dictates whether limt→∞ξ (t) = ∞

almost surely, limt→∞ξ (t) = −∞ almost surely or lim supt→∞ξ (t) = −lim inft→∞ξ (t) = ∞

accordingly as χ ′(0) > 0, < 0 or = 0, respectively.

The leading eigenvalue also features in the following probabilistic result, which identifies a
martingale (also known as the generalised Wald martingale) and associated exponential change of
measure corresponding to an Esscher-type transformation of a Lévy process; cf. [4, Proposition
XI.2.4, Theorem XIII.8.1].
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Proposition 1.4. Let Gt = σ {(ξ (s), J (s)) : s ≤ t}, t ≥ 0, and

M(t, γ ) = eγ (ξ (t)−ξ (0))−χ (γ )t vJ (t)(γ )
vJ (0)(γ )

, t ≥ 0, (5)

for some γ such that χ (γ ) is defined. Then, M(·, γ ) is a unit-mean martingale with respect to
(Gt )t≥0. Moreover, under the change of measure

dPγx,i
dPx,i

⏐⏐⏐⏐⏐
Gt

= M(t, γ ), t ≥ 0,

the process (ξ, J ) remains in the class of MAPs and, where defined, its characteristic exponent
is given by

Fγ (z) = ∆v(γ )−1F(z + γ )∆v(γ ) − χ (γ )I, (6)

where I is the identity matrix and ∆v(γ ) = diag(v(γ )). It is straightforward to deduce that,
when it exists, the associated leading eigenvalue associated to Fγ (z) is given by χγ (z) =

χ (z + γ ) − χ (γ ).

The following properties of χ , lifted from [19, Proposition 3.4], will also prove useful in
relating the last two results together.

Proposition 1.5. Suppose that F is defined in some open interval D of R. Then, the leading
eigenvalue χ of F is smooth and convex on D.

On account of the fact that F(0) = Q, it is easy to see that we always have χ (0) = 0. If we
assume that there exists θ ∈ R \ {0} such that F is defined on D = {tθ : t ∈ (0, 1)} with

χ (θ ) = 0, (7)

then by the proposition above, we can conclude that χ is defined and convex on the interval D.
Henceforth denoted by θ and referred to as the Cramér number.

If θ > 0, then χ ′(0+) is well defined and convexity dictates that it must be negative. In that
case limt→∞ξ (t) = −∞ almost surely. Moreover, if we take γ = θ in Proposition 1.4, then,
as χ ′

θ (0−) = χ ′(θ−) > 0, under the associated change of measure, limt→∞ξ (t) = ∞ almost
surely.

Conversely, if θ < 0, then χ ′(0−) is well defined and convexity dictates that it must be
positive. In that case limt→∞ξ (t) = ∞ almost surely. Again, if we take γ = θ in Proposition 1.4,
then χ ′

θ (0+) = χ ′(θ+) < 0, under the associated change of measure, limt→∞ξ (t) = −∞ almost
surely. In both cases, the change of measure (5) using γ = θ exchanges the long-term drift of
the underlying MAP from ±∞ to ∓∞.

1.2. Real self-similar Markov processes

In [10] the authors confine their attention to rssMp in ‘class C.4’. A rssMp X is in C.4 if,
for all x ̸= 0, Px (∃t > 0 : X t X t− < 0) = 1; that is, with probability one, the process
X changes sign infinitely often. The reason behind this is to ensure that the chain J in the
Lamperti–Kiu representation is recurrent. Otherwise, suppose {+1} is an absorbing state, (X,Px )
can be considered as a positive self-similar Markov process once it crosses to a positive value. In
particular, if it starts with a negative value X will cross the origin once and remain positive. If it
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starts with a positive value, it will remain positive. Henceforth we will rename the class C.4 as
the class of infinite crossing rssMp.

Such a process may be identified with a MAP via a deformation of space and time which
we call the Lamperti–Kiu representation of X . The following result is a simple consequence of
[10, Theorem 6]. In it, we will use the notation

τ {0}
= inf{t ≥ 0 : X t = 0},

for the time to absorption at the origin.

Proposition 1.6. Let X be an infinite crossing rssMp and fix x ̸= 0. Then there exists a time-
change σ , adapted to the filtration of X, such that, under the law Px , the process

(ξ (t), J (t)) = (log|Xσ (t)|, sign(Xσ (t))), t ≥ 0,

is a MAP with state space E = {−1, 1} under the law Plog|x |,sign(x). Furthermore, the process X
under Px has the representation

X t = J (ϕ(t))eξ (ϕ(t)), 0 ≤ t < τ {0},

where ϕ is the inverse of the time-change σ , and may be given by

ϕ(t) = inf
{

s > 0 :

∫ s

0
exp(αξ (u)) du > t

}
, t < τ {0}. (8)

In short, up to an endogenous time change, a rssMp has a polar decomposition in which exp{ξ}

describes the radial distance from the origin and J describes its orientation (positive or negative).
To make the connection with the previous subsection, let us understand how the existence

of a Cramér number for the underlying MAP to a rssMp affects path behaviour of the latter.
Revisiting the discussion at the end of the previous subsection, we see that if θ > 0 then
limt→∞ξ (t) = −∞. In that case, we deduce from the strong law of large numbers for ξ and
the Lamperti–Kiu transform, that

τ {0}
=

∫
∞

0
eαξ (t)dt < ∞ and Xτ {0}− = 0

almost surely (irrespective of the point of issue of X ). Said another way, the rssMp will be
continuously absorbed in the origin after an almost surely finite time. Moreover, this implies that
ϕ(t) < ∞ if and only if t <

∫
∞

0 eαξ (s)ds. In the case that there is a Cramér number which satisfies
θ < 0, then, again referring to the limiting behaviour of ξ and the Lamperti–Kiu transform, we
have

τ {0}
=

∫
∞

0
eαξ (t)dt = ∞ (9)

almost surely (irrespective of the point of issue of X ). Hence, the associated rssMp never touches
the origin. Moreover, ϕ(t) < ∞ for all t ≥ 0.

We can also reinterpret Proposition 1.4 in light of the Lamperti–Kiu representation and the fact
that the quantity ϕ(t) in (8) is also a stopping time, as well as the fact that (Ft )t≥0 = (Gϕ(t))t≥0.
Theorem III.3.4 of [16] states that a martingale change of measure remains valid at a given
stopping time, providing one restricts measurement to the set that the stopping time is finite.
Accordingly we have that when θ > 0, respectively θ < 0,

M(ϕ(t), θ) =
vJ (ϕ(t))(θ )
vsign(x)(θ )

eθ (ξ (ϕ(t))−log|x |)1(ϕ(t)<∞) =
vsign(X t )(θ )
vsign(x)(θ )

|X t |
θ

|x |
θ

1(t<τ {0}), t ≥ 0 (10)

is a Px -martingale, respectively, a Px -supermartingale.
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2. Main results

Throughout the remainder of the paper we make following assumption.

(A) The process X is a rssMp whose underlying MAP does not have lattice support and has a
leading eigenvalue χ with Cramér number θ ̸= 0 such that χ ′(θ ) exists in R.

Under this assumption, our objective is to construct conditioned versions of X . When θ > 0,
through a limiting procedure, we will build the process X conditioned to avoid the origin.
Similarly when θ < 0, we will build the process X conditioned to continuously absorb at the
origin. Accordingly, in both cases, we shall show the existence of a harmonic function for the
process X which is used to make a Doob h-transform in the representation of the conditioned
processes.

In this respect, our work is reminiscent of density transforms which have been considered in
the setting of positive self-similar Markov processes (pssMp); see [27]. In that case, the density
transform plays a crucial role in the construction of an entrance law or recurrent extension from
0. Similar ideas appear in [25] when constructing a Bessel-3 process from a Brownian motion
killed upon hitting 0.

Theorem 2.1. Suppose that X is a rssMp under assumption (A) and Ft := σ (Xs : s ≤ t), t ≥ 0
is its natural filtration. Define

hθ (x) := vsign(x)(θ )|x |
θ , x ∈ R,

and, for Borel set D, let τ D
:= inf{s ≥ 0 : Xs ∈ D}.

(a) If θ > 0, then

P◦

x (A) := Ex

[
hθ (X t )
hθ (x)

1(A, t<τ {0})

]
, (11)

for t > 0, x ̸= 0 and A ∈ Ft , defines a probability measure on the canonical space of X
such that (X,P◦

x ), x ∈ R \ {0}, is a rssMp. Moreover, for all A ∈ Ft ,

P◦

x (A) = lim
a→∞

Px (A ∩ {t < τ (−a,a)c
} | τ (−a,a)c < τ {0}). (12)

(b) If θ < 0, then,

P◦

x (A, t < τ {0}) := Ex

[
hθ (X t )
hθ (x)

1A

]
,

for all t > 0, x ̸= 0 and A ∈ Ft , defines a probability measure on the canonical space
of X with cemetery state at 0 such that (X,P◦

x ), x ∈ R \ {0}, is a rssMp. Moreover, for all
t > 0 and A ∈ Ft

P◦

x (A, t < τ {0}) = lim
a→0

Px (A ∩ {t < τ (−a,a)
} | τ (−a,a) < ∞). (13)

In case (a) of the above theorem, as θ > 0, the Doob h-transform rewards paths that drift far
from the origin. Indeed the limiting procedure (12) conditions the paths of the rssMp to explore
further and further distances from the origin before being absorbed at the origin. In this sense, we
refer to the process described in part (a) as the rssMp conditioned to avoid the origin. In case (b)
of the theorem above, the Doob h-transform rewards paths that stay close to the origin. Moreover,
the limiting procedure (13) conditions the paths of the rssMp to ultimately visit smaller and
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smaller balls centred around the origin. We therefore refer to the process described in part (b) as
the rssMp conditioned to absorb continuously at the origin.

The above theorem constructs the conditioned processes via limiting spatial requirements.
For the case of conditioning to avoid the origin, we can give a second sense in which the Doob
h-transform emerges as the result of a conditioning procedure. The latter is done by conditioning
the first visit to the origin to occur later and later in time.

Theorem 2.2. Suppose that X is a rssMp under assumption (A) and θ > 0. Then for x ∈ R\ {0}

t > 0, and A ∈ Ft , we have

P◦

x (A) = lim
s→∞

P(A | τ {0} > t + s), (14)

where P◦
x , x ∈ R \ {0}, is given by (11).

In order to approach the asymptotic conditioning in Theorem 2.2, we need to understand the
tail behaviour of the probabilities Px (τ {0} > t), as t → ∞, for all x ̸= 0. Indeed, the Markov
property tells us that, for any t ≥ 0, A ∈ Ft , and x ∈ R \ {0}, we have

lim
s→∞

Px (A | τ {0} > t + s) = lim
s→∞

Ex

[
1(A, t < τ {0})

PX t (τ
{0} > s)

Px (τ {0} > t + s)

]
. (15)

We are thus compelled to consider the asymptotic behaviour of Px (τ {0} > t) as t → ∞. To that
end, we recall that by the Lamperti–Kiu representation of X , under Px , x ̸= 0, we can identify
τ {0} in terms of the MAP (ξ, J ), under P0,sgn(x), via the relation

τ {0}
= |x |

α

∫
∞

0
eαξ (s)ds. (16)

More precisely, the dependency of the law of τ {0} on |x |, where x is the point of issue, can
be seen directly in (16) through a simple multiplicative factor of |x |

α . Hence, we should
determine the asymptotic behaviour of the right tail distribution of the exponential functional
of ξ, I :=

∫
∞

0 eαξ (s)ds. In particular, we will prove the following result, which is more general
than needed and of intrinsic interest.

Theorem 2.3. Let E be a finite state space and (ξ, J ) a MAP with values in R× E . Assume that
(ξ, J ) does not have lattice support and has a leading eigenvalue χ with Cramér number θ > 0
such that χ ′(θ ) exists in R. Define.

I =

∫
∞

0
eαξ (s)ds.

We have that E0,k[I θ/α−1] < ∞, k ∈ E, and

P0,k(I > t) ∼ vk(θ )t−θ/α
∑
j∈E

π θj
E0, j [I θ/α−1]
µθ |α − θ |v j (θ )

, as t → ∞,

where µθ =
∑

j∈Eπ
θ
j Eθ0, j [ξ (1)] and π θ

= (π θj , j ∈ E) is the stationary distribution of J under
Pθx,i , x ∈ R, i ∈ E.

The above result specialised to the setting in Theorem 2.2 gives that

Px (τ {0} > t) ∼ vsign(x)(θ )|x |
θ t−θ/α

∑
j=±1

π θj
E0, j [I θ/α−1]
µθ |α − θ |v j (θ )

, as t → ∞.
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This fact, together with the argument in (15) easily leads to the proof of Theorem 2.2. Indeed, to
end the proof one should justify that it is possible to pass the limit through the expectation on the
right-hand side of (15). This is done reasoning as in the proof of Theorem 2.1.

3. Remarks

We have a number of remarks pertaining to the suite of results in the previous section.

Unconditioning: It is natural to ask what happens if one takes a self-similar Markov process
conditioned e.g. to continuously absorb at the origin, and condition it to avoid the origin. Does
this reverse the effect of the original conditioning?

Suppose that X under Px , x ̸= 0, is a self-similar process satisfying (A), with underlying
MAP (ξ, J ) with probabilities Px,i , x ∈ R, i ∈ {−1, 1}. Now consider the matrix exponent of
(ξ, J ) under Pθx,i , x ∈ R, i ∈ {−1, 1}, is given by

Fθ (z) = ∆v(θ )−1F(z + θ )∆v(θ ).

This has leading eigenvector ∆v(θ )−1v(z + θ ) with eigenvalue χθ (z) = χ (z + θ ). Because we
have assumed (A), it also follows that χθ (−θ ) = 0. To show that the MAP (ξ, J ) under Pθx,i ,
x ∈ R, i ∈ {−1, 1}, satisfies assumption (A), we need a further assumption that χ ′

θ (−θ ) = χ ′(0)
exists and takes a finite value. In that case, if e.g. θ > 0, then necessarily χ ′(0) < 0 and if
we condition (X,P◦

x ), x ̸= 0, to be continuously absorbed at 0, then from Theorem 2.1(b), the
resulting MAP representing X can be identified via the Doob h-transform. For t ≥ 0 and A ∈ Ft ,

P◦◦

x (A, t < τ {0}) := E◦

x

[
h◦

θ (X t )
h◦

θ (x)
1A

]
,

with

h◦

θ (x) :=
vsign(x)(0)
vsign(x)(θ )

|x |
−θ

=
1

hθ (x)
, x ∈ R,

where the second equality holds because F(0) = Q and hence v1(0) = v1−(0) = 1. As a
consequence, we see that, changing measure in the style of part (b) of Theorem 2.1 after a change
of measure in the style of part (a), we get

P◦◦

x (A, t < τ {0}) := E◦

x

[
h◦

θ (X t )
h◦

θ (x)
1A

]
= Ex

[
hθ (X t )
hθ (x)

h◦

θ (X t )
h◦

θ (x)
1(A, t<τ {0})

]
= Px (A, t < τ {0}), A ∈ Ft , t ≥ 0.

That is to say that the resulting process agrees with the process (X,Px ), x ̸= 0, up to first hitting
of the origin.

This is also apparent when we consider that the effect on the Esscher transform of the
underlying MAP clearly reverses the effect of the initial conditioning. Indeed,

∆−1
v (−θ + θ )∆v(θ )Fθ (z − θ )∆v(θ )−1∆v(−θ + θ ) = F(z).

Similar calculations show the same reversal if we had assumed θ < 0.
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Degenerate MAPs: We deliberately excluded the setting that {−1, 1} is irreducible for the
underlying MAP. In many cases, aside from, at most, a single crossing of the origin, we note the
conditionings considered here reduce to known conditionings of Lévy processes. In particular,
these are the cases of conditioning a Lévy process to stay positive, cf, [8,9], conditioning a Lévy
process to continuously absorb at the origin, cf. [8] and conditioning a subordinator to stay in a
strip, [23].

Stable processes: The central family of examples which fits the setting of the two main theorems
above is that of a (strictly) stable process with index α ∈ (0, 2), which is killed on first hitting
the origin. Recall that the latter processes are those rssMp which do not have continuous paths
and which are also in the class of Lévy processes. As a Lévy process, a stable process has
characteristic exponent Ψ (θ ) := −t−1 logE0[eiθX t ], θ ∈ R, t > 0, given by

Ψ (θ ) = |θ |α(eπ iα( 1
2 −ρ)1(θ>0) + e−π iα( 1

2 −ρ)1(θ<0)), θ ∈ R,

where ρ := P0(X1 > 0). For convenience, we assume throughout this section that αρ ∈ (0, 1),
which is to say that the stable process has path with discontinuities of both signs.

For such processes, the matrix exponent of the underlying MAP in the Lamperti–Kiu
representation has been computed in [19], with the help of computations in [10], and takes the
form

F(z) =

⎡⎢⎢⎢⎣
−

Γ (α − z)Γ (1 + z)
Γ (αρ̂ − z)Γ (1 − αρ̂ + z)

Γ (α − z)Γ (1 + z)
Γ (αρ̂)Γ (1 − αρ̂)

Γ (α − z)Γ (1 + z)
Γ (αρ)Γ (1 − αρ)

−
Γ (α − z)Γ (1 + z)

Γ (αρ − z)Γ (1 − αρ + z)

⎤⎥⎥⎥⎦ , (17)

for Re(z) ∈ (−1, α), where ρ̂ = 1 − ρ. Note, the domain (−1, α) is a specific to the stable
process and will not be the case for all rssMps.

A straightforward computation shows that, for Re(z) ∈ (−1, α),

det F(z) =
Γ (α − z)2Γ (1 + z)2

π2

{
sin(π (αρ − z)) sin(π (αρ̂ − z)) − sin(παρ) sin(παρ̂)

}
,

which has a root at z = α − 1. In turn, this implies that χ (α − 1) = 0. One also easily checks
with the help of the reflection formula for gamma functions that

v(α − 1) ∝

[
sin(παρ̂)
sin(παρ)

]
.

In that case, we see that Theorems 2.1 and 2.2 justify the claim that the family of measures
(P◦

x , x ∈ R) defined via the relation

dP◦
x

dPx

⏐⏐⏐⏐
Ft

:=
sin(παρ̂)1(X t>0) + sin(παρ)1(X t<0)

sin(παρ̂)1(x>0) + sin(παρ)1(x<0)

⏐⏐⏐⏐ X t

x

⏐⏐⏐⏐α−1

1(t<τ {0}), t ≥ 0,

is the Doob h-transform corresponding to the stable process conditioned to avoid the origin when
α ∈ (1, 2), and the stable process conditioned to be continuously absorbed at the origin when
α ∈ (0, 1). The former of these two conditionings has already been observed in [10], the latter
is a new observation. Note that, when θ = α − 1 = 0, the Doob h-transform corresponds to no
change of measure at all, as the density is equal to unity and τ {0}

= ∞ almost surely under Px ,
x ∈ R. This is precisely the case of a Cauchy process. It is less clear in this case how to condition
it to hit the origin.
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One may prove Theorems 2.1 and 2.2 for stable processes by appealing to a direct
form of reasoning using Bayes formula, scaling, dominated convergence using the fact that
Ex [|X t |

α−ε] < ∞, x ∈ R, t > 0, 0 < ε < α, and the representation of the probabilities:

Px (τ (−1,1)c
< τ {0}) = (α − 1)xα−1

∫ 1/x

1
(t − 1)αρ−1(t + 1)αρ̂−1dt, x ∈ (0, 1)

for α ∈ (1, 2), and

Px (τ (−1,1) < ∞) =
Γ (1 − αρ)

Γ (αρ̂)Γ (1 − α)

∫ 1

x−1
x+1

tαρ̂−1(1 − t)−α dt, x > 1

for α ∈ (0, 1). The first of these probabilities is taken from Corollary 1 of [26] and the second
from Corollary 1.2 of [22].

For the general case, no such detailed formulae are available and a different approach is
needed. The main point of interest is in understanding the asymptotic probabilities of the
conditioning event in Theorems 2.1 and 2.2 by appealing to a Cramér-type result for the decay
of the probabilities Px (τ (−a,a) < ∞) and Px (τ (−a,a)c

< ∞) as a → ∞.

Interpreting the Riesz–Bogdan–Żak transform: An additional point of interest in the case of
stable processes pertains to the setting of the so-called Riesz–Bogdan–Żak transform, which
was first proved in [7] for isotropic stable processes and [20] for anisotropic stable processes;
see also [21]. The understanding of P◦

x , x ∈ R \ {0} as a conditioning, gives context to the
transformation which states that transforming the range of a stable process through the mapping
−1/x , and then making an additional change of time, results in a new process which is the Doob
h-transform of the stable process. We now see that the latter is nothing more than one of the two
conditionings discussed in Theorem 2.1.

Theorem 3.1 (Riesz–Bogdan–Żak Transform). Suppose that X is a stable process with α ∈ (0, 2)
satisfying αρ ∈ (0, 1). Define

η(t) = inf{s > 0 :

∫ s

0
|Xu |

−2αdu > t}, t ≥ 0.

Then, for all x ∈ R \ {0}, (−1/Xη(t))t≥0 under Px is equal in law to (X,P◦

−1/x ). Moreover, the
process (X,P◦

x ), x ∈ R \ {0} is a self-similar Markov process with underlying MAP via The
Lamperti–Kiu representation whose Matrix exponent satisfies, for Re(z) ∈ (−α, 1),

F◦(z) =

⎡⎢⎢⎢⎣
−

Γ (1 − z)Γ (α + z)
Γ (1 − αρ − z)Γ (αρ + z)

Γ (1 − z)Γ (α + z)
Γ (αρ)Γ (1 − αρ)

Γ (1 − z)Γ (α + z)
Γ (αρ̂)Γ (1 − αρ̂)

−
Γ (1 − z)Γ (α + z)

Γ (1 − αρ̂ − z)Γ (αρ̂ + z)

⎤⎥⎥⎥⎦ . (18)

4. Cramér-type results for MAPs and the proof of Theorem 2.1

Appealing to the Lamperti–Kiu process, we note that, for |x | < a

Px (τ (−a,a)c
< τ {0}) = Plog|x |,sign(x)(T +

log a < ∞) = P0,sign(x)(T +

log(a/|x |) < ∞)

where T +
y = inf{t > 0 : ξ (t) > y}. A similar result may be written for Px (τ (−a,a) < ∞), albeit

using T −
y := inf{t > 0 : ξ (t) < y}. This suggests that the asymptotic behaviour of the two

probabilities of interest can be studied through the behaviour of the underlying MAP. In fact,
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it turns out that, in both cases, a Cramér-type result in the MAP context provides the desired
asymptotics.

Proposition 4.1. Suppose that X is a rssMp under assumption (A).

(a) When θ > 0, there exists a constant Cθ ∈ (0,∞) such that, for |y| > 0

lim
a→∞

aθPy(τ (−a,a)c
< τ {0}) = vsign(y)(θ )Cθ |y|

θ .

In particular,

lim
a→∞

Py(τ (−a,a)c
< τ {0})

Px (τ (−a,a)c
< τ {0})

= lim
a→∞

P0,sign(y)(T +

log(a/|y|) < ∞)

P0,sign(x)(T +

log(a/|x |) < ∞)

=
vsign(y)(θ )
vsign(x)(θ )

⏐⏐⏐ y
x

⏐⏐⏐θ , x, y ∈ R. (19)

(b) When θ < 0 , there exists a constant C̃θ ∈ (0,∞) such that, for |y| > 0

lim
a→0

aθPy(τ (−a,a) < ∞) = vsign(y)(θ )C̃θ |y|
θ .

In particular,

lim
a→0

Py(τ (−a,a) < ∞)
Px (τ (−a,a) < ∞)

= lim
a→∞

P0,sign(x)(T −

log(a/|y|) < ∞)

P0,sign(x)(T −

log(a/|x |) < ∞)

=
vsign(y)(θ )
vsign(x)(θ )

⏐⏐⏐ y
x

⏐⏐⏐θ , x, y ∈ R. (20)

This result will be proved below after some preliminary lemmas. Recalling the discussion
from [20], an excursion theory for MAPs reflected in their running maxima exists with strong
similarities to the case of Lévy processes. Specifically, there is a MAP, say (H+(t), J+(t))t≥0,
with the property that H+ is non-decreasing with the same range as the running maximum
process sups≤tξ (s), t ≥ 0. Moreover, the trajectory of the associated Markov chain J+ agrees
with the chain J on the times of increase of the running maximum. We also refer to the Appendix
in [14] for further information on classical excursion theory for MAPs.

As an increasing MAP, the process (H+, J+) has associated to it a number of characteristics.
When J+

= ±1, the process H+ has the increments of a subordinator with drift δ±1 and Lévy
measure Υ±1 and is sent to a cemetery state {+∞} at rate q±1. When J+ jumps from i to j with
i, j ∈ {−1, 1} and i ̸= j , the process H+ experiences an independent jump with distribution F+

i, j
at rate Λi, j . For convenience, we will introduce the Laplace matrix exponent κ in the form

E0,i [e−λH+(t)
; J+(t) = j] = [e−κ(λ)t ]i, j , λ ≥ 0,

where,

κ(λ) = diag(Φ1(λ),Φ−1(λ)) − Λ ◦ K(λ), λ ≥ 0,

where for i = ±1, Φi (λ) is the Laplace exponent of the subordinator encoding the dynamics of
H when J+

= i , Λ is the intensity matrix of J+ and K(λ)i, j =
∫

(0,∞) e−λx F+

i, j (dx) for i, j = ±1
with i ̸= j and otherwise K(λ)i,i = 1, for i = ±1.

In the next lemma we write the crossing probability of interest in terms of the potential
measures

U+

i, j (dx) =

∫
∞

0
P0,i (H+(t) ∈ dx, J+(t) = j)ds, x ≥ 0, i, j ∈ {−1, 1}.
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Lemma 4.1. The probability of first passage over a threshold can be decomposed into the
probability of creeping and the probability of jumping over it.

(a) For y > 0,

P0,i (T +

y < ∞, H+(T +

y ) > y)

=

∑
j,k=±1

∫ y

0
U+

i, j (dz)
[
1(k ̸= j)Λ j,k F

+

j,k(y − z) + 1(k= j)Υ j (y − z)
]
. (21)

(b) If δ j > 0 for some j = ±1, then U+

i, j has a density on [0,∞) for i = ±1, which has a
continuous version, say u+

i, j . Moreover, for y > 0,

pi (y) := Pi (T +

y < ∞, H+(T +

y ) = y) =

∑
j=±1

δ j u+

i, j (y), y > 0, i = ±1,

where we understand u+

i, j ≡ 0 if δ j = 0. If δ j = 0 for both j = ±1, then pi (y) = 0 for all
y > 0.

Proof. (a) Appealing to the compensation formula for the Cox process that describes the jumps
in H+, we may write for y > 0,

P0,i (T +

y < ∞)

= E0,i

[ ∑
0<s<∞

1(y−H+(s−)>0)1(y−H+(s)<0)

]

=

∑
j,k=±1

E0,i

[ ∑
0<s<∞

1(y−H+(s−)>0)1(∆H+(s)>y−H+(s−))1(J+(s−)= j,J+(s)=k)

]

=

∑
j,k=±1

1( j ̸=k)

∫
∞

0
P0,i (H+(s−) < y, J+(s−) = j)Λ j,k F

+

j,k(y − H+(s−))ds

+

∑
j=±1

∫
∞

0
P0,i (H+(s−) < y, J+(s−) = j)Υ j (y − H+(s−))ds, (22)

where ∆H+(s) = H+(s) − H+(s−), F
+

j,k(x) = 1 − F+

j,k(x) and Υ j (x) = Υ j (x,∞). When we
express the right-hand side of (22) in terms of the potential measure we get (21).

(b) We first define, for a > 0,

Mi (a) :=

∫ a

0
P0,i (H+(T +

y ) = y, T +

y < ∞)dy =

∫ a

0
pi (y)dy. (23)

The analogue of the Lévy–Itô decomposition for subordinators tells us that, up to killing at rate
q±1, when J+ is in state ±1,

H+(t) =

∫ t

0
δJ+(t)dt +

∑
0<s<t

∆H+(s), t ≥ 0.
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Then,

Mi (a) = E0,i

⎡⎣H+(T +

a −) −

∑
0<s<T +

a

(H+(s) − H+(s−)) ; T +

a < ∞

⎤⎦
= E0,i

[∫ T +
a

0
δJ+(t)dt ; T +

a < ∞

]
.

Hence, for a > 0,

Mi (a) = Ei

[∫
∞

0
1(0≤H+(t)≤a)δJ (t)dt

]
=

∑
j=±1

δ jU+

i, j [0, a].

Noting from (23) that Mi is almost everywhere differentiable on (0,∞), the above equality tells
us that, for j such that δ j ̸= 0 the potential measure U+

i, j has a density. Otherwise, if δ j = 0 for
both j = ±1, then pi (y) = 0 for Lebesgue almost every y > 0.

We define, for each i, j = ±1 and x > 0,

pi, j (x) = P0,i (T +

x < ∞, H+(T +

x ) = x, J+(T +

x ) = j) such that pi (x) =

∑
j=±1

pi, j (x).

Fix i ∈ {−1, 1}. We want to show that pi (x) is continuous. For that, we shall use the fact that

lim
ϵ↓0

pi, j (ϵ) = 1(δi > 0)1(i = j). (24)

This is due to the fact that the stopping time T := inf{s > 0 : J+(s) ̸= i or H+(s) = +∞} is
exponentially distributed while the time T +

ϵ ↓ 0 as ϵ ↓ 0. Hence, on {t < T }, H+(t) behaves as
a (killed) Lévy subordinator and so T +

ϵ < T with increasing probability, tending to 1 as ϵ ↓ 0.
Hence, the result follows from the classical case of Lévy subordinators; see [18].

By the Markov property we have the lower bound

pi (x + ϵ) ≥ P0,i (H+(T +

x ) = x, H+(T +

x+ϵ) = x + ϵ, T +

x+ϵ < ∞)

=

∑
j=±1

pi, j (x)p j (ϵ). (25)

If we take the limit ϵ ↓ 0 and use (24), then we have that

lim
ϵ↓0

pi (x + ϵ) ≥

∑
j=±1

pi, j (x)1(δ j > 0) =

∑
j=±1

pi, j (x) = pi (x).

On the other hand, we can split the behaviour of creeping over x + ϵ into two types

pi (x + ϵ) = P0,i (H+(T +

x ) = x, H+(T +

x+ϵ) = x + ϵ, T +

x+ϵ < ∞)

+ P0,i (H+(T +

x ) > x, H+(T +

x+ϵ) = x + ϵ, T +

x+ϵ < ∞).

The first probability on the right-hand side above corresponds to the right-hand side of (25) and
we can bound the second term by the event that {0 < Ox ≤ ϵ}, where we define the overshoot
Ox := H+(T +

x ) − x . Hence, we deduce that

pi (x + ϵ) ≤

∑
j=±1

pi, j (ϵ)p j (x) + P0,i (Ox ∈ (0, ϵ]).
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The second probability on the right-hand side above goes to zero as ϵ → 0. If we now combine
this inequality with (25) and take the limit ϵ ↓ 0, then we can then show that

lim
ϵ↓0

pi (x + ϵ) = pi (x) =

∑
j=±1

pi, j (x).

We can also show in a similar way that limϵ↓0 pi (x − ϵ) = pi (x) and hence pi is continuous.
Note that the preceding reasoning is valid without discrimination for the case that pi is almost
everywhere equal to zero. The proof is now complete. □

Understanding the asymptotic of P0,i (T +
y < ∞) is now a matter of Markov additive renewal

theory. In this respect, let us say some more words about the Markov additive renewal measure
Ui, j .

We will restrict the forthcoming discussion to the setting that θ > 0. Recall from the
discussion at the end of Section 1.1 that this implies limt→∞ξ (t) = −∞, where ξ is the MAP
underlying the rssMp. A consequence of this observation is that the process H+ experiences
killing. To be more precise it has killing rates which we previously denoted by q±1 > 0. This
makes the measures U+

i, j finite. As with classical renewal theory, we can use the existence of
the Cramér number θ to renormalise the measures U+

i, j so that they are appropriate for use with
asymptotic Markov additive renewal theory.

Appealing to the exponential change of measure described in Proposition 1.4, we note that
the law of (H+, J+) under Pθ0,i satisfies

Pθ0,i (H+(t) ∈ dx, J+(t) = j) =
v j (θ )
vi (θ )

eθx P0,i (H+(t) ∈ dx, J+(t) = j),

i, j = ±1, x ≥ 0.

In particular, the role of κ for (H+, J+) under Pθ0,i , i = ±1 is played by

κθ (λ) = κ(λ− θ ), λ ≥ 0.

Hence, we have that

U θ,+
i, j (dx) :=

∫
∞

0
Pθ0,i (H+(t) ∈ dx, J+(t) = j)dt =

v j (θ )
vi (θ )

eθxU+

i, j (dx), x ≥ 0.

Again, referring to the discussion at the end of Section 1.1, since limt→∞ξ (t) = ∞ almost surely
under Pθ0,i , we may now claim that the adjusted Markov additive renewal measure U θ,+

i, j (dx) is
that of an unkilled subordinator MAP.

Lemma 4.2. Suppose that θ > 0. There exists a constant Cθ > 0, such that, as y → ∞,

eθyP0,i (T +

y < ∞) → vi (θ )Cθ .

Proof. Picking up Eq. (21), we have, for i = ±1,

eθyP0,i (T +

y < ∞, H+(T +

y ) > y)

= vi (θ )
∑

j,k=±1

∫ y

0
eθ (y−z) 1

v j (θ )
U θ,+

i, j (dz)

×

[
1(k ̸= j)Λ j,k F

+

j,k(y − z) + 1(k= j)Υ j (y − z)
]
. (26)
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Our aim is to convert this into a form that we can apply the discrete-time Markov Additive
Renewal Theorem A.1 in the Appendix.

To this end, we define the sequence of random times Θ1,Θ2, . . . such that Θi+1 − Θi are
independent and exponentially distributed with parameter 1. For convenience, define Θ0 = 0.
We want to relate (H+, J+) to a discrete-time Markov additive renewal process (Ξn,Mn), n ≥ 0,
such that

∆n := Ξn+1 − Ξn = H+(Θn+1) − H+(Θn) and Mn = J+(Θn), n ≥ 0.

A future quantity of interest is the stationary mean increment µ+

θ := Eθ0,πθ [H1(Θ1)], where
π θ

= (π θ1 , π
θ
−1) is the stationary distribution of J (and hence of J+ since it is described pathwise

by J sampled at a sequence of stopping times) under Pθ . In this respect, we note from Corollary
2.5 in Chapter XI of [4] that,

µ+

θ =

∫
∞

0
e−t Eθ0,πθ [H+(t)]dt

=

∫
∞

0
e−t [χ+

θ (0)t + π θ
· kθ − π θ

· eΛ
θ t kθ ]dt

= χ+

θ (0) + π θ
· kθ − π θ

· (Λθ
− I)−1kθ , (27)

where χ+

θ (0) is the leading eigenvalue of κθ (0), kθ = v′(θ ) and Λθ
= κθ (0). All of these

quantities are guaranteed to exist thanks to the assumption (A); see for example Section 2 of
Chapter XI in [4].

Note, moreover, that

U θ,+
i, j (dx) =

∫
∞

0
Pθ0,i (H+

t ∈ dx, J+(t) = j)dt

=

∞∑
n=1

∫
∞

0
e−t tn−1

(n − 1)!
Pθ0,i (H+

t ∈ dx, J+(t) = j)dt

=

∞∑
n=1

Pθ0,i (HΘn ∈ dx, JΘn = j)

=: Rθi, j (dx) − δ0(dx)1(i = j), (28)

where, on the right-hand side, we have used the notation of the discrete-time Markov additive
renewal measure in the Appendix.

Turning back to (26), if we define

g j (x) =

∑
k=±1

1
v j (θ )

eθx [1(k ̸= j)Λ j,k F j,k(x) + 1(k = j)Υ j (x)
]
, x ≥ 0, (29)

for j = ±1, then, as soon as we can verify that these functions are directly Riemann integrable,
then we can apply the conclusion of Theorem A.1 in the Appendix and conclude that

lim
y→∞

eθyP0,i (T +

y < ∞, H+(T +

y ) > y)

= vi (θ )
∑

j,k=±1

π θj

v j (θ )µ+

θ

∫
∞

0
eθs
[
1(k ̸= j)Λ j,k F

+

j,k(s) + 1(k= j)Υ j (s)
]

ds,
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where π θj , j = ±1 is the stationary distribution of the chain J+ under Pθx,i , x ∈ R, i = ±1. Note,
moreover that, from Lemma 4.1, together with Theorem 1.2 of [1],

eθyPi (T +

y < ∞, H+(T +

y ) = y) = vi (θ )
∑
j=±1

1
v j (θ )

δ j u
θ,+
i, j (y) → vi (θ )

∑
j=±1

δ j
π θj

v j (θ )µ+

θ

,

as y → ∞.
To finish the proof we must thus verify the direct Riemann integrability of g j (x), j = ±1 in

(29). Note however, that g j (x) is the product of eθx and a monotone decreasing function, hence
it suffices to check that

∫
∞

0 g j (x)dx < ∞, j = ±1. To this end, remark that, for λ in the domain
where κ is defined,

(κ(λ)1) j = q j + δ jλ+

∫
∞

0
(1 − e−λx )Υ j (dx) +

∑
k=±1

1( j ̸=k)Λ j,k

∫
∞

0
e−λx F j,k(dx),

j = ±1.

In particular, with an integration by parts, we have

q j − (κ(−θ )1) j

θ
= δ j +

∫
∞

0
eθs

[∑
k=±1

1(k ̸= j)Λ j,k F
+

j,k(s) + 1(k= j)Υ j (s)

]
ds,

j = ±1,

where the left-hand side is finite thanks to the assumption (A). This completes the proof, albeit
to note that

lim
y→∞

eθyPi (T +

y < ∞) = vi (θ )
∑
j=±1

π θj [q j − (κ(−θ )1) j ]

θv j (θ )µ+

θ

,

which identifies explicitly the constant Cθ in the statement of the lemma. □

Proof of Proposition 4.1. First assume that θ > 0. A particular consequence of Lemma 4.2 is
that

lim
a→∞

Py(τ (−a,a)c
< τ {0})

Px (τ (−a,a)c
< τ {0})

= lim
a→∞

P0,sign(y)(T +

log(a/|y|) < ∞)

P0,sign(x)(T +

log(a/|x |) < ∞)
=
vsign(y)(θ )
vsign(x)(θ )

⏐⏐⏐ y
x

⏐⏐⏐θ ,
x, y ∈ R.

Now we turn our attention to the case that θ < 0. We appeal to duality and write

Px (τ (−a,a) < ∞) = P(log|x |,sign(x))(T −

log a < ∞) = P̃(− log|x |,sign(x))(T +

− log a < ∞),

where under P̃x,i , x ∈ R, i = ±1, is the law of (−ξ, J ). Note, the associated matrix exponent
of this process is F̃(z) := F(−z), whenever the right-hand side is well defined. In particular,
we note that F̃(−θ ) = 0, which is to say that −θ > 0 is the Cramér number for the process
(−ξ, J ). Moreover, F̃(−θ )v(θ ) := F(θ )v(θ ) = 0, which is to say that ṽ(−θ ) = v(θ ). The first
part of the proof can now be re-cycled to deduce the conclusions in part (b) of the statement of
the proposition. □

Proof of Theorem 2.1. The (super)martingale (10) applies an exponential change of measure
to (ξ, J ), albeit on the sequence of stopping times ϕ(t), for t < τ {0}. As the change of measure
(5) keeps (ξ, J ) in the class of MAPs, thanks to Proposition 1.4, it follows that P◦

x , x ∈ R \ {0},
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corresponds to the law of a rssMp whose underlying MAP is that of the Esscher transform of
(ξ, J ).

In the case of (a), recalling the discussion preceding Section 1.2, the underlying MAP for
(X,P◦

x ), x ∈ R \ {0} drifts to +∞. This means that under the change of measure, X is a rssMp
that never touches the origin, i.e. it is a conservative process. In the case of (b), the underlying
MAP drifts to −∞ and hence, under the change of measure X is continuously absorbed at the
origin, so it is non-conservative.

For the proof of (a), we follow a standard line of reasoning that can be found, for example,
in [8]. Appealing to the Markov property, self-similarity, Fatou’s Lemma and (19), we have, for
A ∈ Ft ,

lim inf
a→∞

Px (A ∩ {t < τ (−a,a)c
} | τ (−a,a)c

< τ {0})

= lim inf
a→∞

Ex

[
1(A, t<τ {0}∧τ (−a,a)c )

PX t (τ
(−a,a)c

< τ {0})
Px (τ (−a,a)c

< τ {0})

]

≥ Ex

[
1(A, t<τ {0}) lim inf

a→∞

Pa−1 X t (τ
(−1,1)c

< τ {0})
Pa−1x (τ (−1,1)c

< τ {0})

]

= Ex

[
1(A, t<τ {0})

hθ (X t )
hθ (x)

]
.

Recalling the martingale property from (10) together with the above inequality, but now applied
to the event Ac, tells us that

lim sup
a→∞

Px (A ∩ {t < τ (−a,a)c
} | τ (−a,a)c

< τ {0})

≤ 1 − lim inf
a→∞

Px (Ac
∩ {t < τ (−a,a)c

} | τ (−a,a)c
< τ {0})

≤ Ex

[
hθ (X t )
hθ (x)

1(t<τ {0})

]
− Ex

[
hθ (X t )
hθ (x)

1(Ac, t<τ {0})

]
= Ex

[
hθ (X t )
hθ (x)

1(A, t<τ {0})

]
,

where the final equality follows as we have used the martingale property of the chance of measure
for which recall the discussion around (10). The required limiting identity follows.

The proof of (b) is similar to that of (a) except that in this case (10) ensures that X θ
t is a

super-martingale only and hence the final part of the argument above does not extend to this
setting. To overcome this difficulty we proceed as follows. Notice τ (−a,a)

→ τ {0} as a → 0. As
before for A ∈ Ft , we have

lim inf
a→0

Px (A ∩ {t < τ (−a,a)
} | τ (−a,a) < ∞)

= lim inf
a→0

Ex

[
1(A, t<τ (−a,a))

PX t (τ
(−a,a) < ∞)

Px (τ (−a,a) < ∞)

]
≥ Ex

[
1(A, t<τ {0}) lim inf

a→0

Pa−1 X t (τ
(−1,1) < ∞)

Pa−1x (τ (−1,1) < ∞)

]

= Ex

[
1(A, t<τ {0})

hθ (X t )
hθ (x)

]
= Ex

[
1A

hθ (X t )
hθ (x)

]
,
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where, recalling the discussion around (9), in the final equality we have used the fact that θ < 0
implies that τ {0}

= ∞ almost surely (irrespective of the point of issue of X ). Now, the second
half of the argument in (a) extends to this setting if the following equation holds true

lim
a→0

Px (t < τ (−a,a)
| τ (−a,a) < ∞) = Ex

[
hθ (X t )
hθ (x)

]
.

On the one hand, the Markov property, Fatou’s lemma and the estimate (20) imply that

lim inf
a→0

Px (t < τ (−a,a)
| τ (−a,a) < ∞) = lim inf

a→0
Px

(
1(t<τ (−a,a))

PX t (τ
(−a,a) < ∞)

Px (τ (−a,a) < ∞)

)
≥ Ex

[
hθ (X t )
hθ (x)

1(t<τ {0})

]
= Ex

[
hθ (X t )
hθ (x)

]
.

Now, the estimate in (b) in Proposition 4.1 implies that for y ̸= 0

lim
a→0

(
a
|y|

)θ
Py(τ (−a,a) < ∞) = lim

a→0

(
a
|y|

)θ
Psgn(y)(τ

(− a
|y|
, a
|y|

)
< ∞) = vsign(y)(θ )C̃θ ,

and the convergence holds uniformly in a/|y| such that a/|y| < ϵ, for ϵ > 0. Moreover, for
a/|y| > ϵ the term (a/|y|)θPy(τ (−a,a) < ∞) remains bounded. Thus for x ̸= 0, ϵ > 0, fixed we
have

lim sup
a→0

Px

(
1(t<τ (−a,a))

PX t (τ
(−a,a) < ∞)

Px (τ (−a,a) < ∞)

)
= lim sup

a→0
Px

(
1((a/|X t |)<ϵ, t<τ (−a,a))

PX t (τ
(−a,a) < ∞)

Px (τ (−a,a) < ∞)

)
+ lim sup

a→0
Px

(
1((a/|X t |)≥ϵ, t<τ (−a,a))

PX t (τ
(−a,a) < ∞)

Px (τ (−a,a) < ∞)

)
= Ex

[
hθ (X t )
hθ (x)

1(t<τ {0})

]
+ lim sup

a→0
Px

(
1((a/|X t |)≥ϵ, t<τ (−a,a))

PX t (τ
(−a,a) < ∞)

Px (τ (−a,a) < ∞)

)
.

Finally the limsup in the above estimate is equal to zero because it can be bounded by above as
follows

Px

(
1((a/|X t |)≥ϵ, t<τ (−a,a))

PX t (τ
(−a,a) < ∞)

Px (τ (−a,a) < ∞)

)

≤
1

aθPx (τ (−a,a) < ∞)
Px

(
1((a/|X t |)≥ϵ, t<τ (−a,a))|X t |

θ sup
|z|≥ϵ

|z|θPsgn(z)(τ (−z,z) < ∞)

)

=
xθ sup|z|≥ϵ |z|θPsgn(z)(τ (−z,z) < ∞)

aθPx (τ (−a,a) < ∞)
P◦

x

(
1(a/|X t |≥ϵ, t<τ (−a,a))

vsign(x)(θ )
vsign(X t )(θ )

)
,

and by the monotone convergence theorem the rightmost term in the above inequality tends to
zero when a → 0. □
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5. Integrated exponential MAPs, proof of Theorem 2.3

The asymptotic behaviour of the tail distribution of objects similar to I , when the process ξ
is replaced by a Lévy process, has been considered in [28,2]. We will borrow some of the ideas
from the second of these two papers and apply them in the Markov additive setting in establishing
the estimate in Theorem 2.3. To this end, recall that in this setting J takes values in a finite state
space E, and let us introduce the potential measure

Vi, j (dx) =

∫
∞

0
P0,i (ξ (s) ∈ dx, J (s) = j)ds, i, j ∈ E .

Proposition 5.1. For t > 0 and i ∈ E,

P0,i (I > t)dt =

∑
j∈E

∫
R

Vi, j (dy)eαyP0, j (eαy I ∈ dt). (30)

Proof. The method of proof is to show the left- and right-hand sides of (30) are equal by
considering their Laplace transforms. Integration by parts shows us that, for λ > 0, we have
on the one hand,

E0,i (1 − e−λI ) = λ

∫
∞

0
e−λt P0,i (I > t)dt. (31)

We shall use the above equation for comparison later. On the other hand, we have for λ > 0,

E0,i (1 − e−λI ) = E0,i

[∫
∞

0
d(e−λ

∫
∞

s eαξ (u)du)
]

= λE0,i

[∫
∞

0
eαξ (s)e−λ

∫
∞

s eαξ (u)duds
]

= λ

∫
∞

0

∑
j∈E

E0,i

[
eαξ (s)e−λeαξ (s) ∫∞

s eα(ξ (u)−ξ (s))du
; J (s) = j

]
ds

= λ
∑
j∈E

∫
∞

0
E0,i

[
eαξ (s)E0, j

[
e−λeαy I

]⏐⏐⏐
y=ξ (s)

]
ds

= λ
∑
j∈E

∫
R

Vi, j (dy)eαyE0, j [e−λeαy I ]

= λ
∑
j∈E

∫
R

Vi, j (dy)eαy
∫

∞

0
P0, j (eαy I ∈ dt)e−λt , (32)

where we have applied the conditional stationary independent increments of (ξ, J ) in the fourth
equality. Now comparing (32) with (31), we see that

P0,i (I > t)dt =

∑
j∈E

∫
R

Vi, j (dy)eαyP0, j (eαy I ∈ dt),

for t > 0, as required. □

Now that we have expressed the tail probabilities P0,i (I > t) in terms of the potential measure
Vi, j , we may again turn to renewal theory for Markov additive random walks in order to extract
the desired asymptotics as t → ∞. With a view to applying Theorem A.1 in the Appendix, let
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us therefore introduce (Mn,∆n) defined as

Mn = J (Θn) and ∆n = ξ (Θn), n ≥ 0,

where, as before, Θ0 = 0 and Θn is the sum of an independent sequence of exponential random
variables with unit mean. As in the Appendix, we write Ri, j (dx) for the renewal measure of
(Ξ ,M), where Ξ0 = 0, Ξn = ∆1 + · · ·∆n , n ≥ 1. We also introduce

Rθi, j (dx) :=
v j (θ )
vi (θ )

eθx Ri, j (dx), x ∈ R, i, j ∈ E .

We note again that Vi, j (dx) = Ri, j (dx) − δ0(dx)1(i= j).
In a similar spirit to (28), we may use these Markov additive random walks to write for any

interval A ⊆ [0,∞)

e(θ−α)t
∫

Aeαt
P0,i (I > s)ds =

∑
j∈E

∫
R

Vi, j (dy)eαye(θ−α)t
∫

Aeαt
P0, j (eαy I ∈ ds)

= vi (θ )
∑
j∈E

1
v j (θ )

∫
R

Rθi, j (dy)e(θ−α)(t−y)

×

∫
Aeαt

P0, j (eαy I ∈ ds) + 1(i= j)e(θ−α)t P0, j (I ∈ Aeαt )

= vi (θ )
∑
j∈E

1
v j (θ )

∫
R

Rθi, j (dy)e(θ−α)(t−y)P0, j (I ∈ Aeα(t−y))

− 1(i= j)e(θ−α)t P0, j (I ∈ Aeαt ). (33)

Noting that the main term on the right-hand side above is a convolution between the renewal
measure Rθi, j and the function

g j (z, A) :=
1

v j (θ )
e(θ−α)zP0, j (I ∈ Aeαz), z ∈ R, j ∈ E,

we are now almost ready to apply the discrete-time Markov Additive Renewal Theorem A.1 in
the Appendix. It turns out that we need to choose the interval A judiciously according to whether
θ is bigger or smaller than α in order to respect the direct Riemann integrability condition in the
renewal theorem. We therefore digress with an additional technical lemma before returning to
the limit in (33) and the proof of Theorem 2.3.

Lemma 5.1. When θ > 0, E0, j
(
I θ/α−1

)
< ∞, for all j ∈ E .

Proof. When θ = α the result is trivial. The case that θ/α < 1 turns out to be a direct
consequence of Proposition 3.6 from [19]. To be more precise, careful inspection of the proof
there shows that (in our terminology) if 0 < αβ ≤ θ then E0,i [I β−1] < ∞, for all i ∈ E, in
which case one takes β = θ/α.

For the final case that θ/α > 1, we can replicate the recurrence relation from Section 1.2
of [2]. Appealing to (30), we have, for β ∈ (0, θ/α) and k ∈ E ,

E0,k[I β] = β

∫
∞

0
sβ−1P0,k(I > s)ds = β

∫
∞

0
sβ−1

∑
j∈E

∫
R

Vk, j (dy)eαyP0, j (eαy I ∈ ds).
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Let us momentarily assume that E0,k[I β−1] < ∞ for k ∈ E . We can use Fubini’s theorem and
put s = teαy , and get

E0,k[I β] = β
∑

j

∫
R

eαβy Vk, j (dy)
∫

∞

0
tβ−1P0, j (I ∈ dt)

= β
∑
j∈E

E0, j [I β−1]
∫
R

eαβy Vk, j (dy)

= β
∑
j∈E

E0, j [I β−1]
∫

∞

0
ds
∫
R

eαβyE0,k[ξ (s) ∈ dy, J (s) = j]

= β
∑
j∈E

E0, j [I β−1]
∫

∞

0
(exp{t F(αβ)})k, j dt

= β
∑
j∈E

E0, j [I β−1](F(αβ)−1)k, j

where the right-hand side uses the fact that β ∈ (0, θ/α). We deduce that E0,k[I β−1] < ∞ for
k ∈ E implies that E0,k[I β] < ∞ for k ∈ E .

If n is the smallest non-negative integer such that θ/α − n ∈ (0, 1], we can use Proposition
3.6 from [19] again, to deduce that E0,k[I θ/α−n] < ∞. The argument in the previous paragraph
can now be used inductively to conclude that E0,k[I θ/α−1] < ∞, for any k ∈ E . □

Proof of Theorem 2.3. We break the proof into three cases. We start by assuming that θ < α.
In that case, referring to (33), we have, assuming the limit exists on the right-hand side,

lim
t→∞

e(θ−α)t
∫ eαt

0
P0,i (I > s)ds

= lim
t→∞

vi (θ )
∑
j∈E

1
v j (θ )

∫
R

Rθi, j (dy)e(θ−α)(t−y)P0, j (I ∈ [0, eα(t−y)])

= lim
t→∞

vi (θ )
∑
j∈E

1
v j (θ )

∫
R

Rθi, j (dy)g j (t − y) (34)

where

gk(y) =
1

vk(θ )
e(θ−α)y

∫ eαy

0
P0,k(I ∈ ds), k ∈ E, y ∈ R.

Note in particular that∫
R

gk(y)dy =
1

(α − θ )vk(θ )
E0,k[I θ/α−1], k ∈ E,

which is finite by Lemma 5.1. Moreover, since gk(x) is product of an exponential and a monotone
function, it is a standard exercise to show that it is also directly Riemann integrable.

The discrete-time Markov Additive Renewal Theorem A.1 in the Appendix now justifies the
limit in (34) so that

lim
t→∞

e(θ−α)t
∫ eαt

0
P0,i (I > s)ds = vi (θ )

∑
j∈E

π θj

µθ |α − θ |v j (θ )
E0, j [I θ/α−1], (35)
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provided µθ < ∞. This last condition is easily verified as a consequence of assumption (A).
Indeed, according to Corollary 2.5 of Chapter XI in [4], we have

µθ = χ ′(θ ) + π θ
· kθ − π θ

· (Qθ
− I)−1kθ ,

where Qθ
= Fθ (0) is the intensity matrix of J under Pθ . Writing the limit in (35) with a change

of variables, we have

lim
u→∞

u(θ/α−1)
∫ u

0
P0,i (I > s)ds = vi (θ )

∑
j∈E

π θj

µθ |α − θ |v j (θ )
E0, j [I θ/α−1],

which shows, for each i, regular variation of the integral on the left-hand side. Appealing to the
monotone density theorem for regularly varying functions, we now conclude that

P0,i (I > u) ∼ u−θ/αvi (θ )
∑
j∈E

π θj

µθ |α − θ |v j (θ )
E0, j [I θ/α−1], u → ∞,

and the result for the case that θ < α now follows from (16).
The proof for the case θ > α is completed by starting the reasoning as with the case of

θ < α but with A = (1,∞) in (33). The desired asymptotics again comes from the first
term on the right-hand side of (33) using a similar application of the Markov Additive Renewal
Theorem A.1. The details are left to the reader. The second term on the right-hand side of (33)
becomes negligible since

lim
t→∞

e(θ−α)t P0, j (I > eαt ) = 0

on account of the fact that E0,i [I θ/α−1] < ∞.
The case that α = θ is dealt with similarly by starting from (33) but now setting A = (1, λ) for

some λ > 1. In that case, the second term on the right-hand side of (33) makes no contribution
to the limit in question since

lim
t→∞

P0, j (I > eαt ) = 0.

The integral in the first term on the right-hand side of (33) can be written in the form∫
R

Rθi, j (dy)P0, j (I ∈ Aeα(t−y))

=

∫
R

P0, j (I ∈ dv)Rθi, j (t − α−1 log v, t − α−1 log v + α−1 log λ).

Thanks to Lemma 3.5 of [1], we have the uniform estimate

sup
x∈R

Rθi, j (x, x + α−1 log λ) ≤ π θj Rθi,i (−α
−1 log λ, α−1 log λ).

This result is accompanied by the classical form of the Markov Additive Renewal Theorem (c.f
Theorem 3.1 of [1]), which states that

lim
x→∞

Rθi, j (x, x + α−1 log λ) = π θj
log λ
αµθ

.

This allows us to apply the dominated convergence and note, in conjunction with the classical
form of the Markov Additive Renewal Theorem (c.f Theorem 3.1 of [1]) that

lim
t→∞

∫
R

Rθi, j (dy)P0, j (I ∈ Aeα(t−y)) = π θj
log λ
αµθ

.
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Plugging this limit back into the first term on the right-hand side of (33) provides the necessary
convergence to complete the proof in the same way as the previous two cases. The details are
again left to the reader. □
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Appendix. Markov additive renewal theory

Consider a discrete-time stochastic process described by the pair (∆,M) := ((∆n,Mn))n≥0,
where ∆n takes real (or just positive) values and Mn takes values in the set E := {1, 2, . . . , N }.
We shall specify the law of such a process as follows.

Set ∆0 = 0. For each i, j ∈ E , there is a probability distribution Pi, j (x) such that,
conditioning on the history of (∆,M) up to time n − 1, the distribution of (∆n,Mn) is given
by

P(Mn = j,∆n ≤ x |(Mk, Xk), k = 0, . . . , n − 1) = PMn−1, j (x).

In this sense, we have that the process M = {Mn : n ≥ 0} alone is a Markov chain on E with
transition matrix pi, j := Pi, j (∞), for i, j ∈ E . The possibility that pi i > 0 is not excluded here.

The distribution of ∆n only depends on the state at time n − 1 which makes the discrete-time
Markov additive process

Ξn :=

n∑
k=0

∆k, n ≥ 0,

the analogue of a Markov additive random walk (or Markov additive renewal process if the
increments are all positive).

To state a classical renewal result for discrete-time Markov additive processes, we need to
introduce a little more notation. The mean transition is given by

ηi =

∑
j∈E

∫
R

x Pi, j (dx), i ∈ E .

Moreover, the measure Ri, j denotes the occupation measure

Ri, j (x) =

∞∑
n=1

P(Ξn ≤ x, Mn = j |M0 = i).

The following discrete-time Markov additive renewal theorem is lifted from Proposition 9.3
in [17].

Theorem A.1 (Markov Additive Renewal Theorem). Given a sequence of functions g1, g2, . . . ,

gN that are directly Riemann integrable, we have, for j ∈ E,

lim
t→∞

∫
R

g j (t − s)Ri, j (ds) =
π j
∫

∞

0 g j (y)dy∑N
j=1 π jη j

, (A.1)

as soon as
∑N

j=1π jη j ∈ (0,∞), where πi is the stationary distribution for the chain M.
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