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Abstract

Evans [7] described the semi-group of a superprocess with quadratic branching mecha-

nism under a martingale change of measure in terms of the semi-group of an immortal

particle and the semigroup of the superprocess prior to the change of measure. This

result, commonly referred to as the spine decomposition, alludes to a pathwise decom-

position in which independent copies of the original process ‘immigrate’ along the path

of the immortal particle. For branching particle diffusions the analogue of this decom-

position has already been demonstrated in the pathwise sense, see for example [11, 10].

The purpose of this short note is to exemplify a new pathwise spine decomposition for

supercritical super-Brownian motion with general branching mechanism (cf. [13]) by

studying Lp convergence of naturally underlying additive martingales in the spirit of

analogous arguments for branching particle diffusions due to Harris and Hardy [10].

Amongst other ingredients, the Dynkin-Kuznetsov N-measure plays a pivotal role in

the analysis.
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1 Introduction

Suppose that X = {Xt : t ≥ 0} is a (one-dimensional) ψ-super-Brownian motion with

general branching mechanism ψ taking the form

ψ(λ) = −αλ+ βλ2 +

∫
(0,∞)

(e−λx − 1 + λx)ν(dx), (1)

for λ ≥ 0 where α = −ψ′(0+) ∈ (0,∞), β ≥ 0 and ν is a measure concentrated on (0,∞)

which satisfies
∫

(0,∞)
(x ∧ x2)ν(dx) < ∞. Let MF (R) be the space of finite measures on R

and note that X is a MF (R)-valued Markov process under Pµ for each µ ∈ MF (R), where

Pµ is the law of X with initial configuration µ. We shall use standard inner product notation,

for f ∈ C+
b (R), the space of positive, uniformly bounded, continuous functions on R, and

µ ∈MF (R),

〈f, µ〉 =

∫
R
f(x)µ(dx).

Accordingly we shall write ||µ|| = 〈1, µ〉. Recall that the total mass of the process X,

{||Xt|| : t ≥ 0} is a continuous-state branching process with branching mechanism ψ. Such

processes may exhibit explosive behaviour, however, under the conditions assumed above,

||X|| remains finite at all times. We insist moreover that ψ(∞) =∞ which means that with

positive probability the event limt↑∞ ||Xt|| = 0 will occur. Equivalently this means that the

total mass process does not have monotone increasing paths; see for example the summary in

Chapter 10 of Kyprianou [12]. The existence of these superprocesses processes is guaranteed

by [1, 3, 4].

The following standard result from the theory of superprocesses describes the evolution

of X as a Markov process. For all f ∈ C+
b (R) and µ ∈MF (R),

− logEµ(e−〈f,Xt〉) =

∫
R
uf (x, t)µ(dx), µ ∈MF (R), t ≥ 0, (2)

where uf (x, t) is the unique positive solution to the evolution equation for x ∈ R and t > 0

∂

∂t
uf (x, t) =

1

2

∂2

∂x2
uf (x, t)− ψ(uf (x, t)), (3)

with initial condition uf (x, 0) = f(x). The reader is referred to Theorem 1.1 of Dynkin [2],

Proposition 2.3 of Fitzsimmons [8] and Proposition 2.2 of Watanabe [15] for further details;

see also Dynkin [3, 4] and Engländer and Pinsky [6] for a general overview.

Associated to the process X is the following martingale Z(λ) = {Zt(λ), t ≥ 0}, where

Zt(λ) := eλcλt〈eλ·, Xt〉, t ≥ 0, (4)

where cλ = ψ′(0+)/λ−λ/2 and λ ∈ R (cf. [13] Lemma 2.2). To see why this is a martingale

note the following steps. Define for each x ∈ R, g ∈ C+
b (R) and θ, t ≥ 0, uθg(x, t) =
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− logEδx(e−θ〈g,Xt〉). With limits understood as θ ↓ 0, we have ug(x, t)|θ=0 = 0, moreover,

vg(x, t) := Eδx(〈g,Xt〉) = ∂uθg(x, t)/∂θ|θ=0. Differentiating in θ in (3) shows that vg solves

the equation
∂

∂t
vg(x, t) =

1

2

∂2

∂x2
vg(x, t)− ψ′(0+)vg(x, t), (5)

with vg(x, 0) = g(x). Classical Feynman-Kac theory tells us that (5) has a unique solution

which is necessarily equal to Πx(e
−ψ′(0+)tg(ξt)) where {ξt : t ≥ 0} is a Brownian motion issued

from x ∈ R under the measure Πx. The above procedure also works for g(x) = eλx in which

case we easily conclude that for all x ∈ R and t ≥ 0, eλcλtEδx(〈eλ·, Xt〉) = eλx. Finally, the

martingale property follows using the previous equality together with the Markov branching

property associated with X. Note that as a positive martingale, it is automatic that

lim
t↑∞

Zt(λ) = Z∞(λ)

Pµ-almost surely for all µ ∈MF (R) such that 〈eλ·, µ〉 <∞.

The purpose of this note is to demonstrate the robustness of a new path decomposition

of our ψ-super-Brownian motion by studying the Lp-convergence of the martingales Z(λ).

Specifically we shall prove the following theorem.

Theorem 1.1. Assume that p ∈ (1, 2],
∫

(0,∞)
rpν(dr) < ∞ and pλ2 < −2ψ′(0+). Then

Zt(λ) converges to Z∞(λ) in Lp(Pµ), for all µ ∈ MF (R) such that 〈eλ·, µ〉 and 〈eλp·, µ〉 are

finite.

The method of proof we use is quite similar to the one used in Harris and Hardy [10]

for branching Brownian motion, where a pathwise spine decomposition functions as the key

instrument of the proof. Roughly speaking, in that setting, the spine decomposition says that

under a change of measure, the law of the branching Brownian motion has the same law as an

immortal Brownian diffusion (with drift) along the path of which independent copies of the

original branching Brownian motion immigrate at times which form a Poisson process. Until

recently such a spine decomposition for superdiffusions was only available in the literature

in a weak form; meaning that it takes the form of a semi-group decomposition. See the

original paper of Evans [7] as well as, for example amongst others, Engländer and Kyprianou

[9]. Recently however Kyprianou et al. [13] give a pathwise spine decomposition which

provides a natural analogue to the pathwise spine decomposition for branching Brownian

motion. Amongst other ingredients, the Dynkin-Kuznetsov N-measure plays a pivotal role

in describing the immigration off an immortal particle. We give a description of this new

spine decomposition in the next section and thereafter we proceed to the proof of Theorem

1.1 in Section 3.
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2 Spine decomposition

For each λ ∈ R and µ ∈ M(R) satisfying 〈eλ·, µ〉, we introduce the following martingale

change of measure
dPλµ
dPµ

∣∣∣∣
Ft

=
Zt(λ)

〈eλ·, µ〉
, t ≥ 0, (6)

where Ft := σ(Xs, s ≤ t). The preceding change of measure induces the spine decomposition

of X alluded to above. To describe it in detail we need some more ingredients.

According to Dynkin and Kuznetsov [5] there exists a collection of measures {Nx, x ∈ R},
defined on the same probability space as X, such that

Nx

(
1− e−〈f,Xt〉

)
= uf (x, t), x ∈ R, t ≥ 0. (7)

Roughly speaking, the branching property tells us that for each n ∈ N, the measures Pδx can

be written as the n-fold convolution of P 1
n
δx

which indicates that, on the trajectory space of

the superprocess, Px is infinitely divisible. Hence the role of Nx in (7) is analogous to that

of the Lévy measure for positive real-valued random variables.

From identity (7) and equation (2), it is straightforward to deduce that

Nx(〈f,Xt〉) = Eδx(〈f,Xt〉), (8)

whenever f ∈ C+
b (R).

For each x ∈ R, let Πx be the law of a Brownian motion ξ := {ξt : t ≥ 0} issued from

x. If Πλ
x is the law under which ξ is a Brownian motion with drift λ ∈ R and issued from

x ∈ R, then for each t ≥ 0,

dΠλ
x

dΠx

∣∣∣∣
Gt

= eλ(ξt−x)− 1
2
λ2t, t ≥ 0, (9)

where Gt := σ(ξs, s ≤ t). For convenience we shall also introduce the measure

Πλ
µ(·) :=

1

〈eλ·, µ〉

∫
eλxµ(dx)Πλ

x(·), (10)

for all λ ∈ R. In other words, Πλ
µ has the law of a Brownian motion with drift at rate λ with

an initial position which has been independently randomised in a way that is determined by

µ.

Now fix µ ∈MF (R) and x ∈ R and let us define a measure-valued process Λ := {Λt, t ≥
0} as follows:

(i) Take a copy of the process ξ = {ξt, t ≥ 0} under Πλ
x, we shall refer to this process

as the spine.
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(ii) Suppose that n is a Poisson point process such that, for t ≥ 0, given the spine ξ,

n issues superprocess Xn,t at space-time position (ξt, t) with rate dt× 2βdNξt .

(iii) Suppose that m is a Poisson point process such that, independently of n, given

the spine ξ, m issues a superprocess Xm,t at space-time point (ξt, t) with initial

mass r at rate dt× rν(dr)× dPrδξt .

Note in particular that, when β > 0, the rate of immigration under the process n is infinite

and moreover, each process that immigrates is issued with zero mass. One may therefore

think of n as a process of continuous immigration. In contrast, when ν is a non-zero measure,

processes that immigrate under m have strictly positive initial mass and therefore contribute

to path discontinuities of ||X||.
Now, for each t ≥ 0, we define

Λt = X ′t +X
(n)
t +X

(m)
t , (11)

where {X ′t : t ≥ 0} is an independent copy of (X,Pµ),

X
(n)
t =

∑
s≤t:n

Xn,s
t−s, t ≥ 0 and X

(m)
t =

∑
s≤t:m

Xm,s
t−s , t ≥ 0.

In the last two equalities we understand the first sum to be over times for which n experiences

points and the second sum is understood similarly. Note that since the processes X(n) and

X(m) are initially zero valued it is clear that since X ′0 = µ then Λ0 = µ. In that case, we

use the notation P̃λµ,x to denote the law of the pair (Λ, ξ). Note also that the pair (Λ, ξ) is a

time-homogenous Markov process. We are interested in the case that the initial position of

the spine ξ is randomised using the measure µ via (10). In that case we shall write

P̃λµ(·) =
1

〈eλ·, µ〉

∫
R

eλxµ(dx)P̃λµ,x(·)

for short. The next theorem identifies the process Λ as the pathwise spine decomposition of

(X,Pλµ) and in particular it shows that as a process on its own Λ is Markovian.

Theorem 2.1. (Theorem 5.1, [13]) For all µ ∈MF (R) such that 〈eλ·, µ〉 <∞, (X,Pλµ) and

(Λ, P̃λµ) are equal in law.

3 Proof of Theorem 1.1

From the last section we have the following spine decomposition of the martingale (4),

ZΛ
t (λ) = Z ′t(λ) +

∑
s≤t:n

eλcλsZn,s
t−s(λ) +

∑
s≤t:m

eλcλsZm,s
t−s (λ), (12)
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where Z ′(λ) is an independent copy of Z(λ) under Pµ,

Zn,s
t−s := eλcλ(t−s)〈eλ·, Xn,s

t−s〉,

and

Zm,s
t−s := eλcλ(t−s)〈eλ·, Xm,s

t−s 〉.

Since {Zt(λ), t ≥ 0} is a martingale and we assume that p ∈ (1, 2], then Doob’s sub-

martingale inequality tells us that Z(λ) converges in Lp(Pµ) as soon as we can show that

supt≥0 Eµ(Zt(λ)p) < ∞. To this end, and with the above pathwise spine decomposition in

hand we may now proceed to address the analogue of the proof for branching Brownian

motion given in [10].

First note that, for all p ∈ (1, 2],

Eµ(Zt(λ)p) = Eλµ(Zt(λ)q) = Ẽλµ(ZΛ
t (λ)q), for all t ≥ 0, (13)

where q = p− 1. By Jensen’s inequality we have that, for all q ∈ (0, 1]

Ẽλµ
(
ZΛ
t (λ)q | ξ

)
≤

[
Ẽλµ
(
ZΛ
t (λ) | ξ

)]q
≤ 〈eλ·, µ〉q +

[
Ẽλµ

(∑
s≤t:n

eλcλsZn,s
t−s(λ)

∣∣∣∣ξ
)]q

+

[
Ẽλµ

(∑
s≤t:m

eλcλsZm,s
t−s (λ)

∣∣∣∣ξ
)]q

, (14)

to get the last inequality we have used the fact that (
∑

i ui)
q ≤

∑
i u

q
i with ui ≥ 0. On the

one hand, recalling from (8) that Nξs [Zt−s(λ)] = Eξs [Zt−s(λ)], we obtain

Ẽλµ

(∑
s≤t:n

eλcλsZn,s
t−s(λ)

∣∣∣∣ξ
)

=

∫ t

0

eλcλsNξs [Zt−s(λ)]ds

=

∫ t

0

eλ(ξs+cλs)ds. (15)

On the other hand, we have that

Ẽλµ

(∑
s≤t:m

eλcλsZm,s
t−s (λ)

∣∣∣∣ξ
)

= Ẽλµ

[
Ẽλµ

(∑
s≤t:m

eλcλsZm,s
t−s (λ)

∣∣∣∣ξ,m
)∣∣∣∣ξ

]

= Ẽλµ

(∑
s≤t:m

mse
λ(ξs+cλs)

∣∣∣∣ξ
)

=
∑
s≤t:m

mse
λ(ξs+cλs), (16)

where for s ≥ 0, ms = ||Xm,s
0 ||. In particular note that the process {mt : t ≥ 0} is a Poisson

point process on (0,∞)2, independent of ξ, with intensity dt × rν(dr). Then, putting (15)
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and (16) into (14), making use again of the inequality (
∑

i ui)
q ≤

∑
i u

q
i where ui ≥ 0 for all

i, we obtain

Ẽλµ
(
ZΛ
t (λ)q | ξ

)
≤ 〈eλ·, µ〉q +

(∫ t

0

eλ(ξs+cλs)ds

)q
+
∑
s≤t:m

mq
se
qλ(ξs+cλs)

≤ 〈eλ·, µ〉q +

(∫ ∞
0

eλ(ξs+cλs)ds

)q
+
∑
s≥0:m

mq
se
qλ(ξs+cλs). (17)

Taking expectations again in (17) gives us that, for all t ≥ 0,

Ẽλµ(ZΛ
t (λ)q) ≤ 〈eλ·, µ〉q + Πλ

µ

[(∫ ∞
0

eλ(ξs+cλs)ds

)q]
+ Ẽλµ

(∑
s≥0:m

mq
se
qλ(ξs+cλs)

)
. (18)

We know that, under Πλ
µ, the process ξ is a Brownian motion with drift λ. Thus, with

respect to the same measure, ξs+ cλs is a Brownian motion with drift λ+ cλ which is strictly

negative for λ ∈ (0,
√
−2ψ′(0+)). Note that this latter condition in particular holds under

assumption that pλ2 < −2ψ′(0+) and p > 1. From Section 2 of Maulik and Zwart [14] we

can conclude that

Πλ
0

(∫ ∞
0

eλ(ξs+cλs)ds

)
<∞,

which in turn implies that, for all q ∈ (0, 1],

Πλ
0

[(∫ ∞
0

eλ(ξs+cλs)ds

)q]
<∞,

and hence

Πλ
µ

[(∫ ∞
0

eλ(ξs+cλs)ds

)q]
=

1

〈eλ·, µ〉

∫
eλxµ(dx)Πλ

0

[(∫ ∞
0

eλ(x+ξs+cλs)ds

)q]
=
〈eλp·, µ〉
〈eλ·, µ〉

Πλ
0

[(∫ ∞
0

eλ(ξs+cλs)ds

)q]
<∞. (19)

It remains to prove that the last term in (18) is finite. This can be done by computing the

expectation directly. We obtain,

Ẽλµ

(∑
s≥0:m

mq
se
qλ(ξs+cλs)

)
=

∫ ∞
0

ds

∫ ∞
0

rν(dr)rqΠλ
µ

(
eqλ(ξs+cλs)

)
=

∫ ∞
0

ds

∫ ∞
0

rpν(dr)
1

〈eλ·, µ〉

∫
eλxµ(dx)Πλ

0

(
eqλ(x+ξs+cλs)

)
= eqλx

〈eλp·, µ〉
〈eλ·, µ〉

∫ ∞
0

rpν(dr)

∫ ∞
0

Πλ
0

(
eqλ(ξs+cλs)

)
ds.

Note that,

Πλ
0

(
eqλ(ξs+cλs)

)
= exp{qsλ2 + s(qλ)2/2 + qsψ′(0+)− qsλ2/2}
= exp{qs(pλ2/2 + ψ′(0+))}
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for all s ≥ 0. Moreover, this expectation has a negative exponent as soon as pλ2 < −ψ′(0+).

Together with the assumption
∫∞

0
rpν(dr) <∞ we conclude that

Ẽλµ

(∑
s≥0:m

mq
se
qλ(ξs+cλs)

)
<∞. (20)

Finally, from (18)-(20) we get that

sup
t≥0

Ẽλµ
(
ZΛ
t (λ)q

)
<∞,

which, in combination with (13), completes the proof. �
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applications. Springer.

[13] A.E. Kyprianou, R.-L. Liu, A. Murillo-Salas and Y.-X. Ren. (2011): Supercritical super-

Brownian motion with a general branching mechanism and travelling waves. To appear

in Ann. Inst. H. Poincaré.
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