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Preface

These notes were developed whilst giving a graduate lecture course (Nachdiplom-
vorlesung) in the fall of 2012 at the Forschungsinstitut für Mathematik (FIM), ETH
Zürich, Switzerland. The same course was given in the spring of 2013 at Centro de
Investigación en Matemáticas (CIMAT), Guanajuato, Mexico and, simultaneously
by video-link, at Instituto de Matemáticas, UNAM in Mexico City. The title of these
lecture notes may come as surprise to some readers as, to date, the term Gerber–Shiu
Risk Theory is not widely used. One might be more tempted to simply use the title
Ruin theory for Cramér–Lundberg models instead. However, my objective here is
to focus on the recent interaction between a large body of research literature, spear-
headed by Hans Gerber and Elias Shiu, concerning ever more sophisticated ques-
tions around the event of ruin for the classical Cramér–Lundberg surplus process,
and the parallel evolution of the fluctuation theory of Lévy processes. The fusion of
these two fields has provided economies to proofs of older results, as well as push-
ing classical theory much further into what one might describe as exotic ruin theory.
The latter may be considered as the study of ruinous scenarios which involve pertur-
bations to the surplus coming from dividend or tax payments that have a historical
path dependence. These notes keep to the Cramér–Lundberg setting. However, the
text has been written in a form that appeals to straightforward and accessible proofs,
which take advantage, as much as possible, of the fact that Cramér–Lundberg pro-
cesses have stationary and independent increments and no upward jumps.

I would like to thank Paul Embrechts for the invitation to spend six months at
the FIM and the opportunity to develop and present this material. Similarly I would
like to thank Maria-Emilia Caballero, Juan Carlos Pardo and Victor Rivero for the
invitation to give the same course at CIMAT and UNAM simultaneously. I would
also like to thank all attendees in Zürich, Guanajuato and Mexico City for their com-
ments (especially Jean Bertoin, Leif Döring, Juan Carlos Pardo and Victor Rivero).
Whilst I was in Switzerland I had the opportunity to meet Hans Gerber and Hansjörg
Albrecher, with whom I had extensive discussion regarding some of the material in
this book. I would also like to express my gratitude for their many observations and
comments. I would also like to thank Nick Bingham and Erik Baurdoux who have

v
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diligently attended to mathematical errors, references and my use of the English
language. Finally, Springer produced three anonymous referee reports whose useful
comments I am also grateful for.

Andreas E. KyprianouGuanajuato, Mexico
May, 2013
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Chapter 1
Introduction

In this brief introductory chapter, we shall outline the basic context of these lecture
notes. In particular, we shall explain what we understand by so-called Gerber–Shiu
theory and the role that it has played in classical ruin theory.

1.1 The Cramér–Lundberg Process

The beginning of ruin theory is based around a very basic model for the evolution
of the wealth, or surplus, of an insurance company, known as the Cramér–Lundberg
process. In the classical model, the insurance company is assumed to collect pre-
miums at a constant rate c > 0, whereas claims arrive successively according to
the times of a Poisson process, henceforth denoted by N = {Nt : t ≥ 0}, with rate
λ > 0. These claims, indexed in order of appearance {ξi : i = 1,2, . . .}, are inde-
pendent and identically distributed1 with common distribution F , which is concen-
trated on (0,∞). The dynamics of the Cramér–Lundberg process are described by
X = {Xt : t ≥ 0}, where

Xt = ct −
Nt∑

i=1

ξi, t ≥ 0, (1.1)

is the gain between time 0 and t . Here, we use standard notation in that a sum, for
example of the form

∑0
i=1 ·, is understood to be equal to zero. We assume that X is

defined on a stochastic basis (Ω,F,F ,P), where F := {Ft : t ≥ 0} is the natural
filtration generated by X. When the initial surplus of our insurance company is
valued at x > 0, we may consider the evolution of the surplus to follow the dynamics
of x +X under P.

The Cramér–Lundberg process, (X,P), is nothing but the difference of a linear
trend and a compound Poisson process with positive jumps. Accordingly, it is easy
to verify that it conforms to the definition of a so-called Lévy process, given below.

1Henceforth written i.i.d. for short.
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2 1 Introduction

Definition 1.1 A process X = {Xt : t ≥ 0} with law P is said to be a Lévy process
if it possesses the following properties:

(i) The paths of X are P-almost surely right-continuous with left limits.
(ii) P(X0 = 0)= 1.

(iii) For 0 ≤ s ≤ t , Xt −Xs is equal in distribution to Xt−s .
(iv) For all n ∈ N and 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2 ≤ . . . ≤ sn ≤ tn < ∞, the increments

Xti −Xsi , i = 1, . . . , n, are independent.

Whilst our computations in this text will largely remain within the confines of
the Cramér–Lundberg model, we shall, as much as possible, appeal to mathematical
reasoning which is handed down from the general theory of Lévy process. Specif-
ically, our analysis will predominantly appeal to martingale theory as well as ex-
cursion theory. The latter of these two concerns the decomposition of the path of X
into a sequence of sojourns from its running maximum or, indeed, from its running
minimum.

Many of the arguments we give will apply, either directly or with minor modifi-
cation, to the setting of general spectrally negative Lévy processes. These are Lévy
processes which do not experience positive jumps and which do not have monotone
paths. In the forthcoming chapters, we have deliberately stepped back from treating
the case of general spectrally negative Lévy processes in order to keep the presen-
tation as mathematically light as possible. Nonetheless, many of the arguments we
give are robust enough to apply to the case of general spectrally negative Lévy pro-
cesses, either verbatim or with minor modification. At the very end, in Chap. 9, we
will spend a little time discussing the connection with the general spectrally negative
setting.

As a Lévy processes, it is well understood that Cramér–Lundberg processes are
strong Markov2 and, henceforth, we shall prefer to work with the probabilities {Px :
x ∈ R}, where, thanks to spatial homogeneity, for x ∈ R, (X,Px) is equal in law to
x +X under P. For convenience, we shall always prefer to write P instead of P0.

Recall that the random variable τ ∈ [0,∞] is a stopping time with respect to F

if and only if, for all t ≥ 0, {τ ≤ t} ∈ Ft . Moreover, to each stopping time τ , we
associate the sigma-algebra

Fτ := {A ∈F :A∩ {τ ≤ t} ∈Ft for all t ≥ 0
}
.

(Note, it is a simple exercise to verify that Fτ is a sigma-algebra.) The standard way
of expressing the strong Markov property for a one-dimensional process such as X
is as follows: For any Borel set B , on {τ <∞},

P(Xτ+s ∈ B|Fτ )= P
(
Xτ+s ∈ B|σ(Xτ )

)= h(Xτ , s),

2We assume that the reader is familiar with the basic theory of Markov processes and, in particular,
the use of the (strong) Markov property.
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where h(x, s) = Px(Xs ∈ B). On account of the fact that X has stationary and in-
dependent increments, we may also state the strong Markov property in a slightly
refined form.

Theorem 1.2 Suppose that τ is a stopping time. On {τ < ∞}, define the process
X̃ = {X̃t : t ≥ 0} by

X̃t =Xτ+t −Xτ , t ≥ 0.

Then, on the event {τ <∞}, the process X̃ is independent of Fτ and has the same
law as X.

1.2 The Classical Problem of Ruin

Financial ruin in the Cramér–Lundberg model (or just ruin for short) will occur if
the surplus of the insurance company drops below zero. Since this will happen with
probability one if P(lim inft→∞Xt = −∞)= 1, in order to avoid this situation, it is
usual to impose an additional assumption that

P

(
lim
t→∞Xt = ∞

)
= 1. (1.2)

Write μ = ∫
(0,∞)

xF (dx) for the common mean of the i.i.d. claim sizes {ξi : i =
1,2, . . .}. A sufficient condition to guarantee (1.2) is that

c− λμ> 0, (1.3)

the so-called security loading condition. To see why this guarantees (1.2), note
that the Strong Law of Large Numbers for Poisson processes, which states that
limt→∞Nt/t = λ a.s., and the obvious fact that limt→∞Nt = ∞ a.s. imply that

lim
t→∞

Xt

t
= lim

t→∞

(
x

t
+ c− Nt

t

∑Nt

i=1 ξi

Nt

)
= E(X1)= c− λμ> 0 a.s., (1.4)

from which (1.2) follows. We shall see later that the positive security loading in (1.3)
is also a necessary condition for (1.2). Note that (1.3) also implies that μ<∞.

Under the security loading condition, it follows that ruin will occur only with
probability less than one. The most basic question that one can therefore ask under
such circumstances is: What is the probability of ruin when the initial surplus is
equal to x > 0? This involves giving an expression for Px(τ

−
0 <∞), where3

τ−
0 := inf{t > 0 :Xt < 0}.

The Pollaczek–Khintchine formula does just this.

3Throughout this text, we use the standard definition inf∅ := ∞.
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Theorem 1.3 (Pollaczek–Khintchine formula) Suppose that λμ/c < 1. For all
x ≥ 0,

1 − Px

(
τ−

0 <∞)= (1 − ρ)
∑

k≥0

ρkη∗k(x), (1.5)

where ρ = λμ/c,

η(x)= 1

μ

∫ x

0

[
1 − F(y)

]
dy, x ≥ 0,

and, for k ≥ 0, we understand η∗k to be the k-fold convolution of η with the special
understanding that η∗0(dx)= δ0(dx).

It is not our intention to dwell on the Pollaczek–Khintchine formula at this point
in time, although we shall rederive it later in this text. This classical result is a
cornerstone of what is known as insurance risk theory. Its connection to renewal
theory is the inspiration behind a whole body of research literature addressing more
elaborate questions concerning the ruin problem. Our aim in this text is to give
an overview of the state of the art in this respect. Amongst the large number of
names active in this field, one may note, in particular, the many original and varied
contributions of Hans Gerber and Elias Shiu. In recognition of their foundational
work spanning several decades, we accordingly refer to the collective results that
we present here as Gerber–Shiu risk theory.

1.3 Gerber–Shiu Expected Discounted Penalty Functions

Following Theorem 1.3, an obvious direction in which to turn one’s attention is to
look at the joint distribution of τ−

0 , −Xτ−
0

and Xτ−
0 −. These three quantities can

otherwise be called the time of ruin, the deficit at ruin and the surplus prior to
ruin. In their well-cited paper of 1998,4 Gerber and Shiu introduce the so-called ex-
pected discounted penalty function as follows. Suppose that f : (0,∞)2 → [0,∞) is
any bounded, measurable function. Then the associated expected discounted penalty
function with force of interest q ≥ 0, when the initial surplus is equal to x ≥ 0, is
given by

GSf (x, q) := Ex

[
e−qτ−

0 f (−Xτ−
0
,Xτ−

0 −)1(τ−
0 <∞)

]
.

Ultimately, we are interested in what we call here the Gerber–Shiu measure, namely
the exponentially discounted joint law of the pair (−Xτ−

0
,Xτ−

0 −), denoted by

K(q)(x,dy,dz) := Ex

[
e−qτ−

0 ;−Xτ−
0

∈ dy,Xτ−
0 − ∈ dz

]
, x, y, z≥ 0. (1.6)

4See the historical remarks at the end of this chapter.
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For the Gerber–Shiu measure, one notes the simple relation

GSf (x, q)=
∫

[0,∞)

∫

[0,∞)

f (y, z)K(q)(x,dy,dz).

The expected discounted penalty function is a well-studied object and there are
many different ways to develop the expression on the right-hand side of (1.6). We
shall show later in this text how the Gerber–Shiu measure can be written in terms
of so-called scale functions. Scale functions are a natural family of functions with
which one may develop many of the identities related to the event of ruin, which
concern the way in which ruin occurs in a variety of different scenarios. We shall
spend quite some time discussing the recent theory of scale functions later on in this
text.

1.4 Exotic Gerber–Shiu Theory

Again inspired by foundational work of Gerber and Shiu, and indeed many others,
we shall also look at variants of the classical ruin problem in the setting that the
Cramér–Lundberg process undergoes perturbations in its trajectory. These perturba-
tions will represent pay-outs corresponding to dividend or taxation payments. Three
specific cases that will interest us are the following.

Reflection Strategies An adaptation of the classical ruin problem, introduced by
Bruno de Finetti in 1957, is to consider the payment of dividends from the surplus
process to (hypothetical) shareholders. Naturally, for a given stream of dividend pay-
ments, this will continuously change the aggregate value of the surplus process and
the problem of ruin will look quite different. Indeed, the event of ruin will be highly
dependent on the choice of dividend payments. One may formulate the problem of
finding an optimal way of paying out dividends such as to maximise the expected
present value of the total income of the shareholders, under force of interest q ≥ 0,
from time zero until ruin. The optimisation is made over an appropriate class of div-
idend strategies. Mathematically speaking, de Finetti’s dividend problem amounts
to solving a control problem which we reproduce here.

Let ξ = {ξt : t ≥ 0}, with ξ0 = 0, be a dividend strategy consisting of a left-
continuous, non-negative, non-decreasing process which is F-adapted. The quantity
ξt represents the cumulative dividends paid out up to time t ≥ 0 by the insurance
company whose surplus is modelled by X. The aggregate, or controlled, value of the
surplus process, when taking account of the dividend strategy ξ , is thus Uξ = {Uξ

t :
t ≥ 0}, where Uξ

t =Xt − ξt , t ≥ 0. An additional constraint on ξ is that ξt+ − ξt ≤
max{Uξ

t ,0} for t ≥ 0 (i.e. lump sum dividend payments are always smaller than the
available reserves).

Let Ξ be the family of dividend strategies as outlined in the previous paragraph
and, for each ξ ∈ Ξ , write σ ξ = inf{t > 0 : Uξ

t < 0} for the time at which ruin
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occurs for the controlled risk process. The expected present value, with discounting
at rate q ≥ 0, associated to the dividend policy ξ , when the risk process has initial
capital x ≥ 0, is given by

vξ (x)= Ex

(∫ σ ξ

0
e−qtdξt

)
.

De Finetti’s dividend problem consists of solving the stochastic control problem

v∗(x) := sup
ξ∈Ξ

vξ (x), x ≥ 0. (1.7)

That is, if it exists, one seeks to establish a strategy, ξ∗ ∈Ξ , such that v∗ = vξ∗ .
We shall refrain from giving a complete account of this problem, other than to say

that under certain conditions on the jump distribution of the Cramér–Lundberg pro-
cess, X, the optimal strategy consists of a so-called reflection strategy, also known
as a barrier strategy. Specifically, there exists an a ∈ [0,∞) such that

ξ∗
t = (a∨Xt)− a, t > 0,

where

Xt = sup
s≤t

Xs

is the running supremum of the surplus process. In that case, the ξ∗-controlled risk
process is identical, on t > 0, to the process {a− Yt : t ≥ 0} under Px , where

Yt = (a∨Xt)−Xt, t ≥ 0.

Refraction Strategies An adaptation of the optimal control problem deals with
the case that optimality is sought in a subclass ofΞ , sayΞδ . Specifically,Ξδ denotes
the set of dividend strategies ξ ∈Ξ such that

ξt =
∫ t

0
αsds, t ≥ 0,

where {αt : t ≥ 0} is uniformly bounded by some constant, say δ > 0. In other words,
Ξδ consists of dividend strategies which are absolutely continuous, with uniformly
bounded density.

Again, we refrain from going into the details of the solution to (1.7), other than
to say that, under certain conditions, the optimal strategy, ξδ = {ξδt : t ≥ 0} in Ξδ

turns out to satisfy

ξδt = δ

∫ t

0
1(Zs>b)ds, t ≥ 0,

for some b ≥ 0, where Z = {Zt : t ≥ 0} is the controlled surplus process X − ξδ .
Each one of the pair (Z, ξδ) must be expressed in terms of the other and we are
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forced to work with the stochastic differential equation

dZt = dXt − δ1(Zt>b)dt, t ≥ 0.

This is also written in integral form as

Zt =Xt − δ

∫ t

0
1(Zs>b)ds, t ≥ 0. (1.8)

For reasons that we shall elaborate on later, the process in (1.8) is called a re-
fracted process.

Perturbation-at-Maximum Strategies Another way of perturbing the path of our
Cramér–Lundberg process is by forcing payments from the surplus at times that it
attains a new maximum. This may be interpreted, for example, as tax payments. To
this end, consider the process

Ut =Xt −
∫

(0,t]
γ (Xu)dXu, t ≥ 0, (1.9)

where γ : [0,∞)→ [0,∞) satisfies appropriate conditions.
We distinguish two regimes, light-perturbation and heavy-perturbation regimes.

The first corresponds to the case that γ : [0,∞) → [0,1) and the second to the
case that γ : [0,∞) → (1,∞). The light-perturbation regime has a similar flavour
to paying dividends at a weaker rate than a reflection strategy, and may be seen
as a taxation on new levels of wealth. In contrast, the heavy-perturbation regime
is equivalent to paying dividends at a much stronger rate than a reflection strategy.
(The connection with tax payments is arguably lost.)

For each of the three scenarios described above, reflection, refraction and
perturbation-at-maximum, questions concerning the way in which ruin occurs re-
main just as pertinent as for the case of the Cramér–Lundberg process alone. In
addition, we are also interested in the distribution of the present value of payments
made out of the surplus process until ruin. For example, in the case of a reflection
strategy with barrier a ≥ 0 and force of interest equal to q ≥ 0, this boils down to
understanding the distribution of

∫ σa

0
e−qtdXt,

where

σa = inf{t > 0 :Xt −Xt > a}.

1.5 Comments

For the standard theory of stochastic processes, including the basic theory of Markov
processes and stopping times, see for example Kallenberg (2002). For more on the
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classical derivation of the standard model of a surplus process, see Lundberg (1903),
Cramér (1994a, 1994b). Asmussen and Albrecher (2010) serves as an encyclopaedic
reference for all matters concerning ruin theory. See also, for example, the books of
Embrechts et al. (1997) and Dickson (1999), to name but a few standard texts on the
classical theory. A classical derivation of the Pollaczek–Khintchine formula (also
known in the actuarial literature as Beekman’s convolution formula) can be found in
Chapter XII of Feller (1971).

Within the setting of the classical Cramér–Lundberg model, Gerber and Shiu
(1998) introduced the expected discounted penalty function. See also Gerber and
Shiu (1997). It has been widely studied since, with too many references to list here.
The special issue in volume 46, 2010 of the journal Insurance: Mathematics and
Economics contains a selection of papers focused on the Gerber–Shiu expected dis-
counted penalty function, with many further references therein.

An adaptation of the classical ruin problem was introduced within the setting of
a discrete-time surplus process by de Finetti (1957). There, dividends are paid out
to shareholders up to the moment of ruin, resulting in a discrete-time analogue of
the control problem (1.7). This control problem was considered in the framework
of Cramér–Lundberg processes by Gerber (1969, 1972) and then, after a long gap,
by Azcue and Muler (2005). Schmidli (2008) gives an extensive account of (1.7)
and variants thereof. A string of articles, each one improving on its predecessor,
develops the solution to (1.7) in the setting that the surplus process is modelled by
a spectrally negative Lévy process; see Avram et al. (2007), Loeffen (2008), Kypri-
anou et al. (2010) and Loeffen and Renaud (2010). The variant of (1.7) resulting in
refraction strategies was studied by Jeanblanc and Shiryaev (1995) and Asmussen
and Taksar (1997) in the diffusive setting, Gerber and Shiu (2006b) in the Cramér–
Lundberg setting and Kyprianou et al. (2012) in the setting of spectrally negative
Lévy processes.

In the setting of the classical Cramér–Lundberg model, Albrecher and Hipp
(2007) introduced the idea of tax payments as in (1.9), for the case that γ is a
constant in (0,1). This model was quickly generalised by Albrecher et al. (2008,
2011), Kyprianou and Zhou (2009) and Kyprianou and Ott (2012).



Chapter 2
The Wald Martingale and the Maximum

In this chapter, we shall introduce the first of our two key martingales and consider
two immediate applications. In the first application, we will use the martingale to
construct a change of measure with respect to P and thereby consider the dynamics
of X under the new law. In the second application, we shall use the martingale to
study the law of the process X = {Xt : t ≥ 0}, where we recall that

Xt = sup
s≤t

Xs, t ≥ 0. (2.1)

In particular, we shall discover that the position of the trajectory of X, when sam-
pled at an independent and exponentially distributed time, is again exponentially
distributed.

2.1 Laplace Exponent

A key quantity in the forthcoming analysis is the Laplace exponent of the Cramér–
Lundberg process, whose definition is contained in the following lemma.

Lemma 2.1 For all θ ≥ 0 and t ≥ 0, we have

E
(
eθXt
)= exp

{
ψ(θ)t
}
,

where the Laplace exponent ψ satisfies

ψ(θ) := cθ − λ

∫

(0,∞)

(
1 − e−θx)F(dx). (2.2)

Proof Given the definition (1.1), one easily sees that it suffices to prove that

E
(
e−θ∑Nt

i=1 ξi
)= exp

{
−λt
∫

(0,∞)

(
1 − e−θx)F(dx)

}
, (2.3)

A.E. Kyprianou, Gerber–Shiu Risk Theory, EAA Series,
DOI 10.1007/978-3-319-02303-8_2,
© Springer International Publishing Switzerland 2013
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for θ, t ≥ 0. To establish (2.3), we make use of the fact that Nt is independent of
{ξi : i ≥ 1} and Poisson distributed with rate λt . More precisely,

E
(
e−θ∑Nt

i=1 ξi
) =

∞∑

n=0

E
(
e−θ∑n

i=1 ξi
)
e−λt (λt)n

n!

=
∞∑

n=0

[
E
(
e−θξ1
)]ne−λt (λt)n

n!
= exp
{−λt(1 −E

(
e−θξ1
))}

= exp

{
−λt
∫

(0,∞)

(
1 − e−θx)F(dx)

}
,

for all θ, t ≥ 0. �

As we shall see, the Laplace exponent (2.2) is used as a way of identifying certain
characteristics of Cramér–Lundberg processes. To this end, let us start by looking at
the shape of (2.2). Straightforward differentiation, with the help of the Dominated
Convergence Theorem, tells us that, for all θ > 0,

ψ ′′(θ)= λ

∫

(0,∞)

x2e−θxF (dx) > 0,

which in turn implies that ψ is strictly convex on (0,∞). Integration by parts allows
us to write

ψ(θ)= cθ − λθ

∫

(0,∞)

e−θxF (x)dx, θ ≥ 0, (2.4)

where F(x) := 1 − F(x), x ≥ 0. Moreover, this representation allows us to deduce
that

lim
θ→∞

ψ(θ)

θ
= c

and

ψ ′(0+)= lim
θ→0

ψ(θ)

θ
= c− λμ= E(X1),

where the left-hand side is the right derivative of ψ at the origin, the final equality
follows from (1.4) and we recall that μ := ∫

(0,∞)
xF (dx) ∈ (0,∞]. The security

loading condition (1.3) can thus be alternatively expressed simply as ψ ′(0+) > 0.
A quantity which will also repeatedly appear in our computations is the right

inverse of ψ . That is,

Φ(q) := sup
{
θ ≥ 0 :ψ(θ)= q

}
, (2.5)

for q ≥ 0. Thanks to the strict convexity of ψ and that limθ→∞ψ(θ)= ∞, we can
say that there is exactly one solution in [0,∞) to the equation ψ(θ) = q , when
q > 0, and at most two when q = 0. The number of solutions in the latter of these
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Fig. 2.1 Two examples of ψ , the Laplace exponent of a Cramér–Lundberg process, corresponding
to the cases ψ ′(0+) < 0 and ψ ′(0+)≥ 0, respectively

two cases depends on the value of ψ ′(0+). Indeed, when ψ ′(0+) ≥ 0, then θ = 0
is the only solution to ψ(θ) = 0. When ψ ′(0+) < 0, there are two solutions, one
at θ = 0 and a second solution, in (0,∞), which, by definition, gives the value of
Φ(0); see Fig. 2.1.

2.2 First Exponential Martingale

For each β > 0, define the process E(β)= {Et (β) : t ≥ 0} by

Et (β) := eβXt−ψ(β)t , t ≥ 0. (2.6)

Theorem 2.2 Fix β > 0. The process E(β) is a P-martingale with respect to F.

Proof Note that the process E(β) is F-adapted. With this in hand, it suffices to check
that, for all β > 0 and s, t ≥ 0, E[Et+s(β)|Ft ] = Et (β). On account of positivity, this
would immediately show that E[|Et (β)|]<∞, for all t ≥ 0, which is also required
for E(β) to be a martingale.

Thanks to stationary and independent increments, F -adaptedness as well as
Lemma 2.1, for all β, s, t ≥ 0,

E
[
Et+s(β)|Ft

] = Et (β)E
[
eβ(Xt+s−Xt )−ψ(β)s |Ft

]

= Et (β)E
[
eβXs
]
e−ψ(β)s

= Et (β)

and the proof is complete. �
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This martingale is known as the Wald martingale. See Sect. 2.5 for further his-
torical details.

2.3 Esscher Transform

Fix β > 0 and x ∈ R. Normalising E(β) by its expectation, we may use the resulting
mean-one martingale to perform a change of measure on (X,Px) via

dPβx
dPx

∣∣∣∣
Ft

= Et (β)
E0(β)

= eβ(Xt−x)−ψ(β)t , t ≥ 0. (2.7)

In the special case that x = 0, we shall write P
β in place of Pβ0 . Since the process

X under Px may be written as x + X under P, it is not difficult to see that the
change of measure on (X,Px) corresponds to the analogous change of measure on
(X,P). Also known as the Esscher transform, (2.7) alters the law of X. It is related
to the Esscher transform for random variables. For example, for the distribution F ,
its Esscher transform is the distribution

Fβ(dx) := e−βx

m(β)
F (dx), x > 0,

for some β > 0, where m(β) = ∫
(0,∞)

e−βxF (dx). For the forthcoming computa-
tions, it is important that we understand the dynamics of X under Pβ .

Theorem 2.3 Fix β > 0. The process (X,Pβ) is equal in law to a Cramér–
Lundberg process with premium rate c and claims that arrive at rate λm(β) with
common distribution Fβ . Said another way, the process (X,Pβ) is equal in law

to Xβ , where Xβ := {Xβ
t : t ≥ 0} is a Cramér–Lundberg process with Laplace ex-

ponent

ψβ(θ) :=ψ(θ + β)−ψ(β), θ ≥ 0.

Proof For all 0 ≤ s ≤ t ≤ u <∞, θ ≥ 0 and A ∈Fs , with the help of stationary and
independent increments of (X,P), we have that

E
β
[
1Aeθ(Xu−Xt )

] = E
[
1AeβXt−ψ(β)te(θ+β)(Xu−Xt )

]
e−ψ(β)(u−t)

= E
[
1AeβXt−ψ(β)t ]E

[
e(θ+β)Xu−t ]e−ψ(β)(u−t)

= E
[
1AeβXs−ψ(β)s]Eeψ(β+θ)(u−t)e−ψ(β)(u−t)

= P
β(A)eψβ(θ)(u−t), (2.8)

where in the second equality we have conditioned on Ft and in the third equality we
have conditioned on Fs and used the martingale property of E(β). It now follows
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from (2.8) that, for all 0 ≤ v ≤ s ≤ t ≤ u <∞ and θ1, θ2 ≥ 0,

E
β
[
eθ1(Xs−Xv)eθ2(Xu−Xt )

]= eψβ(θ1)(s−v)+ψβ(θ2)(u−t).

Using a straightforward argument by induction, again using (2.8), we also have
that, for all n ∈N, 0 ≤ s1 ≤ t1 ≤ . . .≤ sn ≤ tn <∞ and θ1, . . . , θn ≥ 0,

E
β

[
n∏

j=1

eθj (Xtj
−Xsj

)

]
=

n∏

j=1

eψβ(θj )(tj−sj ). (2.9)

Moreover, a brief computation shows that

ψβ(θ)= cθ − λm(β)

∫

(0,∞)

(
1 − e−θx) e−βx

m(β)
F (dx), θ ≥ 0.

Coupled with (2.9), this shows that (X,Pβ) has stationary and independent incre-
ments which are equal in law to those of a Cramér–Lundberg process with premium
rate c, arrival rate of claims λm(β) and distribution of claims e−βxF (dx)/m(β).
Since the measures P

β and P are equivalent on Ft , for all t ≥ 0, then the prop-
erty that X has paths that are almost surely right-continuous with left limits and no
positive jumps on [0, t] carries over to the measure P

β . �

The Esscher transform may also be formulated at stopping times.

Corollary 2.4 Under the conditions of Theorem 2.3, if τ is an F-stopping time,
then

dPβ

dP

∣∣∣∣
Fτ

= Eτ (β) on {τ <∞}.

Said another way, for all A ∈Fτ , we have

P
β(A, τ <∞)= E

(
1(A,τ<∞)Eτ (β)

)
.

Proof By definition, if A ∈Fτ , then A∩ {τ ≤ t} ∈ Ft . Hence

P
β
(
A∩ {τ ≤ t}) = E

(
Et (β)1(A,τ≤t)

)

= E
(
1(A,τ≤t)E

(
Et (β)|Fτ

))

= E
(
Eτ (β)1(A,τ≤t)

)
,

where in the third equality we have used the strong Markov property as well as the
martingale property for E(β). Now taking limits as t → ∞, the result follows with
the help of the Monotone Convergence Theorem. �
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2.4 Distribution of the Maximum

We want to use the Esscher transform to characterise the law of the first passage
times

τ+
x := inf{t > 0 :Xt > x},

for x ≥ 0, and subsequently the law of the running maximum when sampled at an
independent and exponentially distributed time. Note that the stopping time τ+

x may
be infinite in value, depending on the long-term behaviour of the process X. Accord-
ingly, in the theorem below, where τ+

x appears in an exponent, we will understand
e−∞ := 0.

Theorem 2.5 For x ≥ 0 and q > 0,

E
(
e−qτ+

x
)= e−Φ(q)x,

where we recall that Φ(q) is given by (2.5). By taking limits as q → 0, it also follows
that

P
(
τ+
x <∞)= e−Φ(0)x,

for x ≥ 0.

Proof Using the fact that X has no positive jumps, it must follow that Xτ+
x

= x on
{τ+
x <∞}. With the help of the strong Markov property we have that

E
(
eΦ(q)Xt−qt |Fτ+

x

)

= 1(τ+
x ≥t)e

Φ(q)Xt−qt + 1(τ+
x <t)

eΦ(q)x−qτ+
x E
(
e
Φ(q)(Xt−Xτ

+
x
)−q(t−τ+

x )|Fτ+
x

)

= e
Φ(q)X

t∧τ+x −q(t∧τ+
x ), (2.10)

where, in the final equality, we have used the fact that E(Et (Φ(q))) = 1 for all
t ≥ 0. Using this fact again together with the law of total probability, we get, by
taking expectations again in (2.10),

E
(
e
Φ(q)X

t∧τ+x −q(t∧τ+
x )
)= 1.

Noting that the expression in the latter expectation is bounded above by eΦ(q)x , an
application of dominated convergence yields

E
(
eΦ(q)x−qτ+

x
)= 1,

which is equivalent to the statement of the theorem. �

We recover the promised distributional information about the maximum pro-
cess (2.1) in the next corollary. In its statement, we understand an exponential ran-
dom variable with rate 0 to be infinite in value with probability one.
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Corollary 2.6 Fix q ≥ 0 and let eq be an exponentially distributed random variable
with rate q , which is independent of X. Then Xeq is exponentially distributed with
parameter Φ(q).

Proof First suppose that q > 0. The result is an easy consequence of the fact that

P(Xeq > x)= P
(
τ+
x < eq

)= E

(∫ ∞

0
qe−qt1(τ+

x <t)

)
= E
(
e−qτ+

x
)
,

together with the conclusion of Theorem 2.5. For the remaining case that q = 0,
note with the help of the last part of Theorem 2.5 that

P(X∞ > x)= P
(
τ+
x <∞)= e−Φ(0)x,

and the proof is complete. �

2.5 Comments

The idea of tilting a distribution by exponentially weighting its probability distri-
bution function was introduced by Esscher (1932). This idea lends itself well to
changes of measure in the theory of stochastic processes, in particular for Lévy
processes. The Wald martingale can be traced back to Wald (1944, 1945). The as-
sociated Esscher transform is analogous to the exponential martingale for Brownian
motion and the role that it plays in the classical Cameron–Martin–Girsanov change
of measure. Indeed, the theory presented here may be extended to the general class
of spectrally negative Lévy processes, which includes Cramér–Lundberg processes
and Brownian motion. See for example Chap. 3 of Kyprianou (2013). The Esscher
transform plays a prominent role in mathematical finance as well as insurance math-
ematics; see for example the discussion in the paper of Gerber and Shiu (1994) and
references therein. The style of reasoning in the proof of Theorem 2.5 is inspired
by the classical computations of Wald (1944) for random walks, see also Bingham
(1975) and Gerber (1990).



Chapter 3
The Kella–Whitt Martingale and the Minimum

We move now to the second of our two key martingales. In a similar spirit to the
previous chapter, we shall use the martingale to study the law of the process X =
{Xt : t ≥ 0}, where

Xt := inf
s≤t Xs, t ≥ 0. (3.1)

As with the case of X, we shall characterise the law of X when sampled at an
independent and exponentially distributed time. Unlike the case of X however, this
will not turn out be exponentially distributed. In order to carry out the necessary
analysis, we will need to pass through two sections of preparatory material.

3.1 The Cramér–Lundberg Process Reflected in Its Supremum

Fix x ≥ 0. Define the process Yx = {Yx
t : t ≥ 0}, where

Yx
t := (x ∨Xt)−Xt, t ≥ 0.

Lemma 3.1 For each x ≥ 0, Yx is a Markov process.

Proof Let X̃s = Xt+s −Xt , s, t ≥ 0, and recall that {X̃s : s ≥ 0} is independent of
Ft with the same law as (X,P). Note that, for t, s ≥ 0,

(x ∨Xt+s)−Xt+s =
(
x ∨Xt ∨ sup

u∈[t,t+s]
Xu

)
−Xt − X̃s

=
[
(x ∨Xt −Xt)∨

(
sup

u∈[t,t+s]
Xu −Xt

)]
− X̃s

=
[
Yx
t ∨ sup

u∈[0,s]
X̃u

]
− X̃s .

From the right-hand side above, it is clear that the law of Yx
t+s depends only on

{Yx
u : u≤ t} through the value of Yx

t . Hence {Yx
t : t ≥ 0} is a Markov process. �

A.E. Kyprianou, Gerber–Shiu Risk Theory, EAA Series,
DOI 10.1007/978-3-319-02303-8_3,
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Remark 3.2 Note that the argument given in the proof above shows that, if τ is any
stopping time with respect to F, then, on {τ <∞},

(x ∨Xτ+s)−Xτ+s =
[
Yx
τ ∨ sup

u∈[0,s]
X̃u

]
− X̃s,

where now, X̃s :=Xτ+s −Xτ , s ≥ 0, is independent of Fτ and has the same law as
(X,P). In other words,

Yx
τ+s = Ỹ z

s such that z= Yx
τ ,

where Ỹ z is independent of Fτ and equal in law to Y z.

Remark 3.3 It is also possible to argue, in the style of the proof of Lemma 3.1, that,
for each y ≤ 0, the process Zy , given by

Z
y
t :=Xt − (y ∧Xt), t ≥ 0,

is also a Markov process. In fact, one can go much further and show that, for
x ≥ 0, y ≤ 0, the quadruplet (Y x,Zy,X,N) is also Markovian. Specifically, for
each s, t ≥ 0,

(
Yx
t+s ,Z

y
t+s ,Xt+s ,Nt+s

)= (Ỹ u
s , Z̃

v
s ,w+ X̃s, n+ Ñs

)

such that u = Yx
t , v = Z

y
t , w = Xt and n = Nt , where {(Ỹ u

s , Z̃
v
s , X̃s, Ñs) : s ≥ 0}

is independent of Ft and equal in law to (Y u,Zv,X,N) under P. Again, one also
easily replaces t by an F-stopping time in the above observation, as in the previous
remark.

3.2 A Useful Poisson Integral

In the next section, we will come across some functionals of the driving Poisson
process N = {Nt : t ≥ 0}. Specifically, we will be interested in expected sums of the
form

E

[
Nt∑

i=1

f
(
Yx
Ti−, ξi

)
]
, x, t ≥ 0,

where f : [0,∞)× (0,∞)→ [0,∞) is measurable, {Ti : i ≥ 1} are the arrival times
in the process N and recall that {ξi : i ≥ 1} are the i.i.d. subsequent claim sizes of X
with common distribution F . We need the following result.

Theorem 3.4 (Compensation formula) For all non-negative, bounded, measurable
f and x, t ≥ 0,

E

[
Nt∑

i=1

f
(
Yx
Ti−, ξi

)
]

= λ

∫ t

0

∫

(0,∞)

E
[
f
(
Yx
s , u
)]
F(du)ds. (3.2)
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Proof With the help of Fubini’s Theorem, we can write

E

[ ∞∑

i=1

1(Ti≤t)f
(
Yx
Ti−, ξi

)
]

=
∞∑

i=1

E
[
1(Ti≤t)f

(
Yx
Ti−, ξi

)]
. (3.3)

Note that Ti = inf{t > 0 : Nt = i} and hence each Ti is a stopping time. Note also
that, for each i ≥ 1, the terms f (Y x

Ti−) are each measurable in the sigma-algebra
Hi := σ({Ns : s ≤ Ti}, {ξj : j = 1, . . . , i − 1}). For each of the expectations in the
sum on the right-hand side of (3.3), by first conditioning on Hi and then applying
Fubini’s Theorem again, it follows that

∞∑

i=1

∫

(0,∞)

E
[
1(Ti≤t)f

(
Yx
Ti−, u
)]
F(du)=

∫

(0,∞)

E

[
Nt∑

i=1

f
(
Yx
Ti−, u
)
]
F(du).

The proof is therefore complete as soon as we show that, for all x, t ≥ 0 and u > 0,

E

[
Nt∑

i=1

f
(
Yx
Ti−, u
)
]

= λ

∫ t

0
E
[
f
(
Yx
s , u
)]

ds. (3.4)

To this end, define, for x, t ≥ 0 and u > 0, ηu(x, t)= E[∑Nt

i=1 f (Y
x
Ti−, u)]. With the

help of the Markov property for (Y x,N) and as well as the stationary independent
increments of N , we have

ηu(x, t + s)− ηu(x, t) = E

[
E

[
Nt+s∑

i=Nt+1

f
(
Yx
Ti−, u
)∣∣∣∣Ft

]]

= E

[
E

[
Ñs∑

i=1

f
(
Ỹ z

T̃i−, u
)
]∣∣∣∣∣

z=Yxt

]

= E
[
ηu
(
Yx
t , s
)]
,

where the process {(Ỹ z
s , Ñs) : s ≥ 0} is independent of Ft and equal in law to

(Y z,N) under P. Note here that {T̃i : i ≥ 1} are the arrival times of the pro-
cess Ñ . Next, note that, for all x, s ≥ 0, we have that s−1ηu(x, s) is bounded by
s−1CE(Ns)= λC, where C = supy≥0 f (y) <∞. Hence, with the help of the Dom-
inated Convergence Theorem, our objective now is to compute the right-derivative
of ηu(x, t) by evaluating the limit

lim
s↓0

ηu(x, t + s)− ηu(x, t)

s
= E

[
lim
s↓0

1

s
ηu
(
Yx
t , s
)]
. (3.5)

Note that, for all x, s ≥ 0,

1

s
ηu(x, s) = 1

s
E
[
f
(
Yx
T1−, u
)
1(Ns=1)

]+ 1

s
E

[
Ns∑

i≥1

f
(
Yx
Ti−, u
)
1(Ns≥2)

]
. (3.6)
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Moreover, recall that, for v ≤ s,

P(T1 ∈ dv,Ns = 1) = P(T1 ∈ dv,T2 > s)

= P(T1 ∈ dv,T2 − T1 > s − v)

= λe−λvdv × e−λ(s−v)

= λe−λsdv.

Hence, for the first term on the right-hand side of (3.6) we have

lim
s↓0

1

s
E
[
f
(
Yx
T1−, u
)
1(Ns=1)

]= lim
s↓0

λ
e−λs

s

∫ s

0
f
(
(x ∨ cv)− cv,u

)
dv = λf (x,u).

For the second term on the right-hand side of (3.6), we also have

lim
s↓0

1

s
E

[
Ns∑

i≥1

f
(
Yx
Ti−, u
)
1(Ns≥2)

]
≤ C lim

s↓0

1

s
E[Ns1(Ns≥2)]

= lim
s↓0

1

s

[
λs
(
1 − e−λs)]= 0.

Returning to (3.6), it follows that, for all x ≥ 0, lims↓0 s
−1ηu(x, s)= λf (x,u) and

hence, from (3.5), we have that

∂

∂t
ηu(x, t+)= λE

[
f
(
Yx
t , u
)]
.

A similar argument, looking at the difference ηu(x, t)− ηu(x, t − s), for x ≥ 0 and
t > s > 0, also shows that the left derivative satisfies

∂

∂t
ηu(x, t−)= λE

[
f
(
Yx
t , u
)]
.

It follows that ηu(x, t) is differentiable in t on (0,∞) and hence, since ηu(x,0)= 0,

ηu(x, t)= λ

∫ t

0
E
[
f
(
Yx
s , u
)]

ds,

which establishes (3.4) and completes the proof. �

Remark 3.5 It is a straightforward exercise to deduce from Theorem 3.4 that the
compensated process

Nt∑

i=1

f
(
Yx
Ti−, ξi

)− λ

∫ t

0

∫

(0,∞)

E
(
f
(
Yx
s

)
, u
)
F(du)ds, t ≥ 0,

is a martingale.
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3.3 Second Exponential Martingale

We are now ready to introduce our second exponential martingale, also known as
the Kella–Whitt martingale. See Sect. 3.7 for historical remarks regarding its name.

Theorem 3.6 For θ > 0 and x ≥ 0,

Mx
t :=ψ(θ)

∫ t

0
e−θY xs ds + 1 − e−θY xt − θ(x ∨Xt), t ≥ 0 (3.7)

is a P-martingale with respect to F.

Proof Let us start by showing that

E
[∣∣Mx

t

∣∣]<∞,

for all t, x ≥ 0. To this end, suppose that e1 is an independent and exponentially
distributed random variable. We know from Corollary 2.6 that Xe1 is exponentially
distributed with parameter Φ(1). In particular, this implies that

E[Xe1] =
∫ ∞

0
e−t

E[Xt ]dt <∞.

Since X is an increasing process, it follows that E[Xt ]<∞, for all t ≥ 0.
Using the triangle inequality for each of the terms in Mx

t , we may now estimate

E
[∣∣Mx

t

∣∣]≤ψ(θ)t + 2 + θE[x ∨Xt ]<∞,

for x, t ≥ 0.
Next, use the Markov property of Yx to write, for x, s, t ≥ 0,

x ∨Xt+s = Yx
t+s +Xt+s = Ỹ z

s

∣∣
z=Yxt + X̃s +Xt = (z∨ X̃s)|z=Yxt +Xt,

where X̃s = Xt+s −Xt and Ỹ z := (z ∨ X̃)− X̃ is independent of {Yx
u : u ≤ t} and

equal in law to Y z. Using this decomposition, it is straightforward to show that

E
[
Mx

t+s |Ft

] = ψ(θ)

∫ t

0
e−θY xu du+ 1 − θXt

+E

[
ψ(θ)

∫ s

0
e−θY zudu− e−θY zs − θ(z∨Xs)

]∣∣∣∣
z=Yxt

.

The proof is thus complete as soon as we show that, for all z, s ≥ 0,

E

[
ψ(θ)

∫ s

0
e−θY zudu− e−θY zs − θ(z∨Xs)

]
= −e−θz − θz.
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In order to achieve this goal, we shall develop the left-hand side above using the
so-called chain rule for right-continuous functions of bounded variation. We have
that

e−θY zs = e−θz − θ

∫

(0,s]
e−θY zud

(
Y z
u

)c +
Ns∑

i=1

[
e
−θY zTi − e

−θY zTi−], (3.8)

for z, s ≥ 0, where (Y z
u )

c is the continuous part of Y z. Note that

∫

(0,s]
e−θY zud

(
Y z
u

)c =
∫

(0,s]
e−θY zud(z∨Xu)− c

∫ s

0
e−θY zudu

=
∫

(0,s]
1(Y zu=0)e

−θY zud(z∨Xu)− c

∫ s

0
e−θY zudu

= (z∨Xs)− z− c

∫ s

0
e−θY zudu,

where in the second equality we have used the fact Y z
u = 0 on the set of times that

the process z ∨ Xu increments. We may now take expectations in (3.8) to deduce
that

E
[
e−θY zs + θ(z∨Xs)

]

= e−zθ + θz+E

[
cθ

∫ s

0
e−θY zudu+

Ns∑

i=1

e
−θY zTi−(e−θξi − 1

)
]

= e−zθ + θz+ cθE

[∫ s

0
e−θY zudu

]

+ λ

∫

(0,∞)

(
e−θx − 1

)
F(dx)E

[∫ s

0
e−θY zudu

]

= e−zθ + θz+ψ(θ)E

[∫ s

0
e−θY zudu

]
,

where we have applied Theorem 3.4 in the second equality. The proof is now com-
plete. �

3.4 Duality

For our main application of the Kella–Whitt martingale, we need to address one ad-
ditional property of the Cramér–Lundberg process, which follows as a consequence
of the fact that it is also a Lévy process. This property concerns the issue of duality.
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Fig. 3.1 A realisation of the trajectory of {Xs : 0 ≤ s ≤ t} and of {X(t−s)− − Xt : 0 ≤ s ≤ t},
respectively

Lemma 3.7 (Duality Lemma) For each fixed t > 0, define the time-reversed pro-
cess

{X(t−s)− −Xt : 0 ≤ s ≤ t}
and the dual process,

{−Xs : 0 ≤ s ≤ t}.
Then the two processes have the same law under P.

Proof Define the process Rs = Xt − X(t−s)− for 0 ≤ s ≤ t . Under P, we have
R0 = 0 almost surely, as t is a jump time with probability zero. As can be seen
from Fig. 3.1, the paths of R are obtained from those of X by a rotation through
180◦, with an adjustment of the continuity at the jump times, so that its paths are
almost surely right-continuous with left limits. The stationary independent incre-
ments of X imply directly that the same is true of R. This puts R in the class of
Lévy processes. Moreover, for each 0 ≤ s ≤ t , the distribution of Rs is identical to
that of Xs . It follows that

E
(
eλRs
)= eψ(λ)s,

for all 0 ≤ s ≤ t <∞ and λ≥ 0. Hence R has the same law as X. �

One interesting feature that follows as a consequence of the Duality Lemma is
the relationship between the running supremum, the running infimum, the process
reflected in its supremum and the process reflected in its infimum. The last four
objects are, respectively,

Xt = sup
0≤s≤t

Xs, Xt = inf
0≤s≤t Xs,

{Xt −Xt : t ≥ 0} and {Xt −Xt : t ≥ 0}.
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Lemma 3.8 For each fixed t > 0, the pairs (Xt ,Xt −Xt) and (Xt −Xt,−Xt) have
the same distribution under P.

Proof Define Rs =Xt −X(t−s)− for 0 ≤ s ≤ t , as in the previous proof, and write
Rt = inf0≤s≤t Rs . Using right-continuity and left limits of paths we may deduce that

(Xt ,Xt −Xt)= (Rt −Rt ,−Rt)

almost surely. Now appealing to the Duality Lemma we have that {Rs : 0 ≤ s ≤ t}
is equal in law to {Xs : 0 ≤ s ≤ t} under P and the result follows. �

3.5 Distribution of the Minimum

We are now able to deliver the promised result concerning the law of the minimum.

Theorem 3.9 Let Xt = inf0≤u≤t Xu and suppose that eq is an exponentially dis-
tributed random variable with parameter q > 0, which is independent of the pro-
cess X. Then, for θ > 0,

E
(
eθXeq
)= q(θ −Φ(q))

Φ(q)(ψ(θ)− q)
, (3.9)

where the right-hand side is understood in the asymptotic sense when θ =Φ(q), i.e.
q/Φ(q)ψ ′(Φ(q)).

Proof Let us first consider the case that θ, q > 0 and θ �= Φ(q). Let Yt = Y 0
t =

Xt −Xt . By an application of Fubini’s Theorem together with Lemma 3.8,

E

[∫ eq

0
e−θYsds

]
=
∫ ∞

0
e−qs

E
(
e−θYs )ds = 1

q
E
(
e−θYeq

)= 1

q
E
(
eθXeq
)
.

From Theorem 3.6, we have that E(M0
eq )= E(M0

0 )= 0, and hence we obtain

ψ(θ)− q

q
E
(
eθXeq
)= θE(Xeq )− 1.

Recall from Corollary 2.6 that Xeq is exponentially distributed with parameter Φ(q)
and hence E(Xeq )= 1/Φ(q). It follows that

ψ(θ)− q

q
E
(
eθXeq
)= θ −Φ(q)

Φ(q)
. (3.10)

For the case that q > 0 and θ =Φ(q), the result follows from the case that θ �=Φ(q)

by taking limits as θ →Φ(q). �
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3.6 The Long-Term Behaviour

Let us conclude this chapter by returning to earlier remarks made in Sect. 1.2
regarding the long-term behaviour of the Cramér–Lundberg process. Recall that
ψ ′(0+) = c − λμ, where c is the premium rate, λ is the rate of claim arrivals
and μ is their common mean. It is clear from (1.4) that, when ψ ′(0+) > 0, we
have limt→∞Xt = ∞ and when ψ ′(0+) < 0, limt→∞Xt = −∞. For the remain-
ing case, when ψ ′(0+) = 0, the Strong Law of Large Numbers is not as informa-
tive. We can, however, use our previous results on the law of the maximum and
minimum of X to determine the long-term behaviour of X. Specifically, the lemma
below shows that, when ψ ′(0+) = 0, the process X oscillates in the sense that
lim supt→∞Xt = − lim inft→∞Xt = ∞.

Lemma 3.10 We have that

(i) X∞ and −X∞ are either infinite almost surely or finite almost surely,
(ii) X∞ = ∞ if and only if ψ ′(0+)≥ 0,

(iii) X∞ = −∞ if and only if ψ ′(0+)≤ 0.

Proof On account of the strict convexity ψ , we have that Φ(0) > 0 if and only if
ψ ′(0+) < 0. Hence,

lim
q↓0

q

Φ(q)
=
{

0 if ψ ′(0+)≤ 0,

ψ ′(0+) if ψ ′(0+) > 0.

In the case that ψ ′(0+) ≥ 0 above, i.e. the case Φ(0) = 0, to compute the limit,
we make use of the fact that q/Φ(q) can otherwise be written ψ(Φ(q))/Φ(q). By
taking the limit as q tends to zero in the identity (3.9), we now have that

E
(
eθX∞
)=
{

0 if ψ ′(0+)≤ 0,

ψ ′(0+)θ/ψ(θ) if ψ ′(0+) > 0.
(3.11)

In the first of the two cases above, it is clear that P(−X∞ = ∞)= 1. In the second
case, taking limits as θ → ∞, one sees that P(−X∞ = ∞)= 0.

Next, recall from Corollary 2.6 that X∞ is exponentially distributed with param-
eter Φ(0). In particular, X∞ is almost surely infinite when ψ ′(0+)≥ 0 and almost
surely finite when ψ ′(0+) < 0.

Putting this information together, the statements (i)–(iii) are easily recovered. �

3.7 Comments

The fact that the process Yx is a Markov process for each x ≥ 0 is well known from
queueing theory, where the process Yx can be seen as the workload in an M/G/1
queue (when the initial workload at time zero is x). The proof given here is taken
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from Bingham (1975). Theorem 3.4 is an example of the so-called compensation
formula which can be stated for general Poisson integrals. See for example Chap-
ter XII.1 of Revuz and Yor (2004) or Chapter 0.5 of Bertoin (1996). The Kella–
Whitt martingale was first introduced in Kella and Whitt (1992) in the setting of a
general Lévy process. It is closely related to the so-called Kennedy and Azéma–Yor
martingales, both of which have previously been studied in the setting of Brownian
motion. See Azéma and Yor (1979) and Kennedy (1976). A general version of the
chain rule can be found in Proposition (4.6) of Chapter 0 in Revuz and Yor (2004).
The Duality Lemma is also well known for (and in fact originates from) the theory
of random walks and is justified using an almost identical proof. See for example
Chapter XII of Feller (1971) for random walks and Chapter II.1 of Bertoin (1996)
for Lévy processes.



Chapter 4
Scale Functions and Ruin Probabilities

The two main results from the previous chapters concerning the law of the max-
imum and minimum of the Cramér–Lundberg process can now be put to use in
order to establish our first results concerning the classical ruin problem. We shall
introduce the so-called scale functions, which will prove to be indispensable, both
in this chapter and later, when describing various distributional features of the ruin
problem.

4.1 Scale Functions and the Probability of Ruin

For a given Cramér–Lundberg process X with Laplace exponent ψ , we want to
define a family of functions, indexed by q ≥ 0, which we shall denote by W(q) :
R → [0,∞). For all q ≥ 0 we shall set W(q)(x) = 0 for x < 0. The next theorem
serves as a definition for W(q) on [0,∞).

Theorem 4.1 For all q ≥ 0 there exists a function W(q) on [0,∞) defined to be the
unique non-decreasing, right-continuous function whose Laplace transform is given
by

∫ ∞

0
e−βxW(q)(x)dx = 1

ψ(β)− q
, β >Φ(q). (4.1)

For convenience, we shall always write W in place of W(0). Typically, we shall
refer to the functions W(q) as q-scale functions, but we shall also refer to W as just
the scale function.

Proof of Theorem 4.1 First assume that ψ ′(0+) > 0. With a pre-emptive choice of
notation, we shall define the function

W(x)= 1

ψ ′(0+)Px(X∞ ≥ 0), x ∈R. (4.2)

A.E. Kyprianou, Gerber–Shiu Risk Theory, EAA Series,
DOI 10.1007/978-3-319-02303-8_4,
© Springer International Publishing Switzerland 2013
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Clearly W(x) = 0 for x < 0 and it is non-decreasing and right-continuous since it
is also proportional to the distribution function P(−X∞ ≤ x). Integration by parts
shows that, on the one hand,

∫ ∞

0
e−βxW(x)dx = 1

ψ ′(0+)
∫ ∞

0
e−βx

P(−X∞ ≤ x)dx

= 1

ψ ′(0+)β
∫

[0,∞)

e−βx
P(−X∞ ∈ dx)

= 1

ψ ′(0+)βE
(
eβX∞
)
. (4.3)

On the other hand, recalling (3.11), we also have that

E
(
eβX∞
)= ψ ′(0+)β

ψ(β)
, β ≥ 0.

When combined with (4.3), this gives us (4.1) for the case q = 0 and ψ ′(0+) > 0.
Next, we deal with the case that q > 0 or that q = 0 and ψ ′(0+) < 0. To this

end, again making use of a pre-emptive choice of notation, let us define the non-
decreasing and right-continuous function

W(q)(x)= eΦ(q)xWΦ(q)(x), x ≥ 0, (4.4)

where WΦ(q) plays the role of W , but now for the process (X,PΦ(q)). Note in par-
ticular that, by Theorem 2.3, (X,PΦ(q)) has Laplace exponent

ψΦ(q)(θ)=ψ
(
θ +Φ(q)

)− q, θ ≥ 0. (4.5)

Hence ψ ′
Φ(q)(0+)=ψ ′(Φ(q)) > 0, which ensures that WΦ(q) is well defined by the

previous part of the proof. Taking Laplace transforms, we have, for β >Φ(q),
∫ ∞

0
e−βxW(q)(x)dx =

∫ ∞

0
e−(β−Φ(q))xWΦ(q)(x)dx

= 1

ψΦ(q)(β −Φ(q))

= 1

ψ(β)− q
,

thus completing the proof for the case that q > 0 or that q = 0 and ψ ′(0+) < 0.
Finally, we deal with the case that q = 0 and ψ ′(0+) = 0. Since WΦ(q)(x) is

an increasing function, we may also treat it as a distribution function of a measure
which, with as an abuse of notation, we also call WΦ(q). Integrating by parts thus
gives us, for β > 0,

∫

[0,∞)

e−βxWΦ(q)(dx)= β

ψΦ(q)(β)
. (4.6)
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Note that the assumption ψ ′(0+)= 0 implies that Φ(0)= 0 and hence, for θ ≥ 0,

lim
q↓0

ψΦ(q)(θ)= lim
q↓0

[
ψ
(
θ +Φ(q)

)− q
]=ψ(θ).

One may appeal to (4.6) and the Extended Continuity Theorem for Laplace trans-
forms, see for example Theorem XIII.1.2a of Feller (1971), to deduce that, since

lim
q↓0

∫

[0,∞)

e−βxWΦ(q)(dx)= β

ψ(β)
,

there exists a measure W ∗ such that W ∗(x) :=W ∗[0, x] = limq↓0WΦ(q)(x) and
∫

[0,∞)

e−βxW ∗(dx)= β

ψ(β)
.

Integration by parts shows that W ∗ satisfies
∫ ∞

0
e−βxW ∗(x)dx = 1

ψ(β)
,

for β > 0, as required. It is clear from its definition that W :=W ∗ is non-decreasing,
right-continuous and satisfies (4.1). �

With the definition of scale functions in hand, we can return to the problem of
ruin. The following corollary follows as a simple consequence of Laplace inversion
of the identity in Theorem 3.9, taking account of (4.1).

Corollary 4.2 For x, q > 0,

P(−Xeq ∈ dx)= q

Φ(q)
W(q)(dx)− qW(q)(x)dx. (4.7)

In the above formula, thanks to (4.4), the function W(q) is increasing and hence
the measure W(q)(dx), x ≥ 0, makes sense (albeit being another abuse of notation).
Formula (4.7) can also be stated when q = 0, providing ψ ′(0+) > 0. In that case, as
we have seen before, the term q/Φ(q) should be understood in the limiting sense as
equal to ψ ′(0+).

We complete this section with our main result about ruin probabilities, using
scale functions. To this end, let us define the functions

Z(q)(x)= 1 + q

∫ x

0
W(q)(y)dy, x ∈ R,

for q ≥ 0. Moreover, recall that

τ−
0 := inf{t > 0 :Xt < 0}

and that e−∞ := 0.
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Theorem 4.3 (Time to ruin) For any x ∈ R and q > 0,

Ex

(
e−qτ−

0
)= Z(q)(x)− q

Φ(q)
W(q)(x). (4.8)

By taking limits above as q → 0, we also have

Px

(
τ−

0 <∞)=
{

1 −ψ ′(0+)W(x) if ψ ′(0+)≥ 0

1 if ψ ′(0+) < 0.
(4.9)

Proof Appealing to (4.7), we have, for x ≥ 0,

Ex

(
e−qτ−

0
) = Px

(
eq > τ−

0

)

= Px(Xeq < 0)

= P(−Xeq > x)

= 1 − P(−Xeq ≤ x)

= 1 + q

∫ x

0
W(q)(y)dy − q

Φ(q)
W(q)(x)

= Z(q)(x)− q

Φ(q)
W(q)(x). (4.10)

Note that, since Z(q)(x)= 1 and W(q)(x)= 0 for all x ∈ (−∞,0), the statement is
valid for all x ∈R. The proof is now complete for the case that q > 0.

In order to deal with the case q = 0, recall our previous trick in writing

lim
q↓0

q/Φ(q)= lim
q↓0

ψ
(
Φ(q)
)
/Φ(q).

If ψ ′(0+)≥ 0, i.e. the process drifts to infinity or oscillates, then Φ(0)= 0 and the
limit is equal to ψ ′(0+). Otherwise, when Φ(0) > 0, the aforementioned limit is
zero. The proof is thus completed by taking the limit in q in (4.8). �

The last part of the above theorem can also be recovered directly from the defi-
nition of W in the case that ψ ′(0+) > 0, see (4.2). Moreover, given the discussion
in Sect. 3.6, the probability of ruin when ψ ′(0+)≤ 0 is obviously 1.

4.2 Connection with the Pollaczek–Khintchine Formula

In Theorem 1.3, we gave the classical Pollaczek–Khintchine formula for the proba-
bility of ruin in the case that ψ ′(0+) > 0. Compared with (4.9), it is not immediately
obvious how these two formulae relate to one another. Let us therefore spend a little
time to make the connection between the two, first with an analytical explanation
and then with a probabilistic one.
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Analytical Explanation Let us start by noting that, just as in formula (4.6), we
can integrate by parts the Laplace transform of W to show that

∫

[0,∞)

e−βxW(dx)= β

ψ(β)
, β > 0.

Alternatively, this also follows from the definition (4.2) and the expression for the
Laplace transform of −X∞, given in (3.11). Next, note that ψ ′(0+)= c− λμ > 0
implies that μ<∞ and that

ρ := λμ/c< 1.

This inequality also implies that

λμ

c

∫ ∞

0
e−βx 1

μ
F(x)dx < 1,

where we recall that F(x) = 1 − F(x). Hence, recalling the representation of ψ
given in (2.4), we can write, for β > 0,

β

ψ(β)
= 1

c

1

1 − λμ
c

∫∞
0 e−βx 1

μ
F(x)dx

= 1

c

∞∑

k=0

ρk
(∫ ∞

0
e−βx 1

μ
F(x)dx

)k
. (4.11)

Next note that

η(dx) := 1

μ
F(x)dx, x ≥ 0,

is a probability measure. For each k ≥ 0, recall that η∗k(dx), x ≥ 0, its k-fold con-
volution, where we understand η∗0(dx) := δ0(dx), x ≥ 0, the Dirac delta measure
which places an atom of unit mass at zero. Since, for β > 0 and k ≥ 0,

∫

[0,∞)

e−βxη∗k(dx)=
(∫ ∞

0
e−βx 1

μ
F(x)dx

)k
,

we may apply Laplace inversion to the right-hand side of (4.11) and conclude that,
for x ≥ 0,

W(dx)= 1

c

∞∑

k=0

ρkη∗k(dx).

Said another way, we have, for x ≥ 0,

W(x)= 1

c

∞∑

k=0

ρkη∗k(x). (4.12)
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Fig. 4.1 A path of the Cramér–Lundberg process which drifts to ∞ before passing below 0. The
horizontal line segments mark the successive minima. The vertical distances between subsequent
horizontal line segments represent the quantities Δn

Returning to the formula in (4.9), when ψ ′(0+)= c− λμ> 0, we now see that

1 − Px

(
τ−

0 <∞)= (1 − ρ)

∞∑

k=0

ρkη∗k(x), (4.13)

as stated in Theorem 1.3.

Probabilistic Explanation The Pollaczek–Khintchine formula can also be recov-
ered by looking at the successive minima of the process X. To this end, let us set
Θ0 = 0 and sequentially define, for all k ≥ 1 such that Θk−1 <∞,

Θk = inf{t > Θk−1 :Xt <XΘk−1},
with the usual understanding that inf∅ = ∞. As long as they are finite, the times Θk

are the times of successive new minima.
The strong Markov property implies that, for each k ≥ 1 such that {Θk−1 <∞},

the pair (Θk − Θk−1,XΘk
− XΘk−1) is independent of FΘk−1 and equal in law to

the pair (τ−
0 ,Xτ−

0
), where we understand XΘk

:= ∞ when Θk = ∞ and, similarly,

Xτ−
0

:= ∞ when τ−
0 = ∞. For k ≥ 1, define on {Θk−1 <∞}

Δk = −(XΘk
−XΘk−1).

The event {τ−
0 = ∞} under Px , x ≥ 0, corresponds to the event that

{
ν−1∑

n=1

Δn ≤ x

}
,

where ν = min{k ≥ 1 :Θk = ∞}. See Fig. 4.1. By the strong Markov property, the
index ν is the time of first success in an independent sequence of Bernoulli trials
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with probability of “success” 1 − ρ̂ := P(Θ1 = ∞)= P(τ−
0 = ∞). In other words,

ν is geometrically distributed. Moreover, ν is independent of the outcome of each of
trials preceding the ν-th trial. Each of these trails “fails”, delivering a random value
which is distributed according to the measure η̂(dx) := P(Δ1 ∈ dx) = P(−Xτ−

0
∈

dx|τ−
0 <∞), x > 0.

In conclusion, we see that

1 − Px

(
τ−

0 <∞)= (1 − ρ̂)
∑

k≥0

ρ̂kη̂∗k(x), x ≥ 0. (4.14)

Comparing the formulae (4.13) and (4.14) when x = 0, we see that P(τ−
0 < ∞) =

ρ = ρ̂, and hence it follows that η = η̂.
The following corollary falls straight out of the above comparison.

Corollary 4.4 If ψ ′(0+) > 0, then

P
(
τ−

0 <∞)= λμ

c
and P

(−Xτ−
0

≤ x|τ−
0 <∞)= 1

μ

∫ x

0
F(y)dy, x ≥ 0.

4.3 Gambler’s Ruin

A slightly more elaborate version of the ruin problem is to consider the event that a
certain surplus level, say a ≥ 0, can be achieved before ruin. This is also known as
the gambler’s ruin problem.

Theorem 4.5 For all q ≥ 0, a > 0 and x ≤ a,

Ex

(
e−qτ+

a 1(τ+
a <τ

−
0 )

)= W(q)(x)

W(q)(a)
. (4.15)

Proof First, we deal with the case that q = 0 and ψ ′(0+) > 0 as in the previous
proof. Since we have identified W(x)= Px(X∞ ≥ 0)/ψ ′(0+), a simple argument,
using the law of total probability and the strong Markov property, now yields, for
x ∈ [0, a],

Px(X∞ ≥ 0)

= Ex

(
Px(X∞ ≥ 0|Fτ+

a
)
)

= Ex

(
1(τ+

a <τ
−
0 )Pa(X∞ ≥ 0)

)+Ex

(
1(τ+

a >τ
−
0 )PXτ

−
0
(X∞ ≥ 0)

)
. (4.16)

The first term on the right-hand side of (4.16) is equal to

Pa(X∞ ≥ 0)Px
(
τ+
a < τ−

0

)
.



34 4 Scale Functions and Ruin Probabilities

The second term on the right-hand side of (4.16) turns out to be equal to zero.
To see why, note that Xτ−

0
< 0 and the claim follows by virtue of the fact that

Px(X∞ ≥ 0)= 0 for all x < 0. We may now deduce that

Px

(
τ+
a < τ−

0

)= W(x)

W(a)
, x ∈ [0, a], (4.17)

and clearly the same equality holds even when x < 0 as both left- and right-hand
side are identically equal to zero.

Next, we deal with the case q > 0. Making use of the Esscher transform and
recalling that Xτ+

a
= a on {τ+

a <∞}, we have that

Ex

(
e−qτ+

a 1(τ+
a <τ

−
0 )

) = e−Φ(q)(a−x)
Ex

(
e
Φ(q)(X

τ
+
a

−x)−qτ+
a 1(τ+

a <τ
−
0 )

)

= e−Φ(q)(a−x)
P
Φ(q)
x

(
τ+
a < τ−

0

)

= e−Φ(q)(a−x)WΦ(q)(x)

WΦ(q)(a)

= W(q)(x)

W(q)(a)
.

Finally, to deal with the case that q = 0 and ψ ′(0+) ≤ 0, one needs only to
take limits as q ↓ 0 in the above identity, making use of monotone convergence on
the left-hand side and continuity in q on the right-hand side, using the Continuity
Theorem for Laplace transforms. �

We can also consider the converse event that ruin occurs prior to achieving a
desired surplus of a ≥ 0.

Theorem 4.6 For any x ≤ a and q ≥ 0,

Ex

(
e−qτ−

0 1(τ−
0 <τ+

a )

)= Z(q)(x)−Z(q)(a)
W(q)(x)

W(q)(a)
. (4.18)

Proof Fix q > 0. We have for x ≥ 0,

Ex

(
e−qτ−

0 1(τ−
0 <τ+

a )

)= Ex

(
e−qτ−

0
)−Ex

(
e−qτ−

0 1(τ+
a <τ

−
0 )

)
.

Applying the strong Markov property at τ+
a and using the fact that Xτ+

a
= a on

{τ+
a <∞}, we also have that

Ex

(
e−qτ−

0 1(τ+
a <τ

−
0 )

)= Ex

(
e−qτ+

a 1(τ+
a <τ

−
0 )

)
Ea

(
e−qτ−

0
)
.
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Appealing to (4.8) and (4.15), we now have that

Ex

(
e−qτ−

0 1(τ−
0 <τ+

a )

)= Z(q)(x)− q

Φ(q)
W(q)(x)

− W(q)(x)

W(q)(a)

(
Z(q)(a)− q

Φ(q)
W(q)(a)

)
,

and the required result follows in the case that q > 0. The case that q = 0 is again
dealt with by taking limits as q ↓ 0. �

4.4 Comments

The name “scale function” for W was first used in Bertoin (1992) to reflect the
analogous role it plays in (4.15) to scale functions for diffusions. The gambler’s
ruin problem (also known as the two-sided exit problem) has a long history, starting
with the early work in Zolotarev (1964) and Takács (1966), followed by Rogers
(1990), all of whom dealt with (4.15) in the case q = 0. The case that q > 0 was
dealt with in Gerber (1972), Korolyuk (1975a), and later by Bertoin (1997). A recent
summary of the theory of scale functions and its applications can be found in Cohen
et al. (2013).



Chapter 5
The Gerber–Shiu Measure

Having introduced scale functions, we are now ready to look at the Gerber–Shiu
measure in detail. In this chapter, we shall develop an idea from the previous chapter,
involving Bernoulli trials of excursions from the minimum, to provide an identity
for the expected occupation measure until ruin of the Cramér–Lundberg process.
This identity will then play a key role in identifying an expression for the Gerber–
Shiu measure. In fact, the analysis we give will work equally well in the context of
the gambler’s ruin problem.

5.1 Decomposing Paths at the Minimum

The main objective in this section is to prove the following decoupling for the path
of the Cramér–Lundberg process when sampled at an independent and exponentially
distributed random time, eq , with rate q > 0.

Theorem 5.1 For all q > 0, the random variables Xeq − Xeq and Xeq are inde-
pendent.

Proof The proof makes use of the path decomposition we previously employed for
the probabilistic explanation of the Pollaczek–Khintchine formula. Recall that, in
that setting, we sequentially defined Θ0 = 0 and, for all k ≥ 1 such that Θk−1 <∞,

Θk = inf{t > Θk−1 :Xt <XΘk−1}.
Moreover, on the event {Θk−1 <∞} we defined Δk = −(XΘk

−XΘk−1). Formally
speaking, the times Θ1,Θ2, . . . describe the right endpoints of excursions from the
minimum. The latter may be thought of as the sequence of segments of the trajectory
of X given by {XΘk−1+t : t ∈ (0,Θk]} for all k ≥ 1 such that Θk−1 <∞.

Although the discussion in the context of the Pollaczek–Khintchine formula fo-
cused exclusively on the case that ψ ′(0+) > 0, the times Θk are still well defined
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when ψ ′(0+)≤ 0. In fact, in this regime, since X∞ = −∞ almost surely, it follows
that Θk <∞ almost surely for all k ≥ 1.

Now suppose that {e(k)q : k ≥ 1} is a sequence of independent and identically
distributed exponential random variables with parameter q > 0. Let

� := min
{
k ≥ 1 :Θk −Θk−1 > e(k)q

}

be the index of the first excursion from the minimum which, in duration, exceeds the
correspondingly indexed exponential random variable in the sequence {e(k)q : k ≥ 1}.
By the lack of memory property, we can now identify the pair (Xeq −Xeq ,−Xeq )

as equal in law to the pair

(
X
Θ�−1+e(�)q

−XΘ�−1 ,

�−1∑

j=1

Δj

)
. (5.1)

Appealing again to the concept of Bernoulli trials, it is clear that both the random
variable � and the �-th excursion from the minimum will be independent of the
preceding � − 1 excursions from the minimum. In particular, this implies that the
pair in (5.1) is independent, and hence so is the pair (Xeq −Xeq ,−Xeq ). �

Note that the above proof allows us to say a little more about (Xeq −Xeq ,−Xeq ),
thanks to the representation (5.1). Indeed, Xeq −Xeq is equal in law to Xeq condi-
tional on {eq < τ−

0 }. Moreover, all of the Δj in the sum in (5.1) are i.i.d. and equal
in distribution to −Xτ−

0
conditional on {τ−

0 < eq}, and � is independent and geo-

metrically distributed with parameter P(eq < τ−
0 ).

5.2 Resolvent Densities

As an intermediate step to deriving a closed-form expression for the Gerber–Shiu
measure, we are interested in computing the so-called q-resolvent measure for the
Cramér–Lundberg process, X, killed on exiting [0,∞). Said another way, we are
interested in characterising the measure

U(q)(a, x,dy) :=
∫ ∞

0
e−qt

Px

(
Xt ∈ dy, t < τ [0,a])dt, y ∈ [0, a],

where a > 0, q ≥ 0 and

τ [0,a] = τ+
a ∧ τ−

0 .

If, for each x ∈ [0, a], a density of U(q)(a, x,dy) exists with respect to Lebesgue
measure, then we call it the resolvent density and denote it by u(q)(a, x, y). (Note
that this density can only be identified Lebesgue almost everywhere.) It turns out
that, for each Cramér–Lundberg process, not only does a potential density exist, but
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we can write it in semi-explicit terms with the help of scale functions. Note, in the
statement of the result, it is implicitly understood that W(q) is identically zero on
(0,∞).

Theorem 5.2 For each q ≥ 0 and a > 0, the measure U(q)(a, x, ·) has a density
which is equal to

u(q)(a, x, y)= W(q)(x)W(q)(a − y)

W(q)(a)
−W(q)(x − y), x, y ∈ [0, a], (5.2)

Lebesgue almost everywhere.

Proof Define, for all x, y ≥ 0 and q > 0,

R(q)(x,dy)=
∫ ∞

0
e−qt

Px

(
Xt ∈ dy, t < τ−

0

)
dt.

This is the q-resolvent measure for the process X when killed on exiting [0,∞).
Note that, for the same parameter regimes of x, y and q , we can also write

R(q)(x,dy)= 1

q
Px(Xeq ∈ dy,Xeq ≥ 0),

where, as usual, eq is an independent, exponentially distributed random variable
with parameter q > 0. Appealing to Theorem 5.1, we have that

R(q)(x,dy) = 1

q
P
(
x + (Xeq −Xeq )+Xeq ∈ dy,−Xeq ≤ x

)

= 1

q

∫

[x−y,x]
P(−Xeq ∈ dz)P(Xeq −Xeq ∈ dy − x + z).

Note that the delimiter on the integral appears by virtue of the fact that, on the
one hand −Xeq ≤ x and, on the other hand, if x + (Xeq − Xeq ) + Xeq ≤ y, then

−Xeq ≥ x − y. By duality, Xeq −Xeq is equal in distribution to Xeq , which itself
is exponentially distributed with parameter Φ(q). In addition, the law of −Xeq has
been identified in Corollary 4.2. Using these facts we may write, for q, x, y ≥ 0,

R(q)(x,dy)=
{∫

[x−y,x]

(
1

Φ(q)
W(q)(dz)−W(q)(z)dz

)
Φ(q)e−Φ(q)(y−x+z)

}
dy.

In particular, this shows that, for q, x, y ≥ 0, there exists a density, say r(q)(x, y),
for the measure R(q)(x,dy). Now note that

d
[
e−Φ(q)zW(q)(z)

]= e−Φ(q)z[W(q)(dz)−Φ(q)W(q)(z)dz
]
,

and, hence, straightforward integration gives us

r(q)(x, y)= e−Φ(q)yW(q)(x)−W(q)(x − y), x, y, q ≥ 0.
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Finally, we may use the expression for r(q) to compute the potential density u(q).
First, note that, with the help of the strong Markov property,

qU(q)(a, x,dy)= Px(Xeq ∈ dy,Xeq ≥ 0,Xeq ≤ a)

= Px(Xeq ∈ dy,Xeq ≥ 0)

− Px(Xeq ∈ dy,Xeq ≥ 0,Xeq > a)

= Px(Xeq ∈ dy,Xeq ≥ 0)

− Px

(
Xτ [0,a] = a, τ [0,a] < eq

)
Pa(Xeq ∈ dy,Xeq ≥ 0).

The first and third of the three probabilities on the right-hand side above have been
computed in the previous paragraph, the second probability is equal to

Ex

(
e−qτ+

a ; τ+
a < τ−

0

)= W(q)(x)

W(q)(a)
.

In conclusion, we have that, for q ≥ 0 and x ∈ [0, a], U(q)(a, x,dy) has a density

r(q)(x, y)− W(q)(x)

W(q)(a)
r(q)(a, y), y ∈ [0, a],

which, after a short amount of algebra, can be shown to be equal to the right-hand
side of (5.2).

To complete the proof when q = 0, one may take limits in (5.2), noting that the
measure U(q)(a, x,dy) is monotone decreasing in q and that the scale function is
continuous in q (again, thanks to the Extended Continuity Theorem for Laplace
transforms). �

The above proof contains the following corollary for the q-resolvent measure
R(q)(x,dy).

Corollary 5.3 Fix q ≥ 0. The q-resolvent measure for X killed on exiting [0,∞)

has a density given by

r(q)(x, y)= e−Φ(q)yW(q)(x)−W(q)(x − y),

for x, y ≥ 0.

5.3 More on Poisson Integrals

Before putting together the results in the previous section to derive an expression for
the Gerber–Shiu measure, we need to briefly return to the issue of Poisson integrals.
One can improve upon the result in Theorem 3.4 with a little more work. Recall that
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{Nt : t ≥ 0} is a Poisson process with rate λ and arrival times {Ti : i ≥ 1}, moreover,
{ξi : i ≥ 1} are claim sizes.

Theorem 5.4 Suppose that f : R × [0,∞)× (−∞,0] × (0,∞)→ R is bounded
and measurable. Then, for all t ≥ 0,

Ex

(
Nt∑

i=1

f (Ti,XTi−,XTi−,XTi−, ξi)
)

= λEx

(∫ t

0

∫

(0,∞)

f (s,Xs,Xs,Xs,u)F (du)ds

)
.

In particular, by taking limits on both sides of the above equality as t → ∞, thanks
to monotonicity, the same result holds when both t and Nt are replaced by ∞.

One can reconstruct the proof of this theorem by following the main steps of
Theorem 3.4. In that case, it will be convenient to first show that, in the spirit of
Theorem 3.1, the triplet {(Xt ,Xt ,Xt ) : t ≥ 0} is a Markov process.

5.4 Gerber–Shiu Measure and Gambler’s Ruin

We now have all the tools we need to provide a characterisation of the Gerber–Shiu
measure (1.6) in terms of scale functions. In fact, we shall establish an identity for
a slightly more general measure. With a slight abuse of notation, for a > 0 and
x ∈ [0, a], define

K(q)(a, x,dy,dz)= Ex

[
e−qτ−

0 ;−Xτ−
0

∈ dy,Xτ−
0 − ∈ dz, τ−

0 < τ+
a

]
,

z ∈ [0, a], y ≥ 0.

Note that the Gerber–Shiu measure, previously called K(q)(x,dy,dz), satisfies

K(q)(x,dy,dz)=K(q)(∞, x,dy,dz),

for y, z≥ 0. Here is the main result of this chapter.

Theorem 5.5 (Gerber–Shiu measure) Fix q ≥ 0 and a > 0. Then

K(q)(a, x,dy,dz)= λ

{
W(q)(x)W(q)(a − z)−W(q)(a)W(q)(x − z)

W(q)(a)

}

× F(z+ dy)dz,

for x, z ∈ [0, a] and y ≥ 0. Moreover,

K(q)(x,dy,dz)= λ
{
e−Φ(q)yW(q)(x)−W(q)(x − y)

}
F(z+ dy)dz, (5.3)

for y, z≥ 0.
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Proof Fix q ≥ 0 and x ∈ [0, a]. For the first identity, it suffices to show that, for all
bounded, continuous f : (0,∞)× [0, a] :→ [0,∞),

Ex

[
e−qτ−

0 f (−Xτ−
0
,Xτ−

0 −); τ−
0 < τ+

a

]

= λ

∫ a

0

∫

(0,∞)

f (y, z)u(q)(a, x, z)F (z+ dy)dz. (5.4)

To this end, note that

{
τ−

0 < τ+
a

}=
∞⋃

i=1

{XTi < 0,XTi− ≤ a,XTi− ≥ 0},

where the union is taken over disjoint events. It follows with the help of Theorem 5.4
that

Ex

[
e−qτ−

0 f (−Xτ−
0
,Xτ−

0 −); τ−
0 < τ+

a

]

= Ex

[ ∞∑

i=1

1(XTi−−ξi<0)1(XTi−≤a)1(XTi−≥0)e
−qTi f (−XTi− + ξi,XTi−)

]

= λ

∫

(0,∞)

Ex

[∫ ∞

0
1(u>Xt−)1(Xt−≤a)1(Xt−≥0)e

−qtf (−Xt− + u,Xt−)dt
]
F(du)

= λ

∫

(0,∞)

Ex

[∫ ∞

0
1(u>Xt−)1(t<τ [0,a])e

−qtf (−Xt− + u,Xt−)dt
]
F(du)

= λ

∫

(0,∞)

∫

[0,a]

∫ ∞

0
1(u>z)e−qtf (u− z, z)Px

(
Xt ∈ dz, t < τ [0,a])dtF (du).

(5.5)

Recalling the definition of U(q)(a, x,dz), it follows that

Ex

[
e−qτ−

0 f (−Xτ−
0
,Xτ−

0 −); τ−
0 < τ+

a

]

= λ

∫

(0,∞)

∫ a

0
1(u>z)f (u− z, z)u(q)(a, x, z)dzF (du).

The right-hand side above is equal to (5.4), after a straightforward application of
Fubini’s Theorem and a change of variables.

For the second part of the theorem, use monotonicity in a on the left- and right-
hand side of (5.5) and take limits as a → ∞. The consequence of this is that we
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recover the identity

Ex

[
e−qτ−

0 f (−Xτ−
0
,Xτ−

0 −); τ−
0 <∞]

= λ

∫ ∞

0

∫

(0,∞)

f (y, z)r(q)(x, z)F (z+ dy)dz,

for all x, q ≥ 0, from which (5.3) follows. �

5.5 Comments

In the broader context, Theorem 5.1 is a simple example of one of the several state-
ments that concern the so-called Wiener–Hopf factorisation for Lévy processes. See
the survey in Bingham (1975), Chapter VI of Bertoin (1996) or Chap. 6 of Kypri-
anou (2013). The method of analysing the path of the Cramér–Lundberg process
(and indeed any random walk) through a sequence of excursions from the minimum
was largely popularised by Feller. See for example Chapter XII of Feller (1971). An
excursion theoretic treatment of Lévy processes, appealing to an underlying Pois-
sonian structure, can similarly be developed for general Lévy processes. This is a
special case of Itô’s general theory of excursions for Markov processes, introduced
in Itô (1972). Further accounts of general excursion theory can be found in Rogers
(1989), Chapter XII of Revuz and Yor (2004) and Chapter IV of Bertoin (1996).

The Gerber–Shiu measure was discussed in the context of the generalised ex-
pected discounted penalty function in Biffis and Morales (2010). Many of the com-
putations concerning resolvent densities are taken directly from Bertoin (1997),
which deals with general spectrally negative Lévy processes. However, older lit-
erature dealing with the current setting also exists; see for example Suprun (1976),
Korolyuk (1974, 1975a, 1975b), Korolyuk et al. (1976) and Korolyuk and Borovs-
kich (1981).



Chapter 6
Reflection Strategies

Let us now return to the first of the three cases in which we perturb the path of
the Cramér–Lundberg process through the payments of dividends. Recall that a
reflection (or barrier) strategy consists of paying dividends out of the surplus in
such a way that, for a fixed barrier a > 0, any excess of the surplus above this
level is instantaneously paid out. The cumulative dividend stream is thus given by
Lt := (a∨Xt)− a, for t ≥ 0. The resulting trajectory satisfies the dynamics

Ut :=Xt −Lt =Xt + a− (a∨Xt), t ≥ 0,

with probabilities {Px : x ∈ [0, a]}. The present value of dividends paid until ruin is
thus given by

∫

[0,ς)
e−qtdLt ,

where ς = inf{t > 0 :Ut < 0}.
It is more convenient to start the reflected process from the threshold a. In that

case, {a−Ut : t ≥ 0}, under Pa, is equal in law to {Y 0
t : t ≥ 0}, under P, where we

recall that Yx
t := (x ∨ Xt) − Xt , x, t ≥ 0. Moreover, from this point of view, the

dividends that are paid out under Pa are equal in law to the process {Xt : t ≥ 0}
under P and the time of ruin corresponds to

σa = inf
{
t > 0 : Y 0

t > a
}
.

The key object of interest in this chapter, the present value of the dividends paid
until ruin under force of interest q ≥ 0, boils down to the study of the quantity

∫

[0,σa)
e−qtdXt (6.1)

under P.
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6.1 Perpetuities

Suppose that N= {Nt : t ≥ 0} is a Poisson process with rate α > 0, {ζi : i ≥ 0} is a
sequence of i.i.d. positive random variables with common distribution function G

and b ≥ 0 is a constant. The process

�t := bt +
Nt∑

i=1

ζi, t ≥ 0,

is a compound Poisson process with positive jumps and positive drift. Then, in the
spirit of (2.3), we can compute its Laplace exponent as follows:

E
(
e−θ�t )= e−Λ(θ)t , t, θ ≥ 0,

where

Λ(θ)= bθ + α

∫

(0,∞)

(
1 − e−θx)G(dx).

The key mathematical object that will help us to analyse the present value of
dividends paid until ruin is the so-called perpetuity1

∫ ep

0
e−q�t dt, (6.2)

where q ≥ 0 and, as usual, ep is an independent exponential random variable with
rate p ≥ 0. We have the following main result which characterises its moments.

Theorem 6.1 For all n ∈N,

E

[(∫ ep

0
e−q�t dt

)n]
= n!

n∏

k=1

1

p+Λ(qk)
.

Proof Define, for t ≥ 0,

Jt =
∫ ∞

t

e−q�u1(u<ep)du.

Our objective is to compute, for n ∈N,

Ψn := E
(
Jn0
)
.

To this end, note that

d

dt
J nt = −nJn−1

t e−q�t 1(t<ep),

1In the definition of a perpetuity, it is more usual to integrate to ∞.
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and, hence, we obtain

Jn0 − Jnt = n

∫ t

0
e−q�u1(u<ep)J

n−1
u du. (6.3)

Using that {�t : t ≥ 0} has stationary and independent increments together with the
lack of memory property, we have

Jt = e−q�t 1(t<ep)J
∗
0 ,

where J ∗
0 is independent of {�u : u ≤ t} and has the same distribution as J0. In

conclusion, taking expectations in (6.3), we find that

Ψn
(
1 −E
(
e−nq�t 1(t<ep)

))= nΨn−1

∫ t

0
E
(
e−nq�u1(u<ep)

)
du. (6.4)

Since

E
(
e−nq�t 1(t<ep)

)= exp
{−(p+Λ(nq)

)
t
}
,

it follows that

Ψn = n

p+Λ(nq)
Ψn−1.

Iterating gives the result. �

Remark 6.2 It is worth noting that Theorem 6.1 and its proof are still valid when
we replace the process � by a general subordinator, meaning a non-decreasing Lévy
process.

6.2 Decomposing Paths at the Maximum

Let us now look at the reflected process {Xt − Xt : t ≥ 0} and consider how the
time it spends in the state zero, as well as the excursions it makes from the state
zero, will reveal yet another path decomposition, again incorporating the idea of
“Bernoulli trials”.

For convenience, write Yt in place of Y 0
t , t ≥ 0. Define S0 = 0 and

S∗
0 = inf{t > 0 : Yt > 0}.

Then continue recursively, so that, for k ∈N, on {Sk−1 <∞},
Sk = inf

{
t > S∗

k−1 : Yt = 0
}

and S∗
k = inf{t > Sk : Yt > 0}

and set

χk =XS∗
k−1

, ζk = Sk − S∗
k−1 and hk = sup

s∈[S∗
k−1,Sk]

Ys.
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Fig. 6.1 Decomposing the path of X into excursions from its maximum

See Fig. 6.1. Finally, define

υa = min{k ≥ 1 : hk > a}.
In words, for k ≥ 1, the intervals [Sk−1, S

∗
k−1) are the successive periods during

which the process Y remains at the origin. Equivalently, they are the intervals of
time during which the process X is increasing. By the lack of memory property,
each of these periods, S∗

k−1 − Sk−1, is independent and exponentially distributed
with the arrival rate λ. The intervals [S∗

k−1, Sk) are the successive periods during
which the process Y undertakes an excursion from the origin. Equivalently they
are the intervals of time during which the process X does not increase (and hence
X makes an excursion away from X). The triplets (χk, ζk, hk) represent the height
of X immediately prior to the k-th excursion, the length of the k-th excursion and
the height of k-th excursion, respectively. Moreover, υa is the index of the first
excursion from the maximum which exceeds height a. Appealing again to the logic
behind Bernoulli trials, υa is geometrically distributed with parameter

ra =
∫

(0,∞)

F (dx)P−x
(
τ−−a < τ+

0

)
.

Note that, appealing to spatial homogeneity, ra is the probability that an excursion
from the maximum which has initial distance below the previous maximum dis-
tributed according to F , reaches the distance a below the previous maximum before
it returns to the level of the previous maximum, thereby completing the excursion.
In other words, ra is the probability that an excursion exceeds a in height.
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Now note that X increases if and only if Y is zero. Moreover, when it increases,
it does so at a rate c. In other words,

Xt = c

∫ t

0
1(Ys=0)ds. (6.5)

With this in mind, we see that the sequence of positive random variables

{XS∗
k
−XSk : k = 0, . . . , υa − 1} = {c(S∗

k − Sk
) : k = 0, . . . , υa − 1

}

is nothing more than an independent geometric number of independent exponential
random variables, each with rate λ/c. Therefore, recalling that the sum of an inde-
pendent geometrically distributed number of i.i.d. exponential random variables is
again exponentially distributed, the maximum height reached by X at the moment
that it first drops a distance a below its previous maximum,

XS∗
υa−1

= c
υa−1∑

k=0

(
S∗
k − Sk

)
,

is exponentially distributed with rate pa := λra/c. In fact, recalling that

χk =XS∗
k−1

= c
k−1∑

j=0

(
S∗
j − Sj

)
,

the triplets
{
(χk, ζk, hk) : k = 1, . . . , υa

}

are the times of arrival, χk , and the marks, (ζk, hk), of a marked Poisson process,
indexed up to the first of the marks hk that exceeds a in value, where the arrival rate
is λ/c. The marks are distributed according to the joint law

H(dy,dz)=
∫

(0,∞)

F (dx)P−x
(
τ+

0 ∈ dy,−Xτ+
0

∈ dz
)
1(z≥x), y, z≥ 0.

To see why, note, as before, that each excursion begins with a jump below the pre-
vious maximum, distributed according to F . The excursion length is therefore the
time it takes to reach the previous maximum from this initial position. Moreover,
the height of this excursion is also the depth below the previous maximum that X
reaches before returning to the level of the previous maximum. Appealing again to
spatial homogeneity, the excursion length and height are respectively equivalent to
the first passage time τ+

0 and to the depth below the origin that X reaches before τ+
0 ,

i.e. −Xτ+
0

, when X is issued from a position below the origin which is randomised
according to F .

Appealing to the Poisson thinning theorem, we can also say that
{
(χk, ζk, hk) : k = 1, . . . , υa − 1

}
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is equal in law to the times of arrival and the marks of a Poisson process, say Na =
{Nat : t ≥ 0}, with arrival rate αa = λ(1 − ra)/c and mark distribution on (0,∞)×
(0,a]

Ha(dy,dz)=
∫

(0,a]
F(dx)P−x

(
τ+

0 ∈ dy,−Xτ+
0

∈ dz|τ+
0 < τ−−a

)
1(z≥x),

when sampled up to an independent and exponentially distributed random time, epa .
The distribution Ha(dy,dz) is the joint law of the excursion length and height con-
ditioned on the excursion height not exceeding a. Indeed, appealing to earlier rea-
soning, this is equivalent to the law of the pair (τ+

0 ,−Xτ+
0
) conditioned on the event

{−Xτ+
0

≤ a} = {τ+
0 < τ−−a}, when X0 has a random position below the origin, with

distance below it distributed according to F . Moreover, recalling that ra is the prob-
ability that an excursion has height greater than a, λ(1 − ra)/c is the rate of arrival
of excursions with height not exceeding a. Similarly, λra/c is the rate of arrival of
excursions with height exceeding a.

Fix t > 0 and write

�t := inf{s > 0 :Xs > t}.
In other words, �t is the amount of time it takes for X to climb to the level t . We
can split the time horizon [0, �t ] into the intervals of time that Y spends at zero (i.e.
the time that X is climbing) and the intervals of time during which Y undertakes
excursions from the origin (i.e. the intervals of time during which X is stationary).
On the one hand, thanks to the relation (6.5), on the event {�t <∞}, the time that Y
spends at zero until X reaches the level t is given by

∫ �t

0
1(Ys=0)ds = 1

c
X�t = t

c
.

On the other hand, if we further insist that {t < XS∗
υa−1

} (which necessarily implies
the event {�t < ∞}), then all of the excursions of Y from zero there are less than
a in height. Moreover, still on the event {t < XS∗

υa−1
}, their number and lengths are

equal in law to Nat and {ζai : i = 1, . . . ,Nat }, respectively, where the ζai are i.i.d. with
common distribution given by

Ga(dy)=Ha
(
dy, [0,a])=

∫

(0,a]
F(dx)P−x

(
τ+

0 ∈ dy|τ+
0 < τ−−a

)
, y ≥ 0.

In conclusion, we have that, on {t < XS∗
υa−1

}, the time it takes for X to reach height
t is equal in law to

�at := bt +
Nat∑

i=1

ζai , t ≥ 0,

on the event {t < epa}, where b := 1/c.
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Putting all these pieces together, we develop the expression for the present value
of dividends paid until ruin (6.1) for the special case that x = 0. Indeed, by making
a simple change of variables, t �→ �s , we have

∫

[0,σa)
e−qtdXt =

∫ ∞

0
1(t<S∗

υa−1)
e−qtdXt =

∫ ∞

0
1(u<XS∗

υa−1
)e

−q�udu

=
∫ epa

0
e−q�audu.

We therefore see that, when the surplus process starts at the barrier a, equivalently
x = 0 in (6.1), the present value of dividends until ruin is equal in distribution to the
perpetuity (6.2) for appropriate choices of pa, b, αa and Ga, as given above.

If we could say a little more about these quantities, then we would be able to
develop an expression for the n-th moments of the present value of dividends paid
at ruin, at least when the surplus process starts at the barrier, by using Theorem 6.1.
That is to say, we would be able to develop further the identity

E

[(∫

[0,σa)
e−qtdXt

)n]
= n!

n∏

k=1

1

pa +Λa(qk)
,

whereΛa(θ) := bθ+αa
∫
(0,a](1−e−θx)Ga(dx), θ ≥ 0. Once again, scale functions

come to our assistance.

6.3 Derivative of the Scale Function

Before we can proceed to develop identities using scale functions, we need to say a
few words about differentiability, as derivatives of the scale functions will appear in
the forthcoming analysis. Recall that, for each q ≥ 0, the functionW(q) is monotone.

Lemma 6.3 For x ≥ 0,

W(q)(dx)= 1

c
δ0(dx)+ (λ+ q)

c
W(q)(x)dx

−
(
λ

c

∫

(0,x]
W(q)(x − y)F (dy)

)
dx. (6.6)

In particular,

W
(q)′
+ (x)= (λ+ q)

c
W(q)(x)−

(
λ

c

∫

(0,x]
W(q)(x − y)F (dy)

)
, (6.7)

for x > 0, where W(q)′
+ (x) is the right derivative of W(q) at x. Moreover, W(q) is

continuously differentiable on (0,∞) if and only if F has no atoms.
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Proof Note that, whereas W(q)(0−)= 0, we have that, for q ≥ 0,

W(q)(0) = lim
β→∞

∫ ∞

0
βe−βxW(q)(x)dx

= lim
β→∞

β

ψ(β)− q

= lim
β→∞

1

c− λ
∫∞

0 e−βxF (x)dx − q/β

= 1

c
.

It follows that W(q)(dx) has an atom at zero of size 1/c.
Integrating (4.1) by parts, we have, on the one hand, that

∫

[0,∞)

e−βxW(q)(dx)=
∫

(0,∞)

e−βxW(q)(dx)+ 1

c
= β

ψ(β)− q
, (6.8)

for β >Φ(q). On the other hand, we also have that

(λ+ q)

c

∫ ∞

0
e−βxW(q)(x)dx − λ

c

∫ ∞

0
e−βx
∫

(0,x]
W(q)(x − y)F (dy)dx

= 1

c

(λ+ q)

ψ(β)− q
− 1

c

λ

ψ(β)− q

∫

(0,∞)

e−βxF (dx)

= 1

c

λ
∫
(0,∞)

(1 − e−βx)F (dx)+ q

ψ(β)− q

= 1

c

cβ −ψ(β)+ q

ψ(β)− q

= β

ψ(β)− q
− 1

c
, (6.9)

for β > Φ(q). Comparing the transforms in (6.8) and (6.9), it follows that (6.6)
holds. In particular, this implies that W(q) is an absolutely continuous (and hence a
continuous) function on (0,∞).

Thanks to the just-proved fact that W(q) is a continuous function on (0,∞),
inspecting the right-hand side of (6.6), we see that the density of W(q) with respect
to Lebesgue measure may be taken as right-continuous. The formula for W(q)′

+ (x) on
(0,∞) in (6.7) thus follows. Moreover, it is continuous if and only if the convolution
is continuous. This is equivalent to requiring that F has no atoms. In that case, on
(0,∞), we have that W(q) is absolutely continuous with a continuous version of its
density, thus making it continuously differentiable. �
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6.4 Present Value of Dividends Paid Until Ruin

Let us use a completely different technique to examine the first moments of the
present value of dividends paid until ruin when the initial value of the surplus is a.
This will give us an expression from which we can glean the desired information
about the quantities pa and Λa as per the discussion at the end of Sect. 6.2. There-
after we can return to the more general problem of the n-th moment of the present
value of dividends paid until ruin when the initial value of the surplus is x ∈ [0,a].

Lemma 6.4 For all q ≥ 0,

Ea

[∫

[0,ς)
e−qtdLt

]
= E

[∫

[0,σa)
e−qtdXt

]
= W(q)(a)

W
(q)′
+ (a)

. (6.10)

Proof The proof works by splitting the integral
∫ σa

0 e−qtdXt at the time of the first
jump of X. Note that X initially increases at rate c for an independent and exponen-
tially distributed period of time, with rate λ, and then undertakes a jump of size ξ1

downwards. This jump kick-starts an excursion from the maximum. This excursion
will either cause ruin, or its height will remain below the level a and X will return to
its previous maximum, during which time no dividends will have been paid and ruin
has not occurred. Thereafter, by the strong Markov property, the process we have
just described begins again, except that future payments are additionally discounted
by the time that has already lapsed. Let

V (1)
a = E

[∫

[0,σa)
e−qtdXt

]
.

Following the description given above, we have, with the help of Theorem 4.5,

V (1)
a = E

[∫ eλ

0
e−qtcdu

]
+E
[
e−qeλE−ξ1

[
e−qτ+

0 1(τ+
0 <τ−−a)

]
1(ξ1≤a)V (1)

a

]

= c

q
E
(
1 − e−qeλ

)+E
(
e−qeλ
)∫

(0,a]
W(q)(a− y)

W(q)(a)
F (dy)V (1)

a

= c

λ+ q
+ λ

λ+ q

∫

(0,a]
W(q)(a− y)

W(q)(a)
F (dy)V (1)

a . (6.11)

From (6.7) we have

λ

λ+ q

∫

(0,a]
W(q)(a− y)

W(q)(a)
F (dy)= 1 − c

λ+ q

W
(q)′
+ (a)

W(q)(a)
.

Substituting the above convolution into (6.11) and solving for V (1)
a now gives the

statement of the lemma. �
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Taking account of the discussion in Sect. 6.2 as well as the conclusion of Theo-
rem 6.1, we see that

V (1)
a = 1

pa +Λa(q)
= W(q)(a)

W
(q)′
+ (a)

.

It follows that, for n≥ 1,

V (n)
a := Ea

[(∫

[0,ς)
e−qtdLt

)n]

= E

[(∫

[0,σa)
e−qtdXt

)n]

= n!
n∏

k=1

1

pa +Λa(qk)

= n!
n∏

k=1

W(qk)(a)

W
(qk)′
+ (a)

.

We are almost done. All we need now is to deal with the case that the surplus pro-
cess starts from any x ∈ [0, a]. To this end, note that, when the Cramér–Lundberg
process is issued from x ∈ [0,a], dividends are not paid until X reaches the thresh-
old a, providing ruin does not occur beforehand. In that case, future dividend pay-
ments are discounted by the time elapsed until reaching the threshold. Hence, by the
strong Markov property,

Ex

[(∫

[0,ς)
e−qtdLt

)n]
= Ex

[
e−qnτ+

a 1(τ+
a <τ

−
0 )

]
V (n)
a .

In conclusion, taking account of Theorem 4.5, we have the following main result for
this chapter.

Theorem 6.5 For q ≥ 0, n ∈N and x ∈ [0,a],

Ex

[(∫

[0,ς)
e−qtdLt

)n]
= n!W

(qn)(x)

W(qn)(a)

n∏

k=1

W(qk)(a)

W
(qk)′
+ (a)

.

6.5 Comments

As alluded to in the introduction, reflection strategies for Cramér–Lundberg pro-
cesses emerge naturally from the control problem (1.7). An expression for the ex-
pected present value of dividends paid until ruin in terms of (what amounts to) scale
functions can be found in the work Gerber (1972). See Eq. (8.9) of that paper. Given
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that the optimal strategy to (1.7) falls within the class of reflection strategies, one
is left with the problem of choosing an optimal value of a for the threshold. Note
from Theorem 6.5 that the expected present value of dividends paid until ruin with
reflection at threshold a is W(q)(x)/W

(q)′
+ (a) when U0 = x ≤ a. Going back to the

original work of Gerber (1969, 1972), it is known that a should be chosen so as to
minimise the value of W(q)′

+ (a). Amongst other literature on this control problem,
Loeffen (2008) makes an important step in identifying natural assumptions on the
jump distribution F to ensure that W(q)′(a) is strictly convex and, hence, can be
minimised at a unique value of a≥ 0.

Higher moments of the present value of reflection strategies were first consid-
ered in Dickson and Waters (2004) for the case of exponentially distributed jumps.
The connection with scale functions was made simultaneously in Renaud and Zhou
(2007) and Kyprianou and Palmowski (2007) for the case that X is a general spec-
trally negative Lévy process. Albrecher and Gerber (2011) extend their result fur-
ther to the case of stationary upward skip-free Markov processes. The proof we
give here is a hybrid version of the proofs found in Dickson and Waters (2004) and
Kyprianou and Palmowski (2007). The review article Bertoin and Yor (2005) gives
an interesting overview of perpetuities for Lévy processes in general. Decomposing
the paths of the Cramér–Lundberg process at the maximum and identifying excur-
sions through a marked Poisson process is an idea that goes back to Greenwood
and Pitman (1980) and is based on the earlier-mentioned general theory of excur-
sions for Markov processes due to Itô (1972). Ultimately, however, it is the natural
continuous-time analogue of Feller’s ideas on the renewal process of maxima (or
indeed minima) for random walks. In the context of marked Poisson processes, the
thinning theorem is also known as the colouring theorem; see Chap. 5 of Kingman
(1993). For further information on the smoothness of scale functions, the reader is
referred to Cohen et al. (2013).



Chapter 7
Perturbation-at-Maximum Strategies

In this chapter, we dig a little deeper into the decomposition discussed in Sect. 6.2.
In particular, we bring out in more detail the characterisation of the marked Pois-
son process of excursion heights in terms of scale functions. This will help us to
analyse the case where payments are made from the surplus that are proportional to
increments of the maximum.

Recall that if γ : [0,∞) → [0,∞), then the surplus process, when perturbed at
rate γ with respect to its maximum process, yields an aggregate

Ut =Xt −
∫

(0,t]
γ (Xu)dXu, t ≥ 0.

We restrict ourselves to the cases mentioned in the introduction: the heavy-
perturbation regime, for which γ : [0,∞) → (1,∞), and the light-perturbation
regime, for which γ : [0,∞)→ (0,1). The latter may be seen as the result of taxa-
tion. The case of a reflection strategy, when γ (x)= 1(x≥a), sits between these two
regimes.

7.1 Rehung Excursions

Let us start by noting that, for all x ≥ 0, under Px ,

Ut =At − Yt , t ≥ 0, (7.1)

where we recall that Yt =Xt −Xt and

At =Xt −
∫

(0,t]
γ (Xu)dXu = γ̄x(Xt ), t ≥ 0,

with

γ̄x(s) := s −
∫ s

x

γ (y)dy = x +
∫ s

x

[
1 − γ (y)

]
dy, s ≥ x.
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Fig. 7.1 Rehanging excursions from the process A in the heavy-perturbation regime

The last equality shows us that the process A = {At : t ≥ 0} is increasing (resp.
decreasing) when γ belongs to the light-perturbation (resp. heavy-perturbation)
regime. In essence, monotonicity of A follows from monotonicity of X and γ̄x .
(The latter observation will also be important later as we will use the inverse func-
tion γ̄−1

x , which, accordingly, is well defined in both regimes.) Moreover, A is sta-
tionary in value precisely at the times that the process Y is non-zero valued. As a
consequence, we may interpret (7.1) as a path decomposition in which excursions
of X from its maximum (equivalently excursions of Y away from zero) are “hung”
off the trajectory of A during its stationary periods. See Fig. 7.1 for a visual inter-
pretation of this heuristic.

In the light-perturbation regime, since A is an increasing process which is sta-
tionary whenever the process Y is non-zero valued, we have that

←−
U t := sup

s≤t
Us =Agt =At,

where gt = sup{s ≤ t : Ys = 0}. Hence, unless it is assumed that

∫ ∞

x

(
1 − γ (s)

)
ds = ∞, (7.2)

in the light-perturbation regime, the perturbed process U will have an almost surely
finite global maximum.
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In contrast, in the heavy-perturbation regime, when A is decreasing, similar rea-
soning shows that

−→
U t := sup

s≥t
Us =Adt =At,

where dt = inf{s > t : Ys = 0}. Hence, the process U is always bounded by its initial
value x.

Henceforth, our analysis of the process U will centre around further analysis of
the excursions of X from its maximum X. In particular, their representation through
a marked Poisson process, such as we saw in Sect. 6.2, will prove to be extremely
useful. In the next section, we shall revisit this marked Poisson process and look at
a more detailed characterisation of its parameters in terms of scale functions.

7.2 Marked Poisson Process Revisited

Recall from the previous chapter that we write Yt =Xt −Xt , for t ≥ 0. Moreover,
we recursively defined S0 = 0,

S∗
0 = inf{t > 0 : Yt > 0}

and, for k ∈ N, on {Sk−1 <∞},

Sk = inf
{
t > S∗

k−1 : Yt = 0
}

and S∗
k = inf{t > Sk : Yt > 0}.

The k-th excursion from the maximum occurs over the time intervals [S∗
k−1, Sk],

and the height of the excursion was denoted by

hk = sup
s∈[S∗

k−1,Sk]
Ys.

Now let

υ∞ = min{k ≥ 1 : Sk = ∞},
the index of the first excursion which is infinite in length. Note, by Lemma 3.10,
that if ψ ′(0+) ≥ 0, then υ∞ = ∞ almost surely. Moreover, if ψ ′(0+) < ∞, then
υ∞ is geometrically distributed with parameter

r∞ =
∫

(0,∞)

F (dx)P−x
(
τ+

0 = ∞).

In both cases, it is clear that we may equivalently define

υ∞ = min{k ≥ 1 : hk = ∞}.
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Fig. 7.2 Excursion heights as the process X climbs from x to a

Under Px , define in a similar manner to the previous chapter χk = XS∗
k−1

− x,
where we now allow the index k to run from 1 to υ∞. In the spirit of the reasoning
in Sect. 6.2, we also note that

{
(χk,hk) : k = 1, . . . , υ∞

}

is equal to times of arrival and the marks of a marked Poisson process, say N= {Nt :
t ≥ 0}, with rate λ/c up until the first mark which is infinite in value. Moreover,
marks are i.i.d. (and independent of N) with common distribution

Q(dy) :=
∫

(0,∞)

F (dx)P−x(−Xτ+
0

∈ dy), y ∈ [0,∞].

Let us return to the event {τ+
a < τ−

0 }, for a > 0. Note that, for 0 ≤ x ≤ a,

Px

(
τ+
a < τ−

0

)= P(hk ≤ x + χk for k = 1, . . . ,Na−x).

Figure 7.2 gives a visual explanation of this equality.
Classical theory for Poisson processes tells us that, conditional on {Na−x = n},

the arrival times {χ1, . . . , χn} are equal in law to an ordered i.i.d. sample of uni-
formly distributed points on [0, a − x]. Then,

P(hk ≤ x + χk for k = 1, . . . ,Na−x)

=
∞∑

n=0

e− λ
c (a−x) 1

n!
(
λ(a − x)

c

)n(∫ a−x

0
Q(x + t)

1

(a − x)
dt

)n
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= exp

{
λ

c

∫ a−x

0

(
Q(x + t)− 1

)
dt

}

= exp

{
−λ

c

∫ a

x

Q(y)dy

}
,

where Q(y)= 1 −Q(y), for y ≥ 0.
It was proved earlier that Px(τ+

a < τ−
0 ) = W(x)/W(a), where W is the scale

function associated to X. This leads us to the identity

W(x)

W(a)
= exp

{
−λ

c

∫ a

x

Q(y)dy

}
. (7.3)

Note that this confirms the conclusion of Lemma 6.3 that W is almost everywhere
differentiable. Taking account of the above discussion and recalling that W ′+ is the
right derivative of W on (0,∞), we arrive at the following important result.

Theorem 7.1 For all x > 0,

λ

c
Q(x)= W ′+(x)

W(x)
. (7.4)

Later on in this chapter, when using this result, the quantity Q will always appear
in the context of a Lebesgue integral. In that case, it suffices to write W ′/W on the
right-hand side of (7.4), without needing to refer to the right derivative of W .

7.3 Gambler’s Ruin for the Perturbed Process

Let

T −
0 := inf{t > 0 :Ut < 0}.

In the light-perturbation regime, we may write for all values b in the range of γ̄x ,

τ+
γ̄−1
x (b)

= T +
b , (7.5)

where

T +
b = inf{t > 0 :Ut > b}.

Theorem 7.2 Fix x > 0 and assume (7.2) in the case of the light-perturbation
regime. In the case of the heavy-perturbation regime, define

s∗(x)= inf
{
s ≥ x : γ̄x(s) < 0

}
.
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Then, for any q ≥ 0, and 0 ≤ x ≤ a in the case of light perturbation, resp. 0 ≤ x ≤
a < s∗(x) in the case of heavy perturbation, we have

Ex

[
e−qτ+

a 1(τ+
a <T

−
0 )

]= exp

(
−
∫ a

x

W(q)′(γ̄x(s))
W(q)(γ̄x(s))

ds

)
. (7.6)

Before moving to the proof of this result, let us remark that, taking account of
the equivalence (7.5) in the light-perturbation regime, (7.6) can also be written as

Ex

[
e−qT +

a 1(T +
a <T −

0 )

]= exp

(
−
∫ γ̄−1

x (a)

x

W(q)′(γ̄x(s))
W(q)(γ̄x(s))

ds

)
.

Proof of Theorem 7.2 The proof does not distinguish between the two different
regimes of light and heavy perturbation. All that is required in what follows is that
γ̄−1
x (a) < ∞. Thereafter, the proof needs little more than to recycle a number of

existing computations we have already seen.
Using the Esscher transform and appealing to similar reasoning as in the proof

of Theorem 7.1, we have

Ex

[
e−qτ+

a 1(τ+
a <T

−
0 )

]

= e−(a−x)Φ(q)
P
Φ(q)
x

(
τ+
a < T −

0

)

= e−(a−x)Φ(q)
P
Φ(q)
(
hk ≤ γ̄x(x + χk) for k = 1, . . . ,Na−x

)

= e−(a−x)Φ(q)
∞∑

n=0

e− λ
c (a−x) 1

n!
(
λ(a − x)

c

)n

×
(∫ a−x

0
QΦ(q)

(
γ̄x(x + t)

) 1

(a − x)
dt

)n

= exp

(
−
∫ a−x

0
Φ(q)+ λ

c
QΦ(q)

(
γ̄x(x + t)

)
dt

)
, (7.7)

where QΦ(q) plays the role of the quantity Q under the measure PΦ(q) and QΦ(q) =
1 −QΦ(q). In particular, recalling the conclusion of Theorems 2.3 and 7.1, we have,
for Lebesgue almost every x ≥ 0,

λ

c
QΦ(q)(x)= W ′

Φ(q)(x)

WΦ(q)(x)
.

Moreover, recalling from the definition (4.4) thatW(q)(x)= eΦ(q)xWΦ(q)(x), x ≥ 0,
we have that, for Lebesgue almost every x ≥ 0,

W(q)′(x)
W(q)(x)

=Φ(q)+ W ′
Φ(q)(x)

WΦ(q)(x)
.

Putting the pieces together in (7.7) produces the required identity. �
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Theorem 7.2 motivates some interesting observations concerning the event of
ruin, {T −

0 < ∞}. First, suppose that we are in the heavy-perturbation regime and
s∗(x) <∞. In that case

Px

(
T −

0 <∞)≥ Px

(
τ+
s∗(x) <∞)∨ Px

(
τ−

0 <∞).

Indeed, on the event {τ+
s∗(x) <∞}, we have Xτ+

s∗(x)
−Xτ+

s∗(x)
= 0 and hence Uτ+

s∗(x)
=

Aτ+
s∗(x)

= γ̄x(s
∗(x)) = 0. Moreover, since Ut ≤ Xt for all t ≥ 0, it follows that

{τ−
0 < ∞} ⊆ {T −

0 < ∞}. In the event that lim supt→∞Xt = ∞ almost surely, we
have Px(τ

+
s∗(x) <∞)= 1. Otherwise, it follows that Px(τ

−
0 <∞)= 1. Either way,

Px(T
−

0 <∞)= 1.
Remaining in the heavy-perturbation regime, suppose that s∗(x) = ∞. Then

from (7.6), by taking limits as a → ∞, we get an expression for the ruin proba-
bility,

Px

(
T −

0 <∞)= 1 − exp

(
−
∫ ∞

x

W ′(γ̄x(s))
W(γ̄x(s))

ds

)
. (7.8)

However, the right-hand side above turns out to be equal to 1. Recalling that
W ′(x)/W(x) = λQ(x)/c for Lebesgue almost every x > 0, since Q(x) is non-
increasing on (0,∞) and γ̄x(s)≤ x for all s ≥ 0, the claim follows.

Finally, in the light-perturbation regime, where necessarily s∗(x) = ∞, the rea-
soning that leads to (7.8) still applies, from which one may deduce that this prob-
ability need not be unity. Indeed, suppose that we take the function γ to be sim-
ply constant in value, also denoted by γ ∈ (0,1), and ψ ′(0+) > 0. In that case,
γ̄x(s)= (s− x)(1 −γ )+ x, and hence, noting that d[logW(x)]/dx =W ′(x)/W(x)

Lebesgue almost everywhere on (0,∞), after a change of variables, we have

Px

(
T −

0 <∞) = 1 − exp

(
− 1

(1 − γ )

∫ ∞

x

W ′(u)
W(u)

du

)
(7.9)

= 1 − (ψ ′(0+)W(x)
)1/(1−γ )

, (7.10)

for x ≥ 0, where we have used, from (4.2), that W(∞)= 1/ψ ′(0+).

7.4 Continuous Ruin with Heavy Perturbation

Although the perturbed process is almost surely ruined in the heavy-perturbation
regime, it is interesting to note that, unlike a Cramér–Lundberg process, there are
two different ways to become ruined. The first, i.e. by a jump downwards, is a prop-
erty inherited from the underlying process, X. The other way of becoming ruined,
which we refer to as continuous ruin, is the result of continuously passing the origin
at the moment in time that an increment in X brings U along the curve γ̄x just as
it intersects the origin. Said another way, continuous ruin corresponds to the event
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that {τ+
s∗(x) = T −

0 }, in which case, as remarked upon above, Uτ+
s∗(x)

= 0. This can
only happen with positive probability if s∗(x) <∞.

The following result is a corollary to Theorem 7.2 on account of the fact that its
proof is identical, albeit that one replaces a by s∗(x).

Corollary 7.3 Fix x > 0, and suppose that γ : [0,∞) → (1,∞) such that
s∗(x) <∞. Then, for all q ≥ 0,

Ex

[
e−qT −

0 1{T −
0 =τ+

s∗(x)}
]= exp

(
−
∫ s∗(x)

x

W(q)′(γ̄x(s))
W(q)(γ̄x(s))

ds

)
.

If we take the case that γ (s) is a constant valued in (1,∞), again denoted by γ ,
then we may simplify the formula in the above corollary. Indeed, we have γ̄x(s)=
x − (s − x)(γ − 1) and hence s∗(x) = γ x/(γ − 1). Moreover, a straightforward
computation, in a similar vein to the computation in (7.10), gives us

Px(continuous ruin)= exp

(
− 1

(γ − 1)

∫ x

0

W ′(u)
W(u)

du

)
=
(

1

cW(x)

)1/(γ−1)

,

for x ≥ 0, where we have used, from Lemma 6.3, that W(0)= 1/c.

7.5 Expected Present Value of Tax at Ruin

In the spirit of the Gerber–Shiu-type results presented in the previous sections, our
final theorem for perturbed processes (with either light or heavy perturbation) con-
siders the expected present value of the payout until ruin. In the case of light pertur-
bation, this corresponds to the expected present value of tax paid until ruin.

Theorem 7.4 Fix x ≥ 0 and assume (7.2) in the case of the light-perturbation
regime. Then, for q ≥ 0,

Ex

[∫ T −
0

0
e−quγ (Xu)dXu

]
=
∫ s∗(x)

x

exp

(
−
∫ t

x

W(q)′(γ̄x(s))
W(q)(γ̄x(s))

ds

)
γ (t)dt.

Proof Appealing to a straightforward change of variables and Fubini’s Theorem,
noting in particular that τ+

t = inf{s > 0 :Xs > t}, we have

Ex

[∫ T −
0

0
e−quγ (Xu)dXu

]
= Ex

[∫ s∗(x)

0
1(u<T −

0 )e
−quγ (Xu)dXu

]

= Ex

[∫ s∗(x)

x

1(τ+
t <T

−
0 )e

−qτ+
t γ (t)dt

]

=
∫ s∗(x)

x

Ex

[
e−qτ+

t 1(τ+
t <T

−
0 )

]
γ (t)dt.

The proof is completed by taking advantage of the identity in (7.6). �
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We again get a simplification of this formula in the case that we take the function
γ (s) to be a constant, for either the light-perturbation or heavy-perturbation regime.
For example when γ (s) is equal to the constant γ ∈ (0,1), one gets, for x, q ≥ 0,

Ex

[∫ T −
0

0
e−quγ (Xu)dXu

]
= γ

1 − γ

∫ ∞

x

(
W(q)(x)

W(q)(z)

)1/(1−γ )
dz.

7.6 Comments

The well-known joint law of the first n≥ 0 arrival times of a Poisson process con-
ditioned to have n arrivals up to a fixed time can be found, for example, in Sect. 2.4
of Kingman (1993). The representation of the scale function in the form (7.3) is
lifted from Theorem 8 of Chapter VII in Bertoin (1996). This representation and the
observation that excursions are rehung from the process A form a key part of the
analysis in Albrecher et al. (2008), Kyprianou and Zhou (2009) and Kyprianou and
Ott (2012), in increasing degrees of generality.



Chapter 8
Refraction Strategies

Let us return to the case of the refracted Cramér–Lundberg process, that is, the
solution to the stochastic differential equation (SDE)

dZt = dXt − δ1(Zt>b)dt, t ≥ 0,

also written as

Zt =Xt − δ

∫ t

0
1(Zs>b)ds, t ≥ 0, (8.1)

for some threshold b ≥ 0. We shall charge ourselves with the task of providing iden-
tities for the probability of ruin as well as the expected present value of dividends
paid until ruin. As we have seen earlier, for the case of a Cramér–Lundberg process,
it turns out to be convenient to first derive an identity for the resolvent measure of
the refracted process until first exiting a finite interval. It turns out that all identities
can be written in terms of two scale functions for two different Cramér–Lundberg
processes. As one might expect these identities are somewhat more complicated.

8.1 Pathwise Existence and Uniqueness

Before we can look at functionals which pertain to Gerber–Shiu theory, we are con-
fronted with the more pressing issue of whether a solution to this SDE (8.1) exists.
As the reader might already suspect, problems may occur when δ ≥ c, as, in that
case, when dividends are paid, it is at a higher rate than the premiums collected. We
therefore assume throughout that

0 < δ < c.

Theorem 8.1 The SDE (8.1) has a unique pathwise1 solution.

1We can understand the words “pathwise solution” here to mean a solution which is constructed
directly from the path of the driving process X. More commonly, such solutions are called strong
solutions.
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DOI 10.1007/978-3-319-02303-8_8,
© Springer International Publishing Switzerland 2013
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Proof Define the times T ↑
n and T

↓
n recursively as follows. We set T ↓

0 = 0 and, for
n= 1,2, . . . , on the events {T ↓

n−1 <∞} and {T ↑
n <∞} respectively, set

T ↑
n = inf

{
t > T

↓
n−1 :Xt − δ

n−1∑

i=1

(
T

↓
i − T

↑
i

)
> b

}
,

T ↓
n = inf

{
t > T ↑

n :Xt − δ

n−1∑

i=1

(
T

↓
i − T

↑
i

)− δ
(
t − T ↑

n

)
< b

}
.

The difference between the two consecutive times T ↑
n and T

↓
n is strictly positive.

Moreover, limn↑∞ T
↑
n = limn↑∞ T

↓
n = ∞, almost surely. Now we construct a so-

lution to (8.1), Z = {Zt : t ≥ 0}, as follows. The process is issued from X0 = x

and

Zt =
{
Xt − δ

∑n
i=1(T

↓
i − T

↑
i ), for t ∈ [T ↓

n , T
↑
n+1) and n≥ 0,

Xt − δ
∑n−1

i=1 (T
↓
i − T

↑
i )− δ(t − T

↑
n ), for t ∈ [T ↑

n , T
↓
n ) and n≥ 1.

Note that for n = 1,2, . . . , on the events {T ↓
n−1 < ∞} and {T ↑

n < ∞} respectively,

the times T ↑
n and T ↓

n , can then be identified as

T ↑
n = inf

{
t > T

↓
n−1 :Zt > b

}
, T ↓

n = inf
{
t > T ↑

n : Zt < b
}
.

Hence

Zt =Xt − δ

∫ t

0
1(Zs>b)ds, t ≥ 0,

thereby proving the existence of a pathwise solution to (8.1).
For uniqueness of this solution, suppose that {Z(1)

t : t ≥ 0} and {Z(2)
t : t ≥ 0} are

two pathwise solutions to (8.1). Then, writing

Δt = Z
(1)
t −Z

(2)
t = −δ

∫ t

0
(1
(Z

(1)
s >b)

− 1
(Z

(2)
s >b)

)ds,

it follows from integration by parts that

Δ2
t = −2δ

∫ t

0
Δs(1(Z(1)

s >b)
− 1

(Z
(2)
s >b)

)ds.

Thanks to the fact that 1(x>b) is an increasing function, it follows from the above
representation, that, for all t ≥ 0, Δ2

t ≤ 0 and hence Δt = 0 almost surely, thereby
proving uniqueness of pathwise solutions to (8.1). �

Let us momentarily return to the reason why Z is referred to as a refracted Lévy
process. A simple sketch of a realisation of the path of Z (see for example Fig. 8.1)
gives the impression that the trajectory of Z “refracts” each time it passes continu-
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Fig. 8.1 A sample path of Z when the driving Lévy process is a Cramér–Lundberg process. Its
trajectory “refracts” as it passes continuously above the horizontal dashed line at level b

ously from (−∞,b] into (b,∞), much as a beam of light does when passing from
one medium to another.

The construction of the unique pathwise solution described above clearly shows
that Z is adapted to the natural filtration F= {Ft : t ≥ 0} of X. Conversely, since, for
all t ≥ 0, Xt = Zt + δ

∫ t
0 1(Zs>b)ds, it is also clear that X is adapted to the natural

filtration of Z. We can use this observation to reason that Z is a strong Markov
process.

To this end, suppose that T is a stopping time with respect to F. Then define
a process Ẑ whose dynamics are those of {Zt : t ≤ T } issued from x ∈ R and,
given FT , on the event that {T < ∞}, it continues to evolve on the time inter-
val [T ,∞) as the unique solution, say Z̃, to (8.1) but driven by the Lévy pro-
cess X̃ = {XT+s − XT : s ≥ 0} and issued from ZT . Note that, by construction,
on {T < ∞}, the dependence of {Ẑt : t ≥ T } on {Ẑt : t ≤ T } occurs only through
the value ẐT = ZT . Note also that for t > 0,

ẐT+t = Z̃t

= ẐT + X̃t − δ

∫ t

0
1(Z̃s>b)ds

= x +XT − δ

∫ T

0
1(Zs>b)ds + (XT+t −XT )− δ

∫ t

0
1(ẐT+s>b)ds

= x +XT+t − δ

∫ T+t

0
1(Ẑs>b)ds,

thereby showing that Ẑ solves (8.1) with Ẑ0 = x. Since (8.1) has a unique path-
wise solution, this solution must be Ẑ and therefore possesses the strong Markov
property.
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8.2 Gambler’s Ruin and Resolvent Density

Let us now introduce the stopping times for Z

κ+
a := inf{t > 0 : Zt > a} and κ−

0 := inf{t > 0 :Zt < 0},
where a > 0. We are interested in studying the ruin probability

Px

(
κ−

0 <∞), (8.2)

as well as the expected present value of dividends paid until ruin,

δEx

(∫ κ−
0

0
e−qt1(Zt>b)dt

)
. (8.3)

Not unlike our treatment of the analogous object for the Cramér–Lundberg process,
it turns out to be more convenient to first study the seemingly more complex two-
sided exit problem. To this end, let Xδ = {Xδ

t : t ≥ 0}, where Xδ
t = Xt − δt and

denote by Px the law of the process Xδ when issued from x (with Ex as the asso-
ciated expectation operator). For each q ≥ 0, W(q) and Z(q) denote, as usual, the
q-scale functions associated with X. We shall write W

(q) for the q-scale function
associated with Xδ . For convenience, we will write

w(q)(x;y)=W(q)(x − y)+ δ1(x≥b)
∫ x

b
W

(q)(x − z)W(q)′(z− y)dz,

for x, y ∈ R and q ≥ 0. We have two main results concerning the gambler’s ruin
problem, from which more can be said about the quantities (8.2) and (8.3).

Theorem 8.2 For q ≥ 0 and 0 ≤ x,b ≤ a, we have

Ex

(
e−qκ+

a 1(κ+
a <κ

−
0 )

)= w(q)(x;0)

w(q)(a;0)
. (8.4)

Theorem 8.3 For q ≥ 0 and 0 ≤ x, y,b ≤ a,

∫ ∞

0
e−qt

Px

(
Zt ∈ dy, t < κ−

0 ∧ κ+
a

)
dt

= 1(y∈[b,a])
{
w(q)(x;0)

w(q)(a;0)
W

(q)(a − y)−W
(q)(x − y)

}
dy

+ 1(y∈[0,b))
{
w(q)(x;0)

w(q)(a;0)
w(q)(a;y)−w(q)(x;y)

}
dy. (8.5)

Although appealing to relatively straightforward methods, the proofs are quite
long, requiring a little patience.
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Proof of Theorem 8.2 Write p(x, δ) = Ex(e−qκ+
a 1(κ+

a <κ
−
0 )
). Suppose that x ≤ b.

Then, by conditioning on Fτ+
b

, we have

p(x, δ)= Ex

(
e−qτ+

b 1(τ−
0 >τ+

b )

)
p(b, δ)= W(q)(x)

W(q)(b)
p(b, δ), (8.6)

where, in the last equality, we have used Theorem 4.5. Suppose now that b ≤ x ≤ a.
Using, Theorem 4.5, the strong Markov property (8.6) and the Gerber–Shiu measure
from Theorem 5.5, we have

p(x, δ) = Ex
(
e−qτ+

a 1(τ−
b >τ+

a )

)+ Ex

(
e−qτ−

b 1(τ−
b <τ+

a )
p(Zτ−

b
, δ)
)

= W
(q)(x − b)

W(q)(a − b)
+ p(b, δ)

W(q)(b)
Ex

(
e−qτ−

b 1(τ−
b <τ+

a )
W(q)
(
Xδ

τ−
b

))

= W
(q)(x − b)

W(q)(a − b)
+ p(b, δ)

W(q)(b)
h(a,b, x), (8.7)

where

h(a,b, x)

=
∫ a−b

0

∫

(y,∞)

W(q)(b + y − θ)

×
[
W

(q)(x − b)W(q)(a − b − y)

W(q)(a − b)
−W

(q)(x − b − y)

]
F(dθ)dy.

By setting x = b in (8.7) and recalling from Lemma 6.3 that W(q)(0)= 1/(c− δ),
we can now solve for p(b, δ). Indeed, we have

p(b, δ)=W(q)(b)

{
(c− δ)W(q)(a − b)W(q)(b)

−
∫ a−b

0

∫

(y,∞)

W(q)(b + y − θ)

×W
(q)(a − b − y)F (dθ)dy

}−1

. (8.8)

Next, we want to simplify the term involving the double integral in the above ex-
pression.

To this end, note that when δ = 0 (the case that there is no refraction), we have,
again by Theorem 4.5, that, for all x ≥ 0,

p(b,0)= Eb
(
e−qτ+

a 1(τ−
0 >τ+

a )

)= W(q)(b)

W(q)(a)
. (8.9)

It follows, by comparing (8.8) (for δ = 0) with (8.9), that
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∫ a−b

0

∫

(y,∞)

W(q)(b + y − θ)W(q)(a − b − y)F (dθ)dy

= cW(q)(b)W(q)(a − b)−W(q)(a). (8.10)

As a ≥ b is taken arbitrarily, we may take Laplace transforms in a on the interval
(b,∞) of both sides of the above expression. Denote by Lb the operator satisfying

Lbf [λ] :=
∫ ∞

b
e−λxf (x)dx,

for non-negative functions f and let λ >Φ(q). For the left-hand side of (8.10), with
the help of Fubini’s Theorem, we get

∫ ∞

b
e−λx
∫ ∞

0

∫

(y,∞)

W(q)(b + y + θ)W(q)(x − b − y)dyF(dθ)dx

= e−λb

ψ(λ)− q

∫ ∞

0

∫

(y,∞)

e−λyW(q)(b + y − θ)F (dθ)dy.

For the right-hand side of (8.10), we get

∫ ∞

b
e−λx(W(q)(x − b)cW(q)(b)−W(q)(x)

)
dx

= e−λb

ψ(λ)− q
cW(q)(b)−

∫ ∞

b
e−λxW(q)(x)dx,

and so
∫ ∞

0

∫

(y,∞)

e−λyW(q)(b + y − θ)F (dθ)dy

= cW(q)(b)− (ψ(λ)− q
)
eλbLbW

(q)[λ], (8.11)

for λ >Φ(q). Our objective now is to use (8.11) and show that, for q ≥ 0 and x ≥ b,
we have

∫ ∞

0

∫

(y,∞)

W(q)(b + y − θ)W(q)(x − b − y)F (dθ)dy

= −W(q)(x)+ (c− δ)W(q)(b)W(q)(x − b)

− δ

∫ x

b
W

(q)(x − y)W(q)′(y)dy. (8.12)

We will do this by taking Laplace transforms in x on (b,∞) on both sides of the
equality in (8.12). To this end, note that, by (8.11), by Fubini’s Theorem, the Laplace
transform of the left-hand side of (8.12) is
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∫ ∞

b
e−λx
∫ ∞

0

∫

(y,∞)

W(q)(b + y − θ)W(q)(x − b − y)F (dθ)dydx

= e−λb

ψ(λ)− δλ− q

(
cW(q)(b)− (ψ(λ)− q

)
eλbLbW

(q)[λ]), (8.13)

where λ > ϕ(q) and, for q ≥ 0, ϕ(q)= sup{θ ≥ 0 :ψ(θ)−cθ = q}. (Note that ϕ is
the right inverse of the Laplace exponent of Xδ .) Since

Lb

(∫ x

b
f (x − y)g(y)dy

)
[λ] = (L0f )[λ](Lbg)[λ]

and, for λ >Φ(q),

LbW
(q)′[λ] = λLbW

(q)[λ] − e−λbW(q)(b)

(which follows from integration by parts), we have that the Laplace transform of the
right-hand side of (8.12) is equal to the right-hand side of (8.13), for all sufficiently
large λ. Hence (8.12) holds for almost every x ≥ b. Because both sides of (8.12) are
continuous in x, we finally conclude that (8.12) holds for all x ≥ b.

To complete the proof, it suffices to plug (8.12) and the expression for h(a,b, x)
into (8.7) and the desired identity follows after straightforward algebra. �

In anticipation of the proof of Theorem 8.3, we note here a particular identity
which follows easily from (8.12). That is, for v ≥ u≥m≥ 0,
∫ ∞

0

∫

(z,∞)

W(q)(z− θ +m)

×
[
W

(q)(v −m− z)

W(q)(v −m)
W

(q)(u−m)−W
(q)(u−m− z)

]
F(dθ)dz

= −W
(q)(u−m)

W(q)(v −m)

(
W(q)(v)+ δ

∫ v

m

W
(q)(v − z)W(q)′(z)dz

)

+W(q)(u)+ δ

∫ u

m

W
(q)(u− z)W(q)′(z)dz. (8.14)

Proof of Theorem 8.3 For Borel B ⊆ [0, a] and x, q ≥ 0, define

V (q)(x, a,B)=
∫ ∞

0
e−qt

Px

(
Zt ∈ B, t < κ−

0 ∧ κ+
a

)
dt.

For x ≤ b, by the strong Markov property, Theorem 4.5 and Theorem 5.2, we have

V (q)(x, a,B) = Ex

(∫ τ+
b

0
e−qt1(Zt∈B,t<κ+

a ∧κ−
0 )

dt

)

+Ex

(∫ ∞

τ+
b

e−qt1(Zt∈B,t<κ+
a ∧κ−

0 ,τ
+
b <τ−

0 )dt

)
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= Ex

(∫ τ+
b ∧τ−

0

0
e−qt1(Xt∈B)dt

)

+Ex

(
e−qτ+

b 1(τ+
b <τ−

0 )

)
V (q)(b, a,B)

=
∫

B

(
W(q)(b − y)

W(q)(b)
W(q)(x)−W(q)(x − y)

)
dy

+ W(q)(x)

W(q)(b)
V (q)(b, a,B). (8.15)

Moreover, for b ≤ x ≤ a, we have, using similar arguments,

V (q)(x, a,B)

=
∫ ∞

0
e−qtPx

(
Xδ
t ∈ B ∩ [b, a], t < τ−

b ∧ τ+
a

)
dt

+ Ex

(
1(τ−

b <τ+
a )

e−qτ−
b V (q)

(
Xδ

τ−
b
, a,B
))

=
∫

B∩[b,a]

(
W

(q)(a − z)

W(q)(a − b)
W

(q)(x − b)−W
(q)(x − z)

)
dz

+
∫ ∞

0

∫

θ<−z

{∫

B

[
W(q)(b − y)

W(q)(b)
W(q)(z+ θ + b)−W(q)(z+ θ + b− y)

]
dy

+ V (q)(b, a,B)

W(q)(b)
W(q)(z+ θ + b)

}

×
[
W

(q)(a − b − z)

W(q)(a − b)
W

(q)(x − b)−W
(q)(x − b − z)

]
F(dθ)dz,

where in the first equality we have used the strong Markov property and in the
second equality we have again used the Gerber–Shiu measure from Theorem 5.5.
Next, we apply the identity (8.14) twice in order to simplify the expression for
V (q)(x, a,B), a ≥ x ≥ b. We use it once by setting m = b, u = x, v = a and once
by setting m= b − y and u= x − y, v = a − y for y ∈ [0,b]. We obtain

V (q)(x, a,B)

=
∫

B∩[b,a]

(
W

(q)(a − z)

W(q)(a − b)
W

(q)(x − b)−W
(q)(x − z)

)
dz

+
∫

B∩[0,b)

{
W(q)(b − y)

W(q)(b)

(
−W

(q)(x − b)

W(q)(a − b)
w(q)(a;0)+w(q)(x;0)

)

−
(

−W
(q)(x − b)

W(q)(a − b)
w(q)(a;y)+w(q)(x;y)

)}
dy
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+ V (q)(b, a,B)

W(q)(b)

(
−W

(q)(x − b)

W(q)(a − b)
w(q)(a;0)+w(q)(x;0)

)
. (8.16)

Setting x = b in (8.16), we get an expression for V (q)(b, a,B) in terms of itself.
Solving this and then putting the resulting expression for V (q)(b, a,B) back in
(8.15) and (8.16) leads to (8.5), which completes the proof. �

8.3 Resolvent Density with Ruin

The two expressions we are interested in, namely the ruin probability and the ex-
pected present value of dividends paid until ruin, can both be extracted from the
identity for the resolvent measure of Z when killed on exiting [0,∞),

∫ ∞

0
e−qt

Px

(
Zt ∈ B, t < κ−

0

)
dt = lim

a→∞V (q)(x, a,B),

where B is any Borel set in [0,∞) and q ≥ 0. Note that the limit is justified by
monotone convergence. Recall that ϕ was defined as the right inverse of the Laplace
exponent of Xδ , so that

ϕ(q)= sup
{
θ ≥ 0 :ψ(θ)− δθ = q

}
.

Corollary 8.4 For x, y,b ≥ 0 and q ≥ 0,

∫ ∞

0
e−qt

Px

(
Zt ∈ dy, t < κ−

0

)
dt

= 1(y∈[b,∞))

{
w(q)(x;0)

δ
∫∞

b e−ϕ(q)zW(q)′(z)dz
e−ϕ(q)y −W

(q)(x − y)

}
dy

+ 1(y∈[0,b))
{∫∞

b e−ϕ(q)zW(q)′(z− y)dz
∫∞

b e−ϕ(q)zW(q)′(z)dz
w(q)(x;0)−w(q)(x;y)

}
dy. (8.17)

Proof Assume that q > 0. We begin by noting that, from the representation of W(q)

in (4.4), it is straightforward to deduce that, for all x, q > 0,

lim
a→∞

W
(q)(a − x)

W(q)(a)
= e−ϕ(q)x . (8.18)

Note that, for each q ≥ 0, ϕ(q)≥Φ(q) and hence, appealing to the same represen-
tation in (4.4) for both W(q) and W

(q), it also follows that, for all q, x > 0,

lim
a→∞

W(q)(a − x)

W(q)(a)
= 0. (8.19)
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For q > 0, the result we are after is obtained by dividing the numerator and
denominator of each of the first terms in the curly brackets of (8.5) by W

(q)(a) and
taking limits as a → ∞, making use of (8.18) and (8.19). The case that q = 0 is
handled by taking limits as q ↓ 0 in (8.17). �

Now we are in a position to derive expressions for (8.2) and (8.3).

Corollary 8.5 For x ≥ 0, if ψ ′(0+)≤ δ, then

Px

(
κ−

0 <∞)= 1.

Otherwise, when ψ ′(0+) > δ, we have

Px

(
κ−

0 <∞)= 1 − ψ ′(0+)− δ

1 − δW(b)

(
W(x)+ δ1(x≥b)

∫ x

b
W(x − y)W ′(y)dy

)
.

(8.20)

Proof Let Zt = infs≤t Zs and, as usual, eq denotes an independent and exponen-
tially distributed random variable with mean 1/q . Note that, for q > 0,

Ex

(
e−qκ−

0 1(κ−
0 <∞)

) = 1 − Px(Zeq ≥ 0)

= 1 − q

∫ ∞

0
e−qt

Px

(
Zt ∈ [0,∞), t < κ−

0

)
dt.

Computing the integral above from (8.17) is relatively straightforward and gives us,
for x,b ≥ 0 and q > 0,

Ex

(
e−qκ−

0 1(κ−
0 <∞)

)

= z(q)(x)− q
∫∞

b e−ϕ(q)yW(q)(y)dy
∫∞

b e−ϕ(q)yW(q)′(y)dy
w(q)(x;0)

+ q1(x≥b)

∫ x

b
W

(q)(x − z)dz+ q

∫ b

0
W(q)(x − z)dz

− q

∫ x

0
W(q)(z)dz− qδ1(x≥b)

∫ x

b
W

(q)(x − z)W(q)(z− b)dz, (8.21)

where

z(q)(x)= Z(q)(x)+ δq

∫ x

b
W

(q)(x − z)W(q)(z)dz, x ∈ R, q ≥ 0.

The details of the computation are left to the reader.
Although it is not immediately obvious, it turns out that the last four terms

in (8.21) combine to make zero. Indeed, in the case that x < b, this observation
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is straightforward, noting that the indicators preceding the two integrals from b
to x are identically zero and the second of these four terms may be replaced by∫ x

0 W(q)(x − z)dz = ∫ x0 W(q)(z)dz on account of the fact that W(q) is identically
zero on (−∞,0). In the case that x ≥ b, the last four terms of (8.21) can be easily
rearranged to give C(x − b), where C : [0,∞)→ [0,∞) is the continuous function

C(u)= q

∫ u

0
W

(q)(z)dz− q

∫ u

0
W(q)(z)dz− qδ

∫ u

0
W

(q)(z)W(q)(u− z)dz.

Taking Laplace transforms ofC and using (4.1), we easily verify thatC is identically
zero.

In conclusion, we have that, for x,b ≥ 0 and q > 0,

Ex

(
e−qκ−

0 1(κ−
0 <∞)

)= z(q)(x)− q
∫∞

b e−ϕ(q)yW(q)(y)dy
∫∞

b e−ϕ(q)yW(q)′(y)dy
w(q)(x;0).

The expression for the ruin probability in (8.20) can be obtained by taking limits
on the left- and right-hand side above as q ↓ 0. On the left-hand side, thanks to
monotone convergence, the limit is equal to Px(κ

−
0 <∞). Computing the limits on

the right-hand side is relatively straightforward, since
∫ ∞

0
e−ϕ(q)zW(q)(z)dz= 1

ϕ(q)δ
(8.22)

and

lim
q↓0

q

ϕ(q)
= lim

q↓0

ψ(ϕ(q))− δϕ(q)

ϕ(q)
= 0 ∨ (ψ ′(0+)− δ

)
.

The details are again left to the reader. �

Corollary 8.6 For x, q,b ≥ 0,

Ex

(∫ κ−
0

0
e−qt δ1(Zt>b)dt

)
= −δ1(x≥b)

∫ x

b
W

(q)(z− b)dz

+ W(q)(x)+ δ1(x≥b)
∫ x

b W
(q)(x − y)W(q)′(y)dy

ϕ(q)
∫∞

0 e−ϕ(q)yW(q)′(y + b)dy
.

Proof The proof is a simple exercise in integrating the resolvent measure (8.17)
over (b,∞). �

8.4 Comments

The terminology “refraction” comes from Gerber and Shiu (2006b). See also Gerber
and Shiu (2006a). As indicated in the introduction, refraction strategies emerge as



78 8 Refraction Strategies

an optimal solution to (1.7). Kyprianou et al. (2012) offers a general perspective
on how to choose the refraction threshold b optimally for the setting that X is a
spectrally negative Lévy process. Making use of Corollary 8.6, they introduce the
function

r(b)= ϕ(q)

∫ x

0
e−ϕ(q)yW(q)′(y + b)dy, b ≥ 0.

Note in particular, from the same corollary, the expected present value of dividends
until ruin with refraction threshold b ≥ 0 is equal to W(q)(x)/r(b), when Z0 =
x ≤ b. With a similar flavour to the case of reflection strategies, Kyprianou et al.
(2012) give sufficient conditions under which the optimal threshold b should be
chosen to minimise the function r(b).

The majority of the arguments in this chapter are taken from Kyprianou and
Loeffen (2010), where X is taken to be a general spectrally negative Lévy process.
The question of existence and uniqueness for the SDE (8.1) when X is a general
Lévy process has not yet been handled in the literature. In particular, when X has
no Gaussian component, although still a simple-looking SDE, (8.1) presents some
difficulties when levelled against standard theory. Further fluctuation identities for
refracted spectrally negative Lévy processes can be found in Kyprianou et al. (2013).



Chapter 9
Concluding Discussion

On the one hand, the use of scale functions would appear to have made many of
the problems we have looked at solvable. On the other hand, one may question the
extent to which we have solved the posed problems as our scale functions are only
defined in terms of a Laplace transform. We have arguably only provided a solution
“up to the inversion of a Laplace transform”. It would be nice to have some concrete
examples of scale functions. It turns out that few concrete examples are known and
they are quite difficult to produce in general. Nonetheless, we shall show that there
is still sufficient analytical structure known for a general scale function to justify
their use, in particular when moving to the bigger class of processes for which the
surplus process is modelled by a general spectrally negative Lévy process.

9.1 Mixed-Exponential Claims

In general, it is quite hard to construct the scale function W(q) for a Cramér–
Lundberg process. There are a handful of claim distributions F , for which there
is a reasonable degree of tractability as far as scale functions are concerned. One
such example is the case that F belongs to the class of mixed-exponential distribu-
tions. This family is also known as the hyper-exponential distributions. In order to
specify these distributions, let us define the arrival rate

λ=
m∑

j=1

aj/ρj (9.1)

and the claims distribution by

F(dx)= 1

λ

(
m∑

j=1

aj e−ρj x
)

dx, x > 0, (9.2)
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where m ∈ N, and, for j = 1, . . . ,m, the coefficients aj and ρj are strictly positive.
For convenience, we also assume that the ρj are arranged in increasing order. The
premium rate c may be taken valued in (0,∞) without restriction.

It is easily verified that the Laplace exponent is given by

ψ(θ)= cθ − θ

m∑

j=1

aj

ρj (ρj + θ)
, θ ≥ 0.

A little thought reveals that the exponent ψ is, in fact, well defined as a mapping
from C into C, provided one is prepared to see it as a meromorphic function which
has only singular poles at z= −ρj . Henceforth, we shall treat ψ in the broader sense
of a complex-valued function. We know from our previous analysis that, for q > 0,
the equation ψ(θ)= q has a unique solution z=Φ(q) in the half-plane Re(θ) > 0,
and we also know that this solution is real. It can be proved that if we look for other
roots of the equation ψ(θ)= q on the complex plane, then there are precisely m of
them and they are all to be found on the negative part of the real axis. If we write
these solutions as θ = −ζj , for j = 1, . . . ,m, then it also turns out that they satisfy
the interlacing property

0 < ζ1 < ρ1 < ζ2 < ρ2 < . . . < ζm < ρm. (9.3)

The following lemma gives an explicit formula for the scale function expressed
in terms of the roots ζj and the first derivative of the Laplace exponent.

Lemma 9.1 If X is a Cramér–Lundberg process with λ and F given by (9.1) and
(9.2), respectively, then, for all q > 0, the scale function is given by

W(q)(x)= eΦ(q)x

ψ ′(Φ(q))
+

m∑

j=1

e−ζj x

ψ ′(−ζj ) , x ≥ 0. (9.4)

Proof We sketch the proof. Knowing that {−ζm, . . . ,−ζ1,Φ(q)} are all roots of the
equation ψ(θ)= q in C, the basic idea is to use partial fractions to write

1

ψ(θ)− q
= c0

(θ −Φ(q))
+

m∑

j=1

cj

(θ + ζj )
, θ ∈ C. (9.5)

To determine the constant c0, note that, for example,

1

ψ ′(Φ(q))
= lim

θ→Φ(q)

(θ −Φ(q))

ψ(θ)− q
= c0 +

m∑

j=1

lim
θ→Φ(q)

cj
(θ −Φ(q))

(θ + ζj )
= c0.

One derives c1, . . . , cm similarly. The identity (9.4) now follows by inverting (9.5)
in a straightforward way. �
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9.2 Spectrally Negative Lévy Processes

One of the advantages working with scale functions is that all of the results, as well
as many of their proofs, are practically identical if we replace the Cramér–Lundberg
process by a general spectrally negative Lévy process. Recall from Chap. 1 that X is
a spectrally negative Lévy process if it has stationary independent increments, it has
paths that are almost surely right-continuous with left limits, there are no positive
discontinuities in its trajectories, and its paths are not monotone.

A simple example of a spectrally negative Lévy process is the resulting object we
get from adding a Cramér–Lundberg process to a (scaled) independent Brownian
motion, i.e.

Xt = σBt + ct −
Nt∑

i=1

ξi, t ≥ 0, (9.6)

where {Bt : t ≥ 0} is a standard independent Brownian motion and σ > 0. This
process is often referred to as a perturbed Cramér–Lundberg process.

In general, spectrally negative Lévy processes can be characterised through their
Laplace exponent, also denoted by ψ , which satisfies

ψ(θ) := 1

t
logE
[
eθXt
]
,

and is well defined for θ ≥ 0. The Lévy–Khintchine formula, which is normally
cited for the characteristic exponent of a Lévy process, also identifies the Laplace
exponent in its general form as

ψ(θ)= aθ + 1

2
σ 2θ2 +

∫

(0,∞)

(
e−θx − 1 + θx1(x<1)

)
Π(dx), θ ≥ 0, (9.7)

where a ∈ R, σ 2 ≥ 0 and the so-called Lévy measure Π is a (not-necessarily finite)
measure concentrated on (0,∞) which satisfies the integrability condition

∫

(0,∞)

(
1 ∧ x2)Π(dx) <∞. (9.8)

Although ψ looks more complicated than for the case of a Cramér–Lundberg pro-
cess, its shape is essentially the same. Indeed, it is not difficult to show, again
by differentiation, that ψ is a strictly convex function which satisfies ψ(0) = 0
and ψ(∞) = ∞. Moreover, just as with the Cramér–Lundberg process, we have
E(X1) = ψ ′(0+) ∈ [−∞,∞). Accordingly, we may also work with the right in-
verse of ψ ,

Φ(q) := sup
{
θ ≥ 0 :ψ(θ)= q

}
, q ≥ 0.

Just as is the case with Cramér–Lundberg processes, the quantity Φ(0) is strictly
positive if and only ifψ ′(0+) < 0 and otherwise, whenψ ′(0+)≥ 0, it is zero. In this
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respect, Fig. 2.1 could equally depict the Laplace exponent of a general spectrally
negative Lévy process.

We should note that the class of spectrally negative Lévy processes contains the
class of Cramér–Lundberg processes. Indeed, this can be seen by taking Π(dx) =
λF(dx) on (0,∞) and σ = 0. In that case, (9.7) can be written

ψ(θ)=
(
a + λ

∫

(0,1)
xF (dx)

)
θ − λ

∫

(0,∞)

(
1 − e−θx)F(dx), θ ≥ 0.

The exclusion of monotone paths from the definition of spectrally negative Lévy
processes would force us to take

c := a + λ

∫

(0,1)
xF (dx) > 0. (9.9)

Describing the paths of the Lévy process X = {Xt : t ≥ 0} associated to ψ is
not as straightforward as in the case of a Cramér–Lundberg process. It is clear that
the quadratic term aθ + σ 2θ2/2 is the result of an independent linear Brownian
component {at + σBt : t ≥ 0} in X. The integral term in ψ can be written

∫

(0,∞)

(
e−θx − 1 + θx1(x<1)

)
Π(dx)

=
∑

n≥1

{
cnθ − λn

∫

(2−n,2−(n−1)]
(
1 − e−θx)Π(dx)

λn

}

− λ0

∫

(0,∞)

(
1 − e−θx)Π(dx)

λ0
, θ ≥ 0, (9.10)

where λ0 =Π((1,∞)) and, for n≥ 1,

cn =
∫

(2−n,2−(n−1)]
xΠ(dx) and λn =Π

((
2−n,2−(n−1)]).

The term for λn is finite on account of (9.8). If λn = 0 for some n ≥ 0, then we
should understand the relevant term on the right-hand side of (9.10) as absent.

The decomposition (9.10), known as the Lévy–Itô decomposition, gives us the
intuitive understanding that, for the given triplet (a, σ,Π), the associated spectrally
negative Lévy process may be seen as the independent sum of a linear Brownian
component, a series of Cramér–Lundberg processes and the negative of a com-
pound Poisson process. The special choice of cn, for n≥ 1, means that each of the
Cramér–Lundberg processes have zero mean (in fact they are martingales). More-
over the n-th Cramér–Lundberg process experiences jumps whose magnitude falls
strictly into the interval (2−n,2−(n−1)]. Meanwhile, the compound Poisson process
experiences jumps which are of magnitude strictly greater than 1.

The resulting path of the superimposition of these processes can be quite varied.
Indeed, over any finite time horizon, there will be an almost surely infinite (albeit
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countable) number of jumps if and only if Π is an infinite measure. Moreover, X has
paths of bounded variation (almost surely over each finite time horizon) if and only
if
∫
(0,1) xΠ(dx) < ∞ and σ = 0. Finally, X is a Cramér–Lundberg process if and

only if σ = 0 and Π has finite total mass.
For spectrally negative Lévy processes, we may also define scale functions

W(q)(x), q ≥ 0, x ∈ R, in exactly the same way as we did for Cramér–Lundberg
processes. In particular, for q ≥ 0, W(q)(x)= 0 for x < 0 and otherwise, on [0,∞),
it is the unique right-continuous increasing function whose Laplace transform satis-
fies

∫ ∞

0
e−θxW(q)(x)dx = 1

ψ(θ)− q
, θ > Φ(q). (9.11)

The majority of the main results presented in the previous chapters and indeed
many of their proofs, are still valid when the setting of a Cramér–Lundberg process
is replaced by a general spectrally negative Lévy process. We are thus brought again
to the question of the existence of concrete examples of scale functions.

Not surprisingly, it is also difficult to find closed-form examples of scale func-
tions for a spectrally negative Lévy process that is not a Cramér–Lundberg process.
Here are a couple of related examples.

A spectrally negative α-stable process, for α ∈ (1,2), has Lévy measure

Π(dx)= kα

x1+α dx, x > 0,

where kα is a constant that can be chosen appropriately so that

ψ(θ)= θα, θ ≥ 0.

Note that ψ ′(0+)= 0 and hence the α-stable process oscillates.
Denote by

Eα,β(x)=
∑

n≥0

xn

Γ (nα + β)
, x ∈ R, (9.12)

the two-parameter Mittag–Leffler function. It is characterised by a Fourier–Laplace
transform. Specifically, for λ ∈R, θ ∈ C and Re(θ) > |λ|1/α , we have

∫ ∞

0
e−θxxβ−1Eα,β

(
λxα
)
dx = θα−β

θα − λ
. (9.13)

We recognise immediately that

W(q)(x)= xα−1Eα,α
(
qxα
)
, q, x ≥ 0.

Suppose that we look at the α-stable process under the Esscher transform (2.7).
As alluded to above, the main part of this result is still valid for general spectrally
negative Lévy processes. In particular, we note that the class of spectrally nega-
tive Lévy processes is closed under the Esscher transformation. For each γ ≥ 0 and
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α ∈ (1,2), if (X,P) is a spectrally negative α-stable process, then (X,Pγ ) is a spec-
trally negative Lévy process with Laplace exponent

ψγ (θ)= (θ + γ )α − γ α, θ ≥ −γ.
This process is also known as a tempered stable process. Like the α-stable pro-
cess, it has no Gaussian component. Similarly to the conclusion of Theorem 2.3 for
Cramér–Lundberg processes, the effect of the Esscher transform is to exponentially
tilt the Lévy measure so that the new Lévy measure satisfies

Πγ (dx)= kαe−γ x

x1+α dx, x > 0.

Note also that ψ ′
γ (0+)=ψ ′(γ ) > 0 and hence the process drifts to +∞.

Just as above, we may derive, by inspection of (9.13), the following identity for
W

(q)
γ , the q-scale function of (X,Pγ ):

W(q)
γ (x)= e−γ xxα−1Eα,α

((
q + γ α

)
xα
)
, x ≥ 0.

9.3 Analytic Properties of Scale Functions

Despite the fact that, for most spectrally negative Lévy process, we are unable to
invert the Laplace transform (9.11), we can nonetheless get an understanding of the
shape of the general scale function. Here is a summary of some of the known facts,
most of which can be derived from the Laplace transform (9.11).

Continuity at the Origin For all q ≥ 0,

W(q)(0+)=
{

0 if σ > 0 or
∫
(0,1) xΠ(dx)= ∞

c−1 if σ = 0 and
∫
(0,1) xΠ(dx) <∞,

(9.14)

where c= a + ∫
(−1,0) xΠ(dx).

Derivative at the Origin For all q ≥ 0,

W
(q)′
+ (0+)=

⎧
⎪⎨

⎪⎩

2/σ 2 if σ > 0

∞ if σ = 0 and Π((0,∞))= ∞
[q +Π((0,∞))]/c2 if σ = 0 and Π((0,∞)) <∞.

(9.15)

Behaviour at +∞ for q = 0 As x → ∞ we have

W(x)∼
{

1/ψ ′(0+) if ψ ′(0+) > 0

eΦ(0)x/ψ ′(Φ(0)) if ψ ′(0+) < 0.
(9.16)

When E(X1) = 0 a number of different asymptotic behaviours may occur. For ex-
ample, if φ(θ) :=ψ(θ)/θ satisfies φ′(0+) <∞ then W(x)∼ x/φ′(0+) as x → ∞.
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Behaviour at +∞ for q > 0 As x → ∞ we have

W(q)(x)∼ eΦ(q)x/ψ ′(Φ(q)
)

(9.17)

and thus there is asymptotic exponential growth.

Smoothness It is known that if X has paths of bounded variation, then, for all
q ≥ 0, W(q)|(0,∞) ∈ C1(0,∞) if and only if Π has no atoms. In the case that X has
paths of unbounded variation, it is known that, for all q ≥ 0, W(q)|(0,∞) ∈ C1(0,∞).
Moreover if σ > 0, then C1(0,∞) may be replaced by C2(0,∞). Clearly this pic-
ture is incomplete.

Taking account of the fact that the Laplace transform of W(q) is expressed in
terms of ψ(θ), which, itself, can be considered as a type of analytical transform of
the measure Π , it is not surprising that there is an intimate connection between the
smoothness of the scale functions and the Lévy measure. Whilst there are a number
of existing results connecting the two (see Sect. 9.5), a general result remains at
large.

Concavity and Convexity If x �→ Π(x), x > 0, is a completely monotone func-
tion,1 then, for all q > 0, W(q)′(x), x > 0, is convex. Note in particular, the latter
implies that there exists an a∗ ≥ 0 such that W(q) is concave on (0, a∗) and convex
on (a∗,∞). In the case that ψ ′(0+)≥ 0 and q = 0, the same conclusion holds with
a∗ = ∞, which is to say that W is a concave function. More generally, we have the
following result.

Theorem 9.2 Suppose that Π is log-convex. Then for all q ≥ 0, W(q) has a log-
convex first derivative.

(Note that a completely monotone function is log-convex and a log-convex function
is also convex.)

9.4 Engineered Scale Functions

Within the class of spectrally negative Lévy processes, there are a number of meth-
ods for generating examples of scale functions with q = 0. Rather than trying to
invert (9.11) for a given ψ , the idea is to construct a ψ corresponding to a given W .
We outline one method here, which is based around the Wiener–Hopf factorisation.

1A smooth function f : (0,∞)→ [0,∞) is completely monotone if, for all n ∈ N,

(−1)n
dnf (x)

dxn
≥ 0.



86 9 Concluding Discussion

For the purpose of this discussion, the Wiener–Hopf factorisation concerns the
Laplace exponent of X and takes the form:

ψ(θ)= (θ −Φ(0)
)
φ(θ), θ ≥ 0, (9.18)

where φ is a so-called Bernstein function. Specifically, the term φ(θ) must neces-
sarily take the form

φ(θ)= κ + δθ +
∫

(0,∞)

(
1 − e−θx)Υ (dx), θ ≥ 0, (9.19)

where κ, δ ≥ 0 and Υ is a measure concentrated on (0,∞)which satisfies
∫
(0,∞)

(1∧
x)Υ (dx) <∞. Roughly speaking, this factorisation can be proved by recalling that
ψ(Φ(0))= 0 and then manually factoring out (θ −Φ(0)) from ψ by using integra-
tion by parts to deal with the integral part of (9.7). It turns out that

Υ
(
(x,∞)

)= eΦ(0)x
∫ ∞

x

e−Φ(0)uΠ(u)du for x > 0, (9.20)

δ = σ 2/2 and κ =ψ ′(0+)∨ 0.
It is remarkable that φ is also the Laplace exponent of a subordinator2 which is

sent to the cemetery state +∞ after an independent and exponentially distributed
random time with rate κ .3 If we write this process H = {Ht : t ≥ 0} and let ζ =
inf{t > 0 :Ht = +∞}, then, for all t ≥ 0,

φ(θ)= −1

t
logE
(
e−θHt 1(t<ζ )

)
, θ ≥ 0.

What is even more remarkable is that the range of {Ht : t < ζ } agrees precisely
with the range of the process {−Xt : t ≥ 0}. Accordingly we call H the descending
ladder height process of X.

In the special case that Φ(0) = 0, that is to say, the process X does not drift to
−∞, or equivalently that ψ ′(0+) ≥ 0, it can be shown that the scale function W

describes the renewal measure of H . Indeed, the renewal measure of H is defined
by

U(dx)=
∫ ∞

0
dt · P(Ht ∈ dx, t < ζ), for x ≥ 0. (9.21)

Calculating its Laplace transform we get the identity

∫ ∞

0
e−θxU(dx)= 1

φ(θ)
for θ > 0. (9.22)

2A subordinator is a Lévy process with non-decreasing paths.
3Recall our convention that an exponential random variable with rate 0 is defined to be infinite-
valued with probability 1.
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Recall that we can integrate (9.11) by parts and get
∫

[0,∞)

e−θxW(dx)= θ

ψ(θ)
= 1

φ(θ)
, θ ≥ 0.

Hence, it appears that W agrees precisely with the renewal function, U , of the sub-
ordinator H that appears in the Wiener–Hopf factorisation.

It can be shown similarly that, when Φ(0) > 0, the scale function is related to the
renewal measure of H by the formula

W(x)= eΦ(0)x
∫ x

0
e−Φ(0)yU(dy), x ≥ 0. (9.23)

This relationship between scale functions and renewal measures of subordina-
tors lies at the heart of the approach we shall describe in this section for engineering
scale functions. A key to the method is the fact that one can find in the literature sev-
eral subordinators for which the renewal measure is known explicitly. Should these
subordinators turn out to be the descending ladder height process of a spectrally neg-
ative Lévy process, then this would give an exact expression for its scale function.
Said another way, we can build scale functions using the following approach.

Step 1. Choose a subordinator, say H , with Laplace exponent φ, for which one
knows its renewal measure, U , or equivalently, in light of (9.22), one can explic-
itly invert the Laplace transform 1/φ(θ).
Step 2. Choose a constant ϕ ≥ 0 and verify whether the relation

ψ(θ) := (θ − ϕ)φ(θ), θ ≥ 0,

defines the Laplace exponent of a spectrally negative Lévy process.
Step 3. Once Steps 1 and 2 are verified, then the scale function of the spectrally
negative Lévy process we have generated is given by (9.23).

Of course, for this method to be useful we should first provide necessary and
sufficient conditions for the pair (H,ϕ) to belong to the Wiener–Hopf factorisation
of a spectrally negative Lévy process.

The following theorem shows how one may identify a spectrally negative Lévy
process X (called the parent process) for a given pair (H,ϕ). The proof follows by
a straightforward manipulation of the Wiener–Hopf factorisation (9.18).

Theorem 9.3 Suppose that H is a subordinator, killed at rate κ ≥ 0, with drift
δ ≥ 0 and Lévy measure Υ which is absolutely continuous with non-increasing
density. Suppose further that ϕ ≥ 0 is given such that ϕκ = 0. Then there exists
a spectrally negative Lévy process X, henceforth referred to as the “parent pro-
cess”, whose descending ladder height process is precisely the process H . The Lévy
triplet (a, σ,Π) of the parent process is uniquely identified as follows. The Gaussian
coefficient is given by σ = √

2δ. The Lévy measure is given by

Π(x)= ϕΥ (x,∞)+ dΥ

dx
(x).
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Finally, a can be chosen such that

ψ(θ)= (θ − ϕ)φ(θ), (9.24)

for θ ≥ 0 where φ(θ)= − logE(e−θH1).
Conversely, the killing rate, drift and Lévy measure of the descending ladder

height process associated to a given spectrally negative Lévy process X are also
given by the above formulae when one replaces ϕ by Φ(0).

Let us conclude this section by presenting a concrete example of how this
methodology works in practise. Consider a spectrally negative Lévy process which
is the parent process of a (killed) tempered stable subordinator. That is to say a
subordinator with Laplace exponent given by

φ(θ)= κ − cΓ (−α)((γ + θ)α − γ α
)
,

where α ∈ (−1,1) \ {0}, γ > 0, κ ≥ 0 and c > 0. The Lévy measure corresponding
to this subordinator satisfies

Υ (dx)= c
e−γ x

xα+1
dx, x > 0.

The corresponding Lévy measure of the parent process is given by

Π(dx)= c
(ϕ + γ )

xα+1
e−γ xdx + c

(α + 1)

xα+2
e−γ xdx, x > 0. (9.25)

Note from Theorem 9.3 that σ = 0, indicating the absence of a Gaussian component.
If 0 < α < 1, then the jump component is the sum of the negative of an infinite

activity tempered stable subordinator and an independent spectrally negative tem-
pered stable process with infinite variation. If −1 ≤ α < 0, then the jump part of the
parent process is the independent sum of the negative of a tempered stable subordi-
nator with stability parameter 1 + α and exponential parameter γ , and the negative
of an independent compound Poisson subordinator with jumps from a gamma dis-
tribution shape parameter −α and rate parameter γ .

One easily deduces the following transformations as special examples of (9.13)
for θ,λ > 0, such that |θα/λ|> 1

∫ ∞

0
e−θxxα−1Eα,α

(
λxα
)
dx = 1

θα − λ
, (9.26)

and
∫ ∞

0
e−θxλ−1x−α−1E−α,−α

(
λ−1x−α)dx = λ

λ− θα
− 1, (9.27)

valid for α > 0 and α < 0, respectively. Together with the well-known rules for
Laplace transforms concerning primitives and tilting, we may quickly deduce the
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following expressions for the scale functions associated to the parent process with
Laplace exponent given by (9.24) such that κϕ = 0.

If 0 < α < 1, then, for x ≥ 0,

W(x)= eϕx

−cΓ (−α)
∫ x

0
e−(γ+ϕ)yyα−1Eα,α

(
κ + cΓ (−α)γ α

−cΓ (−α) yα
)

dy.

If −1 < α < 0, then, for x ≥ 0,

W(x) = eϕx

κ + cΓ (−α)γ α

+ cΓ (−α)eϕx
(κ + cΓ (−α)γ α)2

∫ x

0
e−(γ+ϕ)yy−α−1E−α,−α

(
cΓ (−α)y−α

κ + cΓ (−α)γ α
)

dy.

9.5 Comments

The case of a Cramér–Lundberg process with mixed exponential jumps can be gen-
eralised by taking jumps whose distribution has a Laplace transform that is the
ratio of two polynomial functions of finite degree (also called a rational Laplace
transform). Another favourite class in the family of jump distributions with rational
Laplace transform (which also contains the class of mixed-exponential distributions)
is the one of phase-type distributions. Neuts (1981) gives an overview of the latter.
The tractability of the class of processes with jumps having rational transform can
be routed back to early work of Borovkov (1976) concerning the Wiener–Hopf fac-
torisation. Many authors have worked on these types of Cramér–Lundberg processes
and it would be impossible to give a complete list here. We cite instead three of the
most recent references which give a good overview in the context of Gerber–Shiu
type problems. These are Asmussen and Albrecher (2010), Kuznetsov and Morales
(2011) and Egami and Yamazaki (2012). The idea of engineering scale functions
through the Wiener–Hopf factorisation comes from Hubalek and Kyprianou (2010)
and Kypianou and Rivero (2008). Analytical properties of scale functions have been
described in a variety of papers. A recent summary of these and many more facts
can be found in the review on scale functions found in Cohen et al. (2013).
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