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Abstract

In the spirit of Albrecher and Hipp (2007), and Albrecher, Renaud, and Zhou (2008) we
consider a Lévy insurance risk model with tax payments of a more general structure than
in the aforementioned papers, which was also considered in Albrecher, Borst, Boxma,
and Resing (2009). In terms of scale functions, we establish three fundamental identities
of interest which have stimulated a large volume of actuarial research in recent years.
That is to say, the two-sided exit problem, the net present value of tax paid until ruin,
as well as a generalized version of the Gerber–Shiu function. The method we appeal to
differs from Albrecher and Hipp (2007), and Albrecher, Renaud, and Zhou (2008) in that
we appeal predominantly to excursion theory.
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1. Introduction and main results

Recent advances in the analysis of the ubiquitous ruin problem from the theory of insurance
risk has seen a tendency to replace the classical Cramér–Lundberg surplus process with a
general spectrally negative Lévy process; see, for example, [2], [10], [11], and [21], to name
but a few. In this case the surplus process is commonly referred to as a Lévy insurance risk
process. Although moving to this more complex setting, arguably, does not bring any more
realistic features to the table than are already on offer in the classical Cramér–Lundberg model,
a clear mathematical advantage has emerged. Working with Lévy insurance risk processes
forces us to approach the problem of ruin via fluctuation theory, which does not use specific
features of the underlying Lévy process other than a generic path decomposition of the process
in terms of excursions from its maximum, which manifests itself in the form of a Poisson point
process.

In this paper we continue in this vein and build on ideas of Lévy insurance risk processes
with tax which were introduced and studied in [1], [2], and [3]. Specifically, we introduce a
more general tax structure and therewith we establish, for the aggregate surplus process, new
identities for the two-sided exit problem, a generalized version of the Gerber–Shiu function, as
well as the net present value of tax paid until ruin.
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Henceforth, the process X = {Xt : t ≥ 0} with probabilities {Px : x ∈ R} and natural
filtration {Ft : t ≥ 0} will denote a spectrally negative Lévy process with the usual exclusion of
processes in the latter class which have monotone paths (that is to say, a pure increasing linear
drift and the negative of a subordinator). For convenience, we shall always denote P0 by P. Let

ψ(θ) = log E[eθX1 ]
be the Laplace exponent of X, which is known to be finite for at least θ ∈ [0,∞), in which
case it is a strictly convex and infinitely differentiable function. The asymptotic behaviour
of X is characterized by ψ ′(0+), so that X drifts to ±∞ or oscillates according to whether
±ψ ′(0+) > 0 or, respectively, ψ ′(0+) = 0. When X plays the role of the surplus process, it
is usual to assume that ψ ′(0+) > 0, which is equivalent to the net profit condition in the case
that X is a Cramér–Lundberg process. However, this condition is not necessary for any of the
forthcoming analysis.

Denote by S = {St : t ≥ 0} the process which describes the running supremum of X, that
is to say, St = sups≤t Xs for each t ≥ 0. Following [3], we are interested in modelling tax
payments from the Lévy insurance process in such a way that the cumulative payment until
time t is given by ∫ t

0
γ (Su) dSu,

where γ : [0,∞) → [0, 1) is a measurable function which satisfies
∫ ∞

0
(1 − γ (s)) ds = ∞.

In this case the aggregate surplus process, the primary object of our study, is given by

Ut := Xt −
∫ t

0
γ (Su) dSu. (1.1)

In the special case that γ is a constant in (0, 1), our Lévy insurance risk process with tax agrees
with the model introduced in [1] and [2]. In the case that γ = 0, we are back to a regular
Lévy insurance risk process. Note also that processes of the form (1.1) constitute a subclass of
controlled Lévy risk processes, the latter being of popular interest in recent literature; see, for
example, [5], [13], and [14].

In order to state the results alluded to above which concern path functionals of U , we must
first introduce more notation. As is now usual when studying Lévy risk processes, a key element
of the analysis involves the use of scale functions, defined as follows. For every q ≥ 0, there
exists a function W(q) : R → [0,∞) such that W(q)(x) = 0 for all x < 0 and otherwise is
almost everywhere differentiable on [0,∞), satisfying

∫ ∞

0
e−λxW(q)(x) dx = 1

ψ(λ)− q
for λ > �(q), (1.2)

where �(q) is the largest solution to the equation ψ(θ) = q (there are at most two). We
shall write for short W(0) = W . It is known that when X has paths of unbounded variation,
the scale functions W(q) are continuously differentiable on (0,∞), and when X has paths of
bounded variation, they are almost everywhere differentiable. In either case we shall denote by
W(q)′ the associated density. It is also known that if X has a Gaussian component thenW(q) is
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twice continuously differentiable on (0,∞). In the case of bounded variation paths, there is a
discontinuity in W(q) at the origin which does not depend on q, and in the case of unbounded
variation paths, there is no discontinuity in W(q) at the origin for all q ≥ 0.

There exists a well-known exponential change of measure that we may perform for spectrally
negative Lévy processes,

dPϑx
dPx

∣∣∣∣
Ft

= eϑ(Xt−x)−ψ(ϑ)t (1.3)

for x ∈ R and ϑ ≥ 0, under which X remains within the class of spectrally negative Lévy
processes. In particular, if ν(dx) is the Lévy measure of −X under P then e−ϑxν(dx) is its
Lévy measure under Pϑ . It will turn out to be useful to introduce an additional parameter to the
scale functions described above in the light of this change of measure. Henceforth, we shall
refer to the functionsWϑ , where ϑ ≥ 0, as the functions that play the role of the scale functions
defined in the previous paragraph, but when considered under the measures Pϑ .

Next define

τ+
a := inf{t > 0 : Ut > a} and τ−

0 := inf{t > 0 : Ut < 0},

with the convention inf ∅ = ∞. For s ≥ x, define

γ̄ (s) := s −
∫ s

x

γ (y) dy = x +
∫ s

x

(1 − γ (y)) dy. (1.4)

By differentiating (1.4) we note that, since γ ∈ [0, 1), it follows that γ̄ is a strictly increasing
function. Moreover, since it is continuous, it has a well-defined inverse on [x,∞) which we
denote by γ̄−1.

We may now present the three main results of this paper. Their proofs will be given in the
subsequent sections.

For each x > 0, the process Lt := St − x, t ≥ 0, serves as a local time at 0 for the Markov
process Y := S − X under Px . Write L−1 := {L−1

t : t ≥ 0} for the right-continuous inverse
of L.

Theorem 1.1. (Two-sided exit problem.) For any x > 0 and q ≥ 0, we have

Ex[e−qτ+
a 1{τ+

a <τ
−
0 }] = exp

{
−

∫ a∧x

x

W(q)′(y)
W(q)(y)(1 − γ (γ̄−1(y)))

dy

}
. (1.5)

Theorem 1.2. (Net present value of tax paid until ruin.) For any x > 0 and q ≥ 0, we have

Ex

[∫ τ−
0

0
e−quγ (Su) dSu

]
=

∫ ∞

x

exp

{
−

∫ t

x

W(q)′(γ̄ (s))
W(q)(γ̄ (s))

ds

}
γ (t) dt. (1.6)

Theorem 1.3. For each t ≥ 0, let SUt := sups≤t Us and let κ = L−1
L
τ
−
0

−, the last moment that

tax is paid before ruin. Denote by ν the Lévy measure of −X. For any z > 0, y ≥ 0, θ ≥ y,
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and α, β ≥ 0, we have

Ex(e
−ακ−β(τ−

0 −κ); SU
τ−

0
∈ dθ, Uτ−

0 − ∈ dy, −Uτ−
0

∈ dz)

= 1

1 − γ (γ̄−1(θ))
exp

{
−

∫ θ

x

W(α)′(v)
W(α)(v)(1 − γ (γ̄−1(v)))

dv

}

×
[{
W(β)′(θ − y)− W(β)′(θ)

W(β)(θ)
W(β)(θ − y)

}
ν(y + dz)1{y<θ} dy

+W(β)(0+)ν(θ + dz)δθ (dy)

]
dθ,

where δθ (dy) is the Dirac measure which assigns unit mass to the point θ . Furthermore, we
also have

Ex(e
−ακ−β(τ−

0 −κ); SU
τ−

0
∈ dθ, Uτ−

0
= 0)

= 1

1 − γ (γ̄−1(θ))
exp

{
−

∫ θ

x

W(α)′(y)
W(α)(y)(1 − γ (γ̄−1(y)))

dy

}

× σ 2

2

{
W(β)′(θ)2

W(β)(θ)
−W(β)′′(θ)

}
dθ,

where σ is the Gaussian coefficient in the Lévy–Itô decomposition of X.

Remark 1.1. When γ ∈ (0, 1) is a constant, we note that expressions (1.5) and (1.6) agree
with formulae (3.1) and (3.2) of [2]. Indeed, we have γ̄ (s) = s(1−γ )+γ x. For Theorem 1.1,
we have

Ex[e−qτ+
a 1{τ+

a <τ
−
0 }] = exp

{
−

∫ a

x

W(q)′(y)
W(q)(y)(1 − γ )

dy

}
=

(
W(q)(x)

W(q)(a)

)1/(1−γ )
.

For Theorem 1.2, we have, by two changes of variables,
∫ ∞

x

exp

{
−

∫ t

x

W(q)′(γ̄ (s))
W(q)(γ̄ (s))

ds

}
γ (t) dt = γ

∫ ∞

x

exp

{
− 1

1 − γ

∫ γ̄ (t)

x

W(q)′(y)
W(q)(y)

dy

}
dt

= γ

∫ ∞

x

(
W(q)(x)

W(q)(γ̄ (t))

)1/(1−γ )
dt

= γ

1 − γ

∫ ∞

x

(
W(q)(x)

W(q)(u)

)1/(1−γ )
du,

which is Equation (3.2) of [2].
Theorem 1.3 on the other hand gives a new result for the setting of [2]. In particular, we

have, for y, z > 0 and y ≤ θ ,

Ex(e
−ακ−β(τ−

0 −κ); SU
τ−

0
∈ dθ, Uτ−

0 − ∈ dy, −Uτ−
0

∈ dz)

= 1

1 − γ

(
W(α)(x)

W(α)(θ)

)1/(1−γ )[{
W(β)′(θ − y)− W(β)′(θ)

W(β)(θ)
W(β)(θ − y)

}
ν(y + dz)

× 1{y<θ} dy +W(β)(0+)ν(θ + dz)δθ (dy)

]
dθ
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and

E(e−ακ−β(τ−
0 −κ); SU

τ−
0

∈ dθ, Uτ−
0

= 0)

= σ 2

2(1 − γ )

(
W(α)(x)

W(α)(θ)

)1/(1−γ ){
W(β)′(θ)2

W(β)(θ)
−W(β)′′(θ)

}
dθ.

Finally, note that, when γ = 0 and the processU agrees with the Lévy insurance risk process
X, the last two formulae above give us two new expressions for the time value of the overall
maximal wealth accumulated prior to ruin, the wealth immediately before ruin, and the deficit
at ruin.

Remark 1.2. Following a preprint of this article, further identities concerning the process U
have been treated by Renaud [20] using a different technique.

Remark 1.3. One major criticism of working with scale functions is that, in principle, we have
only solved the problems of interest up to inverting the Laplace transform (1.2). However, in
the last year there have been a number of developments in the theory of scale functions which
has seen a large number of explicit examples appearing in the literature, including the case of
Cramér–Lundberg models. See, for example, [8], [9], [15], and [17]. Surya [22] gave recipes
for evaluating scale functions numerically.

2. Proofs of main results

We begin this section by pointing out some important features of the running supremum
of the aggregate process (1.1) which turns out to be key in our use of excursion theory in the
forthcoming proofs.

Lemma 2.1. We have

SUt = St −
∫ t

0
γ (Ss) dSs, (2.1)

and the random times {t ≥ 0 : Ut = SUt } agree precisely with {t ≥ 0 : Xt = St }.
Proof. Note that, on the one hand,

SUt = sup
s≤t

{
Xs −

∫ s

0
γ (Su) dSu

}
≥ sup

s≤t
Xs −

∫ t

0
γ (Su) dSu = St −

∫ t

0
γ (Su) dSu. (2.2)

On the other hand, since Xt ≤ St , we have

Ut ≤ St −
∫ t

0
γ (Su) dSu =

∫ t

0
(1 − γ (Su)) dSu + x,

and, hence, since γ (y) ∈ [0, 1) for all y ≥ 0,

SUt ≤ sup
s≤t

∫ s

0
(1 − γ (Su)) dSu + x =

∫ t

0
(1 − γ (Su)) dSu + x = St −

∫ t

0
γ (Su) dSu. (2.3)

Together, (2.2) and (2.3) imply (2.1). Now suppose that t ′ ∈ {t ≥ 0 : Xt = St }. This implies
that

Ut ′ = Xt ′ −
∫ t ′

0
γ (Su) dSu = St ′ −

∫ t ′

0
γ (Su) dSu = SUt ′ ,
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and, hence, t ′ ∈ {t ≥ 0 : Ut = SUt }. On the other hand, if t ′′ ∈ {t ≥ 0 : Ut = SUt } then

Xt ′′ −
∫ t ′′

0
γ (Su) dSu = Ut ′′ = SUt ′′ = St ′′ −

∫ t ′′

0
γ (Su) dSu,

showing that Xt ′′ = St ′′ and, hence, t ′′ ∈ {t ≥ 0 : Xt = St }.
For the remaining proofs, we shall also make heavy use of excursion theory for the process

S − X; we refer the reader to [6, Chapters 6 and 7] for background reading. We shall spend a
moment here setting up some necessary notation which will be used throughout the remainder
of the paper. The Poisson point process of excursions indexed by local time shall be denoted
by {(t, εt ) : t ≥ 0}, where

εt = {εt (s) := X
L−1
t

−X
L−1
t− +s : 0 < s ≤ L−1

t − L−1
t− }

whenever σ(εt ) := L−1
t − L−1

t− > 0. Accordingly, we refer to a generic excursion as ε(·) (or
just ε for short as appropriate) belonging to the space E of canonical excursions. The intensity
measure of the process {(t, εt ) : t ≥ 0} is given by dt × dn, where n is a measure on the space
of excursions (the excursion measure). An n-measurable functional of the canonical excursion
which will be of prime interest is ε̄ = sups≥0 ε(s). A useful formula for this functional that we
shall make use of is the following (cf. [12, Equation (8.18)]):

n(ε > x) = W ′(x)
W(x)

, (2.4)

providing that x is not a point of discontinuity in the derivative of W (which is only a concern
when X has paths of bounded variation, in which case there are at most a countable number).

Lemma 2.1 also has an important bearing on the process of excursions described above.
Indeed, from identity (2.1) we note that Lt = s, or, equivalently, St = x + s, under Px if and
only if SUt = γ̄ (x + s). It follows that the event that U climbs from x to height γ̄ (x + s)

for the first time coincides with the event that process X climbs from x to x + s for the first
time. Consequently, L−1

s = τ+
γ̄ (x+s), or, equivalently, τ+

a = L−1
γ̄−1(a)−x , under Px . Moreover,

the excursions of U away from its maximum agree precisely with {(t, εt ) : t ≥ 0}.
Proof of Theorem 1.1. Taking account of the remarks following Lemma 2.1 we find that the

event {τ+
a < τ−

0 } is the same as

{ε̄s ≤ γ̄ (x + s) for all 0 ≤ s < γ̄−1(a)− x}.
Then, for x > 0,

Px(τ
+
a < τ−

0 ) = Px(ε̄s ≤ γ̄ (x + s) for all 0 ≤ s < γ̄−1(a)− x)

= exp

{
−

∫ γ̄−1(a)−x

0
n(ε̄ > γ̄ (x + s)) ds

}

= exp

{
−

∫ γ̄−1(a)−x

0

W ′(γ̄ (x + s))

W(γ̄ (x + s))
ds

}

= exp

{
−

∫ a

x

W ′(y)
W(y)(1 − γ (γ̄−1(y)))

dy

}
,
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where in changing variable we make use of the fact that, since γ̄ (γ̄−1(s)) = s, we have, from
the chain rule,

d

ds
γ̄−1(s) = 1

γ̄ ′(γ̄−1(s))
= 1

1 − γ (γ̄−1(s))
.

Next, note that

P�(q)x (τ+
a < τ−

0 ) = Ex[exp{�(q)(Xτ+
a

− x)− qτ+
a } 1{τ+

a <τ
−
0 }]

= exp{�(q)(γ̄−1(a)− x)} Ex[e−qτ+
a 1{τ+

a <τ
−
0 }], (2.5)

where we have appealed to the change of measure (1.3) with ϑ = �(q) and the final equality
follows by virtue of the fact that, on {τ+

a < ∞},

Xτ+
a

= Uτ+
a

+
∫ τ+

a

0
γ (Su) dSu

= a +
∫ L−1

γ̄−1(a)−x

0
γ (Su) dSu

= a +
∫ γ̄−1(a)

x

γ (y) dy

= γ̄−1(a),

where in the third equality we have made the change of variable y = S−1
u . Note also that it is

known (cf. Chapter 8 of [12]) that, for q, x ≥ 0,

W(q)(x) = e�(q)xW�(q)(x), (2.6)

and, hence,
W ′
�(q)(x)

W�(q)(x)
= W(q)′(x)
W(q)(x)

−�(q). (2.7)

Piecing together (2.5), (2.6), and (2.7) we obtain

Ex[e−qτ+
a 1{τ+

a <τ
−
0 }]

= P�(q)x (τ+
a < τ−

0 ) exp{−�(q)(γ̄−1(a)− x)}

= exp

{
−

∫ a

x

W ′
�(q)(y)

W�(q)(y)(1 − γ (γ̄−1(y)))
dy

}
exp{−�(q)(γ̄−1(a)− x)}

= exp

{
−

∫ a

x

W(q)′(y)
W(q)(y)(1 − γ (γ̄−1(y)))

dy

}
,

where we have also used the fact that
∫ a

x

1

1 − γ (γ̄−1(y))
dy = γ̄−1(a)− γ̄−1(x) = γ̄−1(a)− x.

The proof is now complete.
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Proof of Theorem 1.2. The proof builds on the experience of the calculations in the previous
proof. We note that the process S does not increase on the time interval (L−1

L
τ
−
0

−, τ
−
0 ) and, hence,

Ex

[∫ τ−
0

0
e−quγ (Su) dSu

]

= Ex

[∫ L−1
L
τ
−
0

−

0
e−quγ (Lu + x) dLu

]

= Ex

[∫ ∞

0
1{t<L

τ
−
0

} e−qL−1
t γ (t + x) dt

]

=
∫ ∞

0
Ex[e−qL−1

t 1{ε̄s≤γ̄ (x+s) for all 0≤s≤t}]γ (t + x) dt

=
∫ ∞

0
e−�(q)t P�(q)x (ε̄s ≤ γ̄ (x + s) for all 0 ≤ s ≤ t)γ (t + x) dt

=
∫ ∞

0
e−�(q)t exp

{
−

∫ t

0
n�(q)(ε̄ > γ̄ (x + s)) ds

}
γ (t + x) dt

=
∫ ∞

0
e−�(q)t exp

{
−

∫ t

0

W ′
�(q)(γ̄ (x + s))

W�(q)(γ̄ (x + s))
ds

}
γ (t + x) dt

=
∫ ∞

0
exp

{
−

∫ t

0

W(q)′(γ̄ (x + s))

W(q)(γ̄ (x + s))
ds

}
γ (t + x) dt,

where in the fifth equality the measure n�(q) plays the role of n under P�(q), in the penultimate
equality we have used (2.4), and the final equality uses (2.7). The proof is completed by
applying a straightforward change of variables.

Before turning to the proof of Theorem 1.3, we need first to prove an additional auxiliary
result. To this end, define ρa = inf{s > 0 : ε(s) > a}, the first passage time above a of the
canonical excursion ε. We also need the first passage times for the underlying Lévy processX,

T +
x = inf{t > 0 : Xt > x} and T −

x = inf{t > 0 : Xt < x} for all x ∈ R.

Lemma 2.2. For any z > 0, y ∈ [0, a], and q ≥ 0, we have

n(e−qρa ; a − ε(ρa−) ∈ dy, ε(ρa)− a ∈ dz)

=
{
W(q)′(a − y)− W(q)′(a)

W(q)(a)
W(q)(a − y)

}
ν(y + dz)1{y<a} dy

+W(q)(0+)ν(a + dz)δa(dy),

where δa(dy) is the Dirac measure assigning unit mass to the point a and

n(e−qρa ; ε(ρa) = a) = σ 2

2

{
W(q)′(a)2

W(q)(a)
−W(q)′′(a)

}
.

Proof. Recall that Y = S −X. For the latter process, introduce its first passage time

ςa = inf{t > 0 : Yt > a}.
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By a classical application of the compensation formula (see, for example, the treatment of a
related problem in [4]) we have, for z > 0, y ∈ [0, a), and q ≥ 0,

E(e−qςa ; a − Yςa− ∈ dy, Yςa − a ∈ dz)

= E

[∑
t≥0

exp{−q(L−1
t− + ρa(εt ))} 1{sups<t εs≤a,ρa(εt )<σ(εt ), a−εt (ρa−)∈dy, εt (ρa)−a∈dz}

]

=
∫ ∞

0
E[e−qL−1

t 1{sups≤t εs≤a}] dt · n(e−qρa ; a − ε(ρa−) ∈ dy, ε(ρa)− a ∈ dz)

=
∫ ∞

0
e−�(q)te−n�(q)(ε̄>a)t dt · n(e−qρa ; a − ε(ρa−) ∈ dy, ε(ρa)− a ∈ dz)

=
∫ ∞

0
e−�(q)t exp

{
−W

′
�(q)(a)

W�(q)(a)
t

}
dt · n(e−qρa ; a − ε(ρa−) ∈ dy, ε(ρa)− a ∈ dz)

=
∫ ∞

0
exp

{
−W

(q)′(a)
W(q)(a)

t

}
dt · n(e−qρa ; a − ε(ρa−) ∈ dy, ε(ρa)− a ∈ dz), (2.8)

where in the first equality the time index runs over local times and the sum is the usual shorthand
for integration with respect to the Poisson counting measure of excursions, and, for the second
equality, we needed the quasi-left continuity for subordinator L−1.

On the other hand, according to Theorem 1 of [19], we have (recalling that y ∈ [0, a))
E(e−qςa ; a − Yςa− ∈ dy, Yςa − a ∈ dz)

=
∫ ∞

0
exp

{
−W

(q)′(a)
W(q)(a)

t

}
dt

×
(
W(q)′(a − y)− W(q)′(a)

W(q)(a)
W(q)(a − y)

)
ν(y + dz) dy. (2.9)

By comparing the left- and right-hand sides of (2.8) and (2.9) we thus have

n(e−qρa ; a − ε(ρa−) ∈ dy, ε(ρa)− a ∈ dz)

=
(
W(q)′(a − y)− W(q)′(a)

W(q)(a)
W(q)(a − y)

)
ν(y + dz) dy,

as claimed.
In order to write down an identity for n(e−qρa ; a − ε(ρa−) ∈ dy, ε(ρa) − a ∈ dz) in the

case that y = a and z > 0, note that this can only occur when the excursion immediately jumps
from 0 at time 0 over the level a. This is not possible whenX has paths of unbounded variation;
see, for example, [16]. However, when X has paths of bounded variation, it is known (cf. [18]
for example) that excursions begin with a jump and the entrance law is given by d−1ν(dx).
Here d > 0 is the drift term of X when it is uniquely written in the form Xt = dt − ξt , where
ξ is a pure-jump subordinator. It is also known (cf. Lemma 8.6 of [12]) that, whenX has paths
of bounded variation, we may write d−1 = W(q)(0+) for all q ≥ 0. Moreover, when X has
paths of unbounded variation, we have W(q)(0+) = 0 for all q ≥ 0. It follows that we may
now generically write, for z > 0,

n(e−qρa ; a − ε(ρa−) ∈ {a}, ε(ρa)− a ∈ dz) = n(ε(0+)− a ∈ dz)

= W(q)(0+)ν(a + dz).
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For the proof of the second part, we should first note that it is known (cf. [12, p. 212]) that
the process X creeps downwards if and only if σ 	= 0. It thus follows that Y creeps upwards if
and only if σ 	= 0. Henceforth, assume that σ 	= 0. The proof then follows the same reasoning,
except in (2.8) we replace the event {a − Yςa− ∈ dy, Yςa − a ∈ dz} by {Yςa = a} on the
left-hand side and {a − ε(ρa−) ∈ dy, ε(ρa)− a ∈ dz} by {ε(ρa) = a} on the right-hand side.
Furthermore, as a replacement for (2.9) in the argument, we use instead

E(e−qςa ;Yςa = a) = σ 2

2

{
W(q)′(a)2

W(q)(a)
−W(q)′′(a)

} ∫ ∞

0
exp

{
−W

(q)′(a)
W(q)(a)

t

}
dt,

which is taken from Theorem 2 of [19].

Proof of Theorem 1.3. We give the proof for the first identity. The proof of the second
identity follows along exactly the same lines using the second part of Lemma 2.2 instead, and
is left as an exercise for the reader.

In a similar spirit to the proof of Lemma 2.2 we may write, for a given open interval
B ⊂ (0,∞),

E(e−ακ−β(τ−
0 −κ); SU

τ−
0

∈ B, Uτ−
0 − ∈ dy, −Uτ−

0
∈ dz)

= Ex

[∑
t≥0

1{L−1
t−<τ−

0 } e−αL−1
t− 1{SU

L
−1
t−

∈B} e−β(τ−
0 −L−1

t− ) 1{SU
τ
−
0

=SU
L

−1
t−

} 1{U
τ
−
0 −∈dy,−U

τ
−
0

∈dz}
]
.

Note, however, that on account of the fact that

SU
L−1
t−

= SU
L−1
t

= x + t −
∫ L−1

t

x

γ (Su) dSu = x + t −
∫ x+t

x

γ (y) dy = γ̄ (x + t)

we have {SU
L−1
t

∈ B} = {γ̄ (x + t) ∈ B}. Note also that L−1
t = τ+

γ̄ (x+t) and L−1 is quasi-left

continuous. Hence, applying the compensation formula we have

E(e−ακ−β(τ−
0 −κ); SU

τ−
0

∈ B, Uτ−
0 − ∈ dy, −Uτ−

0
∈ dz)

= Ex

[∫ ∞

0
dt · e−ατ+

γ̄ (x+t) 1{γ̄ (x+t)∈B} 1{τ+
γ̄ (x+t)<τ

−
0 }

× n(e−βργ̄ (x+t); γ̄ (x + t)− ε(ργ̄ (x+t)−) ∈ dy, ε(ργ̄ (x+t))− γ̄ (x + t) ∈ dz)

]

=
∫
B

dθ

1 − γ (γ̄−1(θ))
Ex[e−ατ+

θ 1{τ+
θ <τ

−
0 }]n(e−βρθ ; θ − ε(ρθ−) ∈ dy, ε(ρθ )− θ ∈ dz),

where in the final equality we have applied a change of variable. Now making use of the first
part of Lemma 2.2 and the conclusion of Theorem 1.1 the result follows.
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