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Abstract

Conditioning Markov processes to avoid a domain is a classical problem that has been studied in many
settings. Ingredients for standard arguments involve the leading order tail asymptotics of the distribution of
the first hitting time of the domain of interest and its relation to an underlying harmonic function.

In the present article we condition stable processes to avoid intervals. The required tail asymptotics in
the stable setting for α ≥ 1 go back to classical work of Blumenthal et al. and Port from the 1960s. For
α < 1, we appeal to recent results centered around the so-called deep factorisation of the stable process to
compute hitting probabilities and, moreover, to identify the associated harmonic functions for all α ∈ (0, 2).
With these in hand, we thus prove that conditioning to avoid an interval is possible in the classical sense
and that the resulting process is a Doob h-transform of the stable process killed on entering the aforesaid
interval. Appealing to the representation of the conditioned process as a Doob h-transform, we verify that
the conditioned process is transient.
c⃝ 2019 Elsevier B.V. All rights reserved.

1. Introduction and main results

Conditioning Markov processes to avoid sets is a classical problem. Indeed, suppose P x ,
x ∈ E , represents a family of Markov probabilities on the state space E . Moreover, suppose that
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T is the first hitting time of a given domain. In the case that T is P x -almost surely finite, for each
x ∈ E , it is non-trivial to construct and characterise the conditioned process through the natural
limiting procedure

lim
s→∞

P x (Λ | s + t < T ), Λ ∈ Ft , x ∈ E, (1)

where Ft , t ≥ 0 is the natural filtration of the underlying Markov process.
The most classical example in this respect is the Brownian motion conditioned to avoid the

negative half-line; that is to say P x , x ∈ R, corresponds to the probabilities of Brownian motion
and T is the first hitting time of (−∞, 0]. See for instance Chapter VI.3 of Revuz and Yor [23].
The conditioning (1) can be made rigorous and is identified as the so-called Doob h-transform of
the Brownian motion killed on exiting the upper half line. As such conditioned Brownian motion
is uniquely characterised by the harmonic function h(x) = x on (0,∞), from which it is an easy
task to identify the conditioned process via its infinitesimal generator. Indeed, the latter is equal
to Ah f = A(h f )/h, where f belongs to an appropriately rich set of test functions on (0,∞) and
A is the infinitesimal generator of Brownian motion killed on exiting (0,∞). It turns out that the
resulting conditioned process is a three-dimensional Bessel process.

Extensions of this result have been obtained to condition Lévy processes to stay positive,
see Chaumont and Doney [7]. In that case, the associated harmonic function that plays the role
of h in the Brownian example above is given by the potential of the descending ladder height
process. In a similar spirit Bertoin and Doney [4] have shown how to condition random walks
conditioned to stay non-negative. Other examples of Markov processes conditioned to avoid
domains via a limiting procedure, and thus characterised as a Doob-h transform of the original
process killed on exiting the specified domain, include random walks conditioned to stay in
cones (Denisov and Wachtel [10]), random walks with finite second moments conditioned to
avoid an interval (Vysotsky [26]), spectrally negative Lévy processes conditioned to stay in an
interval (Lambert [19]), subordinators conditioned to stay in an interval (Kyprianou et al. [16]),
Lévy processes conditioned to avoid the origin (Pantı́ [20] and Yano [27]) or self-similar Markov
processes conditioned to avoid the origin (Kyprianou et al. [18]).

The purpose of this article is to take advantage of the path discontinuities of strictly stable
processes (henceforth referred to as stable processes) and to condition them to avoid an interval.
Such a conditioning is not immediately obvious as, in contrast to Lévy processes killed on the
negative half-line, we cannot rely on the existence of a generic positive harmonic function of a
Lévy processes killed in an interval.

Let X = (X t )t≥0 be a stable process and denote by Px the law of X started from x ∈ R. More
precisely, this means that X is the canonical process on the space of càdlàg paths equipped with
the σ -algebra F induced by the Skorohod topology and Px is the probability measure that makes
X a stable process started from x . Stable processes observe the scaling property(

(cXc−α t )t≥0,Px) (d)
=

(
(X t )t≥0,Pcx) (2)

for all x ∈ R and c > 0, where α is the index of self-similarity. It turns out to be necessarily
that case that α ∈ (0, 2] with α = 2 corresponding to the Brownian motion. The continuity of
sample paths excludes the Brownian motion from our study, because conditioning to avoid the
interval translates to conditioning to stay above b or below a, depending on the initial value of
the process. So we restrict to α ∈ (0, 2).



L. Döring, A.E. Kyprianou and P. Weissmann / Stochastic Processes and their Applications 130 (2020) 471–487 473

As a Lévy process, stable processes are characterised entirely by their jump measure which is
known to be

Π (dx) =
Γ (α + 1)

π

{
sin(παρ)

xα+1 1{x>0} +
sin(παρ̂)
|x |

α+1 1{x<0}

}
dx, x ∈ R,

where ρ := P0(X1 ≥ 0). For α ∈ (0, 1) we exclude the case ρ ∈ {0, 1}, in which case X is (the
negative of) a subordinator and for α ∈ (1, 2), which forces ρ ∈ [1/α, 1 − 1/α], we exclude
ρ ∈ {1/α, 1 − 1/α}, in which case X has one-sided jumps. For α = 1 the stable process reduces
to the symmetric Cauchy process with ρ =

1
2 . We have taken a normalisation for which its

characteristic exponent satisfies

Ex [eiθ (X1−x)] = e−|θ |α , θ ∈ R.

An important fact we will use for the parameter regimes is that the stable process exhibits (set)
transience and (set) recurrence according to whether α ∈ (0, 1) or α ∈ [1, 2). When α ∈ (1, 2)
the notion of recurrence is even stronger in the sense that individual points are hit with probability
one.

For an open or closed set B ⊆ R let

TB := inf {t ≥ 0 : X t ∈ B}

be the first hitting time of B. It is known that this is a stopping time with respect to the natural
enlargement of the filtration induced by X , which we denote by (Ft )t≥0 (i.e. the right-continuous
extension, enlarged by null sets). For further details about stable processes we refer the reader to
Chapter 7 of Bertoin [3], Chapter 3 of Sato [25] or the review article Kyprianou [15].

Remark 1.1. The excluded special cases when X is a subordinator or a spectrally one-sided
process can also be handled but are not included in our results. The methods of conditioning
the process to avoid an interval in these cases are different than our proofs and would rely on
calculating the probability Px (ξT[a,∞) > b) explicitly (using e.g. Rogozin [24]) and an ascription
to Lévy processes conditioned to stay positive (see Chaumont and Doney [7]).

Stable processes with α ∈ [1, 2) are recurrent, hence, the event
{
T[a,b] = +∞

}
has zero

probability. It is therefore non-trivial to establish that the limit

lim
s→∞

Px (Λ | t + s < T[a,b]) (3)

exists for Λ ∈ Ft , x ∈ R\[a, b], and is well defined in terms of characterising a conditioned
process. We show that (3) defines a probability measure on path space under which the canonical
process is a Markov process on R\[a, b] with dynamics that are identified as a Doob h-transform
of the original process killed in [a, b]. Let us quickly recall the concept of h-transforms. Denote
by p[a,b]

t (x, dy) = Px (X t ∈ dy, t < T[a,b]), t ≥ 0, the sub-Markov transition kernel of
the process killed on first entry into [a, b]. Write (P[a,b]

t )t≥0 for the corresponding transition
semigroup. A harmonic function for the killed process is a strictly positive, measurable function
h : R\[a, b] → (0,∞) such that P[a,b]

t h(x) = h(x) or, equivalently,

Ex
[
1{t<T[a,b]}

h(X t )
]

= h(x),

for all x ∈ R\[a, b] and all t ≥ 0. Note that thanks to the Markov property this is equivalent to
(1{t<T[a,b]}

h(X t ))t≥0 being a Px -martingale with respect to (Ft )t≥0. When h is a positive harmonic
function, the associated Doob h-transform is defined via the change of measure

P↕,x (Λ) := Ex
[
1Λ1{t<T[a,b]}

h(X t )
h(x)

]
, x ∈ R\[a, b], (4)
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for Λ ∈ Ft . From Chapter 11 of Chung and Walsh [9] we know that under P↕,x the canonical
process is strong Markov and the transition semigroup satisfies

P
↕

t f (x) =
1

h(x)
P

[a,b]
t ( f h)(x), x ∈ R\[a, b],

for bounded measurable f on R\[a, b].
Before stating our main results, note that we can easily reduce our analysis for the interval

[a, b] to the interval [−1, 1]. Indeed, suppose that h is a harmonic function for (P[−1,1]
t )t≥0. Then

the function

h[a,b](x) := h
(

2
b − a

x −
b + a
b − a

)
, x ∈ R\[a, b],

is harmonic for (P[a,b]
t )t≥0. With the help of stationary independent increments and the scaling

property for stable processes we have

Ex
[
1{t<T[a,b]}

h
(

2
b − a

X t −
b + a
b − a

)]
= Ex

[
1{t<T[a,b]}

h
(

2
b − a

(
X t −

b + a
2

))]
= Ex−

b+a
2

[
1{

t<T
[− b−a

2 , b−a
2 ]

}h
(

2
b − a

X t

)]
= E

2
b−a (x−

b+a
2 )

×

[
1{(

b−a
2

)−α
t<T[−1,1]

}h
(

X(
b−a

2

)−α
t

)]

= h
(

2
b − a

x −
b + a
b − a

)
.

Similarly, the limit (3) exists for general a and b if it exists for the special case a = −1, b = 1.
As a consequence we will focus for the rest of the article on the case [a, b] = [−1, 1].

As a prelude to our first theorem, let us introduce the function

ψαρ(z) = (z − 1)αρ̂−1(z + 1)αρ−1, z ≥ 1,

and the analogous expression ψαρ̂ , for which ρ is replaced with ρ̂ := 1 − ρ. The first result
identifies positive harmonic functions for the stable processes killed on entering [−1, 1].

Theorem 1.2. Let X be a two-side stable process with α ∈ (0, 2), then

h(x) :=

{
Γ (1−αρ)
Γ (αρ̂)

∫ x
1 ψαρ(z) dz if x > 1

Γ (1−αρ̂)
Γ (αρ)

∫
|x |

1 ψαρ̂(z) dz if x < −1,

is a harmonic function for (P[−1,1]
t )t≥0.

In the case α = 1 we can write the above harmonic function in explicit detail:

h(x) =

∫
|x |

1
(z2

− 1)−
1
2 dz = log

(
|x | + (x2

− 1)
1
2

)
, |x | > 1. (5)

The next result addresses our main motivation, namely to give a precise meaning to conditioning
the stable processes to avoid an interval and to characterise the resulting process. Combining the
harmonic functions with classical results of Blumenthal et al. [5] and Port [21] we can prove that
the usual conditioning procedure works and at the same time identify the conditioned processes
as h-transforms of the killed processes with the harmonic functions from Theorem 1.2.
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Theorem 1.3. Let X be a two-side stable process with α ∈ (0, 2), then

lim
s→∞

Px (Λ | t + s < T[−1,1]) = Ex
[
1Λ1{t<T[−1,1]}

h(X t )
h(x)

]
=: P↕,x (Λ)

for t ≥ 0, x /∈ [−1, 1] and Λ ∈ Ft .

The reader will note that conditioning to avoid an interval is much simpler when α < 1
thanks to transience of the stable process. Indeed, the conditioning is a conditioning on a positive
probability event. Moreover, the probability is exactly proportional to the harmonic function h
from Theorem 1.2.

As part of our characterisation of the conditioned process we show that it is transient. This is
in analogy to Lévy processes conditioned to be positive which almost surely drift to infinity, see
Chaumont and Doney [7].

Theorem 1.4. Let X be a two-side stable process with α ∈ (0, 2), then the conditioned process
is transient in the sense that

E↕,x
[∫

∞

0
1{X t ∈K } dt

]
< ∞, |x | > 1, (6)

for all compact subsets K of R\[−1, 1].

2. Preliminaries

The methods to prove our two main theorems differ for the three parameter regimes α ∈ (0, 1),
α = 1 and α ∈ (1, 2), where different background machinery will be employed.

Techniques for α ∈ (0, 1): Transience for α < 1 implies that
{
T[−1,1] = +∞

}
has strictly

positive probability, irrespective of the point of issue. We apply a recent formula from Kyprianou
et al. [17], which gives the law of the point of closest reach of 0 of the stable process. From
the law of the point of closest reach we can precisely compute h which, up to a multiplicative
constant, is equal to Px (T[−1,1] = +∞), x ∈ R\[−1, 1]. Since here we condition on a positive
probability event the limit theorem is simple.

Techniques for α = 1: We employ the fact that stable processes are self-similar Markov
processes and self-similar Markov processes can be represented as time–space transformation of
Markov additive processes (MAPs). The so-called Lamperti–Kiu representation has been subject
of intensive research in the past few years.

A Markov process X = (X t )t≥0 killed when first hitting 0 is called a self-similar Markov
process (ssMp) if

((cXc−α t )t≥0,Px )
(d)
= ((X t )t≥0,Pcx )

for all c > 0 and all x ∈ R, where α is the index of self-similarity. A Markov additive process
(MAP) with respect to a filtration (Gt )t≥0 is a R × E-valued càdlàg process (ξ, J ) = (ξt , Jt )t≥0,
where E is a finite space, J is a Markov chain in E and the following holds for all i ∈ E
and s, t ≥ 0: given {Jt = i}, the pair (ξt+s − ξt , Jt+s) is independent of Gt and has the same
distribution as (ξs − ξ0, Js) given {J0 = i}. Asmussen [2] provides the following alternative
characterisation of MAPs in terms of Lévy processes, which helps us to get a clear image of the
behavior of MAPs. The pair (ξ, J ) is a MAP if and only if for all i ∈ E there is an iid sequence
(ξ n,i )n∈N of Lévy processes and for all i, j ∈ E there is an iid sequence of random variables
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(U n
i, j )n∈N, independent of J such that for the jump times (σn)n∈N of J and the convention σ0 = 0

it holds that

ξt = 1{n≥1}ξσn− + U n
Jσn −,Jσn

+ ξ
n,Jσn
t−σn , t ∈ [σn, σn+1), n ≥ 0.

In words, this characterisation shows that the dynamics of a MAP are governed by a set of Lévy
processes with different characteristics and the choice of the Lévy process is governed by an
underlying Markov chain.

Given a self-similar Markov process X which starts from x ∈ R\ {0}, Chaumont et al. [8]
proved that there exists a MAP (ξ, J ) on R × {±1} which starts from (log |x |, sgn(x)) such that

X t = Jϕt exp
(
ξϕt

)
, 0 ≤ t < T0,

where ϕt = inf{s > 0 :
∫ s

0 exp(αξu) du > t} and T0 = inf {t ≥ 0 : X t = 0}. The transformation
offers the opportunity to obtain results for ssMps from the reservoir of proved and potentially
provable results for MAPs as long as the time-change can be controlled. As an example, the 0–1
law for the longtime behavior of a MAP readily implies a 0–1 law for the extinction of a ssMp.
That is:

(i) T0 = +∞ a.s. if and only if the underlying MAP (ξ, J ) oscillates or drifts to +∞.
(ii) T0 < +∞ a.s. if and only if the underlying MAP (ξ, J ) drifts to −∞ or is killed.

In the appendix of Dereich et al. [11] the authors analyzed questions on fluctuation theory
for MAPs. In particular, analogously to Lévy processes, it was proved that the potential function
U− of the ascending ladder height process (see Section 3.1.2) of the so-called dual process to
the MAP is harmonic for the MAP killed on entering the negative half-line when it oscillates or
drifts to +∞.

Since stable processes are ssMps, the Lamperti–Kiu transform is applicable to the stable
process X . The underlying MAP was characterised in Kyprianou [14] and Kyprianou et al. [17].
For α = 1 it holds that T0 = +∞ almost surely (which is a consequence of the fact that all
points are polar for the Cauchy process), hence, the underlying MAP oscillates or drifts to +∞

(in fact the former is the case). In [17] the authors were able to calculate explicit densities for
the aforementioned harmonic function of the MAP underlying the Cauchy process. Since the
Lamperti–Kiu transform tells us that killing the MAP on the negative half-line is equivalent to
killing the stable process in [−1, 1], an appropriate spatial transform of this MAP turns out to be
the key to prove Theorem 1.2 in the Cauchy setting.

Techniques for α ∈ (1, 2): For α > 1 the stable process visits points almost surely,
irrespective of its point of issue. We consider the stable process killed on hitting 0. From
Kyprianou et al. [18] (for general self-similar Markov processes) or Pantı́ [20] and Yano [27]
(for general Lévy processes) we know that

e(x) :=

{
sin(παρ̂) |x |

α−1 if x > 0
sin(παρ) |x |

α−1 if x < 0,

is harmonic for the killed transition semigroup

P
†
t f (x) := E†,x [ f (X t )] := Ex

[
f (X t )1{t≤T0}

]
,

where T0 := inf {t ≥ 0 : X t = 0}. Moreover, its corresponding Doob h-transform with e(x),
x ̸= 0, corresponds to the stable process conditioned to avoid 0 in a sense that also conforms to
the general notion highlighted in (1). We will show that h◦(x) := e(x)−1h(x), |x | > 1, with h
defined in Theorem 1.2, is harmonic for the stable process conditioned to avoid the origin and
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killed on entering [−1, 1]. In that case, by the compounding effect of Doob h-transforms, it must
be the case that h(x) = e(x)h◦(x) is harmonic for X killed on entering [−1, 1]. The tool we use
to show harmonicity of h◦(x) for the stable process conditioned to avoid 0 and killed on entering
[−1, 1] is the Riesz–Bogdan–Żak transform. To state the transformation let

P◦,x (Λ) := Ex
[
1Λ1{t<T{0}}

e(X t )
e(x)

]
, Λ ∈ Ft , t ≥ 0,

be the law of the stable process conditioned to avoid 0. The next Theorem was proved in Bogdan
and Żak [6] for symmetric stable processes, in Kyprianou [14] for general stable processes and
in Alili et al. [1] for self-similar Markov processes.

Theorem 2.1 (Riesz–Bogdan–Żak transform). Let X be a two-side stable process with α ∈ (0, 2)
and

ηt = inf
{

s > 0 :

∫ s

0
|Xu |

−2α1{u<T0}
du > t

}
, t <

∫
∞

0
|Xu |

−2α1{u<T0}
du.

Then, for all x ̸= 0, it holds that(( 1
Xηt

)
t≥0
, P̂x

)
(d)
= (X,P◦, 1

x ),

where P̂x is the law of the dual stable process −X issued from x.

The Riesz–Bogdan–Żak transformation tells that, for α ≥ 1, the stable process conditioned
to avoid 0 is the spatial inverse of the dual process with a certain time-change. We will use this
theorem to show that P◦,x (T[−1,1] = +∞) > 0 and to calculate this probability explicitly using a
very recent formula for the distribution of the point of furthest reach of a stable process prior to
hitting the origin.

3. Proofs

3.1. Proof of Theorem 1.2

The proofs for the cases α ∈ (0, 1), α = 1 and α ∈ (1, 2) are completely different in nature but
all rely on recent new explicit formulas for stable processes obtained through the Lamperti–Kiu
representation.

3.1.1. α ∈ (0, 1)
Since X is transient, Px (T[−1,1] = ∞) > 0 for all x /∈ [−1, 1] and the function

g(x) = Px (T[−1,1] = ∞), x ∈ R\[−1, 1],

is strictly positive. The following standard argument shows that g is a harmonic function for the
process killed on entering [−1, 1]:

Ex
[
1{t<T[−1,1]}

g(X t )
]

= Ex
[
1{t<T[−1,1]}

PX t (T[−1,1] = ∞)
]

= lim
s→∞

Ex
[
1{t<T[−1,1]}

PX t (T[−1,1] > s)
]

= lim
s→∞

Px (T[−1,1] > s + t)

= Px (T[−1,1] = ∞)
= g(x),
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where we used dominated convergence in the second equation and the Markov property in the
third. It remains to show that h(x) equals Px (T[−1,1] = ∞) up to some multiplicative constant.
Proposition 1.1 of Kyprianou et al. [17] gives us the distribution of the point of closest reach to
0 of the stable process from which the probability of missing [−1, 1] can be computed readily.
Define m as the unique time such that |X t | ≥ |Xm | for all t ≥ 0 (see [17] for the existence and
uniqueness) and let x > 1, then using the aforesaid result in [17],

Px (T[−1,1] = ∞) = Px (Xm > 1) + Px (Xm < −1)

=
Γ (1 − αρ)

Γ (1 − α)Γ (αρ̂)

(∫ x

1

x + z
(2z)α

(x − z)αρ̂−1(x + z)αρ−1 dz

+

∫
−1

−x

x + z
(−2z)α

(x + z)αρ̂−1(x − z)αρ−1 dz
)

=
2Γ (1 − αρ)

2αΓ (1 − α)Γ (αρ̂)
x

∫ x

1

1
z2

(
x
z

− 1
)αρ̂−1 (

x
z

+ 1
)αρ−1

dz

=
21−αΓ (1 − αρ)
Γ (1 − α)Γ (αρ̂)

∫ x

1
(u − 1)αρ̂−1 (u + 1)αρ−1 du

=
21−αΓ (1 − αρ)
Γ (1 − α)Γ (αρ̂)

∫ x

1
ψαρ(u) du

=
21−α

Γ (1 − α)
h(x),

where in the third equality we have substituted u = x/z. If x < −1 we apply duality to deduce

Px (T[−1,1] = ∞) = P̂−x (T[−1,1] = ∞),

from which an analogous calculation for x < −1 yields the claim.

3.1.2. α = 1
Let (Px,i )x∈R,i∈{±1} be the family of probability measures on the space of R × {±1}-

valued càdlàg paths under which the canonical process (ξ, J ) has the distribution of the
Markov additive process (MAP) which underlies the stable process (seen as an ssMp) via the
Lamperti–Kiu transform. More precisely, this means that, under Plog |x |,sgn(x), the transformation
(Jϕt exp(ξϕt ))t≥0 is a ssMp with law Px , i.e. the stable process.

We will need to introduce some terminology from Dereich et al. [11] in order to talk about
the ladder height processes of (ξ, J ). To this end, let Yt = ξt − ξ

t
, t ≥ 0, where ξ

t
= infs≤t ξs .

Following ideas that are well known from the theory of Lévy processes, it is straightforward
to show that, as a pair, the process (Y, J ) is a strong Markov process. It was shown in the
Appendix of Dereich et al. [11] that there exists a local time of (Y, J ) in the set {0}×{−1, 1}, say
L := (L t )t≥0. Moreover, the process (L−1, H−, J−) := (L−1

t , H−
t , J−

t )t≥0 is a (possibly killed)
Markov additive bivariate subordinator (meaning that it is a possibly killed MAP for which the
components (L−1

t )t≥0 and (H−
t )t≥0 are increasing), where

H−

t := ξL−1
t

and J−

t := JL−1
t
, if L−1

t < ∞,

and H−
t := ∆ and J−

t := ∆ otherwise, for some cemetery state ∆.
The process (H−, J−) is called the descending ladder MAP. Next define

U−

i, j (x) = E0,i
[∫

∞

0
1{

H−
t ≤x,J−

t = j
} dt

]
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which we call potential function of (H−, J−) and

U−

i (x) := U−

i,−1(x) + U−

i,1(x) = E0,i
[∫

∞

0
1{

H−
t ≤x

} dt
]
.

In the case α = 1 the stable process X does not hit points, i.e. T0 = +∞ almost surely. It follows
from the Lamperti–Kiu transform that the underlying MAP oscillates or drifts to +∞ and in this
case the function

(x, i) ↦→ U−

i (x)

is harmonic for the MAP killed on entering the negative half-line, i.e.

Ex,i
[
1{t<τ(−∞,0]}

U−

Jt
(ξt )

]
= U−

i (x)

for all x > 0, where τ(−∞,0] := inf {t ≥ 0 : ξt ≤ 0} (see Theorem 29 of Dereich et al. [11]).
Using this we see

Ex
[
1{t<T[−1,1]}

U−

sgn(X t )(log |X t |)
]

= Elog |x |,sgn(x)
[
1{ϕt<τ(−∞,0]}

U−

sgn(Jϕt exp(ξϕt ))(log |Jϕt exp
(
ξϕt

)
|)
]

= Elog |x |,sgn(x)
[
1{ϕt<τ(−∞,0]}

U−

sgn(Jϕt )(ξϕt )
]
.

Denote the natural enlargement of the filtration induced by (ξ, J ) by (Gt )t≥0. An important fact
that we shall shortly use (and is easy to verify) is that for all t ≥ 0 the time-change ϕt is a
stopping-time with respect to (Gv)v≥0 which is almost surely finite with respect to Px,i , for all
x ∈ R and i ∈ {−1, 1}. To understand why the latter is true, note that the symmetric and
oscillatory behavior of X in the current regime of α ensures that lim supt→∞ ξt = ∞ almost
surely, irrespective of the point of issue of (ξ, J ). This, in turn, means that limt→∞

∫ t
0 eαξs ds = ∞

in the same almost sure sense; see for example the discussion of the different properties of stable
processes and their underlying MAPs in Kyprianou [15]. Consequently, as (ϕt , t ≥ 0) is the
inverse of the aforementioned integrated exponential of ξ , it follows that, for each t ≥ 0, x ∈ R
and i ∈ {−1, 1} we have that ϕt < ∞, Px,i -almost surely. It now follows from Theorem III.3.4
of Jacod and Shiryaev [13] that

Elog |x |,sgn(x)
[
1{ϕt<τ(−∞,0]}

U−

sgn(Jϕt )(ξϕt )
]

= Usgn(x)(log |x |),

and hence U−

sgn(x)(log |x |), |x | > 1, is a harmonic function for the stable process killed on entering
[−1, 1].

To finish the proof of Theorem 1.2 we have to show that

h(x) = U−

sgn(x)(log |x |), x ∈ R\[−1, 1],

up to a multiplicative constant, where h is the explicit function from Theorem 1.2. Kyprianou
et al. [17], Corollary 1.6, found explicit densities for U−

i (dx). Using these results we have, for
x > 1, that

U−

sgn(x)(log |x |) =

∫ log x

0
(1 − e−z)−

1
2 (1 + e−z)

1
2 + (1 − e−z)

1
2 (1 + e−z)−

1
2 dz

= 2
∫ x

1
(u2

− 1)−
1
2 du

= 2h(x).

By symmetry the claim for x < −1 follows analogously.
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3.1.3. α ∈ (1, 2)
The idea of the argument is as follows. The multiplication of harmonic functions correspond-

ing to the concatenation of h-transforms gives a new harmonic function. In our setting, recall
from Section 2 that

e(x) :=

{
sin(παρ̂) |x |

α−1 if x > 0
sin(παρ) |x |

α−1 if x < 0,

is harmonic for P†,x and the h-transformed process delivers the Markov probabilities P◦,x , x ̸= 0.
We will show that h◦(x) := e(x)−1h(x), x ∈ R\[−1, 1], with h defined in Theorem 1.2,
is proportional to the probability of avoiding [−1, 1] for P◦,x (P◦,x is transient) and as a
consequence is harmonic for P◦,x killed in [−1, 1]:

Px
killing at 0, h-transform with |x |

α−1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ P◦,x
killing in [-1,1], h-transform with |x |

1−αh(x)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ P↕,x .

From this idea it turns out that h(x) = e(x)h◦(x) is harmonic for Px killed on entering [−1, 1].
Later we will prove that conditioning Px to avoid [−1, 1] is nothing but conditioning Px to avoid
zero and then to condition P◦,x to avoid [−1, 1].

Remark 3.1. Our argument resonates with the work of Hirano [12] who looked at the
conditioning of a Lévy process to stay positive. Under the assumption of a positive Cramér
number, Hirano conditioned a Lévy process that drifts to −∞ to stay positive by first Esscher
transforming, which is equivalent to conditioning to ‘drift towards +∞’, and then conditioning
the Esscher transform to stay positive.

In the following lemma the Riesz–Bogdan–Żak transform is used to identify the harmonic
function for P◦,x killed in [−1, 1].

Lemma 3.2. Define h◦(x) = e(x)−1h(x), then

(i) P◦,x (T[−1,1] = +∞) =
π (α−1)

Γ (1−αρ̂)Γ (1−αρ) h◦(x) for all x /∈ [−1, 1],
(ii) the function h◦ is harmonic for (P◦,[−1,1]

t )t≥0, where

P
◦,[−1,1]
t f (x) := E◦,x

[
f (X t )1{t<T[−1,1]}

]
.

Proof. (i) Let m be the [0,∞)-valued time such that |Xm | ≤ |X t | for all t ≥ 0 (point of closest
reach, see again [17] for the existence and uniqueness) and m the time such that |Xm | ≥ |X t | for
all t ≤ T0 (point of furthest reach). Then we see for x /∈ [−1, 1] using the Riesz–Bogdan–Żak
transform in the second equation:

P◦,x (T[−1,1] = +∞) = P◦,x (|Xm | > 1)

= P̂
1
x

(⏐⏐⏐ 1
Xm

⏐⏐⏐ > 1
)

= P̂
1
x (|Xm | < 1)

= P̂
1
x

(
Xm ∈

[ 1
|x |
, 1

))
+ P̂

1
x

(
Xm ∈

(
−1,−

1
|x |

])
. (7)

Now we use Proposition 1.2 of Kyprianou et al. [17] which gives an explicit expression for the
distribution of Xm under P̂ 1

x . We consider only the case x > 1, the case x < −1 is similar with
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ρ replaced by ρ̂ and x replaced by |x |. We start to compute the first summand in (7) as

P̂
1
x

(
Xm ∈

[ 1
x
, 1

))
=
α − 1

2

∫ 1

1
x

z−α
[(

z +
1
x

)αρ(z −
1
x

)αρ̂−1
− (α − 1)

1
xα−1

∫ zx

1
ψαρ(v) dv

]
dz

=
α − 1

2

∫ x

1
u−α

[
(u + 1)ψαρ(u) − (α − 1)

∫ u

1
ψαρ(v) dv

]
du,

where for the third equality we have made the change variable z = u/x . We can similarly
compute the second summand in (7) as

P̂
1
x

(
Xm ∈

(
−1,−

1
x

])
=
α − 1

2

∫ x

1
u−α

[
(u − 1)ψαρ(u) − (α − 1)

∫ u

1
ψαρ(v) dv

]
du,

and, adding the two terms together, it follows that

P◦,x (T[−1,1] = +∞) = (α − 1)
∫ x

1

[
z1−αψαρ(z) − (α − 1)z−α

∫ z

1
ψαρ(v) dv

]
dz.

Integration by parts yields∫ x

1

[
z−α

∫ z

1
ψαρ(v) dv

]
dz = −

1
α − 1

x1−α

∫ x

1
ψαρ(v) dv +

∫ x

1

1
α − 1

z1−αψαρ(z) dz,

hence,

P◦,x (T[−1,1] = +∞) = (α − 1)x1−α

∫ x

1
ψαρ(v) dv

for x > 1. On the other hand we have for x > 1

h◦(x) = e(x)−1h(x) =
1

sin(παρ̂)
Γ (1 − αρ)
Γ (αρ̂)

x1−α

∫ x

1
ψαρ(v) dv

=
1
π
Γ (αρ̂)Γ (1 − αρ̂)

Γ (1 − αρ)
Γ (αρ̂)

x1−α

∫ x

1
ψαρ(v) dv

=
1
π
Γ (1 − αρ̂)Γ (1 − αρ)x1−α

∫ x

1
ψαρ(v) dv.

Hence we have

P◦,x (T[−1,1] = +∞) =
π (α − 1)

Γ (1 − αρ̂)Γ (1 − αρ)
e(x)−1h(x).

For x < −1 we can show analogously

P◦,x (T[−1,1] = +∞) = (α − 1)x1−α

∫
|x |

1
ψαρ̂(v) dv,

and,

h◦(x) = e(x)−1h(x) =
1
π
Γ (1 − αρ̂)Γ (1 − αρ)x1−α

∫
|x |

1
ψαρ̂(v) dv,

which yields to the claim for x < −1.
(ii) Using (i) the argument is classical and essentially the same as the one given in

Section 3.1.1. For the sake of brevity we leave the details to the reader. □
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With Lemma 3.2 in hand, it is now straight forward to verify the harmonicity of h using the
definition of P◦,x as a change of measure. Indeed, we note that

Ex
[
1{t<T[−1,1]}

h(X t )
]

= E†,x
[
1{t<T[−1,1]}

h◦(X t )e(X t )
]

= e(x)E◦,x
[
1{t<T[−1,1]}

h◦(X t )
]

= e(x)h◦(x)
= h(x)

for all x ∈ R\[−1, 1]. Hence, h is harmonic for the killed process.

3.2. Proof of Theorem 1.3

To identify the conditioned processes as h-transforms we follow a classical argument based on
the Markov property. The argument needs two ingredients. First is the existence of an asymptotic
tail distribution of the kind

lim
s→∞

f (s)Px (s < T[−1,1]) = h(x). (8)

Second is the harmonicity h.
For α < 1 the argument is straightforward with f = 1 and the explicit formula for

h(x) = Px (T[−1,1] = ∞) already derived in Section 3.1.1. Much more interesting are the
cases α = 1 and α > 1. In both cases, the asymptotic tail distributions are given in classical
fluctuation theory results due to Blumenthal et al. [5] and Port [21]. Unfortunately, in both cases
it is unclear if the limit is harmonic (the limiting expression only implies h is excessive). To
justify harmonicity we use the results from the previous section: for α = 1 the asymptotic tail
distribution of Blumenthal et al. is precisely given by (5) which we proved to be harmonic using
the Lamperti–Kiu representation. For α > 1 the limit has a particular form that we can identify
(using a recent result of Profeta and Simon [22]) as our harmonic function h from the previous
section.

To summarise the approach, our results only give the harmonicity whereas the known
fluctuation theory only gives the needed tail asymptotics. Combining both the limiting procedure
from Theorem 1.3 can be performed and the limit is identified as h-transform with h from
Theorem 1.2.

3.2.1. α ∈ (0, 1)
We start with the simplest case α ∈ (0, 1) where we condition on a positive probability event.

As seen in the proof of Theorem 1.2 the probability of this event is the harmonic function up to
a multiplicative constant. That is to say, with h defined as in Theorem 1.2, we have

h(x) =
Γ (1 − α)

21−α
Px (T[−1,1] = ∞), |x | > 1.

It follows immediately that h is bounded. Hence, for Λ ∈ Ft , we get with the Markov property
and dominated convergence

lim
s→∞

Px (Λ | t + s < T[−1,1]) = lim
s→∞

Ex
[
1Λ1{t<T[−1,1]}

PX t (T[−1,1] > s)
]

Px (T[−1,1] > t + s)

=

Ex
[
1Λ1{t<T[−1,1]}

PX t (T[−1,1] = ∞)
]

Px (T[−1,1] = ∞)
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= Ex
[
1Λ1{t<T[−1,1]}

h(X t )
h(x)

]
= P↕,x (Λ).

3.2.2. α = 1
According to Blumenthal et al. [5], Corollary 3, the tail asymptotics of first hitting times are

lim
s→∞

Px (s < T[−1,1]) log(s) = h(x) (9)

with h from (5). In the previous section we proved that h is harmonic.
Using Fatou’s Lemma in the second equality and the strong Markov property in the third

equality we get, for Λ ∈ Ft ,

P↕,x (Λ) =
1

h(x)
Ex

[
1Λ1{t<T[−1,1]}

lim
s→∞

log(s)PX t (s < T[−1,1])
]

≤ lim inf
s→∞

log(s)
h(x)

Ex
[
1Λ1{t<T[−1,1]}

PX t (s < T[−1,1])
]

= lim inf
s→∞

log(s)
h(x)

Px (Λ, t + s < T[−1,1])

= lim inf
s→∞

log(s)
log(t + s)Px (t + s < T[−1,1])

Px (Λ, t + s < T[−1,1])

= lim inf
s→∞

Px (Λ | t + s < T[−1,1]).

Since ΛC
∈ Ft and we can apply the same calculation for ΛC we also get

P↕,x (ΛC) ≤ lim inf
s→∞

Px (ΛC
| t + s < T[−1,1]) = 1 − lim sup

s→∞

Px (Λ | t + s < T[−1,1]).

At this point in the argument, it is important that we have already proved harmonicity of h,
i.e. that P↕,x is a probability measure. Hence, we can write P↕,x (ΛC) = 1 − P↕,x (Λ). This leads
us to

P↕,x (Λ) ≥ lim sup
s→∞

Px (Λ | t + s < T[−1,1])

and combining both inequalities the claim follows.

3.2.3. α ∈ (1, 2)
According to Port [21] the tail asymptotics of first hitting times are

lim
s→∞

s1−
1
α Px (s < T[−1,1]) = cαρ lim

y→∞
u[−1,1](x, y), (10)

for some constant cαρ > 0 and u[−1,1](x, y) is the density of the potential of the stable process
killed on entering [−1, 1]. Profeta and Simon [22] derived explicit formulas for u[−1,1](x, y),
namely

u[−1,1](x, y) = cαρ(y − x)α−1
(∫ z(x,y)

1
ψαρ(v) dv

− (α − 1)(y − x)1−α

∫ y

1
ψαρ̂(v) dv

∫ x

1
ψαρ(v) dv

)
, (11)



484 L. Döring, A.E. Kyprianou and P. Weissmann / Stochastic Processes and their Applications 130 (2020) 471–487

1 < x < y and

u[−1,1](x, y) = cαρ
sin(παρ)
sin(παρ̂)

(y − x)α−1
(∫ z(x,y)

1
ψαρ̂(v) dv

− (α − 1)(y − x)1−α

∫ y

1
ψαρ̂(v) dv

∫
|x |

1
ψαρ̂(v) dv

)
, (12)

x < −1, 1 < y. In the formulas we used the abbreviations z(x, y) = |xy − 1|/|y − x | and
cαρ = 21−α/(Γ (αρ)Γ (αρ̂)).

In order to combine Port’s asymptotic formula (10) with our Theorem 1.2 we need to send y
to infinity in Profeta’s and Simon’s formula (11).

Lemma 3.3. If h is defined as in Theorem 1.2, then

lim
y→∞

u[−1,1](x, y) = Kαρh(x), x /∈ [−1, 1],

where Kαρ =
2cαρ (1−αρ̂)Γ (αρ̂)

Γ (1−αρ)

∫
∞

1 ψαρ̂(v) 1
v+1 dv.

Proof. We start with x > 1. First note that

lim
y→∞

∫ z(x,y)

1
ψαρ(v) dv =

∫ x

1
ψαρ(v) dv.

On the other hand we see with l’Hopital’s rule

lim
y→∞

(α − 1)(y − x)1−α

∫ y

1
ψαρ̂(v) dv = lim

y→∞
(y − x)2−αψαρ̂(y) = 1.

Hence, u[−1,1](x, y) is a product of two functions, one tending to +∞, the other tending to 0.
Applying l’Hopital’s rule again to the whole term we get

lim
y→∞

c−1
αρ u[−1,1](x, y)

= lim
y→∞

1
(1 − α)(y − x)−α

[
1 − x2

(y − x)2ψαρ(z(x, y))

− (α − 1)
∫ x

1
ψαρ(v) dv

(
(1 − α)(y − x)−α

∫ y

1
ψαρ̂(v) dv + ψαρ̂(y)(y − x)1−α

)]
= lim

y→∞

(1 − x2)ψαρ(z(x, y))
(1 − α)(y − x)2−α

+

∫ x

1
ψαρ(v) dv

(
(1 − α)

∫ y

1
ψαρ̂(v) dv + ψαρ̂(y)(y − x)

)
.

The first summand converges to 0 since z(x, y) converges to x and α < 2. So it remains to show
that

ψαρ̂(y)(y − x) − (α − 1)
∫ y

1
ψαρ̂(v) dv

converges to some positive constant which is independent of x . It is clear that both terms tend to
+∞ with order α − 1. We rewrite the term in the following way:

ψαρ̂(y)(y − x) − (α − 1)
∫ y

1
ψαρ̂(v) dv

= ψαρ̂(y)(y − 1) − ψαρ̂(y)(x − 1) − (α − 1)
∫ y

1
ψαρ̂(v) dv.
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Of course ψαρ̂(y)(x − 1) converges to 0. So it remains to show that

ψαρ̂(y)(y − 1) − (α − 1)
∫ y

1
ψαρ̂(v) dv

converges. Note that we can write

ψ ′

αρ̂(y) = ψαρ̂(y)
[
(αρ − 1)(v − 1)−1

+ (αρ̂ − 1)(v + 1)−1],
and with this we see that

ψαρ̂(y)(y − 1) − (α − 1)
∫ y

1
ψαρ̂(v) dv

=

∫ y

1

(
ψ ′

αρ̂(v)(v − 1) + ψαρ̂(v)
)

dv − (α − 1)
∫ y

1
ψαρ̂(v) dv

=

∫ y

1
ψαρ̂(v)

(
(αρ − 1) + (αρ̂ − 1)

v − 1
v + 1

+ 1 − (α − 1)
)

dv

= 2(1 − αρ̂)
∫ y

1
ψαρ̂(v)

1
v + 1

dv.

Since ψαρ̂(v)/(v + 1) behaves like (v − 1)αρ−1 for v ↘ 0 and like vα−3 for v → +∞, it follows
that

∫
∞

1 ψαρ̂(v)/(v + 1) dv ∈ (0,∞) because αρ ∈ (0, 1) and α − 3 < −1. Now it follows that

lim
y→∞

u[−1,1](x, y) = cαρ(1 − αρ̂)
∫

∞

1
ψαρ̂(v)

1
v + 1

dv
∫ x

1
ψαρ(v) dv

=
2cαρ(1 − αρ̂)Γ (αρ̂)

Γ (1 − αρ)

∫
∞

1
ψαρ̂(v)

1
v + 1

dv h(x)

= Kαρh(x).

For x < −1 we can use (12) to do a similar calculation which yields to

lim
y→∞

u[−1,1](x, y) = cαρ
sin(παρ)
sin(παρ̂)

(1 − αρ̂)
∫

∞

1
ψαρ̂(v)

1
v + 1

dv
∫

|x |

1
ψαρ̂(v) dv

= cαρ
sin(παρ)Γ (αρ)

sin(παρ̂)Γ (1 − αρ̂)
(1 − αρ̂)

∫
∞

1
ψαρ̂(v)

1
v + 1

dv h(x).

Since sin(παρ)Γ (αρ)
sin(παρ̂)Γ (1−αρ̂) =

Γ (αρ̂)
Γ (1−αρ) it follows

lim
y→∞

u[−1,1](x, y) = Kαρh(x)

also if x < −1. □

The proof of Theorem 1.3 in this regime of α can now be copied from Section 3.2.2 replacing
log(s) by s1−

1
α in (9). The desired harmonicity of lims→∞ s1−

1
α Px (s < T[−1,1]), as a function of

x , comes from Lemma 3.3 combined with Theorem 1.2.

3.3. Proof of Theorem 1.4

It suffices to prove that

E↕,x
[∫

∞

0
1{X t ∈[−d,d]} dt

]
< ∞, |x | > 1, (13)
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for all d > 1. To this end, note that

E↕,x
[∫

∞

0
1{X t ∈[−d,d]} dt

]
=

∫
∞

0
Ex

[
1{X t ∈[−d,d]}1{t<T[−1,1]}

h(X t )
h(x)

]
dt

≤ sup
y∈[−d,d]\[−1,1]

h(y)
h(x)

Ex
[∫ T[−1,1]

0
1{X t ∈[−d,d]} dt

]
= sup

y∈[−d,d]\[−1,1]

h(y)
h(x)

U[−1,1]
(
x, [−d, d]

)
,

where U[−1,1]
(
x, dy

)
is the potential measure of the stable process killed on entering [−1, 1].

The explicit form of h implies

sup
y∈[−d,d]\[−1,1]

h(y) = max(h(−d), h(d)) < ∞.

Hence, it is sufficient to show finiteness of the potentials U[−1,1](x, [−d, d]), |x | > 1. Taking
account of the explicit formula for the killed potential density u[−1,1](x, y) from Profeta and
Simon [22], it is a straightforward, if not tedious, analytical exercise to verify that indeed
U[−1,1](x, [−d, d]) =

∫
[−d,d]\[−1,1] u[−1,1](x, y) dy is finite.
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