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Dedicated to fusion after fission



Preface 

The neutron transport equation (NTE) is a fundamental equation which describes the 
flux of neutron particles in a fissile material. Although nothing more than a special 
case of the Boltzmann equation for kinetic particle systems, the mathematical 
significance of the NTE found prominence during WWII as part of the Manhattan 
project. Despite the sad associations with its beginnings, its real significance lay 
with the civil end of the Manhattan project that grew into the global development of 
nuclear energy. The development of nuclear power concurrently demanded a general 
understanding of how to handle neutron driven radioactivity. In the modern age, 
neutron transport modelling and, more generally, radiation transport modelling play 
out among an evenly balanced community of academics and industrialists across 
several sectors, including both fission and fusion reactor design, safety management 
and decommissioning, nuclear medical technology for both treatment and diagnosis, 
the food hygiene irradiation industry, and finally, the rapidly growing number of 
private and state organisations dedicated to interplanetary space exploration and 
associated extraterrestrial operations. 

Having already captured and held the attention of nuclear physicists and 
engineers for decades, neutron transport modelling has somehow been absent from 
the attention of the mathematical community for around half a century. This is 
even more notable when one takes account of the fact that the desire to solve 
the NTE is precisely what drove polymaths Ulam and von Neumann, among 
others in the Manhattan project, to develop the concept of Monte Carlo simulation. 
Moreover, there had been numerous contributions from mathematicians in the post-
war surge of interest in radiation transport modelling leading to the late 1960s. 
During this time, the relationship between fission modelling to the then evolving 
theory of branching processes was not missed. Many of the earliest works in 
this field are quite clear about the connection between the two and how one 
can read the behaviour of a certain type of branching process out of the NTE. 
In this text, we refer to the aforesaid as a neutron branching process (NBP); 
cf [7, 70, 94, 99, 100, 102, 103, 108, 110]. With time, an understanding of the 
mathematical nature of this relationship largely settled into more practical modelling 
questions. As alluded to above, the opportunity to study a much deeper relationship
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viii Preface

has essentially not been exploited much beyond the literature available up to the 
early 1970s. 

In contrast, the theory of branching processes has remained of central interest to 
probability theory, all the way through the development of post-WWII mathematics 
to the present day. The classical and most basic setting of the Bienyamé–Galton– 
Watson (BGW) process has received significant attention since the 1940s [84] with 
the majority of foundational results emerging through the 1960s, 1970s, and 1980s; 
c.f. [5, 6, 70]. In spite of some very early work dating back to the 1940s–1960s era 
in both Western and Soviet literature (e.g. [61, 75–77, 84, 101, 120, 126, 129]), 
the fertile ground of spatial analogues of the BGW process really only began 
to gain momentum from around the mid-1970s. Multi-type branching processes 
[5], Crump–Mode–Jagers processes [80], branching random walks [16, 82, 123], 
branching diffusions and superprocesses, [53, 55, 90], and more recently fragmen-
tation and growth fragmentation processes [12, 13] are all examples of processes 
which build out of BGW processes by including the notion of spatial movement 
and/or allow for fractional mass, infinite activity, and non-local mass creation. 

In many ways, the aforementioned connection made between the NTE and an 
underlying spatial branching process in the 1940s1 was ahead of its time. It is 
nonetheless surprising that the inclusion of NBPs as a fundamental example in 
the general theory of branching processes appears to have left by the wayside by 
probabilists. 

One of the motivations for this book has been to correct this loss of visibility 
within the probabilistic community. In particular, this is especially so since the 
application areas of general radiation transport have become much more integrated 
into modern living, e.g. through healthcare. Moreover, in doing so, we will take 
the opportunity to present a summary of the sudden burst of material that has been 
published in the last three years by the authors of this book together with various 
collaborators; a large segment of which formed the PhD thesis of the first author 
[73], as well some parts coming from the PhD thesis of Isaac Gonzalez [66]. We are 
therefore writing for a more mathematically literate audience. 

Precisely where in the modern-day zoology of branching processes, NBPs land 
is quite interesting. In short, an NBP is nothing more than a branching Markov 
process in a bounded domain. That said, the underlying Markov process is that 
of a particle that moves in straight lines and scatters (changes direction) at with 
rates that are spatially dependent. This is what we refer to in this text as a neutron 
random walk (NRW). Moreover, the rate at which fission (branching) occurs is also 
spatially dependent and occurs in a way that is non-local. The state space of the 
underlying Markov process is the tensor product of position and velocity. Offspring 
are positioned non-locally relative to last position-velocity location of the parent 
particle through a change in velocity rather than their position. In this sense, and

1 This connection was certainly known to those in Los Alamos as part of the Manhattan project, 
and had certainly reached formal scientific literature by the 1950s; cf. [61]. 
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as one would expect, neutrons fire off from the position that fission occurs albeit in 
different directions with different speeds. 

It is the combination of an irregular underlying Markov process (i.e. an NRW), 
non-local branching, and spatial inhomogeneity that makes NBPs difficult and 
therefore interesting to analyse. In some respects, to make headway into the theory 
of NBPs is to make progress on the theory of general branching Markov processes 
(BMPs). In that case, one may argue that it suffices to write a book on purely the 
BMP setting. Nonetheless, there are some graces that come from the specificity of 
the neutron model. 

Taking the pros and cons of the specific setting of NBPs versus general setting of 
BMPs into account, the book is divided into two parts. The first part runs through a 
modern take on the relationship between the NBP and the NTE, as well as some of 
the core relevant results concerning the growth and spread of mass of the NBP. For 
the most part, we only offer proofs that are specific to the NTE and NBP in this part 
of the book. As such, the reader gains quicker insight into how deeply the theory of 
branching processes penetrates into neutronics. 

In Part II, we look at the generalisation of some of the mathematical theory 
announced for NBPs in Part I, albeit, now, offering their proofs in the broader 
context. This allows us the opportunity to provide an understanding of why the 
NBP is as malleable as it appears to be. In essence, Part II of the book picks 
up a story that began with a small cluster of literature produced by Asmussen 
and Herring [3–5] in the 1970s and 1980s. Their work was based on the general 
abstract framework for branching processes introduced in the three foundational 
papers of Ikeda, Nagasawa, and Watanabe [75–77], which allowed for arbitrary 
Markovian motion of particles and non-local branching mechanisms. Asmussen and 
Herring showed that, with the addition of an assumed spectral decomposition of 
an associated mean semigroup, a number of significant tractable results could be 
attained. 

In principle, each of the two parts of this book could form separate texts. Clearly, 
the application of branching processes to neutron transport stands on its own merits 
given the real-world applications. Moreover, a study of the Asmussen–Hering class 
is deserving of attention within its own right if one considers how computationally 
robust it is. Nonetheless, probability is a field of mathematics which is cultured by 
the rigour of pure mathematics whilst, at the same time, keeping application well 
within view. Hence, in keeping with this tradition, we have decided to keep the two 
parts within the same text. 

Coventry, UK Emma Horton 
2023 Andreas E. Kyprianou
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Part I 
Stochastic Neutron Transport



Chapter 1 
Classical Neutron Transport Theory 

The neutron transport equation (NTE) describes the flux of neutrons through an 
inhomogeneous fissile medium. It serves as a core example of a wider family of 
radiation transport equations, all of which are variants of a general category of 
Boltzmann transport equations. Our objective in this book is to assemble some of 
the main mathematical ideas around neutron transport and their relationship with 
the modern theory of branching Markov processes. In this first chapter, we will 
introduce the underlying physical processes of nuclear fission, how this gives rise to 
the NTE, and moreover, we discuss the classical context in which the NTE can be 
rigorously understood as a well-defined mathematical equation. 

1.1 Basic Neutronics 

Shortly, we will formally introduce the NTE as describing neutron flux. That is, 
the average total length travelled by all free neutrons per unit time and volume. In 
order to understand its structure, it is first necessary to understand the basic physical 
phenomena that govern the movement of neutrons in fissile environments. Below 
we give a brief summary of the physical processes at play. We make no apology for 
skipping some rather sophisticated physics in favour of a dynamical description of 
what one might consider a macroscopic view on the scale of the human observer. 

Configuration Space We start by introducing what we call the configuration of a 
particle. Each neutron can be identified by: 

• Its position .r ∈ D, where .D ⊂ R
3 is open, bounded, and smooth enough that for 

every .r ∈ ∂D, a unique normal vector . nr can be identified 
• Its velocity .υ ∈ V , where .V = {υ ∈ R

3 : vmin ≤ |υ| ≤ vmax}, where . 0 <

vmin ≤ vmax < ∞
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Fig. 1.1 The configuration 
variables .(r, υ) offer the 
minimal mathematical 
information for each neutron 
particle 

υ 

Ω =  υ/|υ|
r 

0 

We refer to .(r, υ) as the particle’s configuration, and the set .D × V as the 
configuration space. All quantities that appear in the NTE will be functionals on 
this space (Fig. 1.1). 

In the nuclear physics and engineering literature, it is more common to work 
instead with physical position .r ∈ D, unit direction .Ω ∈ S

2 (the unit sphere), and 
energy .E ∈ (0,∞). We make the global assumption that the energy of particles is 
such that one need not worry about quantum or relativistic effects. As such, particle 
energy is related to its speed, v, via the simple Newtonian kinematic equation . E =
mv2/2, where m is the mass of a neutron. The velocity of a particle is then simply 
given by .υ = vΩ . Our notation therefore deviates from these norms because, from 
a mathematical and probabilistic perspective, it makes more sense to work with the 
minimal number of necessary variables. 

Advection Transport If at time .t = 0, a neutron is found with configuration 
.(r, υ) ∈ D × V , it will move along the trajectory .(r + υs, υ), .s ≥ 0, until it either 
hits the boundary of the domain D, at which point we will consider it as absorbed 
and no longer tracked (equivalently, no longer in existence), or one of three other 
possibilities occurs. These are: scattering, fission, or neutron capture, each of which 
we describe next. 

Scattering A scattering event occurs when a neutron and an atomic nucleus inter-
act. As alluded to above, we shy away from the delicate physics of such subatomic 
interactions. It suffices to note that, for our purposes, the interaction causes what is 
tantamount to an instantaneous change in velocity. A more subtle form of modelling 
may distinguish between elastic scattering (conservation of energy) and inelastic 
scattering (dissipation of energy); however, for our introductory approach, we will 
consider only elastic scattering. 

Fission Roughly speaking, nuclear fission occurs when a neutron collides with 
a nucleus, which then causes the nucleus to split into several smaller parts, thus 
releasing more neutrons. We again skirt over the subatomic subtleties and think of a 
fission event as an instantaneous removal of an incident neutron, to be replaced by a 
number of new neutrons at the same physical location but with differing velocities.
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In reality, the incident neutron is absorbed by the nucleus, which results in the 
nucleus becoming “excited” or unstable. In turn, the nucleus splits open and releases 
surplus neutrons. However, not all neutrons are released from the nucleus at the 
same time, which leads us to two categories of fission neutrons. The so-called 
prompt neutrons are released immediately (on a time scale of about .10−14 seconds) 
from a fission event. Most neutron yield (about 99%) from fission events is made 
up of prompt neutrons. When an excited nucleus splits open and releases prompt 
neutrons, the remaining fragments from the nucleus may still be in an excited 
state. After some time, these fragments may release further neutrons, called delayed 
neutrons, in order to become stable again. Delayed neutrons constitute a much 
lower proportion of the total yield from a fission event. In our models, we will 
only consider prompt neutrons. Nonetheless, we will return to a brief discussion on 
distinguishing the two cases at the end of this chapter. 

Neutron Capture Neutron capture occurs when a neutron is absorbed by a nucleus 
during a neutron–nucleus interaction, and as the name suggests, there is no further 
neutron release as a consequence. This is all we really care about for the purposes 
of our modelling, but in reality, the situation is inevitably more complex with the 
release of gamma rays, for example, from the nucleus as a consequence. In principle, 
neutron capture is highly dependent on the incident energy, as well as the nucleus 
involved. In our presentation of the NTE, we will combine nuclear fission and 
neutron capture by considering the latter as a fission event where no neutrons are 
released. 

1.2 Neutron Transport Equation (NTE) 

Neutron flux and neutron density are two fundamental physical measurements that 
describe a neutron configuration. Let us start by defining the latter. Henceforth 
denoted by .Ψt(r, υ), neutron density is the expected number of neutrons present 
at time .t ≥ 0 at position .r ∈ D and with velocity .υ ∈ V , per unit volume, per unit 
velocity. In other words, the expected number of neutrons to be found in a domain 
.D0 ⊆ D with velocities in .V0 ⊆ V is nothing more than .

∫
D0

∫
V0

Ψt(r, υ)drdυ. 
In contrast, neutron flux, henceforth denoted by .Γt(r, υ), is the density in . D ×V

of the average track length covered by neutrons per unit time. Flux is fundamentally 
related to neutron density via the equation 

.Γt (r, υ) = |υ|Ψt(r, υ), r ∈ D, υ ∈ V, t ≥ 0. (1.1) 

Flux is a preferable quantity for determining the rate of interaction of neutrons with 
other atoms because interaction rates (or cross sections) are usually expressed as 
“per unit track length”. This is another point of departure from standard modelling 
in the nuclear physics and engineering literature that we enforce here. As this text
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is fundamentally about probability theory, our preference is to work with rates as a 
“per unit time” rather than “per unit track length” quantity. 

The following key quantities give the rates in question as well as some additional 
kernels that further describe interaction events: 

.σs(r, υ '): The density in .D×V of the rate per unit time at which scattering occurs 
from incoming velocity . υ '

.σf(r, υ '): The density in .D × V of the rate per unit time at which fission occurs 
from incoming velocity . υ '

.σ(r,  υ '): The sum of the rates .σf + σs, also known as the collision rate 

.πs(r, υ ', υ): The probability density that an outgoing velocity due to a scatter event is 
. υ from an incoming velocity . υ ', given that scattering occurs, necessarily 
satisfying . 

∫
V πs(r, υ, υ ')dυ ' = 1 

.πf(r, υ ', υ): The average number of neutrons emerging at velocity . υ from fission 
with incoming velocity . υ ', given that a fission or capture event occurs, 
satisfying . 

∫
V πf(r, υ, υ ')dυ ' < ∞ 

.Qt (r, υ): A non-negative source term giving the density in .D × V of the rate at 
which neutrons are generated from a radioactive source. 

For the quantities . σ , . σs, and . σf, one can easily convert them to rates per unit 
track length by multiplying by . |υ|. In the nuclear physics and engineering literature, 
the quantities 

. ς(r, υ) := |υ|−1σ(r, υ), ςs(r, υ) := |υ|−1σs(r, υ) and ςf(r, υ) := |υ|−1σf(r, υ)

(1.2) 

on .D × V are known as cross sections. Because of the simple relationship between 
rates, we will somewhat abuse this notation and also refer to . σ , . σs, and . σf as cross 
sections. It is usual and indeed consistent with the physics of neutron transport, to 
impose the following important global assumption: 

(H1) . σs, . σf, . πs and . πf are uniformly bounded away from infinity. 

Now let us turn our attention to deriving the neutron transport equation using a 
semi-rigorous approach based on the basic principles of mean particle behaviour. 
Take .D0 ⊂ D, and consider the change in neutron density in .D0 × {υ} in between 
time t and . Δt . First note that this quantity can be expressed as 

.

∫

D0

[Ψt+Δt (r, υ) − Ψt(r, υ)]dr. (1.3) 

This quantity can be also derived by considering the different ways the neutron 
density can change according to the dynamics of the particles. We emphasise that in 
what follows we only consider prompt neutrons and that neutron capture is seen as 
fission with no neutron output. 

We first consider the “gains” that lead to a neutron having a configuration .(r, υ) at 
time .t +Δt . There are three possibilities: scattering, fission, and an external source. 
If it has undergone a scattering, the contribution to (1.3) is given by
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. Δt

∫

D0

∫

V

σs(r, υ
')πs(r, υ

', υ)Ψt (r, υ
')dυ 'dr.

Similarly, the contribution due to fission is given by 

. Δt

∫

D0

∫

V

σf(r, υ
')πf(r, υ

', υ)Ψt (r, υ
')dυ 'dr.

Finally, the contribution due to the external source is given by 

. Δt

∫

D0

Qt (r, υ)dr.

We now consider the “losses”, which comes from the particles “leaving” the 
configuration .(r, υ) due to a collision. Since this is characterised by the rate . σ , the  
total loss in neutron density due to collisions is given by 

. Δt

∫

D0

σ(r, υ)Ψt (r, υ)dr.

Finally, particles may be “lost” or “gained” via the boundary of . D0, denoted .∂D0. 
Recall that particles are travelling at speed . |υ|, thereby covering a distance .|υ|Δt in 
the time interval .[t, t + Δt], and are moving in direction .Ω = |υ|−1υ. Then the net 
number of particles that pass through .D0 × {υ} via a small patch . dS of the surface 
.∂D0 is given by .|υ|Δt × Ω · nrΨt (r, υ)dS = Δtυ · nrΨt (r, υ)dS. Hence, the total 
change in the number of particles in .D0 × {υ} via .∂D0 is given by 

. Δt

∮

∂D0

υ · nrΨt (r, υ)dS = Δt

∫

D0

υ · ∇rΨt (r, υ)dr,

where the equality follows from the divergence theorem and . ∇r is the gradient 
differential operator with respect to r . 

Combining these gains and losses, and equating them with (1.3), we obtain 

.

∫

D0

[Ψt+Δt (r, υ) − Ψt(r, υ)]dr

= Δt

∫

D0

Qt (r, υ)dr − Δt

∫

D0

υ · ∇rΨt (r, υ)dr − Δt

∫

D0

σ(r, υ)Ψt (r, υ)dr

+ Δt

∫

D0

∫

V

σs(r, υ
')πs(r, υ

', υ)Ψt (r, υ
')dυ 'dr

+ Δt

∫

D0

∫

V

σf(r, υ
')πf(r, υ

', υ)Ψt (r, υ
')dυ 'dr.
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Since . D0 was arbitrary, it follows that 

. Ψt+Δt (r, υ) − Ψt(r, υ) =ΔtQt (r, υ) − Δtυ · ∇rΨt (r, υ) − Δtσ(r, υ)Ψt (r, υ)

+ Δt

∫

V

Ψt (r, υ
')dυ 'σs(r, υ ')πs(r, υ

', υ)

+ Δt

∫

V

Ψt (r, υ
')dυ 'σf(r, υ ')πf(r, υ

', υ)dυ '.

Dividing both sides by . Δt and letting .Δt → 0, we obtain the so-called forward 
neutron transport equation: 

. 
∂

∂t
Ψt (r, υ) =Qt (r, υ) − υ · ∇rΨt (r, υ) − σ(r, υ)Ψt (r, υ)

+
∫

V

Ψt (r, υ
')σs(r, υ ')πs(r, υ

', υ)dυ '

+
∫

V

Ψt (r, υ
')σf(r, υ ')πf(r, υ

', υ)dυ '. (1.4) 

We will also need the following initial and boundary conditions: 

.

⎧
⎨

⎩

Ψ0(r, υ) = g(r, υ) for r ∈ D,υ ∈ V,

Ψt (r, υ) = 0 for t ≥ 0 and r ∈ ∂D if υ · nr < 0,
(1.5) 

where . nr is the outward facing unit normal at .r ∈ ∂D. The second of these two 
conditions ensures that particles just outside the domain D travelling towards it 
cannot enter it. 

1.3 Flux Versus Neutron Density 

Earlier we noted that our preferred configuration variables .(r, υ) are chosen in place 
of the triplet .(r,Ω,E) and that we have defined our cross sections as rates per unit 
time rather than rates per unit track length, cf. (1.2). If we consider the system (1.4) 
and (1.5) in terms of flux rather than in terms of neutron density, then we see that 
(1.4) and (1.5) become 

.
1

|υ|
∂

∂t
Γt (r,Ω,E) + Ω · ∇rΓt (r,Ω,E) + ς(r,Ω,E)Γt (r,Ω,E)

=
∫

S2×(0,∞)

Γt (r,Ω
', E')ςs(r,Ω ', E')πs(r,Ω

', E',Ω,E)dΩ 'dE'
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+
∫

S2×(0,∞) 
Γt (r, Ω ', E')ςf(r, Ω ', E')πf(r, Ω ', E',Ω,E)dΩ 'dE'

+ Qt (r,Ω,E), (1.6) 

.

⎧
⎨

⎩

Γ0(r,Ω,E) = g(r,Ω,E) for r ∈ D,υ ∈ V,

Γt (r,Ω,E) = 0 for t ≥ 0 and r ∈ ∂D if υ · nr < 0.
(1.7) 

Here, we have used the previously discussed fact that functional dependency on 
.(r, υ) is equivalent to functional dependency on .(r,Ω,E) when we have the 
relations .Ω = υ/|υ| and (1.2). Moreover, recalling from (1.1) that . |υ| =√
2E/m, we have used the fact that the probability density .πs(r, υ

', υ)dυ ' over V 
is alternatively treated as the density .πs(r,Ω

', E',Ω,E)dΩ 'dE' over . S2 × (0,∞)

under the alternative configuration parameters (i.e., an adjustment in the definition 
of . πs is needed in terms of the new configuration variables), with a similar statement 
for . πf holding. Technically speaking, in (1.7), we should write . Γ0(r,Ω,E) =
|υ|g(r,Ω,E); however, we can simply define this as a new function g representing 
the initial flux profile. 

The system (1.6) and (1.7) is the classical form in which the NTE is presented in 
the physics and engineering literature. As alluded to previously, we have chosen 
to deviate from these classical norms as our principal interest in this text is 
to examine the underpinning mathematical structure of the NTE in relation to 
stochastic processes. As such, it is more convenient to keep the NTE in as compact 
a form as possible. 

As the reader is probably already aware, there is a technical problem with (1.4) 
and (1.5). Our calculations do not adhere to the degree of rigour that is needed to 
confirm that the limits that define derivatives are well defined. For example, it is not 
clear that we can interpret .υ · ∇rΨt in a pointwise sense as . Ψt may not be smooth 
enough. It turns out that the right way to see the above calculations is in the setting 
of an appropriate functional space. 

1.4 Classical Solutions as an Abstract Cauchy Problem 
(ACP) 

Let us henceforth continue our discussion without the source term for convenience. 
In other words, we will make the blanket assumption 

. Qt ≡ 0, t ≥ 0.

The usual way to find solutions to the NTE is to pose it as an abstract Cauchy 
problem (ACP). More formally, we need to move our discussion into the language
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of functional spaces. To this end, let us introduce .L2(D × V ) as the Hilbert space 
of square integrable functions on .D × V , defined with the usual inner product 

. 〈f, g〉 =
∫

D×V

f (r, υ)g(r, υ)drdυ, f, g ∈ L2(D × V ).

Before introducing the notion of the NTE in the form of an ACP on .L2(D × V ), 
we first need to introduce three linear operators whose domains are embedded in 
.L2(D × V ) (we will be more precise about these later on) and whose actions on 
.g ∈ L2(D × V ) are given by 

.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T g(r, υ) := −υ · ∇rg(r, υ) − σ(r, υ)g(r, υ)

S g(r, υ) := ∫
V

g(r, υ ')σs(r, υ ')πs(r, υ
', υ)dυ '

Fg(r, υ) := ∫
V

g(r, υ ')σf(r, υ ')πf(r, υ
', υ)dυ '.

(1.8) 

We name them, respectively, the transport, scattering, and fission operators. 
Then the NTE (1.4) can be posed as the following ACP: 

.

⎧
⎨

⎩

∂

∂t
Ψt = (T + S + F )Ψt

Ψ0 = g,
(1.9) 

where .Ψt ∈ L2(D × V ). Specifically, this means that .(Ψt , t ≥ 0) is continuously 
differentiable in this space. In other words, there exists a .vt ∈ L2(D × V ), 
which is time-continuous in .L2(D × V ) with respect to .‖·‖2 = 〈·, ·〉1/2, such that 
.limh→0‖h−1(Ψt+h − Ψt) − vt‖2 = 0 for all .t ≥ 0. Moreover, we refer to . νt as 
.∂Ψt/∂t , . t ≥ 0.

The theory of .c0-semigroups gives us a straightforward approach to describing 
(what turns out to be) the unique solution to (1.9). Recall that a .c0-semigroup also 
goes by the name of a strongly continuous semigroup and, in the present context, 
this means a family of time-indexed operators, .(Vt , t ≥ 0), on  .L2(D × V ), such 
that: 

(i) .V0 = Id. 
(ii) .Vt+sg = VtVsg, for all .s, t ≥ 0, .g ∈ L2(D × V ). 
(iii) For all .g ∈ L2(D × V ), .limh→0‖Vhg − g‖2 = 0. 

To see how .c0-semigroups relate to (1.9), let us pre-emptively define . (Ψtg, t ≥ 0)
to be the semigroup generated by . G via the orbit 

.Ψtg := exp(tG )g, g ∈ L2(D × V ), (1.10)



1.5 Principal Eigendecomposition and Criticality 11

where we interpret the exponential of the operator . tG in the obvious way, 

. exp(tG )g =
∞∑

k=0

tk

k! G [G [· · · G
︸ ︷︷ ︸

k-fold

g]].

Standard .c0-semigroup theory tells us that .Ψtg ∈ Dom(G ) for all .t ≥ 0, providing 
.g ∈ Dom(G ), where 

. Dom(G ) :=
{

g ∈ L2(D × V ) : lim
h→0

h−1(Ψhg − g) exists in L2(D × V )

}

.

(1.11) 

Understanding the structure of .Dom(G ) in more detail now gives us the opportu-
nity to bring (1.5) into the discussion. 

Both the scattering and fission operators, . S and . F , are  .‖·‖2-continuous 
mappings from .L2(D × V ) into itself. Showing this is a straightforward exercise 
that uses the Cauchy–Schwarz inequality and (H1). The domain of . T is a little 
more complicated. To this end, let us define 

. ∂(D × V )− = {(r, υ) ∈ D × V such that r ∈ ∂D and υ · nr < 0}.

The domain of . T is known to satisfy 

. Dom(T ) = {g ∈ L2(D × V ) such that υ · ∇rg ∈ L2(D × V ) and g|∂(D×V )− = 0}.
(1.12) 

As such, it follows that .Dom(G ) = Dom(T ). 
Now returning to (1.9), we can conclude the following. 

Theorem 1.1 Defining .(Ψt , t ≥ 0) via (1.10), we have that it is the unique classical 
solution of (1.9) in .L2(D × V ). 

1.5 Principal Eigendecomposition and Criticality 

One of the main tools used for modelling with the NTE is its leading asymptotic 
behaviour. Roughly speaking, this means looking for an associated triple of a 
“leading” eigenvalue .λ∗ ∈ R and non-negative left and right eigenfunctions, . φ and 
. φ̃, respectively, such that 

.λ∗〈g, φ〉 = 〈g,G φ〉 and λ∗〈φ̃, f 〉 = 〈φ̃,G f 〉,
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for .g ∈ L2(D ×V ) and .f ∈ Dom(G ). The sense in which . λ∗ is “leading” turns out 
to mean that it is the eigenvalue with the largest real component. The accompanying 
eigenfunction . φ is often referred to as the “ground state”. 

Depending on the nature of the underlying generators, a natural behaviour for 
equations of the type (1.9) is that its solution asymptotically projects on to its ground 
state in the sense that 

.Ψt = eλ∗t 〈φ̃, g〉φ + o(eλ∗t ) as t → ∞. (1.13) 

The approximation (1.13) can be seen as a functional version of the Perron– 
Frobenius theorem.1 Using spectral theory for .c0-semigroups, the following result 
is one of many different variations of its kind, which provides sufficient conditions 
for the existence of a ground state for which (1.13) holds. 

Theorem 1.2 LetD be convex and non-empty. We assume the following irreducibil-
ity conditions. Assume that the cross sections 

. σf(r, υ)πf(r, υ, υ ') and σs(r, υ)πs(r, υ, υ ')

are piecewise continuous2 on .D̄ × V × V and 

.σf(r, υ)πf(r, υ, υ ') > 0 on D × V × V. (1.14) 

Then: 

(i) The neutron transport operator . G has a simple and isolated eigenvalue . λ∗ >

−∞, which is leading in the sense that 

. λ∗ = sup{Re(λ) : λ is an eigenvalue of G },

and which has corresponding non-negative right eigenfunction, . φ, in . L2(D×V )

and left eigenfunction . φ̃ in .L2(D × V ). 
(ii) There exists an .ε > 0 such that, as .t → ∞, 

.‖e−λ∗tΨtf − 〈φ̃, f 〉φ‖2 = O(e−εt ), (1.15) 

for all .f ∈ L2(D × V ), where .(Ψt , t ≥ 0) is defined in (1.10).

1 For the reader unfamiliar with the classical Perron–Frobenius theorem, it will be discussed in 
more detail in the next chapter. 
2 A function is piecewise continuous if its domain can be divided into an exhaustive finite partition 
(for example, polytopes) such that there is continuity in each element of the partition. This is 
precisely how cross sections are stored in numerical libraries for modelling of nuclear reactor 
cores. 
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The importance of the asymptotic decomposition (1.15) is that it allows us to 
introduce the notion of criticality. The setting .λ∗ > 0 indicates an exponential 
growth in the neutron density, .λ∗ < 0 indicates exponential decay in neutron 
density, and .λ∗ = 0 corresponds to stabilisation of the neutron density. When 
considering the NTE in the context of nuclear reactor modelling, it is clear that the 
most desirable scenario is .λ∗ = 0, which would suggest the production of neutrons 
through fission is perfectly balanced, on average, by nuclear capture and absorption 
in control rods and the surrounding shielding materials. 

1.6 Remarks on Diffusive Approximations 

We may consider the NTE in the form (1.4) as irregular. The difference and 
advection operators involved in the NTE force us to work with less smooth 
functions than one would typically work with, for example, in a diffusive setting. 
As mathematicians, when confronted with such an irregular system, we sometimes 
have the urge to scale away irregularities via a diffusive approximation. To this end, 
let us define 

.μt(r, E) :=
∫

S2
Ψt(r, vΩ)dΩ, . (1.16) 

Jt (r, E) :=
∫

S2 
vΩΨt(r, vΩ)dΩ, (1.17) 

where we recall that .v = √
2E/m, . S2 denotes the unit sphere in . R3. Typically, 

cross sections only depend on velocity through energy, which comes from the fact 
that the media through which neutrons diffuse are piecewise homogeneous. For 
convenience, let us write .ςs(r, E) and .ςf(r, E)in place of .σs(r, υ) and .σf(r, υ), 
respectively, and .ς(r, υ) = ςf(r, υ) + ςs(r, υ). Under the further assumption that 
scattering and fission are isotropic, it follows that 

. 
∂μt

∂t
(r, E) = −∇r · Jt (r, E) − ς(r, E)μt (r, E)

+
∫ Emax

Emin

μt (r, E
')ςs(r, E')dE'

+
∫ Emax

Emin

μt (r, E
')ςf(r, E')ν(r, E', E)dE', (1.18) 

where .ν(r, E', E) is the average number of neutrons emerging with energy . E' from a 
fission event caused by a neutron with energy E at position r and .Emin (respectively, 
.Emax) is the energy corresponding to the velocity .υmin (respectively, .υmax).
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Now, under certain assumptions, which will be discussed shortly, Fick’s law 
states that 

.Jt (r, E) = −D∇rμt (r, E), (1.19) 

where D is the diffusion coefficient. Substituting this into (1.18) yields 

. 
∂μt

∂t
(r, E) = DΔμt(r, E) − ς(r, E)μt (r, E)

+
∫ Emax

Emin

μt (r, E
')ςs(r, E')dE'

+
∫ Emax

Emin

μt (r, E
')ςf(r, E')ν(r, E', E)dE'. (1.20) 

But does such an approximation make sense? Let us return to the approximation 
given in (1.19). In order to make this substitution, several assumptions are required. 
First, in order to derive Fick’s law, one must assume that absorption occurs at a much 
slower rate than scattering and so the approximation is technically not valid in highly 
absorbing regions or vacuums. We also made the assumption of isotropic scattering, 
which is only really valid at low temperatures. Finally, this approximation is only 
valid when neutrons are sufficiently far from a neutron source or the surface of a 
material, since this leads to abrupt changes in the scattering and absorption cross 
sections. Consider for example Fig. 1.2 that gives us a slice of what the internal 
geometry of a reactor might look like.3 

Admittedly, the diffusion approximation works well in many practical settings; 
however, our objective in this monograph is to understand how to work in the more 
accurate setting of the NTE in its native form. 

1.7 Primer to the Stochastic Approach 

Having rejected working with a diffusive approximation, we are still confronted 
with the inhomogeneous nature of the NTE. This makes the prospect of an 
analytically closed-form solution to (1.4) highly unlikely. While symmetries of 
nuclear reactors can be exploited, as alluded to above, each subsection of the reactor 
may contain many different materials, which, in turn, have different properties. 
For example, the scattering and fission cross sections, . σs, . σf, . πs, and . πf, depend 
on both the position and velocity of the incident neutron. It seems inevitable that 
numerical solutions are the best we can hope for.

3 We would like to thank researchers from the ANSWERS software group at Jacobs who kindly 
provided this image. 
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Fig. 1.2 The geometry of a 
nuclear reactor core 
representing a physical 
domain D, on to which  the  
different cross-sectional 
values of .σs, σf, πs, πf are 
mapped, also as a function of 
neutron velocity 

After many years of experimentation, the values of cross sections are well 
understood for different materials, as well as for different neutron energies (which 
are in turn a function of velocity). Figure 1.3 gives two examples of cross sections, 
which are typical in terms of their complexity.4 Their values are stored in extensive 
numerical libraries that are held in national archives5 and are referred to as nuclear 
data. Any numerical model will require extensive reference to nuclear data, and this 
alone presents an additional source of computational complexity. 

Fundamentally, there are two types of numerical solutions to the NTE that one 
can imagine working with: deterministic and stochastic. Roughly speaking, deter-
ministic numerical models rely on a classical method of meshing the underlying 
variables of time, space, and velocity and turning the NTE (1.4) into a complex 
system of algebraic linear equations that one can aim to solve via inversion. 

Our objective in this text is to explore the mathematical principles that underpin 
the stochastic approach. Fundamentally, this entails representing solutions to the 
NTE as path averages of certain underlying stochastic processes. In other words, 
we are interested here in the so-called Feynman–Kac representation of solutions to 
the NTE. An understanding of Feynman–Kac representation is what opens the door 
to Monte Carlo simulation, which is another approach to numerically generating 
solutions.

4 We would like to thank Prof. Eugene Shwageraus from the Cambridge Nuclear Energy Centre 
for allowing us to reproduce these images. 
5 Different national nuclear organisations have each generated different libraries.
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Fig. 1.3 Left: An example of the probability of elastic scatter as a function of energy and polar 
angle for U-238 (with symmetry in the azimuthal angle), prepared using [27]. Right: An example of 
microscopic fission cross section for Pu-240 as a function of the incident neutron energy, prepared 
using [118]. The images were prepared using ENDF-7 nuclear data cf. [20] 

In the coming chapters, we will explain how solutions to the NTE can be 
identified via an entirely different approach that embraces underlying stochastic 
representations. It will turn out that there are fundamentally two different types of 
Markov processes whose paths provide us with information about the solutions to 
the NTE. The first of these is what we call a neutron random walk (NRW), and 
the second is what we will call a neutron branching process (NBP). Our focus for 
the remainder of Part I of this book will be to pursue how such processes can be 
defined, how they fit into an alternative notion of “solution” to the NTE, and how 
their underlying properties give us insight into the behaviour of these solutions. We 
also gain some insight into what we should expect of the physical process of neutron 
fission itself. 

1.8 Comments 

It is a little difficult to locate the original derivation of the NTE. But one would 
speculate with confidence that a more formalised mathematical approach was 
undoubtedly rooted in the Manhattan Project and known to the likes of Ulam 
and von Neumann. In the 1960s, numerous papers and books emerged in which 
the derivation of the neutron transport equation can be found. Examples include 
classical texts such as Davison and Sykes [36], with more modern derivations found 
in [8, 94, 95], for example. A layman’s introduction to the role of neutron transport 
and, more generally, how nuclear reactors work can be found in the outstanding text 
of Tucker [128], which makes for light-hearted but highly insightful reading. 

Already by the 1950s, there was an understanding of how to treat the NTE in spe-
cial geometries and by imposing isotropic scattering and fission, see, for example, 
Lehner [91] and Lehner and Wing [92, 93]. It was also understood quite early on 
that the natural way to state the NTE is via the linear differential transport equation 
associated to a suitably defined operator on a Banach space (i.e., an . Lp space).
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Moreover, it was understood that in this formulation, a spectral decomposition 
should play a key role in representing solutions, as well as identifying the notion 
of criticality; see, for example, Jörgens [81], Pazy and Rabinowitz [109]. 

The description of the NTE in the functional setting of an . Lp space was promoted 
by the work of R. Dautray and collaborators, who showed how .c0-semigroups form 
a natural framework within which one may analyse the existence and uniqueness of 
solutions to the NTE; see [34] and [33]. A similar approach has also been pioneered 
by Mokhtar-Kharroubi [98]. The theory of .c0-semigroups is a relatively standard 
tool, for which a solid account can be found in [52]. For the proof of the precise 
nature of the domains of . T , . S , and . F , see, for example, Lemma XXI.1 of [33]. 
As such, Theorem 1.1 is essentially restating Proposition II.6.2 of [52]. Mokhtar-
Kharroubi [98] also gives a very precise account of the spectral analysis of the 
combined generators .T + S + F . 

On a more humorous note, Tucker [128] points out that the significance of 
criticality is often misunderstood in fictional media. At moments of impending 
nuclear reactor catastrophe in dramatic storylines, an underling will often be heard 
reporting to their superior with great anxiety “The reactor has gone critical!”. In  
fact, this is a moment when everyone should go back about their business, content 
that their power source is operating as intended. 

Let us return briefly to some of our earlier remarks on delayed neutrons that have 
formally entered into the nuclear literature as early as 1947 in Courant and Wallace 
[28]; see also the 1958 publication of Weinberg and Wigner [130]. 

As previously mentioned, when a fission event occurs, the nucleus is split into 
unstable fragments (called isotopes), which later release more neutrons in order 
to return to a stable energetic state. Thus, modelling neutron density in this case 
requires one to keep track of the number of prompt neutrons as well as the number 
of isotopes. We therefore need to enhance the configuration space to distinguish 
between these two objects. 

We will denote type 1 particles to be neutrons and type 2 particles to be isotopes. 
We write .Ψ (2)(r, υ) for the particle density of isotopes at .r ∈ D, which carry the 
label .υ ∈ V . Although isotopes are stationary in space, for technical reasons, we 
assign them with a velocity, which is inherited from the incident fission neutron. 
Accordingly, the configuration space is now .D × V × {1, 2}. In order to write down 
the relevant equations, we introduce the following additional cross sections: 

. ϑ : Rate at which neutrons are released from isotopes 

.mi(r, υ): The average number of isotopes resulting from a collision at .r ∈ D with 
incoming velocity6 .υ ∈ V . 

.mo(r, υ ', υ): The average number of delayed neutrons released with outgoing veloc-
ity .υ ∈ V from an isotope at .r ∈ D with label . υ '. 

6 Note that since isotopes inherit velocity from the incident fission neutron, this means the label of 
the isotope is also . υ.
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Then, the (forward) NTE with delayed neutrons can be written as follows: 

. 
∂

∂t
Ψ

(1)
t (r, υ) = Qt (r, υ) − υ · ∇rΨ

(1)
t (r, υ) − σ(r, υ)Ψ

(1)
t (r, υ)

+
∫

V

σf(r, υ
')Ψ (1)

t (r, υ ')πf(r, υ
', υ)dυ '

+ ϑ

∫

V

Ψ
(2)
t (r, υ ')mo(r, υ

', υ)dυ '

+
∫

V

σs(r, υ
')Ψ (1)

t (r, υ ')πs(r, υ
', υ)dυ ', (1.21) 

with 

.
∂

∂t
Ψ

(2)
t (r, υ) = − ϑΨ

(2)
t (r, υ) + σf(r, υ)mi(r, υ)Ψ

(1)
t (r, υ). (1.22) 

The above pair of equations illustrate how to include both prompt and delayed 
neutrons. Of course, we could develop a more precise version of (1.21)–(1.22), since 
we could also keep track of the different types of isotopes and require that . πf also 
depends on the type of the particle. 

In this more general setting, Theorem 1.2 has been stated and proved in greater 
generality in [30], allowing for the inclusion of other types of nuclear emissions 
such as alpha, beta, and gamma radiation, as well as delayed neutrons. 

An important fact about delayed neutrons is that they are a crucial element of 
why nuclear reactors can be controlled; cf. discussion in Tucker [128]. The time 
taken to release these neutrons can be anything from a few seconds to minutes. This 
has the implication that any control actions that are put into place do not result in 
instantaneous change in neutron density, but rather a gradual response over seconds 
and minutes.



Chapter 2 
Some Background Markov Process 
Theory 

Before we embark on our journey to explore the NTE in a stochastic context, we 
need to lay out some core theory of Markov processes that will appear repeatedly in 
our calculations. After a brief reminder of some basics around the Markov property, 
we will focus our attention on what we will call expectation semigroups. These 
are the tools that we will use to identify neutron density and provide an alternative 
representation of solutions to the NTE that will be of greater interest to us. As such, 
in this chapter, we include a discussion concerning the asymptotic behaviour of 
expectation semigroups in terms of a leading eigentriple. 

2.1 Markov Processes 

We are interested in modelling randomly evolving particles, whose state space is 
denoted by E. The space E can be a physical space, but it can also be something 
more abstract. For many of the general results in this text, we will allow E to be a 
locally compact Hausdorff space with a countable base. The reader may nonetheless 
be content with taking E to be an open bounded subset of . Rd , or in the context of 
neutron transport, .D × V . We will use .B(E) to denote the Borel sets on E. 

To E, we append the “cemetery” state .† /∈ E. One may think of it as an auxiliary 
point where the process is sent if it is “killed”. We will take . E† to be the Borel .σ -
algebra on .E† := E ∪ {†} and .E[0,∞]

† to be the space of paths . ω : [0,∞] → E†
such that .ω(∞) = †, and if .ω(t) = †, then .ω(s) = † for all .s ≥ t . 

The sequence of functions .ξ := (ξt , t ≥ 0) represents the family of coordinate 
maps .ξt : E

[0,∞]
† → E† given by .ξt (ω) = ωt for all .t ∈ [0,∞] and .ω ∈ E

[0,∞]
† . 

Denote by .Gt = σ (. ξs , .0 ≤ s ≤ t), and .G = σ (. ξs , .s ∈ [0,∞]), the canonical 
filtrations of . ξ . We may also think of . Gt as the space of possible events that occur 
up to time t and . G as the space of all possible events. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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Thus, we may think of . ξ as nothing more than an infinite dimensional random 
variable defined as a measurable function of the event space .E[0,∞]

† via the identity 
map. What makes . ξ a Markov process is the way in which we assign probabilities 
to events in . G. To this end, let us introduce the family of probability measures on 
.(E

[0,∞]
† ,G), denoted by .P := (Px, x ∈ E†), which satisfy a number of conditions. 

Definition 2.1 (Markov Process) The process .(ξ,P) is called a Markov process 
on state space E, with cemetery state . † and lifetime . ζ (also called the killing time) 
if the following conditions hold: 

(Regularity) For each . B ∈ G, the map .x I→ Px(B) is .E†-measurable. 
(Normality) .Px(ξ0 = x) = 1 for all .x ∈ E†. 
(càdlàg1 paths) For all .x ∈ E, the path functions .t → ξt are .Px-almost surely right 

continuous on .[0,∞) and have left limits on .[0, ζ ) where the random time 

.ζ = inf{t > 0 : ξt = †} (2.1) 

is called the lifetime of . ξ . 
(Markov property) For all .x ∈ E†, .s, t ≥ 0, and bounded measurable functions f 

on . E† such that .f (†) = 0, we have on . {t < ζ }

. Ex[f (ξt+s)|Gt ] = Ey[f (ξs)]y=ξt

.Px-almost surely. 

In the setting where .Px(ζ < ∞) = 0 for all .x ∈ E, we call .(ξ,P) a conservative 
Markov process. However, throughout this text, we will often encounter non-
conservative Markov processes. 

In Definition 2.1, we can also ask for a slightly stronger notion of the Markov 
property, namely the strong Markov property. To this end, let us recall that . τ is a 
stopping time for the filtration .(Gt , t ≥ 0) if 

. {τ ≤ t} ∈ Gt , t ≥ 0.

Moreover, we can identify the natural sigma algebra .Gτ associated to any stopping 
time . τ via the definition 

. A ∈ Gτ if and only if A ∩ {τ ≤ t} ∈ Gt for all t > 0.

The most common examples of stopping times that we will work with are those that 
take the form 

.τD = inf{t > 0 : ξt ∈ D},

1 Continue à droite, limite à gauche. 
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where D is a Borel-measurable domain in E. We also note from (2.1) that .ζ = τ {†}, 
and the lifetime of . ξ is also a stopping time when we consider the Markov process 
to be defined on the extended space with the cemetery point included. 

Definition 2.2 (Strong Markov Process) In addition to being a Markov process, 
.(ξ,P) is a strong Markov process if the Markov property is replaced by the following 
condition. 
(Strong Markov Property) For all .x ∈ E†, .s ≥ 0, stopping times . τ , and bounded 
measurable functions f on . E† such that .f (†) = 0, on the event .{τ < ζ }, we have  

. Ex[f (ξτ+s)|Gτ ] = Ey[f (ξs)]y=ξτ

.Px-almost surely. 

2.2 Expectation Semigroups and Evolution Equations 

Let .B(E) be the space of bounded, measurable functions on E with the additional 
requirement that .f ∈ B(E) is forced to satisfy .f (†) = 0. The subset .B+(E) of 
.B(E) consists only of non-negative functions. If we define .‖·‖ to be the supremum 
norm, then the pair .(B(E), ‖·‖) forms a Banach space. 

Still denoting .(ξ,P) as a Markov process, for .s, t ≥ 0, .g ∈ B(E), and .x ∈ E, 
define 

.Qt [g](x) = Ex[g(ξt )]. (2.2) 

We refer to the family of operators .Q = (Qt , t ≥ 0) on .B(E) as the expectation 
semigroup associated to .(ξ,P). Technically speaking, we can think of . Q as a family 
of linear operators on .(B(E), ‖·‖). It is also not unusual to restrict the definition 
in (2.2) to just .g ∈ B+(E). 

Expectation semigroups are natural objects that characterise the mean evolution 
of a Markov process. The notion of the expectation semigroup can also be taken in 
a slightly broader sense. Suppose that .γ : E I→ R. Then we can also define 

.Qγ
t [g](x) = Ex

[
e
∫ t

0 γ (ξs )dsg(ξt )
]
, x ∈ E, t ≥ 0. (2.3) 

It may of course be the case that, without further restriction in . γ , the above definition 
may take infinite values, or not be well defined for .g ∈ B(E). As such, we shall 
henceforth assume that .γ ∈ B(E). This allows us to deduce that .Qγ

t [g] ∈ B(E). 
Moreover, this also gives us simple control over the growth of .(Qγ

t , t ≥ 0) in the 
sense that 

.Qγ
t [g](x) ≤ e‖γ ‖t‖g‖, t ≥ 0, x ∈ E, γ, g ∈ B(E). (2.4)
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The term .exp
(∫ t

0 γ (ξs)ds
)

, .t ≥ 0, is often referred to as a multiplicative 

potential. In essence, . Qγ is a semigroup in the sense of (2.2) for the bivariate Markov 
process 

.

(
ξt ,

∫ t

0
γ (ξs)ds

)
, t ≥ 0, (2.5) 

albeit that we are forcing a choice of function of the above pair to take the form 
.g(x)ey , with x playing the role of . ξt and y playing the role of .

∫ t

0 γ (ξs)ds. To see  
why the pair (2.5) forms a Markov process, let us write 

. It = I +
∫ t

0
γ (ξs)ds, t ≥ 0,

and we can abuse our existing notation and write .P(x,I ) for the law of the pair 
.(ξt , It ), .t ≥ 0, when issued from .(x, I ). Moreover, using . † as the cemetery state 
for .(It , t ≥ 0), with the lifetime of the pair being that of . ξ , note that, for bounded, 
measurable .f : E × R I→ [0,∞) such that .f (†, †) = 0 and .s, t ≥ 0, on .{t < ζ }, 

. E(x,I ) [f (ξt+s , It+s)|Gt ]

= E(x,I )

[
f

(
ξt+s , I +

∫ t

0
γ (ξu)du +

∫ t+s

t

γ (ξu)du

)∣∣∣∣Gt

]

= E(y,J ) [f (ξs, Is)]y=ξt , J=It
.

Technically speaking, we can drop the aforesaid qualifier that .{t < ζ } because our 
convention would insist that .E(y,J )[f (ξs, Is)] = 0 for .(y, J ) = (†, †). 

The following lemma gives us a sense of why (2.2) and (2.3) are deserving of the 
name semigroup. 

Lemma 2.1 Suppose that . γ is uniformly bounded from above. The expectation 
semigroup . Qγ satisfies the semigroup property. That is, for all .g ∈ B(E), 

. Qγ
t [Qγ

s [g]] = Qγ
t+s[g] on E,

with the understanding that .Qγ

0 [g] = g. 

Proof This is a simple consequence of the Markov property. Indeed, for all . s, t ≥ 0
and .x ∈ E, 

.Qγ
t+s[g](x) = Ex

[
e
∫ t+s

0 γ (ξs )dsg(ξt+s)
]

= Ex

[
e
∫ t

0 γ (ξs )dsEy

[
e
∫ s

0 γ (ξs )dsg(ξs)
]
y=ξt

]
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= Qγ 
t [Qγ 

s [g]](x), 

as required. 

Remark 2.1 In the setting that .γ ≤ 0, we can alternatively see .Qγ as the 
expectation semigroup of an auxiliary Markov process that agrees with .(ξ,P) but 
experiences an additional form of killing at rate . γ , i.e., when at .x ∈ E, the process 
is killed at rate .γ (x). One may think of the killing as a clock that rings, sending . ξ
to the cemetery state . † in a way that depends on the path of . ξ (in addition to the 
possibility that . ξ has a finite lifetime). Indeed, if we denote by T the time at which 
the clock rings, then, given .(ξs, s ≤ t), remembering that we are specifically in the 
setting that .γ ≤ 0, the probability that the clock has not rung by time .t ≥ 0 on the 
event .{t < ζ } is given by 

. Pr(T > t |Gt ) = e
∫ t

0 γ (ξs )ds ,

where we recall that .Gt = σ(ξs, s ≤ t). As such, even if . Q is conservative, . Qγ can 
always be seen as a non-conservative Markov process. . ♢

Often, the expectation semigroup .Qγ = (Qγ
t , t ≥ 0) forms the basis of an 

evolution 

.χt (x) := Qγ
t [g](x) +

∫ t

0
Qγ

s [ht−s](x)ds, t ≥ 0, x ∈ E, (2.6) 

where .g ∈ B+(E) and .h : [0,∞) × E → [0,∞) is such that . sups≤t |hs | ∈ B+(E)

for all .t ≥ 0. In such equations, .(Qγ
t , t ≥ 0) is called the driving semigroup. Note  

that the assumptions on . γ , g, and .(ht , t ≥ 0) imply that .sups≤t |χs | ∈ B+(E) for 
all .t ≥ 0. 

Before considering an alternative form of (2.6), let us first consider an example 
of such an evolution equation. Consider a Brownian motion, .(Bt , t ≥ 0), in . R that, 
at rate .α ∈ B+(R), jumps to a new position in . R according to the law . μ. Hence, if 
T is the time of the first such jump, then 

. Pr(T > t |σ(Bs : s ≤ t)) = e− ∫ t
0 α(Bs)ds , t ≥ 0.

Let .(X,Px) denote this process when initiated from a single particle at .x ∈ R and 
set .χt (x) := Ex[f (Xt )], for .f ∈ B+(R). Then, by conditioning on the time of the 
first jump of the process, we have 

.χt (x) = Ex[e− ∫ t
0 α(Bs)dsf (Bt )]

+
∫ t

0
Ex

[
α(Bs)e

− ∫ s
0 α(Bu)du

∫

R

Ey[f (Xt−s)]μ(dy)

]
ds
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= Q−α 
t [f ](x) +

∫ t 

0 
Q−α 

s [ht−s]ds, (2.7) 

where .ht−s(x) = α(x)
∫
R

χt−s(y)μ(dy). 
Let us now turn to an alternative form of (2.6), which will turn out to be of 

repeated use later in this text and will allow us to work effectively with such 
evolution equations. 

Theorem 2.1 Suppose that .|γ | ∈ B+(E), .g ∈ B+(E), and .sups≤t |hs | ∈ B+(E), 
for all . t ≥ 0. If .(χt , t ≥ 0) is represented by (2.6), then it also solves 

.χt (x) = Qt [g](x) +
∫ t

0
Qs[ht−s + γχt−s](x)ds, t ≥ 0, x ∈ E. (2.8) 

The converse statement is also true if .(χt , t ≥ 0) solves (2.8) with . sups≤t |χs | ∈
B+(E), for all .t ≥ 0. 

One should understand Theorem 2.1 as a form of calculus by which the multi-
plicative potential in . Qγ is removed and appears instead as an additive potential in 
the integral term. We also note that within the class of solutions .(χt , t ≥ 0) for which 
.sups≤t |χs | ∈ B+(E), for all .t ≥ 0, both (2.6) and (2.8) have unique solutions. This 
is easy to see via Grönwall’s Lemma. 

For example, in the case of (2.8), suppose .χ(i)
t (x), .t ≥ 0, .x ∈ E, .i = 1, 2, 

represent two solutions and, accordingly, .χ̃t = supx∈E |χ(1)
t (x)−χ

(2)
t (x)|. It is easy 

to see with the help of (2.4) that .sups≤t χ̃s < ∞, for .s ≤ t . With the assumption 
.|γ | ∈ B+(E), we easily deduce that 

. χ̃t ≤
∫ t

0
χ̃t−sQs[|γ |](x)ds ≤ C

∫ t

0
χ̃t−sds, t ≥ 0, x ∈ E,

for some constant .C > 0. Grönwall’s Lemma implies that .χ̃t = 0, .t ≥ 0, and 
this gives us uniqueness of (2.8) as required. A similar argument can be produced 
for (2.6) to prove the claimed uniqueness in this case. 

Proof of Theorem 2.1 We start by noting that if we write 

. Γt = e
∫ t

0 γ (ξs )ds , t ≥ 0,

then straightforward calculus tells us that on .{t < ζ }, 

. d

(
1

Γt

)
= −γ (ξt )

Γt

dt.

As such, for .t ≥ 0,
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.
1

Γt

= 1 −
∫ t

0

γ (ξu)

Γu

du. (2.9) 

Now assume that (2.6) holds. We have, with the help of the Markov property, the 
simple computation 

. Qs[γQγ
t−s[g]](x) = Ex

[
γ (ξs)Ey [Γt−sg(ξt−s)]y=ξs

]

= Ex

[
γ (ξs)

Γt

Γs

g(ξt )

]

and, hence using (2.6), 

. Qs[γχt−s](x) = Qs[γQγ
t−s[g]](x) +

∫ t−s

0
Qs

[
γQγ

u [ht−s−u]
]
(x)du

= Ex

[
γ (ξs)

Γt

Γs

g(ξt )

]
+

∫ t−s

0
Ex

[
γ (ξs)

Γs+u

Γs

ht−s−u(ξs+u)

]
du

= Ex

[
γ (ξs)

Γt

Γs

g(ξt )

]
+

∫ t

s

Ex

[
γ (ξs)

Γu

Γs

ht−u(ξu)

]
du.

Integrating again, applying Fubini’s theorem, and using (2.9), we get 

. 

∫ t

0
Qs[γχt−s](x)ds = Ex

[
Γtg(ξt )

∫ t

0

γ (ξs)

Γs

ds

]

+
∫ t

0

∫ t

s

Ex

[
γ (ξs)

Γu

Γs

ht−u(ξu)

]
du ds

= Ex

[
Γtg(ξt )

∫ t

0

γ (ξs)

Γs

ds

]

+
∫ t

0
Ex

[
Γuht−u(ξu)

∫ u

0

γ (ξs)

Γs

ds

]
du

= Qγ
t [g](x) − Qt [g](x)+

∫ t

0

(
Qγ

u [ht−u](x)−Qu[ht−u](x)
)

du.

Rearranging, this tells us that 

. Qt [g](x) +
∫ t

0
Qs[ht−s + γχt−s](x)ds = Qγ

t [g](x) +
∫ t

0
Qγ

u [ht−u](x)du.

Said another way, (2.6) implies (2.8). 
Reversing the arguments above, with the assumption that .sups≤t |χs | ∈ B+(E), 

for all .t ≥ 0, we also see that (2.8) solves (2.6).
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2.3 The Heuristics of Infinitesimal Generators 

In the previous section, we alluded to the fact that expectation semigroups are 
natural objects that characterise the law of a Markov process. It turns out that this can 
be brought out in sharper focus by considering the rate of change of an expectation 
semigroup, which brings forward the notion of an infinitesimal generator. In turn, 
this connects us back to the medium of evolution equations. The discussion we 
will present here will be entirely heuristic, although in later chapters we will see 
examples of the general presentation here in careful detail. 

Under the right assumptions, it turns out that, for functions g in an appropriate 
subset of .B(E), 

.L[g](x) := lim
t↓0

d

dt
Qt [g](x), x ∈ E, (2.10) 

is well defined, where . L is an operator whose image is a subspace of functions 
that map E into . R. For the sake of convenience, and to be consistent with what is 
presented in Chap. 1, let us refer to the set of functions .g ∈ B(E) for which (2.10) 
holds as .Dom(L). 

We may think of the operator . L as telling us everything we need to know 
about the expectation semigroup and hence about the law of the Markov process. 
Therefore, if it can be identified, it is a natural “mathematical package” with which 
to characterise the Markov process. 

As a first observation in this respect, we can easily note that, if we write . Lγ for 
the generator associated to . Qγ , then, providing . γ is bounded from above, 

.Lγ = L + γ. (2.11) 

Indeed, for all .g, γ ∈ B(E) such that . Lg is well defined, 

. lim
t↓0

Qγ
t [g](x) − g(x)

t

= lim
t↓0

Ex[g(ξt )] − g(x)

t
+ lim

t↓0
Ex

[
(e

∫ t
0 γ (ξs )ds − 1)

t
g(ξt )

]

= Lg(x) + γg(x), x ∈ E, (2.12) 

where the second term on the right-hand side follows from bounded convergence 
(cf. (2.4)). 

As a second observation, let us consider the setting that .(ξ,P) is a continuous-
time Markov chain on .E = {1, . . . , n}. In that case, our expectation semigroup 
captures nothing more than the transition matrix. Indeed, suppose . (pt (i, j), i, j ∈
{1, · · · , n}) are the transition probabilities of our chain. Any function .g ∈ B(E) can 
be represented as a vector, and hence, for .i ∈ {1, · · · , n},
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.Qt [g](i) = Ei[g(ξt )] =
n∑

j=1

pt (i, j)g(j), t ≥ 0, (2.13) 

so that .Qt [g](i) is nothing more than the i-th row of the matrix multiplication of . Qt

and the vector g. 
In this setting, we also know that we can write .Qt = exp(tL), .t ≥ 0, where 

the .n × n matrix . L is the so-called the intensity matrix of . ξ , whose off-diagonal 
entries give the rates of transition from one state to another, and whose row sums 
are identically zero. Moreover, .Dom(L) is the n-dimensional Euclidian vector space, 
. Rn. 

For more complex Markov processes with an uncountable state space, the 
operator . L does not necessarily take as simple a form as a matrix. In the Markov 
chain example, we understand 

. exp(tL) =
∞∑

n=0

tn

n!L
n (2.14) 

to be a series of matrices and hence a matrix itself. The meaning of (2.14) for a more 
general setting remains a formality, in a similar spirit to the discussion in Sect. 1.9. 
Nonetheless, in this book, we will encounter explicit analytical representations of 
the operator . L for those Markov processes that will be of concern to us, which will 
prove to be informative at both heuristic and rigorous levels. 

Tautologically speaking, the definition of the infinitesimal generator (2.10) 
makes sense whenever the limit is well defined. In essence, one may think of the 
existence of the limit in (2.10) as a restriction on the class of functions on which the 
operator . L acts. In order to develop a theory that characterises this class of functions, 
one generally needs to ask more of the semigroup . Q. This brings us to the notion of 
a Feller semigroup. 

We say that .(Qt , t ≥ 0) is a Feller semigroup if (i) for .t ≥ 0, . Qt maps, .C+(E), 
the space of non-negative, bounded continuous functions on E, to itself, and (ii) for 
each .f ∈ C+(E) and .x ∈ E, .limt→0 Qt [f ](x) = f (x). It turns out that for Feller 
semigroups, the generator as defined in (2.10) is well defined providing .f ∈ C+

0 (E), 
the space of functions in .C+(E) that converge to zero at any infinite boundary 
points.2 Stochastic processes with Feller semigroups are, naturally, called Feller 
processes and have additional convenient properties. This includes, for example, 
the ability to define versions of the process with right-continuous paths with left 
limits as well as possessing the strong Markov property. 

In this text, we generally avoid assuming that our semigroups are Feller, with the 
exception of some examples. The reason for this is that the stochastic processes 
we will see in the setting of neutron transport will turn out not to have Feller

2 This means .f (x) → 0 as .infy∈∂E‖x − y‖ → 0, providing the latter limit is possible within E. 
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semigroups. This also largely explains why we avoid working with generators, 
preferring instead to work directly with semigroups. 

2.4 Feynman–Kac Heuristics 

Recall that we write .g ∈ Dom(L) as the subset of .B(E) for which (2.10) holds. If 
.g ∈ Dom(L), then, heuristically speaking, it should also be the case that . Qt [g] ∈
Dom(L), for all .t ≥ 0. Indeed, the semigroup property allows us to deduce that, for 
.g ∈ Dom(L), 

.
d

dt
Qt [g] = lim

h→0

Qt+h[g] − Qt [g]
h

= lim
h→0

QhQt [g] − Qt [g]
h

= LQt [g]. (2.15) 

Similarly, providing we can pass the limit and derivative through the semigroup, we 
also have that, for .g ∈ Dom(L), 

.
d

dt
Qt [g] = lim

h→0
Qt

[
Qh[g] − g

h

]
= Qt

[
lim
h→0

Qh[g] − g

h

]
= Qt [Lg]. (2.16) 

Clearly, some careful checking and perhaps additional assumptions may be needed 
to turn these heuristics into rigour. 

An alternative way of reading (2.15) and (2.16) is in a milder form, via the 
integral equations 

. Qt [g] = Qs[g] +
∫ t

s

LQu[g]du = Qs[g] +
∫ t

s

Qu[Lg]du, t ≥ s ≥ 0.

This is a very basic form of integral equation in the spirit of (2.6) and (2.8). In later 
chapters of this text, we will often refer to equations of this form as mild equations, 
describing expectation semigroup evolutions. 

Generally speaking, the relationship between the expectation semigroup . (Qt , t ≥
0) and the differential equation (2.15) is referred to as a Feynman–Kac representa-
tion. A more formalised Feynman–Kac theory will concern itself with developing 
appropriate mathematical conditions under which the solution to the differential 
equation 

.
d

dt
ut (x) = Lut (x), x ∈ E, t ≥ 0, (2.17) 

with initial condition .u0 = g, can be uniquely identified as .(Qt [g], .t ≥ 0) on 
.(B(E), ‖·‖). 

A more general version of (2.17) that carries an association with the stochastic 
process .(ξ,P) via the use of expectation semigroups is the differential equation
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.
d

dt
ut (x) = (L + γ )ut (x) + h, x ∈ E, t ≥ 0, (2.18) 

where .h ∈ B+(E), with initial condition . u0 = g. For (2.18), Feynman–Kac theory 
will provide sufficient conditions for which its unique solution is given by the 
classical Feynman–Kac formula 

. ut (x) = Ex

[
e
∫ t

0 γ (ξs )dsg(ξt )
]

+ Ex

[∫ t

0
e
∫ u

0 γ (ξs )dsh(ξu)du

]
, x ∈ E, t ≥ 0.

(2.19) 

The Feynman–Kac solution (2.19) is a predictable formula if we reflect on the 
earlier demonstrated fact that the pair .(ξt ,

∫ t

0 γ (ξs)ds), .t ≥ 0, is Markovian. In a 
similar spirit, we can show that the triplet 

. (ξt , It , Jt ) :=
(

ξt ,

∫ t

0
γ (ξs)ds,

∫ t

0
e
∫ u

0 γ (ξs )dsh(ξu)du

)
, t ≥ 0

is Markovian. As such, it is implicit that in (2.19), one should think of the cemetery 
state as being .(†, †, †) for the triplet above and that functionals such as . F(Jt ) = Jt

carry the additional convention that .F(†) = 0. 
If we define .Qγ,h

t [g](x) to be the right-hand side of (2.19), then the aforesaid 
Markov property can be used to show that 

.Qγ,h
t+s[g](x) = Qγ,h

t [Qγ,h
s [g](x)](x) + Ex

[∫ t

0
e
∫ u

0 γ (ξs )dsh(ξu)du

]
, (2.20) 

for .s, t ≥ 0. Unfortunately, this means that .(Qγ,h
t , t ≥ 0) is not a semigroup as 

we have defined it. Nonetheless, we can follow our heuristic notion of infinitesimal 
generator and calculate 

.Lγ,h[g](x) := lim
t↓0

d

dt
Qγ,h

t [g](x), x ∈ E. (2.21) 

In the spirit of (2.12), we can easily see that 

. lim
t↓0

d

dt
Qγ,h

t [g](x) = (L + γ )g + h.

This clearly brings us back to the right-hand side of (2.18), at least heuristically, 
taking account of (2.20).
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2.5 Perron–Frobenius-Type Behaviour 

Recalling the discussion in the previous section, let us continue with the example 
that .(ξ,P) is a Markov chain and .E = {1, . . . , n}. In this setting, the infinitesimal 
generator . L corresponds to the intensity matrix of our Markov chain, that is, . L =
(L(i, j), i, j ∈ {1, . . . , n}), where 

. L(i, j) = d

dt
pt (i, j)|t=0

and the transitions .pt (i, j) were introduced just before (2.13). We assume that 
.L(i, j) > 0 for all .i, j ∈ E with .i /= j . However, we do not exclude the possibility 
of an additional cemetery state . † and hence of .(L1)i ≤ 0 for .i = 1, . . . , n, where 
.1 = (1, . . . , 1). That is to say, the row sums of . L are at most zero indicating the 
possibility that the Markov chain may jump to . † from at least one of the states in E. 

Perron–Frobenius theory tells us that, subject to the requirement that E is 
irreducible,3 there exists a leading eigenvalue .λc ≤ 0 such that 

.pt (i, j) ∼ eλct ϕ(i)ϕ̃(j) + o(eλct ) as t → ∞, (2.22) 

where .ϕ = (ϕ(1), . . . , ϕ(n)), resp. .ϕ̃ = (ϕ̃(1), . . . , ϕ̃(n)), are the (unique up to a 
multiplicative constant) right, resp. left, eigenvectors of . L with eigenvalue . λc. In  
relation to . L, . ϕ and . ϕ̃ satisfy 

.

n∑
j=1

L(i, j)ϕ(j) = λcϕ(i) and
n∑

k=1

ϕ̃(k)L(k, i) = λcϕ̃(i). (2.23) 

This implies that 

.〈g,Lϕ〉 = λc〈g, ϕ〉 and 〈ϕ̃,Lg〉 = λc〈ϕ̃, g〉, (2.24) 

for all .g ∈ B(E), where we extend existing notation and write .Lg for matrix 
multiplication of g by . L and .〈·, ·〉 is the usual Euclidian inner dot product.4 

Equivalently, we may identify . ϕ and . ϕ̃ by the stability equations 

.〈g,Qt [ϕ]〉 = eλct 〈g, ϕ〉 and 〈ϕ̃,Qt [g]〉 = eλct 〈ϕ̃, g〉, t ≥ 0. (2.25) 

The reason why the eigenvalue . λc is non-positive here is that the asymp-
totic (2.22) captures the rate at which probability is lost from the Markov chain

3 Recall that a Markov chain is irreducible if, for each pair .(i, j) in the state space, there is a 
non-zero probability that, starting in state i, one will eventually visit state j . 
4 Elsewhere in this text we use the notation .〈·, ·〉 to denote inner products on other Hilbert spaces. 
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because of absorption to the cemetery state. If the Markov chain is conservative, 
i.e., .(L1)i = 0, for .i = 1, . . . , n, then we see that .λc = 0 and .ϕ = 1. Recalling the 
chain is irreducible, this also allows us to deduce that . ϕ̃ is the stationary distribution 
of the chain. Indeed, from the second inequality in (2.25), we see that 

. 〈ϕ̃,Qt [g]〉 = 〈ϕ̃, g〉, t ≥ 0.

On the other hand, if the chain is non-conservative, then .λc < 0. For this setting, 
the eigenvector . ϕ̃ is called the quasi-stationary distribution. To see the meaning of 
this choice of terminology, note from the first term in (2.22) that 

. e−λctPi (t < ζ ) ∼ ϕ(i), i ∈ E.

Combining it again with (2.22), we see that 

. lim
t→∞Pi (ξt = j |t < ζ ) = ϕ̃(j) i, j ∈ E. (2.26) 

Given the Perron–Frobenius asymptotic representation of the operator family 
.(Qt , t ≥ 0) in this rather special setting, it is natural to ask if a similar result is 
true in general. The class of Markov processes is vast, and hence, one should expect 
a number of relatively stringent conditions in order to replicate the setting of finite-
state Markov chains. 

First let us introduce a little more notation. In the same sense as (2.13), we can 
think of . Qt as an integral with respect to a transition measure.5 Indeed, 

. Qt [g](x) =
∫

E

g(x)pt (x, dy), g ∈ B(E),

where 

. pt (x, dy) = Px(ξt ∈ dy, t < ζ), x, y ∈ E.

To give a natural analytical home for .(Qs , s ≥ 0) and other measures that we will 
encounter, we define the space of finite measures, .Mf (E) say, so that for . g ∈ B(E)

and .μ ∈ Mf (E), 

.μ[f ] =
∫

E

f (y)μ(dy). (2.27) 

We may now comfortably identify . Qs as an element of .Mf (E), noting that it has 
additional dependencies on .x ∈ E and .s ≥ 0.

5 Technically speaking, .pt (x, dy) is called a kernel rather than a measure because of its dependency 
on .x ∈ E. 
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A measure .μ ∈ Mf (E) has a density, say m, if  

. μ[f ] = 〈m, f 〉,

where, now, we identify the inner product .〈·, ·〉 in the usual way for an .L2(E) Hilbert 
space, i.e., 

.〈f, g〉 =
∫

E

f (x)g(x)dx, f, g ∈ L2(E). (2.28) 

In other words, . μ is a continuous linear functional on .L2(E). 
In the next theorem, we assume that the Markov process .(ξ,P) is non-

conservative. A typical example to think of is a Markov process that is killed 
when it leaves a physical domain. 

Theorem 2.2 (Perron–Frobenius Semigroup Decomposition) Suppose that 
.(ξ,P) is a non-conservative Markov process for which 

. Px(t < ζ ) > 0 and Px(ζ < ∞) = 1,

for all .t ≥ 0 and x ∈ E. In addition, suppose that there exists a probability measure 
. ν on E such that: 

(A1) There exist . t0, .c1 > 0 such that for each .x ∈ E, 

. Px(ξt0 ∈ · |t0 < ζ) ≥ c1ν(·).

(A2) There exists a constant .c2 > 0 such that for each .x ∈ E and for every 
.t ≥ 0, 

. Pν(t < ζ ) ≥ c2Px(t < ζ ).

Then, there exist .λc < 0, a probability measure, . η, on  E and a function . ϕ ∈ B+(E)

such that . η, resp. . ϕ, is an eigenmeasure, resp. eigenfunction, of .(Qt , t ≥ 0) with 
eigenvalue .exp(λct). That is, for all .g ∈ B(E), 

.η[Qt [g]] = eλct η[g] and Qt [ϕ] = eλct ϕ, t ≥ 0. (2.29) 

Moreover, there exist .C, ε > 0 such that 

.
∥∥e−λctP·(t < ζ ) − ϕ

∥∥ ≤ Ce−εt , t ≥ 0, (2.30) 

where .‖·‖ is the supremum norm over E, and 

. sup
g∈B(E):‖g‖≤1

∥∥∥e−λct ϕ−1Qt [g] − η[g]
∥∥∥ ≤ Ce−εt , t ≥ 0. (2.31)
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Remark 2.2 Let us make a number of observations concerning Theorem 2.2: 

(1) We can think of the assumption (A1) as a mixing condition. It ensures that 
transition probabilities of the Markov process, on the event of survival, can be 
uniformly controlled from below. 

(2) The assumption (A2) means that the highest non-absorption probability among 
all initial points in E has the same order of magnitude as the non-absorption 
probability starting from . ν. 

(3) The eigenvalue . λc can be thought of as the generic rate of loss of probability as 
it becomes increasingly unlikely for . ξ to survive with time. 

(4) If one can show that .(ξt , t < ζ ) admits a bounded density with respect to 
Lebesgue measure, then the same can be said for the eigenmeasure . η. 

Note that . ϕ and . η in the above theorem generalise the notions of the eigenfunc-
tions . ϕ and . ϕ̃, respectively, discussed at the start of the section. In the following two 
sections, we discuss some deeper implications of Theorem 2.2, in particular, giving 
a precise interpretation of the eigenfunction . ϕ and the eigenmeasure . η. The latter 
turns out to be what is known as a quasi-stationary distribution, and the former turns 
out to have a harmonic property leading to what is known as a Doob h-transform 
that conditions the Markov process .(ξ,P) to behave in an exceptional way. 

2.6 Quasi-Stationarity 

Let us remain under the assumptions of Theorem 2.2. Following the reasoning that 
leads to statement (2.26), albeit now in a general setting, we see that for .g ∈ B(E), 

. lim
t→∞Ex[g(ξt )|t < ζ ] = η[g]. (2.32) 

By dominated convergence, (2.32) implies that, for any probability distribution . μ
supported on E, which can be thought of as randomising the point of issue of .(ξ,P), 

. lim
t→∞Eμ[g(ξt )|t < ζ ] = η[g], (2.33) 

where .Pμ = ∫
E

μ(dx)Px . In that respect, by appropriately normalising . η such that 
.η[1] = 1, we can think of . η as a quasi-limiting distribution. 

Suppose we take .g(x) = Px(s < ζ) in (2.33), for some fixed .s > 0, then, with 
the help of the Markov property, starting from the right-hand side of (2.33), it reads 

.Pη(s < ζ) = lim
t→∞

Eμ[Px(s < ζ)x=ξt ]
Pμ(t < ζ)

= lim
t→∞

Pμ(t + s < ζ)

Pμ(t < ζ)
. (2.34) 

On the other hand, if we take .g(x) = Ex[f (ξs)], for some .f ∈ B(E) and fix .s > 0, 
then a similar calculation shows us that
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. Eη[f (ξs)] = lim
t→∞

Eμ[Ey[f (ξs)]y=ξt ]
Pμ(t < ζ)

= lim
t→∞

Eμ[f (ξt+s)]
Pμ(t < ζ)

= lim
t→∞

Eμ[f (ξt+s)]
Pμ(t + s < ζ)

Pμ(t + s < ζ)

Pμ(t < ζ)

= lim
t→∞Eμ[f (ξt+s)|t + s < ζ ]Pμ(t + s < ζ)

Pμ(t < ζ)

= η[f ]Pη(s < ζ),

where we have used  (2.34). In conclusion, this tells us that our quasi-limiting 
distribution is also a quasi-stationary distribution, that is, 

. Eη[f (ξs)|s < ζ ] = η[f ], s ≥ 0.

Said another way, when the process is issued from a randomised state using . η, 
then conditional on survival, at any fixed time later, its position is still distributed 
according to . η. From this perspective, it is not surprising that, when issuing 
the Markov process from its quasi-stationary distribution, its lifetime is exactly 
exponentially distributed, that is, 

. Pη(ζ > t) = eλct .

This is a fact that is easily derived from (2.29). 
While it is easy to see that a quasi-stationary distribution satisfies (2.33) with 

.μ = η, we note that the concepts of quasi-stationary distributions and quasi-limiting 
distributions are actually equivalent in the context of Theorem 2.2. 

On a final note, we mention that a variant of (2.33) is the situation for which 
there exists a time-dependent sequence .a(t) and a probability measure . ν such that 

. lim
t→∞Pμ[g(ξt/a(t))|t < ζ ] = ν[g],

for all .g ∈ B(E) and .μ ∈ Mf (E). When this happens, the measure . ν is called the 
Yaglom limit. We will encounter this concept later in this book as well. 

2.7 Martingales, Doob h-Transforms, and Conditioning 

In the previous section, we have examined the probabilistic meaning and function-
ality of the left eigenmeasure . η. Here we do the same for the right eigenfunction. 
Before doing so, we remind the reader of the notion of a martingale.
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Definition 2.3 A stochastic process .(Mt , t ≥ 0) is a martingale with respect to the 
filtration .(Gt , t ≥ 0) if: 

(i) For each .t ≥ 0, . Mt is .Gt -measurable. 
(ii) For all .t ≥ 0, .E[|Mt |] < ∞ . 

(iii) For all .s, t ≥ 0, .E[Mt+s |Gs] = Mt . 

Lemma 2.2 Suppose the conclusion of Theorem 2.2 holds. Then the process 

. Mc
t := e−λct ϕ(ξt ), t ≥ 0,

is a martingale with respect to . G for .(ξ,Px). 

Proof Clearly, condition (i) of Definition 2.3 is satisfied. Next note that . Ex |Mc
t | <

∞ for .t ≥ 0, .x ∈ E (which is obvious from the boundedness of . ϕ) and, for .s, t ≥ 0, 
the Markov property and the second equality in (2.29) tell us that 

. Ex[Mc
t+s |Gt ] = e−λc(t+s)Ex [ϕ(ξt+s)|Gt ]

= e−λc(t+s)Ey [ϕ(ξs)]y=ξt

= e−λcte−λcsQs[ϕ](ξt )

= e−λct ϕ(ξt )

= Mc
t ,

as required. 

One of the fundamental properties of martingales is that they maintain constant 
expectation. Specifically, 

. Ex[Mc
t+s] = Ex[Ex[Mc

t+s |Gt ]] = Ex[Mc
t ], s, t ≥ 0,

and hence, since .Mc
0 = ϕ(x), it follows that  

. Ex[Mc
t ] = ϕ(x), x ∈ E, t ≥ 0.

While martingales have many uses, non-negative martingales that are defined as 
functionals of a Markov process find a natural home in defining the so-called Doob 
h-transforms. This is a way of tilting the law of a Markov process .(ξ,P) in a way 
that keeps the resulting object still within the class of Markov processes. 

We can define a new family of measures .Pc = (Pc
x , x ∈ E) on .(E[0,∞]

† ,G) by 
the relation 

.Pc
x (A) = Ex

[
1Ae−λct

ϕ(ξt )

ϕ(x)

]
, x ∈ E, t ≥ 0, A ∈ Gt . (2.35)
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A shorthand way of writing this change of measure is 

.
dPc

x

dPx

∣∣∣∣
Gt

= Mc
t , t ≥ 0, x ∈ E. (2.36) 

It is worth noting that any event .A ∈ Gt also belongs to .Gt+s for any . s ≥ 0. As  
such, the definitions (2.35) and (2.36) may appear to be ambiguous. This is where 
the martingale property plays an important role to circumvent this potential problem 
since, using standard properties of expectations, we have 

.Ex

[
1AMc

t+s

] = Ex

[
1AEx

[
Mc

t+s

∣∣Gt

]] = Ex

[
1AMc

t

]
. (2.37) 

Lemma 2.3 The process .(ξ,Pc) is a Markov process. Moreover, it is a strong 
Markov process if .(ξ,P) is. 

Proof The Markov property is easily verified as, for .f ∈ B(E) and .s, t ≥ 0, 

. Ec
x [f (ξt+s)|Gt ] = Ex

[
f (ξt+s)

ϕ(ξt+s)

ϕ(x)

∣∣∣∣Gt

]

= Ey

[
f (ξs)

ϕ(ξs)

ϕ(x)

]

y=ξs

= Ec
y [f (ξs)]y=ξs .

What is also clear from this calculation is that it passes through verbatim in the 
setting that t is a stopping time, providing the strong Markov property is available 
for the process .(ξ,P). 

The new Markov process .(ξ,Pc) is not just an abstract phenomenon. It has 
a genuine meaning connected to conditioning, albeit in a different way to quasi-
stationarity. 

Assuming it exists, consider the limit 

.Pct [g](x) := lim
s→∞Ex[g(ξt )|ζ > t + s], x ∈ E, g ∈ B(E), t ≥ 0. (2.38) 

The limit (2.38) is tantamount to conditioning the Markov process .(ξ,P) at each 
finite time to survive for an arbitrary amount of time in the future. The next theorem 
shows the connection between this conditioned process and .(ξ,Pc), defined by the 
martingale change of measure (2.36). 

Lemma 2.4 Suppose the conclusion of Theorem 2.2 holds. The family of operators 
.(Pct , t ≥ 0) is well defined and equal to the expectation semigroup of .(ξ,Pc). That 
is to say, 

.Pct [g](x) = Ec
x [g(ξt )], x ∈ E, t ≥ 0, g ∈ B+(E).
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Proof We can use Bayes’ expression for conditional expectation and write, for 
.s, t ≥ 0, .g ∈ B(E), .x ∈ E, 

. Ex[g(ξt )|ζ > t + s] = Ex[g(ξt )]
Px(ζ > t + s)

= Ex

[
g(ξt )

Py(ζ > s)|y=ξt

Px(ζ > t + s)

]
, (2.39) 

where we recall that g returns the value 0 on . {†}. It follows from Theorem 2.2 and 
Fatou’s Lemma that, for .g ∈ B+(E), then 

. lim inf
s→∞ Ex[g(ξt )|ζ > t + s] ≥ Ex

[
g(ξt )e

−λct ϕ(ξt )

ϕ(x)

]
= Ec

x [g(ξt )]. (2.40) 

On the other hand, suppose we write .h(x) = ḡ − g(x), for .x ∈ E, where . ḡ =
supy∈E g(y). Recalling Lemma 2.2, by applying (2.40) to h, which is necessarily in 
.B+(E), we discover that 

. lim inf
s→∞ {ḡ − Ex[g(ξt )|ζ > t + s]} ≥ Ex

[
{ḡ − g(ξt )}e−λct ϕ(ξt )

ϕ(x)

]

= ḡ − Ec
x [g(ξt )].

Rearranging the above gives us 

. lim sup
s→∞

Ex[g(ξt )|ζ > t + s] ≤ Ec
x [g(ξt )]. (2.41) 

Putting (2.40) and (2.41) together gives us the result. 

To conclude this section, let us make a few remarks concerning the generator of 
the resulting process .(ξ,Pc). Suppose to this end, we write . Lc as the generator of 
.(ξ,Pc). In keeping with the definition (2.10) and the heuristic style of reasoning, 
we have that, for a suitable class of .f ∈ B(E), 

. Lcf (x) = lim
t→0

d

dt
Pct [f ](x) = lim

h→0

ϕ−1e−λchPh[ϕf ](x) − f (x)

h
, x ∈ E.

(2.42) 

As . L is a linear operator and . ϕ is an eigenfunction of . L, this reduces more simply to 

. Lcf (x) = lim
h→0

ϕ−1Ph[ϕf ](x) − f (x)

h
+ lim

h→0

ϕ−1(e−λch − 1)Ph[ϕf ](x)

h

= L[ϕf ](x)

ϕ(x)
− λcf (x), x ∈ E. (2.43)
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This observation will be particularly useful in the next section when we discuss two 
specific examples. 

2.8 Two Instructive Examples of Doob h-Transforms 

We offer two examples in this section. One that deals with the setting of a finite-
state space, and hence necessarily .(ξ,P), is a Markov chain, and the second an 
uncountable state space, for which we have chosen a diffusive process. 

Markov Chains with Absorption Let us return to the setting of a Markov chain 
on .E = {1, . . . , n} with an additional cemetery state . {†}, as described in Sect. 2.5. 
Assuming irreducibility on E and that . {†} is accessible from at least one of the states 
in E, we recall that (2.22) holds with .λc < 0 and the intensity matrix . L satisfies 
.(L1)i < 0 for at least one .i ∈ E. 

Let us now consider the effect of the change of measure (2.36). We can try to 
understand the effect of this change of measure via the generator . Lc. From (2.43), 
we note that for any vector .f ∈ B({1, · · · , n}), 

. Lc[f ](i) =
∑n

j=1 L(i, j)ϕ(j)f (j)

ϕ(i)
− λcf (i)

=
∑n

j=1 ϕ(j)
(
L(i, j) − λcδ(i, j)

)
f (j)

ϕ(i)
, (2.44) 

where .δ(i, j) is the identity matrix. In short, the new transition matrix of .(ξ,Pc) is 
given by the .n × n matrix 

. Lc(i, j) = ϕ(j)

ϕ(i)

(
L(i, j) − λcδ(i, j)

)
, i, j ∈ {1, · · · , n}.

We can thus see that the effect of the Doob h-transform on the transition semigroup 
passes through to a natural analogue of the Doob h-transform on the intensity 
matrix. Writing .1 = (1, · · · , 1) for the vector of ones, it is also worthy of note 
that, appealing to the fact that . ϕ is an eigenvector, 

. L1 =
∑n

j=1 ϕ(j)
(
L(i, j) − λcδ(i, j)

)

ϕ(i)
= Lϕ(i) − λcϕ(i)

ϕ(i)
= 0.

This means that .(ξ,Pc) is a conservative process; in other words, there is no loss 
of probability from transitions to . {†}. Said another way, .(ξ,Pc) is almost surely 
forbidden from entering the state .{†} and, in this sense, we may think of it as the 
original Markov chain conditioned to avoid absorption in . {†}.
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Brownian Motion in a Compact Domain Suppose that D is a bounded open 
connected6 set in . Rd that has positive d-dimensional Lebesgue measure (volume). 
Let us write .∂D for the boundary of D and we will assume the following smoothness 
on . ∂D. For each .y ∈ ∂D, there exists an exterior radius .r

(e)
y and interior radius . r

(i)
y

such that a ball, say .B(e)
y , of radius .r(e)

y can be placed exterior to D and a ball, say 

.B
(i)
y , of radius .r(i)

y can be placed interior to D so that .B(e)
y ∩ B

(i)
y ∩ ∂D = {y}. 

We are interested in the setting that . ξ is a Brownian motion until it first exits D. 
That is to say, our Markov process has the infinitesimal generator 

.Lf (x) = 1

2
∇2f (x), x ∈ D, (2.45) 

and, for the sake of clarity, its semigroup is given by 

. Pt [f ](x) = Ex[f (ξt )1(t<τD)], x ∈ D, t ≥ 0,

where .τD = inf{t > 0 : ξt /∈ D}. We may think of .∂D as the cemetery state . {†} and 
. τD as the lifetime . ζ of the process. 

In this setting, it turns out that all the eigenvalues, in the sense of (2.24), are real, 
satisfying 

. · · · ≤ λ4 ≤ λ3 ≤ λ2 < λ1 =: λc < 0,

such that .limk→∞ λk = −∞. The associated right eigenfunctions . ϕk , . k ≥ 0, are  
such that, up to an appropriate normalisation, they form an orthonormal basis in 
.L2(D) (with respect to Lebesgue measure). Moreover, .ϕ := ϕ1 is strictly positive 
in D and continuous up to and including the boundary where it is zero-valued. It 
turns out that associated to each eigenvalue is a left eigenfunction that, for each 
.k = 1, 2, . . ., is identically equal to . ϕk . 

As a consequence of these facts, it turns out that 

.Pt [f ](x) =
∑
k≥1

e−λktϕk(x)〈f, ϕk〉, f ∈ B(D). (2.46) 

In addition, using means other than verifying (A1) and (A2), classical theory tells 
us that (2.31) and (2.30) automatically hold. In that case, it is at least heuristically 
obvious from (2.46) that the rate of decay . ε in (2.31) and (2.30) can be precisely 
identified as equal to .λc − λ2. 

Since the so-called ground state, . ϕ, is zero-valued on .∂D and can be shown to 
be a continuous function, we can see that the change of measure (2.35) is such that 
those paths that stray too close to the boundary are penalised. We can also see this

6 In this setting, a connected set simply means that, if .x, y ∈ D, then there is a path joining x to y 
that remains entirely in D. 
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via (2.43). Remembering that . ϕ is an eigenfunction of (2.45), for twice continuously 
differentiable functions on D, we have  

. Lcf (x) = 1

2ϕ(x)
∇2(ϕ(x)f (x)

) − λcf (x)

= 1

2
∇2f (x) +

(∇ϕ

ϕ

)
· ∇f (x) + f (x)

2ϕ(x)
∇2ϕ(x) − λcf (x)

= 1

2
∇2f (x) +

(∇ϕ

ϕ

)
· ∇f (x), x ∈ E.

The generator . Lc is now identifiable as that of a Brownian motion with a drift given 
by .ϕ−1∇ϕ. More precisely, we can identify the Markov process .(ξ,Pc) as equal in 
law to the solution to the SDE 

. ξct = Xt +
∫ t

0

∇ϕ(ξcs )

ϕ(ξcs )
ds, t ≥ 0.

With the above representation, we now see the ground state property that .ϕ = 0 on 
.∂D means that the speed of drift is dominated by .ϕ−1, which becomes arbitrarily 
large in value as the process . ξc approaches the boundary. Moreover, the direction 
of the drift is given by . ∇ϕ, which is always pointing inwards to the interior of 
D (because . ϕ decreases continuously to zero on . ∂D). In other words, the process 
.(ξ,Pc) feels an increasingly large repulsive force from the boundary the closer it 
gets. Indeed, one can show that, under the change of measure (2.36), it never touches 
the boundary. We thus see that the effect of the Doob h-transform is to condition the 
original process to remain in the domain D eternally. 

2.9 Comments 

Starting with Markov himself in his initial work at the turn of the twentieth century, 
the general theory of Markov processes has a long history but owes a lot of its 
measure-theoretic formality to Kolmogorov, Feller, and Dynkin. Key improvements 
and summaries of the formalised theory of Markov processes were given in the 
highly influential texts of Dynkin [50], Blumenthal and Getoor [8], Dellacherie and 
Meyer [37–40], Rogers and Williams [116, 117], Chung and Walsh [25], among 
others. Most of what appears in this chapter can be found in these texts. 

In Sect. 2.1, for a very general setting, it is not uncommon for the event space 
.E

[0,∞]
† to be replaced by the subspace .D(E) of coordinate maps that are right 

continuous with left limits in E. In that case, the filtration .(Gt , t ≥ 0) to be 
generated by open subsets of .D(E). In order to specify these open sets, a topology 
is needed. The generally accepted fit-for-purpose topology in this respect is the 
Skorokhod .J1-topology; cf. Chapter VI of [79]. Theorem 2.1 is a general result
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that can be found in a slightly less general form in Lemma 1.2, Chapter 4 of 
Dynkin [49]. The heuristic discussion of generators in Sect. 2.3 can be replaced 
with a more formal treatment (as alluded to at the end of that section). The reader 
is referred to Ethier and Kurtz [57] for one of many references. Perron–Frobenius 
behaviour for Markov chains discussed in Sect. 2.5 is nicely summarised in the 
book of Seneta [119]. Quasi-stationarity, discussed in Sect. 2.6, is a theme that has 
run through probability theory as a folklore rather than a formalised theory for 
decades. The book of Collet et al. [26] presents one of the few treatments in the 
form of a monograph. We also refer the reader to the works of Champagnat and 
Villemonais [21, 22] where the assumptions (A1) and (A2) and their implications 
were introduced. The general theory of Doob h-transforms alluded to in Sect. 2.7 is 
another folklore that does not necessarily enjoy a complete single point of reference. 
One may refer to Chapter X of Doob [42] or Chung and Walsh [25], for example, 
for further insight. See also Bliedtner and Hansen [18]. The examples of Doob h-
transforms in Sect. 2.8 are classical; see, for example, Powell [112] for a recent 
exposition on the Brownian setting and, more specifically, [35, Theorem 1.6.8] for 
spectral properties of the Laplacian.



Chapter 3 
Stochastic Representation of the Neutron 
Transport Equation 

In this chapter, we break away from the classical view of the NTE described in 
Chap. 1 and begin our journey into stochastic representation of its solutions. The 
main objective of this chapter is to look at alternative interpretations of solutions to 
the NTE in terms of averaging over paths of neutrons. More precisely, we look at the 
connection to two families of stochastic processes that underly different Feynman– 
Kac representations of NTE solutions. This sets the scene for the remainder of the 
first part of this book that delves into a detailed analysis of the path properties of 
these stochastic processes and how this embodies the physical process of fission as 
much as it encapsulates the behaviour of solutions. 

3.1 Duality and the Backward NTE 

Recall the standard setup from Chap. 1, where we defined .(Ψt , t ≥ 0) as the time 
evolution of neutron density, which, under the assumption (H1), was described by 
the NTE (with no source term) as an ACP in .L2(D × V ), 

. 
∂

∂t
Ψt (r, υ) = −υ · ∇rΨt (r, υ) − σ(r, υ)Ψt (r, υ)

+
∫

V

Ψt (r, υ
')σs(r, υ ')πs(r, υ

', υ)dυ '

+
∫

V

Ψt (r, υ
')σf(r, υ ')πf(r, υ

', υ)dυ '. (3.1) 

Moreover, we have the additional boundary conditions 
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.

⎧⎨
⎩

Ψ0(r, υ) = f (r, υ) for r ∈ D,υ ∈ V,

Ψt (r, υ) = 0 for t ≥ 0 and r ∈ ∂D if υ · nr < 0,

(3.2) 

where . nr is the outward facing normal at .r ∈ ∂D and .f ∈ L2(D × V ) that belongs 
to the domain of .G := T + S + F . From  (1.10), we also understand the solution 
in .Dom(G ) as an orbit of the linear operator .exp(tG ). It is natural to wonder what 
the meaning of the “dual” of this solution looks like on .L2(D × V ). 

As a first step in this direction, let us first examine what we mean by the dual 
of the operator . G . Suppose that . O is an operator mapping .L2(D × V ) to itself. We 
would like to know if there is an operator . Ô such that, for all .g ∈ Dom(Ô) and 
.f ∈ Dom(O), 

.〈f,Og〉 = 〈Ôf, g〉. (3.3) 

We will first study what the duals of the individual operators . T , . S , and . F look 
like. 

To this end, let us begin with the operator .T = −υ·∇r−σ . Suppose momentarily 
that .f, g ∈ Dom(T ), that is .f, g ∈ L2(D×V ) such that both .υ ·∇rf and .υ ·∇rg are 
well defined as distributional derivatives in .L2(D × V ). We can verify by a simple 
integration by parts that, for .υ ∈ V , 

.〈f, υ · ∇rg〉 =
∫

∂(D×V )

(υ · υ ')f (r, υ ')g(r, υ ')drdυ ' − 〈υ · ∇rf, g〉. (3.4) 

Hence, if g respects the second of the boundary conditions in (3.2), and we 
additionally insist that f respects the condition 

.f (r, υ) = 0 for r ∈ ∂D if υ · nr > 0, (3.5) 

then (3.4) reduces to the nicer duality relation 

. 〈f, υ · ∇rg〉 = −〈υ · ∇rf, g〉.

In short, recalling the definitions in (1.8), the transport operator . T is dual to . T − σ

where 

.Tf (r, υ) := υ · ∇rf (r, υ), (3.6) 

for 

.f ∈ Dom(T) := {f ∈ L2(D ×V ) such that υ ·f ∈ L2(D ×V ) and f |∂(D×V )+=0},
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with 

. ∂(D × V )+ := {(r, υ) ∈ D × V such that r ∈ ∂D and υ · nr > 0}.

We can similarly consider the duals of the operators . S and . F , which were given 
in (1.8). To this end, note that Fubini’s theorem tells us that, for .f, g ∈ L2(D × V ), 

. 〈f,

∫
V

g(·, υ ')σs(·, υ ')πs(·, υ ', ·)dυ '〉

=
∫

D×V ×V

f (r, υ)σs(r, υ
')g(r, υ ')πs(r, υ

', υ)dυ 'drdυ

=
∫

D×V

σs(r, υ
')
∫

V

f (r, υ)πs(r, υ
', υ)dυ g(r, υ ')drdυ '

= 〈σs(·, ·)
∫

V

f (·, υ)πs(·, ·, υ)dυ, g〉.

Replacing . σs and . πs by . σf and . πf, respectively, yields the duality relation for . F . 
Let us now summarise the backward transport, scattering, and fission operators 

on .L2(D × V ) together as 

.

Tf (r, υ) := υ · ∇rf (r, υ)

Sf (r, υ) := σs(r, υ)
∫
V

f (r, υ ')πs(r, υ, υ ')dυ ' − σs(r, υ)f (r, υ)

Ff (r, υ) := σf(r, υ)
∫
V

f (r, υ ')πf(r, υ, υ ')dυ ' − σf(r, υ)f (r, υ).

(3.7) 

As in Chap. 1, we have .Dom(T + S + F) = Dom(T). The reader will immediately 
note that although the sum .T+S+F is the dual of the sum .T + S + F , the same  
cannot be said for the individual operators “. T”, “. S”, and “. F”. That is to say, the way 
we have grouped the terms does not allow us to say that . T is the adjoint operator to 
. T and so on. The reason for this is because of the way that we will shortly make 
the association of the operators .T,S,F to certain stochastic processes. Nonetheless, 
we have the following duality relation between .T+ S+ F and .T + S + F , which 
follows from the calculations above. 

Theorem 3.1 Assume .f ∈ Dom(T + S + F), .g ∈ Dom(T + S + F ). Then we 
have 

.〈f, (T + S + F )g〉 = 〈(T + S + F)f, g〉. (3.8) 

Theorem 3.1 also alludes to the possibility that the dual of the operator . exp(tG )

takes the form .exp (tĜ ), where .Ĝ := (T + S + F). Moreover, since .(Ψt , t ≥ 0)
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solves a linear equation (3.1) in .L2(D × V ), then there is also a dual—also known 
as the backward—NTE on .L2(D × V ) taking the form 

. 
∂

∂t
Ψ̂t (r, υ) = υ · ∇r Ψ̂t (r, υ) + σs(r, υ)

∫
V

{Ψ̂t (r, υ
')πs(r, υ, υ ') − Ψ̂t (r, υ)}dυ '

+ σf(r, υ)

∫
V

Ψ̂t (r, υ
')πf(r, υ, υ ')dυ ' − σf(r, υ)Ψ̂t (r, υ),

(3.9) 

with physical boundary conditions 

.

⎧⎨
⎩

Ψ̂0(r, υ) = g(r, υ) for r ∈ D,υ ∈ V,

Ψ̂t (r, υ) = 0 for t ≥ 0 and r ∈ ∂D if υ · nr > 0.

(3.10) 

Indeed, in a similar style to Chap. 1, we should think of (3.9)–(3.10) as an ACP, 
which has a unique solution when considered on .Dom(T + S + F) = Dom(T), 
identified as the orbit 

. Ψ̂t = exp(t (T + S + F))g, t ≥ 0.

The following result formalises the above discussion. 

Corollary 3.1 The solution to (3.1) with boundary conditions (3.2), specifically 
with .Ψ0 = f ∈ Dom(T + S + F ), and the solution to (3.9) with boundary 
conditions (3.10), specifically with .Ψ̂0 = g ∈ Dom(T+S+F), are dual in the sense 
that 

.〈g,Ψt 〉 = 〈Ψ̂t , f 〉, t ≥ 0. (3.11) 

Proof Since . Ψt is a solution to (3.1) on .L2(D × V ), we have  

. 
∂

∂t
〈g,Ψt 〉 = 〈g, (T + S + F )Ψt 〉.

Similarly, we have 

. 
∂

∂t
〈Ψ̂t , f 〉 = 〈(T + S + F)Ψ̂t , f 〉.

Since .f ∈ Dom(T + S + F) and .g ∈ Dom(T + S + F ), it follows that . Ψ̂t ∈
Dom(T + S + F) and .Ψ ∈ Dom(T + S + F ). Thus, Theorem 3.1 can be applied, 
and we have, for .t ≥ 0, 

.
∂

∂t
〈g,Ψt 〉 = 〈g, (T + S + F )Ψt 〉 = 〈(T + S + F)Ψ̂t , f 〉 = ∂

∂t
〈Ψ̂t , f 〉.
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In other words, for .t ≥ 0, 

. 〈g,Ψt 〉 = 〈g, f 〉 +
∫ t

0

∂

∂s
〈g,Ψs〉ds = 〈g, f 〉 +

∫ t

0

∂

∂s
〈Ψ̂s, f 〉ds = 〈Ψ̂t , f 〉.

The result now follows. ⨅⨆
Remark 3.1 In much of the nuclear physics and engineering literature, Eq. (3.9) is 
referred to as the adjoint NTE. 

It is not yet clear what added value the backward formulation of the NTE on 
.L2(D × V ) gives us. Our next objective is to show that solutions to the backward 
NTE can be identified with a category of integral equations that we saw in Chap. 2, 
see in particular (2.6), which are also known as mild equations, or Duhamel 
equations in the PDE literature. 

Before introducing the mild form of the backward NTE, we need to familiarise 
ourselves with expectation semigroups of some Markov processes that are of 
relevance. To this end, we will start by defining the so-called advection semigroup, 
which provides an alternative way to describe particle transport, as opposed to the 
operator . T. We will then construct two families of stochastic processes, which will 
form the basis of the solutions to the aforementioned mild equations. Finally, we 
will formally introduce the mild version of the NTE and discuss its relation to the 
classical integro-differential version presented until now. 

3.2 Advection Transport 

In free space, neutrons move in straight lines. If a particle has a velocity .υ ∈ V , then 
we can describe its motion in space by composing its position with a test function 
say .g ∈ B+(D × V ), the space of non-negative and uniformly bounded functions 
on .D × V , with the additional constraint that g has value zero on a cemetery state. 
We will discuss the latter in more detail shortly. 

If the initial position is .r ∈ D, then evolution over time is represented by the 
advection semigroup, that is, the family of operators 

. Ut : B+(D × V ) → B+(D × V ) t ≥ 0,

defined for .r ∈ D,υ ∈ V and .g ∈ B+(D × V ) by 

.Ut [g](r, υ) =
{

g(r + υt, υ), t < κD
r,υ,

0, otherwise,
(3.12) 

where 

.κD
r,υ := inf{t > 0 : r + υt /∈ D} (3.13)
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Fig. 3.1 The deterministic 
time .κD

r,υ is the time at which 
a particle issued from r and 
travelling with velocity . υ
exits the domain D 

r 

r + υt 
t < κD 

r,υ 

r + υκD 
r,υ 

D 

is the deterministic time that a neutron released from r with velocity .υ ∈ V leaves 
the physical domain D (Fig. 3.1). Note that the definition of . U in (3.12) is equivalent 
to setting g to be zero if the neutron’s configuration enters the set . {r ∈ ∂D, υ ∈ V :
nr · υ > 0}, where . nr is the outward facing normal at .r ∈ ∂D. As alluded to above, 
this prescribes functions in .B+(D × V ) to be zero on a natural cemetery state. 

We also note that we may extend the definition of . U to .r ∈ ∂D with . nr · υ < 0
through the right-hand side of (3.12); however, we will work on the open set D and 
the case where particles are on .∂D with incoming velocity will never be treated. We 
can also extend the absorbing set to include velocities satisfying .nr · υ = 0, when 
.r ∈ ∂D; however, this is again somewhat esoteric for the same reasons. 

The following result identifies .U := (Ut , t ≥ 0) as having the semigroup 
property. 

Lemma 3.1 The operator family .U = (Ut , t ≥ 0) has the semigroup property, that 
is, .Ut+s = UtUs for all .s, t ≥ 0. 

Proof Let us start by noting that we may more compactly write 

. Ut [g](r, υ) = g(r + υt, υ)1(t<κD
r,υ ), t ≥ 0.

Then note that for . s ≥ 0

. κD
r+υs,υ = inf{t > 0 : r + υ(t + s) /∈ D} = (κD

r,υ − s) ∨ 0,

so that, for .t ≥ 0, 

.t < κD
r+υs,υ if and only if t + s < κD

r,υ .
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Hence, for .g ∈ B(D × V ) and .s, t ≥ 0, 

. Us[Ut [g]](r, υ) = Ut [g](r + υs, υ)1(s<κD
r,υ )

= g(r + υ(t + s), υ)1(t<κD
r+υs,υ )1(s<κD

r,υ )

= Ut+s[g](r, υ),

as required. ⨅⨆
The semigroup .(Ut , t ≥ 0) is a well-defined object that we are going work with 

in place of the operator . T. To see the connection with . T, fix .υ ∈ V and suppose 
that the function .g(·, υ) is regular enough, i.e., .g(·, υ) ∈ Dom(T) for each .υ ∈ V , 
where 

. Dom(T) := {f ∈ L2(D × V ) : υ · ∇rf ∈ L2(D × V )}.
Then for this class of functions and for .0 ≤ t < κD

r,υ , .r ∈ D,υ ∈ V , we have on  
. L2(D × V )

.
d

dt
Ut [g](r, υ) = d

dt
g(r + υt, υ) = υ · ∇rg(r + υt, υ) = TUt [g](r, υ), (3.14) 

with boundary condition and initial condition given by 

.

{
Ut [g](r, υ) = 0, r ∈ ∂D, υ ∈ V : nr · υ > 0

U0[g](r, υ) = g(r, υ).
(3.15) 

Note that the conditions given in (3.15) are very much reminiscent of those given 
in (3.10) for the backward NTE. As we have seen in Chap. 1, for each . υ ∈ V , we  
may formally and uniquely identify solutions to (3.14) on .L2(D × V ) via the orbit 

.Ut [g](r, υ) = etTg(r, υ), t ≥ 0, r ∈ D,υ ∈ V. (3.16) 

We will shortly see that, for the purposes of probabilistic analysis, the pointwise 
definition (3.12) will be preferable to the more abstract functional sense in which 
(3.16) is understood. 

3.3 Neutron Random Walk 

A neutron random walk (NRW) on .D × V is defined by the two characteristics: 

.α(r, υ) : The rate at which scattering occurs from incoming velocity υ

π(r, υ, υ ')dυ ' : The probability that an incoming velocity υ scatters to an outgoing

velocity υ '
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As a probability density, . π necessarily satisfies .
∫
V

π(r, υ, υ ')dυ ' = 1, for all .υ ∈ V . 
For convenience, we can assume that both are uniformly bounded from above and 
that, pointwise, .απ is bounded away from 0. The stochastic evolution of a NRW 
follows the following rules:

• When issued from .r ∈ D with velocity .υ ∈ V , the NRW propagates linearly 
with that velocity until either it exits the domain D, in which case it is killed, or 
at the random time T a scattering occurs, where 

. Pr(T > t) = exp{−∫ t

0 α(r + υ𝓁, υ)d𝓁}, t ≥ 0.

• When the scattering event occurs in position-velocity configuration . (r, υ), a new  
velocity . υ ' is selected with probability .π(r, υ, υ ')dυ '. 

We denote the associated suite of laws by .P = (P(r,υ), r ∈ D,υ ∈ V ). If we write 
.(R, Υ ) = ((Rt , Υt ), t ≥ 0) for the position-velocity of the resulting continuous-
time random walk on .D × V , then it is easy to show that .((R, Υ ),P) is a Markov 
process (Fig. 3.2). Fundamentally, this is because, for .s, t ≥ 0, we have  

. Pr(T > t + s|T > s) = exp{−∫ t+s

s
α(r + υ𝓁, υ)d𝓁} = exp{−∫ t

0 α(rs + υ𝓁, υ)d𝓁},

where .rs = r + υs. Moreover, this carries the implication that, if . Ts is the time to 
the next scatter event after time .s ≥ 0, then the residual lifetime satisfies 

. P(r,υ)(Ts > t |(Ru, Υu), 0 ≤ u ≤ s) = exp{−∫ t

0 α(Rs + Υs𝓁, Υs)d𝓁},

for .t ≥ 0, r ∈ D,υ ∈ V . Thereafter, the scattering occurs still with probability 
density . π , and the process continues according to the stochastic rules in the bullet 
points above. Note that if we assume that .απ is pointwise bounded away from zero, 
then scattering is possible everywhere in .D×V . It is worthy of note that, despite the 
fact that the pair .(R, Υ ) is Markovian, neither R nor . Υ is Markovian as individual 
processes. 

We call the process .(R, Υ ) an .απ -NRW. It suffices to identify the NRW by the 
product . απ . Indeed, when .απ is given as a single rate function, the density . π , and 
hence the rate . α, can easily be separated out by normalisation of the product by its 
total mass to make it a probability distribution. Occasionally, we will have recourse 
to be specific about the parameters . α and . π in the law . P. In that case, we will work 
with the probabilities .(Pαπ

(r,υ), r ∈ D,υ ∈ V ). 
Suppose now we denote by 

.τD = inf{t > 0 : Rt ∈ ∂D and nRt · Υt > 0}, (3.17) 

the time of first exit from D of the .απ -NRW. We can thus introduce the expectation 
semigroup of the process .(R, Υ ) killed on exiting D by 

. φt [g](r, υ) = E(r,υ)[g(Rt , Υt )1(t<τD)], t ≥ 0, r ∈ D, υ ∈ V, g ∈ B+(D×V ).

(3.18)
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Fig. 3.2 A realisation of a 
path of a neutron random 
walk .(R, Υ ) until exiting its 
domain D 

D 

We technically do not need to include the indicator in our definition, as g should 
necessarily take the value zero on the cemetery state, where the NRW is sent when 
it is either absorbed into a nucleus in D or it hits the set .{r ∈ D,υ ∈ V : nr ·υ > 0}. 
However, we prefer to stress the role of the boundary. Again, although we choose 
not to, as with . U, we may extend the definition of . φ to allow .r ∈ ∂D such that 
.nr · υ < 0, that is, starting on the boundary of D with an inward facing velocity, by 
simply evaluating the expectation in (3.18) that is non-trivial. 

Let us also define the operator 

. ̃Sf (r, υ) = α(r, υ)

∫
V

{f (r, υ ') − f (r, υ)}π(r, υ, υ ')dυ ', r ∈ D,υ ∈ V,

(3.19) 

for .f ∈ B+(D × V ). We are now in a position to write down the evolution 
equation associated to the NRW, which describes the evolution of the semigroup 
.φt [g]. Recalling the advection semigroup .(Ut , t ≥ 0) defined in the previous section, 
we have the following lemma. 

Lemma 3.2 For each .g ∈ B+(D × V ), .(φt [g], t ≥ 0) is a solution in . B+(D × V )

to 

.φt [g](r, υ) = Ut [g](r, υ) +
∫ t

0
Us[S̃φt−s[g]](r, υ)ds, t ≥ 0. (3.20) 

Proof Starting with the expression in (3.18), we can condition on the first scattering 
event to obtain
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. φt [g](r, υ) = g(r + υt, υ)e− ∫ t
0 α(r+υs,υ)ds1(t<κD

r,υ )

+
∫ t∧κD

r,υ

0
α(r + υs, υ)e− ∫ s∧κD

r,s
0 α(r+υ𝓁,υ)d𝓁

(∫
V

φt−s(r + sυ, υ ')π(r + sυ, υ, υ ')dυ '
)

ds.

We may now appeal to Theorem 2.1 and deduce that (3.20) holds. ⨅⨆
The evolution (3.20) gives us a clear analytical representation of the behaviour 

of .(R, Υ ), i.e., linear movement interlaced by scattering until the physical boundary 
D is reached. It is important to note that the evolution Eq. (3.20) is now well defined 
pointwise as well as on .L2(D × V ). In the .L2(D × V ) setting, we would have 
expected to see the operator .T + S̃ describing the evolution of .(R, Υ ). However, 
with our description now being pointwise, we see instead in (3.20) a mixture of 
the well-behaved difference operator . ̃S and the semigroup .(Ut , t ≥ 0), whose role 
replaces that of . T. 

3.4 Neutron Branching Process 

In the previous two sections, we addressed the Markov structure of pure advection 
and then the more complex setting of advection with scattering. In this section, we 
introduce a further level of complexity and look at the Markov structure of a system 
of particles that experience independent movement as neutron random walks, but 
which also undergo fission. We call such a process a neutron branching process 
(NBP), and as a stochastic model, it is the mathematical object that most closely 
describes the real-world phenomenon of nuclear fission. Moreover, its evolution 
can be described in mean using the cross sections .(σs, σf, πs, πf) that appear in 
the NTE. Earlier we assumed that (H1) is in force, and we will do so here as well 
for convenience. 

Consider a randomly evolving configuration of particles that are specified at 
time .t ≥ 0 via their physical location and velocity in .D × V . We will write this 
configuration as 

. 
(
(ri(t), υi(t)) : i = 1, . . . , Nt

)
,

where . Nt is the number of particles alive at time .t ≥ 0. In order to describe the 
stochastic evolution of our collection of particles, it turns out to be more convenient 
to represent them as a process in the space of finite atomic measures. To this end, 
let us define the counting measure 

.Xt(A) =
Nt∑
i=1

δ(ri (t),υi (t))(A), A ∈ B(D × V ), t ≥ 0, (3.21)
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where . δ is the Dirac measure, defined on .B(D × V ), the Borel subsets of .D × V . 
The process .(Xt , t ≥ 0) is valued in the space of finite counting measures 

.Mc(D × V ) := {∑n
i=1δ(ri ,υi ) : n ∈ N, (ri , υi) ∈ D × V, i = 1, · · · , n} (3.22) 

and evolves randomly according to the following rules:

• A particle positioned at r with velocity . υ will continue to move along the 
trajectory .r + υt , .t ≥ 0, until one of the following things happens.

• The particle leaves the physical domain D, in which case it is instantaneously 
killed.

• Independently of all other particles in the system, a scattering event occurs and 
makes an instantaneous change of velocity. For a particle in the system with 
position and velocity .(r, υ), if we write . Ts for the random time that scattering 
may occur, then 

. Pr(Ts > t) = exp{−∫ t

0 σs(r + υs, υ)ds}, t ≥ 0.

When scattering occurs at configuration .(r, υ), the new velocity is chosen to be 
.υ ' ∈ V independently with probability .πs(r, υ, υ ')dυ '.

• Independently of all other particles in the system, a fission event occurs causing 
the creation of several new particles, each of which will acquire a new velocity. 
For any particle with configuration .(r, υ), if we write . Tf for the random time that 
fission may occur, then 

. Pr(Tf > t) = exp{−∫ t

0 σf(r + υs, υ)ds}, t ≥ 0.

When fission occurs, the particle undergoing fission instantaneously ceases to 
exist and a random number of new particles, say .N ≥ 0, are created at the same 
point in space but with randomly distributed, and possibly correlated, velocities, 
say .(υi : i = 1, · · · , N). The outgoing velocities are described by the atomic 
random measure 

.Z(A) :=
N∑

i=1

δυi
(A), A ∈ B(V ). (3.23) 

When fission occurs at location .r ∈ D from a particle with incoming velocity 
.υ ∈ V , we denote by .P(r,υ) the law of . Z. It is worthy of note that . P(r,υ)(N =
0) > 0, which corresponds to neutron capture (that is, where a neutron collides 
with a nucleus but the collision does not result in fission). 

We will write .Pδ(r,υ)
for the law of X when issued from a single particle with space-

velocity configuration .(r, υ) ∈ D × V . More generally, for .μ ∈ Mc(D × V ), we  
understand 

.Pμ := Pδ(r1,υ1)
⊗ · · · ⊗ Pδ(rn,υn)

when μ = ∑n
i=1δ(ri ,υi ).
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In other words, the process X when issued from initial configuration . μ is equivalent 
to issuing n independent copies of X, each with configuration .(ri, υi), .i = 1, · · · , n. 
We will frequently write .(X,P), where .P = (Pμ : μ ∈ Mc(D × V )) to refer to the 
NBP we have defined above. 

In essence, the NBP is parameterised by the quantities .σs, πs, σf and the family 
of measures .P = (P(r,υ), r ∈ D,υ ∈ V ), and accordingly, we also refer to 
.(X,P) as a .(σs, πs, σf,P)-NBP. Clearly, our use of the quantities that appear as 
cross sections in the NTE is pre-emptive, and one of our objectives is to show the 
connection between the NBP and the NTE. 

An important point to make here is that the “data” we need to define our NBP, 
i.e., .(σs, πs, σf,P), are not equivalent to the data .(σs, πs, σf, πf). Indeed, the 
latter is less data than the former. The connection between the cross section . πf and 
. P in our NBP is through the relation 

.

∫
V

g(υ ')πf(r, v, υ ')dυ ' = E(r,υ)

[∫
V

g(υ ')Z(dυ ')
]

= E(r,υ)[Z[g]], (3.24) 

for all .υ ∈ V and .g ∈ B(V ), where we are treating . Z as a random measure in 
.Mc(V ), the space of finite atomic measures on V . 

This begs the question as to whether, given a quadruple .(σs, πs, σf, πf), at least  
one .(σs, πs, σf,P)-NBP exists such that (3.24) holds. In order to construct an 
example of such a . P , we first introduce some further assumptions on the model 
parameters: 

(H2) We have .σsπs + σfπf > 0 on .D × V × V . 
(H3) There is an open ball B compactly embedded in D such that . σfπf > 0

on .B × V × V . 

Assumption (H2) ensures that at least some activity occurs, whether it be 
scattering or fission. Together with (H3), it ensures that there is at least some fission 
as well as scattering. Assumption (H2) also avoids the degenerate scenario that 
once in certain space-velocity configurations, the evolution of the system is entirely 
deterministic. 

We also introduce another assumption on the number of fission offspring. 

(H4) Fission offspring are bounded in number by the constant .nmax > 1. 

Assumption (H4) is automatically satisfied for the physical processes we intend 
to use our NBP to model since the maximum number of neutrons that can be 
emitted during a fission event with positive probability is finite. For example, in 
an environment where the heaviest nucleus is Uranium-235, there are at most 143 
neutrons that can be released in a fission event, albeit, in reality, it is more likely that 
2 or 3 are released. In particular, this means that 

. supr∈D,υ∈V

∫
V

πf(r, υ, υ ')dυ ' ≤ nmax.

Now let us suppose (H1) and (H4) hold. Then, for a given . πf, define 

.nmax = min{k ≥ 1 : sup(r,υ)∈D×V

∫
V

πf(r, υ, υ ')dυ ' ≤ k}.
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Define the ensemble .(υi, i = 1, · · · , N) such that: 

(i) .N ∈ {0, nmax}. 
(ii) For each .(r, υ) ∈ D × V , set  

. P(r,υ)(N = nmax) =
∫
V

πf(r, υ, υ '')dυ ''

nmax
.

(iii) On the event .{N = nmax}, each of the .nmax neutrons are released with the same 
velocities .υ1 = · · · = υnmax , the distribution of this common velocity is given 
by 

. P(r,υ)(υi ∈ dυ '|N = nmax) = πf(r, υ, υ ')∫
V

πf(r, υ, υ '')dυ '' dυ ', i = 1, . . . , nmax.

With the construction (i)–(iii) for .P(r,υ), we can now easily calculate for 
bounded and measurable .g : V → [0,∞), 

. 

∫
V

g(υ ')πf(r, v, υ ')dυ '

= 0 × (
1 − P(r,υ)(N = nmax)

)

+ P(r,υ)(N = nmax)nmax

∫
V

g(υ ')P(r,υ)(υi ∈ dυ '|N = nmax)

=
∫
V

πf(r, υ, υ '')dυ ''

nmax
nmax

∫
V

g(υ ') πf(r, υ, υ ')∫
V

πf(r, υ, υ '')dυ '' dυ '

=
∫

V

g(υ ')πf(r, v, υ ')dυ ',

thus matching (3.24), as required. 
Like all spatial branching Markov processes, the NBP .(X,P) respects the Markov 

branching property. In order to demonstrate this, let us introduce a little more 
notation. Define the natural filtration of .(X,P) by 

.Ft := σ((ri(s), υi(s)) : i = 1, · · · , Ns, s ≤ t), t ≥ 0. (3.25) 

Recall that .B+(D×V ) is the space of non-negative, bounded, measurable functions 
on .D × V and, treating . Xt as a random measure in .Mc(D × V ), defined in (3.22), 
by appealing to the notation in (2.27), we can write 

.Xt [f ] =
Nt∑
i=1

f (ri(t), υi(t)), t ≥ 0, f ∈ B+(D × V ).
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Since the function .f ∈ B+(D × V ) is forced, by definition, to score zero on 
the cemetery state, when particles reach the boundary of D or are absorbed into 
a nucleus and are removed from the system, they no longer contribute to the sum. 

Lemma 3.3 (Markov Branching Property) For all .g ∈ B+(D × V ) and . μ ∈
Mc(D × V ) written .μ = ∑n

i=1 δ(ri ,υi ), we have 

.Eμ

[
e−Xt [g]] = ∏n

i=1 vt [g](ri, υi), t ≥ 0, (3.26) 

where 

.vt [g](r, υ) := Eδ(r,υ)

[
e−Xt [g]] , r ∈ D, υ ∈ V. (3.27) 

In this respect, .(X,P) is a Markov process with state space .Mc(D × V ). In  
particular,1 

.E

[
e−Xt+s [g]

∣∣∣Ft

]
=

Nt∏
j=1

vs[g](rj (t), υj (t)), (3.28) 

where .((rj (t), υj (t)), j = 1, . . . , Nt ) is the collection of particles alive at time t . 

Proof By construction, once particles come into existence, they do not interact with 
one another. Hence, given . Ft , for any fixed .t ≥ 0, the expectation of a product of 
the NBP population at time t will result in expectations over the individual trees that 
grow from each particle at that time. 

Suppose a particle, labelled i, has space-velocity configuration .(r, υ) in . D × V

at time 0 and exists over a time horizon .[0, t]. Writing .T (i)
f for its fission time, the 

chance that fission has not occurred by time .t + s given that it has not yet occurred 
by time t is given by 

. P(T
(i)
f > t + s|T i

f > t) = P(T
(i)
f > t + s)

P(T
(i)
f > t)

= e− ∫ t+s
t σf(ri (u),υi (u))du,

where .(ri(·), υi(·)) is the .σsπs-NRW that describes the path of particle i that is 
issued from a configuration .(r, υ). With a straightforward change of time, we can 
write 

. 

∫ t+s

t

σf(ri(u), υi(u))du =
∫ s

0
σf(r

'
i (𝓁), υ

'
i (𝓁))d𝓁,

where .(r '
i (·), υ '

i (·)) is also a .σsπs-NRW, albeit that it is issued from the configura-
tion .(ri(t), υi(t)).

1 We always treat the product over an empty set as equal to unity. 
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Putting these pieces together, we note that when we consider the process X 
conditional on . Ft , for some fixed .t ≥ 0, the evolution of the trees that grow out 
of each of the particles with respective configurations .(ri(t), υi(t)), .i = 1, · · · , Nt , 
is equal in law to an independent collection, .(X,Pδ(ri (t),υi (t))

), .i = 1, · · · , Nt , of  
NBPs. 

More precisely, suppose .N(i)
s is the number of descendants in the subtree of the 

NBP that is initiated from a single mass at space-velocity configuration . (ri(t), υi(t))

and run over the time horizon .[t, s+t], and .(r
(i)
j (s), υ

(i)
j (s)), .j = 1, . . . , N

(i)
s are the 

positions in the aforesaid subtree after the relative s units of time; see Fig. 3.3. Then 
we can decompose the population of particles at time .t + s as groups of descendants 
from particles of the NBP at time t and write 

. E

⎡
⎣exp

⎛
⎝−

Nt+s∑
i=1

g(ri(t + s), υi(t + s))

∣∣∣∣∣∣Ft

⎞
⎠
⎤
⎦

= E

⎡
⎣exp

⎛
⎝−

Nt∑
i=1

N
(i)
s∑

j=1

g(r
(i)
j (s), υ

(i)
j (s))

⎞
⎠
∣∣∣∣∣∣Ft

⎤
⎦

=
Nt∏
i=1

E

⎡
⎣exp

⎛
⎝−

N
(i)
s∑

j=1

g(r
(i)
j (s), υ

(i)
j (s))

⎞
⎠
∣∣∣∣∣∣Ft

⎤
⎦

=
Nt∏
i=1

vs[g](ri(t), υi(t)). (3.29) 

In short, (3.28) and hence (3.26) hold. ⨅⨆
The Markov branching property also leads us to the expectation semigroup of the 

NBP, which is key to understanding the relationship between the NBP and the NTE. 
With pre-emptive notation, we are interested in 

.ψt [g](r, υ) := Eδ(r,υ)
[Xt [g]], t ≥ 0, r ∈ D,υ ∈ V, (3.30) 

for .g ∈ B+(D × V ). As usual we extend the definition of this semigroup (as well 
as the value of g) to take the value zero when the process enters the cemetery state, 
that is, where particles are absorbed in D into a nucleus or hit a boundary point 
.{r ∈ D,υ ∈ V : nr · υ > 0}. It is not immediately clear that (3.30) constitutes an 
expectation semigroup; however, the lemma below affirms this fact. 

Lemma 3.4 Assume (H1) holds. The family of operators .(ψt , t ≥ 0) on . B+(D×V )

is an expectation semigroup. 

Proof Similar to the calculation (3.29), the Markov branching property tells us that 
for .s, t ≥ 0 and .g ∈ B+(D × V ),
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(ri(t), υi(t)) 

(r(i) j (s), υ
(i) 
j (s)) 

D 

Fig. 3.3 The evolution of a NBP up to time .t + s from a single particle. The path in black denotes 
the evolution over the time interval .[0, t), and the path in red denotes the evolution over the 
time interval .[t, t + s]. With arbitrary labelling, a particle with position-velocity configuration 
.(ri (t), υi(t)) is labelled at time t and s units of time later, again with arbitrary labelling, a 
descendent particle with position-velocity .(r

(i)
j (s), υ

(i)
j (s)) is also labelled 

. E [Xt+s[g]|Ft ] = E

⎡
⎣

Nt+s∑
i=1

g(ri(t + s), υi(t + s))

∣∣∣∣∣∣Ft

⎤
⎦

= E

⎡
⎣ Nt∑

i=1

N
(i)
s∑

j=1

g(r
(i)
j (s), υ

(i)
j (s))

∣∣∣∣∣∣Ft

⎤
⎦ , (3.31) 

where .((r
(i)
j (s), υ

(i)
j (s)), j = 1 · · · , N

(i)
s ) is the collection of descendants in 

the subtree of the NBP that is initiated from a single particle at space-velocity 
configuration .(ri(t), υi(t)), run over the time horizon .[t, s + t]; see Fig. 3.3. 
Now taking advantage of the Markov branching property, we can continue the 
computation in (3.31) with 

.E [Xt+s[g]|Ft ] =
Nt∑
i=1

E

⎡
⎣N

(i)
s∑

j=1

g(r
(i)
j (s), υ

(i)
j (s))

∣∣∣∣∣∣Ft

⎤
⎦

=
Nt∑
i=1

Eδ(ri (t),υi (t))
[Xs[g]]

= Xt [ψs[g]].
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Hence, taking expectations again across these equalities, 

. ψt+s[g](r, υ) = ψt [ψs[g]](r, υ), s, t ≥ 0, r ∈ D,υ ∈ V, g ∈ B+(D × V ),

which constitutes the expectation semigroup property. ⨅⨆
As with Lemma 3.2 for the NRW, the semigroup .(ψt , t ≥ 0) solves a 

mild evolution equation (in the pointwise sense) in .B+(D × V ), which we now 
investigate. To this end, recall the definition of the operators . S and . F defined in (3.7). 

Lemma 3.5 Under (H1), for .g ∈ B+(D × V ), there exist constants . C1, C2 > 0
such that .ψt [g], as given in (3.30), is uniformly bounded by .C1 exp(C2t), for all 
.t ≥ 0. Moreover, .(ψt [g], t ≥ 0) is the unique solution in .B+(D × V ) to the mild 
equation: 

.ψt [g] = Ut [g] +
∫ t

0
Us[(S + F)ψt−s[g]]ds, t ≥ 0, (3.32) 

for which (3.5) holds. 

Proof To show that (3.30) solves (3.32) is a simple matter of conditioning the 
expression in (3.30) on the first fission or scatter event (whichever occurs first). 
In that case, we observe, for .t ≥ 0, .r ∈ D, .υ ∈ V , .g ∈ B+(D × V ), 

. ψt [g](r, υ)

= e− ∫ t
0 σ(r+υ𝓁,υ)d𝓁g(r + υt, υ)1(t<κD

r,υ )

+
∫ t

0
1(s<κD

r,υ )

σf(r + υs, υ)

σ (r + υs, υ)
σ (r + υs, υ)e− ∫ s

0 σ(r+υ𝓁,υ)d𝓁

∫
V

ψt−s(r + υs, υ ')πf(r, υ, υ ')dυ 'ds

+
∫ t

0
1(s<κD

r,υ )

σs(r + υs, υ)

σ (r + υs, υ)
σ (r + υs, υ)e− ∫ s

0 σ(r+υ𝓁,υ)d𝓁

∫
V

ψt−s(r + υs, υ ')πs(r, υ, υ ')dυ 'ds

= e− ∫ t
0 σ(r+υ𝓁,υ)d𝓁g(r + υt, υ)1(t<κD

r,υ )

+
∫ t

0
1(s<κD

r,υ )e
− ∫ s

0 σ(r+υ𝓁,υ)d𝓁(S + F + σ)ψt−s(r + υs, υ)ds,

where we recall that .σ = σf + σs is the joint rate at which either a fission or scatter 
occurs and, on the event that either of these two events occur, the chance that it 
is a scatter event is .σs/σ and the chance that it is a fission event is . σf/σ . Next,
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applying Theorem 2.1, we can remove the multiplicative potential, and recalling the 
definition of .(Us , s ≥ 0) in (3.12), we recover the Eq. (3.32). 

To show uniqueness of (3.32), suppose that .ψ(1) and .ψ(2) are two bounded non-
negative solutions to (3.32) and, for each .g ∈ B+(D × V ), .r ∈ D, . υ ∈ V , set  

. ψ̃t [g] = sup
r∈D,υ∈V

|ψ(1)
t [g](r, υ) − ψ(2)[g]t (r, υ)|.

Necessarily, .ψ̃t [g] ≥ 0 has zero initial condition and 

. ψ̃t [g] = sup
r∈D,υ∈V

∣∣∣∣
∫ t

0
Us[(S + F)(ψ

(1)
t−s[g] − ψ

(2)
t−s[g])](r, υ)ds

∣∣∣∣

≤ (2σ̄s + (nmax + 1)σ̄f)Vol(V )

∫ t

0
ψ̃t−s[g]ds t ≥ 0,

where we have used the definitions of . S and . F in (3.7), where 

. σ̄s := sup
r∈D,υ∈V

σs(r, υ),

with a similar definition for . σ̄f, and .Vol(V ) is the Lebesgue volume of V . We may  
now appeal directly to Grönwall’s lemma to deduce that .ψ̃t [g] = 0, .t ≥ 0. 

Finally, to show domination by exponential growth, we may return to the 
stochastic definition of .Xt and note that .Nt := Xt [1], .t ≥ 0, is the number 
of particles in the NBP at time t . Our objective is to show that, on the same 
probability space, we can pathwise upper bound the counting process . (Nt , t ≥ 0)

by .(Ñt , t ≥ 0), i.e., .Nt ≤ Ñt almost surely, .t ≥ 0, where . Ñ is a Bienyamé– 
Galton–Watson branching process in continuous time. The construction is such that 
. Ñ produces precisely .nmax offspring at each branching event (i.e., a net difference 
of .nmax − 1), and whenever N increases due to a branching event, so does . Ñ . In  
addition, . Ñ permits each individual to additionally branch at rate . σ̄f − σf, again  
producing precisely .nmax offspring. The stochastic domination of N by . Ñ is clear, 
and also the choice of the additional branching rate is such that . Ñ is a Bienyamé– 
Galton–Watson process with branching rate . σ̄f and offspring distribution that is 
concentrated on .nmax with probability one. For any .g ∈ B+(D × V ), .r ∈ D, and 
.υ ∈ V , we may now use the fact that the Bienyamé–Galton–Watson processes grow 
exponentially at a rate given by its branching rate multiplied by the mean number of 
offspring minus one to obtain 

. Eδ(r,υ)
[Xt [g]]] ≤ ‖g‖Eδ(r,υ)

[Xt [1]] ≤ ‖g‖eσ̄f(nmax−1)t ,

where .‖ · ‖ denotes the supremum norm on .B+(D ×V ). The proof is complete. ⨅⨆
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3.5 Mild NTE vs. Backward NTE 

Despite the fact that (3.32) gives us an interpretation of the NTE on .B+(D × V ), 
it is still unclear how our NBP relates to the backward NTE in (3.9) on the space 
.L2(D × V ). The following theorem shows that when we treat . ψt : B+(D × V ) I→
B+(D × V ), .t ≥ 0, as a family of functions in .L2(D × V ), then it agrees with the 
unique solution to the backward NTE in (3.9). 

Theorem 3.2 Under the assumptions of Lemma 3.5, if  .g ∈ B+(D × V ), then the 
solution to (3.32) solves (3.9) in .L2(D × V ). 

Proof Consider the adjusted ACP with inhomogeneity given by 

.

⎧⎨
⎩

∂ut

∂t
= Tut + (S + F)Ψ̂t

u0 = g
, (3.33) 

where .(Ψ̂t , t ≥ 0) is taken as the solution to (3.9) with boundary condition (3.10). 
By taking the difference of two solutions and invoking the uniqueness of the 
homogenous ACP 

.

⎧⎨
⎩

∂ut

∂t
= Tut

u0 = 0
(3.34) 

in .L2(D × V ), we note that the solution to (3.33) is unique in .L2(D × V ). 
However, on the one hand, straightforward differentiation gives us that, providing 
.g ∈ Dom(T + S + F) = Dom(T), 

.ut := etTg +
∫ t

0
e(t−s)T(S + F)Ψ̂sds, t ≥ 0, (3.35) 

solves (3.33). On the other hand, taking account of the fact that . (Ψ̂t , t ≥ 0)

solves (3.9), it is also clear by inspection in (3.33) that 

. ut = Ψ̂t , t ≥ 0,

solves (3.33). Uniqueness thus tells us that, on .L2(D × V ), 

. Ψ̂t = Ut [g] +
∫ t

0
Us[(S + F)Ψ̂t−s]ds, t ≥ 0,

where we have appealed to the identification of .exp(tT) as equal to . Ut on . L2(D ×
V ), cf.  (3.16), and we have also reversed the direction of integration in (3.35). In
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conclusion, whereas .(ψt [g], t ≥ 0) solves (3.32) in the pointwise sense on . B+(D ×
V ), .(Ψ̂t , t ≥ 0) solves it in .L2(D × V ). 

Since .D × V is bounded, we have .B+(D × V ) ⊂ L2(D × V ), and hence, we 
can consider 

. ‖ψt [g] − Ψ̂t‖2 =
∣∣∣∣
∣∣∣∣
∫ t

0
Us[(S + F){ψt−s[g] − Ψ̂t−s}]ds

∣∣∣∣
∣∣∣∣
2
, t ≥ 0.

To this end, let us note that, for .T > 0, and .ωt ∈ L2(D × V ), . t ≤ T , we have  

. 

∣∣∣∣
∣∣∣∣
∫ t

0
ωsds

∣∣∣∣
∣∣∣∣
2

2
=
∫

D×V

(
t

∫ t

0
ωs(r, υ)

ds

t

)2

drdυ

≤
∫

D×V

t2
(∫ t

0
ωs(r, υ)2 ds

t

)
drdυ

≤ T

∫ t

0
‖ωs‖2

2ds, t ≤ T , (3.36) 

where in the first inequality we have used Jensen’s inequality. Moreover, for . g ∈
L2(D × V ), 

. ‖Us[g]‖2
2 =

∫
D×V

1(s<κD
r,υ )g(r + υs, υ)2drdυ

≤
∫

D×V

g(r ', υ)2dr 'dυ

= ‖g‖2
2, (3.37) 

where the inequality follows as a consequence that, for each . υ, the integral of . r I→
1(s<κD

r,υ )g
2(r + υs, υ) integrates over a subdomain of D in the first argument as 

r varies over D. Also, we have for the operator . S (and similarly for . F) that, for 
.g ∈ L2(D × V ), 

. ‖(S + σs)g‖2 =
(∫

D×V

(∫
V

g(r, υ ')σs(r, υ)πs(r, υ, υ ')dυ '
)2

drdυ

)1/2

≤ C

(∫
D×V

(∫
V

g(r, υ ') × 1 dυ '
)2

drdυ

)1/2

≤ C

(
Vol(V )

∫
D×V

∫
V

g(r, υ ')2dυ 'dr

)1/2

≤ CVol(V )‖g‖2, (3.38)
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where the constant C appears by using (H1) and upper estimating the uniformly 
bounded cross sections, and in the second inequality, we have used the Cauchy– 
Schwarz inequality. 

It thus follows from (3.36), (3.37), and (3.38) that, for .t ≤ T , writing . ωt =
ψt [g] − Ψ̂t , .t ≥ 0, 

. ‖ωt‖2
2 =

∥∥∥∥
∫ t

0
Us[(S + F)ωt−s]ds

∥∥∥∥
2

2

≤ T

∫ t

0
‖Us[(S + F)ωt−s]‖2

2ds

≤ T

∫ t

0
‖(S + F)ωt−s‖2

2ds

≤ T

∫ t

0
(‖(S + σs)ωs‖2 + ‖(F + σf)ωs‖2 + ‖σωs‖2)

2 ds

≤ C'
∫ t

0
‖ωs‖2

2ds, t ≤ T , (3.39) 

where the constant . C' comes from the fact that . σ is uniformly bounded, cf. (H1). 
The final inequality in (3.39) together with Grönwall’s Lemma now tells us that 

.‖ωt‖2 = 0, for all .t ≤ T . Since T is chosen arbitrarily, it follows that . (ψt [g], t ≥ 0)

and .(Ψ̂t , t ≥ 0) are indistinguishable in .L2(D × V ). ⨅⨆

3.6 Re-Oriented Mild NTE 

The representation (3.32) for the evolution of the expectation semigroup (3.30) is not 
the only way to describe the system in the form of a recursion. The mild NTE (3.32) 
clearly tells us that a particle drifts with pure advection until either it undergoes 
scatter or fission, which accounts for the appearance of the integral term in which the 
sum of the two generators .S+F appears. Moreover, we recall that this representation 
came about by conditioning the expectation that defines . ψt on the first fission or 
scatter event. In this spirit, it is easy to imagine that by first conditioning on just the 
first fission event, we will get a different recursion. 

Until the first fission event, a neutron will evolve simply as a .σsπs-NRW killed 
when it exits D. Suppose we denote by .(Pt , t ≥ 0) the expectation semigroup of the 
latter, as discussed in (3.18). We will need a slightly stronger assumption than (H2). 

(H2). ∗ We have .infr∈D,υ,υ '∈V α(r, υ)π(r, υ, υ ') > 0.
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Lemma 3.6 Assume (H1) holds. For each .g ∈ B+(D × V ), the expectation 
semigroup .(ψt [g], t ≥ 0) is also the unique solution in .B+(D × V ) to 

.ψt [g] = Pt [g] +
∫ t

0
Ps[Fψt−s[g]]ds, t ≥ 0. (3.40) 

The heuristic we used to write down this lemma is in fact sufficient to develop a 
rigorous proof in the spirit of the proof of Lemma 3.5. As such we leave the details 
to the reader. 

Again we need to stress that the Eq. (3.40) is understood in the pointwise sense. 
That said, if we were again to turn to the reasoning of Theorem 3.2, we can also 
express (3.40) on .L2(D × V ) in the form 

.ψt [g] = et (T+S)g +
∫ t

0
es(T+S)[Fψt−s[g]]ds, t ≥ 0. (3.41) 

Now referring to the conclusion of Theorem 2.1, which, technically speaking, is for 
expectation semigroups on .B+(D × V ) rather than .c0-semigroups on .L2(D × V ), 
we may think of transferring the multiplicative potential .(etSg, t ≥ 0) to an additive 
potential. If we were at our liberty to use Theorem 2.1 in this context, then this 
would give us equivalence of with solutions to (3.41) and bring us back to 

. ψt [g] = etTg +
∫ t

0
esT[(S + F)ψt−s[g]]ds, t ≥ 0,

which is the .L2(D × V ) analogue of (3.32). Of course, as soon as we re-prove 
Theorem 2.1 for equations on .L2 spaces, and this can indeed be done, then the 
discussion above can be made rigorous. This is an unnecessary distraction for the 
course of this text, and we leave this missing result for the reader to prove as an 
exercise. 

3.7 Comments 

The probabilistic interpretation of the NTE was appreciated from its very first 
mathematical handling; see for example Davison and Sykes [36], Bell [7] and 
Williams [131] and references therein to name but a few textbooks. Indeed, the 
physical description of nuclear fission, when governed by basic principles, allowing 
for additional randomness, is nothing more than a branching Markov process. 
Numerous derivations of the NTE from this perspective can be found in the 
literature to various degrees of rigour; see, e.g., Bell [7], Mori et al. [100], Pazy 
and Rabinowitz [110], Lewins [94], and Pázsit and Pál. [107].
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A more modern treatment of the probabilistic representation through Feynman– 
Kac expectation semigroups and the connection to the theory of Markov diffusions 
is found in Dautray et al. [34]. A purely probabilistic approach can be found 
in Lapeyre et al. [89]. The perspective we have illustrated in this chapter, in 
particular via mild equations on .(B(D × V ), ‖·‖) and the indistinguishability 
between solutions in .(B(D × V ), ‖·‖) and .L2(D × V ), largely comes from the 
recent works of Cox et al. [30, 31] and Harris et al. [69, 74].



Chapter 4 
Many-to-One, Perron–Frobenius and 
Criticality 

Now that the precise mathematical relationship between the NTE and the NBP 
is clear, we now look at how we can profit from this. The first port of call in 
this respect is to understand how to provide a rigorous analogue of the spectral 
asymptotic behaviour given in Theorem 1.2 for the NTE as an .L2(D × V ) solution 
but now for the setting of .B+(D × V ) solutions that emerge from our mild NTE 
formulation (3.32). The way we will do this is to draw the general Perron–Frobenius 
result for Markov processes in Theorem 2.2 into our current setting. This requires us 
to develop a second representation of the solution to the mild NTE (3.32) in terms 
of a single particle Markov process. 

4.1 Many-to-One Representation 

As alluded to above, there is a second representation of the expectation semigroup 
.(ψt , t ≥ 0). To describe the second stochastic representation of (3.32), we define 

. β(r, υ) = σf(r, υ)

(∫
V

πf(r, υ, υ ')dυ ' − 1

)
≥ − sup

r∈D,υ∈V

σf(r, υ) > −∞,

(4.1) 

where the lower bound is due to assumption (H1). Let us also introduce a specific 
.απ -NRW (recall the NRW was introduced in Sect. 3.3) and define, for .r ∈ D, 
.υ, υ ' ∈ V , 

.α(r, υ)π(r, υ, υ ') = σs(r, υ)πs(r, υ, υ ') + σf(r, υ)πf(r, υ, υ '), (4.2) 

where . π is taken to be a probability density. The latter assumption forces the 
definition 
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.α(r, υ) = σs(r, υ) + σf(r, υ)

∫
V

πf(r, υ, υ ')dυ '. (4.3) 

Lemma 4.1 (Many-to-One) Under the assumptions of Lemma 3.5, we have the 
second representation 

.ψt [g](r, υ) = E(r,υ)

[
e
∫ t
0 β(Rs,Υs)dsg(Rt , Υt )1{t<τD}

]
, (4.4) 

for .t ≥ 0, .r ∈ D, .υ ∈ V , and .g ∈ B+(D × V ), where 

. τD = inf{t > 0 : Rt ∈ ∂D and nRt · Υt > 0}

and .P(r,v) is the law of the .απ -NRW starting from a single neutron with configura-
tion .(r, υ). 

Proof The proof is relatively straightforward, appealing to a proof similar to 
Lemma 3.5. We start by noting that the expression (4.4) has the expectation 
semigroup property thanks to Lemma 2.1. By conditioning the right-hand side 
of (4.4) on the first scatter event, with the help of Theorem 2.1, we obtain 

. ψt [g](r, υ) = 1(t<κD
r,υ )e

− ∫ t
0 α(r+υ𝓁,υ)d𝓁e

∫ t
0 β(r+υ𝓁,υ)d𝓁g(r + υt, υ)

+
∫ t

0
1(s<κD

r,υ )α(r + υs, υ)e− ∫ s
0 α(r+υ𝓁,υ)d𝓁

e
∫ s
0 β(r+υ𝓁,υ)d𝓁

∫
V

ψt−s[g](r + υs, υ ')π(r + υs, υ, υ ')dυ 'ds

= Ut [g](r, υ) +
∫ t

0
Us[(S̃ + β)ψt−s[g]](r, υ)ds, (4.5) 

where . ̃S was defined in (3.19). It is straightforward algebra to show, with the help 
of (4.2), that, for .f ∈ B+(D × V ), 

. (S̃ + α)f = (S + σs)f + (F + σf)f,

and hence, recalling (4.3) and noting that .β − α = −(σs + σf), 

. (S̃ + β)f = (S + F)f.

Consequently, we see that the right-hand side of (4.4) also gives an alternative 
representation of the unique solution to (3.32). ⨅⨆
Remark 4.1 The proof of the many-to-one Lemma 4.1 gives us yet another 
representation of the mild equation. Indeed, (4.5) tells us that, in .B+(D × V ),
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.ψt [g] = Ut [g] +
∫ t

0
Us[(S̃ + β)ψt−s[g]]ds, t ≥ 0. (4.6) 

Recalling the discussion in Sect. 3.6, it is easy to see how one may heuristically 
transform between the Eqs. (4.6), (3.40), and (3.32). 

Define 

. β̄ := supr∈D,υ∈V β(r, υ),

which is finite thanks to (H1). Let us now introduce the expectation semigroup . P† :=
(P†t , t ≥ 0) via 

. P†t [g](r, υ) := e−β̄tψt [g](r, υ)

= E(r,υ)

[
e
∫ t
0 (β(Rs,Υs)−β̄)dsg(Rt , Υt )1{t<τD}

]

= E(r,υ)

[
g(Rt , Υt )1{t<k}

]
=: E†

(r,υ) [g(Rt , Υt )] , t ≥ 0, r ∈ D,υ ∈ V, g ∈ B+(D × V ),

(4.7) 

where 

.k = inf{t > 0 :
∫ t

0
(β̄ − β(Rs, Υs))ds > e} ∧ τD, (4.8) 

and . e is an independent exponentially distributed random variable with mean 1. 
Another way to describe .P† := (P†t , t ≥ 0) is the expectation semigroup of the 
.απ -neutron random walk killed at rate .(β̄ − β). To see where the definition in (4.8) 
comes from, we note that for any .γ ∈ B+(D × V ), 

. P(r,υ)

(
e >

∫ t

0
γ (Rs, Υs)ds

∣∣∣∣ ((Ru, Υu), u ≤ t)

)
= e− ∫ t

0 γ (Rs,Υs)ds .

4.2 Perron–Frobenius Asymptotic 

We will naturally write .P†
(r,υ) for the (sub)probability measure associated to .E†

(r,υ), 

.r ∈ D,υ ∈ V . The family .P† := (P†
(r,υ), r ∈ D,υ ∈ V ) now defines a Markov 

family of probability measures on the path space of the neutron random walk with 
cemetery state . {†}, which is where the path is sent when hitting the boundary . ∂D

with an outgoing velocity, when the clock associated to the killing rate .β̄ − β rings 
or when there is a fission event with zero offspring in the underlying branching
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process. We remind the reader for future calculations that we can extend the domain 
of functions on .D × V to accommodate taking a value on . {†} by insisting that this 
value is always 0. 

This gives us a variation on the theme of Lemma 4.1, namely that the uniqueness 
of bounded non-negative solutions to (3.32) gives us, for . g ∈ B+(D × V )

. Eδ(r,υ)
[Xt [g]] = eβ̄tE†

(r,υ) [g(Rt , Υt )] , t ≥ 0, r ∈ D,υ ∈ V.

With this identity in hand, we can revisit some of the known theories available to 
us for Markov processes to look for behaviour of the type described in Theorem 2.2. 
Specifically, by verifying hypotheses (A1) and (A2) there, we can translate the 
conclusion for the Markov process .((R, Υ ),P†) to the setting of the semigroup 
.(ψt , t ≥ 0) and obtain the following result. 

Theorem 4.1 (Perron–Frobenius Asymptotics of the Mild Solution) Suppose 
that D is convex and (H1) and (H2. ∗) hold. Then, for the semigroup . (ψt , t ≥ 0)
identified by (3.32), there exist a constant .λ∗ ∈ R, a positive1 right eigenfunction 
.ϕ ∈ B+(D ×V ), and a left eigenmeasure that is absolutely continuous with respect 
to Lebesgue measure on .D×V with density .ϕ̃ ∈ B+(D×V ), both having associated 
eigenvalue . eλ∗t , and such that . ϕ (resp., . ϕ̃) is uniformly (resp., a.e. uniformly) 
bounded away from zero on each compactly embedded subset of .D×V . In particular 
for all . g ∈ B+(D × V )

.〈ϕ̃, ψt [g]〉 = eλ∗t 〈ϕ̃, g〉 (resp. ψt [ϕ] = eλ∗t ϕ) t ≥ 0. (4.9) 

Moreover, there exist constants .C, ε > 0 such that 

. sup
g∈B+

1 (D×V )

∥∥∥e−λ∗t ϕ−1ψt [g] − 〈ϕ̃, g〉
∥∥∥ ≤ Ce−εt , t ≥ 0. (4.10) 

The proof of the Theorem 4.1 is extremely technical and therefore pushed to the 
end of this chapter (and can be skipped if the reader prefers to move forward in 
the book). As alluded to above, it consists of verifying the two assumptions (A1) 
and (A2) of Theorem 2.2. For want of a better way to summarise the approach 
behind this, it is done by brute force, which is not surprising given the significantly 
inhomogeneous nature of the problem. As such, while the requirement that D is 
convex is a sufficient condition to help us verify (A1) and (A2), it is certainly not 
necessary. 

In addition to the above paragraph of remarks, there are a number of others that 
we should also make concerning this theorem. First let us make a remark on notation

1 To be precise, by a positive eigenfunction, we mean a mapping from .D×V → (0,∞). This does 
not prevent it being valued zero on . ∂D, as  D is open and bounded. 
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involving . ϕ̃. In the statement of Theorem 4.1, and repeatedly in the forthcoming text, 
the reader will observe that where we write, for example, .〈f, ϕ̃〉, we could also write 
.η[f ] with . η being a measure that is absolutely continuous with respect to .drdυ on 
.D × V with density . ϕ̃. In the second part of this book, we will look at a general 
version of (4.10) in which we will treat . ϕ̃ as a measure rather than a function. 

Next, it is customary that the eigenfunctions . ϕ̃ and . ϕ are normalised so that 
.〈ϕ, ϕ̃〉 = 1. As we will see in Chap. 6, it will turn out that we can also interpret the 
product . ϕϕ̃ as the stationary density of an auxiliary Markov process. 

Finally, we remark that Theorem 4.1 clearly mirrors the situation for the forward 
NTE on .L2(D × V ) given in Theorem 1.2. Clearly, the eigentriple . λ∗, . ϕ, . ϕ̃ of 
Theorem 4.1 and of Theorem 1.2 must agree. In particular, on .L2(D × V ), we must  
have that .ϕ = φ̃ and .ϕ̃ = φ. Indeed, this can be shown rigorously in the spirit of the 
proof of Theorem 3.2. 

4.3 The Notion of Criticality 

Before turning to the proof of Theorem 4.1, let us enter into a discussion concerning 
the notion of criticality for the NBP, which is now afforded to us thanks to 
Theorem 4.1. Roughly speaking, since 

. Eδ(r,υ)
[Xt [1]] = ψt [1](r, υ) ∼ eλ∗t 〈ϕ̃, 1〉ϕ(r, υ), r ∈ D,υ ∈ D,

as .t → ∞, we can think of . λ∗ as the rate of growth of the total number of particles 
in the NBP at time t . Moreover, we can think of this total mass as being distributed 
across the space-velocity domain .D × V in a way that is proportional to . ϕ̃. Indeed, 
the fact that . ϕ̃ satisfies 

. 

∫
D×V

Eδ(r,υ)
[Xt [g]] ϕ̃(r, υ) dr dυ = 〈ϕ̃, ψt [g]〉 = eλ∗t 〈ϕ̃, g〉,

t ≥ 0, g ∈ B+(V × D),

tells us that starting the NBP from a single particle that is distributed according to 
a normalised version of the density . ϕ̃ will result in an average number of particles 
.eλ∗t that are scattered in space according to . ϕ̃. 

It seems quite clear that . λ∗ now parameterises the overall growth rate of the NBP 
and, in particular, the sign of . λ∗ gives us a notion of criticality. In particular, we say 
that the NBP is 

.subcritical/critical/supercritical when λ∗ < 0/λ∗ = 0/λ∗ > 0.
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Below we give some insights into the significance of the path behaviour of the 
NBP, as opposed to its mean behaviour, which we will demonstrate in forthcoming 
chapters: 

Subcritical: The average number of particles in our NBP decays exponentially 
to zero at rate . λ∗; however, we will see later in Chap. 6 that the 
actual number of particles becomes zero almost surely. 

Critical: The average number of particles in our NBP remains constant; 
however, we will see later in Chap. 6 that, just as in the subcritical 
case, the actual number of particles becomes zero almost surely. 

Supercritical: The average number of particles in our NBP grows exponentially 
at rate . λ∗ on the event of survival that occurs with probability 
in .(0, 1). We will see later in Chap. 12 that the actual number of 
particles almost surely scales exponentially at rate . λ∗. 

In the supercritical setting, it is clear that survival occurs with probability 
strictly less than one because, with positive probability, each neutron in any initial 
configuration may simply move to the boundary and be killed before ever having 
the chance to scatter or undergo fission. 

In terms of reactor physics, the above stochastic behaviour provides an ele-
mentary view of how nuclear fission behaves in reactors. The ideal scenario is to 
keep a nuclear reactor held in a state of balance between fission and absorption as 
otherwise the reaction fizzles out (subcritical) or grows out of control (supercritical). 
Interestingly, nuclear reactor operators know extremely well that it is never possible 
to hold a reactor precisely in a critical state, as the activity of the fission will begin to 
decay. Instead, it is necessary to put the reactor into a state of slight supercriticality 
and, with the slow exponential growth of fission, periodically insert control rods to 
bring fission activity down to acceptable levels.2 

4.4 Proof of the Perron–Frobenius Asymptotic 

This section is dedicated to the proof of Theorem 4.1, and thus we assume the 
assumptions of Theorem 4.1 are in force. As alluded to earlier, our approach to 
proving Theorem 4.1 will be to extract the existence of the eigentriple . λ∗, . ϕ, and 
. ϕ̃ for the expectation semigroup .(ψt , t ≥ 0) from the existence of a similar triple 
for the semigroup .(P†t , t ≥ 0), defined in (4.7). Indeed, from (4.7), it is clear that 
the eigenvalue of the former differs from the eigenvalue of the latter only by the 
constant . β. Moreover, the core of our proof relies on Theorem 2.2.

2 In fact, this is still an over-simplification of what is really happening. There are many other 
considerations that pertain to the presence of fast and slow neutrons, the influence of fission by-
products, and thermal hydraulics among several other influencing physical processes. 
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The proof is essentially broken into three large blocks of calculations. The first 
two address the respective proofs that assumptions (A1) and (A2) are satisfied, so 
that the conclusions of Theorem 2.2 hold. For the third block of calculations, we 
will prove the stated regularity properties of . ϕ and . ϕ̃; namely that . ϕ is uniformly 
bounded away from 0 on each compactly embedded subset of .D × V and that . η
admits a positive bounded density with respect to the Lebesgue measure on .D × V . 

In order to pursue this agenda, we start by introducing two alternative assump-
tions to (A1) and (A2): 

There exists an .ε > 0 such that: 

(B1) The set .Dε := {r ∈ D : infy∈∂D |r − y| > εvmax} is non-empty and con-
nected. 

(B2) There exist .0 < sε < tε and .γ > 0 such that, for all .r ∈ D\Dε, there is a 
measurable set .Kr ⊂ V satisfying .Vol(Kr) ≥ γ > 0 and, for all .υ ∈ Kr , 
.r + υs ∈ Dε for every .s ∈ [sε, tε] and .r + υs /∈ ∂D for all .s ∈ [0, sε]. 

It is easy to verify that (B1) and (B2) are implied when we assume that D is a 
non-empty and convex, for example. They are also satisfied if the boundary of D is 
a smooth, connected, compact manifold and . ε is sufficiently small. In geometrical 
terms, (B2) means that each of the sets 

.Lr :=
{
z ∈ R

3 : ‖z − r‖
‖υ‖ ∈ [sε, tε], υ ∈ Kr

}
, r ∈ D\Dε (4.11) 

is included in . Dε and has Lebesgue measure at least .γ (t2ε −s2ε )/2. Roughly speaking, 
for each .r ∈ D that is within .εvmax of the boundary . ∂D, . Lr is the set of points 
from which one can issue a neutron with a velocity chosen from .υ ∈ Kr such that 
(ignoring scattering and fission) we can ensure that it passes through .D\Dε during 
the time interval .[sε, tε]. 

Our proof of Theorem 4.1 thus consists of proving that assumptions (B1) 
and (B2) imply assumptions (A1) and (A2) of Theorem 2.2. 

Verification of (A1) 

We begin by considering several technical lemmas. The first is a straightforward 
consequence of D being a bounded subset of . R3 and so does not deserve a proof. 

Lemma 4.2 Let .B(r, υ) be the ball in . R3 centred at r with radius . υ: 

(i) There exist an integer .n ≥ 1 and .r1, . . . , rn ∈ Dε such that 

.Dε ⊂
n⋃

i=1

B(ri,vmaxε/32)
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and .Dε ∩ B(ri,vmaxε/32) /= ∅ for each .i ∈ {1, . . . , n}. 
(ii) For all .r, r ' ∈ Dε, there exist .m ≤ n and .i1, . . . , im distinct in .{1, . . . , n} such 

that .r ∈ B(ri1 ,vmaxε/32), .r
' ∈ B(rim,vmaxε/32), and for all .1 ≤ j ≤ m − 1, 

.B(rij ,vmaxε/32) ∩ B(rij+1 ,vmaxε/32) /= ∅. 
Heuristically speaking, the above lemma ensures that there is a universal covering 

of . Dε by the balls .B(ri,vmaxε/32), .1 ≤ i ≤ n, such that, between any two points r 
and . r ' in . Dε, there is a sequence of overlapping balls 

. B(ri1,vmaxε/32), · · · , B(rim,vmaxε/32)

that one may pass through in order to get from r to . r '. 
The next lemma provides a minorisation of the law of .(Rt , Υt ) under . P†. In  

the statement of the lemma, we use .dist(r, ∂D) for the distance of r from the 
boundary . ∂D. 

Define .α = infr∈D,υ∈V α(r, υ) > 0 and .π = infr∈D,υ,υ '∈V π(r, υ, υ '). We will 
also similarly write . α and . π with obvious meanings. We note that due to the 
assumption (H1) we have .α < ∞ and .π < ∞, and hence, combining this with 
the fact that we assumed .infr,∈D,υ,υ '∈V α(r, υ)π(r, υ, υ ') > 0, it follows  that  

. α = 1

π
inf

r∈D,υ∈V
α(r, υ)π ≥ 1

π
inf

r∈D,υ,υ '∈V
α(r, υ)π(r, υ, υ ') > 0,

and a similar calculation shows that .π > 0. 

Lemma 4.3 For all .r ∈ D, .υ ∈ V , and .t > 0 such that .vmaxt < dist(r, ∂D), the  
law of .(Rt , Υt ) under .P†

(r,υ), defined in (4.7), satisfies 

. P†
(r,υ)(Rt ∈ dz, Υt ∈ dυ)

≥ Ce−αt

t2

[
t

2

(
v2max −

(
vmin ∨ |z − r|

t

)2
)

− |z − r|
(
vmax − vmin ∨ |z − r|

t

) ]
1{z∈B(r,vmaxt}) dz dυ, (4.12) 

where .C > 0 is a positive constant. 

Proof Fix .r0 ∈ D. Let . Jk denote the kth jump time of .(Rt , Υt ) under .P†
(r,υ), and let 

. Υ0 be uniformly distributed on V . Assuming that .vmaxt < dist(r0, ∂D), we first 
give a minorisation of the density of .(Rt , Υt ), with initial configuration .(r0, Υ0), on  
the event .{J1 ≤ t < J2}. Note that, on this event, we have 

.Rt = r0 + J1Υ0 + (t − J1)ΥJ1,
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where .ΥJ1 is the velocity of the process after the first jump. Then 

. E†
(r0,Υ0)

[f (Rt , Υt )1{J1≤t<J2}]

=
∫ t

0
ds

∫
V

dυ0

∫
V

dυ1α(r0 + υ0s, υ0)e
− ∫ s

0 α(r0+υ0u,υ0)due− ∫ t−s
0 α(r0+υ0s+υ1u,υ1)du

× π(r0 + υ0s, υ0, υ1)f (r0 + υ0s + (t − s)υ1, υ1)

≥ αe−αtπ

∫
V

dυ1

∫ t

0
ds

∫
V

dυ0f (r0 + sυ0 + (t − s)υ1, υ1), (4.13) 

where we have used the bounds on . α and . π . We now make the change of variables 
.υ0 I→ (ρ0, θ0, ϕ0) and .υ1 I→ (ρ1, θ1, ϕ1) so that (4.13) becomes 

. E†
(r0,Υ0)

[f (Rt , Υt )1{J1≤t<J2}]

≥ C1αe
−αtπ

∫ t

0
ds

∫ vmax

vmin

dρ1

∫ π

0
dϕ1

∫ 2π

0
dθ1

∫ vmax

vmin

dρ0

∫ π

0
dϕ0

∫ 2π

0
dθ0

(4.14) 

f (r0 + Θρ0,ρ1,θ1,ϕ1(s, θ0, ϕ0), Θ̃(ρ1, θ1, ϕ1))δ(ρ0, θ0, ϕ0)δ(ρ1, θ1, ϕ1), 

where 

.Θρ0,ρ1,θ1,ϕ1(s, θ0, ϕ0) =
⎡
⎣sρ0 sinϕ0 cos θ0 + (t − s)ρ1 sinϕ1 cos θ1

sρ0 sinϕ0 sin θ0 + (t − s)ρ1 sinϕ1 sin θ1

sρ0 cosϕ0 + (t − s)ρ1 cosϕ1

⎤
⎦ (4.15) 

represents the spatial variable .sυ0 + (t − s)υ1 in polar coordinates, 

.Θ̃(ρ1, θ1, ϕ1) =
⎡
⎣ρ1 sinϕ1 cos θ1

ρ1 sinϕ1 sin θ1

ρ1 cosϕ1

⎤
⎦ (4.16) 

represents . υ1 in polar coordinates, 

.δ(ρ, θ, ϕ) = ρ2 sinϕ, (4.17) 

is the determinant of the Jacobian matrix for the change of variables from Cartesian 
to polar coordinates, and . C1 is an unimportant normalising constant. 

For fixed . ρ0, . ρ1, . θ1, and . ϕ1, we first consider the part of (4.14) given by
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. (s, θ0, ϕ0)

I→
∫ t

0
ds

∫ π

0
dϕ0

∫ 2π

0
dθ0

f (r0 + Θρ0,ρ1,θ1,ϕ1(s, θ0, ϕ0), Θ̃(ρ1, θ1, ϕ1))δ(ρ0, θ0, ϕ0).

(4.18) 

The Jacobian of .Θρ0,ρ1,θ1,ϕ1 , as a function of .(s, θ0, ϕ0), is given by 

. 

⎡
⎣ρ0 cos θ0 sinϕ0 − ρ1 cos θ1 sinϕ1 −sρ0 sin θ0 sinϕ0 sρ0 cosϕ0 cos θ0

ρ0 sin θ0 sinϕ0 − ρ1 sin θ1 sinϕ1 sρ0 cos θ0 sinϕ0 sρ0 cosϕ0 sin θ0

ρ0 cosϕ0 − ρ1 cosϕ1 0 −sρ0 sinϕ0

⎤
⎦ ,

whose determinant .det(Dρ0,ρ1,θ1,ϕ1(s, θ0, ϕ0)) satisfies 

. 
δ(ρ0, θ0, ϕ0)

det(Dρ0,ρ1,θ1,ϕ1(s, θ0, ϕ0))
≥ 1

4s2v3max
≥ 1

4t2v3max
, s ≤ t.

We thus have the following lower bound for (4.18) 

. 
1

4t2v3max

∫ t

0
ds

∫ π

0
dϕ0

∫ 2π

0
dθ0f (r0 + Θρ0,ρ1,θ1,ϕ1(s, θ0, ϕ0), Θ̃(ρ1, θ1, ϕ1))

(4.19) 

× det(Dρ0,ρ1,θ1,ϕ1(s, θ0, ϕ0)). 

Making another change of variables .(s, θ0, ϕ0) I→ r ∈ R
3 and using the fact that, 

regardless of the values of . ρ1, . θ1, and . ϕ1, .Θρ0,ρ1,θ1,ϕ1 maps . (0, t)× (0, π)× (0, 2π)

surjectively onto a set that contains .B(ρ0t), where .B(r) is the ball in . R3 of radius r 
centred at the origin, (4.19), and hence, (4.18), is bounded below by 

.
1

4t2υ3
max

∫
B(ρ0t)

f (r, Θ̃(ρ1, θ1, ϕ1))dr. (4.20) 

Substituting this equation back into (4.14) and changing .(ρ1, θ1, ϕ1) back to 
Cartesian coordinates, we have 

. E†
(r0,Υ0)

[f (Rt , Υt )1{J1≤t<J2}] ≥ C2e−αt

t2

∫ vmax

vmin

dρ0

∫
B(ρ0t)

dr
∫

V

dυ1f (r, υ1),

(4.21) 

where .C2 = απC1/(4v3max). 
Now suppose we fix an initial configuration .(r0, υ0) ∈ D × V , with . tvmax <

dist(r0, ∂D). By considering the event .{J2 ≤ t < J3} and noting that the scat-
tering kernel is bounded below by . π , we may apply the Markov property together
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with (4.21) to the process at time . J1 before choosing the new velocity. Using the 
bounds on . α and . π as before, and recalling that . Υ0 is uniformly distributed, we 
have 

. E†
(r0,υ0)

[f (Rt , Υt )1{J2≤t<J3}]

≥
∫ t

0
ds αe−αsπE†

(r0+sυ0,Υ0)
[f (Rt−s , Υt−s)1{J1≤t−s<J2}]

≥
∫ t

0
ds αe−αsπ

C2e−α(t−s)

(t − s)2

∫
V

dυ1

∫ vmax

vmin

dρ0

∫
ρ0(t−s)B

drf (r0 + sυ0 + r, υ1)

≥ C3e−αt

t2

∫ t

0
ds

∫
V

dυ1

∫ vmax

vmin

dρ0

∫
ρ0(t−s)B

drf (r0 + sυ0 + r, υ1)

= C3e−αt

t2

∫ t

0
ds

∫
V

dυ1

∫ vmax

vmin

dρ0

∫
r0+sυ0+ρ0(t−s)B

dyf (y, υ1), (4.22) 

where we have used the substitution .y = r0 + sυ0 + r to obtain the final line and 
. C3 is another constant in .(0,∞). Now note that, for .s ≤ ρ0t/(ρ0 + vmax), we have  
.r0+B(ρ0t − (ρ0 + vmax)s) ⊂ r0+sυ0+B(ρ0(t − s)). Combining this with (4.22) 
and using Fubini’s theorem, we have 

. E†
(r0,υ0)

[f (Rt , Υt )1{J2≤t<J3}]

≥ C3e−αt

t2

∫
V

dυ1

∫ vmax

vmin

dρ0

∫
R

1{
0≤s≤ ρ0

ρ0+vmax
t
}ds

∫
R3

dy1{|y−r0|≤ρ0t−(ρ0+vmax)s}f (y, υ1)

= C3e−αt

t2

∫
V

dυ1

∫ vmax

vmin

dρ0

∫
R

ds
∫
R3

dy1{
0≤s≤ ρ0 t−|y−r0|

ρ0+vmax

}f (y, υ1)

= C3e−αt

t2

∫
V

dυ1

∫ vmax

vmin

dρ0

∫
R3

dy1{|y−r0|≤ρ0t}
(

ρ0t − |y − r0|
ρ0 + vmax

)
f (y, υ1).

(4.23) 

We finally compute the integral with respect to .ρ0 ∈ (vmin,vmax). In order to do 
so, we first note that since .ρ0 < vmax, the integrand in (4.23) is bounded below by 

. 
ρ0t − |y − r0|

2vmax
.

Absorbing .1/2vmax into the constant . C3, applying Fubini, and computing the . ρ0
integral yield
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. E†
(r0,υ0)

[f (Rt , Υt )]

≥ C3e−αt

t2

∫
V

dυ1

∫
R3

dy

[
t

2

(
v2max −

(
vmin ∨ |y − r|

t

)2
)

− |y − r|
(
vmax − vmin ∨ |y − r|

t

) ]
1{|y−r0|≤vmaxt}f (y, υ1), (4.24) 

as required. ⨅⨆
We now turn to the proof of (A1) under the assumptions of (B1) and (B2). 

Proof (That (A1) Holds) We start by proving (A1) for initial configurations in . Dε ×
V . To this end, fix .(r, υ) ∈ Dε ×V . From Lemma 4.2, there exists an . i ∈ {1, . . . , n}
such that .r ∈ B(ri,vmaxε/32) ∩ Dε. Then, for each .t ∈ [ε/2, ε), Lemma 4.3 yields 

. P†
(r,υ)(Rt ∈ dz, Υt ∈ dw)

≥ Ce−αt

t2

[
t

2

(
v2max −

(
vmin ∨ |z − r|

t

)2
)

− |z − r|
(
vmax − vmin ∨ |z − r|

t

) ]
1{z∈B(r,vmaxt)} dz dw. (4.25) 

Now, if .j ∈ {1, . . . n} is such that .B(ri,vmaxε/32) ∩ B(rj ,vmaxε/32) /= ∅, 
the triangle inequality implies that . Dε ∩ (B(ri,vmaxε/32) ∪ B(rj ,vmaxε/32)) ⊂
B(r,vmaxε/8) ⊂ B(r,vmaxt), with the latter inclusion following from the fact that 
.t ∈ [ε/2, ε). 

Hence, for .z ∈ B(ri,vmaxε/32) ∪ B(rj ,vmaxε/32) and .t ∈ [ε/2, ε), the density 
on the right-hand side of (4.25) is bounded below by a constant .Cε > 0, which is 
independent of .r, υ, i, and j . Hence, 

. P†
(r,υ)(Rt ∈ dz, Υt ∈ dw)

≥ Cε1{z∈Dε∩(B(ri ,ε/32)∪B(rj ,ε/32))} dz dw, z ∈ D,w ∈ V. (4.26) 

Now let .t ≥ (n + 1)ε/2. By writing .t = kε/2 + t ', for  some  .k ≥ n and . t ' ∈
[ε/2, ε). We will demonstrate that a repeated application of (4.26) will lead to the 
inequality 

.P†
(r,υ)(Rt ∈ dz, Υt ∈ dw) ≥ Cεc

k
ε1{z∈Dε}dzdw, z ∈ D,w ∈ V, (4.27) 

for .(r, υ) ∈ Dε × V , where .cε > 0 is another unimportant constant that depends 
only on . ε and is defined in the following analysis. 

To this end, we start by noting that, since .r ∈ Dε and .υ ∈ V , there exist 
.i0, i1 ∈ {1, . . . , n} such that .r ∈ B(ri0,vmaxε/32) and .B(ri0 ,vmaxε/32) ∩
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B(ri1 ,vmaxε/32)∩Dε /= ∅. Applying (4.26) at time . t ' (recall that we have identified 
.t = kε/2 + t ' for some .k ≥ n), we obtain 

. P†
(r,υ)(Rt ∈ dz, Υt ∈ dw)

= P†
(r,υ)(Rt '+kε/2 ∈ dz, Υt '+kε/2 ∈ dw)

≥ E†
(r,υ)

[
1{Rt ' ∈B(ri1 ,vmaxε/32)∩Dε,Υt ' ∈V }P†

(Rt ' ,Υt ' )(Rkε/2 ∈ dz, Υkε/2 ∈ dw)
]

=
∫

B(ri1 ,vmaxε/32)∩Dε

∫
V

P†
(r ',υ ')(Rkε/2 ∈ dz, Υkε/2 ∈ dw)P†

(r,υ)(Rt ' ∈ dr ', Υt ' ∈ dυ ')

≥ Cε

∫
B(ri1 ,vmaxε/32)∩Dε

∫
V

P†
(r ',υ ')(Rkε/2 ∈ dz, Υkε/2 ∈ dw)

× 1{r '∈(B(ri0 ,vmaxε/32)∪B(ri1 ,vmaxε/32))∩Dε}dr 'dυ '

= Cε

∫
B(ri1 ,vmaxε/32)∩Dε

∫
V

P†
(r ',υ ')(Rkε/2 ∈ dz, Υkε/2 ∈ dw)dr 'dυ '. (4.28) 

We now turn our attention to .P†
(r ',υ ')(Rkε/2 ∈ dz, Υkε/2 ∈ dw), for  

.(r ', υ ') ∈ (B(ri1 ,vmaxε/32) ∩ Dε) × V and .k ≥ n. Thanks to Lemma 4.2, 
for all .ik+1 ∈ {1, . . . , n}, there exist .i2, . . . , ik ∈ {1, . . . , n} such that 
.B(rij , ε/32) ∩ B(rij+1 , ε/32) /= ∅ for every .j ∈ {1, . . . , k}. Note, here we see 
the importance of choosing .k ≥ n, to ensure the validity of the previous statement. 

Applying (4.26) and following the same steps that lead to (4.28), we obtain 

. P†
(r ',υ ')(Rkε/2 ∈ dz, Υkε/2 ∈ dw)

≥ Cε

∫
B(ri2 ,ε/32)∩Dε

∫
V

P†
(r '',υ '')(R(k−1)ε/2 ∈ dz, Υ(k−1)ε/2 ∈ dw)dr ''dυ ''.

(4.29) 

Iterating this step a further .k − 2 times, we obtain 

. P†
(r ',υ ')(Rkε/2 ∈ dz, Υkε/2 ∈ dw)

≥ Cεc
k−2
ε

∫
B(rik ,vmaxε/32)∩Dε

∫
V

P†
(r '',υ '')(Rε/2 ∈ dz, Υε/2 ∈ dw)dr ''dυ '',

(4.30) 

where .cε = CεVol(V )mini=1,...,n Vol(B(ri,vmaxε/32)∩Dε). Using this inequality 
to bound the right-hand side of (4.28) yields
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. P†
(r,υ)(Rt ∈ dz, Υt ∈ dw)

≥ Cεc
k−1
ε

∫
B(rik ,ε/32)∩Dε

∫
V

P†
(r ',υ ')(Rε/2 ∈ dz, Υε/2 ∈ dw)dr 'dυ '.

(4.31) 

We now apply (4.26) a final time at time .ε/2 to obtain 

.P†
(r,υ)(Rt ∈ dz, Υt ∈ dw) ≥ Cεc

k
ε1{z∈B(rik+1 ,ε/2)∩Dε} dz dw. (4.32) 

Since this inequality holds for every .ik+1 ∈ {1, . . . , n}, it also follows that 

. P†
(r,υ)(Rt ∈ dz, Υt ∈ dw) ≥ Cεc

k
ε sup

ik+1∈{1,...,n}
1{z∈B(rik+1 ,ε/2)∩Dε} dz dw

≥ Cεc
k
ε 1{z∈Dε} dz dw,

where the final line follows from Lemma 4.2 since .k + 1 > n. This is the lower 
bound claimed in (4.27). 

Finally, noting that for any two events .A,B, . Pr(A|B) = Pr(A ∩ B)/Pr(B) ≥
Pr(A ∩ B), we have that for initial conditions .(r, υ) ∈ Dε × V , any . t0 ≥ (n+ 1)ε/2
and . ν equal to Lebesgue measure on .Dε × V , there exists a constant . c1 ∈ (0,∞)

such that 

. P(r,υ)((Rt0 , Υt0) ∈ · |t0 < k) ≥ c1ν(·),

as required by (A1). 
We now prove (A1) for initial conditions in .(D\Dε) × V . Once again, we recall 

that assumptions (B1) and (B2) are in force. Choose .r ∈ D\Dε, .υ ∈ V , and define 
the (deterministic) time 

. κ
D\Dε
r,υ := inf{t > 0 : r + tυ /∈ Dε},

which is the time it would take a neutron released at r with velocity . υ to hit the 
boundary of .D\Dε if no scatter or fission took place. Importantly, the boundary of 
.D\Dε is made up of the union .∂D ∪ ∂Dε. Note in particular that .κ

D\Dε
r,υ is not a 

random time but entirely deterministic. We first consider the case . r + κ
D\Dε
r,υ υ ∈

∂Dε, for  which we have  

.P†
(r,υ)(Rκ

D\Dε
r,υ

∈ ∂Dε) ≥ e−ᾱκ
D\Dε
r,υ ≥ e−ᾱdiam(D)/vmin . (4.33) 

Combining this with (4.27) and the Markov property, for all . t ≥ (n + 1)ε/2

.P(r,υ)(Rκ
D\Dε
r,υ +t

∈ dz, Υ
κ

D\Dε
r,υ +t

∈ dw|κD\Dε
r,υ + t < k)
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≥ P† 
(r,υ)(Rκ D\Dε 

r,υ +t ∈ dz, Υ
κ D\Dε 
r,υ +t ∈ dw) 

≥ e−ᾱdiam(D)/vminCεc
k 
ε1{z∈Dε} dz dw, (4.34) 

where .k ≥ n is such that .t = kε/2 + t ' for some .t ' ∈ [ε/2, ε). 
On the other hand, suppose .r + κ

D\Dε
r,υ υ ∈ ∂D. Then, recalling the assump-

tions (B1) and (B2), it follows that . {J1 < κ
D\Dε
r,υ ∧ (tε − sε), ΥJ1 ∈ Kr+υJ1 , J2 >

tε} ⊂ {Rtε ∈ Dε, tε < k}. Heuristically speaking, this is because if the first jump 

occurs before time .κD\Dε
r,υ ∧ (tε − sε), then the process has not hit the boundary, 

and there are still (at least) . sε units of time left until . tε. By then choosing the 
new velocity, . ΥJ1 , from .Kr+υJ1 , thanks to the assumption (B1) and the remarks 
around (4.11), this implies that the process will remain in .D\Dε for . sε units of time, 
at some point in time after which, it will move into . Dε, providing the process does 
not jump again before entering . Dε. Combining this with the usual bounds on . α, and 
recalling from (B2) that .Vol(Kr) > γ > 0 for all .r ∈ D\Dε and .υ ∈ V , we have  

. P(r,υ)(Rtε ∈ Dε, tε < k) ≥ P†
(r,υ)(J1 < κ

D\Dε
r,υ ∧ (tε − sε), ΥJ1 ∈ Kr+υJ1 , J2 > tε)

≥ πγ e−αtεP†
(r,υ)(J1 < κ

D\Dε
r,υ ∧ (tε − sε)). (4.35) 

Along with (4.27), this implies that, for all .r ∈ D\Dε, .υ ∈ V and . t ≥ (n + 1)ε/2
such that . t + tε ≥ κ

D\Dε
r,υ

. P(r,υ)(Rt+tε ∈ dz, Υt+tε ∈ dw|t + tε < k)

≥ P(r,υ)(Rtε ∈ Dε, tε < k, Rt+tε ∈ dz, Υt+tε ∈ dw)

P(r,υ)(t + tε < k)

= P†
(r,υ)(Rt+tε ∈ dz;Υt+tε ∈ dw|Rtε ∈ Dε, tε < k)P(r,υ)(Rtε ∈ Dε, tε < k)

P(r,υ)(t + tε < k)

≥ inf
r∈Dε,υ∈V

P†
(r,υ)(Rt ∈ dz;Υt ∈ dw)

×P†
(r,υ)(J1 < κ

D\Dε
r,υ ∧ (tε − sε))

P(r,υ)(t + tε < k)
πγ e−αtε ck

ε1{z∈Dε} dz dw

≥ P†
(r,υ)(J1 < κ

D\Dε
r,υ ∧ (tε − sε))

P(r,υ)(t + tε < k)
πγ e−αtεCεc

k
ε1{z∈Dε} dz dw. (4.36) 

Now, since we are considering the case .r + κ
D\Dε
r,υ υ ∈ ∂D and .t + tε ≥ κ

D\Dε
r,υ , it  

follows that .{t + tε < k} ⊂ {J1 < κ
D\Dε
r,υ }. Then,
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. 
P†

(r,υ)(J1 < κ
D\Dε
r,υ ∧ (tε − sε))

P(r,υ)(t + tε < k)
≥ P†

(r,υ)(J1 < κ
D\Dε
r,υ ∧ (tε − sε))

P(r,υ)(J1 < κ
D\Dε
r,υ )

≥ 1 − e−α(κ
D\Dε
r,υ ∧(tε−sε))

1 − e−ακ
D\Dε
r,υ

, (4.37) 

with the bound on the right-hand side above being itself bounded below by a 
constant that does not depend on .(r, υ). Substituting this back into (4.36), this  
proves (A1) with . ν taken as Lebesgue measure on .Dε × V as before, . t0 can be 
sufficiently taken as .(n+ 1)ε/2+ diam(D)/vmin, and we may start with any initial 
configurations in .D\Dε × V . ⨅⨆

Verification of (A2) 

In order to prove (A2), we require the following lemma. 

Lemma 4.4 For all .r ∈ D and .υ ∈ V , recalling that . Jk denotes the k-th jump time  
of the process .(R, Υ ), we have 

.P†
(r,υ)(J7 < k, RJ7 ∈ dz) ≤ C1{z∈D} dz, (4.38) 

for some constant .C > 0, and 

.P†
ν(J1 < k, RJ1 ∈ dz) ≥ c1{z∈D} dz, (4.39) 

for another constant .c > 0, where . ν, from the proof of (A1), is Lebesgue measure 
on .Dε × V . 

Proof Let us first prove (4.38). We couple the neutron transport random walk in 
D with one on the whole of . R3. Denote by .(R̂t , Υ̂t ) the neutron random walk in 
.D̂ = R

3, coupled with .(R, Υ ) such that .R̂t = Rt and .Υ̂t = Υt for all .t < k and 
.(R0, Υ0) = (R̂0, Υ̂0) = (r, υ), for  .r ∈ D, .υ ∈ V . Denote by .Ĵ1 < Ĵ2 < . . . the 
jump times of . Υ̂t . Then for each .k ≥ 1 such that .Jk < k, we have  .Ĵk = Jk . Due  to  
the inequality 

.E†
(r,υ)[f (RJ7); J7 < k] ≤ E(r,υ)[f (R̂

Ĵ7
)], r ∈ D,υ ∈ V, (4.40) 

we will consider the distribution of .R̂
Ĵi

for .i ≥ 2. We first look at the case when 
.i = 2. For .(r, υ) ∈ D × V and non-negative, bounded, measurable functions f , 

.E(r,υ)[f (R̂
Ĵ2

)] = E(r,υ)[f (r + υĴ1 + Υ̂
Ĵ1

(Ĵ2 − Ĵ1)]
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≤ ᾱ2π̄

∫ ∞ 

0 
dj1

∫
V 
dυ1

∫ ∞ 

0 
dj2e

−α(j1+j2) f (r  + υj1 + υ1j2). 

(4.41) 

For . j1 fixed, we consider the integrals over . υ1 and . j2 in (4.41). Making the change 
of variables .υ1 I→ (ρ, ϕ, θ), we have  

. 

∫
V

dυ1

∫ ∞

0
dj2e

−αj2f (r + υj1 + υ1j2)

≤
∫ 1

vmin

dρ
∫ 2π

0
dθ

∫ π

0
dϕ

∫ ∞

0
dj2e

−αj2f
(
r + υj1 + Θ̃(ρj2, θ, ϕ)

)
ρ2 sinϕ,

(4.42) 

where . ̃Θ was defined in (4.16). Now making the substitution .u = ρj2 in (4.42), 

. 

∫
V

dυ1

∫ ∞

0
dj2e

−αj2f (r + υj1 + υ1j2)

≤
∫ vmax

vmin

dρ
∫ 2π

0
dθ

∫ π

0
dϕ

∫ ∞

0
due−αu/ρf

(
r + υj1 + Θ̃(u, θ, ϕ)

)
ρ sinϕ

≤ C

∫ 2π

0
dθ

∫ π

0
dϕ

∫ ∞

0
due−αu/vmaxf

(
r + υj1 + Θ̃(u, θ, ϕ)

)
sinϕ,

(4.43) 

where .C = vmax(vmax − vmin). Making a final change of variables . (u, θ, ϕ) I→
x ∈ R

3, we have  

. 

∫
V

dυ1

∫ ∞

0
dj2e

−αj2f (r + υj1 + υ1j2) ≤ C

∫
R3

dx f (r + υj1 + x)
e−α|x|/vmax

|x|2 .

(4.44) 

Substituting this back into (4.41) yields 

.E(r,υ)[f (R̂
Ĵ2

)] ≤ ᾱK

∫ ∞

0
dj1e

−αj1

∫
R3

dxf (r + υj1 + x)
e−α|x|/vmax

|x|2 , (4.45) 

where .K = ᾱπ̄C. Iterating this process over the next five jumps of the process gives 

.E(r,υ)[f (R̂
Ĵ7

)] (4.46) 

≤ ᾱK6
∫ ∞ 

0 
dj1e

−αj1

∫
R3 

dx1 . . .
∫
R3 

dx6f (r  + υj1 + x1 + · · · +  x6)g(x1) . . . g(x6),
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where .g(x) = e−α|x|/vmax/|x|2, .x ∈ R
3. Now, .g ∈ Lp(R3) for each .p < 3/2 so that, 

in particular, .g ∈ L6/5(R3). Hence, repeatedly applying Young’s inequality implies 
that the six-fold convolution .∗6g ∈ L∞(R3). (The reader will note that this is the 
fundamental reason we have focused our calculations around the 7th jump time . J7, 
rather than it being an arbitrary choice.) Making the substitution .x = x1 + · · · + x6, 

. E†
(r,υ)[f (R̂

Ĵ7
)] ≤ᾱK6‖ ∗6 g‖∞

∫ ∞

0
dj1e

−αj1

∫
R3

dx1 . . .

∫
R3

dx6f (r + υj1 + x).

(4.47) 

Finally, setting .z = r + υj1 + x yields 

.E†
(r,υ)[f (RJ7); J7 < k] ≤ E(r,υ)[f (R̂

Ĵ7
)] ≤ C'

∫
R3

f (z)dz, (4.48) 

where .C' = ᾱK6‖ ∗6 g‖∞, which completes the proof of (4.38). 
We now prove (4.39). For  .r, r ' ∈ R

3, let  .[r, r '] denote the line segment between 
r and . r '. For all .f ∈ B(R3), recalling the definition of . ν from the proof of (A1) and 
using the usual bounds on . α, 

. Eν[f (RJ1); J1 < k]

≥
∫

Dε

dr

Vol(Dε)

∫
V

dυ

Vol(V )

∫ ∞

0
ds 1{[r,r+sυ]⊂D} αe−αsf (r + sυ), (4.49) 

where .Vol(Dε) = ∫
Dε

dr and .Vol(V ) = ∫
V
dυ. Following a similar method to those 

employed in the proof of Lemma 4.3 and (4.38) and changing first to polar 
coordinates via .υ I→ (ρ, θ, ϕ), followed by the substitution .u = sρ, and finally 
changing back to Cartesian coordinates via .(u, θ, ϕ) I→ x, the right-hand side 
of (4.49) is bounded below by 

.C

∫
Dε

dr
∫
R3

dx 1{[r,r+x]⊂D}
αe−αs/vmin

|x|2 f (r + x), (4.50) 

where .C > 0 is a constant. Making a final substitution of .x = z − r yields 

. Eν[f (RJ1); J1 < k] ≥ C

∫
Dε

dr
∫

D

dz1{[r,z]⊂D}
αe−α|z−r|/vmin

|z − r|2 f (z)

≥ C
v2minαe

−αdiam(D)/υ2
min

(diam(D))2

∫
Dε

dr
∫

D

dz1{[r,z]⊂D}f (z).

(4.51) 

For all .z ∈ D\Dε, (B1) and the discussion thereafter now imply that
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.

∫
Dε

1{[r,z]⊂D}dr ≥ Vol(Lz) ≥ γ

2
(t2ε − s2ε ), (4.52) 

where . sε and . tε are defined in (B2), and . Lz is defined in (4.11). On the other hand, 
for all .z ∈ Dε, 

.

∫
Dε

1{[r,z]⊂D}dr ≥ Vol(Dε ∩ B(r, ε)). (4.53) 

Since the map .z I→ Vol(Dε ∩B(z, ε)) is continuous and positive on the compact set 
. D̄ε, the latter equation is uniformly bounded below by a strictly positive constant. 
It then follows that for every .z ∈ D, the integral .

∫
Dε

dr1{[r,z]⊂D} is bounded below 
by a positive constant. Using this to bound the right-hand side of (4.51) gives us the 
desired result. ⨅⨆
Proof (That (A2) Holds) Let .t ≥ 7diam(D)/vmin and note that on the event . {k >

t}, we have  .J7 ≤ 7diam(D)/vmin almost surely. This inequality along with the 
strong Markov property implies that 

. P(r,υ)(t < k) ≤ E†
(r,υ)

[
1{J7<t}P(RJ7 ,ΥJ7 ) (t − s < k)s=J7

]

≤ E†
(r,υ)

[
P(RJ7 ,ΥJ7 )

(
t − 7diam(D)

vmin
< k

)]
. (4.54) 

Since . π is uniformly bounded above, conditional on .{J7 < ∞, RJ7 ∈ dz}, the  
density of .ΥJ7 is bounded above by . π multiplied by Lebesgue measure on V . 
Combining this with (4.38) and (4.54), we obtain 

.P(r,υ)(t < k) ≤ C'
∫

D

∫
V

P(z,w)

(
t − 7diam(D)

vmin
< k

)
dw dz, (4.55) 

for some .C' ∈ (0,∞). Similarly, for .t ≥ diam(D)/vmin, Eq. (4.39), the fact that 
the inclusion .{t < k} ⊂ {J1 ≤ diam(D)/vmin}, the strong Markov property, and 
the fact that . π is uniformly bounded below entail that 

. Pν(t < k) = E†
ν

[
1{J1≤k}P(RJ1 ,ΥJ1 ) (t − s < k)s=J1

]

≥ E†
ν

[
1{J1≤k}P(RJ1 ,ΥJ1 ) (t < k)

]

≥ c'
∫

D

∫
V

P(z,w)(t < k) dw dz,

for some .c' ∈ (0,∞), where . ν is Lebesgue measure on .Dε × V . Putting (4.54) 
and (4.55) together, for all .t ≥ 8diam(D)/vmin, we have
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.P(r,υ)(t < k) ≤ C'

c' Pν

(
t − 7diam(D)

vmin
< k

)
. (4.56) 

Now, recalling . t0 and . ν from the proof of (A1), it follows from (A1) that 

.P†
ν((Rt0, Υt0) ∈ ·) ≥ c1Pν(t0 < k)ν(·). (4.57) 

The event .{t < k} occurs if the particle has either been killed on the boundary of D 
or if it has been absorbed by fissile material, which occurs at rate .β̄ − β. Since . t0
and . ν are fixed, and .β − β ≤ β + 1 < ∞ by assumption, .Pν(t0 < k) ≥ K for some 
constant .K > 0. Thus, keeping .t ≥ 8diam(D)/vmin, using  (4.57), 

. Pν

(
t − 7diam(D)

vmin
+ t0 < k

)
= Eν

[
1{t0<k}P†

(Rt0 ,Υt0 )

(
t − 7diam(D)

vmin
< k

)]

≥ c̃1Pν

(
t − 7diam(D)

vmin
< k

)
, (4.58) 

where .c̃1 = Kc1. 
Now define .N = ⎾7diam(D)/(vmint0)⏋. Then, for any .t > 0, . t −

7diam(D)/vmin + Nt0 ≥ t so that, trivially, 

.Pν(t < k) ≥ Pν

(
t − 7diam(D)

vmin
+ Nt0 < k

)
. (4.59) 

Applying (4.58) N times implies that 

.Pν(t < k) ≥ c̃N
1 Pν

(
t − 4diam(D)

vmin
< k

)
. (4.60) 

Combining this with (4.56) completes the proof of (A2). ⨅⨆

Regularity of ϕ and ϕ̃ 

We thus far proved that the conclusions of Theorem 2.2 are valid under our 
assumptions. In order to conclude that Theorem 4.1 holds true, it remains to prove 
that . ϕ is uniformly bounded away from 0 on each compactly embedded subset of 
.D × V and the existence of a positive bounded density for the left eigenmeasure . η. 

Lemma 4.5 The right eigenfunction . ϕ is uniformly bounded away from 0 on each 
compactly embedded subset of .D × V , and the probability measure . η admits a 
positive density with respect to the Lebesgue measure on .D×V , which corresponds 
to the quantity . ϕ̃ and which is uniformly bounded from above and a.e. uniformly 
bounded from below on each compactly embedded subset of .D × V .
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Proof For all .ε > 0, we deduce from the eigenfunction property of . ϕ (cf. 
Theorem 2.2) and from (4.27) that there exist a time .tε > 0 and a constant . C̃ε > 0
such that 

. ϕ(r, υ) = e−λctεPtε [ϕ](r, υ) ≥ e−λtε C̃ε

∫
Dε×V

ϕ(z,w)dzdw > 0,

for all .(r, υ) ∈ Dε ×V . It follows that . ϕ is uniformly bounded away from 0 on each 
compactly embedded domain of .D × V . 

Using the same notations as in the proof of Lemma 4.4, we consider the neutron 
transport random walk .(R̂t , Υ̂t ) in .D̂ = R

3, coupled with .(R, Υ ) such that . R̂t = Rt

and .Υ̂t = Υt for all .t < k. We also denote by .Ĵ1 < Ĵ2 < . . . the jump times of 
.(Υ̂t )t≥0. Let  .T ≥ 0 be a random time independent of .(R̂, Υ̂ ) with uniform law on 
.[T , T̄ ], where .T < T̄ are fixed and .T ≥ 7diam(D)/vmin. We first prove that the 
law of .(R̂T , Υ̂T ) after the 7th jump admits a uniformly bounded density with respect 
to the Lebesgue measure. We conclude by using the coupling with .(R, Υ ) and the 
quasi-stationary property of . η in (7.21). 

For all .k ≥ 7 and for any positive, bounded, and measurable function f vanishing 
outside of .D × V , we have  

.E[f (R̂T , Υ̂T )1{Ĵk≤T <Ĵk+1} | R̂0, Υ̂0, T ]
= E[f (R̂0 + Ĵ1Υ̂0 + · · · + ĴkΥ̂k−1 + (T − Ĵ1 − · · · − Ĵk)Υ̂k, Υ̂k)

× 1{Ĵk≤T <Ĵk+1} | R̂0, Υ̂0, T ]

=
∫ T

0
ds1 α(R̂0 + υ0s1, υ0)e

− ∫ s1
0 α(R̂0+υ0u,υ0)du

×
∫

V

dυ1π(r0 + υ0s1, υ0, υ1)

×
∫ T −s1

0
ds2 α(R̂0 + υ0s1 + υ1s2, υ1)e

− ∫ s2
0 α(R̂0+υ0s1+υ1u,υ1)du

× · · ·

×
∫

V

dυk−1π(R̂0 + υ0s1 + · · · + υk−2sk−1, υk−2, υk−1)

×
∫ T −s1−···−sk−1

0
dsk α(R̂0 + υ0s1 + · · · + υk−1sk, υk−1)

e− ∫ sk
0 α(R̂0+υ0s1+···+υk−2sk−1+υk−1u,υk−1)du

×
∫

V

dυkπ(R̂0 + υ0s1 + · · · + υk−1sk, υk−1, υk)
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e− ∫ T −s1−···−sk 
0 α( R̂0+υ0s1+···+υk−1sk+υku,υk)du 

× f (  ̂R0 + υ0s1 + · · · +  υk−1sk + υk(t − s1 − · · · −  sk), υk). 

Hence, 

. E[f (R̂T , Υ̂T )1{Ĵk≤T <Ĵk+1} | R̂0, Υ̂0, T ]

≤ ᾱkπ̄ ke−T α

∫ T

0
ds1

∫
V

dυ1 · · ·
∫ T −s1−···−sk−1

0
dsk

∫
V

dυk

f (R̂0 + υ0s1 + · · · + υk−1sk + υk(T − s1 − · · · − sk), υk).

Taking the expectation with respect to T , we obtain 

. E[f (R̂T , Υ̂T )1{Ĵk≤T <Ĵk+1} | R̂0, Υ̂0]

≤ ᾱkπ̄ k

T̄

∫ T̄

0
dt

∫ t

0
ds1

∫
V

dυ1 · · ·
∫ t−s1−···−sk−1

0
dsk

∫
V

dυk

× f (R̂0 + υ0s1 + · · · + υk−1sk + υk(t − s1 − · · · − sk), υk).

Using the change of variable . (u1, . . . , uk, uk+1) = (s1, . . . , sk, t − s1 − · · · − sk)

yields 

. E[f (R̂T , Υ̂T )1{Ĵk≤T <Ĵk+1} | R̂0, Υ̂0]

≤ ᾱkπ̄ k

T̄

∫
[0,T̄ ]k+1

du 10≤u1+···+uk+1≤T̄

∫
V k

dυ

× f (R̂0 + υ0u1 + · · · + υk−1uk + υkuk+1, υk).

The same approach as in Lemma 4.4 shows that there exists a constant . C > 0
(which does not depend on . R̂0 nor on . Υ̂0) such that, for all measurable functions 
.g : R3 → [0,∞), 

. 

∫
[0,T̄ ]7

du
∫

V 6
dυ g(R̂0 + Υ̂0u1 + · · · + υ6u7) ≤ C

∫
Rd

dxg(x).

Hence, 

.E[f (R̂T , Υ̂T )1{Ĵk≤T <Ĵk+1} | R̂0, Υ̂0]

≤ Cᾱkπ̄k

T̄

∫
[0,T̄ ]k+1−7

du 10≤u8+···+uk+1≤T̄

∫
V k−6

dυ

×
∫
R3

dxf (x + υ7 u8 + · · · + υkuk+1, υk)
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= 
C ̄αk π̄ k 

T̄

∫
[0, T̄ ]k+1−7 

du 10≤u8+···+uk+1≤T̄

∫
V k−6 

dυ
∫
R3 

dyf (y, υk) 

= Cᾱk π̄ kVol(V )k−8 T̄ k+1−8 

(k + 1 − 7)!
∫

D 
dy

∫
V 
dυkf (y,  υk), 

where we used the change of variable .y = x + υ7 u8 + · · · + υkuk+1 and the fact 
that f vanishes outside .D × V . Summing over .k ≥ 7, we deduce that there exists a 
constant .C' > 0 (which only depends on .C, ᾱ, π̄ and . T̄ ) such that 

. E[f (R̂T , Υ̂T )1{Ĵ7≤T } | R̂0, Υ̂0] ≤ C'
∫

D

dy
∫

V

dυ f (y, υ).

Similarly, as in the proof of (A2), we chose .T ≥ 7diam(D)/vmin, so that, on 
the event .{k > T }, we have  .J7 ≤ 7diam(D)/vmin ≤ T almost surely. Hence, we 
obtain that, for any .(r0, υ0) ∈ D × V , 

. E†
(r0,υ0)

[f (RT , ΥT ); T < k] = E†
(r0,υ0)

[f (RT , ΥT ); T < k, J7 ≤ T ]
≤ E(r0,υ0)[f (R̂T , Υ̂T ); Ĵ7 ≤ T ]

≤ C'
∫

D

dy
∫

V

dυ f (y, υ).

Integrating with respect to . η and using the quasi-stationary property (7.21) and 
Fubini’s theorem (recall that T and the process .(R, Υ ) are independent), we obtain 

. 
1

T̄ − T

∫ T̄

T

dt eλct η[f ] = 1

T̄ − T

∫ T̄

T

dt E†
η[f (Rt , Υt ); t < k]

= E†
η[f (RT , ΥT ); T < k]

≤ C'
∫

D

dy
∫

V

dυ f (y, υ). (4.61) 

Since f was chosen arbitrarily, this proves that . η admits a uniformly bounded 
density (from above) with respect to the Lebesgue measure on .D × V . 

Finally, using the quasi-stationarity of . η (7.21) and integrating inequality (4.26) 
with respect to . η imply that (here the time t and the constants .k, Cε, cε depend on . ε

as in inequality (4.27)), for all bounded measurable functions f on .D × E, 

.eλct

∫
D×V

f (x)η(dx) = E†
η[f (Rt , Υt ); t < k]

≥ η(Dε × V )Cεc
k
ε

∫
Dε×V

f (z,w) dz dw.
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This implies that . ϕ̃ is a.e. lower bounded by .e−λctη(Dε ×V )Cεc
k
ε on .Dε ×V . Since 

this inequality can be proved for any .ε > 0 small enough, one deduces that, on any 
subset .Dε ×V with .ε > 0 and hence on any compactly embedded subset of .D ×V , 
. ϕ̃ is a.e. uniformly bounded away from zero. ⨅⨆

4.5 Comments 

The majority of this chapter is based on the ideas and calculations presented in Cox 
et al. [30] and Harris et al. [73]. The material presented in this chapter demarcates 
classical neutron transport theory from a more modern stochastic perspective that 
forms the basis of this entire book. As alluded to several times earlier, an important 
difference with pursuing stochastic representation of solutions on . (B(D × E), ‖·‖)
as opposed to .L2(D × V ) is the ability to identify solutions both pointwise and 
via Feynman–Kac representations. As we will see in the forthcoming chapters, this 
lends itself well to stochastic analysis of the underlying Markov process, which, in 
some cases, is equivalent to pathwise statements about the underlying NBP.



Chapter 5 
Pál–Bell Equation and Moment Growth 

The previous chapter largely dealt with the relationship between the NTE and the 
NBP. The NTE is a linear equation and so there is limited information we can glean 
about the NBP from the NTE. Recall that the NBP is fundamentally our physical 
model of fission in an inhomogeneous material and so many questions will go 
beyond what linear equations can tell us. In this respect, our starting point is the 
Pál–Bell equation, a non-linear equation which captures a more complete picture of 
the stochastic behaviour of the NBP. 

5.1 Pál–Bell Equation (PBE) 

The so-called Pál–Bell equation is a special example of a general non-linear 
equation that is quite commonly used in the theory of spatial branching processes 
(as indeed we shall see in the second part of this book). In order to state the Pál– 
Bell equation, let us recall some basic facts of the NBP and introduce some more 
notation. 

Recall that the way we described the NBP is via the point process 

. Xt(·) :=
Nt∑

i=1

δ(ri (t),υi (t))(·), t ≥ 0,

where 

. {(ri(t), υi(t)), i = 1, · · · , Nt }, t ≥ 0,

describes the configuration and number of particles in the system at time .t ≥ 0. In  
addition, recalling the notation 
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. Xt [f ] :=
∫

D×V

f (r, υ)Xt (dr, dυ) =
Nt∑

i=1

f (ri(t), υi(t)), t ≥ 0, f ∈ B+(D×V ),

we previously introduced 

.vt [f ](r, υ) := Eδ(r,υ)

[
e−Xt [f ]] , t ≥ 0, f ∈ B+(D × E), (5.1) 

in (3.27), which was used to verify the branching Markov property of .(Xt , t ≥ 0). 
When seen as operators on .B+(D ×V ), it is easy to see from the Markov branching 
property (3.28) that the family .(vt , t ≥ 0) has the semigroup property. 

Lemma 5.1 Assume (H1) holds. For all .s, t ≥ 0 and .g ∈ B+(D × V ), then 
.vt+s[g] = vt [vs[g]]. 
Proof Just as with (2.3), this is a simple consequence of the Markov property. 
Indeed, recalling the decomposition given in (3.28), we can take expectations again 
and the result follows. ⨅⨆

The structure of the expectation that defines the family .(vt , t ≥ 0) does not 
appear to be of the form (2.3), which we recall gave us our definition of an 
expectation semigroup for a general Markov process. Nonetheless, it is in fact 
consistent with (2.3) when one takes account of the fact that the NBP is a Markov 
process in .Mc(D × V ). We can think of .vt [g] as taking the form .Eδ(r,υ)

[G(Xt)], 
for the special class of functionals which are expressed as the negative exponential 
of an inner product with respect to . Xt . As such, whilst Lemma 5.1 does not offer 
us the expectation semigroup property for all bounded functionals of . Xt , it does 
offer us the expectation semigroup property for a dense family of functionals in the 
aforementioned class. 

It is important to understand why the semigroup .(vt , t ≥ 0) carries more 
information about the law of the NBP than the semigroup .(ψt , t ≥ 0). From  (5.1), 
we see that, for .g ∈ B+(D × V ), .r ∈ D, .υ ∈ V , and .t ≥ 0, 

.ψt [g](r, υ) = − d

dθ
Eδ(r,υ)

[
e−θXt [g]]

∣∣∣∣
θ=0

= − d

dθ
vt [θg](r, υ)

∣∣∣∣
θ=0

. (5.2) 

Hence, at the very least, the analytical information contained in .(ψt , t ≥ 0) is 
equally accessible from .(vt , t ≥ 0). 

Just as we have derived an evolution equation for .(ψt , t ≥ 0), which was none 
other than the mild NTE (3.32), we would like to derive an evolution equation for 
.(vt , t ≥ 0). Our approach will be similar to the derivation of (3.32), and however, we 
must be a bit more careful in one aspect. Unlike the additive functional .Xt [g] which 
is equal to zero on the extinction event, the multiplicative functional . exp(−Xt [g])
is equal to unity on the extinction event. For this reason, we need to slightly adjust
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how we work with .(Ut , t ≥ 0). We introduce .(Ût , t ≥ 0) in place of .(Ut , t ≥ 0) with 
the understanding that, for .g ∈ B+(D × V ), 

.Ût [g](r, υ) =
{

g(r + υt, υ) for t < κD
(r,υ) = inf{t > 0 : r + υt /∈ D},

1 otherwise.
(5.3) 

Similarly, . ̂Pt is a slight adjustment of . Pt which returns a value of 1 on the event of 
killing. We also need to introduce the non-linear operator, acting on 

.B+
1 (D × V ) = {f ∈ B+(D × V ) : ‖f ‖ ≤ 1}, (5.4) 

given by 

.G[f ](r, υ) = σf(r, υ)E(r,υ)

[
N∏

i=1

f (r, υi) − f (r, υ)

]
. (5.5) 

The operator . G is called the fission mechanism. In a more general context of 
branching Markov processes, it is also known as the branching mechanism. 

Lemma 5.2 (Pál–Bell Equation) Assume (H1) holds. For .g ∈ B+(D × V ), we  
have on . D × V

.vt [g] = Ût [e−g] +
∫ t

0
Us [Svt−s[g] + G[vt−s[g]]] ds, t ≥ 0. (5.6) 

Equivalently we have a second representation 

.vt [g] = P̂t [e−g] +
∫ t

0
Ps [G[vt−s[g]]] ds, t ≥ 0. (5.7) 

Solutions to both (5.6) and (5.7), which are valued in .[0, 1], are unique. 
Proof The fundamental idea of the proof of the two equations (5.6) and (5.7) is to 
break the expectation in the definition (5.1) of . vt either on the first event (scattering 
or fission) to obtain (5.6) or just on the first fission event to obtain (5.7). We  
prove (5.6) and leave the derivation of (5.7) in the same fashion as an exercise. 

Conditioning on the first event, we get 

.vt [g](r, υ)

= e− ∫ t∧κD
(r,υ)

0 σ(r+υ𝓁,υ)d𝓁[e−g(r+υt,υ)1(t<κD
(r,υ)

) + 1(t≥κD
(r,υ)

)]

+
∫ t

0
1(s<κD

(r,υ)
)σ (r + υs, υ)e− ∫ t

0 σ(r+υ𝓁,υ)d𝓁
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(
σs(r + υs, υ) 
σ(r  + υs, υ)

∫

V 
vt−s(r + υs, υ ')πs(r + υs, υ, υ ')dυ '

+ 
σf(r + υs, υ) 
σ(r  + υs, υ) 

E(r+υs,υ)

[
N∏

i=1 

vt−s(r + υs, υi)

] )
ds, 

where we recall .κD
(r,υ) was defined in (3.13) and .σ = σf + σs. Appealing to 

Theorem 2.1, we can transform the multiplicative potential with rate . σ into an 
additive potential and, together with some easy algebra, this gives us straight 
away (5.6). 

The proof is completed as soon as we establish uniqueness. This is again a matter 
of an application of Grönwall’s lemma in the spirit of the proof of uniqueness 
argument in Lemma 3.5. We leave the details to the reader. ⨅⨆

5.2 Many-to-Two Representation and Variance Evolution 

The NTE tells us about the growth of the first moment and the PBE tells us about 
the law of the NBP. But the question remains how we can extract more specific 
information out of the latter to complement the former. In this section, we will look 
at the second moments of the NBP or equivalently the two-point correlation function 
for particles alive at time .t ≥ 0. 

In order to do so, we define the operator 

.V [f, g](r, υ) = E(r,υ)

[ N∑

i,j=1
i /=j

f (r, υi)g(r, υj )

]
, (5.8) 

for .f, g ∈ B+(D × V ), .r ∈ D, and .υ ∈ V . We will often abuse notation and write 
.V [g](r, υ) instead of .V [g, g](r, υ) for .g ∈ B+(D × V ) and .r ∈ D,υ ∈ V . Note  
in particular that 

.V [g](r, υ) = E(r,υ)

[
Z[g(r, ·)]2 − Z[g2(r, ·)]

]
. (5.9) 

Generally, for (5.9) to be finite, we need a second moment assumption on the number 
of neutrons produced at each fission event. This is automatically satisfied since we 
have at most .nmax particles produced at fission, cf. (H4). 

Lemma 5.3 (Many-to-Two) Assume (H1) and (H4). Suppose that . f, g ∈ B+(D ×
V ). Then
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. Eδ(r,υ)

[
Xt [f ]Xt [g]

]

= ψt [fg](r, υ) +
∫ t

0
ψs

[
σfV [ψt−s[f ], ψt−s[g]]

]
(r, υ)ds,

(5.10) 

for .r ∈ D,υ ∈ V . In particular, 

.Eδ(r,υ)

[
Xt [f ]2

]
= ψt [f 2](r, υ) +

∫ t

0
ψs

[
σfV [ψt−s[f ]]

]
(r, υ)ds. (5.11) 

Proof Suppose that .h ∈ B+(D × V ) and that .Hs(r, υ) on .R+ × D × V is non-
negative, continuous, and bounded. Then we claim that 

.ωt(r, υ) := ψt [h](r, υ) +
∫ t

0
ψs[Hs](r, υ)ds, (5.12) 

for .t ≥ 0, .r ∈ D, and .υ ∈ V , uniquely solves the integral equation 

.ωt(r, υ) = Ut [h](r, υ) +
∫ t

0
Us

[
Hs + (S + F)ωt−s

]
(r, υ)ds. (5.13) 

We only sketch the proof as the methods used should now be quite familiar to the 
reader. First note that we can otherwise write (5.12) as 

. ωt(r, υ) := E(r,υ)

[
e
∫ t
0 β(Rs,Υs)dsh(Rt , Υt )1(t<τD)

]

+ E(r,υ)

[∫ t∧τD

0
Hs(Rs, Υs)e

∫ s
0 β(Ru,Υu)duds

]
. (5.14) 

Next condition the right-hand side of (5.14) on the first fission or scattering event, 
whichever comes first, thus generating a recursion for .(ωt , t ≥ 0). An application 
of Theorem 2.1 then gives us (5.13). Finally, the uniqueness of the latter follows by 
a standard argument appealing to Grönwall’s lemma. 

To complete the proof of (5.10), it suffices to consider the case .f = g, as the  
general form will follow from the polarisation identity 

. 2Eδ(r,υ)[Xt [f ]Xt [g]] = Eδ(r,υ)[Xt [f + g]2] − Eδ(r,υ)[Xt [f ]2] − Eδ(r,υ)[Xt [g]2].

To this end, denote .wt(r, υ) = Eδ(r,υ)[Xt [g]2], for  .t ≥ 0, .r ∈ D, .υ ∈ V . If we  
split .Xt [g]2 according to the NBPs that grow out of each of the offspring at the first 
fission event, say .X(i), .i = 1, · · · , N , then, conditional on fission occurring at time 
.s ≤ t , we can write
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.Xt [g]2 =
(

N∑

i=1

X
(i)
t−s[g]

)2

=
N∑

i,j=1
i /=j

X
(i)
t−s[g]X(j)

t−s[g] +
N∑

i=1

X
(i)
t−s[g]2. (5.15) 

For convenience, write .Dt(r, υ) = exp(− ∫ t

0 σ(r + 𝓁υ, υ)d𝓁), for  .r ∈ D, .υ ∈ V . 
Using (5.15), we can now formally split the expectation of .Xt [g]2 on the first event, 
scattering or fission, and then apply Theorem 2.1. This gives us 

. wt(r, υ)

= Dt(r, υ)Ut [g2](r, υ) +
∫ t

0
Us

[
σsDs

∫

V

wt−s(r, υ
')πs(·, ·, υ ')dυ '

]
(r, υ)ds

+
∫ t

0
Us

[
σfDsE(·,·)

[ N∑

i,j=1
i /=j

ψt−s[g](·, υi)ψt−s[g](·, υj ) +
N∑

i=1

wt−s(·, υi)

]]
(r, υ)ds

= Ut [g2](r, υ) +
∫ t

0
Us[(S + F)wt−s](r, υ)ds +

∫ t

0
Us

[
σfV [ψt−s[g]]

]
(r, υ)ds.

Using the representation of the solution to (5.13) but with .h = g2 and . H(s, ·, ·) =
σfV [ψt−s[g]], we get (5.11), which we recall is sufficient to establish (5.10). ⨅⨆

A consequence of Theorem 5.3 is that we gain insight into the asymptotic 
evolution of the variance of the underlying NBP. More precisely, we have the 
following result which shows that in the supercritical case the second moment 
behaves like the square of the first moment, in the subcritical case, the second 
moment behaves like the first moment, and in the critical case, the second moment 
grows linearly. 

Theorem 5.1 Suppose the assumptions of Lemma 5.3 are met. Then, for any . g ∈
B+(D × V ), we have the following asymptotic behaviour for the second moment in 
the supercritical, subcritical, and critical cases: 

(i) If .λ∗ > 0, 

. lim
t→∞ e−2λ∗tEδ(r,υ)

[Xt [g]2] = 〈ϕ̃, g〉2
∫ ∞

0
e−2λ∗sψs[σfV [ϕ]](r, υ)ds.

(5.16) 
(ii) If .λ∗ < 0, 

. lim
t→∞ e−λ∗tEδ(r,υ)

[Xt [g]2] =
(

〈ϕ̃, g2〉 +
∫ ∞

0
e−λ∗s〈ϕ̃, σfV

[
ψs[g]]〉ds

)
ϕ(r, υ).

(5.17)
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(iii) If .λ∗ = 0, 

. lim
t→∞

1

t
Eδ(r,υ)

[Xt [g]2] = 〈ϕ̃, g〉2〈ϕ̃, σfV [ϕ]〉ϕ(r, υ). (5.18) 

Proof Appealing to the Perron–Frobenius Theorem 4.1, we have,  for any  . f ∈
B+(D × V ) and .δ > 0, that there exist some constant .K ∈ (0,∞) and some 
.t0 = t0(δ) such that 

. sup
t≥0

‖e−λ∗tψt [f ]‖ ≤ K‖f ‖ and ‖e−λ∗tψt [f ]−〈ϕ̃, f 〉ϕ‖ ≤ δ‖f ‖, for all t ≥ t0.

(5.19) 

On the other hand, it follows from (5.9) that .σfV is a symmetric bilinear form, and 
hence 

. |σfV [f ](r, υ) − σfV [h](r, υ)| =|σfV [f − h, f + h](r, υ)|
≤ C‖f − h‖(‖f ‖ + ‖h‖), (5.20) 

where, in the last inequality, we have used the boundedness of . σf from (H1) and, 
thanks to (H4), .C := ‖σf‖ nmax < ∞. In particular, taking .h = 0 yields 

. ‖σfV [f ]‖ ≤ C‖f ‖2. (5.21) 

Also, we clearly have 

.f, g ∈ B+(D × V ), f ≤ g ⇒ ψt [f ] ≤ ψt [g], t ≥ 0. (5.22) 

Let us look at the supercritical case, i.e., .λ∗ > 0. Note that the leading term 
.ψt [f 2] on the right-hand side of (5.11) is overscaled by .e2λ∗t and hence limits away 
to zero. This leaves us with considering the integral on the right-hand side of (5.10) 
scaled by .e2λ∗t . Our objective is to extract the dominant growth rate from (5.11) as 
.t → ∞. To that end, we first split the integral in (5.11) into two parts, 

. 

∫ t

0
ψs

[
σfV [ψt−s[g]]

]
(r, υ)ds =

∫ t

t−t0

ψs

[
σfV [ψt−s[g]]

]
(r, υ)ds

+
∫ t−t0

0
ψs

[
σfV [ψt−s[g]]

]
(r, υ)ds. (5.23) 

Note that the first term on the right-hand side is of order .o(e2λ∗t ). Indeed, 

.

∫ t

t−t0

ψs

[
σfV [ψt−s[g]]

]
(r, υ)ds ≤

∫ t

t−t0

ψs

[
σfV

[
K‖g‖eλ∗(t−s)

]]
(r, υ)ds
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≤
∫ t 

t−t0 

ψs

[
CK2‖g‖2e2λ∗(t−s)

]
(r, υ)ds 

≤ CK3‖g‖2e2λ∗t
∫ t 

t−t0 

e−λ∗sds 

= o(e2λ∗t ), as t → ∞, 

where in the first inequality we used (5.19), in the second we used (5.21), and in 
the final inequality we used (5.22) and (5.19). On the other hand, for the second 
term in (5.23), we have  

. 

∣∣∣∣
∫ t−t0

0
ψs[σfV

[
ψt−s[g]]

]
(r, υ)ds − 〈ϕ̃, g〉2

∫ t−t0

0
e2λ∗(t−s)ψs

[
σfV [ϕ]

]
(r, υ)ds

∣∣∣∣

≤
∫ t−t0

0
ψs

[∣∣∣σfV
[
ψt−s[g]] − σfV

[〈ϕ̃, g〉eλ∗(t−s)ϕ
]∣∣∣

]
(r, υ)ds

≤
∫ t−t0

0
ψs

[
e2λ∗(t−s)δCK‖g‖(‖g‖ + |〈ϕ̃, g〉|‖ϕ‖)]

]
ds

≤ δCK‖g‖(δ‖g‖ + 2|〈ϕ̃, g〉|‖ϕ‖)e2λ∗t
∫ t−t0

0
e−λ∗sds

= O(δe2λ∗t ),

as .t → ∞, where the second inequality is due to (5.19) and (5.20) and the third 
inequality follows from (5.19). Since . δ is arbitrary, when combined with the fact 
that the integral 

. 

∫ ∞

0
e−2λ∗sψs[σfV [ϕ]](r, υ)ds ≤ CK‖ϕ‖2

∫ ∞

0
e−λ∗sds < ∞,

the above implies 

. 

∫ t−t0

0
ψs

[
σfV [ψt−s[g]]

]
(r, υ)ds ∼ 〈ϕ̃, g〉2e2λ∗t

∫ ∞

0
e−2λ∗sψs[σfV [ϕ]](r, υ)ds,

as .t → ∞. The asymptotics in the supercritical case then easily follows. 
Next, we consider the subcritical case, i.e., .λ∗ < 0. In this setting, the leading 

term on the right-hand side of (5.11) does not scale away but scales as precisely . eλ∗t

giving the limit .〈ϕ̃, f 〉ϕ. For the integral term on the right-hand side of (5.10), we  
start with a change of variable: 

.

∫ t

0
ψs

[
σfV

[
ψt−s[g]]

]
(r, υ)ds =

∫ t

0
ψt−s

[
σfV

[
ψs[g]]

]
(r, υ)ds.
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Note that by (5.19) and (5.21), 

. 

∫ t

t−t0

ψt−s

[
σfV

[
ψs[g]]

]
(r, υ)ds ≤ CK2‖g‖2

∫ t

t−t0

e2λ∗s+λ∗(t−s)ds = o(eλ∗t ),

where the equality follows as .t → ∞, since .λ∗ < 0. On the other hand, apply-
ing (5.19) to .ψt−s and .σfV

[
ψs[g]], noting the latter is bounded by . CK2e2λ∗s‖g‖2

as a consequence of (5.21) and (5.22), we get 

. 

∣∣∣∣
∫ t−t0

0
ψt−s

[
σfV

[
ψs[g]]

]
(r, υ)ds − eλ∗t ϕ(r, υ)

∫ t−t0

0
e−λ∗s〈ϕ̃, σfV

[
ψs[g]]〉ds

∣∣∣∣

≤
∫ t−t0

0
δeλ∗(t−s)

∥∥σfV
[
ψs[g]]∥∥ds

≤
∫ t−t0

0
δeλ∗(t+s)CK2‖g‖2ds

= O(δeλ∗t ),

as .t → ∞. Arguing as in the supercritical case, we conclude that 

. 

∫ t

0
ψt−s

[
σfV

[
ψs[g]]

]
(r, υ)ds ∼ eλ∗t ϕ(r, υ)

∫ ∞

0
e−λ∗s〈ϕ̃, σfV

[
ψs[g]]〉ds,

as .t → ∞, which in turn implies the result in the subcritical case. 
The proof in the critical case follows similar arguments. First note that the leading 

term on the right-hand side of (5.10) will scale away to zero. For the integral term 
on the right-hand side of (5.10), we can write with a change of variables 

. lim
t→∞

1

t

∫ t

0
ψs

[
σfV [ψt−s[g]]

]
(r, υ)ds = lim

t→∞

∫ 1

0
ψut

[
σfV [ψt(1−u)[g]]

]
(r, υ)du.

Appealing to (5.19) and dominated convergence, we can pull the limit through the 
integral to obtain 

. 

∫ 1

0
〈ϕ̃, σfV [〈ϕ̃, g〉]ϕ〉ϕ(r, υ)du = 〈ϕ̃, g〉2〈ϕ̃, σfV [ϕ]〉ϕ(r, υ),

as required. ⨅⨆
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5.3 Moment Growth 

The analysis in the previous sections seems hard to extend to higher moments. 
However there is another approach which brings us back to (5.6) and (5.7). Under 
the assumptions of (H1) and (H4), we can access all moments of the NBP from 
.(vt , t ≥ 0) by differentiating as in (5.2) more than once, i.e., 

.ψ
(k)
t [f ](r, υ) := Eδ(r,υ)

[
Xt [f ]k

]
= (−1)k

dk

dθk
vt [θf ](r, υ)

∣∣∣∣
θ=0

, (5.24) 

for .r ∈ D, .υ ∈ V , .t ≥ 0, and .k ≥ 2. Note that there is no need to define .ψ(1) as we 
have the special notation . ψ . Unlike .(ψt , t ≥ 0), the moment operators . (ψ

(k)
t , t ≥ 0)

are not semigroups. They do however satisfy recursion equations which take the 
form 

. ψ
(k)
t [f ](r, υ) =ψt [f k](r, υ)

+
∫ t

0
ψs

[
Fk(ψ

(k−1)
t−s [f ], · · · , ψ

(2)
t−s[f ], ψt−s[f ])

]
(r, υ) ds,

(5.25) 

where . Fk takes a rather complex form. These recursions can be used to develop 
the asymptotic behaviour in time for the moments in each of the three criticality 
regimes via an inductive approach. Setting aside the form of . Fk , the asymptotic 
behaviour of .(ψt , t ≥ 0) in Theorem 4.1 together with the scaling limits of 
.ψ

(k−1)
t−s [f ], · · · , ψ

(2)
t−s[f ] will give us the scaling limit of .ψ

(k)
t [f ]. Not surprisingly, 

the analysis is quite involved and, as it turns out, is not specific to the PBE but 
works equally well for more general spatial branching processes. For this reason, 
the proofs of the three main results below are left to Part II of this book where they 
are restated in the aforesaid general setting. 

Theorem 5.2 (Supercritical, .λ∗ > 0) Suppose that (H1), (H2. ∗), and (H4) hold. 
Fix an integer .k ≥ 1, then 

. lim
t→∞ sup

r∈D,υ∈V

f ∈B+
1 (D×V )

∣∣∣∣∣e
−λ∗kt ψ

(k)
t [f ](r, υ)

ϕ(r, υ)
− k!〈ϕ̃, f 〉kLk(r, υ)

∣∣∣∣∣ = 0,

where .L1 = 1 and we define, iteratively for .k ≥ 2, 

.Lk(r, υ) =
∫ ∞

0
e−λ∗ksϕ(r, υ)−1ψs

[
σfE·

[ ∑

[k1,...,kN ]2k

N∏

j=1
j :kj >0

ϕ(r, υj )Lkj
(r, υj )

]]
(r, υ)ds,
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and .[k1, . . . , kN ]2k is the set of all non-negative N -tuples .(k1, . . . , kN) satisfying 

.
∑N

i=1 ki = k and at least two of the . ki are strictly positive. 

Theorem 5.3 (Subcritical, .λ∗ < 0) Suppose that (H1), (H2. ∗), and (H4) hold. Fix 
an integer .k ≥ 1, then 

. lim
t→∞ sup

r∈D,υ∈V

f ∈B+
1 (D×V )

∣∣∣∣∣e
−λ∗t ψ

(k)
t [f ](r, υ)

ϕ(r, υ)
− Lk

∣∣∣∣∣ = 0,

where we define iteratively .L1 = 1 and, for .k ≥ 2, 

. Lk = 〈ϕ̃, f k〉

+
∫ ∞

0
e−λ∗s

〈
ϕ̃, σfE·

[ ∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏

j=1
j :kj >0

ψ
(kj )
s [f ](·, υj )

]〉
ds,

and .[k1, . . . , kN ]nk is the set of all non-negative N -tuples .(k1, . . . , kN) such that 

.
∑N

i=1 ki = k and exactly .2 ≤ n ≤ k of the . ki are strictly positive. 

Theorem 5.4 (Critical, .λ∗ = 0) Suppose that (H1), (H2. ∗), and (H4) hold. Fix an 
integer .k ≥ 1, then 

. lim
t→0

sup
r∈D,υ∈V

f ∈B+
1 (D×V )

∣∣∣∣∣t
−(k−1) ψ

(k)
t [f ](r, υ)

ϕ(r, υ)
− 2−(k−1)k! 〈ϕ̃, f 〉k〈ϕ̃, σfV [ϕ]〉k−1

∣∣∣∣∣ = 0.

Let us compare the above results with the results in Theorem 5.1, which 
corresponds to the setting .k = 2. It is easy to see that the critical case for .k = 2 in 
Theorems 5.4 and 5.1 (iii) directly agree. In the supercritical and subcritical settings, 
the summations in the definition of . Lk degenerate simply to sums over pairs . ki = 1
and .kj = 2 − ki = 1 for some .i, j = 1, · · · , N such that .i /= j . Both sums attract 
a factor of 2, either from the .k! = 2 term which multiplies . Lk in the supercritical 
setting or from the multinomial coefficient of the sum in the subcritical setting. 
Either way, the summations of products with the respective factor of 2 reduce to the 
integrals in the definition of . L2 to precisely those of Theorem 5.1 (i) and (ii). 

5.4 Running Occupation Moment Growth 

Before moving on to an application of the critical moment growth in Theorem 5.4, 
let us also present an additional suite of results that describe the growth of the 
moments of the running occupation measure .

∫ t

0 Xs[g]ds, .t ≥ 0. To this end, define,
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for .r ∈ D, .υ ∈ V , .g ∈ B+(D × V ), .k ≥ 1, .t ≥ 0, 

.I
(k)
t [g](r, υ) := Eδ(r,υ)

[(∫ t

0
Xs[g]ds

)k
]

. (5.26) 

For convenience, we will write .It [g] in place of .I (1)
t [g], mirroring similar notation 

used for the first moment semigroup. 
In a similar spirit to (5.24), we can access the moments .I (k)

t [g](r, υ) by noting 
that if we define, for .r ∈ D, .υ ∈ V and .g ∈ B+(D × V ), 

.wt [g](r, υ) := Eδ(r,υ)

[
exp

(
−

∫ t

0
Xs[g]ds

)]
, (5.27) 

then 

.I
(k)
t [g](r, υ) = (−1)k

dk

dθk
wt [θg]

∣∣∣∣
θ=0

. (5.28) 

Moreover, in a similar spirit to the derivation of (5.7), we have that for . g ∈
B+(D × V ), .t ≥ 0, .r ∈ D, and .υ ∈ V , . wt solves 

.wt [g](r, υ) = Pt [1](r, υ) +
∫ t

0
Ps [G[wt−s[g]] − gwt−s[g]] (r, υ)ds. (5.29) 

A similar recursion to (5.25) then ensues from which an inductive argument can 
be developed to build up the moment asymptotics. 

The complete picture is dealt with in Chap. 9 of Part II of this text. There, one 
will find the proof of the following results, which mirror Theorems 5.2, 5.3, and 5.4, 
respectively, albeit in the setting of a general branching Markov process. 

Theorem 5.5 (Supercritical, .λ∗ > 0) Suppose that (H1), (H2. ∗), and (H4) hold. 
Fix an integer .k ≥ 1, then 

. lim
t→∞ sup

r∈D,υ∈V
f ∈B+(D×V )

∣∣∣ϕ(r, υ)−1e−λ∗kt I
(k)
t [g](r, υ) − k!〈ϕ̃, g〉kLk

∣∣∣ ,

where . Lk was defined in Theorem 5.2, albeit with .L1 = 1/λ∗. 

Theorem 5.6 (Subcritical, .λ∗ < 0) Suppose that (H1), (H2. ∗), and (H4) hold. Fix 
an integer .k ≥ 1, then 

. lim
t→∞ sup

r∈D,υ∈V
f ∈B+(D×V )

∣∣∣ϕ(r, υ)−1I
(k)
t [g](r, υ) − k!〈ϕ̃, g〉kLk(r, υ)

∣∣∣ = 0,
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where .L1(r, υ) = ∫ ∞
0 ϕ(r, υ)−1ψs[g](r, υ)ds, and for .k ≥ 2, the constants . Lk(r, υ)

are defined recursively via 

. Lk(r, υ) =
∫ ∞

0
ϕ(r, υ)−1ψs

×
[
σfE·

[ ∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N∏

j=1
j :kj >0

ϕ(r, υj )Lkj
(r, υj )

]]
(x) ds

− k

∫ ∞

0
ϕ(r, υ)−1ψs

[
gϕLk−1

]
(x) ds.

Theorem 5.7 (Critical, .λ∗ = 0) Suppose that (H1), (H2. ∗), and (H4) hold. Fix 
.k ≥ 1, then 

. lim
t→∞ sup

r∈D,υ∈V
f ∈B+(D×V )

∣∣∣∣t
−(2k−1)ϕ(r, υ)−1I

(k)
t [g](r, υ) − k!

2k−1 〈ϕ̃, g〉k〈ϕ̃, σfV [ϕ]〉k−1Lk

∣∣∣∣

= 0,

where .L1 = 1 and . Lk is defined through the recursion . Lk = (
∑k−1

i=1 LiLk−i )/(2k −
1). 

The results in Theorems 5.5, 5.6, and 5.7 are slightly less predictable than 
Theorems 5.2, 5.3, and 5.4. In the supercritical setting of Theorem 5.5, the  
exponential growth of the process is still dominant resulting in a growth rate .ekλ∗t . 
In the subcritical setting of Theorem 5.6, we will see in forthcoming calculations 
in the later chapters that .ζ < ∞ almost surely, where .ζ = inf{t > 0 : Xt [1] = 0}. 
This tells us that the total occupation .

∫ ζ

0 Xs[g]ds is almost surely finite, behaving 
roughly like an average spatial distribution of mass, i.e., .〈ϕ̃, g〉, multiplied by . ζ , 
meaning that no normalisation is required to control the “growth” of the running 
occupation moments in this case. 

Finally, the critical case is somewhat harder to explain heuristically until we have 
some additional results, which we will address in the next section. We therefore 
defer our reasoning until the end of the next section. 

5.5 Yaglom Limits at Criticality 

Another point of interest when it comes to the Pál–Bell equation (5.7) occurs when 
we set .g = ∞. Remembering that an empty product is defined to be unity, we see 
for this special case that
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. 1 − vt [∞](r, υ) = P(r,υ)(ζ > t), t ≥ 0,

where we understand .vt [∞](r, υ) = limθ→∞ vt [θ ](r, υ) and 

. ζ = inf{t > 0 : 〈1, Xt 〉 = 0}

is the extinction time of the NBP. 
The first main result of this section (given below) gives the asymptotic decay of 

the above survival probability in the critical setting, i.e., when .λ∗ = 0. It can be 
stated in a much more general setting than the NBP, and therefore its proof is left to 
Part II of this book. In order to state it, we need to introduce a new assumption. 

(H5) There exists a constant .C > 0 such that for all .g ∈ B+(D × V ), 

.〈ϕ̃, σfV [g]〉 ≥ C〈ϕ̃, ĝ2〉, (5.30) 

where .ĝ : D → [0,∞) : r I→ ∫
V

g(r, υ ')dυ '. 

Assumption (H5) can be thought of as an irreducibility type condition on the fission 
operator. It ensures that if there is a fission event (in the stationary distribution), the 
process should have at least a comparable chance of survival relative to producing 
an independent number of particles with isotropic velocities at a constant rate. 

Indeed, suppose . σf is a constant, and the branching mechanism places an 
independent random number of offspring, each with independent and uniformly 
selected velocity in V . In that case, recalling the definition (5.9), for .g ∈ B+(D×V ), 
we have 

. σfV [g] = σfE [N(N − 1)]E [g(US2)]2

= C'σfE [N(N − 1)]ĝ2

where we have dropped dependency on .(r, υ) as this is no longer the case due 
to the uniformity of the branching mechanism, .US2 is a random variable that is 
uniformly distributed on . S2, and . C' is a normalisation constant. For an appropriate 
interpretation of the constant C, the right-hand side of (5.30) is thus equal to the 
left-hand side of (5.30) for the setting of independent isotropic fission at a constant 
rate. 

The following result is classically known as Kolmogorov’s asymptotic for 
the survival probability in the setting of Bienyamé–Galton–Watson branching 
processes. 

Theorem 5.8 Suppose (H1), (H2. ∗), (H3), (H4), and (H5) hold and .λ∗ = 0. Then, 

. lim
t→∞ tPδ(r,υ)

(ζ > t) = 2ϕ(r, υ)

Σ
, r ∈ D,υ ∈ V,

where .Σ := 〈ϕ̃, σfV [ϕ]〉.
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Combining this result with the conclusion of Theorem 5.4, we discover the 
following Yaglom limit result for our NBP which echoes a similar result originally 
proved for Bienyamé–Galton–Watson processes. 

Theorem 5.9 Assume the same conditions as Theorem 5.8. For any . g ∈ B+(D×V )

and integer .k ≥ 1, we have that 

. lim
t→∞Eδ(r,υ)

[(
Xt [g]

t

)k
∣∣∣∣∣ ζ > t

]
= 2−kk! 〈ϕ̃, g〉kΣk

or equivalently that 

.Law

(
Xt [g]

t

∣∣∣∣ ζ > t

)
→ Law

(
ep

)
(5.31) 

as .t → ∞, where . ep is an exponential random variable with rate .p := 2/〈ϕ̃, g〉Σ . 

We remark that an alternative way of stating (5.31) is the following: 

. lim
t→∞Eδ(r,υ)

[
e−θ

Xt [g]
t

∣∣∣ ζ > t
]

= p

p + θ
, θ ≥ 0.

When considering the mean neutron density for a reactor at criticality, when 
observing the reactor after a large amount of time .t > 0, our Yaglom limit gives 
us the counter intuitive result 

. Eδ(r,υ)
[Xt [g]| ζ > t] ≈ tΣ

2
〈ϕ̃, g〉,

as .t → ∞. This differs from the behaviour of the classical neutron density limiting 
result which states that 

. Eδ(r,υ)
[Xt [g]] ∼ 〈ϕ̃, g〉ϕ(r, υ),

as .t → ∞. 
Finally, let us conclude by returning to the heuristic explanation for Theorem 5.7. 

Appealing to Theorem 5.9, we can roughly write, as .t → ∞, 

.Eδ(r,υ)

[(∫ t

0
Xs[g]ds

)k
∣∣∣∣∣ ζ > t

]
= Eδ(r,υ)

[(∫ t

0
s
Xs[g]

s
ds

)k
∣∣∣∣∣ ζ > t

]

≈ Eδ(r,υ)

[
ep

(∫ t

0
sds

)k
∣∣∣∣∣ ζ > t

]

≈ O(t2k).
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As a consequence, now taking account of Theorem 5.8, 

. Eδ(r,υ)

[(∫ t

0
Xs[g]ds

)k
]

= Eδ(r,υ)

[(∫ t

0
Xs[g]ds

)k
∣∣∣∣∣ ζ > t

]
Pδ(r,υ)

(ζ > t)

≈ O(t2k−1).

5.6 Comments 

The Pál–Bell equation is attributed to the concurrent work of Bell [7] and Pál 
[105, 106]. The Pál–Bell equations are nothing more than examples of the mild non-
linear semigroup evolution equations which have appeared regularly in the theory 
of spatial branching processes and the related theory of superprocesses. See, for 
example, the discussion in summary of Ikeda et al. [75–77] for the former setting 
and of Dynkin [50] for the latter setting. 

Moment evolution equations and, similarly, evolution equations for occupation 
moments for NBPs have been considered, for example, in Pazit and Pál [107] 
(second moments). More significant calculations can be found in the multiple works 
of Zoia et al. [133–137], Bénichou et al. [9], and Dumonteil and Mazzolo [43]. The 
results presented in this chapter are based on the more recent work of Dumonteil 
et al. [44], Cox et al. [31], Harris et al. [72], and Gonzalez et al. [67]. In these articles, 
a new recursive structure for moments of the NBP and its running occupation 
functional are established, providing the moment asymptotics in Lemma 5.3 and 
Theorems 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7. The Yaglom limit in Theorem 5.8 
is a spatial version of a classical result that was originally proved in the setting 
of Bienamé–Galton–Watson processes, see, for example, Yaglom [132]. Recent 
analogues in the spatial setting have also been developed; see, for example, Powell 
[112] in the setting of branching Brownian motion in a compact domain or Ren et 
al. [113] in the setting of superprocesses. The result for NBPs presented here was 
first proved in Harris et al. [72].



Chapter 6 
Martingales and Path Decompositions 

In this chapter, we use the Perron–Frobenius decomposition of the NBP to show 
the existence of an intrinsic family of martingales. These are classical objects 
as far as the general theory of branching processes is concerned and is known 
to play a key role in the understanding of how particle density aggregates in 
the pathwise sense (rather than on average). They also serve as the basis of a 
change of measure, which introduces exceptional stochastic behaviour along one 
sequential genealogical line of neutron emissions, a so-called spine decomposition. 
In this setting, the exceptional behaviour of the single genealogical line of neutron 
emissions appears as a biasing of the scatter and fission cross sections to the 
extent that this one genealogical line never leaves the domain D on which the 
NBP is defined. The principal gain from examining this spine decomposition in 
combination with the behaviour of the martingale is that it gives us a sense of how 
the paths of a surviving NBP look like. 

In a similar spirit, in the supercritical setting, we introduce a second decompo-
sition, a so-called skeletal decomposition, which requires no change of measure. 
Here, we consider the behaviour of a supercritical NBP and show that the paths 
of its particles can be categorised into those that generate a genealogical line of 
neutrons that eventually become absorbed and those whose genealogical lines of 
descent survive in D forever. Again, this gives us an unusual insight into how, inside 
the spatial branching trees of neutrons, there exists a lower density fission process 
that is keeping the reaction progressing on the event of survival.1 

1 Note that even when the NBP is supercritical, a single initial neutron may be absorbed without 
inducing fission, so survival is not guaranteed. 
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6.1 Martingales 

Recall that a martingale was defined in Definition 6.2. We will first discuss the 
additive martingale that arises naturally from Theorem 4.1. Under the assumptions 
of Theorem 4.1, recall that the existence of the eigenfunction . ϕ means that 

.ψt [ϕ](r, υ) = eλ∗t ϕ(r, υ), r ∈ D,υ ∈ V, t ≥ 0. (6.1) 

This is sufficient to deduce the following easy result. 

Lemma 6.1 Fix .μ ∈ Mc(D ×V ), the space of finite counting measures on .D ×V , 
and define .W = (Wt , t ≥ 0) as the process 

.Wt := e−λ∗t Xt [ϕ]
μ[ϕ] , t ≥ 0. (6.2) 

Then W is a .Pμ-martingale with unit mean. 

Proof Thanks to the semigroup property of (3.30) together with (6.1), we have, for  
.s, t ≥ 0, 

. E[Wt+s |Ft ] = e−λ∗t

μ[ϕ]
Nt∑

i=1

e−λ∗sE
[
X(i)

s [ϕ]
∣∣∣Ft

]

= e−λ∗t

μ[ϕ]
Nt∑

i=1

e−λ∗sψs[ϕ](ri(t), υi(t))

= Wt, (6.3) 

where .X(i) is an independent copy of X under .Pδ(ri (t),υi (t))
and . {(ri(t), υi(t)), i =

1, · · · , Nt } represent the configuration and the number of particles of X at time 
.t ≥ 0. 

Finally, taking expectations again in (6.3), we observe that 

. Eμ[Wt+s] = Eμ[Wt ] = 1, s, t ≥ 0,

where the second equality follows by considering .t = 0. Thanks to positivity, this 
calculation also verifies the requirement that W has finite mean at each .t ≥ 0. ⨅⨆

Analogues of the martingale (6.2) appear in the setting of spatial branching 
processes in different guises and are sometimes referred to there as the additive 
martingale. As a non-negative martingale, the almost sure limit 

.W∞ := lim
t→∞ Wt
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of (6.2) is assured, thanks to the classical martingale convergence theorem. The next 
result tells us precisely when this martingale limit is non-zero. In order to state it, 
we must introduce another hypothesis. 

(H3). ∗ There exists a ball B compactly embedded in D such that 

. inf
r∈B,υ,υ '∈V

σf(r, υ)πf(r, υ, υ ') > 0.

Theorem 6.1 Under the assumptions of (H1) and (H2. ∗), we have the following 
three cases for the martingale .W = (Wt , t ≥ 0): 

(i) If .λ∗ > 0 and (H3) holds, then W is .L1(P) convergent. 
(ii) If .λ∗ < 0 and (H3) holds, then .W∞ = 0 almost surely. 
(iii) If .λ∗ = 0 and (H3. ∗) holds, then .W∞ = 0 almost surely. 

There are various different versions of this theorem that we could have stated. For 
example, in the supercritical setting .λ∗ > 0, if we additionally assume that (H4) is 
in place, which is the norm, then W is also .L2(P) convergent. Note also that (H3. ∗) 
is just a little bit stronger than the assumption (H3), and hence, a cleaner version 
of Theorem 6.1 could equally have just assumed (H1), (H2), and (H3. ∗) across 
the board. These are nonetheless esoteric issues as far as the nuclear modelling 
perspective is concerned. 

On the event that .W∞ = 0, there are two possible ways the limit could become 
zero. Either this is because the mass of the martingale continuously limits to zero, 
or the martingale value jumps to zero because X has become extinct. The former 
of these two could, in principle, occur in the supercritical case .λ∗ > 0. Clearly, we 
have the inclusion 

. {ζ < ∞} ⊆ {W∞ = 0},

where we recall that 

. ζ = inf{t > 0 : Xt [1] = 0}.

The following theorem frames Theorem 6.1 more concisely, showing the zero set 
of the martingale limit agrees with extinction. Accordingly, it gives us a valuable 
statement concerning the survival of X. 

Theorem 6.2 In each of the three cases of Theorem 6.1, we also have that the 
events .{W∞ = 0} and .{ζ < ∞} almost surely agree. In particular, there is almost 
sure extinction if and only if .λ∗ ≤ 0.
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6.2 Strong Laws of Large Numbers 

It is particularly interesting to note that, in the setting of a critical system, .λ∗ = 0, 
which is what one would envisage as the natural state in which to keep a nuclear 
reactor, the results in the previous section evidence a phenomenon that has long been 
known by engineers and physicists, namely that the fission process eventually dies 
out. Nonetheless, the neutron density, that is the solution to the NTE (3.9) or (3.32), 
both predict stabilisation 

. lim
t→∞ ψt [g](r, υ) = Eδ(r,υ)

[
Xt [g]] = 〈ϕ̃, g〉ϕ(r, υ), r ∈ D,υ ∈ V, g ∈ B+(E).

(6.4) 

In the subcritical setting, both the neutron density and the pathwise behaviour of the 
NBP agree, in the sense that they both tend to zero. 

In the supercritical setting, there is also a concurrence between the behaviour 
of neutron density and the pathwise behaviour of the NBP, albeit a little more 
interesting. In this setting, the convergence of the martingale W to a non-trivial 
limit tells us that when we weight the i-th particle at time .t ≥ 0 with .ϕ(ri(t), υi(t)), 
we get an exact convergence. Moreover, because .W∞ is an .L1(P) limit, this 
convergence would appear to agree with what the NTE predicts. Indeed, the neutron 
density analogue of the martingale convergence would correspond to its mean value, 
which, thanks to Theorem 6.1, follows the asymptotic 

. Eμ[Wt ] = e−λ∗t μ[ψt [ϕ]]
μ[ϕ] = e−λ∗t Eμ [Xt [ϕ]]

μ[ϕ] ∼ 〈ϕ̃, ϕ〉 = 1 = Eμ[W∞],
(6.5) 

as .t → ∞. The question thus remains as to whether a stronger correspondence holds 
in the sense that, when we weight the i-th particle in the NBP not by .ϕ(ri(t), υi(t)), 
but a more general weight of the form .g(ri(t), υi(t)), for some .g ∈ B+(D × V ), 
do we also get exact convergence? The obvious candidate result in light of (6.4) 
and (6.5) should be that, .Pμ-almost surely, 

. e−λ∗t Xt [g]
μ[g] ∼ 〈ϕ̃, g〉W∞,

as .t → ∞. 

Theorem 6.3 Suppose the assumptions (H1), (H2. ∗), and (H3) hold and .λ∗ > 0. 
Suppose .μ ∈ Mc(D × V ) and .g ∈ B+(D × V ) and .g/ϕ ∈ B+(D × V ). Then, 

. lim
t→∞ e−λ∗t Xt [g]

μ[ϕ] = 〈ϕ̃, g〉W∞, (6.6) 

.Pμ-almost surely. Without the requirement that .g/ϕ ∈ B+(D × V ), the limit 
additionally holds in .L2(P).
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Remark 6.1 In essence, we do not need to assume supercriticality for the statement 
of Theorem 6.3. Indeed, otherwise under all the other assumptions, since (up to a 
multiplicative constant) .e−λ∗tXt [g] ≤ e−λ∗tXt [ϕ] = μ[ϕ]Wt , then (6.6) still holds 
albeit that the limit is trivially zero. 

6.3 Spine Decomposition 

As with many spatial branching processes, the most efficient way to technically 
analyse the stochastic growth of the system, as in the proof of Theorem 6.3, for  
example, is through the pathwise behaviour of the particle system described by 
the spine decomposition. As alluded to in the introduction, this is the result of 
performing a change of probability measure induced by the martingale (6.2). Whilst 
classical in the branching process literature, this is unknown in the setting of neutron 
transport. 

To describe the spine decomposition, we introduce the following change of 
measure, induced by the martingale . Wt , 

.
dPϕ

μ

dPμ

∣∣∣∣
Ft

= Wt, t ≥ 0, (6.7) 

where . μ belongs to the space of finite atomic measures .Mc(D×V ). In probabilistic 
terms, this is shorthand for defining the consistent family of probability measures 

. P
ϕ
μ(A) = Pμ [1AWt ] , t ≥ 0, A ∈ Ft .

We may think of the change of measure (6.7) as a method of biasing or “twisting” 
the original law . Pμ. 

In the next theorem, we will formalise an understanding of this change of 
measure in terms of another .Mc(D × V )-valued stochastic process which is not 
an NBP. Let us now define it through an algorithmic construction. 

1. From the initial configuration .μ ∈ Mc(D × V ), with an arbitrary enumeration 
of particles, the i-th neutron is selected and marked “spine” with empirical 
probability 

. 
ϕ(ri, υi)

μ[ϕ] .

2. The neutrons .j /= i in the initial configuration that are not marked “spine”, each 
issue independent copies of .(X,Pδ(rj ,υj )

), respectively. 
3. For the marked neutron, it evolves from its initial configuration as an NRW 

characterised by the rate function
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. σs(r, υ)
ϕ(r, υ ')
ϕ(r, υ)

πs(r, υ, υ '), r ∈ D,υ, υ ' ∈ V.

4. The marked neutron undergoes fission at the accelerated rate . ϕ(r, υ)−1(F +
σfI)ϕ(r, υ), when in physical configuration .r ∈ D,υ ∈ V , at which point, it 
scatters a random number of particles according to the random measure on V 
given by .(Z,Pϕ

(r,υ)) where 

.
dPϕ

(r,υ)

dP(r,υ)

= Z[ϕ]
E(r,υ)[Z[ϕ]] . (6.8) 

5. When fission of the marked neutron occurs in physical configuration . r ∈ D,υ ∈
V , set  

. μ =
n∑

i=1

δ(r,υi ), where, in the previous step, Z =
n∑

i=1

δυi
,

and repeat step 1. 

The process .Xϕ = (X
ϕ
t , t ≥ 0) describes the physical configuration (position 

and velocity) of all the particles in the system at time t , for .t ≥ 0, as per the 
algorithmic description above (Fig. 6.1). In particular, although it is not clear which 
of the neutrons that contribute to .Xt ∈ Mc(D × V ) is marked as the spine, it is 
included in the population at time t . We are also interested in the configuration 
of the single genealogical line of descent which has been marked “spine”. The 
process that the spine follows in configuration space .D × V will be denoted 
.(Rϕ, Υ ϕ) := ((R

ϕ
t , Υ

ϕ
t ), t ≥ 0). 

The process .Xϕ alone is not Markovian, as it requires knowledge of the 
spine process .(Rϕ, Υ ϕ). However, together, the processes .(Xϕ, (Rϕ, Υ ϕ)) make a 
Markov pair, whose probabilities we will denote by . (P̃

ϕ

μ,(r,υ), μ ∈ Mc(D ×V ), r ∈
D,υ ∈ V ). 

We will write 

. ̃P
ϕ
μ,ϕμ =

n∑

i=1

ϕ(ri, υi)

μ[ϕ] P̃
ϕ

μ,(ri ,υi )
= 1

μ[ϕ]
∫

D×V

ϕ(r, υ)μ(dr, dυ)P̃
ϕ

μ,(r,υ)

when .μ =∑n
i=1 δ(ri ,υi ). In effect, the law .P̃

ϕ
μ,ϕμ corresponds to picking the neutron 

that will be identified as the spine at time .t = 0 with a density . ϕ with respect 
to the initial configuration of neutrons, given by . μ. This corresponds to step 1 of 
the construction of .(Xϕ, (Rϕ, Υ ϕ)). We write, for convenience, . ̃Pϕ = (P̃

ϕ
μ,ϕμ, μ ∈

Mc). 
The next result tells us that if we can ensure that we launch . (Xϕ, (Rϕ, Υ ϕ))

with a particular initial configuration of neutrons and a randomised allocation for 
the spine among them according to .P̃ϕ

μ,ϕμ, then observing the process .Xϕ without
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D 

Fig. 6.1 A possible path realisation of the spine decomposition. The red path is that of the spine. 
The neutrons at time .t = 0 are depicted by . ◦, and fission events are depicted by . •. Particles depicted 
in black evolve as the bulk of . Xϕ

knowing .(Rϕ, Υ ϕ) is equivalent to what one sees of the original NBP under the 
change of measure (6.7). 

Theorem 6.4 Under assumptions (H1) and (H2. ∗), the process .(Xϕ, P̃ϕ) is Marko-
vian and equal in law to .(X,Pϕ), where .P

ϕ = (P
ϕ
μ, μ ∈ Mc(D × V )). 

Theorem 6.4 also tells us that the effect of changing probabilities via the 
mechanism (6.7) results in the NBP taking the shape of what is tantamount to an 
NRW with immigration. Indeed, aside from other neutrons present at time . t = 0
which evolve as NBPs, we may think of the spine as a special particle which moves 
around according to .(Rϕ, Υ ϕ) and immigrates particles into the bulk of .Xϕ at a 
special rate and with a special fission kernel, both depending on .(Rϕ, Υ ϕ). Once 
particles immigrate, they evolve as a normal NBP. 

We would also like to understand the dynamics of the spine .(Rϕ, Υ ϕ) as an 
autonomous process. For convenience, let us denote the family of probabilities 
of the latter by .P̃ϕ = (P̃ϕ

(r,υ), r ∈ D,υ ∈ V ), in other words, the marginals of 

.(P̃
ϕ

μ,(r,υ), μ ∈ Mc(D × V ), r ∈ D,υ ∈ V ).
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We further define the probabilities .Pϕ := (Pϕ

(r,υ), (r, υ) ∈ D×V ) to describe the 
law of an .αϕπϕ-NRW, where 

. αϕ(r, υ)πϕ(r, υ, υ ') = ϕ(r, υ ')
ϕ(r, υ)

(
σs(r, υ)πs(r, υ, υ ') + σf(r, υ)πf(r, υ, υ ')

)
,

(6.9) 

for .r ∈ D, .υ, υ ' ∈ V . Recall from (4.1) that 

. β(r, υ) = σf(r, υ)

(∫

V

πf(r, υ, υ ')dυ ' − 1

)
,

and recall that .(R, Υ ) under . P is the .απ -NRW that appears in the many-to-one 
Lemma 4.1. We are now ready to identify the spine. 

Lemma 6.2 Under assumptions (H1) and (H2. ∗), the process .((Rϕ, Υ ϕ), P̃ϕ) is an 
NRW equal in law to .((R, Υ ),Pϕ) and, moreover, 

. 
dPϕ

(r,υ)

dP(r,υ)

∣∣∣∣∣
Ft

= e−λ∗t+
∫ t

0 β(Rs,Υs)ds ϕ(Rt , Υt )

ϕ(r, υ)
1{t<τD}, t ≥ 0, r ∈ D,υ ∈ V.

(6.10) 

In addition, .((R, Υ ),Pϕ) is conservative with a stationary distribution 

. ϕϕ̃(r, υ)dr on D × V.

Recalling the discussion in Sect. 2.3, we can develop a heuristic understanding of 
the motion of the spine via its generator. Taking account of the fact that . ((R, Υ ),P)

is an .απ -NRW, in the spirit of the discussion in Sect. 3.3, it is easy to write down 
the action of its generator as 

. Lf (r, υ) = υ · ∇rf (r, υ) + α(r, υ)

∫

V

(
f (r, υ ') − f (r, υ)

)
π(r, υ, υ ')dυ ',

(6.11) 

for .f ∈ B+(D × V ) such that .∇rf is well defined. According to Theorem 6.2, 
the change of measure (6.10) means that the spine under . ̃Pϕ has a generator whose 
action is given by 

. Lϕf := ϕ−1(L + β − λ∗)(ϕf ),

where we have appealed to the spirit of the calculations in (2.11) and (2.43). As  
such, we have 

.Lϕf (r, υ) = υ · ∇rf (r, υ) + υ · ∇rϕ(r, υ)

ϕ(r, υ)
f (r, υ) + βf (r, υ) − λ∗f (r, υ)

+ α(r, υ)

ϕ(r, υ)

∫

V

(
f (r, υ ') − f (r, υ)

)
ϕ(r, υ ')π(r, υ, υ ')dυ '
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+ f (r,  υ)  
α(r, υ) 
ϕ(r, υ)

∫

V

(
ϕ(r, υ ') − ϕ(r, υ)

)
π(r, υ, υ ')dυ '

= υ · ∇rf (r,  υ)  + 
(L + β − λ∗)ϕ(r, υ) 

ϕ(r, υ) 
f (r,  υ)  

+ α(r, υ)

∫

V

(
f (r,  υ ') − f (r,  υ)

) ϕ(r, υ ') 
ϕ(r, υ) 

π(r, υ, υ ')dυ '. 

(6.12) 

From Theorem 4.1, we know that . ϕ is an eigenfunction for the semigroup . (ψt , t ≥
0), which, in turn, by the many-to-one Lemma 4.1, is also the semigroup of 
.((R, Υ ),P) with potential . β. We would thus expect, at least heuristically, that 
.(L + β − λ∗)ϕ = 0. Using this in (6.12), we conclude that 

. Lϕf (r, υ) = υ · ∇rf (r, υ) + α(r, υ)

∫

V

(
f (r, υ ') − f (r, υ)

)

× ϕ(r, υ ')
ϕ(r, υ)

π(r, υ, υ ')dυ '. (6.13) 

In conclusion, the behaviour of the spine motion under the change of measure is 
equivalent to a .ϕ-tilting of the motion of the .απ -NRW, favouring the outgoing 
configurations .(r, υ ') for which .ϕ(r, υ ') > ϕ(r, υ), where .(r, υ) is the incident 
configuration, and penalising when the inequality goes in the other direction. 

6.4 Skeletal Decomposition 

There is also a second path decomposition that is fundamental to understanding the 
stochastic behaviour of the NBP in the supercritical setting, namely the skeleton 
decomposition. In rough terms, for the NBP, we can speak of genealogical lines of 
descent, meaning neutrons that came from a fission event of a neutron that came 
from a fission event of a neutron, and so on, back to one of the initial neutrons at 
time .t = 0. If we focus on an individual genealogical line of descent embedded in 
the NBP, it has a space-velocity trajectory which takes the form of an NRW whose 
spatial component may or may not hit the boundary of D. When the NBP survives 
for all time, which of course is only possible in the supercritical setting, there must 
necessarily be at least one genealogical line of descent whose spatial trajectories 
remain in D forever. 

It turns out that there are many immortal genealogical lines of descent that 
survive eternally on the survival set of our NBP. Indeed, together they create 
an entire subtree which is itself an NBP, albeit with biased stochastic behaviour 
relative to the original NBP, known as the skeleton. The basic idea of the skeletal 
decomposition is to understand the space-velocity dynamics and the fission process
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of the embedded neutron branching process of immortal genealogies. For the 
remaining neutron genealogies that go to the boundary of D or end in neutron 
capture, the skeletal decomposition identifies them as immigrants that are “dressed” 
along the path of the skeleton. 

The remainder of this section is devoted to a description of the skeletal 
decomposition for the NBP. As with most of the exposition in this part of the book, 
the skeletal decomposition can be stated in the much more general setting of non-
local branching Markov processes, and we will deal with this in full rigour in Part 
II of the book. 

Let us start by first introducing some more notation. First, define 

.w(r, υ) := Pδ(r,υ)
(ζ < ∞), r ∈ D,υ ∈ V, (6.14) 

where we recall .ζ := inf{t ≥ 0 : Xt [1] = 0}. We extend the definition of w to 
allow it to take the value 1 on the cemetery state . †. We will also frequently use the 
notation 

. p(r, υ) := 1 − w(r, υ), r ∈ D,υ ∈ V,

for the survival probability. 
Given the configuration .{(ri(t), υi(t)), i = 1, · · · , Nt } of our NBP at time .t ≥ 0, 

it is clear that 

. {ζ < ∞} =
Nt⋂

i=1

{X(i)
s [1] = 0 for some s ≥ t},

where .(X(i), i = 1, · · · , Nt ) are independent copies of X under the respective 
probabilities .Pδ(ri (t),υi (t))

, .i = 1, · · · , Nt . It follows that, by conditioning on . Ft =
σ(Xs, s ≤ t), for .t ≥ 0, 

.w(r, υ) = Eδ(r,υ)

[
Nt∏

i=1

w(ri(t), υi(t))

]
. (6.15) 

Recall that . ̂Pt is a slight adjustment of . Pt which returns a value of 1 on the event 
of killing. Taking Lemma 5.2 and (6.15) into account, it is easy to deduce that w is 
an invariant solution to the Pál-Bell equation (5.7). Hence, 

.w(r, υ) = P̂t [w](r, υ)+
∫ t

0
Ps [G[w]] (r, υ)ds, t ≥ 0, r ∈ D,υ ∈ V, (6.16) 

where we recall that
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.G[w](r, υ) = σf(r, υ)E(r,υ)

[
N∏

i=1

w(r, υi) − w(r, υ)

]
. (6.17) 

We also have the following lemma, which will be necessary for the development 
of the skeletal decomposition. 

Lemma 6.3 Assuming .λ∗ > 0, we have .infr∈D,υ∈V w(r, υ) > 0 and .w(r, υ) < 1, 
for .r ∈ D,υ ∈ V . 

Proof On account of the inclusion .{ζ < ∞} ⊆ {W∞ = 0}, we see that . w(r, υ) ≤
Pδ(r,υ)

(W∞ = 0), .r ∈ D,υ ∈ V . Recalling from Theorem 6.1 that W converges 
both almost surely and in .L1(P) to its limit, we have that . Pδ(r,υ)

(W∞ = 0) < 1
for .r ∈ D,υ ∈ V . This, combined with the fact that every particle may leave the 
bounded domain D directly, without scattering or undergoing fission, with positive 
probability, gives us that 

.e− ∫ κD
r,υ

0 σ(r+υs,υ)ds < w(r, υ) < 1 for all r ∈ D,υ ∈ V. (6.18) 

Note that the lower bound is uniformly bounded away from 0 thanks to the 
boundedness of D, the minimal velocity .vmin (which together uniformly upper 
bound .κD

r,υ ), and the uniformly upper bounded rates of fission and scattering. The 
upper inequality becomes an equality for .r ∈ ∂D and .υ · nr > 0. ⨅⨆

Recalling that . P is the semigroup for the .σsπs-NRW killed on exiting D, we may  
rewrite (6.16) in the form 

. w(r, υ) = E(r,υ)[w(Rt∧τD
, Υt∧τD

)] + E(r,υ)

[∫ t∧τD

0
w(Rs, Υs)

G[w](Rs, Υs)

w(Rs, Υs)
ds

]
,

.t ≥ 0, where we recall that . τD denotes the first time the .σsπs-NRW exits D and we 
have extended the definition of w to take the value 1 on the cemetery state, which, in 
the current setting, is the boundary of D. Noting that, thanks to the previous lemma, 

. supr∈D,υ∈V G[w](r, υ)/w(r, υ) < ∞,

we can appeal to Theorem 2.1 to obtain 

.w(r, υ) = E(r,υ)

[
w(Rt∧τD

, Υt∧τD
) exp

(∫ t∧τD

0

G[w](Rs, Υ )

w(Rs, Υs)
ds

)]
, (6.19) 

for all .r ∈ D,υ ∈ V, t ≥ 0. This identity will turn out to be extremely useful in our 
analysis, and in particular, the equality (6.19) together with the Markov property of 
.(R, Υ ) implies that the object in the expectation on the right-hand side of (6.19) is 
a martingale.
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In Theorem 6.5 below, we give the skeletal decomposition in the form of a 
theorem. In order to state this result, we first need to develop two notions of 
conditioning. We remind the reader that there is a glossary at the end of the book 
containing the various notation we introduce and use. 

The basic pretext of the skeletal decomposition is that we want to split genealog-
ical lines of descent into those that survive forever and those that are killed. To this 
end, let .ci(t) denote the label of a particle .i ∈ {1, . . . , Nt }. We label a particle 
“prolific”, denoted .ci(t) =↑, if it has an infinite genealogical line of descent, and 
.ci(t) =↓, if its line of descent dies out (i.e., “non-prolific”). Ultimately, we want to 
describe how the spatial genealogical tree of the NBP can be split into a spatial 
genealogical sub-tree, consisting of .↑-labelled particles (the skeleton), which is 
dressed with trees of .↓-labelled particles. 

Let .P↕ = (P
↕
δ(r,υ)

, r ∈ D,υ ∈ V ) denote the probabilities of the two-labelled 
process described above. Then, for .t ≥ 0 and .r ∈ D,υ ∈ V , we have the following 
relationship between . P↕ and . P: 

.

dP↕
δ(r,υ)

dPδ(r,υ)

∣∣∣∣
F∞

=
Nt∏

i=1

(
1(ci (t)=↑) + 1(ci (t)=↓)

) = 1, (6.20) 

where .F∞ = σ
(∪t≥0Ft

)
. Projecting onto . Ft , for . t ≥ 0, we have  

. 
dP↕

δ(r,υ)

dPδ(r,υ)

∣∣∣∣
Ft

= Eδ(r,υ)

(
Nt∏

i=1

(
1(ci (t)=↑) + 1(ci (t)=↓)

) ∣∣∣∣Ft

)

=
∑

I⊆{1,...Nt }

∏

i∈I

Pδ(r,υ)
(ci(t) =↑ |Ft )

∏

i∈{1,...,Nt }\I
Pδ(r,υ)

(ci(t) =↓ |Ft )

=
∑

I⊆{1,...Nt }

∏

i∈I

p(ri(t), υi(t))
∏

i∈{1,...,Nt }\I
w(ri(t), υi(t)), (6.21) 

where we understand the sum to be taken over all subsets of .{1, · · · , Nt }, each of 
which is denoted by I . 

The decomposition in (6.21) indicates the starting point of how we break up the 
law of the NBP according to subtrees that are categorised as . ↓ (with probability 
w) and subtrees that are categorised as . ↑ with . ↓ dressing (with probability p), the 
so-called skeletal decomposition. 

In the next two sections, we will examine the notion of the NBP conditioned to 
die out and conditioned to survive. Thereafter, we will use the characterisation of 
these conditioned trees to formalise our skeletal decomposition.
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↓-Trees 

Let us start by characterising the law of genealogical trees populated by the marks 
. ↓. Thanks to the branching property, it suffices to consider trees which are issued 
with a single particle with mark . ↓. By the definition of the mark .c∅(0) =↓, where 
. ∅ is the initial ancestral particle, this is the same as understanding the law of . (X,P)

conditioned to become extinct. Indeed, for .A ∈ Ft , 

. P
↓
δ(r,υ)

(A) := P
↕
δ(r,υ)

(A|c∅(0) =↓)

=
P

↕
δ(r,υ)

(A; ci =↓, for each i = 1, . . . , Nt )

P
↕
δ(r,υ)

(c∅(0) =↓)

=
Eδ(r,υ)

[
1A

∏Nt

i=1 w(ri(t), υi(t))
]

w(r, υ)
. (6.22) 

We are now in a position to characterise the NBP trees which are conditioned 
to become extinct (equivalently, with genealogical lines of descent which are 
marked entirely with . ↓). Heuristically speaking, the next proposition shows that 
the conditioning creates a neutron branching process in which particles are prone to 
die out (whether that be due to being absorbed at the boundary or by suppressing 
offspring). 

Lemma 6.4 (. ↓ Trees) For initial configurations of the form .μ =∑n
i=1 δ(ri ,υi ), for  

.n ∈ N and .(r1, υ1), · · · , (rn, υn) ∈ D × V , define the measure . P
↓
μ via 

. P
↓
μ = ⊗n

i=1P
↓
δ(ri ,υi )

,

i.e., starting independent processes at configurations .(ri, υi) each under .P
↓
δ(ri ,υi )

, for  

.i = 1, · · · , n, where .P↓
δ(ri ,υi )

was defined in (6.22). Then, under . P↓
μ, X is an NBP 

with motion semigroup . P↓ and fission mechanism . G↓ defined as follows. The motion 
semigroup . P↓ is that of an NRW with probabilities .(P↓

(r,υ), r ∈ D,υ ∈ V ), where 

. 
dP↓

(r,υ)

dP(r,υ)

∣∣∣∣∣
σ((Rs,Υs),s≤t)

= w(Rt∧τD
, Υt∧τD

)

w(r, υ)
exp

(∫ t∧τD

0

G[w](Rs, Υs)

w(Rs, Υs)
ds

)
, t ≥ 0.

(6.23) 

For .r ∈ D,υ ∈ V , and .f ∈ B+
1 (D × V ), the fission mechanism is given by 

.G↓[f ] = 1

w
[G[f w] − fG[w]] , (6.24)
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which may otherwise be identified as 

. G↓[f ](r, υ) = σ
↓
f (r, υ)E ↓

(r,υ)

[ N∏

j=1

f (rj , υj ) − f (r, υ)

]
,

where 

. σ
↓
f (r, υ) = σf(x) + G[w](r, υ)

w(r, υ)
= σf(r, υ)

w(r, υ)
Ex

[ N∏

j=1

w(rj , υj )

]
, r ∈ D,υ ∈ V,

(6.25) 

and 

. 
dP↓

(r,υ)

dP(r,υ)

∣∣∣∣∣
σ(N,(r1,υ1),...,(rN ,υN ))

=
∏N

i=1 w(ri, υi)

E(r,υ)

[∏N
j=1 w(rj , υj )

]

= σf(r, υ)

σ
↓
f (r, υ)w(r, υ)

N∏

i=1

w(ri, υi). (6.26)

↕-Trees 

In a similar spirit to the previous section, we can look at the law of our NBP, when 
issued from a single ancestor, conditioned to have a subtree of prolific individuals. 
As such, for .A ∈ Ft , we define 

. P
↕
δ(r,υ)

(A|c∅(0) =↑) =
P

↕
δ(r,υ)

(A; ci =↑, for at least one i = 1, . . . , Nt )

P
↕
δ(r,υ)

(c∅(0) =↑)

=
Eδ(r,υ)

[
1A

(
1 −∏Nt

i=1 w(ri(t), υi(t)
)]

p(r, υ)
. (6.27) 

In the next proposition, we will describe our NBP under .P↕
δ(r,υ)

(·|c∅(0) =↑). In  
order to do so, we first need to introduce a type-.↑-type-. ↓ NBP. 

Our type-.↑-type-. ↓ NBP process, say .X↕ = (X
↕
t , t ≥ 0), has an ancestor which 

is of type-. ↑. We will implicitly assume (and suppress from the notation . X↕) that 
.X

↕
0 = δ(r,υ) for .(r, υ) ∈ D × V . Particles in .X↕ of type-. ↑ move as a .P↑-Markov 

process, which we will formally define shortly. When a branching event occurs for 
a type-. ↑ particle, both type-. ↑ and type-. ↓ particles may be produced, but always at 
least one type-. ↑ is produced. Type-. ↑ particles may be thought of as offspring, and
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any additional type-. ↓ particles may be thought of as immigrants. Type-. ↓ particles 
that are created can only subsequently produce type-. ↓ particles in such a way that 
they give rise to copies of .(X,P↓). 

The joint branching/immigration rate of type-. ↑ and type-. ↓ particles in .X↕ at 
.r ∈ D,υ ∈ V is given by 

.σ
↕
f (r, υ) = σf(r, υ)

p(r, υ)
E(r,υ)

⎡

⎣1 −
N∏

j=1

w(rj , υj )

⎤

⎦ . (6.28) 

We can think of the branching rate in (6.28) as the original rate . σf(r, υ)

multiplied by the probability (under .P(r,υ)) that at least one of the offspring is 
of type-. ↑, given the branching particle is of type-. ↑

At a branching/immigration event of a type-. ↑ particle, we will write .N↑ and 
.((r

↑
i , υ

↑
i ), i = 1, · · · , N↑) for the number and positions of type-. ↑ offspring 

and .N↓ and .((r↓
j , υ

↓
j ), j = 1, · · · , N↓) for the number and positions of type-

. ↓ immigrants. We will write .(P↕
(r,υ), r ∈ D,υ ∈ V ) for the joint law of the 

random variables. Formally speaking, the fission mechanism, . G↕, that describes the 
offspring/immigrants for a type-. ↑ particle positioned at .r ∈ D,υ ∈ V is written 

. G↕[f, g](r, υ) = σ
↕
f (r, υ)

⎛

⎝E ↕
(r,υ)

⎡

⎣
N↑∏

i=1

f (r
↑
i , υ

↑
i )

N↓∏

j=1

g(r
↓
j , υ

↓
j )

⎤

⎦− f (r, υ)

⎞

⎠ ,

(6.29) 

for .f, g ∈ B+
1 (D × V ). 

For each .r ∈ D,υ ∈ V , the law .P↕
(r,υ) can be defined in terms of an additional 

random selection from .((ri, υi), i = 1, · · · , N) under .P(r,υ). Write .N ↑ for the set 
of indices in .{1, · · · , N} that identify the type-. ↑ particles, i.e., . ((ri, υi), i ∈ N ↑) =
((r

↑
j , υ

↑
j ), j = 1, · · · , N↑). The remaining indices .{1, · · · , N} \ N ↑ then identify 

the type-. ↓ immigrants from .((ri, υi), i = 1, · · · , N). Thus, to describe . P↕
(r,υ), for  

any .r ∈ D,υ ∈ V , it suffices to give the law of .(N; (r1, υ1), . . . , (r,N υN);N ↑). 
To this end, for .F ∈ σ(N; (r1, υ1), . . . , (rN , υN)) and .I ⊆ N, we will set 

. P↕
(r,υ)(F ∩ {N ↑ = I })

:= 1{|I |≥1}
σf(r, υ)

σ
↕
f (r, υ)p(r, υ)

E(r,υ)

[
1F∩{I⊆{1,...,N}}

∏

i∈I

p(ri, υi)

×
∏

i∈{1,...,N}\I
w(ri, υi)

]
.

(6.30) 

Said another way, for all .I ⊆ N,
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. P↕
(r,υ)(N

↑ = I |σ(N; (r1, υ1), . . . , (rN , υN)))

:= 1{|I |≥1}∩{I⊆{1,...,N}}
∏

i∈I p(ri, υi)
∏

i∈{1,...,N}\I w(ri, υi)

1 − E(r,υ)

[∏N
j=1 w(rj , υj )

] .

(6.31) 

The pairs .((r↑
i , υ

↑
i ), i = 1, · · · , N↑) and .((r↓

j , υ
↓
j ), j = 1, · · · , N↓) under 

.(P↕
(r,υ), r ∈ D,υ ∈ V ) in (6.29) can thus be seen as equal in law to selecting 

the type of each particle following an independent sample of the fission offspring 
.((r1υ1), . . . , (rN , υN)) under .P(r,υ), where each .(rk, υk) is independently assigned 
either as type-. ↑ with probability .p(rk, υk) or as type-. ↓ with probability . w(rk, υk) =
1 − p(rk, υk), but also conditional on there being at least one type-. ↑. 

As such with the definitions above, it is now a straightforward exercise to 
identify the fission mechanism in (6.29) in terms of .((ri, υi), i = 1, · · · , N) under 
.(P(r,υ), r ∈ D,υ ∈ V ) via the following identity: 

. G↕[f, g](r, υ)

= σf(r, υ)

p(r, υ)
E(r,υ)

[ ∑

I⊆{1,...,N}
|I |≥1

∏

i∈I

p(ri, υi)f (ri, υi)
∏

i∈{1,...,N}\I
w(ri, υi)g(ri, υi)

]

− σ
↕
f (r, υ)f (r, υ). (6.32) 

Lemma 6.5 (Dressed .↑-Trees) For .r ∈ D,υ ∈ V , the process . X↕ is equal in law 
to X under .P↕

δ(r,υ)
(·|c∅(0) =↑). Moreover, both are equal in law to a dressed NBP, 

say . X↑, whose motion semigroup and fission mechanism are given by . P↑ and . G↑, 
respectively. The motion semigroup . P↑ corresponds to the Markov process . (R, Υ )

on .(D × V ) ∪ {†} with probabilities .(P↑
(r,υ), r ∈ D,υ ∈ V ) given by (recalling that 

p is valued 0 on . †) 

. 
dP↑

(r,υ)

dP(r,υ)

∣∣∣∣∣
σ((Rs,Υs),s≤t)

= p(Rt , Υt )

p(r, υ)
exp

(
−
∫ t

0

G[w](Rs, Υs)

p(Rs, Υs)
ds

)
, t ≥ 0,

(6.33) 

and the fission mechanism is given by 

.G↑[f ] = 1

p
(G[pf + w] − (1 − f )G[w]) , f ∈ B+

1 (D × V ). (6.34) 

The dressing consists of additional particles, which are immigrated non-locally 
in space at the branch points of . X↑, with each immigrated particle continuing 
to evolve as an independent copy of .(X↓,P↓) from their respective space-point
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of immigration, such that the joint branching/immigration mechanism of type-. ↑
offspring and type-. ↓ immigrants is given by (6.32). 

Theorem 6.5 (Skeletal Decomposition) Suppose that .μ = ∑n
i=1 δ(ri ,υi ), for  . n ∈

N and .(r1, υ1), · · · , (rn, υn) ∈ D × V . Then .(X,P
↕
μ) is equal in law to 

.

n∑

i=1

(
ΘiX

i,↕
t + (1 − Θi)X

i,↓
t

)
, t ≥ 0, (6.35) 

where, for each .i = 1, . . . , n, . Θi is an independent Bernoulli random variable with 
the probability of success given by 

.p(ri, υi) := 1 − w(ri, υi), (6.36) 

and the processes .Xi,↓ and .Xi,↕ are independent copies of .(X,P
↓
δ(ri ,υi )

) and 

.(X,P
↕
δ(ri ,υi )

(·|c∅(0) =↑)), respectively. 

As alluded to previously, Theorem 6.5 pertains to a classical decomposition of 
branching trees in which the process (6.35) describes how the NBP divides into the 
genealogical lines of descent which are “prolific” (surviving with probability p), in 
the sense that they create eternal subtrees which never leave the domain and those 
which are “unsuccessful” (dying with probability w), in the sense that they generate 
subtrees in which all genealogies die out. 

Remark 6.2 It is an easy consequence of Theorem 6.5 that, for . t ≥ 0, the law of . X
↑
t

conditional on .Ft = σ(Xs, s ≤ t) is equal to that of a Binomial point process with 
intensity .p(·)Xt (·). The latter, written .BinPP(pXt), is an atomic random measure 
given by 

. BinPP(pXt ) =
Nt∑

i=1

Θiδ(ri (t),υi (t)),

where (we recall) that .Xt =∑Nt

i=1 δ(ri (t),υi (t)), and . Θi is a Bernoulli random variable 
with probability .p(ri(t), υi(t)), .i = 1, · · · , Nt . 

Remark 6.3 It is also worth noting that the skeleton process . X↑, given above, 
necessarily has at least one type-. ↑ offspring at each branch point and indeed might 
have exactly one type-. ↑ offspring (although possibly with other simultaneous type-
. ↓ immigrants). As such, an alternative way of looking at the type-. ↑ process would 
be to think of the skeleton of prolific individuals as an NBP with fission mechanism 
.G⇑ that produces at least two type-. ↑ offspring at each branch point and with a 
modified motion . P⇑ (in place of . P↑) which integrates the event of a single type-. ↑ as 
an additional scattering in the movement. However, note these additional jumps are 
special in the sense as they are also potential points of simultaneous immigration of
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type-. ↓ particles, unlike other jumps corresponding to . P↑ where there is no type-. ↓
immigration. 

Remark 6.4 As with the spine decomposition, we can understand (heuristically) 
the motions of .X↑ and .X↓ through the action of their generators. By considering 
only the leading order terms in small time of the process .(Xt )t≥0, the action of the 
generator can be seen as the result of the limit 

.Lf = lim
t↓0

1

t
(Pt [f ] − f ) , (6.37) 

for suitably smooth f . Again, it has been shown (cf., e.g., [30, 33]) that the action 
of the generator corresponding to . P is given by 

. Lf (r, υ) = υ · ∇rf (r, υ) +
∫

V

(
f (r, υ ') − f (r, υ)

)
σs(r, υ)πs(r, υ, υ ')dυ ',

(6.38) 

for .f ∈ B+(D × V ) such that .∇rf is well defined. We emphasise again that, in 
view of Remark 6.3, this corresponds to motion plus a branching event with one 
offspring (or scattering). 

The change of measure (6.23) induces a generator action given by 

. L↓f (r, υ) = 1

w(r, υ)
L(wf )(r, υ) + f (r, υ)

G[w]
w

(r, υ)

= υ · ∇rf (r, υ) +
∫

V

(
f (r, υ ') − f (r, υ)

)
σs(r, υ)

w(r, υ ')
w(r, υ)

× πs(r, υ, υ ')dυ '

+ f (r, υ)

(
Lw

w
+ G[w]

w

)
(r, υ)

= υ · ∇rf (r, υ) +
∫

V

(
f (r, υ ') − f (r, υ)

)
σs(r, υ)

w(r, υ ')
w(r, υ)

× πs(r, υ, υ ')dυ ', (6.39) 

where the fact that the right-hand side of (6.23) is a martingale will lead to . Lw +
G[w] = 0. 

In other words, our heuristic reasoning above shows that the motion on the .↓-
marked tree is tantamount to a w-tilting of the scattering kernel. This tilting favours 
scattering in a direction where extinction becomes more likely, and as such, . L↓
encourages .↓-marked trees to become extinct “quickly”. 

Almost identical reasoning shows that the change of measure (6.33) has generator 
with action
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. L↑f (r, υ) = 1

p(r, υ)
L(pf )(r, υ) − f (r, υ)

G[w]
p

(r, υ)

= υ · ∇rf (r, υ) +
∫

V

(
f (r, υ ') − f (r, υ)

)
σs(r, υ)

p(r, υ ')
p(r, υ)

× πs(r, υ, υ ')dυ ', (6.40) 

for suitably smooth f , where we have again used .Lw + G[w] = 0 and left the 
calculations that the second equality follows from the first as an exercise for the 
reader. One sees again a p-tilting of the scattering kernel, and hence .L↑ rewards 
scattering in directions that “enable survival”. Note that, moreover, for regions of 
.D × V for which .p(r, υ) can be come arbitrarily small (corresponding to a small 
probability of survival), the scattering rate also becomes very large, and hence . L↑
“urgently” scatters particles away from such regions. 

6.5 Comments 

Additive martingales are inherently natural objects that appear in all branching 
processes. In the setting of Bienaymé–Galton–Watson processes, the additive 
martingale takes the simple form of the number of individuals alive in the n-th 
generation, divided by its mean. In more general settings, they rely on the existence 
of an appropriate eigenvalue and eigenfunction, from which they can be built. 
Martingale convergence theorems are core to the theory of branching processes in 
general and Theorem 6.1, proved in [74], is a typical contribution in this respect. 

Additive martingales and the spine decomposition that comes with them have 
found favour as a tool to prove other results for a variety of spatial branching 
processes. See for example [58, 112, 124] and [53]. Their use for the analysis of 
neutronics is non-existent prior to the papers of Horton et al. [74] and Cox et al. 
[32]. The result on the spine decomposition in this chapter is taken from [74]. 

The strong law of large numbers in Theorem 6.3 is also a result of classical 
interest for branching processes and a natural extension of martingale convergence. 
As alluded to earlier in this chapter, whereas the asymptotic behaviour of the 
neutron transport equation provides average behaviour, Theorem 6.3 and the remark 
beneath it develop stochastic behaviour, and this explains the difference between 
stabilisation in mean and yet almost sure extinction at criticality. In the nuclear 
literature, this phenomenon is called the “critical catastrophe”, a phrase coined by 
Williams [131], which results in “patchyness” of particle clusterings, cf. Dumonteil 
et al. [45]. As we will see later in Chap. 12, this is a general phenomenon for general 
branching processes.
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Similarly to spine decompositions, skeleton path decompositions are absent from 
the neutronics literature prior to Harris et al. [69], from where the results in this 
chapter are taken. More details on and references for the use of spine and skeletal 
decompositions in branching processes are given in the comments and the end of 
Chap. 11. In addition, the origin and influences of the proofs of the spine and skeletal 
decompositions for a more general setting than the one specified in this chapter are 
also discussed.



Chapter 7 
Generational Evolution 

The eigenvalue problem in Theorem 4.1 is not the only one that offers insight 
into the evolution of neutron transport. In this chapter we will consider two 
different time-independent, or stationary, eigenvalue problems. The one that is of 
most interest to the nuclear industry is known as the .keff-eigenvalue problem. 
Roughly speaking, the eigenvalue .keff has the physical interpretation as being 
the ratio of neutrons produced during fission events to the number lost due to 
absorption, either at the boundary or in the reactor due to neutron capture. As such, 
it characterises a different type of growth to the eigenvalue problem considered in 
the continuous-time setting in Theorem 4.1. In this chapter, in a similar fashion to 
the time-dependent setting, we will explore the probabilistic interpretation of . keff
and its relation to the classical abstract Cauchy formulation. 

7.1 keff-Eigenvalue Problem 

In previous calculations, we worked with the backward transport, scatter, and fission 
operators defined by the arrangement of the operators in (3.7). In order to state 
the .keff-eigenvalue problem, we need to consider different arrangements of these 
operators, again keeping to the backwards setting, as we will largely engage in 
probabilistic analysis. We need to work with the dual operators, in the . L2(D × V )

sense (see (3.3)), to the forward transport, scatter, and fission operators, . T , . S , and 
. F . To this end, define 

.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T̂ f (r, υ) := υ · ∇f (r, υ) − σ(r, υ)f (r, υ)

Ŝ f (r, υ) := σs(r, υ)
∫

V
f (r, υ ')πs(r, υ, υ ')dυ '

F̂f (r, υ) := σf(r, υ)
∫

V
f (r, υ ')πf(r, υ, υ ')dυ ',

(7.1) 
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where the cross sections were defined in Chap. 1. 
As mentioned above, the .keff-eigenvalue problem is a time-independent, or 

stationary, problem and corresponds to finding a value .keff > 0 and a function 
.0 ≤ ω ∈ L2(D × V ) such that for .(r, υ) ∈ D × V , 

.T̂ ω(r, υ) + Ŝ ω(r, υ) + 1

keff
F̂ω(r, υ) = 0. (7.2) 

As in Chap. 1, we understand the equality to hold on .L2(D × V ). 
The parameter .keff can be interpreted as a measure of the typical number of 

neutrons produced from one generation to the next. From (7.2), we see that, by 
dividing the fission operator by the eigenvalue .keff, this quantity establishes the 
balance between fission and loss of mass due to neutrons leaving a boundary or 
neutron capture. Note that, heuristically speaking, apart from losing neutrons to a 
physical boundary, the transport and scatter operators preserve the total mass. 

With this interpretation, the regime .keff > 1 corresponds to a supercritical 
system, .keff = 1 corresponds to a critical system, and .keff < 1 corresponds 
to a subcritical system. Moreover, .keff = 1 precisely when .λ∗ = 0 in the time-
dependent problem, and the right eigenfunctions . ϕ and . ω are equal as indeed are the 
left eigenfunctions. 

Just as we have seen that the meaning of the time-dependent .λ∗-eigenvalue 
problem can be phrased in terms of a multiplicative invariance with respect to the 
solution of an ACP (1.9), we can also consider the existence of classical solutions 
to the .keff-eigenvalue problem (7.2). 

In order to do this, it is necessary to consider the following ACP on .L2(D × V ): 

.

⎧
⎨

⎩

∂

∂t
ut = (T̂ + Ŝ )ut

u0 = g.
(7.3) 

Then, just as in the spirit of (1.9) and Theorem 1.1, it is not difficult to show that 
the operator .(T̂ + Ŝ ,Dom(T̂ + Ŝ )) generates a unique solution to (7.3) via the 
.c0-semigroup .(Λt , t ≥ 0) given by 

. Λtg := exp(t (T̂ + Ŝ ))g,

on .L2(D × V ). Classical semigroup theory applied to the semigroup . Λt then yields 
the existence of solutions to (7.2). 

Theorem 7.1 Suppose that (H1) holds, that the cross sections .σfπf and .σsπs are 
piecewise continuous, and that .σs(r, υ)πs(r, υ, υ ') > 0 and . σf(r, υ)πf(r, υ, υ ') >

0 on .D × V × V . Then there exist a real eigenvalue .keff > 0 and associated 
eigenfunction .0 ≤ ω ∈ L2(D × V ) such that (7.2) holds on .L2(D × V ). Moreover, 
.keff can be explicitly identified as
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.keff = sup

{

k : (T̂ + Ŝ )ω + 1

k
F̂ω = 0 for some ω ∈ L2(D × V )

}

(7.4) 

and is both algebraically and geometrically simple. 

However, our main objective in this chapter is to identify the eigenvalue 
problem (7.2) in terms of a probabilistic semigroup. For this, we will need to 
introduce the notion of generational times. 

7.2 Generation Time 

In order to develop a probabilistic interpretation of the .keff-eigenvalue problem via 
expectation semigroups, we first need to consider a generational model of the NBP. 
To this end, let us think of each line of descent in the sequence of neutron creations 
as a genealogy. In place of .(Xt , t ≥ 0), we consider the process .(Xn, n ≥ 0), where, 
for .n ≥ 1, . Xn is .Mc(D × V )-valued and can be written 

. Xn =
N(n)
∑

i=1

δ
(r

(n)
i ,υ

(n)
i )

,

where .{(r(n)
i , υ

(n)
i ), i = 1, · · · N(n)} are the position-velocity configurations of the 

.N(n) particles that are in the n-th generation of their genealogical lines of descent. 
We will use “n-th generation” to mean the collection of neutrons that are produced 
at the n-th fission event in each genealogical line of descent form the initial ancestor 
at time zero. In either case, . X0 is consistent with . X0 and is the initial configuration 
of neutron positions and velocities. As such, for .n ≥ 1, we can think of .Xn as the 
n-th generation of the system and we refer to .X = (Xn, n ≥ 1) as the neutron 
generational process (NGP). The reader who is more experienced with the theory of 
branching processes will know that .Xn is an example of what is called a stopping 
line. 

Appealing to the obvious meaning of .Xn[g], we define the expectation semi-
group .(Φn, n ≥ 0) by 

.Φn[g](r, υ) = Eδ(r,υ)
[Xn[g]] , n ≥ 0, r ∈ D,υ ∈ V, (7.5) 

with .Φ0[g] := g ∈ B+(D × V ). To see that this is indeed a semigroup, for .n ≥ 0, 
let . Kn denote the sigma algebra generated by the process up to the n-th generation. 
Fixing .m, n ≥ 0, we have  

.Φn+m[g](r, υ) = Eδ(r,υ)
[E[Xn+m[g]|Kn]]
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= Eδ(r,υ) 

⎡ 

⎣ 
N(n)
∑

i=1 

Eδ 
(r (n) 

i ,υ (n) 
i ) 

[〈g,Xm〉] 
⎤ 

⎦ 

= Φn[Φm[g]](r, υ). (7.6) 

We would like to formulate the eigenvalue problem (7.2) in terms of the 
semigroup .(Φn, n ≥ 0). We now introduce the problem of finding the (pre-
emptively named) pair .keff > 0 and .ω ∈ B+(D × V ) such that 

.Φ1[ω](r, υ) = keffω(r, υ), r ∈ D,υ ∈ V. (7.7) 

We will shortly show the existence of a solution to (7.7), which plays an important 
role in the asymptotic behaviour of . Φn as .n → ∞. Before doing so, let us give a 
heuristic argument as to why (7.7) is another form of the eigenvalue problem (7.2). 

First recall that . σs is the instantaneous rate at which scattering occurs and 
that .σf(r, υ)πf(r, υ, υ ')dυ ' is the instantaneous rate at which fission occurs, con-
tributing average flux with velocity . υ '. Writing .((Rs, Υs), s ≥ 0) with probabilities 
.(Pσsπs

(r,υ) , .r ∈ D,υ ∈ V ) for the .σsπs-NRW, by conditioning on the first fission time, 
we get, for .r ∈ D, .υ ∈ V , and .g ∈ B+(D × V ), 

. Φn[g](r, υ) = Eσsπs
(r,υ)

[∫ ∞

0
1(s<τD)σf(Rs, Υs)e

− ∫ s
0 σf(Ru,Υu)du

×
∫

V

πf(Rs, Υs, υ
')Φn−1[g](Rs, υ

')dυ ' ds
]

= Eσsπs
(r,υ)

[∫ ∞

0
1(s<τD)e

− ∫ s
0 σf(Ru,Υu)duF̂Φn−1[g](Rs, Υs) ds

]

,

where we have used  (7.1). This tells us that . Φn solves the mild equation 

.Φn[g](r, υ) =
∫ ∞

0
Qs

[
F̂Φn−1[g]

]
(r, υ)ds, (7.8) 

where .(Qs , s ≥ 0) is given by 

.Qs[g](r, υ) = Eσsπs
(r,υ)

[
e− ∫ s

0 σf(Ru,Υu)dug(Rs, Υs)1(s<τD)

]
, (7.9) 

and .τD = inf{t > 0 : Rt ∈ ∂D and nRt · Υt > 0}. Informally speaking, . (Qs , s ≥ 0)
is the expectation semigroup associated with the operator .T̂ +Ŝ . To see why, recall 
that .σ = σf + σs and hence
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. (T̂ + Ŝ )f (r, υ)

= υ · ∇f (r, υ) − σ(r, υ)f (r, υ) + σs(r, υ)

∫

V

f (r, υ ')πs(r, υ, υ ')dυ '

= υ · ∇f (r, υ) + σs(r, υ)

∫

V

[f (r, υ ') − f (r, υ)]πs(r, υ, υ ')dυ ' − σf(r, υ),

which is the infinitesimal generator of a .σsπs-NRW with killing rate . σf as in (7.9); 
see the discussion around (2.11) for generator heuristics. 

If the pair .(keff, ω) solves (7.7), an iteration of the semigroup property (7.6) 
implies that 

. kn
effω(r, υ) = Φn[ω](r, υ), r ∈ D,υ ∈ V.

Substituting this into (7.8) and dividing through by .kn
eff yield 

.ω(r, υ) =
∫ ∞

0
Qs

[
1

keff
F̂ω

]

(r, υ)ds. (7.10) 

Now set 

.Vt [g](r, υ) :=
∫ t

0
Qs [g] (r, υ)ds. (7.11) 

The heuristic Feynman–Kac formula that was discussed for differential equations of 
the type (2.18) tells us that, since . Q is associated with the generator .T̂ + Ŝ , we  
should expect that . Vt “solves” the equation 

.
∂Vt

∂t
= (T̂ + Ŝ )Vt + g, (7.12) 

with .V0 = 0. From  (7.11), .∂Vt/∂t = Qt [g], which tends to zero as . t → ∞
thanks to the transience of .(R, Υ ); that is to say, .(R, Υ ) will eventually be killed. 
Hence, taking .g = k−1

effF̂ω, letting .t → ∞ in (7.12) and (7.11), and using the 
identity (7.10), we get (7.2). 

Conversely, suppose that .(k, ω) solves (7.2). Combining this with (7.8) yields 

. Φ1[ω](r, υ) =
∫ ∞

0
Qs[F̂ω](r, υ)ds = −k

∫ ∞

0
Qs[(T̂ + Ŝ )ω](r, υ)ds.

Now suppose we can make rigorous the claim that . Q is the semigroup associated 

with the operator .T̂ + Ŝ . This would (heuristically) imply that .Qs = es(T̂ +Ŝ ), 
which would in turn yield
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. Φ1[ω](r, υ) = −k

∫ ∞

0
es(T̂ +Ŝ )[(T̂ + Ŝ )ω](r, υ)ds.

Naïvely performing the integration on the right-hand side above and again using the 

fact that the .σsπs-NRW is transient, so that .lims→∞ es(T̂ +Ŝ )ω = 0, show that 
.(k, ω) satisfies (7.7). 

7.3 Many-to-One Representation 

In this section, we construct a many-to-one formula associated with the semigroup 
.(Φn, n ≥ 0) in the spirit of the continuous-time counterpart given in Chap. 4. For  
ease of notation, let 

.m(r, υ) :=
∫

V

πf(r, υ, υ ')dυ ' (7.13) 

denote the mean number of neutrons generated by a fission event at .(r, υ) and 
consider a .σθ -NRW, where 

. θ(r, υ, υ ') = σs(r, υ)

σ (r, υ)
πs(r, υ, υ ') + σf(r, υ)

σ (r, υ)

πf(r, υ, υ ')
m(r, υ)

, r ∈ D,υ, υ ' ∈ V.

(7.14) 

We can think of the .σθ -NRW as equal in law to the following process. For .k ≥ 1, 
when the NRW .(R, Υ ) scatters for the k-th time at .(r, υ) (with rate .σ(r, υ)), a 
coin is tossed and the random variable .Ik(r, υ) takes the value 1 with probability 
.σf(r, υ)/σ (r, υ) and its new velocity is selected according to an independent 
copy of the random variable .Θf

k (r, υ), whose distribution has probability density 
.πf(r, υ, υ ')/m(r, υ). On the other hand, with probability .σs(r, υ)/σ (r, υ), the  
random variable .Ik(r, υ) takes the value 0 and its new velocity is selected according 
to an independent copy of the random variable .Θs

k (r, υ), whose distribution has 
probability density .πs(r, υ, υ '). As such, the velocity immediately after the k-
th scatter of the NRW, given that the position-velocity configuration immediately 
before is .(r, υ), is coded by the random variable 

. Ik(r, υ)Θf
k (r, υ) + (1 − Ik(r, υ))Θs

k (r, υ).

We can thus identify sequentially .T0 = 0 and, for .n ≥ 1, 

.Tn = inf{t > Tn−1 : Υt /= Υt− and Ikt (Rt , Υt−) = 1}, (7.15) 

where .(kt , t ≥ 0) is the process counting the number of scattering events of the 
.σθ -NRW up to time t . We can think of the above description as giving us a marked 
version of the .σθ -NRW, in the spirit of Poisson thinning. As previously mentioned
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in Sect. 3.3, let us, for convenience, denote the law of this marked .σθ -NRW by 
.Pσθ

(r,υ), .r ∈ D,υ ∈ V . 
Note, for the above construction of indicators to make sense, we should at 

least have some region of space for which fission can take place. As such, the 
assumption (H3) becomes relevant here. Analogously to Lemma 4.1, we have the  
following many-to-one formula associated with the NGP. 

Lemma 7.1 (Generational Many-to-One) Suppose (H1), (H2), and (H3) hold. 
The solution to (7.8) among the class of expectation semigroups is unique for . g ∈
B+(D × V ) and the semigroup .(Φn, n ≥ 0) may alternatively be represented1 as 

.Φn[g](r, υ) = Eσθ
(r,υ)

[
n∏

i=1

m(RTi
, ΥTi−)g(RTn, ΥTn)1(Tn<KD)

]

, (7.16) 

.for r ∈ D,υ ∈ V, n ≥ 1, (with .Φ0[g] = g), where .(Rt , Υt )t≥0 is the .σθ -NRW 
marked at times .(Ti, i ≥ 1), .m(r, υ) was defined in (7.13), and 

. κD := inf{t > 0 : Rt ∈ ∂D and nRt · Υt > 0}.

Proof We first note that the sequence .(Φn, n ≥ 0) as defined in (7.16) is a 
semigroup since, due to the strong Markov property, we have 

. Φn+m[g](r, υ)

= Eσθ
(r,υ)

[

Eσθ

[
n+m∏

i=1

m(RTi
, ΥTi−)g(RTn+m, ΥTn+m)1(Tn+m<κD)

∣
∣
∣
∣Kn

]]

= Eσθ
(r,υ)

[
n∏

i=1

m(RTi
, ΥTi−)Eσθ

(RTn ,ΥTn )

×
[

m∏

i=1

m(RTi
, ΥTi−)g(RTm, ΥTm)1(Tm<κD)

]

1(Tn<κD)

]

= Φn[Φm[g]](r, υ), r ∈ D,υ ∈ V.

In order to show that . Φn defined in (7.16) does indeed solve (7.8), we consider 
the process at time . T1. Before doing so, we first note that the .σθ -NRW has the 
same dynamics as the .σsπs-NRW over the time interval .[0, T1) and, at time . T1, 
which occurs at rate . σf, the new velocity of the .σθ -NRW is chosen according to the 
expectation operator

1 Here, we define .
∏0

i=1 · := 1. 
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. Ê [g](r, υ) :=
∫

V

g(r, υ ')πf(r, υ, υ ')
m(r, υ)

dυ '.

Applying the strong Markov property at time . T1, 

. Φn[g](r, υ)

= Eσθ
(r,υ)

[
n∏

i=1

m(RTi
, ΥTi−)g(RTn, ΥTn)1(Tn<κD)

]

= Eσθ
(r,υ)

[
m(RT1, ΥT1−)Ê [Φn−1[g]](RT1, ΥT1−)1(T1<κD)

]

=
∫ ∞

0
Eσθ

(r,υ)

[
σf(Rs, Υs)e

− ∫ s
0 σf(Ru,Υu)dum(Rs, Υs−)

×Ê [Φn−1[g]](Rs, Υs−)1(s<κD)

]
ds

=
∫ ∞

0
Qs[F̂Φn−1[g]](r, υ)ds,

where the final equality follows from the fact that .mσfÊ = F̂ . 
It remains to show that (7.8) has a unique solution for .g ∈ B+(D×V ) among the 

class of expectation semigroups. Suppose that .(Φ '
n, n ≥ 0) is another such solution 

with .Φ '
0 = g ∈ B+(D × V ). Define .Υn = Φn − Φ '

n, for  .n ≥ 0, and note by 
linearity that .(Υn, n ≥ 0) is another expectation semigroup with .Υ0 = 0. Moreover, 
by linearity, .(Υn, n ≥ 0) also solves (7.8). On account of this, it is straightforward 
to see by induction that if .Υn = 0 then .Υn+1 = 0. The uniqueness of (7.8) in the 
class of expectation semigroups thus follows. ⨅⨆

7.4 Perron–Frobenius Asymptotics 

In this section we show that the semigroup .(Φn, n ≥ 0) exhibits a Perron–Frobenius 
decomposition in a similar spirit to Chap. 4. 

Theorem 7.2 (Generational Perron–Frobenius Asymptotic) Suppose (H1) and 
(H4) hold in addition to 

(H3).∗∗ The fission cross section satisfies .infr∈D,υ,υ '∈V σf(r, υ)πf(r, υ, υ ') > 0. 

For the semigroup .(Φn, n ≥ 0) identified by (7.8), there exist .keff ∈ R, a  
positive2 right eigenfunction .ω ∈ B+(D × V ), and a left eigenmeasure which is

2 To be precise, by a positive eigenfunction, we mean a mapping from .D×V → (0,∞). This does 
not prevent it being valued zero on . ∂D, as  D is open. 
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absolutely continuous with respect to the Lebesgue measure on .D ×V with positive 
density .ω̃ ∈ B+(D × V ), both having associated eigenvalue .kn

eff, and such that 
. ω (respectively, . ω̃) is uniformly (respectively, a.e. uniformly) bounded away from 
zero on each compactly embedded subset of .D × V . Moreover, .keff is the leading 
eigenvalue in the sense that, for all .g ∈ B+(D × V ), 

.〈ω̃, Φn[g]〉 = kn
eff〈ω̃, g〉 and Φn[ω] = kn

effω, n ≥ 0, (7.17) 

and there exists .γ > 1 such that, for all .g ∈ B+(D × V ), 

. sup
g∈B+

1 (D×V )

∥
∥
∥k

−n
effω

−1Φn[g] − 〈ω̃, g〉
∥
∥
∥ = O(γ −n) as n → +∞. (7.18) 

As in the continuous-time setting, to prove the above result, we will work with a 
variant of the semigroup .(Φn, n ≥ 0) in order to, then, apply Theorem 2.2. To this  
end, note that under the assumption (H4), for non-negative functions . g ∈ B+(D ×
V ), we have  

.Eδ(r,υ)
[〈g,X1〉] ≤ ‖g‖Eδ(r,υ)

[〈1,X1〉] ≤ M‖g‖, (7.19) 

where 

. M = sup
r∈D,υ∈V

∫

V

πf(r, υ, υ ')dυ ' ≤ nmax.

Dividing both sides of (7.19) by M yields a sub-Markovian semigroup. To see 
why, let .Γ = min{n ≥ 0 : Kn(RTn, ΥTn−) = 1} where for .n ≥ 0, .r ∈ D, and .υ ∈ V , 
the random variable .Kn(r, υ) is an independent indicator random variable which is 
equal to 0 with probability .m(r, υ)/M . With this in hand, we can write 

. Φ†
n[g](r, υ) := M−nΦn[g](r, υ)

= Eσθ
(r,υ)

[
n∏

i=1

m(RTi
, ΥTi−)

M
g(RTn, ΥTn)1(Tn<κD)

]

= Eσθ
(r,υ)

[
g(RTn, ΥTn)1(Tn<κD, n<Γ )

]

=: Eσθ,†
(r,υ)

[
g(RTn, ΥTn)

]
. (7.20) 

In a similar manner to the continuous-time case, we prove Theorem 7.2 by 
extracting the eigentriple from the semigroup . Φ†, defined in (7.20), by using  the  
discrete time counterparts of assumptions (A1) and (A2), which we state here. In 
order to state them, recalling the notation in (7.20), we define
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. k = Γ ∧ min{n ≥ 1 : Tn ≥ κD}.

Then, in this setting, (A1) and (A2) read as follows. 

(A1)* There exist . n0, .c1 > 0 such that for each .(r, υ) ∈ D × V , 

. Pσθ
(r,υ)((RTn0

, ΥTn0
) ∈ · |n0 < k) ≥ c1ν(·).

(A2)* There exists a constant .c2 > 0 such that for each .(r, υ) ∈ D × V and for 
every .n ≥ 0, 

. Pσθ
ν (n < k) ≥ c2Pσθ

(r,υ)(n < k).

Theorem 7.3 Assume that (H1), (H3. ∗∗), and (H4) are in force. Then, there exists 
an eigenvalue .kc ∈ (0, 1) accompanied by an eigenmeasure on .D×V with a positive 
density .ω̃ ∈ B+(D × V ) and a positive right eigenfunction .ω ∈ B+(D × V ) of . Φ†

n

(defined in (7.20)), i.e., for all .g ∈ B+(D × V ), 

.〈ω̃, Φ†
n[g]〉 = kn

c 〈ω, g〉 and Φ†
n[ω] = kn

c ω, n ≥ 0. (7.21) 

Moreover, there exist .C, γ > 0 such that, for .g ∈ B+(D × V ) and . n ≥ 1
(independently of g), 

.

∥
∥
∥k

−n
c ω−1Φ†

n[g] − 〈ω̃, g〉
∥
∥
∥ ≤ Cγ −n‖g‖. (7.22) 

In particular, setting .g ≡ 1, 

.

∥
∥
∥k

−n
c ω−1Pσθ· (n < k) − 1

∥
∥
∥ ≤ Cγ −n, n ≥ 1. (7.23) 

As alluded to above, once Theorem 7.3 is proved, it is straightforward to conclude 
that . ω and . ω̃ are the right and left eigenfunctions corresponding to the eigenvalue 
.keff = kcM for the semigroup . Φn. 

Proof of Theorem 7.3 We will use the notation . Jk to denote the k-th scatter event 
of the random walk .(R, Υ ) under .Pσθ and recall that . Tk denotes the scatter event 
that corresponds to the k-th fission event in the original NBP. The basis of our proof 
relies on the fact that, for each .k ≥ 1, .Tk = Jk with positive probability. 

Another feature of our proof is that we will use a version of Lemma 4.4. Indeed 
we may take the conclusion of this lemma replacing the law . P† by .Pσθ,† (the latter 
defined in (7.20)). We restate Lemma 4.4 in this new format for convenience. ⨅⨆
Lemma 7.2 Under the assumptions of Theorem 7.3, for all .r ∈ D and .υ ∈ V , we  
have 

.Pσθ,†
(r,υ)(J7 < k, RJ7 ∈ dz) ≤ C1(z∈D) dz,
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for some constant .C > 0, and 

.Pσθ,†
ν (J1 < k, RJ1 ∈ dz) ≥ c1(z∈D) dz, (7.24) 

for another constant .c > 0, where . ν is the Lebesgue measure on .D × V . 

By proving (A1. ∗) and (A2. ∗), we will get the statement of the theorem albeit that 
the left eigenmeasure does not necessarily have a positive density. However, as in 
the continuous-time case, that is, Theorem 4.1, it is possible to show that the left 
eigenmeasure admits a density .ω̃ ∈ B+(D × V ), such that, on each compactly 
embedded subset of .D × V , . ω (respectively, . ω̃) is positive (respectively, positive 
almost everywhere). Since the techniques used are similar to those of Lemma 4.5, 
we leave this part of the proof as an exercise to the reader. Hence, to complete our 
proof of Theorem 7.3, we focus on proving (A1. ∗) and (A2. ∗). 

Proof of (A1∗) 

Fix .r0 ∈ D and suppose . Υ0 is uniformly distributed on V . The assumptions (H1) 
and (H3. ∗∗) tell us that fission occurs everywhere in the configuration space. With 
these assumptions in hand, the techniques used in the proof of Theorem 4.1 to 
prove (4.51) and the discussion thereafter also yield a similar estimate 

.Eσθ,†
(r0,Υ0)

[
f (RJ1)1(T1=J1<k)

] ≥ C0

∫

D

dzf (z), (7.25) 

where .C0 > 0 is a constant. 
Recall the (deterministic) quantity .κD

r0,υ0
:= inf{t > 0 : r0 + υ0t /∈ D}, for  

.r0 ∈ D, .υ0 ∈ V , which was introduced in (3.13). From (H3. ∗∗), the fact that . σ is 
uniformly bounded from above, the strong Markov property, and (7.25), we have  

. Eσθ,†
(r0,υ0)

[f (RT2 , ΥT2)1(T2=J2<k)]

≥ C1

∫ κD
r0,υ0

0
dse−σ̄ sθ

∫

V

dυ1Eσθ,†
(r0+υ0s,υ1)

[f (RJ1, ΥJ1)1(T1=J1<k)]

≥ C2κ
D
r0,υ0

∫

D

dr
∫

V

dυf (r, υ), (7.26) 

where .σ = supr∈D,υ∈V σ(r, υ) and .θ = infr∈D,υ,υ '∈V θ(r, υ, υ '). The latter 
is bounded from below because of (H3. ∗∗). Finally, we note that, due to (H1) 
and (H3. ∗∗), .σ = infr∈D,υ∈V σ(r, υ) > 0. Hence, again using (H1), we have 

.Pσθ
(r0,υ0)

(T2 < k) ≤ Pσθ (J1 < k) ≤
∫ κD

r0,υ0

0
dsσ̄e−σs ≤ C3κ

D
r0,υ0

. (7.27)
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Combining this with (7.26) yields (A1. ∗) with . ν as Lebesgue measure on .D ×V and 
.n0 = 2. . □

Proof of (A2∗) 

Again, we use a similar method to the one used in Chap. 4, and however, we state 
the proof in full to illustrate where the differences occur. Let .n ≥ 7 and note that 
.Tn − J7 ≥ Tn − T7. This and the strong Markov property imply 

. Pσθ
(r,υ)(n < k) ≤ Eσθ,†

(r,υ)

[
Pσθ

(RJ7 ,ΥJ7 ) (n − 7 < k)
]

≤ C'
∫

D

∫

V

Pσθ
(z,w) (n − 7 < k) dz dw, (7.28) 

where we have used Lemma  7.2 to obtain the final inequality. 
Now suppose .n ≥ 1. Recalling the measure . ν from (A1. ∗), another application of 

Lemma 7.2 gives 

. Pσθ
ν (n < k) = Eσθ,†

ν

[
1(J1<k)Pσθ

(RJ1 ,ΥJ1 )(n < k)
]

≥ c'
∫

D

∫

V

Pσθ
(z,w)(n < k) dz dw. (7.29) 

Then, for .n ≥ 8, combining (7.28) and (7.29) yields 

.Pσθ
(r,υ)(n < k) ≤ C'

c' Pσθ
ν (n − 7 < k) . (7.30) 

It follows from (A1. ∗) that 

.Pσθ,†
ν ((RTn0

, ΥTn0
) ∈ ·) ≥ c1Pσθ

ν (n0 < k)ν(·). (7.31) 

Again, due to assumptions (H1) and (H3. ∗∗), 

.Pσθ
ν (n0 < k) ≥

∫

D×V

Pσθ
(r,υ)(Tn0 = Jn0 , n0 < k)ν(dr, dυ) ≥ K, (7.32) 

for some constant .K > 0. Then, for .n ≥ 8, due to (7.31) and (7.32), 

. Pσθ
ν (n − 7 + n0 < k) = Eσθ

ν

[
1(n0<k)Pσθ

(RTn0
,ΥTn0

) (n − 7 < k)
]

≥ Kc1Pσθ
ν (n − 7 < k) . (7.33)
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Finally, noting that for .n ≥ 1, we have .n − 7 + 4n0 ≥ n, so that 

. Pσθ
ν (n < k) ≥ Pσθ

ν (n − 7 + 4n0 < k) ,

and applying (7.33) four times implies 

.Pσθ
ν (n < k) ≥ (Kc1)

4Pσθ
ν (n − 7 < k) . (7.34) 

Combining this with (7.30) yields the result. . □

7.5 Moment Growth 

Just as in the continuous-time setting, it is possible to examine the growth of 
moments for the different regimes, i.e., we can find analogues of Theorems 5.2, 5.3, 
and 5.4 for generational time. Before proceeding, we need a little more notation. 
To this end, we need to introduce the law of the point process of velocities when 
fission occurs but relative to the configuration of the incident neutron when it came 
into creation, rather than immediately before undergoing fission. The latter point 
process was previously denoted by . Z, with probabilities .(P(r,υ), r ∈ D,υ ∈ V ). 

Let us write .Z(r,υ) as a notational convenience for . (Z), when it has law .P(r,υ). 
We thus want to define the probabilities .(P(r,υ), r ∈ D,υ ∈ V ) for the point process 

. Z =
N∑

i=1

δυi
,

such that the law of . Z under .P(r,υ) agrees precisely with the law of 

. Z(Rτ1 ,Υτ1 ) under Pσsπs
(r,υ) ,

where . τ1 is the first time that a fission occurs. Another way of seeing this is that, for 
any .f ∈ B+(V ), 

. E(r,υ)

[
e−Z [f ]] = Eσsπs

(r,υ)

[∫ ∞

0
σf(Rs, Υs)e

− ∫ s
0 σf(Ru,Υu)duE(Rs,Υs)

[
e−Z[f ]] ds

]

.

(7.35) 

In the following results, we see that in generational time, the results are almost 
identical to those in the continuous-time setting, given in Theorems 5.5, 5.6, and 5.7, 
albeit that one must take care to note that the triple .(keff, ω, ω̃) replaces the role of 
.(λ∗, ϕ, ϕ̃) and .(Z,P) is replaced by .(Z , P ).
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Theorem 7.4 (Supercritical, .keff > 1) Suppose that (H1), (H3. ∗∗), and (H4) hold 
and .keff > 1. Define 

. Δ(𝓁)
n = sup

r∈D,υ∈V,g∈B+
1 (D×V )

∣
∣
∣k

−nk
effΦ(𝓁)

n [g](r, υ) − 𝓁! ω̃[f ]𝓁L𝓁(r, υ)

∣
∣
∣ ,

where .L1 = ω(r, υ), and for .k ≥ 2, .Lk(r, υ) is given by the recursion 

.Lk(r, υ) =
∞∑

𝓁=0

k
−𝓁(k+1)
eff Φ𝓁

⎡

⎢
⎢
⎣E·

[ ∑

[k1,...,kN ]2+k

N∏

j=1
kj >0

Lkj
(·, υj )

]

⎤

⎥
⎥
⎦ (r, υ), (7.36) 

with .[k1, . . . , kN ]2+k defining the set of non-negative tuples .(k1, . . . , kN), such that 

.
∑N

j=1 kj = N and at least two of the . kj are strictly positive. 
Then, for all .𝓁 ≤ k, 

. sup
n≥0

Δ(𝓁)
n < ∞ and lim

n→∞ Δ(𝓁)
n = 0.

Theorem 7.5 (Subcritical, .keff < 1) Suppose that (H1), (H3. ∗∗), and (H4) hold 
and .keff < 1. Define 

. Δ(𝓁)
n = sup

r∈D,υ∈V,g∈B+
1 (D×V )

∣
∣
∣k

−n
effω(r, υ)−1Φ(𝓁)

n [g](r, υ) − L𝓁

∣
∣
∣ ,

where .L1 = 1, and for .𝓁 ≥ 2, . L𝓁 is given by the recursion 

. L𝓁 = 〈ω̃, f 𝓁〉 +
∞∑

n=0

k
−(n+1)
eff

〈

ω̃, E·
[ ∑

[k1,...,kN ]2+k

(
k

k1, · · · , kN

) N∏

j=1
kj >0

Φ
(kj )
n (·, υj )

]〉

.

Then, for all .𝓁 ≤ k, 

. sup
n≥0

Δ(𝓁)
n < ∞ and lim

n→∞ Δ(𝓁)
n = 0.

Theorem 7.6 (Critical, .keff = 1) Suppose that (H1), (H3. ∗∗), and (H4) hold and 
.keff = 1. Define 

.Δ(𝓁)
n = sup

r∈D,υ∈V,g∈B+
1 (D×V )

∣
∣
∣n

−(𝓁−1)ω(r, υ)−1Φ(𝓁)
n [g](r, υ)

−2−(𝓁−1)𝓁! 〈ω̃, f 〉𝓁〈ω̃,V [ω]〉𝓁−1
∣
∣
∣ ,
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where, again with an abuse of notation in the continuous-time setting, 

. V [ω](r, υ) = E(r,υ)

[
Z [ω]2 − Z [ω2]

]
= E(r,υ)

⎡

⎢
⎢
⎣

N∑

i=1

N∑

j=1
j /=i

ω(zi)ω(zj )

⎤

⎥
⎥
⎦ .

Then, for all .𝓁 ≤ k, 

. sup
n≥0

Δ(𝓁)
n < ∞ and lim

n→∞ Δ(𝓁)
n = 0. (7.37) 

We will not provide proofs for these results, as in the continuous-time case, as 
we will handle them again in a more general setting in Part II of this book. 

7.6 c-Eigenvalue Problem 

There is a third eigenvalue problem, which also appears in some of the nuclear 
literature, called the c-eigenvalue problem. It is similar to the .keff-eigenvalue 
problem in the sense that it is a time-independent problem, and however there is a 
subtle difference that arises from requiring the eigenvalue, c, to weight the scattering 
operator, as well as the fission operator. More precisely, the aim is to find .c > 0 and 
a corresponding eigenfunction .χ ∈ B+(D × V ) such that 

.T̂ χ(r, υ) + 1

c

(
Ŝ + F̂

)
χ(r, υ) = 0, r ∈ D,υ ∈ V, (7.38) 

where the operators . T̂ , . Ŝ . and . F̂ were defined in (7.1). 
Similarly to the interpretation given for .keff, the scalar c can be seen as the 

effective number of neutrons produced per “collision”, where a collision is either 
a scatter or a fission. Criticality is also categorised in the same way as the .keff-
eigenvalue problem, and it can be shown that the critical regime also coincides 
with the critical regimes for the .keff- and .λ∗-eigenvalue problems, with equality 
of the left and right eigenfunctions. The c-eigenvalue problem has received the least 
attention in the literature due to its similarities with the .keff-eigenvalue problem. 
Indeed, many of the methods used for the latter can be adapted to analyse the former. 

As for the .keff-eigenvalue problem, we can also think of the discrete-time index 
for the c-eigenvalue problem as generational time, where, now, for .n ≥ 1, generation 
n is interpreted as the collection of neutrons immediately after the moment that they 
engage in the n-th collision along their genealogical line of descent. By conditioning 
on the first collision event in the expectation given by (7.5), arguments similar to 
those leading to (7.8) show that . Φn solves the mild equation
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.Φn[g](r, υ) =
∫ ∞

0
Uσ

s

[
(F̂ + Ŝ )Φn−1[g]

]
(r, υ)ds, (7.39) 

for .r ∈ D, .υ ∈ V , and .g ∈ B+(D × V ), where .(Uσ
s , s ≥ 0) is given by 

. Uσ
s [g](r, υ) = e− ∫ s

0 σ(r+υu,υ)dug(r + υs, υ)1(s<κD
r,υ )

= e− ∫ s
0 σ(r+υu,υ)duUs[g](r, υ). (7.40) 

Then, if .(c, χ) satisfies 

.Φ1[χ ](r, υ) = cχ(r, υ), r ∈ D,υ ∈ V, (7.41) 

one can use (7.40) and similar arguments to those given in the second half of 
Sect. 7.2 to show that .(c, χ) also satisfies 

. 0 = T̂ χ + 1

c
(Ŝ + F̂ )χ.

We now consider a .σπ -NRW, where . π was defined in (4.2). Letting . (Pσπ
(r,υ), r ∈

D,υ ∈ V ) denote the law of the .σπ -NRW and defining the weight 

. w(r, υ) = σs(r, υ)

σ (r, υ)
+ σf(r, υ)

σ (r, υ)
m(r, υ) = α(r, υ)

σ (r, υ)
,

where . α was defined in (4.2), we have the following many-to-one representation: 

.Φn[g](r, υ) = Eσπ
(r,υ)

[
n∏

i=1

w(Rτi
, Υτi−)g(Rτn, Υτn)1(τn<τD)

]

, (7.42) 

where now .(τn, n ≥ 1) denote the successive collision times of the .σπ -NRW and 
.τD = inf{t > 0 : Rt /∈ D}. We note that the weight function w can be seen as 
a sharing of the average mass accumulated from scatter and fission events. Indeed, 
with probability .σs/σ , there is a scatter event which contributes mass 1, and with 
probability .σf/σ , there is a fission event which contributes mass m. 

We will not include the proof of this many-to-one formula since the arguments 
are almost identical to those given in the proof of Lemma 7.1. 

7.7 Comments 

As alluded to earlier in this chapter, the .keff-eigenvalue and c-eigenvalue problems 
are motivated by different ways of seeing the stability of neutron transport that come



7.7 Comments 143

from within the nuclear industry itself; cf. [95, 96, 127]. The proof of Theorem 7.1 
can be found in [32]. 

The connection of the .keff-eigenvalue problem with generational time has been 
(at least heuristically) well understood in the nuclear engineering literature, but the 
relationship that we give in the sketch proof of in Sect. 7.2 comes from [32]. The 
notion of generational populations (as stopping lines) is a classical concept in the 
theory of spatial branching processes; see [86]. 

The generational many-to-one (Lemma 7.1) and the Perron–Frobenius (Theo-
rem 7.2) results come from [21, Theorem 2.1]. In this setting, it is interesting to note 
that the left eigenfunction . ω̃ does not correspond to the non-negative eigenfunction, 
say . ω∗, of the forward equation .T ω∗ + S ω∗ + (keff)

−1Fω∗ = 0, where we recall 
that .T ,S , andF were defined in (1.8). Indeed, for each .n ≥ 0, up to discounting 
by . kn

eff, the eigenfunction . ω∗ is the stationary distribution of the immediate ancestors 
of particles in . χn at the instant preceding their fission. The relationship between . ω̃
and . ω∗ is given by .ω̃ = Fω∗. This is a consequence of the fact that the operator . F
propagates pre-fission particles to post-fission particles. We refer the reader to [44] 
for further details. Features of generational moment growth in Theorems 7.4, 7.5, 
and 7.6 follow from a similar analysis to the real-time moment growth given in 
Theorems 5.2, 5.3, and 5.4 and are based on [67], although formal proofs are given 
in Chap. 9 later in Part II of this book. 

In a similar fashion to [74], Theorem 7.2 implies that 

. Wn := k−n
eff

Xn[ω]
μ[ω] , n ≥ 0,

is a non-negative unit mean martingale under . Pμ, .μ ∈ Mc(D × V ). As in the  
continuous-time limit (cf. Theorem 6.1), one can show that under relatively mild 
assumptions, .(Wn, n ≥ 0) converges in .L2(Pμ) in the supercritical case and 
otherwise has a degenerate limit. 

Again, under appropriate assumptions, one may also reconstruct a strong law of 
large numbers in the spirit of Theorem 6.3, 

. lim
n→∞ k−n

eff

Xn[g]
μ[ω] = 〈g, ω̃〉W∞,

where .W∞ is the limit of the martingale .(Wn, n ≥ 0). We leave the details for a 
more general discussion in Part II of this book. 

A challenge that has consumed part of the nuclear engineering literature (cf. 
[19, 96, 127]) is the problem of how to estimate the quantity .keff for an entire 
reactor core. As a single number, .keff gives a sense as to whether a reactor core is 
critical or not; the state of being critical is obviously a desirable trait for the purpose 
of power generation. The associated eigenvalue . ω similarly gives a sense of how 
neutron density, and hence energy concentration or power generation, occurs within 
the reactor core. The eigenmeasure . ω̃ on the other hand gives a sense of (quasi)-
stationarity given that .〈ω̃, k−n

effXn[g]〉 = 〈ω̃, g〉, for .g ∈ B+(D × V ).
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For historical reasons, the nuclear industry has largely preferred to work with the 
.keff-eigenvalue problem over the .λ∗-eigenvalue problem. Accordingly, a culture of 
Monte Carlo simulation has evolved which implicitly takes advantage of the gen-
erational theory of NBPs. We conclude this chapter with a brief discussion of how 
the analytical foundations of the .keff-eigenvalue problem form the mathematical 
basis of Monte Carlo algorithms, which ultimately feature in present day industrial 
software that is used to design and predict the behaviour of nuclear reactor cores. 

The definition of .keff means that 

.keff = − 〈1, F̂ω〉
〈1, (T̂ + Ŝ )ω〉 , (7.43) 

where . 1 is the constant function with value one. The identity (7.43) is suggestive 
of the following conceptual Monte Carlo approach. Start with a set of N neutrons, 
distributed in .D × V according to some function .ω(0) that serves as an initial guess 
of . ω. In practice, .ω(0) could be taken to be the uniform distribution or based on the 
solution to an appropriate diffusion approximation of the eigenvalue problem. From 
this initial configuration, a system of neutrons are simulated according to a NBP that 
is stochastically consistent with the cross sections .σs, σf, πs, and . πf (in the spirit 
of the discussion preceding Lemma 3.3) until immediately after their first fission 
events occur (in effect, the first generation . X1). From repeated simulations of . X1, 
one may construct an updated estimate of . ω, say . ω(1), by using the empirical law of 
. X1 and normalising it to have unit mass. At the same time, the eigenvalue .keff is 
approximated by 

. k
(1)
eff = − 〈1, F̂ω(1)〉

〈1, (T̂ + Ŝ )ω(1)〉 .

The process is then repeated using .ω(1) as the initial distribution of neutrons, in 
order to obtain .ω(2) and .k

(2)
eff, and so on. 

The starting point of the previously described algorithm is the analytical 
identity (7.43). A different starting point from which to build another Monte Carlo 
algorithm would be the observation that 

. keff = lim
n→∞

1

n
logΦn[1](r, υ).

Here, as an expectation, .Φn[1] can be approximated by Monte Carlo simulation 
of the generational process .(Xn, n ≥ 0), again by simulating a NBP which is 
stochastically consistent with the data .σs, σf, πs, and . πf. 

In order to calculate the eigenfunction, one can take advantage of the ergodic 
property proved in Theorem 7.2 to deduce that, under the same assumptions as the 
aforesaid,
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. 〈ω̃, g〉ω(r, υ) = lim
n→∞Eδ(r,υ)

[
1

n

n∑

m=1

k−m
eff〈Xm, g〉

]

.

This again suggests that Monte Carlo simulation of the generational process 
.(Xn, n ≥ 0) can be used to extract information concerning both . ω and . ω̃. Varying 
the test function g while keeping .(r, υ) fixed allows us to obtain estimates for . ω̃, 
whereas varying the initial configuration .(r, υ) and keeping the test function g fixed 
allow us to estimate . ω. 

As one may imagine, there are numerous points in this prescriptive approach that 
have the potential to introduce bias and additional correlations between the neutrons 
in successive fission generations. Understanding how to quantify the complexity in 
such a scheme remains a significant outstanding mathematical challenge. We refer 
the reader to [19, 31] for a more in-depth analysis of the Monte Carlo algorithms 
described above, addressing issues such as burn in, bias, and complexity analysis. It 
is worthy of note that, although the algorithms and efficiency results given in [31] 
are for time eigenvalues, cf. (7.17), it is straightforward to see how they may be 
adapted to fit the generational setting (as well as in terms of complexity). 

In the setting of generational Monte Carlo, there is a vast literature, too much 
to list here, with [96] as a core reference. It is worthy of note that, whilst much of 
the physics and engineering literature engages in various forms of Monte Carlo 
‘population control’ (known in applied probability as interacting particle Monte 
Carlo) a systematic mathematical analysis that incorporates modern perspectives 
as laid out in, for example, [29] and [111], has yet to be fully explored.



Part II 
Non-local Branching Markov Processes



Chapter 8 
A General Family of Branching Markov 
Processes 

Recall that, in Chap. 2, we introduced the notion of a general Markov process on E 
which is taken to be a locally compact Hausdorff space, to which we can append a 
cemetery state, . †. We used the notation .P = (Pt , t ≥ 0) to denote its associated 
semigroup and, accordingly, we later referred to it as a .P-Markov process. As 
a generalisation of the neutron branching processes discussed in Chap. 3, we are  
interested in spatial branching processes that are defined in terms of a .P-Markov 
process and a branching operator. In this chapter and subsequent chapters, we 
introduce such processes and develop a number of generic results for them. Some of 
the notations used for neutron branching processes (NBPs) will also be used in this 
general setting. This is deliberate to give the reader a chance to see how the former 
is an interesting core example of the latter. 

8.1 Branching Markov Processes 

Let us define what we mean by a branching Markov process (BMP). As with NBPs, 
a BMP is a collection of particles that evolves according to certain stochastic rules. 
Given their point of creation, particles move independently according to a .P-Markov 
process on E in the spirit of Chap. 2. In an event, which we refer to as “branching”, 
particles positioned at x die at rate .γ (x), where .γ ∈ B+(E), and instantaneously, 
new particles are created in E according to a point process. We can think of a 
point process simply as a random variable N , representing the number of offspring, 
and .(x1, · · · , xN) in E representing their locations. A more convenient way of 
describing the random configuration of these offspring is via the use of random 
counting measures 

.Z(A) =
N∑

i=1

δxi
(A), A ∈ B(E), (8.1) 
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where .B(E) is the collection of Borel sets in E. As with the branching rate, the 
law of the aforementioned point process can depend on x, the point of death of 
the parent, and we denote it by . Px , .x ∈ E, with associated expectation operator 
given by . Ex , .x ∈ E. Note that this is consistent with the notation in (3.23), where 
.E = D × V and there is a slight degeneracy in that setting because, whilst in full 
generality, we should expect x and . xi to be replaced by .(r, υ) and .(ri, υi), we always 
have .ri = r in the NBP. 

We capture the reproductive distributional information in the so-called branching 
mechanism 

.G[f ](x) := γ (x)Ex

[
N∏

i=1

f (xi) − f (x)

]
, x ∈ E, (8.2) 

where 

. f ∈ B+
1 (E) := {f ∈ B+(E) : ‖f ‖ ≤ 1},

and we recall that .γ ∈ B+(E). Here, we use .‖·‖ to be the usual supremum norm 
on .B+(E). Without loss of generality, we can assume that .Px(N = 1) = 0 for 
all .x ∈ E by viewing a branching event with one offspring as an extra jump in 
the motion described by . P. On the other hand, we do allow for the possibility that 
.Px(N = 0) > 0 for some or all .x ∈ E. In the setting that our BMP is an NBP, 
allowing .Px(N = 0) > 0 corresponds to the possibility of neutron capture. 

Note that the mechanism in (8.2) permits non-local branching in the sense that 
offspring are not necessarily positioned at the place of their parent’s death. In the 
case of local branching, it reduces to 

. γ (x)

[ ∞∑

i=1

pk(x)sk − s

]
, s ∈ [0, 1], x ∈ E,

where, for .k ≥ 1 and .x ∈ E, .pk(x) denotes the probability that a particle 
branching at site x produces k offspring. We refer to .(pk(x), k ≥ 0) as the offspring 
distribution at site .x ∈ E. 

Henceforth we refer to this spatial branching process as a .(P,G)-branching 
Markov process. If the configuration of particles at time t is denoted by 

. {x1(t), . . . , xNt (t)},

then, on the event that the process has not become extinct or exploded, the branching 
Markov process can be described as the coordinate process .X = (Xt , t ≥ 0) in 
.Mc(E), where
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.Xt(·) =
Nt∑

i=1

δxi(t)(·), t ≥ 0, (8.3) 

and we recall that 

.Mc(E) := {∑n
i=1δxi

: n ∈ N, xi ∈ E, i = 1, · · · , n} (8.4) 

represents the space of finite counting measures. In particular, X is Markovian in 
.Mc(E). Its probabilities will be denoted .P := (Pμ,μ ∈ Mc(E)). 

As an obvious extension to the notation we used in Part I of this book, we will 
work with 

. μ[f ] :=
∫

E

f (x)μ(dx), f ∈ B+(E),

for all finite measures . μ. In particular, when .μ ∈ Mc(E), we note that 

. μ[f ] =
n∑

i=1

f (xi) when μ =
n∑

i=1

δxi
.

8.2 Non-linear Semigroup Evolution 

As with the NBP, the functional 

.vt [f ](x) = Eδx

[
e−Xt [f ]] , f ∈ B+(E), t ≥ 0, (8.5) 

is the natural analytical object that gives us a complete understanding of the law of 
our BMP. 

Similarly to the NBP setting, we have the branching Markov property. That is, if 
we define 

. Ft = σ(xi(s), i = 1, · · · , Ns, s ≤ t), t ≥ 0,

then 

.E

[
e−Xt+s [f ]

∣∣∣Ft

]
=

Nt∏

i=1

vs[f ](xi(t)). (8.6) 

From here the semigroup property, 

.vt+s[f ](x) = vt [vs[f ]](x), s, t ≥ 0, x ∈ E, f ∈ B+(E),
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follows just as in Lemma 5.1. Moreover, for .f ∈ B+(E) and .x ∈ E, 

.vt [f ](x) = P̂t [e−f ](x) +
∫ t

0
Ps [G[vt−s[f ]]] (x)ds, t ≥ 0, (8.7) 

where .(P̂t , t ≥ 0) is the adjusted semigroup which returns a value of 1 on the 
event of killing, i.e., when the particle is absorbed at the boundary, cf. (5.3). More  
generally, we can consider the joint law of the BMP and its occupation measure 
.
∫ t

0 Xs(·)ds, given by 

.vt [f, g](x) = Eδx

[
e−Xt [f ]−∫ t

0 Xs [g]ds
]
, t ≥ 0, x ∈ E, f, g ∈ B+(E), (8.8) 

which satisfies the evolution equation 

.vt [f, g](x) = P̂t [e−f ](x) +
∫ t

0
Ps [G[vt−s[f, g]) − gvt−s[f, g]] (x)ds. (8.9) 

For the proof of both (8.7) and (8.9), we can appeal to reasoning which is 
essentially the same as for the Pál-Bell equation (PBE) in Lemma 5.2. For example 
to derive (8.9), it suffices to split the expectation on the first branching event and 
apply Theorem 2.1. It is also straightforward to see that . vt is the unique solution 
to (8.9) when considered as an operator from .B+(E) × B+(E) to . B+(E), by  
appealing to similar reasoning given in the proof of Lemma 3.5. 

8.3 Examples of Branching Markov Processes 

To give a sense of the generality in the definition of our class of BMP, let us give 
some concrete examples. 

Branching Lévy Processes Particles move according to a Lévy process, . Y =
(Yt , t ≥ 0) on .E = R

d , and branch at constant rate . γ . When particles branch, 
they simultaneously die and reproduce by throwing out offspring according to the 
point process .(xi : i = 1, . . . , N) relative to its point of death, with a common law 
. P , which is not spatially dependent. In that case, 

. G[f ](x) = γE

[
N∏

i=1

f (x + xi) − f (x)

]
, f ∈ B+

1 (E), x ∈ E.

For BMPs that have an underlying Markov process that is regular, e.g., in this case 
a Lévy process or another Feller process, it is more usual to write (8.7) in the 
differential form
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.
∂

∂t
vt [f ](x) = L vt [f ](x) + G[vt [f ]](x), t ≥ 0, x ∈ R

d , (8.10) 

where .L is the generator of Y . One of the issues with writing the non-linear 
semigroup evolution as a solution to an integro-differential equation, rather than 
simply an integral equation, is that it requires a greater degree of smoothness of 
the solution so that, e.g., the term .L vt [f ] is meaningful, not to mention the time 
derivative. 

Branching Brownian Motion In the case where the Lévy process Y is taken to be 
a Brownian motion (in any dimension) on some domain .E = R

d and the branching 
mechanism is local with no spatial dependence, (8.10) collapses to 

. 
∂

∂t
vt [f ](x) = 1

2
∆vt [f ](x)+γ

[ ∞∑

k=1

pkvt [f ](x)k − vt [f ](x)

]
, t ≥ 0, x ∈ R

d ,

where .(pk, k ≥ 1) is the offspring distribution. In particular, in one dimension 
with dyadic branching, we recover the Fisher–Kolmogorov–Petrsovskii–Piscunov 
(FKPP) equation 

.
∂

∂t
vt = 1

2

∂2

∂x2vt + γvt (vt − 1), t ≥ 0, (8.11) 

where the dependency on space and f is suppressed to allow (8.11) to take a more 
familiar form. As alluded to in the previous example, for the PDE (8.11) to make 
sense in the classical sense, we would technically need . vt to be twice continuously 
differentiable. 

Uchiyama Process Another subclass of branching Lévy processes pertains to the 
setting where particles live in .Rd but have no motion and constant branching 
rate. When branching occurs, each particle gives birth to offspring according to an 
independent copy of a point process in . Rd , which is centred at the parent’s position. 
Although called a Uchiyama process after the author who introduced it, another way 
of referring to this process is simply a continuous-time d-dimensional branching 
random walk. This is because as one follows each genealogical line of descent, 
one sees a continuous-time random walk. In this setting, the non-linear evolution 
equation (8.7) is a variant of (8.10) and takes the more specific form 

. 
∂

∂t
vt [f ](x) = γE

[
N∏

i=1

vt [f ](x + xi) − vt [f ](x)

]
, t ≥ 0, x ∈ R

d ,

(8.12) 

where .(xi, i = 1, · · · , N) is the i.i.d. point process of relative offspring positions 
with probabilities . P that no longer depends on the state space. Once again, we gloss 
over issue of smoothness in the solution for (8.12) to make sense.
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Biggins Process These processes are a generalisation of all of the preceding ones. 
Particles move according to a Markov process, .M := (Mt , t ≥ 0) in . Rd , which we 
can assume to be Feller, and branch at a constant rate. Parent particles give birth to 
a random number of individuals according to the point process on .Rd × R+, where 
the first coordinate describes the spatial displacement of the offspring relative to the 
parent’s birth position, and the second coordinate gives the parent’s age at the time 
of that child’s birth. Technically speaking, the Biggins process incorporates time 
into the state space of particles and lies outside of our definition of BMPs (unless 
we consider time to be a spatial variable). Nonetheless, a lot of what we will present 
for BMPs can be extended to the setting of Biggins processes and leave this as a 
challenge to the ambitious reader. 

Branching Markov Additive Process Consider the following Markov additive 
process (MAP). A particle moves according to one of n possible velocities in . R3, say  
.{a1, · · · ,an}, with the “current” drift being chosen by a continuous-time Markov 
chain .J = (Jt , t ≥ 0) on .[n] := {1, · · · , n} in the sense that if .Jt = i, then its drift is 
. ai . More formally, we can describe this MAP as the joint process .((Xt , Jt ), t ≥ 0), 
where 

. dXt = aJt dt, t ≥ 0.

The process X takes values in . R3 and hence .E = R×[n]. In a fully general setting, 
the branching rate . γ depends on the pair .(X, J ), i.e., .γ = γ (x, i), .x ∈ R

3, .i ∈ [n]. 
However, for convenience, let us simply restrict dependence to .[n] and write the 
respective rates . (γi , .i ∈ [n]). When a branching event occurs, the random number 
of offspring is assigned different velocities so that there are .N(i) offspring with 
velocity . ai , such that .

∑n
i=1 N(i) = N . As with the branching rate, let us assume 

that the law of this point process depends only on the current drift index in . [n]. 
Accordingly, we will write . Pi , .i ∈ [n] for its probabilities. 

If we are to follow the trend of the previous examples and write (8.7) in 
differential form, we have 

. 
∂

∂t
vt [f ](x, i) = ai · ∇vt [f ](x, i) +

∑

j∈[n]
Qijvt [f ](x, j)

+ γiEi

⎡

⎣
∏

j∈[n]

N(j)∏

k=1

vt [f ](x, k) − vt [f ](x, i)

⎤

⎦ , x ∈ R
3, i ∈ [n],

(8.13) 

where . Q is the transition matrix of J . Again,  (8.13) comes with the caution that, 
written in this differential-difference form, smoothness for the sake of, e.g., working 
with the operators .ai · ∇ in a pointwise sense is an issue that requires attention and 
that (8.7) avoids.
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Neutron Branching Process Finally, and most importantly for this text, the NBP 
is, of course, included in our definition of the general BMP. In this case the 
branching rate is given by .γ = σf. The motion semigroup .(Pt , t ≥ 0) corresponds 
to that of an NRW that scatters at rate . σs and chooses its new velocity according 
to . πs, with killing when the spatial component exits D; technically speaking, this 
is when the underlying Markov process .(R, Υ ) exits .D × V , as it will always do 
so by the process R exiting D. When considering the branching mechanism, one 
again needs to be careful to remember that the underlying state space is . D × V

and so, although fission events are local with respect to particle position, they are 
non-local in the velocity component. Hence, seen as a branching process on .D ×V , 
the branching mechanism is non-local. The non-linear evolution equation (8.7) was 
given in Theorem 5.2, and due to our deliberate replicated use of notation, it appears 
identical. 

It is worth noting that the NBP is closely related to the previous example in the 
sense that the neutron velocity space V is analogous to the collection .{a1, · · · ,an}. 
Hence one may think of the dependency of the PBE (5.7) on . υ as analogous to 
the indexing of the solution by i in (8.13). The process of scattering for the NRW 
in (5.7) is also analogous to the role that the Markov chain J plays in (8.13). The  
analogy between (5.7) and (8.13) would be complete had we made . γ and . P depend 
fully on .i ∈ [n] and .x ∈ R

3 in (8.13). 

8.4 Linear Semigroup Evolution and Many-to-One 

In the setting of the NBP, we were very much driven by the desire to characterise 
solutions to the (mild) NTE in terms of a stochastic process. This resulted in the 
identification of its solution .(ψt , t ≥ 0) as the mean of linear functionals of the 
NBP. In the general setting of BMPs, our priorities are the other way around. We 
are primarily concerned with the evolution of linear functionals of the BMP, which 
leads us to a linear semigroup evolution equation. 

Define the mean semigroup of our BMP as 

.ψt [f ](x) := Eδx [Xt [f ]], x ∈ E, f ∈ B+(E), t ≥ 0. (8.14) 

Although we are now in a much more general setting, the fact that .(ψt , t ≥ 0) is a 
semigroup can be shown as in Lemma 3.4. Furthermore, set 

. F[f ](x) = γ (x)Ex

[
N∑

i=1

f (xi) − f (x)

]
=: γ (x)(m[f ](x) − f (x)), x ∈ E.

(8.15) 

Note that both .(ψt , t ≥ 0) and . F are consistent with their definitions for the NBP. 
Thanks to the calculations we have already undertaken for the NBP, the next lemma
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requires no proof as it is identical to Lemma 3.6 in the NBP setting. In order to state 
it, we need to introduce the following assumption: 

(G1) .supx∈E Ex[N ] < ∞. 

Note that (G1) is equivalent to .supx∈E m[f ](x) < ∞ for .f ∈ B+(E), which is 
covered by (H1) in the NBP setting. 

Lemma 8.1 Under (G1), the mean semigroup .(ψt , t ≥ 0) satisfies 

. ψt [f ](x) = Pt [f ](x) +
∫ t

0
Ps [Fψt−s[f ]] (x)ds, t ≥ 0, x ∈ E, f ∈ B+(E).

(8.16) 

As an operator from .B+(E) to itself, .(ψt , t ≥ 0) is uniquely determined by (8.16). 

Just as in the NBP setting, the linear semigroup evolution (8.16) deserves 
a second representation for its unique solution, that is to say, the many-to-one 
representation. To this end, suppose that .ξ = (ξt , t ≥ 0), with probabilities 
.P = (Px, x ∈ E), is the Markov process corresponding to the semigroup . P. Let us 
introduce a new Markov process .ξ̂ = (ξ̂t , t ≥ 0) which evolves as the process . ξ , but  
at rate .γ (x)m[1](x) the process is sent to a new position in E, such that for all Borel 
.A ⊂ E, the new position is in A with probability .m[1A](x)/m[1](x). We will refer 
to the latter as extra jumps. Note the law of the extra jumps is well defined thanks to 
the assumption (G1), which we earlier remarked ensures that .supx∈E m[1](x) < ∞. 
We denote the probabilities of . ̂ξ by .(P̂x, x ∈ E). We can now state our many-to-one 
formula. 

Lemma 8.2 (Many-to-One) Write .B(x) = γ (x)(m[1](x) − 1), .x ∈ E. For  . f ∈
B+(E) and .t ≥ 0, under (G1), we have 

.ψt [f ](x) = Êx

[
exp

(∫ t

0
B(ξ̂s)ds

)
f (ξ̂t )

]
. (8.17) 

Proof First note that (8.16) is equivalent to 

. ψt [f ](x) = Pt [f ] +
∫ t

0
Ps [γ (m[ψt−s[f ]] − ψt−s[f ])] (x)ds

= Pt [f ] +
∫ t

0
Ps

[
γm[1]

(
m[ψt−s[f ]]

m[1] − ψt−s[f ]
)]

(x)ds

+
∫ t

0
Ps[Bψt−s[f ]]ds, t ≥ 0, x ∈ E.

At the same time, suppose we denote the right-hand side of (8.17) by .ψ̂t [f ](x), . t ≥
0. By conditioning this expectation on the first extra jump, we get, for .f ∈ B+(E), 
.x ∈ E and .t ≥ 0,
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. ψ̂t [f ](x)

= Ex

[
e− ∫ t

0 γ (ξs )m[1](ξs )dse
∫ t

0 B(ξs )dsf (ξt )
]

+ Ex

[∫ t

0
m[1](ξs)γ (ξs)e

− ∫ s
0 γ (ξu)m[1](ξu)due

∫ s
0 B(ξu)dum[ψ̂t−s[f ]](ξs)

m[1](ξs)
ds

]
.

(8.18) 

Now appealing to Theorem 2.1, we can use the principle of transferring between 
the multiplicative and additive potential in integral evolution equations to deduce 
that (8.18) solves (8.16). Uniqueness of solutions to (8.16) now allows us to 
conclude the statement of the lemma. ⨅⨆

8.5 Asmussen–Hering Class, Criticality, and Ergodicity 

In this and the subsequent chapters, we would like to establish results for as general 
as possible a setting within the class branching Markov processes. It goes without 
saying that some assumptions will be necessary. One of the main assumptions we 
will henceforth work with assimilates the properties of the expectation semigroup 
in Theorem 4.1 that we have proved in the NBP setting. 

(G2) There exist a constant .λ∗ ∈ R , a function .0 ≤ ϕ ∈ B+(E), and a finite 
measure . ϕ̃ such that, for .f ∈ B+(E), 

. ψt [ϕ] = eλ∗t ϕ and ϕ̃ [ψt [f ]] = eλ∗t ϕ̃[f ].

Furthermore, let us define 

. Δt = sup
x∈E,f ∈B+

1 (E)

|ϕ(x)−1e−λ∗tψt [f ](x) − ϕ̃[f ]|, t ≥ 0.

We assume that 

. sup
t≥0

Δt < ∞ and lim
t→∞ Δt = 0. (8.19) 

We refer to branching Markov processes which satisfy (G2) as belonging to the 
Asmussen–Hering class of processes; see the comments section of this chapter for 
further remarks on why we use this name. 

Note that Theorem 4.1 implies that the NBP lies in the Asmussen–Hering class 
by taking the eigenmeasure in (G2) to be .ϕ̃(x)dx, where . ϕ̃ was the left eigenfunction 
given in Theorem 4.1. We note also that (G2) implies (G1) as (8.19) necessitates a 
finite first moment.



158 8 A General Family of Branching Markov Processes

As in the setting of NBPs, as soon as we assume (G2), we can introduce a notion 
of criticality. Specifically, we say that our BMP is as follows: 

Subcritical If .λ∗ < 0, in which case the average mass decays to zero over time 
at rate .|λ∗|. 

Critical If .λ∗ = 0, in which case the average mass remains essentially 
constant over time. 

Supercritical If .λ∗ > 0, in which case we see the average mass in the system 
growing exponentially over time at rate . λ∗. 

Our assumption (G2) is relatively strong; however, considering the work that 
was needed to establish the analogous spectral property for the NBP, this seems a 
reasonable starting point in order to prove general results. 

One advantage of (G2) is that it also provides a strong sense of ergodicity for the 
semigroup .(ψt , t ≥ 0) as the following theorem below demonstrates, which will be 
crucial for future calculations. In order to state it, let us introduce a class of functions 
. C on .B+

1 (E) × E × [0, 1] × [0,∞) such that F belongs to class . C if 

. F [g](x, s) := lim
t→∞ F [g](x, s, t), g ∈ B+

1 (E), x ∈ E, s ∈ [0, 1],

exists, 

. sup
x∈E,s∈[0,1],g∈B+

1 (E)

|ϕ(x)F [g](x, s)| < ∞, (8.20) 

and 

. lim
t→∞ sup

x∈E,s∈[0,1],g∈B+
1 (E)

ϕ(x)
∣∣F [g](x, s) − F [g](x, s, t)

∣∣ = 0. (8.21) 

Note that we have abused notation and used F for both the function that lies in 
. C and its limit in t , and however, this should not cause any confusion later on. 

Theorem 8.1 Assume (G2) holds, .λ = 0, and that .F ∈ C . Define 

. Ξt = sup
x∈E,g∈B+

1 (E)

∣∣∣∣
1

ϕ(x)

∫ 1

0
ψut [ϕF [g](·, u, t)](x)du −

∫ 1

0
ϕϕ̃ [F [g](·, u)] du

∣∣∣∣ ,

t ≥ 0.

Then 

. sup
t≥0

Ξt < ∞ and lim
t→∞ Ξt = 0. (8.22)
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Proof We will show that 

. lim
t→∞ sup

x∈E,g∈B+
1 (E)

∣∣∣∣
1

ϕ(x)
ψut [ϕF [g](·, u, t)](x) − ϕϕ̃ [F [g](·, u)]

∣∣∣∣ = 0,

as, with this in hand, we can deduce that 

. lim
t→∞ sup

x∈E,g∈B+
1 (E)

∣∣∣∣
∫ 1

0

1

ϕ(x)
ψut [ϕF [g](·, u, t)](x)du −

∫ 1

0
ϕϕ̃ [F [g](·, u)] du

∣∣∣∣

≤
∫ 1

0
lim

t→∞ sup
x∈E,g∈B+

1 (E)

∣∣∣∣
1

ϕ(x)
ψut [ϕF [g](·, u, t)](x) − ϕϕ̃ [F [g](·, u)]

∣∣∣∣ du

= 0,

which follows from (8.21). First note that 

. 

∣∣∣∣
1

ϕ(x)
ψut [ϕF [g](·, u, t)](x) − ϕϕ̃ [F [g](·, u)]

∣∣∣∣

≤ 1

ϕ(x)
ψut [|ϕF [g](·, u, t) − ϕF [g](·, u)|](x)

+
∣∣∣∣

1

ϕ(x)
ψut [ϕF [g](·, u)](x) − ϕϕ̃ [F [g](·, u)]

∣∣∣∣ .

Due to assumption (8.21), for  t sufficiently large, the first term on the right-hand 
side above can be controlled by .ϕ−1(x)ψut [ε](x). Combining this with the above 
inequality yields 

. sup
x∈E,g∈B+

1 (E)

∣∣∣∣
1

ϕ(x)
ψut [ϕF [g](·, u, t)](x) − ϕϕ̃ [F [g](·, u)]

∣∣∣∣

≤ sup
x∈E

∣∣∣ϕ−1(x)ψut [ε](x) − ϕ̃[ε](x)

∣∣∣ + ε sup
x∈E

ϕ̃[1](x)

+ sup
x∈E,g∈B+

1 (E)

∣∣∣∣
1

ϕ(x)
ψut [ϕF [g](·, u)](x) − ϕϕ̃ [F [g](·, u)]

∣∣∣∣ . (8.23) 

We note that (8.20) and the first (respectively, second) statement of (8.19) in (G2), 
together with dominated convergence and the fact that . ε may be taken arbitrarily 
small, immediately imply that the first (respectively, second) statement in (8.22) 
holds. ⨅⨆
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8.6 Re-oriented Non-linear Semigroup 

As the reader will have observed, the recursion equations of the mild NTE (3.32) 
and PBE (5.6) enjoy a robustness that allows an interchange between a driving 
semigroup, e.g., .(Ut , t ≥ 0) or .(Pt , t ≥ 0), and an action operator in the integral 
term, e.g., . S or . G. 

In the general setting of (8.9), we are interested in exercising a similar change 
in the driving semigroup from . P to . ψ for technical reasons pertaining to future 
calculations around moments. Also, for technical reasons, with . ψ as the driving 
semigroup, it is more convenient to instead look at writing down an evolution 
equation of 

.ut [f, g](x) = Eδx

[
1 − e−Xt [f ]−∫ t

0 Xs [g]ds
]
, t ≥ 0, x ∈ E, (8.24) 

for .f, g non-negative and measurable, despite the fact that it is not a semigroup. The 
main benefit of .(ut , t ≥ 0) in place of .(vt , t ≥ 0) is that the random variable in the 
expectation on the right-hand side of (8.24) is equal to zero on the extinction set. 
This removes the need to deal with adjusted semigroups as discussed below (8.7). 

Another point of interest when it comes to (8.24) can be seen when we set . f = θ

and .g = 0 and then take the limit as .θ → ∞, in which case we identify . ut [∞, 0] =
limθ→∞ ut [θ, 0]. Remembering that an empty product is defined to be unity, we see 
for this special case that 

.ut (x) := ut [∞, 0](x) = Px(ζ > t), t ≥ 0, x ∈ E, (8.25) 

where 

. ζ = inf{t > 0 : Xt [1] = 0}

is the extinction time of the BMP. 
As mentioned above, the change from . P to . ψ comes at the cost of changing the 

operator . G. Thus, for .f ∈ B+
1 (E), define 

.A[f ](x) = γ (x)Ex

[
N∏

i=1

(1 − f (xi)) − 1 +
N∑

i=1

f (xi)

]
, x ∈ E. (8.26) 

Theorem 8.2 Suppose (G1) holds. For all .f, g non-negative, measurable functions 
on E, .x ∈ E and .t ≥ 0, the non-linear semigroup .ut [f, g](x) satisfies 

. ut [f, g](x) = ψt [1 − e−f ](x) −
∫ t

0
ψs [A[ut−s[f, g]] − g(1 − ut−s[f, g])] (x)ds,

(8.27) 
uniquely in .B+

1 (E).
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Proof Again, the proof uses standard techniques for integral evolution equations, so 
we only sketch the proof. Instead of considering .ut [f, g], we will first work instead 
with 

.vt [f, g] = Eδx

[
e−Xt [f ]−∫ t

0 Xs [g]ds
]
, t ≥ 0, x ∈ E, f, g ≥ 0, (8.28) 

which will turn out to be more convenient for technical reasons. 
By splitting the expectation in (8.28) on the first branching event and appealing 

to the Markov property, we get, for .f, g ≥ 0, .t ≥ 0, and .x ∈ E, 

. vt [f, g](x) = Ex

[
e− ∫ t

0 γ (ξs )dse−f (ξt )−
∫ t

0 g(ξs )ds
]

+ Ex

[∫ t

0
γ (ξs)e

− ∫ s
0 γ (ξu)+g(ξu)duH[vt−s[f, g]](ξs)ds

]
,

where 

. H[g](x) = Ex

[
N∏

i=1

g(xi)

]
, g ∈ B+

1 (E), x ∈ E.

Using Theorem 2.1, we can move the multiplicative potential with rate .γ + g to an 
additive potential in the above evolution equation to obtain 

. vt [f, g](x) = P̂t [e−f ](x) +
∫ t

0
Ps [G[vt−s[f, g]) − gvt−s[f, g]] (x)ds,

(8.29) 

which also shows the existence of a non-negative solution to (8.29), bounded by 
unity. 

For .f ∈ B+
1 (E), x ∈ E, define 

. D[f ](x) = γ (x)Ex

[
N∏

i=1

f (xi) −
N∑

i=1

f (xi)

]
= γ (x) (H[f ](x) − m[f ](x)) ,

and .(ṽt , t ≥ 0) via 

.ṽt [f, g](x) = ψt [e−f ](x) +
∫ t

0
ψs

[
D
[
ṽt−s[f, g]] − gṽt−s[f, g]] (x)ds

= Êx

[
e
∫ t

0 B(ξ̂s )dse−f (ξ̂t )
]
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+ Êx

[∫ t 

0 
e
∫ s 

0 B(ξ̂u)du
(
D
[
ṽt−s[f, g]](ξ̂s) − g(ξ̂s)ṽt−s[f, g](ξ̂s)

)
ds

]
, 

(8.30) 

for .x ∈ E, t ≥ 0, and .f, g ≥ 0. Note that for the moment we do not claim a solution 
to (8.30) exists. 

For convenience, we will define 

. Kt [f, g](x) = Êx

[∫ t

0
e
∫ s

0 B(ξ̂u)du
(
D
[
ṽt−s[f, g]](ξ̂s) − g(ξ̂s)ṽt−s[f, g](ξ̂s)

)
ds

]
,

so that .ṽt [f, g](x) = ψt [e−f ](x)+Kt [f, g](x). By conditioning the right-hand side 
of (8.30) on the first jump of . ̂ξ (bearing in mind the dynamics of . ̂ξ given just before 
Lemma 8.2), we can use the Markov property (noting that .B(x) − γm[1] = γ ) to  
obtain 

. ̃vt [f, g](x)

= Ex

[
e− ∫ t

0 γ (ξs )dse−f (ξt )
]

+ Ex

[∫ t

0
γ (ξ𝓁)m[1](ξ𝓁)e

− ∫ 𝓁
0 γ (ξs )ds m[ψt−𝓁[e−f ]](ξ𝓁)

m[1](ξ𝓁)
d𝓁

]

+ Ex

[
e− ∫ t

0 γ (ξu)m[1](ξu)du

∫ t

0
e
∫ s

0 B(ξu)du

× (
D
[
ṽt−s[f, g]](ξs) − g(ξs)[ṽt−s[f, g]) ds

]

+ Ex

[ ∫ t

0
γ (ξ𝓁)m[1](ξ𝓁)e

− ∫ 𝓁
0 γ (ξu)m[1](ξu)du

( ∫ 𝓁

0
e
∫ s

0 B(ξu)du
(
D
[
ṽt−s[f, g]](ξs) − g(ξs)ṽt−s[f, g](ξs)

)
ds

+ e
∫ 𝓁

0 B(ξu)dum[Kt−𝓁[g]](ξ𝓁)

m[1](ξ𝓁)

)
d𝓁

]
.

Gathering terms and exchanging the order of integration in the double integral, this 
simplifies to 

.ṽt [f, g](x)

= Ex

[
e− ∫ t

0 γ (ξs )dse−f (ξt )
]

+ Ex

[∫ t

0
γ (ξ𝓁)e

− ∫ 𝓁
0 γ (ξs )dsm[ṽt−𝓁[f, g](x)](ξ𝓁)d𝓁

]

Ex

[
e− ∫ t

0 γ (ξu)m[1](ξu)du

∫ t

0
e
∫ s

0 B(ξu)du
(
D
[
ṽt−s[f, g]](ξs) − g(ξs)[ṽt−s[f, g]) ds

]
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+ Ex

[ ∫ t 

0

∫ t 

0 
1(s≤𝓁)γ (ξ𝓁)m[1](ξ𝓁)e

− ∫ 𝓁
0 γ (ξu)m[1](ξu)due

∫ s 
0 B(ξu)du

(
D
[
ṽt−s[f, g]](ξs) − g(ξs)ṽt−s[f, g](ξs))

)
d𝓁 ds

]

= Ex

[
e− ∫ t 

0 γ (ξs )dse−f (ξt )
]

+ Ex

[∫ t 

0 
γ (ξ𝓁)e

− ∫ 𝓁
0 γ (ξs )ds m[ṽt−𝓁[g](x)](ξ𝓁)d𝓁

]

+ Ex

[∫ t 

0 
e− ∫ s 

0 γ (ξu)du
(
D
[
ṽt−s[f, g]](ξs) − g(ξs)ṽt−s[f, g](ξs))

)
ds

]
. 

Finally, appealing to the change of multiplicative potential to additive potential in 
Theorem 2.1, we get 

. ̃vt [f, g](x) =P̂t [e−f ](x) +
∫ t

0
Ps

[
G
[
ṽt−s[f, g]] − gṽt−s[f, g]] (x)ds,

and hence .(ṽt , t ≥ 0) is a solution to (8.29). Reversing these arguments also 
shows that any solution to (8.29) is also a solution to (8.30) and hence that both 
equations have domain equal to .B+

1 (E). A standard argument using .γ ∈ B+(E), 
the assumption (G1), and Grönwall’s lemma also tells us that (8.29) has a unique 
solution in .B+

1 (E). 
To complete the theorem, note that 

. 1 − ψt [e−f ](x) = ψt [1 − e−f ](x) + 1 − ψt [1](x)

and that 

. 1 − ψt [1](x) = Êx

[∫ t

0
B(ξ̂s)e

∫ s
0 B(ξ̂u)duds

]
=

∫ t

0
ψs[B](x)ds.

Hence, working from (8.30) and the definitions of . D and . A, which are related via 

. D[1 − f ](x) = γ (x)Ex

[
∏

i

(1 − f (xi)) −
N∑

i=1

(1 − f (xi))

]
= A[f ](x) + B(x),

for .x ∈ E, .f ≥ 0, we get 

.ut [f, g](x) = 1 − vt [f, g](x)

= 1 − ψt [e−f ](x) −
∫ t

0
ψs

[
D
[
1 − ut−s[f, g]]

−g(1 − ut−s[f, g])] (x)ds
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= ψt [1 − e−f ] −
∫ t 

0 
ψs

[
A
[
ut−s[f, g]] − g(1 − ut−s[f, g])] (x)ds, 

as required. . □ ⨅⨆

8.7 Discrete-Time Branching Markov Processes 

In light of the discussion in Chap. 7, we will discuss on occasion discrete-time 
analogues of our branching Markov process. 

We consider a discrete-time spatial branching process .(Xn, n ≥ 0). At each unit 
of time, independently for each individual in the process, a branching event occurs 
such that, if the parent is at .x ∈ E, the new configuration of particles is given by the 
point process 

. Z =
N∑

i=1

δzi
,

with probabilities and .(Px, x ∈ E). As in the continuous-time setting, we allow for 
the possibility of absorption, that is, we may have .Px(N = 0) > 0. 

Letting .N(n) denote the number of individuals in the n-th generation, the 
generational branching process is formally defined via the collection of atomic 
measures 

. Xn =
N(n)∑

i=1

δ
x

(n)
i

, n ≥ 0,

where .{x(n)
i : i = 1, . . . , N(n)} denotes the collection of particles in the n-th 

generation. With a slight conflict of notation with the continuous-time setting, we 
again work with .(Pμ,μ ∈ Mc(E)) as the law of the branching process defined 
above. 

Remark 8.1 As a special setting, we can easily see a discrete-time Markov 
branching process embedded in each continuous-time Markov branching process 
(as defined earlier in this chapter), by sampling it at generational time. That is to 
say, by considering a continuous-time branching Markov process along each of its 
genealogical lines of descent at the moment that the n-th generation of offspring 
appears, we see a discrete-time Markov branching process. In particular, for each 
.x ∈ E, we can link . Z under . Px of the discrete-time setting to . Z with probabilities 
.(Px, x ∈ E) of the discrete-time setting via 

.Ex

[
e−Z [f ]] = Ex

[∫ ∞

0
γ (ξs)e

− ∫ s
0 γ (ξu)duEξs

[
e−Z[f ]] ds

]
, f ∈ B+(E),
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where we recall .(ξ, P) is the stochastic process whose semigroup is given by 
.(Pt , t ≥ 0). This was precisely the scenario we considered for the embedding of 
the NGP into the NBPs in (7.35). 

Returning to the general discrete-time setting, the associated non-linear semi-
group is given by 

.Vn[g](x) := Eδx

⎡

⎣
N(n)∏

i=1

g(x
(n)
i )

⎤

⎦ , n ≥ 1, x ∈ E, g ∈ B+
1 (E), (8.31) 

with .V0[g](x) = g(x). Analogously to (8.6) in the continuous setting, we have the 
Markov branching property, 

.E

⎡

⎣
N(n+m)∏

i=1

g(x
(n)
i )

∣∣∣∣∣∣
Kn

⎤

⎦ =
N(n)∏

i=1

Vm[g](x(n)
i ), (8.32) 

where .Kn = σ(x
(𝓁)
i , i = 1, · · · , N(𝓁), 𝓁 ≤ n). Moreover, by taking expectations 

across (8.32), this similarly justifies the identification of (8.31) as a semigroup via 
the property .Vn+m[g] = Vn[Vm[g]], .n,m ≥ 0. 

With a slight abuse of notation from the continuous-time setting, we can define 
the non-linear branching mechanism 

.G[g](x) = Ex

[
N∏

i=1

g(zi)

]
, x ∈ E, g ∈ B+

1 (E). (8.33) 

Noting that .G[g] = V1[g], the branching Markov property also gives us the non-
linear semigroup evolution equation 

.Vn[g](x) = G[Vn−1[g]](x), n ≥ 1. (8.34) 

Similarly, under the analogue of (G1), we have the associated linear semigroup, 
defined by 

.Φn[g](x) := Eδx

⎡

⎣
N(n)∑

i=1

g(x
(n)
i )

⎤

⎦ , n ≥ 1, x ∈ E, g ∈ B+(E), (8.35) 

with .Φ0[g](x) = g(x), which satisfies the semigroup property . Φn+m[g] =
Φn[Φm[g]]; see, for example, the calculation in the setting of the NGP (7.6). 
Moreover, again abusing notation from the continuous-time setting, the linear 
branching mechanism is given by
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.F[g](x) = Ex

[
N∑

i=1

g(zi)

]
, x ∈ E, g ∈ B+(E), (8.36) 

and noting that .F[g] = Φ1[g], we also have the linear evolution equation 

.Φn[g](x) = F[Φn−1[g]](x). (8.37) 

It is interesting to note that the two evolution equations (8.34) and (8.37) appear 
to bear little similarity to their analogues in continuous time. In particular, one 
may wish to ask how to assimilate Theorem 8.2 in the discrete-time setting. The 
following result may be considered as precisely this assimilation. 

Lemma 8.3 For .n ≥ 1, .x ∈ E, .g ∈ B+
1 (E), 

.Vn[g](x) =
n−1∑

𝓁=0

Φ𝓁[(G − F)[Vn−𝓁−1[g]]](x) + Φn[g](x). (8.38) 

Proof Recalling that .Φ1[g](x) = F[g](x), we can add and subtract terms in (8.34) 
to give us 

. Vn[g](x) = (G−F)[Vn−1[g]](x)+Φ1[Vn−1[g]](x), n ≥ 1, x ∈ E, g ∈ B+
1 (E).

Using the same trick with the second term on the right-hand side of the above 
representation, we have 

. Vn[g](x) = (G − F)[Vn−1[g]](x) + Φ1[(G − F)[Vn−2[g]]](x)

+ Φ1[Φ1[Vn−2[g]]](x)

= (G − F)[Vn−1[g]](x) + Φ1[(G − F)[Vn−2[g]]](x) + Φ2[Vn−2[g]](x),

where, from (8.37), a simple recursion also tells us that 

. Φn[g](x) = Φ1[Φ1[· · ·Φ1︸ ︷︷ ︸
n times

[g]]](x).

Continuing this recursion, we obtain (8.38). ⨅⨆

8.8 Comments 

Branching Markov processes enjoy enormous exposure in the probabilistic litera-
ture. So much so that it would be difficult to give a concise overview of the entirety 
of the literature here. Instead we give some key historical references.



8.8 Comments 167

Some of the earliest works on spatial branching processes emerge from the Soviet 
Union and Japan. Most notably are the works of Sevast’yanov [120–122] and Ikeda 
et al. [75–77]. Enthusiasm for the, then, fledgling theory of branching processes 
resulted in a number of classical texts emerging through the late 1960s to mid-1980s, 
in which there are some spatial treatments. See, for example, Harris [70], Athreya 
and Ney [6], and Asmussen and Hering [5]. The latter, in particular, summarises a 
general perspective that we have adopted from this chapter onwards. 

The many-to-one formula in Lemma 8.2 is a very general concept that runs 
throughout classical and modern branching processes, and it would be difficult to 
give a complete and just historical summary of its evolution through the literature. 
An early example of where a many-to-one formula is used as a key component to 
analytical computations is found in the work of Doney [41]. 

Asmussen and Hering [3–5] observed that the assumption (G2) was a natural way 
to provide analytical control over the general class of branching Markov processes, 
from which numerous results can be derived. Some of them are included in the later 
chapters. 

For a lot of branching Markov process literature, it is common to describe 
the linear and non-linear semigroup in terms of differential equations, such as 
in the examples of Sect. 8.3. The use of mild equations, analogous to the Pál– 
Bell equation for neutron branching processes, is less often used for BMPs and 
is more commonly seen in the superprocesses literature; cf. [49]. The development 
of their representation in terms of the linear semigroup operator .(Tt , t ≥ 0), cf.  
Theorem 8.2, was recently given in [67]. We will show in the next chapter that, 
combined with assumption (G2), this representation of the non-linear semigroup 
offers tractability on asymptotic moment computations.



Chapter 9 
Moments 

We saw in Sect. 5.3 the claim that the asymptotic moments can be derived by 
differentiating the non-linear semigroup equation (8.7). This is also the case in the 
general setting. Indeed, recalling .(vt , t ≥ 0) and .(ut , t ≥ 0) from (8.5) and (8.24), 
respectively, and noting that .vt [·] = ut [·, 0], .t ≥ 0, it follows that for .f ∈ B+(E), 
.x ∈ E, .t ≥ 0, and . k ≥ 1, we have  

.ψ
(k)
t [f ](x) := Eδx

[
Xt [f ]k

]
= (−1)k+1 dk

dθk
ut [θf, 0](x)

∣∣∣∣
θ=0

. (9.1) 

Working within the Asmussen–Hering class of BMPs, the non-linear equation (8.27) 
for .(ut , t ≥ 0) offers the advantage that it is written in terms of .(ψt , t ≥ 0). This  
allows the asymptotic control of .(ψt , t ≥ 0) offered by (G2) (e.g., in Theorem 8.1) 
to be exploited to yield asymptotic control of the derivatives in . θ of . (ut [θf, 0], t ≥
0) and hence .(ψ(k)

t [f ], t ≥ 0) for each .k ≥ 2. Following this logic, we give 
precise asymptotics of the k-th moments of our class of BMPs in the three criticality 
regimes. The methods we will use are extremely robust, and thus we may employ 
the same techniques to the derivatives in . θ of .(ut [0, θf ], t ≥ 0). As such, we are 
able to analyse the moments of the running occupation functional 

.I
(k)
t [g](x) := Eδ(x)

[(∫ t

0
Xs[g]ds

)k
]

, (9.2) 

for .x ∈ E, .g ∈ B+(E), .k ≥ 1, .t ≥ 0. 
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9.1 Evolution Equations for the k-th Moments 

Before we can sensibly talk about the k-th moments of our BMP, we need to be sure 
that they are finite. For this, an assumption is certainly needed on the basic data of 
the BMP, and somewhat obviously, we need at least to ensure there are k moments 
of the offspring distribution. We thus fix .k ≥ 2 and introduce the following. 

(G3) We have that .supx∈E Ex[Z[1]k] < ∞. 

Before we finally turn our attention to the evolution equation generated by the 
k-th moment functional .ψ(k)

t , .t ≥ 0, we will need to remind ourselves of one more 
classical result, the Leibniz rule for differentiation. 

Lemma 9.1 (Leibniz Rule) Suppose .g1, . . . , gm are k-times continuously differ-
entiable functions on . R, for .k ≥ 1. Then 

. 
dk

dxk

(
m∏

i=1

gi(x)

)
=

∑
k1+···+km=k

(
k

k1, . . . , km

) m∏
𝓁=1

g
(k𝓁)
𝓁 (x),

such that the sum is taken over all non-negative integers .k1, · · · , km with . 
∑m

i=1 ki =
k.

Finally, we are ready to describe an evolution equation for the k-th moment 
of our MBP, which will lay the foundations for an inductive argument, giving the 
asymptotic behaviour of moments in each of the three criticality regimes. 

Proposition 9.1 Fix .k ≥ 2. Under the assumptions (G2) and (G2), with the 
additional assumption that 

. sup
x∈E,s≤t

ψ(𝓁)
s [f ](x) < ∞, 𝓁 ≤ k − 1, f ∈ B+(E), t ≥ 0, (9.3) 

it holds that 

.ψ
(k)
t [f ](x) = ψt [f k](x) +

∫ t

0
ψs

[
γ η

(k−1)
t−s [f ]

]
(x) ds, t ≥ 0, (9.4) 

where 

. η
(k−1)
t−s [f ](x) = Ex

⎡
⎢⎣

∑

[k1,...,kN ]2
k

(
k

k1, . . . , kN

) N∏
j=1

ψ
(kj )

t−s [f ](xj )

⎤
⎥⎦ ,

and .[k1, . . . , kN ]2
k is the set of all non-negative N -tuples .(k1, . . . , kN) such that 

.
∑N

i=1 ki = k and at least two of the . ki are strictly positive.
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Proof Recall from (8.27) that 

.ut [θf, 0](x) = ψt [1 − e−θf ](x)−
∫ t

0
ψs [A[ut−s[θf, 0]]] (x)ds, t ≥ 0. (9.5) 

It is clear that differentiating the first term . k times and setting .θ = 0 on the right-
hand side of (9.5) yield 

.
∂k

∂θk
ψt [1 − e−θf ](x)

∣∣∣∣
θ=0

= (−1)k+1ψt [f k](x). (9.6) 

Thus it remains to differentiate the second term on the right-hand side of (9.5) . k

times. To this end, without concern for passing derivatives through expectations, 
using the Leibniz rule in Lemma 9.1, we have  

. − ∂k

∂θk
A[ut [θf , 0]](x)

∣∣∣∣
θ=0

= ∂k

∂θk
γ (x)Ex

[
1 −

N∏
i=1

Eδxi
[e−θXt [f ]] −

N∑
i=1

Eδxi
[1 − e−θXt [f ]]

] ∣∣∣∣
θ=0

= −γ (x)Ex

[ ∑
k1+···+kN=k

(
k

k1, . . . , kN

) N∏
j=1

(−1)kj ψ
(kj )

t [f ](xj )

+ (−1)k+1
N∑

i=1

ψ
(k)
t [f ](xi)

]

= γ (x)Ex

[
(−1)k+1

∑
k1+···+kN=k

(
k

k1, . . . , kN

) N∏
j=1

ψ
(kj )

t [f ](xj )

+ (−1)k
N∑

i=1

ψ
(k)
t [f ](xi)

]
(9.7) 

such that the sum is taken over all non-negative integers .k1, · · · , kN with . 
∑N

i=1 ki =
k. 

Next let us look in more detail at the sum/product term on the righthand (9.7). 
Consider the terms where only one of the . ki in the sum is positive, in which case 
.ki = k and 

. 

(
k

k1, . . . , kN

)
= 1.

There are N ways this can happen in the sum–product term and hence
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. 
∑

k1+···+kN=k

(
k

k1, . . . , kN

) N∏
j=1

ψ
(kj )

t [f ](xj )

=
N∑

i=1

ψ(k)[f ](xi) +
∑

[k1,...,kN ]2
k

(
k

k1, . . . , kN

) N∏
j=1

ψ
(kj )

t [f ](xj ),

where .[k1, . . . , kN ]2
k is the set of all non-negative N -tuples .(k1, . . . , kN) such that 

.
∑N

i=1 ki = k and at least two of the . ki are strictly positive. Substituting this back 
into (9.7) yields 

. − ∂k

∂θk
A[ut [e−θf , 0]]

∣∣∣∣
θ=0

= (−1)k+1γ (x)Ex

⎡
⎢⎣

∑

[k1,...,kN ]2
k

(
k

k1, . . . , kN

) N∏
j=1

ψ
(kj )

t [f ](xj )

⎤
⎥⎦ .

Now let us return to the justification of passing the derivatives through the 
expectation in the above calculation. We first note that derivatives are limits and so 
an “epsilon-delta” argument will ultimately require dominated convergence. This is 
where the assumption (G2) and (9.3) come in. On the right-hand side of (9.7), for a  

given .f ∈ B+(E), each of the .ψ
(kj )

t [f ](xj ) in the sum–product term is uniformly 
bounded in . xj by assumption (9.3) and the collection .[k1, . . . , kN ]2

k means that 
.0 ≤ kj ≤ k − 1 for each .j = 1, · · · , N . Moreover, there can be at most . k items in 
the sum/product. Noting that 

.

∑
k1+···+kN=k

(
k

k1, . . . , kN

)
= Nk, (9.8) 

the assumption (G2) allows us to use a domination argument with the .k-th order 
moment to pull the . k derivatives through the integral in t as required. ⨅⨆

9.2 Moment Evolution at Criticality 

The main result in this section tells us that, under our main assumptions, the k-th 
moment at time .t ≥ 0 grows like .tk−1 as .t → ∞ at criticality. 

Theorem 9.1 (Critical, .λ∗ = 0) Suppose that (G2) holds along with (G2) for some 
.k ≥ 1. Define
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. Δ
(𝓁)
t = sup

x∈E,f ∈B+
1 (E)

∣∣∣t−(𝓁−1)ϕ(x)−1ψ
(𝓁)
t [f ](x) − 2−(𝓁−1)𝓁! ϕ̃[f ]𝓁ϕ̃ [γV [ϕ]]𝓁−1

∣∣∣ ,

where 

.V [ϕ](x) = Ex

(
Z[ϕ]2 − Z[ϕ2]

)
. (9.9) 

Then, for all .𝓁 ≤ k and .c > 0, 

. sup
t≥c

Δ
(𝓁)
t < ∞ and lim

t→∞ Δ
(𝓁)
t = 0. (9.10) 

Proof We will prove Theorem 9.1 by induction, starting with the case . k = 1. In this  
case, assumption (G2) reads 

. sup
t≥0

Δt < ∞ and lim
t→∞ Δt = 0,

which gives us (9.18). 
We now assume that the theorem holds true in the branching Markov process 

setting for some .k ≥ 1 and proceed to show that (9.18) holds for all .𝓁 ≤ k + 1. 
To this end, first note that the induction hypothesis implies that (9.3) holds. Hence 

Proposition 9.1 tells us that 

. ϕ(x)−1t−kψ
(k+1)
t [f ](x)

= ϕ(x)−1t−kψt [f (k+1)](x)

+ ϕ(x)−1t−k

∫ t

0
ψs

⎡
⎢⎣E·

⎡
⎢⎣

∑

[k1,...,kN ]2
k+1

(
k + 1

k1, . . . , kN

) N∏
j=1

ψ
(kj )

t−s [f ](xj )

⎤
⎥⎦

⎤
⎥⎦ (x)ds

= ϕ(x)−1t−kψt [f (k+1)](x) + ϕ(x)−1t−(k−1)

×
∫ 1

0
ψut

⎡
⎢⎣E·

⎡
⎢⎣

∑

[k1,...,kN ]2
k+1

(
k + 1

k1, . . . , kN

) N∏
j=1

ψ
(kj )

t (1−u)[f ](xj )

⎤
⎥⎦

⎤
⎥⎦ (x)du,

(9.11) 

where we have used the change of variables .s = ut in the final equality. 
We now make some observations that will simplify the expression on the right-

hand side of (9.11) as .t → ∞. First note that due to (8.19), the first term on 
the right-hand side of (9.11) will vanish as .t → ∞. Next, note that, if more 
than two of the . ki in the sum is strictly positive, then renormalising by .tk−1
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will cause the associated summand to go to zero as well. For example, suppose 
without loss of generality that . k1 and . k2 are both strictly positive, and we can write 
.tk−1 = t (k+1)−2 = tk1−1tk2−1tk3 . . . tkN . Now the induction hypothesis tells us that 
the correct normalisation of each of the terms in the product is .tkj −1, which means 

that the item .ψ
(kj )

t (1−u) for a third .kj > 0 will be “over normalised to zero” in the 
limit. 

To make this heuristic rigorous, we can employ Theorem 8.1. To this end, let us 
set 

. F [f ](x, u, t) := 1

ϕ(x)tk−1 Ex

⎡
⎢⎣

∑

[k1,...,kN ]3
k+1

(
k + 1

k1, . . . , kN

) N∏
j=1

ψ
(kj )

t (1−u)[f ](xj )

⎤
⎥⎦ ,

(9.12) 

where .[k1, . . . , kN ]3
k+1 is the subset of .[k1, . . . , kN ]2

k+1, for which at least three of 
the . ki are strictly positive (which can be an empty set). We will now show that the 
conditions (8.20) and (8.21) are satisfied. 

First note that there are no more than .k+1 of the . ki that are strictly greater than 1 
in the product in (9.12). This follows from the fact that it is not possible to partition 
the set .{1, . . . , k + 1} into more than .k + 1 non-empty blocks. Next note that 

. 
1

tk−1

N∏
j=1

j :kj >0

ψ
(kj )

t (1−u)[f ](xj )

= (t (1 − u))k+1−#{j :kj >0}

tk−1

N∏
j=1

j :kj >0

ϕ(xj ) · 1

ϕ(xj )

ψ
(kj )

t (1−u)[f ](xj )

(t (1 − u))kj −1 .

The product term on the right-hand side is uniformly bounded in . xj and . t (1 − u)

bounded away from 0 due to boundedness of . ϕ and the fact that (9.18) is assumed 
to hold for all .𝓁 ≤ k by induction. For .t (1 − u) in the neighbourhood of zero, it 
is not necessary to multiply and divide by .(t (1 − u))k+1−#{j :kj >0}, as the product 
can be controlled by the factor .t−(k−1). Moreover, if .#{j : kj > 0} ≤ 2, the set  
.[k1, . . . , kN ]3

k+1 is empty; otherwise, the term .(t (1 − u))k+1−#{j :kj >0}/tk−1 is finite 
for all . t ≥ 1, say. From  (9.8) and (G2), we also observe that 

. sup
x∈E

Ex

⎡
⎢⎣

∑

[k1,...,kN ]3
k+1

(
k + 1

k1, . . . , kN

)⎤
⎥⎦ ≤ sup

x∈E

Ex

[
Z[1]k+1

]
< ∞.

Taking these facts into account, it is now straightforward to see that the earlier given 
heuristic can be made rigorous and
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. sup
x∈E,f ∈B+

1 (E)

u∈[0,1]

ϕ(x)F [f ](x, u, t) < ∞ and lim
t→∞ sup

x∈E,f ∈B+
1 (E)

u∈[0,1]

ϕ(x)F [f ](x, u, t) = 0

(9.13) 

hold. In particular, we can use dominated convergence to pass the limit in t through 
the expectation in (9.12) to achieve the second statement in (9.13). 

As F belongs to the class of functions . C , defined just before Theorem 8.1, the  
aforesaid theorem tells us that 

. lim
t→∞ sup

x∈E,f ∈B+
1 (E)

∣∣∣∣
1

ϕ(x)

∫ 1

0
ψut [ϕF(·, u, t)](x)du

∣∣∣∣ = 0. (9.14) 

Returning to (9.11), since the sum there requires that at least two of the . ki are 
positive, this means that the only surviving terms in the limit are those that are 
combinations of two strictly positive terms . ki and . kj such that .i /= j and . ki + kj =
k + 1. This can be thought of as choosing .i, j ∈ {1, . . . N} with .i /= j , choosing 
.ki ∈ {1, . . . , k}, and then setting .kj = k + 1 − ki . One should take care of however 
avoiding double counting each pair . (ki, kj ). Thus, we have  

. 
1

tkϕ(x)
ψ

(k+1)
t [f ](x)

= 1

ϕ(x)

∫ 1

0
ψut

[
γ (·)

2tk−1 E·
[ N∑

i=1

N∑
j=1
j /=i

k∑
ki=1

(
k + 1

ki

)

× ψ
(ki)
t (1−u)[f ](xi)ψ

(k+1−ki )
t (1−u) [f ](xj )

]]
(x)du,

(9.15) 

where the factor of .1/2 appears to compensate for the aforementioned double 
counting. 

In order to show that the right-hand side above delivers the required finiteness 
and limit (9.18), we again turn to Theorem 8.1. For .x ∈ E, .t ≥ 0, and .0 ≤ u ≤ 1, 
in anticipation of using this theorem, we now redefine 

. F [f ](x, u, t)

:= γ (x)

2ϕ(x)tk−1 Ex

[ N∑
i=1

N∑
j=1
j /=i

k∑
ki=1

(
k + 1

ki

)
ψ

(ki)
t (1−u)[f ](xi)ψ

(k+1−ki )
t (1−u) [f ](xj )

]
.

After some rearrangement, we have
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. F [f ](x, u, t)

= γ (x)(1 − u)k−1

2ϕ(x)
Ex

[ N∑
i=1

N∑
j=1
j /=i

k∑
ki=1

(
k + 1

ki

)

× ϕ(xi)ϕ(xj )
ψ

(ki )
t (1−u)[f ](xi)

ϕ(xi)(t (1 − u))ki−1

ψ
(k+1−ki )
t (1−u) [f ](xj )

ϕ(xj )(t (1 − u))k−ki

]
.

(9.16) 

Using similar arguments to those given previously in the proof of (9.14) may, 
again, combine the induction hypothesis, simple combinatorics, and dominated 
convergence to pass the limit as .t → ∞ through the expectation and show that 

. F [f ](x, u) := lim
t→∞ F [f ](x, u, t)

= (k + 1)!(ϕ̃[γV [ϕ]]/2)k−1ϕ̃[f ]k+1k
(1 − u)k−1

2ϕ(x)
γ (x)V [ϕ](x),

(9.17) 

for which one uses that 

. (k + 1)!(ϕ̃[γV [ϕ]]/2)k−1ϕ̃[f ]k+1kγ (x)V [ϕ](x)

= Ex

[ N∑
i=1

N∑
j=1
j /=i

k∑
ki=1

(
k + 1

ki

)
ϕ(xi)ϕ(xj )

× ki ! ϕ̃[f ]ki ϕ̃[γV [ϕ]]ki−1

2(ki−1)

(k + 1 − ki)! ϕ̃[f ]k+1−ki ϕ̃[γV [ϕ]]k−ki

2(k−ki )

]
.

Note that, thanks to the assumption (G2), the expression for .F(s, x) clearly 
satisfies (8.20). 

Subtracting the right-hand side of (9.17) from the right-hand side of (9.16), again  
appealing to the induction hypotheses, specifically the second statement in (9.18), it  
is not difficult to show that, for each .ε ∈ (0, 1), 

. lim
t→∞ sup

x∈E,f ∈B+
1 (E),u∈[0,ε)

|ϕ(x)F (x, u, t) − ϕ(x)F (x, u)| = 0.

On the other hand, again by subtracting the right-hand side of (9.17) from the right-
hand side of (9.16), the first statement in the induction hypothesis (9.18) also implies 
that there exists a constant .Ck > 0 (which depends on k but not . ε) such that
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. lim
t→∞ sup

x∈E,f ∈B+
1 (E),u∈[ε,1]

|ϕ(x)F (x, u, t) − ϕ(x)F (x, u)| ≤ Ck(1 − ε)k−1.

Since we may take . ε arbitrarily close to 1, we conclude that (8.21) holds. 
In conclusion, since the conditions of Theorem 8.1 are now met, we get the two 

statements of (9.18) as a consequence. ⨅⨆
Thanks to (G2), it is straightforward to see that .Xt [ϕ]/ϕ(x) is a martingale for 

each .x ∈ E and can thus be used to define the following change of measure: 

. 
dPδx

dQδx

∣∣∣∣
Ft

:= Xt [ϕ]
ϕ(x)

.

Using this and the fact that .ϕ̃[ϕ] = 1, we have the following corollary. 

Corollary 9.1 Let .x ∈ E and suppose the conditions of Theorem 9.1 hold. Define 

. Δ
(𝓁)
t = sup

x∈E

∣∣∣t−𝓁
Qδx [Xt [ϕ]𝓁] − 2−𝓁(𝓁 + 1)! ϕ̃ [γV [ϕ]]𝓁

∣∣∣ .

Then, for all .𝓁 ≤ k and .c > 0, 

. sup
t≥c

Δ
(𝓁)
t < ∞ and lim

t→∞ Δ
(𝓁)
t = 0. (9.18) 

In particular, if (G2) holds for all .k ≥ 1, under . Qδx , .Xt [ϕ]/t converges in law to a 
Gamma random variable with mean .ϕ̃ [γV [ϕ]]𝓁 /2. 

9.3 Moment Evolution at Non-criticality 

Next we turn to the supercritical setting. Whilst in the critical setting, the moments 
exhibited polynomial growth, the supercritical setting exhibits the phenomenon that 
the k-th moment grows like the k-th power of the first moment. 

Theorem 9.2 (Supercritical, .λ∗ > 0) Suppose that (G2) holds and (G2) holds 
for some .k ≥ 1. Redefine 

. Δ
(𝓁)
t = sup

x∈E,f ∈B+
1 (E)

∣∣∣e−𝓁λ∗t ϕ(x)−1ψ
(𝓁)
t [f ](x) − 𝓁!ϕ̃[f ]𝓁L𝓁(x)

∣∣∣ ,

where .L1(x) = 1 and we define iteratively, for .k ≥ 2,
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. Lk(x) =
∫ ∞

0
e−λ∗ksϕ(x)−1ψs

[
γE·

[ ∑

[k1,...,kN ]2
k

N∏
j=1

j :kj >0

ϕ(xj )Lkj
(xj )

]]
(x)ds,

where .[k1, . . . , kN ]2
k is the set of all non-negative N -tuples .(k1, . . . , kN) such that 

.
∑N

i=1 ki = k and at least two of the . ki are strictly positive. Then, for all .𝓁 ≤ k, (9.18) 
holds. 

Proof Suppose for induction that the result is true for all .𝓁-th integer moments with 
.1 ≤ 𝓁 ≤ k − 1. From the evolution equation (9.4), noting that .

∑N
j=1 kj = k, when 

the limit exists, we have 

. lim
t→∞ e−λ∗kt

∫ t

0
ϕ(x)−1ψs

⎡
⎢⎣γE·

⎡
⎢⎣

∑

[k1,...,kN ]2
k

(
k

k1, . . . , kN

) N∏
j=1

ψ
(kj )

t−s [f ](xj )

⎤
⎥⎦

⎤
⎥⎦ (x)ds

= lim
t→∞ t

∫ 1

0
e−λ∗(k−1)ute−λ∗utϕ(x)−1ψut

[
H [f ](x, u, t)

]
(x)du, (9.19) 

where 

. H [f ](x, u, t) := γ (x)Ex

⎡
⎢⎣

∑

[k1,...,kN ]2
k

(
k

k1, . . . , kN

) N∏
j=1

e−λ∗kj t (1−u)ψ
(kj )

t (1−u)[f ](xj )

⎤
⎥⎦.

It is easy to see that, pointwise in .x ∈ E and .u ∈ [0, 1), using the induction 
hypothesis and (G2), 

. H [f ](x) := lim
t→∞ H [f ](x, u, t)

= γ (x)Ex

⎡
⎢⎢⎣

∑

[k1,...,kN ]2
k

(
k

k1, . . . , kN

) N∏
j=1

j :kj >0

kj !ϕ̃[f ]kj ϕ(xj )Lkj
(xj )

⎤
⎥⎥⎦

= k!ϕ̃[f ]kγ (x)Ex

⎡
⎢⎢⎣

∑

[k1,...,kN ]2
k

N∏
j=1

j :kj >0

ϕ(xj )Lkj
(xj )

⎤
⎥⎥⎦ ,

where we have again used the fact that the . kj s sum to  k to extract the .ϕ̃[f ]k term. 
Using the expressions for .H [f ](x, u, t) and .H [f ](x) together with the definition 

of . Lk(x), we have, for any . ϵ > 0, as .t → ∞,
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. sup
x∈E,f ∈B+

1 (E)

|e−kλ∗t ϕ(x)−1ψ
(k)
t [f ](x) − k!ϕ̃[f ]kLk(x)|

≤ sup
x∈E,f ∈B+

1 (E)

∣∣∣∣t
∫ 1

0
e−λ∗(k−1)ute−λ∗utϕ(x)−1ψut [H [f ](·, u, t)

−H [f ]] (x)du| + ϵ

≤ t

∫ 1

0
e−λ∗(k−1)ut sup

x∈E,f ∈B+
1 (E)

∣∣∣e−λ∗utϕ(x)−1ψut [H [f ](·, u, t)

−H [f ]] (x)| du + ϵ, (9.20) 

where . ϵ is an upper estimate for 

. sup
x∈E,f ∈B+

1 (E)

k!ϕ̃[f ]k
∫ ∞

t

e−λ∗ksϕ(x)−1ψs

[
γE·

[ ∑

[k1,...,kN ]2
k

N∏
j=1

j :kj >0

Lkj
(xj )

]]
(x)ds.

(9.21) 

Note that convergence to zero as .t → ∞ in (9.21) follows thanks to the induction 
hypothesis (ensuring that .Lkj

(x) is uniformly bounded), (9.8), (G2), and the 
uniform boundedness of . γ . 

The induction hypothesis, (9.8), (G2), and dominated convergence ensure that 

. lim
t→∞ sup

x∈E,f ∈B+
1 (E),u∈[0,ε]

|H [f ](x, u, t) − H [f ](x)| = 0. (9.22) 

As such, in (9.20), we can split the integral on the right-hand side over .[0, ε] and 
. (ε, 1], for .ε ∈ (0, 1). Using (9.22), we can ensure that, for any arbitrarily small 
.ε' > 0, making use of the boundedness in (G2), there is a global constant . C > 0
such that, for all t sufficiently large, 

. t

∫ ε

0
e−λ∗(k−1)ut sup

x∈E,f ∈B+
1 (E)

∣∣∣e−λ∗utϕ(x)−1ψut [H [f ](·, u, t) − H [f ]] (x)

∣∣∣ du

≤ ε'Ct

∫ ε

0
e−λ∗(k−1)utdu

= ε'C
λ∗(k − 1)

(1 − e−λ∗(k−1)εt ). (9.23) 

On the other hand, we can also control the integral over .(ε, 1], again appealing 
to (G2), (G2), and (9.8) to ensure that
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. sup
x∈E,f ∈B+

1 (E),u∈(ε,1]

∣∣∣e−λ∗utϕ(x)−1ψut [H [f ](·, u, t) − H [f ]]
∣∣∣ < ∞.

We can again work with a (different) global constant .C > 0 such that 

. t

∫ 1

ε

e−λ∗(k−1)ut sup
x∈E,f ∈B+

1 (E)

∣∣∣e−λ∗utϕ(x)−1ψut [H [f ](·, u, t) − H [f ]]
∣∣∣ du

≤ Ct

∫ 1

ε

e−λ∗(k−1)utdu

= C

λ∗(k − 1)
(e−λ∗(k−1)εt − e−λ∗(k−1)t ). (9.24) 

In conclusion, using (9.23) and (9.24), we can take limits as .t → ∞ in (9.20) 
and the statement of the theorem follows. ⨅⨆

Finally we state and prove the subcritical case. Our proof will be even briefer 
given the similarities to the previous two settings. The take-home message is 
nonetheless different again. Unlike the supercritical setting, this time the k-th 
moment scales like the first moment. 

Theorem 9.3 (Subcritical, .λ∗ < 0) Suppose that (G2) holds and (G2) holds for 
some .k ≥ 1. Redefine 

. Δ
(k)
t = sup

x∈E,f ∈B+
1 (E)

∣∣∣ϕ−1e−λ∗tψ(k)
t [f ](x) − Lk

∣∣∣ ,

where .L1 = ϕ̃[f ] and, for .k ≥ 2, 

. Lk =ϕ̃[f k] +
∫ ∞

0
e−λ∗s ϕ̃

[
γE·

[ ∑

[k1,...,kN ]2
k

(
k

k1, . . . , kN

) N∏
j=1

j :kj >0

ψ
(kj )
s [f ](xj )

]]
ds.

Then, for all .𝓁 ≤ k, 

. sup
t≥0

Δ
(𝓁)
t < ∞ and lim

t→∞ Δ
(𝓁)
t = 0.

Proof First note that since we only compensate by . e−λ∗t , the term .ψt [f k](x) that 
appears in Eq. (9.4) does not vanish after the normalisation. Due to assumption (G2), 
we have 

. lim
t→∞ ϕ−1(x)e−λ∗tψt [f k](x) = ϕ̃[f k].
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Next we turn to the integral term in (9.4). Define .[k1, . . . , kN ](n)
k , for . 2 ≤ n ≤ k

to be the set of tuples .(k1, . . . , kN) with exactly n positive terms and whose sum is 
equal to k. Similar calculations to those given above yield 

. 
e−λ∗t

ϕ(x)

∫ t

0
ψs

⎡
⎢⎣γEx

⎡
⎢⎣

∑

[k1,...,kN ]2
k

(
k

k1, . . . , kN

) N∏
j=1

ψ
(kj )

t−s [f ](xj )

⎤
⎥⎦

⎤
⎥⎦ (x)ds

= t

∫ 1

0

k∑
n=2

eλ∗(n−1)ut e−λ∗(1−u)t

ϕ(x)

× ψ(1−u)t

[
γE·

[ ∑

[k1,...,kN ](n)
k

(
k

k1, . . . , kN

) N∏
j=1

e−λ∗utψ
(kj )

ut [f ](xj )

]]
(x)du.

(9.25) 

Now suppose for induction that the result holds for all .𝓁-th integer moments with 
.1 ≤ 𝓁 ≤ k − 1. Roughly speaking, the argument can be completed by noting that 
the integral in the definition of . Lk can be written 

. 

∫ ∞

0

k∑
n=2

eλ∗(n−1)s ϕ̃

[
γE·

[ ∑

[k1,...,kN ](n)
k

(
k

k1, . . . , kN

) N∏
j=1

e−λ∗sψ
(kj )
s [f ](xj )

]]
ds,

(9.26) 

which is convergent by appealing to (9.8), hypothesis (G2), the fact that .γ ∈ B+(E), 
and the induction hypothesis. As a convergent integral, it can be truncated at . t > 0
and the residual of the integral over .(t,∞) can be made arbitrarily small by taking 
t sufficiently large. By changing variables in (9.26) when the integral is truncated 
at arbitrarily large t , so it is of a similar form to that of (9.25), we can subtract it 
from (9.25) to get 

. t

∫ 1

0

k∑
n=2

eλ∗(n−1)ut

(
e−λ∗(1−u)t

ϕ(x)
ψ(1−u)t [H(n)

ut ] − ϕ̃[H(n)
ut ]

)
du,

where 

. H
(n)
ut (x) = γEx

[ ∑

[k1,...,kN ](n)
k

(
k

k1, . . . , kN

) N∏
j=1

e−λ∗utψ
(kj )

ut [f ](xj )

]
.

One proceeds to splitting the integral of the difference over .[0, 1] into two integrals, 
one over .[0, 1 − ε] and one over .(1 − ε, 1]. For the aforesaid integral over . [0, 1 −
ε], we can control the behaviour of .ϕ−1e−(1−u)tψ(1−u)t [H(n)

ut ] − ϕ̃[H(n)
ut ] as .t →
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∞, making it arbitrarily small, by appealing to uniform dominated control of its 
argument in square brackets thanks to (G2). The integral over .[0, 1 − ε] can thus be 
bounded, as .t → ∞, by .t (1 − eλ∗(n−1)(1−ε))/|λ∗|(n − 1). 

For the integral over .(1 − ε, 1], we can appeal to the uniformity in (G2) and (G2) 
to control the entire term .e−(1−u)tψ(1−u)t [H(n)

ut ] (over time and its argument in the 
square brackets) by a global constant. Up to a multiplicative constant, the magnitude 
of the integral is thus of order 

. t

∫ 1

1−ε

eλ∗(n−1)utdu = 1

|λ∗|(n − 1)
(eλ∗(n−1)(1−ε)t − eλ∗(n−1)t ),

which tends to zero as .t → ∞. ⨅⨆

9.4 Moments of the Running Occupation at Criticality 

As alluded to in the introduction to this chapter, the methods we have used in the 
previous section are extremely robust and are equally applicable to the setting of the 
moments of the running occupation. In the critical setting, we have the following 
main result. 

Theorem 9.4 (Critical, .λ∗ = 0) Suppose that (G2) holds along with (G2) for . k ≥
1. Define 

. Δ
(𝓁)
t = sup

x∈E,f ∈B+
1 (E)

∣∣∣t−(2𝓁−1)ϕ(x)−1I
(𝓁)
t [g](x) − 2−(𝓁−1)𝓁! ϕ̃[g]𝓁ϕ̃[

V [ϕ]]𝓁−1
L𝓁

∣∣∣ ,

where .L1 = 1 and . Lk is defined through the recursion . Lk = (
∑k−1

i=1 LiLk−i )/(2k −
1). Then, for all .𝓁 ≤ k and .c > 0, 

. sup
t≥c

Δ
(𝓁)
t < ∞ and lim

t→∞ Δ
(𝓁)
t = 0. (9.27) 

Proof Taking account of (8.27), we see that 

.ut [0, θg](x) = −
∫ t

0
ψs [A[ut−s[0, θg]] − θg(1 − ut−s[0, θg])] (x)ds. (9.28) 

Given the proximity of (9.28) to (9.5), it is easy to see that we can apply the same 
reasoning that we used for .ψ(k)

t [f ](x) to .I (k)
t [g](x) and conclude that, for .k ≥ 2, 

.I
(k)
t [g](x) =

∫ t

0
ψs

[
γ η̂

(k−1)
t−s [g]

]
(x) − kψs[gI

(k−1)
t−s [g]](x)ds, (9.29)
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where . η̂k plays the role of . ηk albeit replacing the moment operators .ψ(j) by the 
moment operators .I (j). 

We now proceed to prove Theorem 9.4 by induction. First we consider the setting 
.k = 1. In that case, 

. 
1

t
I (1)[g](x) = 1

t
Eδx

[∫ t

0
Xs[g]ds

]
= 1

t

∫ t

0
ψs[g](x)ds =

∫ 1

0
ψut [g](x)du.

Referring now to Theorem 8.1, we can take .F(x, s, t) = g(x)/ϕ(x). Since . g ∈
B+(E), the conditions of the theorem are trivially met and hence 

. lim
t→∞ sup

x∈E,g∈B+
1 (E)

∣∣∣∣
1

t
ϕ(x)−1I (1)[g](x) − ϕ̃[g]

∣∣∣∣ = 0.

Note that this limit sets the scene for the polynomial growth in .tn(k) of the higher 
moments for some function .n(k). If we are to argue by induction, whatever the 
choice of . n(k), it must satisfy .n(1) = 1. 

Next suppose that Theorem 9.4 holds for all integer moments up to and including 
.k − 1. We have from (9.29) that 

. 
1

t2k−1 I
(k)
t [g](x)

= 1

t2k−1

∫ t

0
ψs

[
γ η̂

(k−1)
t−s [g]

]
(x)ds − 1

t2k−1

∫ t

0
kψs[gI

(k−1)
t−s [g]](x)ds. (9.30) 

Let us first deal with the rightmost integral in (9.30). It can be written as 

. 
1

t2k−2

∫ 1

0
kψut [ϕF(·, u, t)] (x)du

=
∫ 1

0
(1 − u)2k−2kψut

[
g

1

(t (1 − u))2k−2 I
(k−1)
t (1−u)[g]

]
(x)du,

where F is defined by the equality. 
Arguing as in the spirit of the proof of Theorem 9.1, our induction hypothesis 

ensures that 

. lim
t→∞ F [g](x, u, t) = lim

t→∞ g(1 − u)2k−2k
1

(t (1 − u))2k−2

I
(k−1)
t (1−u)[g](x)

ϕ(x)
= 0

=: F(x, u)

satisfies (8.20) and (8.21). Theorem 8.1 thus tells us that, uniformly in .x ∈ E and 
.g ∈ B+

1 (E),
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. lim
t→∞

1

t2k−1 ϕ(x)−1
∫ t

0
kψs[gI

(k−1)
t−s [g]](x) = 0. (9.31) 

On the other hand, again following the style of the reasoning in the proof of 
Theorem 9.1, we can pull out the leading order terms, uniformly for .x ∈ E and 
.g ∈ B+(E), 

. lim
t→∞

1

t2k−1

∫ t

0
ψs

[
γ η̂

(k−1)
t−s [g]

]
(x)ds

= lim
t→∞

∫ 1

0
ψut

[
γ (·)

2
(1 − u)2k−2E·

[ N∑
i=1

N∑
j=1
j /=i

k−1∑
ki=1

(
k

ki

)
ϕ(xi)ϕ(xj )

× I
ki

t (1−u)[g](xi)

ϕ(xi)(t (1 − u))2ki−1

I
k−ki

t (1−u)[g](xj )

ϕ(xj )(t (1 − u))2k−2ki−1

]]
(x)du.

(9.32) 

It is again worth noting here that the choice of the polynomial growth in the form 
.tn(k) also constrains the possible linear choices of .n(k) to .n(k) = 2k − 1 if we are 
to respect .n(1) = 1 and the correct distribution of the index across (9.32). 

Identifying 

. F [g](x, u, t)

= γ (x)

2ϕ(x)
(1 − u)2k−2Ex

[ N∑
i=1

N∑
j=1
j /=i

k−1∑
ki=1

(
k

ki

)
ϕ(xi)ϕ(xj )

× I
ki

t (1−u)[g](xi)

ϕ(xi)(t (1 − u))2ki−1

I
k−ki

t (1−u)[g](xj )

ϕ(xj )(t (1 − u))2k−2ki−1

]
,

our induction hypothesis allows us to conclude that . F [g](x, u) := limt→∞ F [g]
.(x, u, t) exists and 

. ϕ(x)F [g](x, u) = (1 − u)2k−2k!γ (x)V [ϕ](x)

2k−1 ϕ̃[g]kϕ̃[V [ϕ]]k−1
k−1∑
𝓁=1

L𝓁Lk−𝓁.

Thanks to our induction hypothesis, we can also easily verify (8.20) and (8.21). 
Theorem 8.1 now gives us the required uniform (in .x ∈ E and .g ∈ B+(E)) limit 

. lim
t→∞

1

t2k−1 ϕ(x)−1
∫ t

0
ψs

[
γ η̂

(k−1)
t−s [g]

]
(x)ds = k!ϕ̃[V [ϕ]]k−1ϕ̃[g]k

2k−1 Lk.

(9.33) 
Putting (9.33) together with (9.31), we get the statement of Theorem 9.4. ⨅⨆
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9.5 Moments of the Running Occupation at Non-criticality 

We start with the supercritical setting and then move to the subcritical setting. Given 
the familiarity of the approach at this stage, the proofs we give are very brief, 
pointing only to the key steps. 

Theorem 9.5 (Supercritical, .λ∗ > 0) Suppose that (G2) holds along with (G2) for 
some .k ≥ 1 and .λ∗ > 0. Redefine 

. Δ
(𝓁)
t = sup

x∈E,f ∈B+
1 (E)

∣∣∣e−𝓁λ∗t ϕ(x)−1I
(𝓁)
t [g](x) − 𝓁!ϕ̃[g]𝓁L𝓁(x)

∣∣∣ ,

where .Lk(x) was defined in Theorem 9.2 but now with .L1(x) = 1/λ∗. 
Then, for all .𝓁 ≤ k, 

. sup
t≥0

Δ
(𝓁)
t < ∞ and lim

t→∞ Δ
(𝓁)
t = 0. (9.34) 

Proof For the case . k = 1, we have  

. 

∣∣∣∣e−λ∗t
∫ t

0
ϕ(x)−1ψs[g](x)ds − ϕ̃[g]

λ∗

∣∣∣∣

=
∣∣∣∣e−λ∗t t

∫ 1

0
eλ∗ut

(
e−λ∗utϕ(x)−1ψut [g](x) − ϕ̃[g]

)
du − e−λ∗t ϕ̃[g]

λ∗

∣∣∣∣

≤ t

∫ 1

0
e−λ∗(1−u)t

∣∣∣e−λ∗utϕ(x)−1ψut [g](x) − ϕ̃[g]
∣∣∣ du + e−λ∗t ϕ̃[g]

λ∗
. (9.35) 

Thanks to (G2) and similar arguments to those used in the proof of Theorem 9.2, 
we may choose t sufficiently large such that the modulus in the integral on the 
right-hand side of (9.35) is bounded above by an arbitrary small .ε' > 0, uniformly 
in .x ∈ E, .g ∈ B+(E), and .u > ε ∈ (0, 1). Then, when restricted to . (ε, 1], the  
aforementioned integral is bounded above by .ε'(1 − e−λ∗εt ). On the other hand, 
when restricted to .[0, ε], up to a global multiplicative constant, again thanks to (G2), 
this integral can be bounded by .e−λ∗(1−ε)t − e−λ∗t . Since . ε' can be taken arbitrarily 
small and t tends to infinity, this gives the desired result for the integral on the right-
hand side of (9.35). The last term in (9.35) is dealt with trivially. The limit in (9.35) 
also pins down the initial value .L1(x) = 1/λ∗. 

Now assume the result holds for all integers .1 ≤ 𝓁 ≤ k − 1. Reflecting on the 
proof of Theorem 9.2, in the current setting the starting point is (9.29), which is 
almost the same as (9.4). Our task is thus to evaluate, in the appropriate sense,
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. lim
t→∞ e−λ∗ktϕ(x)−1I

(k)
t [g](x)

= lim
t→∞ e−λ∗kt

∫ t

0
ϕ(x)−1ψs

⎡
⎢⎣γE·

⎡
⎢⎣

∑

[k1,...,kN ]2
k

(
k

k1, . . . , kN

) N∏
j=1

I
(kj )

t−s [g](xj )

⎤
⎥⎦

⎤
⎥⎦(x)ds

− k lim
t→∞ e−λ∗kt

∫ t

0
ϕ(x)−1ψs[gI

(k−1)
t−s [g]](x)ds. (9.36) 

The first term on the right-hand side of (9.36) can be handled in essentially the same 
way as in the proof of Theorem 9.2. The second term on the right-hand side of 
(9.36) can easily be dealt with along the lines that we are now familiar with from 
earlier proofs, using the induction hypothesis. In particular, its limit is zero. Hence, 
combined with the first term on the right-hand side of (9.36), we recover the same 
recursion equation for . Lk . ⨅⨆

Theorem 9.6 (Subcritical, .λ∗ < 0) Suppose that (G2) holds along with (G2) for 
some .k ≥ 1. Redefine 

. Δ
(𝓁)
t = sup

x∈E,f ∈B+
1 (E)

∣∣∣ϕ(x)−1I
(𝓁)
t [g](x) − L𝓁(x)

∣∣∣ ,

where .L1(x) = ∫ ∞
0 ϕ(x)−1ψs[g](x)ds, and for .k ≥ 2, the constants . Lk are defined 

recursively via 

. Lk(x) =
∫ ∞

0
ϕ(x)−1ψs

[
γE·

[ ∑

[k1,...,kN ]2
k

(
k

k1, . . . , kN

) N∏
j=1

j :kj >0

ϕ(xj )Lkj
(xj )

]]
(x) ds

− k

∫ ∞

0
ϕ(x)−1ψs

[
gϕLk−1

]
(x) ds.

Then, for all .𝓁 ≤ k, 

. sup
t≥0

Δ
(𝓁)
t < ∞ and lim

t→∞ Δ
(𝓁)
t = 0. (9.37) 

Proof The case .k = 1 is relatively straightforward, and, again, in the interest of 
keeping things brief, we point the reader to the fact that, as .t → ∞, we have  

.I
(1)
t [g](x) ∼

∫ ∞

0
ψs[g](x)ds < ∞, (9.38) 

thanks to the exponential decay of .(ψt , t ≥ 0), since .λ∗ < 0.
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Now suppose the result holds for all integers .1 ≤ 𝓁 ≤ k − 1. We again refer  
to (9.29), which means we are interested in handling a limit which is very similar 
to (9.36), now taking the form 

. lim
t→∞ I

(k)
t [g](x)

= lim
t→∞ t

∫ 1

0
ψut

⎡
⎢⎣γE·

⎡
⎢⎣

∑

[k1,...,kN ]2
k

(
k

k1, . . . , kN

) N∏
j=1

I
(kj )

(1−u)t [g](xj )

⎤
⎥⎦

⎤
⎥⎦ (x)du

− lim
t→∞ kt

∫ 1

0
ψut

[
gI

(k−1)
(1−u)t [g]

]
(x)du. (9.39) 

Again skipping the details, by treating the integral in (9.39) according to its 
behaviour over .[0, 1−ε] and .(1−ε, 1], we can quickly see from (9.39) the argument 
in (9.38), and the induction hypothesis gives us 

. I
(k)
t [g](x) ∼

∫ ∞

0
ψs

[
γE·

[ ∑

[k1,...,kN ]2
k

(
k

k1, . . . , kN

) N∏
j=1

j :kj >0

Lkj
(xj )

]]
(x) ds

−k

∫ ∞

0
ψs

[
gLk−1(x)

]
(x) ds,

(9.40) 

which gives us the required recursion for .Lk(x). Making these calculations rigorous 
(left to the reader) as in Theorems 9.2, 9.3, and 9.5 completes the proof. ⨅⨆

9.6 Moments for Discrete-Time Branching Markov Processes 

Recall that we introduced the notion of a discrete-time branching Markov process in 
Sect. 8.7. Just as in the previous sections, under the analogous assumptions to (G2) 
and (G2), we can expect similar moment growth results. 

(G4) There exist an eigenvalue .ρ∗ > 0, and a corresponding right eigen-
function .0 ≤ ω ∈ B+(E), and finite eigenmeasure . ω̃ such that, for 
.f ∈ B+(E), 

. Φn[ω] = ρn∗ω and ω̃ [Φn[f ]] = ρn∗ ω̃[f ].

Furthermore, let us define
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.Δn = sup
x∈E,g∈B+

1 (E)

|ω(x)−1ρ−n∗ Φn[f ](x) − ω̃[f ]|, n ≥ 0. (9.41) 

We suppose that 

. sup
n≥0

Δn < ∞ and lim
n→∞ Δn = 0. (9.42) 

(G5) We have 

. sup
x∈E

Ex(Z [1]k) < ∞. (9.43) 

Naturally, . ρn∗ plays the role of the lead eigenvalue for the semigroup . Φn, with 
corresponding right eigenfunction . ω and left eigenmeasure . ω̃. In this setting, . ρn∗
gives the average growth of the number of particles in the system in generation n and 
thus gives us an analogous notion of criticality to the continuous-time setting. That 
is, .ρ∗ > 1 corresponds to a supercritical system, .ρ∗ < 1 corresponds to a subcritical 
system, and .ρ∗ = 1 corresponds to a critical system. The assumption (G5) for a 
fixed .k ≥ 2 provides control over the moments of the offspring distribution at the 
first generation. We refer the reader to Remark 8.1 for a brief discussion of the case 
where the discrete-time BMP is embedded into a continuous-time BMP. 

Just as in the continuous-time setting, we obtain perfectly analogous results for 
the asymptotic moments. We list them below. 

Theorem 9.7 (Critical, .ρ∗ = 1) Suppose that (G4) holds along with (G5) for . k ≥
1 and .ρ∗ = 1. Define 

. Δ(𝓁)
n = sup

x∈E,g∈B+
1 (E)

∣∣∣n−(𝓁−1)ω(x)−1Φ(𝓁)
n [g](x) − 2−(𝓁−1)𝓁! ω̃[f ]𝓁ω̃[V [ω]]𝓁−1

∣∣∣ ,

where, again abusing notation from the continuous-time setting, 

. V [ω](x) = Ex

[
Z [ω]2 − Z [ω2]

]
= Ex

⎡
⎢⎢⎣

N∑
i=1

N∑
j=1
j /=i

ω(zi)ω(zj )

⎤
⎥⎥⎦ .

Then, for all .𝓁 ≤ k, 

. sup
n≥1

Δ(𝓁)
n < ∞ and lim

n→∞ Δ(𝓁)
n = 0. (9.44) 

Theorem 9.8 (Supercritical, .ρ∗ > 1) Suppose that (G4) holds along with (G5) for 
.k ≥ 1 and .ρ∗ > 1. Define
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. Δ(𝓁)
n = sup

x∈E,g∈B+
1 (E)

∣∣∣ρ−nk∗ ω(x)−1Φ(𝓁)
n [g](x) − 𝓁! ω̃[f ]𝓁L𝓁(x)

∣∣∣ ,

where .L1 = 1, and for .k ≥ 2, .Lk(x) is given by the recursion 

. Lk(x) = ω(x)−1
∞∑

𝓁=0

ρ−𝓁(k+1)∗ Φ𝓁

⎡
⎢⎢⎣E·

[ ∑

[k1,...,kN ]2+
k

N∏
j=1
kj >0

ω(xj )Lkj
(xj )

]
⎤
⎥⎥⎦ (x),

(9.45) 

with .[k1, . . . , kN ]2+
k defining the set of non-negative tuples .(k1, . . . , kN), such that 

.
∑N

j=1 kj = N and at least two of the . kj are strictly positive. 
Then, for all .𝓁 ≤ k, 

. sup
n≥0

Δ(𝓁)
n < ∞ and lim

n→∞ Δ(𝓁)
n = 0.

Theorem 9.9 (Subcritical, .ρ∗ < 1) Suppose that (G4) holds along with (G5) for 
.k ≥ 1 and .ρ∗ < 1. Define 

. Δ(𝓁)
n = sup

x∈E,g∈B+
1 (E)

∣∣∣ρ−n∗ ω(x)−1Φ(𝓁)
n [g](x) − L𝓁

∣∣∣ ,

where .L1 = 1, and, for .𝓁 ≥ 2, . L𝓁 is given by the recursion 

. L𝓁 = ω̃[f 𝓁] +
∞∑

n=0

ρ−(n+1)∗ ω̃

⎡
⎢⎢⎣E·

[ ∑

[k1,...,kN ]2+
k

(
k

k1, · · · , kN

) N∏
j=1
kj >0

Φ
(kj )
n (xj )

]
⎤
⎥⎥⎦ .

Then, for all .𝓁 ≤ k, 

. sup
n≥0

Δ(𝓁)
n < ∞ and lim

n→∞ Δ(𝓁)
n = 0.

The proofs of Theorems 9.7–9.9 are very close to their continuous-time counter-
parts. Indeed, all three start with the observation that 

. Φ(k)
n [g](x) = (−1)k

∂k

∂θk
Vn[e−θg](x)

∣∣∣∣
θ=0

n ≥ 2, x ∈ E, f ∈ B(E),

which, in the spirit of Proposition 9.1, leads to
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. Φ(k)
n [g] = Φn[gk] +

n−1∑
𝓁=0

Φ𝓁

⎡
⎢⎣E·

⎡
⎢⎣

∑

[k1,··· ,kN ]2
k

(
k

k1, . . . , kN

) N∏
j=1

Φ
(kj )

n−𝓁−1[g](zj )

⎤
⎥⎦

⎤
⎥⎦ ,

(9.46) 

on E, for .n ≥ 1 and .g ∈ B+(E), where .[k1, · · · , kN ]2
k is the set of all non-negative 

N -tuples .(k1, . . . , kN) such that .
∑N

i=1 ki = k and at least two of the . ki are strictly 
positive. 

We now highlight some of the subtle differences in Theorem 9.7 compared to the 
continuous time. 

As with criticality in the continuous setting, it is not difficult to show that the 
first term on the right-hand side of (9.46) carries no contribution to the asymptotic 
scaled limit. Moreover, from the sum on the right-hand side of (9.46), the only 
contribution that matters comes from partitions of the form . k1 and .k2 = k − k1, 
where .k1 ∈ {1, · · · , k − 1}. Our task is thus to show that 

. Δ(k),2
n = sup

x∈E,f ∈B+
1 (E)

∣∣∣∣
1

nω

n−1∑
𝓁=0

(
n − 𝓁 − 1

n

)k−2

Φ𝓁

[
H(k)

n−𝓁−1[f ]]

− 2−(k−1)k! ω̃[
V [ω]]k−1

ω̃[f ]k
∣∣∣∣
(9.47) 

tends to zero as .n → ∞, where (being careful not to double count the non-zero 
partition .k1, k2 : k = k1 + k2) 

. H(k)
m [f ](x) = 1

2
Ex

[ N∑
i=1

ω(zi)

N∑
j=1
j /=i

ω(zj )

k−1∑
k1=1

(
k

k1

)
Φ

(k1)
m [f ](zi)

ω(zi)mk1−1

Φ
(k−k1)
m [f ](zj )

ω(zj )mk−k1−1

]
.

In a similar way to the analogous part of the proof in the continuous-time setting, 
we can show that 

. H(k)∞ [f ](x) := lim
m→∞H(k)

m [f ](x) = (k − 1)k!V [ω](x)2−(k−1)ω̃
[
V [ω]]k−2

ω̃[f ]k,
(9.48) 

where, in fact, the convergence can be taken uniformly in both .x ∈ E and . f ∈
B+(E). 

Next, for fixed .𝓁 ≤ n, define 

.ω(x)F [g](x, 𝓁, n) =
(

n − 𝓁 − 1

n

)k−2

H(k)
n−𝓁−1[g](x),
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and 

.ω(x)F̂ [g](x, 𝓁, n) =
(

n − 𝓁 − 1

n

)k−2

H(k)∞ [g](x). (9.49) 

Then, the following four facts are easy to verify: 

.F̌ [g](x) := lim
n→∞

1

n

n−1∑
𝓁=0

F̂ [g](x, 𝓁, n) = H(k)∞ [f ](x)

k − 1
(9.50) 

exists 

. lim
n→∞ sup

g∈B+
1 (E)

∣∣∣∣
1

n

n−1∑
𝓁=0

ω̃
[
ωF̂ [g](·, 𝓁, n)

] − ω̃
[
ωF̌ [g]]

∣∣∣∣ = 0, (9.51) 

. sup
x∈E,𝓁≤n∈N,g∈B+

1 (E)

|ω(x)F̂ [g](x, 𝓁, n)| < ∞, (9.52) 

and 

. lim
n→∞ sup

x∈E,𝓁≤n,g∈B+
1 (E)

ω(x)|F [g](x, 𝓁, n) − F̂ [g](x, 𝓁, n)| = 0. (9.53) 

The four properties (9.50)–(9.53) are sufficient to prove an analogue of Theo-
rem 8.1. This states that, under (G4) and (9.50)–(9.53), we have  

. sup
n≥2

Ξn < ∞ and lim
n→∞ Ξn = 0, (9.54) 

where 

. Ξn = sup
x∈E,g∈B+

1 (E)

∣∣∣∣∣
1

nω(x)

n−1∑
𝓁=0

Φ𝓁[ωF [g](·, 𝓁, n)](x)du − ω̃
[
ωF̌ [g]]

∣∣∣∣∣ , t ≥ 0.

This gives us precisely (9.47), thus proving Theorem 9.7. 
The proofs of Theorems 9.8 and 9.9 follow almost verbatim along the same steps 

in the continuous-time setting albeit, integrals over .[0, 1], such as those in (9.20), 
are played by the role of scaled summations taking the form .n−1 ∑n−1

𝓁=0 · · · . The  
details are left to the reader.
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9.7 Examples for Specific Branching Processes 

We conclude the general technical exposition in this chapter by giving some 
examples to illustrate our results for specific scenarios, as well as how they relate to 
neighbouring results. 

Continuous-time Bienyamé–Galton–Watson Process We start by considering 
the simplest branching particle setting where the process is not spatially dependent. 
In effect, we can take .E = {0}, . P to be the Markov process which remains at 
.{0} and a branching mechanism with no spatial dependence. This is the setting 
of a continuous-time Bienyamé-Galton–Watson process. Its branching rate . γ is 
constant, and the first and second moments of the offspring distribution are given 
by .m1 = E [N ] and .m2 = E [N2], respectively, where N is the number of offspring 
produced at a branching event. When the process is independent of space, we have 
.λ∗ = γ (m1−1), .ϕ = 1, . ϕ̃ can be taken as . δ{0}, and (G2) trivially holds. Theorem 9.1 
now tells us that, at criticality, i.e., .m1 = 1, the limit for the .k-th moment of the 
population size at time .t ≥ 0 satisfies 

.t−(k−1)
E[Nk

t ] ∼ 2−(k−1)k! (γ (m2 − 1))k−1 , as t → ∞, (9.55) 

when .E [Nk] < ∞ and .k ≥ 1. 

In the supercritical case, i.e., .m1 > 1, the limit in Theorem 9.2 simplifies to 

.e−γ (m1−1)kt
E[Nk

t ] ∼ k!Lk, as t → ∞, (9.56) 

where the iteration 

. Lk = 1

(m1 − 1)(k − 1)
E

[ ∑

[k1,...,kN ]2
k

N∏
j=1

j :kj >0

Lkj

]
, k ≥ 2,

holds. Here, although the simplified formula for .Lk (on account of no spatial 
considerations) is still a little complicated, it demonstrates more clearly that the 
moments in Theorem 9.2 grow according to the leading order terms of the offspring 
distribution. Indeed, in the case . k = 2, we have  

. L2 = 1

m1 − 1
E [card{[k1, . . . , kN ]2

2}] = 1

m1 − 1

E [N(N − 1)]
2

= m2 − m1

2(m1 − 1)
.

The constant . L3 can now be computed explicitly in terms of . L2 and .L1 = 1, and so 
on. 

The limits in the subcritical case can be detailed similarly and only offer minor 
simplifications of the constants . Lk , .k ≥ 1 presented in the statement of Theorem 9.3. 
Hence we leave the details for the reader to check.
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Branching Brownian Motion in a Bounded Domain In this setting, the semi-
group . P corresponds to that of a d-dimensional Brownian motion killed on exiting 
a .C1 domain .E ⊂ R

d . The branching rate is taken as the constant . γ > 0
and the offspring distribution is not spatially dependent. Moreover, the first and 
second moments, .m1 := E [N ] and .m2 = E [N2], are assumed to be finite. In 
this setting, the right eigenfunction of the expectation semigroup of the process, . ϕ, 
exists on E, satisfying Dirichlet boundary conditions, and is accompanied by the 
left eigenmeasure .ϕ(x)dx on E. The associated eigenvalue is identified explicitly as 
.λ∗ = γ (m1 − 1) + λE , where . λE is the ground state eigenvalue of the Laplacian on 
E. The critical regime thus occurs when .λE = −γ (m1 − 1). 

In the spirit of Kolmogorov asymptotic survival probability limit for classical 
Galton–Watson processes and Theorem 5.8 for NBPs, it is known at criticality that 

.Pδx (ζ > t) ∼ 1

t

2(m1 − 1)ϕ(x)

|λE |(m2 − m1)
∫
E

ϕ(x)3dx
=: 2ϕ(x)/Σ, x ∈ E, (9.57) 

as .t → ∞. Moreover, in the spirit of the Yaglom distributional limit for Galton– 
Watson processes and Theorem 5.9, it is also known that 

.Law

(
Xt [f ]

t

∣∣∣∣ ζ > t

)
→ Law(e2/〈ϕ,f 〉Σ), as t → ∞, (9.58) 

where .e〈ϕ,f 〉Σ/2 is an exponentially distributed random variable with rate 
.〈ϕ, f 〉Σ/2. (Note that we understand .〈f, ϕ〉 = ∫

E
ϕ(x)f (x)dx in this context.) 

In particular, these two results allude to the limit of moments (albeit further 
moment assumptions would be needed on N ), which, in the spirit of (11.28), 
can be heuristically read as 

. lim
t→∞

1

tk−1
Eδx [Xt [f ]k] = lim

t→∞ tPδx (ζ > t)Eδx

[
Xt [f ]k

tk

∣∣∣∣ ζ > t

]

= k!2−(k−1)〈f, ϕ〉kΣk−1ϕ(x), x ∈ E, (9.59) 

for .k ≥ 1. Taking into account the fact that .ϕ̃(x) = ϕ(x)dx and .γ = |λE |/(m1 −1), 
we see that 

. ϕ̃[V [ϕ](x)] = 〈γ ϕ2(m2 − m1), ϕ〉 = |λE | (m2 − m1)

(m1 − 1)

∫

E

ϕ(x)3dx = Σ.

Hence (9.59) agrees precisely with Theorem 9.1. 

Crump–Mode–Jagers (CMJ) Processes Finally, we consider the class of CMJ 
processes, for which, results are not covered by our class of BMPs. Nonetheless, 
comparable results to Theorem 9.1 are known, which are worth discussing.



194 9 Moments

Consider a branching process in which particles live for a random amount of time 
. ζ and during their lifetime give birth to a (possibly random) number of offspring at 
random times; in essence, the age of a parent at the birth times forms a point process, 
say .η(dt) on .[0, ζ ]. We denote the law of the latter by . P . The offspring reproduce 
and die as independent copies of the parent particle and the law of the process is 
denoted by . P when initiated from a single individual. In essence, the CMJ is a non-
spatial version of the Biggins process, described in Chap. 8. 

Criticality for CMJ processes is usually described in terms of the Malthusian 
parameter, .α ∈ R, which satisfies .E [∫[0,∞)

e−αtη(dt)] = 1. The critical setting is 
understood to be the case .α = 0 (with supercritical .α > 0 and subcritical .α < 0). 
If we write the total number of offspring during a lifetime by .N = η[0, ζ ], then 
the critical setting can equivalently be identified by .E[N ] = 1. Furthermore, let . Zt

denote the number of individuals in the population at time .t ≥ 0. Under the moment 
assumption .E[Nk] < ∞ for some .k ≥ 1, it is known that the factorial moments 
.mk(t) := E[Zt(Zt − 1) · · · (Zt − k + 1)] satisfy 

. lim
t→∞

mk(t)

tk−1
= k!E [ζ ]k

b2k−1
(m2 − 1)k−1,

where .m2 = E [N2] and .b = E [∫ ζ

0 tη(dt)]. It is an interesting exercise to compare 
this to the spatially independent example considered above. 

9.8 Comments 

Despite the fact that understanding the behaviour of moments is a natural and 
fundamental question to ask for branching Markov processes, until recently, very 
little appears to be present in the literature beyond second moments. Nonetheless, 
for higher moments, there are some references which touch upon the topic in a 
cursory way for the setting of both BMPs and a more exotic class of branching 
processes known as superprocesses; see, for example, Etheridge [55], Dynkin [48], 
Harris and Roberts [71], Klenke [83], Fleischman [65], Foutel-Rodier and Schertzer 
[62] and Powell [112]. This is similarly the case for the occupation measure of 
branching Markov processes; cf. Dumonteil and Mazzolo [43] and Iscoe [78]. One 
exception to the lack of treatment of higher moments is Durham [46], whose results 
for Crump–Mode–Jagers processes in the early 1970s are described in Sect. 9.7. For  
the general BMP setting, results presented here are reproduced from the recent work 
of Gonzalez et al. [67].



Chapter 10 
Survival at Criticality 

We will remain in the setting of the Asmussen–Hering class of BMPs, i.e., 
assuming (G2), and insist throughout this chapter that we are in the critical setting, 
that is, .λ∗ = 0. Recalling the notation from (8.25), let us define 

.ut (x) := Pδx (ζ > t) and a(t) := ϕ̃[ut ], (10.1) 

where .ζ = inf{t > 0 : Xt [1] = 0} is the lifetime of the process. Setting .g = 0 (the 
zero function) and .f = θ and letting .θ → ∞ in (8.27), we find that 

.a(t) = ϕ̃[ψt [1]] −
∫ t

0
ϕ̃
[
ψs

[
A[ut−s]

]]
ds = ϕ̃[1] −

∫ t

0
ϕ̃
[
A[us]

]
ds, (10.2) 

where . 1 is the function that is identically unity, we have used the fact that . ϕ̃ is a left 
eigenmeasure with zero eigenvalue at criticality, and we have changed the variable 
of integration in the second equality. Our aim is to use (10.2) to give us the rate of 
decay of .a(t), and hence .ut (x), thereby generalising Theorem 5.8 to the setting of 
BMPs. When coupled with what we know of moment evolution, this will also give 
us what we need to prove a general Yalgom limit for branching Markov processes 
in the spirit of Theorem 5.9. 

10.1 Yaglom Limit Results for General BMPs 

Before stating the main results of this chapter, we need to state a number of 
additional assumptions. As with much of our notation, we use the same symbols 
as we have used for the NBP in this more general setting without confusion. 
For example, we will still work with the variance functional for the branching 
mechanism defined by 
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.V [g](x) = Ex

[
Z[g]2 − Z[g2]

]
, x ∈ E. (10.3) 

See (5.9) for comparison. We now introduce some further assumptions. 

(G6) The number of offspring produced at a branching event is bounded 
above by a constant, .nmax. 

(G7) There exists a constant .C > 0 such that for all .g ∈ B+(E), 

. ϕ̃
[
γV [g]] ≥ Cϕ̃[g]2.

(G8) For all t sufficiently large, .supx∈E Pδx (t < ζ ) < 1. 

The assumption (G6) simply assumes there is never more than a maximum number 
of offspring, irrespective of spatial dependency. Assumption (G7) can be thought of 
as a type of “spread-out-ness” requirement that ensures an inherent irreducibility of 
how the event of branching contributes to mass transportation. We may also think of 
this as something analogous to a uniform ellipticity condition for diffusive operators. 
Assumption (G8) ensures that there are no anomalies in our BMP that would allow 
for guaranteed survival from certain points in space. Note, in particular, that this 
becomes relevant when E is not bounded. 

Theorem 10.1 Suppose that (G2), (G6), (G7), and (G8) hold. Then, 

. lim
t→∞ sup

x∈E

∣∣∣∣ tPδx (ζ > t)

ϕ(x)
− 2

Σ

∣∣∣∣ = 0, (10.4) 

where 

.Σ = ϕ̃
[
γV [ϕ]]. (10.5) 

As alluded to above, Theorem 10.1, when combined with Theorem 9.1, implies that, 
for any .k ≥ 1 and .f ∈ B+(E), 

. lim
t→∞Eδx

[(
Xt [f ]

t

)k
∣∣∣∣∣ ζ > t

]
= k! ϕ̃[f ]k

(
Σ

2

)k

. (10.6) 

The right-hand side above is precisely the k-th moment of an exponential random 
variable with rate .p := 2/Σϕ̃[f ]. In other words, as a generalisation of Theo-
rem 5.9, we have  

. Law

(
Xt [f ]

t

∣∣∣∣ ζ > t

)
→ Law

(
ep

)
,

as .t → ∞, where . ep is an exponential random variable with rate p.
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We consume the rest of this chapter proving Theorem 10.1. The approach we will 
take is to first produce coarse lower and upper bounds for the survival probability 
and then to bootstrap these bounds to give us the precise asymptotic in (10.4). As  
alluded to above, a key element in our analysis will be understanding the behaviour 
of .a(t) as .t → ∞. 

10.2 Extinction at Criticality 

Let us start by examining extinction, namely the event .{ζ < ∞}, at criticality. Under 
our assumptions, as with classical Bienyamé–Galton–Watson branching processes, 
we find that criticality ensures there is almost sure extinction. 

Lemma 10.1 Assume (G2) with .λ∗ = 0 and (G8). For all .x ∈ E, we have . Pδx (ζ <

∞) = 1. 

Proof We start by proving that for all .x ∈ E and .t0 > 0, 

. lim
n→∞PXn(ζ ≤ t0) = 1{ζ<∞}, Pδx -a.s. (10.7) 

On the event .{ζ < ∞}, it is immediate that, for all .x ∈ E, 

. lim
t→∞PXt (ζ ≤ t0) = 1, (10.8) 

.Pδx -almost surely. Hence, our proof of (10.7) focuses on what happens on the event 
of survival. 

Let .(Tn, n ∈ N) be any increasing sequence of stopping times. Using the strong 
Markov property and (10.8), we have that, for all .n ∈ N, 

. Pδx (ζ < ∞) = Eδx

[
PXTn

(ζ < ∞)
] ≥ Eδx

[
PXTn

(ζ ≤ t0)
]
.

Using this inequality and Fatou’s lemma, we deduce that 

. Pδx (ζ < ∞) ≥ lim inf
n→∞ Eδx

[
PXTn

(ζ ≤ t0)
]

≥ Eδx

[
lim inf
n→∞ PXTn

(ζ ≤ t0)
]

≥ Eδx [1{ζ<∞}] + δPδx

(
ζ = ∞ and lim inf

n→∞ PXTn
(ζ ≤ t0) ≥ δ

)
.

It follows that, for all .δ ∈ (0, 1], we have  

.Pδx

(
ζ = ∞ and lim inf

n→∞ PXTn
(ζ ≤ t0) ≥ δ

)
= 0.
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This implies that, on .{ζ = ∞}, .lim infn→∞ PXTn
(ζ ≤ t0) = 0. Since this is true for 

any sequence of increasing stopping times, in particular . Tn = n, for . n ∈ N, we  
deduce that, on .{ζ = ∞}, .lim supn→∞ PXn(ζ ≤ t0) = 0. Together with (10.8), this  
gives us 

. lim
n→∞ PXn(ζ ≤ t0) = 1{ζ<∞}

.Pδx -almost surely, as required. 
Next we prove that for all . x ∈ E, on .{ζ = ∞}, we have .Pδx -almost surely that 

. lim
n→∞ Xn[ϕ] = ∞. (10.9) 

First note that for any .x ∈ E and . t ≥ 0, we have  

. Pδx (t < ζ ) ≤ Eδx [Nt ] = ψt [1](x).

Using (G2), we deduce that there exists a .t0 > 0 such that, for all .x ∈ E, 

.Pδx (t0 < ζ) ≤ ψt0 [1](x) ≤ 2ϕ(x). (10.10) 

Thanks to the assumption (G8), we can choose . t0 sufficiently large such that there 
exists a constant .c0 ∈ (0, 1) such that, uniformly for all .x ∈ E, 

. Pδx (t0 < ζ) ≤ c0 ∧ 2ϕ(x).

Using the branching property, we deduce that, for all .μ = ∑k
i=1 δxi

∈ Mc(E), 

. Pμ(ζ ≤ t0) ≥
k∏

i=1

(1 − c0 ∧ 2ϕ(xi)) .

Now, using (10.7), we have  

.1{ζ<∞} = lim sup
n→∞

PXn(ζ ≤ t0) ≥ lim sup
n→∞

Nn∏
i=1

(1 − c0 ∧ 2ϕ(xi(n))) , (10.11) 

where .xi(n) denotes the ith particle alive at time n, .i = 1, . . . , Nn. 
Next, we note that, for each .x0 ∈ (0, 1], there exists a . θ0 such that . − log x ≤

1 − θ0x, where .θ0 = θ0(x0) > 1, for  x bounded by unity. The limsup in (10.11) 
tells us that, on .{ζ = ∞}, 

. ∞ = lim
n→∞ − log

Nn∏
i=1

(1 − c0 ∧ 2ϕ(xi(n))) = lim
n→∞ −

Nn∑
i=1

log (1 − c0 ∧ 2ϕ(xi(n))) .

(10.12)
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As .c0 < 1, we can find a constant .θ0 = θ0(1 − c0) > 1 such that 

. −
Nn∑
i=1

log (1 − c0 ∧ 2ϕ(xi(n))) ≤
Nn∑
i=1

(1 − θ0) + θ0

Nn∑
i=1

c0 ∧ 2ϕ(xi(n))

≤ 2θ0

Nn∑
i=1

ϕ(xi(n)). (10.13) 

In conclusion, combining (10.13) with (10.12) gives us (10.9) as promised. 
To conclude the proof of the lemma, let us recall that, under the assumption (G2), 

the eigenfunction . ϕ having zero eigenvalue ensures that .(Xt [ϕ], .t ≥ 0) is a 
martingale. (The proof of this fact is essentially the same as in the NBP setting; 
see Sect. 6.1.) As .ϕ ∈ B+(E), .Wt = Xt [ϕ]/ϕ(x) ≥ CXt [ϕ]. Since W is almost 
surely convergent, (10.9) implies a contradiction and hence that .{ζ < ∞},Pδx -a.s. 

⨅⨆

10.3 Analytic Properties of the Non-linear Operator A 

Before we embark on our pursuit of coarse bounds for the survival probability, it 
will be important for us to understand the behaviour of the non-linear operator 
. A, particularly if we are to use (10.2) as the basis of our analysis. Recalling the 
definition (8.26), that is, 

. A[h](x) = γ (x)Ex

[
N∏

i=1

(1 − h(xi)) − 1 +
N∑

i=1

h(xi)

]
, x ∈ E, h ∈ B+

1 (E),

(10.14) 

we may think of .A[h] as the branching mechanism .G[1 − h] with its linearisation 
subtracted off. This suggests that the next largest term in the expression for . A[h]
should be its quadratic approximation. The next result allows us to control the use 
of this quadratic approximation in the forthcoming analysis. 

Lemma 10.2 Suppose that (G6) holds. The following statements hold: 

(i) For all .x ∈ E and .h ∈ B+
1 (E), we have 

. 0 ≤ A[h](x) ≤ ‖γ ‖nmax.

(ii) There exists .C ∈ (0,∞) such that, for all .h : E → [0, 1/2], 

.‖A[h](x) − 1
2γ (x)V [h](x)‖ ≤ C‖h(x)‖3. (10.15)
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(iii) There exists .C ∈ (0,∞) such that for all .h : E → [0, 1/2], 

. A[h](x) ≥ Cγ (x)V [h](x) ≥ 0, x ∈ E.

(iv) There exists .C ∈ (0,∞) such that for all .h1, h2 ∈ B+
1 (E), we have 

. ‖V [h1] − V [h2]‖ ≤ C‖h1 − h2‖.

Proof (i) The non-negativity of .A[h] can be demonstrated using an iterative 
argument. For .n ≥ 1 and .(xi, 1 ≤ i ≤ n) ∈ [0, 1]n, 

.fn(x1, . . . , xn) :=
n∏

i=1

(1 − xi) − 1 +
n∑

i=1

xi ≥ 0. (10.16) 

To see why this is true, we note that .f1(x1) = 0 and, more generally, we have 
.fn+1(x1, . . . , xn, 0) = fn(x1, . . . , xn) as well as .∂fn+1(x1, . . . , xn+1)/∂xn+1 ≥ 0. 
This yields .A[h] ≥ 0. 

For the second inequality in (i), it suffices to observe that since .h ∈ B+
1 (E), 

. A[h](x) = γ (x)Ex

[∏
i

(1 − h(xi)) − 1 +
∑

i

h(xi)

]
≤ γ (x)Ex

[
Z[h]] ≤ ‖γ ‖nmax,

which is bounded due to (G6) and the global assumption that .γ ∈ B+(E). 
(ii) Let us write .𝓁(h) = −Z[log(1 − h)], which is non-negative, and note that 

. A[h](x) = e−𝓁(h) − 1 + Z[h].

Then, we have 

. 

∣∣∣A[h](x) − 1
2γ (x)V [h](x)

∣∣∣ ≤ γ (x)Ex

[
1 − e−𝓁(h) − 𝓁(h) + 1

2𝓁(h)2]

+ γ (x)Ex

[
Z[− log(1 − h) − h − 1

2h2]]

+ 1
2γ (x)Ex

[∣∣Z[log(1 − h)]2 − Z[h]2
∣∣].
(10.17) 

Applying the elementary bounds .0 ≤ 1 − e−x − x + 1
2x2 ≤ 1

6x3 for all . x ≥ 0
and .0 ≤ − log(1 − x) − x − 1

2x2 ≤ x3 for .x ∈ [0, 1
2 ], since both . γ ∈ B+(E)

and (G6) hold, we see that the first two terms on the right-hand side of (10.17) are 
bounded by .C‖h‖3. For the third term on the right-hand side of (10.17), writing 
.log(1 − h) = −h + R(h) with .|R(h)| ≤ C‖h‖2, we get 

.
∣∣Z[log(1 − h)]2 − Z[h]2

∣∣ ≤ 2Z[h] · Z[|R(h)|] + Z[R(h)]2 ≤ C' ‖h‖3,
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for a constant . C' > 0, where we have used that .h ∈ B+
1 (E) and (G6) holds. This 

gives us (ii). 
(iii) First note that for all .n ≥ 2 and .(xi, 1 ≤ i ≤ n) ∈ [0, 1

2 ]n, 

. 

n∏
i=1

(1 − xi) − 1 +
n∑

i=1

xi ≥ 1

2n−1

∑
1≤i,j≤n:i /=j

xixj .

This can be shown with an induction on n and its proof is therefore omitted. The 
proof of (iii) now follows by (G6). 

(iv) The final claim can be easily checked from the definition of . V, combined 
with (G6). ⨅⨆

10.4 Coarse Bounds for the Survival Probability 

We will use probabilistic methods to prove a coarse lower bound for the probability 
of survival. 

Lemma 10.3 Suppose that (G2) holds. There exists .C ∈ (0,∞) such that 

. ut (x) ≥ ϕ(x)

Ct
and a(t) ≥ 1

Ct
,

for all .t ≥ 1 and .x ∈ E. 

Proof Just as in the setting of the NBP (cf. Sect. 6.1), for the Asmussen–Hering 
class of BMPs at criticality (cf. (G2) with .λ∗ = 0), .Xt [ϕ], .t ≥ 0, is a martingale. As 
such, we can introduce the change of measure 

.
dPϕ

δx

dPδx

∣∣∣∣∣
Ft

= Wt := Xt [ϕ]
ϕ(x)

, t ≥ 0, x ∈ E. (10.18) 

Thanks to the change of measure (10.18) and Theorem 9.1, there exists a . C > 0
such that 

. sup
x∈E

E
ϕ
δx

[Xt [ϕ]] = sup
x∈E

1

ϕ(x)
Eδx [Xt [ϕ]2] ≤ Ct,

for all .t ≥ 1. By Jensen’s inequality, we then get 

.Pδx (ζ > t) = E
ϕ
δx

[
ϕ(x)

Xt [ϕ]
]

≥ ϕ(x)

E
ϕ
δx

[Xt [ϕ]] ≥ ϕ(x)

Ct
, t ≥ 1. (10.19)
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The lower bound for .a(t) then follows by integrating both sides of (10.19) against 
. ϕ̃ and recalling that we have normalised the left and right eigenfunctions so that 
.ϕ̃[ϕ] = 1. ⨅⨆

Next we turn to a coarse upper bound for the survival probability, which, for the 
most part, is an analytical proof, making use of Lemma 10.2. 

Lemma 10.4 Under the assumptions of Theorem 10.1, there exists a constant . ̃C >

0 such that for all .t ≥ t0, 

.a(t) ≤ C̃

t
and ‖ut‖ ≤ C̃

t
. (10.20) 

Proof We first show that 

.a(t) → 0 and ‖ut‖ → 0, (10.21) 

as .t → ∞. 
Thanks to Lemma 10.1, we have .Pδx (ζ < ∞) = 1, which implies that . ut (x) =

Pδx (ζ > t) → 0, as .t → ∞, for all .x ∈ E. Clearly, .a(t) = ϕ̃[ut ] → 0, as .t → ∞, 
by dominated convergence. 

For the uniform convergence of . ut , recalling the definition of . ut [f, g](x)

in (8.24), we note that .ut+s(x) = ut [1 − us , 0](x) by the Markov branching 
property. Recall the non-linear evolution equation in (8.24) tells us that . ut [f ](x) :=
ut [f, 0](x) satisfies 

.ut [f ](x) = ψt [1 − f ](x) −
∫ t

0
ψs [A[ut−s[f ]]] (x)ds. (10.22) 

Setting .f = 1 − us and using the preceding remarks, we find that 

.0 ≤ ut+s(x) = ψt [us](x) −
∫ t

0
ψl

[
A[ut+s−l]

]
(x)dl ≤ ψt [us](x), (10.23) 

by Lemma 10.2 (i). Combined with the fact that we are working with the Asmussen– 
Herring class of MBPs, cf. (G2), this yields 

.‖ut+s‖ ≤ ‖ψt [us]‖ ≤ a(s)‖ϕ‖ + O(e−εt ). (10.24) 

Taking first .t → ∞ and then .s → ∞ gives us that .‖ut‖ → 0 as .t → ∞. 
With (10.21) in hand, we can now move to the proof of the upper bound on . a(t)

and .‖ut‖. To this end, fix .t0 > 0 such that .‖ut‖ ≤ 1/2 for all .t ≥ t0. Note that 
the integrand in (10.2) is bounded due to our assumptions and Lemma 10.2 (i). It 
follows that .a(t) is differentiable. Differentiating (10.2) for .t ≥ t0 and then applying 
the bound in Lemma 10.2 (iii), we obtain for .t ≥ t0
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.a'(t) = −ϕ̃
[
A[ut ]

] ≤ −C1ϕ̃
[
γV [ut ]

] ≤ −C2ϕ̃[ut ]2 = −C2a(t)2, (10.25) 

where we have used assumption (G6) in the second inequality. 
Integrating from . t0 to t yields 

. a(t) ≤
(
C2(t − t0) + a(t0)

−1
)−1 ≤ (C2t)

−1 ,

where the last inequality holds for t sufficiently large. The upper bound for .a(t) then 
follows. We may then apply the same techniques as in (10.24) by setting .s = t to 
obtain the uniform bound for .ut (x). ⨅⨆

10.5 Precise Survival Probability Asymptotics 

The next result shows that the long-term behaviour of .ut /ϕ and .a(t) is the same, 
which will be key to obtaining the correct constants in the bounds obtained in the 
previous lemma. 

Lemma 10.5 Suppose that there exist .κ, η ∈ (0,∞) such that .‖ut‖ ≤ κt−η for all 
.t > 0. Then, we can find some constant .C ∈ (0,∞) which does not depend on . κ
such that 

. sup
x∈E

∣∣∣∣ut (x)

ϕ(x)
− a(t)

∣∣∣∣ ≤ Cκ2t−2η, for all t > 0.

Proof Comparing (10.22) with (10.2), we find that 

. 

∣∣∣∣ut (x)

ϕ(x)
− a(t)

∣∣∣∣ ≤
∣∣∣∣ψt [1](x)

ϕ(x)
− ϕ̃[1]

∣∣∣∣ +
∫ t

0

∣∣∣∣∣
ψt−s

[
A[us]

]
(x)

ϕ(x)
− ϕ̃

[
A[us]

]∣∣∣∣∣ ds

≤ C1e−εt +
∫ t

0
C1e−ε(t−s)‖A[us]‖ ds,

where the constant .ε > 0 comes from (G2). Thanks to Lemma 10.4, we can find 
.t0 > 0 such that .supx∈E supt≥t0

ut (x) ≤ 1/2. Take .t ≥ 2t0, then the integral above 
can be bounded as follows: 

.

∫ t

0
C1e−ε(t−s)‖A[us]‖ ds

=
∫ t/2

0
C1e−ε(t−s)‖A[us]‖ ds +

∫ t

t/2
C1e−ε(t−s)‖A[us]‖ ds
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≤ 
C1‖γ ‖nmax 

ε 
e−εt/2 +

∫ t 

t/2 
C1e−ε(t−s)‖A[us]‖ ds. (10.26) 

Using the easy observation .V [us] ≤ n2
max‖us‖2 together with Lemma 10.2 (ii), 

we deduce for the second term in (10.26) that . ‖A[us]‖ ≤ ‖V [us]‖ + ‖u3
s‖ ≤

C2‖us‖2. The latter is bounded by .C2κ
2s−2η due to the assumption of the lemma. 

Therefore, 

. 

∫ t

t/2
C1e−ε(t−s)‖A[us]‖ ds

≤ C3κ
2
∫ t

t/2
e−ε(t−s)s−2ηds

= C3κ
2

ε

(
t−2η − 4e−εt/2t−2η

)
+ C4

∫ t

t/2
e−ε(t−s)s−2η−1ds = O(t−2η).

Putting the pieces together, we obtain the claimed bound in the lemma. ⨅⨆
Proof (of Theorem 10.1) Applying Lemma 10.5 with .η = 1 and . κ being some 
positive constant, which is permitted thanks to Lemma 10.4, we have  

. sup
x∈E

∣∣∣∣ut (x)

ϕ(x)
− a(t)

∣∣∣∣ = O(t−2), t → ∞.

On the other hand, we have seen in Lemma 10.3 that .a(t)−1 = O(t). It follows that  

. sup
x∈E

∣∣∣∣ ut (x)

ϕ(x)a(t)
− 1

∣∣∣∣ = O(t−1), t → ∞. (10.27) 

Applying Lemma 10.2 (iv), (10.27), and Lemma 10.4, we deduce that 

. sup
x∈E

∣∣∣V [ut ](x) − a(t)2V [ϕ](x)]
∣∣∣ = sup

x∈E

a(t)2
∣∣∣∣V

[ ut

a(t)

]
(x) − V [ϕ](x)

∣∣∣∣

≤ C a(t)2 sup
x∈E

∣∣∣∣ut (x)

a(t)
− ϕ(x)

∣∣∣∣ = O(t−3).

(10.28) 

We now see that, for all .t ≥ t0, 

.a(t) − a(t0) = −
∫ t

t0

ϕ̃
[
A[us]

]
ds

= −1

2

∫ t

t0

(
ϕ̃
[
γV [us]

] + O(‖us‖3)
)

ds
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= −1 

2

∫ t 

t0

(
ϕ̃
[
γ V [us]

] + O(s−3)
)

ds 

= −1 

2

∫ t 

t0

(
a(s)2ϕ̃

[
γV [ϕ], ] + O(s−3)

)
ds 

= −Σ 
2

∫ t 

t0 

a(s)2(1 + o(1)
)

ds, 

where we have used  (10.15) in the second equality, (10.20) in the third, (10.28) in 
the fourth, and Lemma 10.3 in the final equality. This implies that 

. a(t) ∼ 2

Σt
as t → ∞.

The desired asymptotic for . ut then follows from (10.27). ⨅⨆

10.6 Remarks on the Neutron Transport Setting 

Comparing the statement of Theorem 5.8 with Theorem 10.1, there are seemingly 
different assumptions at play. 

Assumption (H5) vs Assumption (G7) In the setting of neutron transport, the 
assumption (H5) is weaker than (G7) in the case where E is bounded. To 
compensate for this, the proof of Theorem 5.8 requires some more work. 

The idea in this case is to use the same techniques as in Lemma 10.4 to obtain 
coarse upper and lower bounds but of order .1/

√
t . The key change occurs in (10.25). 

Specifically, in that setting, 

. a'(t) = ϕ̃
[
A[ut ]

] ≤ −C1ϕ̃
[
σfV [ut ]

]

≤ −C2

∫
D×V

ϕ̃(r, υ)

∫
V

∫
V

ut (r, υ1)ut (r, υ2)dr dυ dυ1dυ2,

(10.29) 

where we have used assumption (H5) in the second inequality. Note that Hölder’s 
inequality implies that 

. 

(∫
D

f (r)dr

)3

≤ C3

∫
D

|f (r)|3dr.

Applying this to .r I→ ∫
V

ϕ̃(r, υ)ut (r, υ)dυ, we find that
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. a(t)3 =
(∫

D×V

ϕ̃(r, υ)ut (r, υ)drdυ

)3

≤ C3

∫
D

(∫
V

ϕ̃(r, υ)ut (r, υ)dυ

)3

dr

= C3

∫
D

dr

∫
V ×V ×V

ϕ̃(r, υ)ϕ̃(r, υ1)ϕ̃(r, υ2)ut (r, υ)ut (r, υ1)ut (r, υ2)

× dυ dυ1dυ2

≤ C4‖ut‖
∫

D×V

ϕ̃(r, υ)

∫
V

∫
V

ut (r, υ1)ut (r, υ2)dr dυ dυ1dυ2,

since . ϕ̃ is uniformly bounded. Comparing this with (10.29), we have  

. a'(t) ≤ − C5

‖ut‖a(t)3, t ≥ t0.

Specifically, in that setting, 

. a'(t) = −ϕ̃
[
A[ut ]

] ≤ −C1ϕ̃
[
σfV [ut ]

] ≤ −C2ϕ̃

[ ∫
V

ut (·, υ ')dυ '
]2

= −C2a(t)2.

At this point in the argument, we know that .‖ut‖ → 0. Therefore, for any fixed 
.ϵ > 0, there exists .t '0 = t '0(ϵ) such that 

. a'(t) ≤ −C5

ϵ2
a(t)3, t ≥ t1 := max(t0, t

'
0).

Integrating from . t1 to t yields 

. a(t) ≤
(

2C5

ϵ2
(t − t1) + a(t1)

−2
)−1/2

≤
(

C5

ϵ2
t

)−1/2

,

where the last inequality holds for t sufficiently large. The upper bound for .a(t) then 
follows. We may then apply the same techniques as in (10.24) by setting .s = t to 
obtain the bound for .‖ut‖. 

Formally speaking, we have shown that, under the assumptions of Theorem 5.8, 
there exists a constant .C > 0 such that, for every .ϵ > 0, we can find .t0 = t0(ϵ) with 

.a(t) ≤ ϵ

C
√

t
and ‖ut‖ ≤ ϵ

C
√

t
, (10.30) 

for all .t ≥ t0. 
Once in the possession of an upper bound for .a(t) and .‖ut‖ of .O(t−1/2), we  

can bootstrap this further to improve the upper bound to .O(t−1). Indeed, from 
Lemma 10.4, we see that the assumption of Lemma 10.5 holds for .κ = ϵ, where . ϵ is 
given in (10.30), and .η = 1/2. Since . ϵ can be taken arbitrarily small, Lemma 10.5 
then tells us that .‖(ut /ϕ) − a(t)‖ = o(t−1). Combined with Lemma 10.3, this
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implies that 

. sup
r∈D,υ∈V

∣∣∣∣ ut (r, υ)

ϕ(r, υ)a(t)
− 1

∣∣∣∣ → 0, as t → ∞.

Thanks to Lemma 10.2 (iv), we have 

.‖V [ut /a(t)] − V [ϕ]‖ ≤ C‖(ut /a(t)) − ϕ‖ → 0. (10.31) 

On the other hand, as in (10.25), for  t sufficiently large, we have 

. a'(t) ≤ −C1ϕ̃
[
V [ut ]

] = −C1a(t)2ϕ̃
[
V [ut /a(t)]

] ≤ −C2a(t)2,

by (10.31). Integrating over t yields the desired bound for .a(t). The uniform bound 
for . ut follows from the same arguments as previously. 

This brings us back to (10.25), and we can continue the reasoning as in the proof 
of the general case. 

The Absence of Assumption (G8) Heuristically, the condition (G8) for NBPs is 
satisfied because a neutron released from anywhere in .D × V will exit the domain 
D without undergoing fission or scattering with a minimal probability, implying 
extinction. 

To be more precise, suppose we define . d0 = 2 inf{r > 0 : D ⊆
Ba(r) for some r ∈ D}, where .Ba(r) is a ball of radius a in .R3 centred at r . 
We can think of . d0 as the “diameter” of the physical domain D. Now note that, for 
.r ∈ D, .υ ∈ V , 

. Pδ(r,υ)
(ζ ≤ κD

r,υ) ≥ exp

(
−

∫ κD
r,υ

0
σ(r + υs, υ)ds

)
≥ e−κD

r,υσ ,

where we recall that .σ = σs + σf is the sum of the scatter and fission rates and 
.σ = supr∈D,υ∈V σ(r, υ) as per (H1), which was assumed in Theorem 5.8. This  
means that for .r ∈ D, .υ ∈ V , 

. sup
r∈D,υ∈V

Pδ(r,υ)
(ζ > κD

r,υ) ≤ sup
r∈D,υ∈V

(
1 − e−κD

r,υσ
)

≤
(

1 − e−d0σ/vmin
)

,

where we have used that .κD
r,υvmin ≤ κD

r,υ |υ| ≤ d0. In other words, for all . t > t0 :=
d0/vmin, 

. sup
r∈D,υ∈V

Pδ(r,υ)
(ζ > t) ≤ sup

r∈D,υ∈V

Pδ(r,υ)
(ζ > κD

r,υ) ≤
(

1 − e−d0σ/vmin
)

< 1.
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10.7 Comments 

The asymptotic of the survival probability at criticality for Bienaymé–Galton– 
Watson processes is a classical result due to Kolmogorov [85], which has since seen 
many improvements and generalisations to other spatial branching processes. Exam-
ples include Crump–Mode–Jagers processes [46], branching Brownian motion 
[112], and superprocesses [113]. The Kolmogorov survival estimate is an important 
part of the Yaglom limit, which we presented in the setting of the NBP in Chap. 5 
and which was originally formulated for Bienaymé–Galton–Watson processes in 
[132]. In the setting of isotropic neutron transport, the analogue of the Kolmogorov 
survival probability asymptotic was first proved in [99]. The main result we present 
in this chapter, Theorem 10.1, which deals with a more general setting, is reproduced 
from Harris et al. [72]. 

We finish this chapter with a short comment regarding the assumption (G6). 
While this assumption is far from satisfactory, we have been unable to weaken it 
to a moment assumption on the offspring distribution, for example. However, this 
assumption is clearly satisfied in the setting of the NBP and was also a necessary 
assumption in the isotropic case in [99].



Chapter 11 
Spines and Skeletons 

We have seen in Chap. 6 that a natural way to study the long-term behaviour 
of the NBP is via spine and skeletal decompositions. As alluded to in Chap. 6, 
these decompositions can be proved in the setting of the general BMP introduced 
in Chap. 8. Continuing at this level of generality, we look at the formal proofs 
of analogues of Lemma 6.2 and Theorem 6.4 for the spine decomposition and 
Theorem 6.5 for the skeletal decomposition. We also take the opportunity to discuss 
how the spine decomposition emerges from the skeletal decomposition as a natural 
consequence of conditioning on survival at criticality, as well as how it explains the 
particular shape of the limiting moment asymptotics in Theorem 9.1. 

11.1 Spine Decomposition 

Recall that, for our BMP, .(X,P), the underlyingMarkov process is denoted by . (ξ,P)

and that .(ξ̂ , P̂) is the law of .(ξ,P) with the additional jumps that appear in the 
many-to-one formula, cf. Lemma 8.2. We will further assume that assumption (G2), 
introduced in Sect. 8.5, is in force, which gives us the existence of a lead eigenvalue 
. λ∗, with associated left eigenmeasure . ϕ̃ and right eigenfunction . ϕ. 

We have, in particular, that 

.Wt := e−λ∗t Xt [ϕ]
μ[ϕ] (11.1) 

is a unit mean .Pμ-martingale, where .μ ∈ Mc(E). We are interested in the change 
of measure 

.
dPϕ

μ

dPμ

∣
∣
∣
∣
Ft

= Wt, t ≥ 0, μ ∈ Mc(E). (11.2) 
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In the next theorem, we will formalise an understanding of this change of 
measure in terms of another .Mc(E)-valued stochastic process .Xϕ := (X

ϕ
t , t ≥ 0), 

which we will now describe through an algorithmic construction: 

1. From the initial configuration .μ ∈ Mc(E) with an arbitrary enumeration of 
particles so that .μ = ∑n

i=1 δxi
, the  i-th particle is selected and marked “spine” 

with empirical probability 

.
ϕ(xi)

μ[ϕ] . (11.3) 

2. Each unmarked particle .j /= i issues an independent copy of .(X,Pδxj
). 

3. For the marked particle, issue a copy of the process whose motion is determined 
by the semigroup 

.Pϕ
t [f ](x) := 1

ϕ(x)
Ex

[

e−λ∗te
∫ t
0

γ (ξs )
ϕ(ξs )

(m[ϕ](ξs )−ϕ(ξs ))dsϕ(ξt )f (ξt )

]

, (11.4) 

for .x ∈ E and .f ∈ B+(E). 
4. The marked particle undergoes branching at rate 

.γ ϕ(x) := γ (x)
m[ϕ](x)

ϕ(x)
, (11.5) 

when at .x ∈ E, at which point, it scatters a random number of particles according 
to the random measure on E given by .(Z,Pϕ

x ) where 

.
dPϕ

x

dPx

= Z[ϕ]
m[ϕ](x)

. (11.6) 

Here, we recall .m[ϕ](x) = Ex[Z[ϕ]]. 
5. When the marked particle is at .x ∈ E, given the realisation of .(Z,Pϕ

x ), set  
.μ = Z and repeat Step 1. 

The process . X
ϕ
t describes the position of all the particles in the system at time . t ≥ 0

(ignoring the marked genealogy). We will also be interested in the configuration of 
the single genealogical line of descent, which has been marked “spine”, identified 
by Steps 1 and 2 above. This process, referred to simply as the spine, will be denoted 
by .ξϕ := (ξ

ϕ
t , t ≥ 0). Together, the processes .(Xϕ, ξϕ) make a Markov pair, whose 

probabilities we will denote by .(P̃
ϕ
μ,x, μ ∈ Mc(E), x ∈ supp(μ)). 

To see the associated Markov property, suppose we are given the pair .(Xϕ
t , ξ

ϕ
t ), 

for .t ≥ 0, then according to steps 2–5 of the algorithm above, to describe the 
configuration of the pair .(Xϕ

t+s , ξ
ϕ
t+s), for  .s > 0, it suffices to evolve from each 

particle in .Xϕ
t that is not part of the spinal process . ξϕ , an independent copy of 

.(X,P) for s units of time, and to evolve from the initial position . ξ
ϕ
t , an independent 

copy of . ξϕ , which then follows steps 3–5 above for s units of time.
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The way in which .Xϕ was described algorithmically above, with the spine 
randomly selected from the initial configuration of particles .μ ∈ Mc(E), it has 
law 

. ̃P
ϕ
μ :=

n
∑

i=1

ϕ(xi)

μ[ϕ] P̃
ϕ
μ,xi

= 1

μ[ϕ]
∫

E

ϕ(x)μ(dx)P̃ϕ
μ,x,

when .μ = ∑n
i=1 δxi

. Write for convenience .P̃ϕ = (P̃
ϕ
μ, μ ∈ Mc(E)). The next 

result gives us the marginal law of the process . Xϕ under . ̃Pϕ . 

Theorem 11.1 Under assumption (G2), the process .(Xϕ, P̃
ϕ
μ) is Markovian and 

equal in law to .(X,P
ϕ
μ), for .μ ∈ Mc(E). 

We would also like to understand the dynamics of the spine . ξϕ . For convenience, 
let us denote the family of probabilities of the latter by .P̃ϕ = (P̃ϕ

x , x ∈ E), in other 
words, the marginals of .(P̃

ϕ
μ,x, μ ∈ Mc(E), x ∈ E). 

Lemma 11.1 Under assumption (G2), the process .(ξϕ, P̃ϕ) is equal in law to 
.(ξ̂ , P̂ϕ), where 

.
dP̂ϕ

x

dP̂x

∣
∣
∣
∣
∣
Ft

= e−λ∗t+
∫ t
0 B(ξ̂s )ds ϕ(ξ̂t )

ϕ(x)
, t ≥ 0, x ∈ E, (11.7) 

and we recall that .B(x) = γ (x)(m[1](x) − 1) and the process .(ξ̂ , P̂) is described 
above Lemma 8.2. Equivalently, the process .(ξϕ, P̃ϕ) has semigroup .(P̃ϕ

t , t ≥ 0), 
which satisfies 

. ̃Pϕ
t [g](x) = P̂x

[

e−λ∗t+
∫ t
0 B(ξ̂s )ds ϕ(ξ̂t )

ϕ(x)
g(ξ̂t )

]

, x ∈ E, g ∈ B+(E), t ≥ 0.

(11.8) 

From this conclusion, we deduce that .(ξϕ, P̃ϕ) is conservative with a limiting 
stationary distribution .ϕ(x)ϕ̃(dx), . x ∈ E.

Proof (of Theorem 11.1) There are three main steps to the proof. The first is to 
characterise the law of transitions of the Markov process .(X,Pϕ), defined in the 
change of measure (11.2). The second step is to show that they agree with those of 
.(Xϕ, P̃ϕ). The third step is to show that .(Xϕ, P̃ϕ) is Markovian. Together these three 
imply the statement of the theorem. 

Step 1 First we look at the multiplicative semigroup that characterises uniquely the 
transitions of .(Xϕ,Pϕ) (cf. [75–77])
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.vϕ
t [g](x) := E

ϕ
δx

[

e−Xt [g]] = Eδx

[

e−λ∗t Xt [ϕ]
ϕ(x)

e−Xt [g]
]

, (11.9) 

for .t ≥ 0 and .g ∈ B+(E), where .Xt = ∑Nt

i=1 δxi(t). As we have seen before, we 
can extend the domain of test functions to include the cemetery state . †. For this, we 
need to insist on the default value .g(†) = 0 so that .e−g(†) = 1. 

We start in the usual way by splitting the expectation in the second equality 
of (11.9) according to whether a branching event has occurred by time t or not. 

. vϕ
t [g](x) = Ex

[

e−g(ξt )
ϕ(ξt )

ϕ(x)
e− ∫ t

0 λ∗+γ (ξs )ds
]

+ Ex

[ ∫ t

0
γ (ξs)e

− ∫ s
0 λ∗+γ (ξu)du ϕ(ξs)

ϕ(x)

Eξs

[ N
∑

i=1

ϕ(xi)

ϕ(ξs)
E

[

Wi
t−s

N
∏

j=1

e−X
j
t−s [g]

∣
∣
∣(xi, i = 1, · · · , N)

]]

ds

]

,

(11.10) 

where, given the offspring positions .(xi, i = 1, · · · , N), .(Wi,Xi) are independent 
copies of the pair .(W,X) under . Pδxi

. We first focus on developing the branching 
operator in the integral on the right-hand side of (11.10). 

Recalling the definition of . vt from (8.7), we have that for all .x ∈ E, 

. γ (x)Ex

⎡

⎣

N
∑

i=1

ϕ(xi)

ϕ(x)
E

[

Wi
t−s

N
∏

j=1

e−X
j
t−s [g]

∣
∣
∣(xi, i = 1 · · · , N)

]

⎤

⎦

= γ (x)Ex

[
Z[ϕ]
ϕ(x)

N
∑

i=1

ϕ(xi)

Z[ϕ] Eδxi

[

Wi
t−se

−Xi
t−s [g]]

N
∏

j=1
i /=j

Eδxj

[

e−X
j
t−s [g]]

]

= γ (x)
m[ϕ](x)

ϕ(x)
E ϕ

x

[ N
∑

i=1

ϕ(xi)

Z[ϕ] v
ϕ
t−s[g](xi)

N
∏

j=1
i /=j

vt−s[g](xj )

]

. (11.11) 

Now returning to (11.10) with (11.11) in hand, we have 

.vϕ
t [g](x) = Ex

[

e−g(ξt )
ϕ(ξt )

ϕ(x)
e− ∫ t

0 λ∗+γ (ξs )ds
]

+ Ex

[∫ t

0
e− ∫ s

0 λ∗+γ (ξu)du ϕ(ξs)

ϕ(x)
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γ (ξs) 
m[ϕ](ξs) 
ϕ(ξs) 

E ϕ 
ξs

[ N
∑

i=1 

ϕ(xi) 
Z[ϕ] v

ϕ 
t−s[g](xi) 

N
∏

j=1 
i /=j 

vt−s[g](xj )

]

ds 

⎤ 

⎥ 
⎥ 
⎦ 

− Ex

[∫ t 

0 
γ (ξs) 

m[ϕ](ξs) 
ϕ(ξs) 

vt−s[g](ξs)ds

]

+ Ex

[∫ t 

0 
γ (ξs) 

m[ϕ](ξs) 
ϕ(ξs) 

vt−s[g](ξs)ds

]

, 

where we have artificially introduced the final terms. Applying Dynkin’s lemma in 
reverse to change the final term into a multiplicative potential yields 

. vϕ
t [g](x) = Ex

[

e−g(ξt )
ϕ(ξt )

ϕ(x)
e− ∫ t

0 λ∗− γ (ξs )
ϕ(ξs )

(m[ϕ](ξs )−ϕ(ξs ))ds
]

+ Ex

[∫ t

0
e− ∫ s

0 λ∗− γ (ξu)
ϕ(ξu)

(m[ϕ](ξu)−ϕ(ξu))du ϕ(ξs)

ϕ(x)

γ (ξs)
m[ϕ](ξs)

ϕ(ξs)
E ϕ

ξs

[ N
∑

i=1

ϕ(xi)

Z[ϕ] v
ϕ
t−s[g](xi)

N
∏

j=1
i /=j

vt−s[g](xj )

]

ds

⎤

⎥
⎥
⎦

− Ex

[∫ t

0
γ (ξs)

m[ϕ](ξs)

ϕ(ξs)
vt−s[g](ξs)ds

]

. (11.12) 

Step 2 Define 

.ṽϕ
t [g](x) = Ẽ

ϕ
δx

[

e−X
ϕ
t [g]] , t ≥ 0, (11.13) 

for .g ∈ B+(E), where, again, .(xi(t), i = 1 · · · , Nt ), is the configuration of the 
population at time .t > 0. 

By conditioning . ̃vϕ
t on the first branch time, it is a straightforward exercise 

to show that it also solves (11.12). For the sake of brevity, we leave this as an 
exercise to the reader as the arguments are similar to those appearing earlier. In 
order to show that (11.12) has a unique solution, we consider .u

ϕ
t [g] := ϕvϕ

t [g] and 
.ũ

ϕ
t [g] := ϕṽϕ

t [g]. Again, standard arguments show that they both satisfy the same 
equation. Using boundedness of the branch rate, of the mean offspring, and of . ϕ, by  
considering the difference .supx∈E |uϕ

t [g](x) − ũ
ϕ
t [g](x)|, uniqueness of solutions 

to (11.12) follows from Grönwall’s inequality. Again, we leave the details as an 
exercise to the reader in order to avoid repetition. 

Step 3 The joint process .(Xϕ, ξϕ) is, by construction, Markovian under . ̃Pϕ . We  
thus need to show that . Xϕ alone demonstrates the Markov property. We do this by 
showing that for .f ∈ B+(E) and .μ ∈ Mc(E),
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.Ẽ
ϕ
μ

[

f (ξ
ϕ
t )|Xϕ

t

] = X
ϕ
t [f ϕ]

X
ϕ
t [ϕ] , t ≥ 0. (11.14) 

This says that knowing . X
ϕ
t allows one to construct the law of . ξ

ϕ
t by using . X

ϕ
t as an 

empirical distribution with an additional density . ϕ. With (11.14) in hand, the desired 
Markov property follows as, for .g ∈ B+(E) and .μ ∈ Mc(E), 

. Ẽ
ϕ
μ

[

e−X
ϕ
t+s [g]|Ft

]

=
Nt∑

i=1

ϕ(xi(t))

X
ϕ
t [ϕ] Ẽ

ϕ

μ',x'
[

e−X
ϕ
s [g]]

μ'=X
ϕ
t ,x'=xi (t)

= Ẽ
ϕ

μ'
[

e−X
ϕ
s [g]]

μ'=X
ϕ
t

,

where we have written .X
ϕ
t =∑Nt

i=1δxi(t). 

We are thus left with proving (11.14) to complete this step. To do so, we note 
that it suffices to show that for .f ∈ B+

1 (E), .g ∈ B+(E), .μ ∈ Mc(E), and .x ∈ E, 

.Ẽ
ϕ
μ

[

f (ξ
ϕ
t )e−X

ϕ
t [g]] = Ẽ

ϕ
μ

[
X

ϕ
t [f ϕ]

X
ϕ
t [ϕ] e−X

ϕ
t [g]
]

, t ≥ 0. (11.15) 

On the left-hand side of (11.15), we have  

. Ẽ
ϕ
μ

[

f (ξ
ϕ
t )e−X

ϕ
t [g]]

= Ẽ
ϕ
μ

[

Ẽ
ϕ
μ

[

f (ξ
ϕ
t )e−X

ϕ
t [g]|ξϕ

t

]]

=
n
∑

k=1

ϕ(xk)

μ[ϕ] Ẽ
ϕ
δxk

⎡

⎣f (ξ
ϕ
t )

∏

i≥1:Ti≤t

Ni∏

j=1

vt−Ti
[g](xij )

vt−Ti
[g](ξϕ

Ti
)

⎤

⎦
∏

𝓁 /=k

vt [g](x𝓁),

where .μ =∑n
k=1δxi

and . (Ti , .i ≥ 1) are the times of fission along the spine at which 
point, . Ni particles are issued at . xij , .j = 1 · · · , Ni , and we recall .(vs , s ≥ 0) is the 
non-linear semigroup of .(X,P), defined in (8.5). 

To deal with the right-hand side of (11.15), we may appeal to Step 1 and Step 
2. In particular, the fact that .ṽϕ

t [g](x), given by (11.13), is equal to .vϕ
t [g](x), given  

by (11.9), tells us that, for each fixed time .t ≥ 0, the laws of .(Xϕ
t , P̃

ϕ
δx

) and . (Xt ,P
ϕ
δx

)

agree. It follows that 

.Ẽ
ϕ
μ

[
X

ϕ
t [f ϕ]

X
ϕ
t [ϕ] e−X

ϕ
t [g]
]

= E
ϕ
μ

[
Xt [f ϕ]
Xt [ϕ] e−Xt [g]

]

= e−λ∗tEμ

[
Xt [f ϕ]
μ[ϕ] e−Xt [g]

]
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= 
n
∑

k=1 

ϕ(xk) 
μ[ϕ] e

−λ∗t Eδxk

[
Xt [f ϕ] 
ϕ(xi) 

e−Xt [g]
]
∏

𝓁 /=k 
vt [g](x𝓁). 

The proof of this final step is thus complete as soon as we can show that 

. Ẽ
ϕ
δx

⎡

⎣f (ξ
ϕ
t )

∏

i≥1:Ti≤t

Ni∏

j=1

vt−Ti
[g](xij )

vt−Ti
[g](ξϕ

Ti
)

⎤

⎦ = e−λ∗tEδx

[
Xt [f ϕ]
ϕ(x)

e−Xt [g]
]

,

(11.16) 

for .x ∈ E. To this end, we note that splitting the expectation on the right-hand side 
of (11.16) at a branching event results in a calculation that is almost identical to the 
one above that concludes with (11.12). More precisely, the expectation on the right-
hand side of (11.16) solves (11.12) albeit the role of .g(ξt ) is replaced by .f (ξt )g(ξt ). 
Similarly splitting the expectation on the left-hand side of (11.16) also results in a 
solution to (11.12) (with the aforementioned adjustment). Uniqueness follows from 
the same arguments, and hence, the equality in (11.16) now follows, as required. ⨅⨆

With the proof of Theorem 11.1 completed, we can now turn to the proof of 
Lemma 11.1. 

Proof (of Lemma 11.1) The fact that the spine is Markovian is immediate from the 
definition of . ξϕ . Indeed, once its initial configuration is given, it evolves according 
to the semigroup . Pϕ

t defined in (11.4) and when at position .x ∈ E, at rate  
.ϕ(x)−1γ (x)m[ϕ](x), it jumps to a new position y, with distribution 

. Ex

[
Z[ϕ]

m[ϕ](x)

Z[ϕ1(·∈dy)]
Z[ϕ]

]

= m[ϕ1(·∈dy)](x)

m[ϕ](x)
,

for .y ∈ E, where we have used (11.6). Defining 

. w̃ϕ[g](x) := Ẽx[g(ξ
ϕ
t )],

and splitting on the first jump of the spine, the above description implies that . w̃ϕ
t

satisfies 

.w̃ϕ[g](x)

= 1

ϕ(x)
Ex

[

e
−λ∗t+

∫ t
0

γ (ξ
ϕ
s )

ϕ(ξ
ϕ
s )

(m[ϕ](ξϕ
s )−ϕ(ξ

ϕ
s ))ds

g(ξ
ϕ
t )ϕ(ξ

ϕ
t )e

− ∫ t
0

γ (ξ
ϕ
s )

ϕ(ξ
ϕ
s )

m[ϕ](ξϕ
s )ds
]

+ Ex

[
∫ t

0

γ (ξ
ϕ
s )

ϕ(ξ
ϕ
s )

m[ϕ](ξϕ
s )e

− ∫ s
0

γ (ξ
ϕ
u )

ϕ(ξ
ϕ
u )

m[ϕ](ξϕ
u )du
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×e
−λ∗s+

∫ s 
0 

γ (ξ  ϕ 
u ) 

ϕ(ξ ϕ 
u ) 

(m[ϕ](ξ ϕ 
u )−ϕ(ξ ϕ 

u ))du ϕ(ξ ϕ 
s ) 

ϕ(x) 
m[w̃ ϕ 

t−sϕ1(·∈dy)](ξ ϕ 
s ) 

m[ϕ](ξ ϕ 
s )

]

= 
1 

ϕ(x) 
Ex

[

e−λ∗t−
∫ t 
0 γ (ξ  ϕ 

s )ds g(ξ ϕ 
t )ϕ(ξ ϕ 

t )
]

+ Ex

[∫ t 

0 

γ (ξ  ϕ 
s ) 

ϕ(x) 
e−λ∗s−

∫ s 
0 γ (ξ  ϕ 

u )du m[w̃ ϕ 
t−sϕ1(·∈dy)](ξϕ 

s )ds

]

. (11.17) 

Now recall the change of measure (11.7) and define 

. ŵ
ϕ
t [g](x) = Êx

[

e−λ∗t+
∫ t
0 γ (ξ̂s )(m[1](ξ̂s )−1)dsg(ξ̂t )

ϕ(ξ̂t )

ϕ(x)

]

.

Let us now show that . ŵϕ
t also satisfies (11.17). Recalling that . ̂ξ jumps at rate . γm, 

we have 

. ŵ
ϕ
t [g](x) = 1

ϕ(x)
Ex

[

g(ξ̂t )ϕ(ξ̂t )e
−λ∗t+

∫ t
0 γ (ξ̂s )(m[1](ξ̂s )−1)e− ∫ t

0 γ (ξ̂s )m[1](ξ̂s )ds
]

+ Ex

[∫ t

0
γ (ξ̂s)m[1](ξ̂s)e

− ∫ s
0 γ (ξ̂u)m[1](ξ̂u)du

×e−λ∗s+
∫ s
0 γ (ξ̂u)(m[1](ξ̂u)−1)du ϕ(ξ̂s)

ϕ(x)

m[ŵϕ
t−sϕ1(·∈dy)](ξϕ

s )

ϕ(ξ̂s)m[1](ξ̂s)

]

= 1

ϕ(x)
Ex

[

e−λ∗t−
∫ t
0 γ (ξ

ϕ
s )dsg(ξ

ϕ
t )ϕ(ξ

ϕ
t )
]

+ Ex

[∫ t

0

γ (ξ
ϕ
s )

ϕ(x)
e−λ∗s−

∫ s
0 γ (ξ

ϕ
u )dum[ŵϕ

t−sϕ1(·∈dy)](ξϕ
s )ds

]

,

as required. Uniqueness follows as in the conclusion of Step 2 in the proof of 
Theorem 11.1. 

Recalling notation from Lemma 8.2, 

.T̂ϕ
t [g](x) := P̂ϕ

x [g(ξ̂t )] = e−λ∗t ψt [gϕ](x)

ϕ(x)
, x ∈ E, (11.18) 

where .g ∈ B+(E). Recalling the eigenvalue property of . ϕ, by taking . g ≡
1, we see that .T̂ϕ

t [1](x) = 1 and hence .(ξ̂ , P̂ϕ) is conservative. Moreover, 
.limt→∞ P̂ϕ

x [g(ξ̂t )] = ϕ̃[ϕg] for all .g ∈ B+(E). In other words, . ϕϕ̃ is the density of 
the stationary distribution of . ̂ξ under . ̂Pϕ . ⨅⨆
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11.2 Examples of the Spine Decomposition 

In the previous section, we have seen the spine decomposition for our general class 
of BMPs introduced in Chap. 8. The decomposition is both simple and complicated. 
It is “simple”, in that the change of measure allows one to see the evolution of 
the BMP as a spine process that is “dressed” with original copies of the original 
BMP at certain times of “immigration” where the spine acquires siblings. But 
also “complicated” because the technical details of the aforesaid description are 
somewhat involved. In particular, the non-locality of our BMP is part of the reason 
why the technical details are so complex. 

To help give a better insight, let us look at how the spine decomposition takes 
shape for less general but familiar branching processes. We have already seen in 
Sect. 6.3 how the spine decomposition plays out for the NBP, and it offers little 
more specificity than in the general case. We therefore focus on two cases where 
specific aspects of the decomposition can be identified in other familiar detail. 

Multi-type Branching Process This is the most basic of non-local branching 
process. Individuals have no associated motion and have a type belonging to 
.{1, · · · , n}. Branching occurs at a constant rate .γ > 0, and particles of type 
.i ∈ {1, · · · , n} give birth to offspring of all types with law . Pi . Assumption (G1) 
ensures that the mean offspring of each type is finite, irrespective of the type of 
the parent. Rather than thinking of .(Xt , t ≥ 0) as a measure-valued process, we 
can write it as a vector .Xt = (Xt (1), · · · , Xt (n)), where .Xt(i) simply counts 
the number of individuals of type i alive at time .t ≥ 0. The mean semigroup 
can be expressed in terms of a matrix .ψt(i, j) = Ei[Xt(j)], .i, j ∈ {1, · · · , n}. 
Assumption (G2) can be understood as the existence of right and left eigenvectors, 
say .ϕ = (ϕ1, · · · , ϕn) and .ϕ̃ = (ϕ̃1, · · · , ϕ̃n) with eigenvalue .λ∗ ∈ R, so that, in the 
sense of vector–matrix multiplication, 

.ϕ̃Tψt = eλ∗t ϕ̃T and ψtϕ = eλ∗t ϕ. (11.19) 

Moreover, the asymptotic behaviour of the semigroup .(ψt , t ≥ 0) is nothing more 
than the classical Perron–Frobenius asymptotic 

. lim
t→∞ e−λ∗tψtg = (ϕ̃ · g)ϕ,

where .g = (g1, · · · , gn) is a non-negative vector in . Rn and .ϕ̃ · g = ϕ̃Tg is the 
classical Euclidian inner product. 

The analogue of the martingale (11.1) is the classical martingale 

.e−λ∗t Xt · ϕ

X0 · ϕ
, t ≥ 0.
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From Lemma 11.1, in particular, (11.8), the change of measure associated with this 
martingale induces a spine decomposition in which . ξϕ is a continuous-time Markov 
chain whose transition semigroup satisfies 

. ̃Pϕ
t [g](i) = Êi

[

e−λ∗t+
∫ t
0 γ (m

ξ̂s
·1−1)ds ϕ

ξ̂t

ϕi

g
ξ̂t

]

, t ≥ 0, g ∈ R
n, i ∈ {1, · · · , n},

(11.20) 

where .mi = (mi (1), · · · ,mi (n)) = (Ei[N(1)], · · · ,En[N(n)]) and . (N(i), i =
1, · · · , n), are the number of offspring produced of each type at a typical branching 
event. From the discussion preceding Lemma 8.2, the continuous-time Markov 
chain .(ξ̂ , P̂) has intensity matrix . Q̂ given by 

.Q̂ij = γmi · 1mi (j)

mi · 1 = γmi (j), i, j ∈ {1, · · · , n}, (11.21) 

where . 1 is the vector in . Rn whose entries are all unity. Hence, the Q-matrix 
associated to the spine, say . Q̃ϕ , is easily found by differentiating (11.20) to get 

. (Q̃ϕg)i, = d

dt
Pϕ

t [g](i)
∣
∣
∣
∣
t=0

= −λ∗gi + γ (mi · 1 − 1)gi + 1

ϕi

(Q̂(ϕ ⊙ g))i,

where .ϕ ⊙ g is elementwise multiplication of the vectors . ϕ and g. In particular, if 
.g = δj , the vector whose elements are all zero albeit an entry of unity for the j -th 
element, then we see that 

. Q̃
ϕ
ij = 1

ϕi

(

Q̂ij + γ (mi · 1 − 1)Iij − λ∗Iij

)

ϕj , i, j ∈ {1, · · · , n},
(11.22) 

where . I is the identity matrix. Note however that the eigenvalue . λ∗ already carries 
a relationship with . Q̂ due to Lemma 8.2. Indeed, differentiating the many-to-one 
formula in (8.17) and taking account of (11.19) yield, for .g ∈ R

n, 

. λ∗ϕi, = d

dt
(ψtϕ)i

∣
∣
∣
∣
t=0

= γ (mi · 1 − 1)ϕi + (Q̂ϕ)i, i ∈ {1, · · · , n}.
(11.23) 

Together with (11.22) and (11.21), this tells us that the spine is a continuous-time 
Markov process with intensity 

.Q̃
ϕ
ij = γ

1

ϕi

(

mi (j) − mi · ϕIij

)

ϕj , i, j ∈ {1, · · · , n}.
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Similarly to (11.23), by using the many-to-one formula in (8.17), we get, for 
.g ∈ R

n, 

. 
d

dt
(ϕ̃Tψt)j

∣
∣
∣
∣
t=0

= γ

n
∑

i=1

ϕ̃i (mi · 1 − 1)Iij + (ϕ̃TQ̂)j

= γ

n
∑

i=1

ϕ̃i

(

(mi · 1 − 1)Iij + mi (j)
)

.

Hence, differentiating across (11.19) and setting .t = 0 thus give us 

.γ

n
∑

i=1

ϕ̃i

(

(mi · 1 − 1)Iij + mi (j)
)

= λ∗Iij . (11.24) 

We can use (11.24) to verify that the spine has stationary distribution . (ϕ̃iϕi, i =
1, · · · , n), as predicted by Lemma 11.1. Indeed, taking the representation for . Q̃ϕ

given in (11.22) and appealing to (11.24), 

. 

n
∑

i=1

ϕ̃iϕiQ̃
ϕ
ij = γ

n
∑

i=1

ϕ̃i

(

Q̂ij + γ (mi · 1 − 1)Iij − λ∗Iij

)

ϕj = 0.

Branching Brownian Motion in a Bounded Domain We recall the introduction 
of this process on p193 in which setting the semigroup . P corresponds to that of 
a d-dimensional Brownian motion killed on exiting a . C1 domain .E ⊂ R

d . The  
branching rate is taken as the constant .γ > 0 and the offspring distribution, say 
.(pk, k = 0, 1, · · · ), is not spatially dependent. Assumption (G1) assumes the mean 
number of offspring, .m1 := E [N ], is finite and, under (G2), .λ∗ = γ (m1 − 1) + λE , 
where . λE is the ground state eigenvalue of the Laplacian on E. Further, if we write 
.L = Δ/2 on E, as the generator associated to . P, the eigenpair .(λ∗, ϕ) is related via 
the generator equation 

. (L + γ (m1 − 1))ϕ(x) = λ∗ϕ(x), x ∈ E,

in other words, 

. Lϕ(x) = λEϕ(x), x ∈ E.

Note that the process . ̂ξ has no additional jumps and hence also has generator . L. 
From (11.8) in Lemma 11.1, by assuming that .g ∈ B+(E) is sufficiently smooth, 
for example, .g ∈ C2(E), we can apply standard stochastic calculus to deduce that 

.L̃ϕg = d

dt
P̃ϕ

t [g](x)

∣
∣
∣
∣
t=0

= −λ∗g(x) + γ (m1 − 1)g(x) + 1

ϕ(x)
L(ϕg)(x).
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We can read out of this calculation that the generator of the spine . ξϕ is given by 

. ̃Lϕg := λE + 1

ϕ(x)
L(ϕg)(x) = 1

ϕ(x)
(L − λE)(ϕg)(x), x ∈ E,

for .g ∈ C2(E). This is well understood as the Doob h-transform to the generator . L, 
which corresponds to conditioning the Brownian motion to remain in E. 

Another interesting feature of this model is what happens at points of immi-
gration along the spine. Because there is no spatial dependency in the offspring 
distribution nor the branching rate, it is easy to see that .m[ϕ](x) = ϕ(x)m1 and 
.Z[ϕ] = ϕ(x)N , where N is the number of offspring. As such, from (11.5), we see  
that the branching rate along the spine is simply .γm1, and from (11.6), the offspring 
distribution is adjusted from .(pk, k = 0, 1, 2, · · · ) to .(kpk/m1, k = 0, 1, 2, · · · ). 
Moreover, from (11.3), we also see that the selection of the individual to mark with 
the spine is uniform among offspring of the last individual in the spine. 

The features in the last paragraph are all a consequence of there being a local 
branching structure with no spatial dependency. Indeed, this is common to spine 
decompositions of all branching processes that do not exhibit non-locality. 

11.3 The Spine Decomposition and Criticality 

We would like to focus on the critical setting and discuss how the spine decomposi-
tion gives us insight into the behaviour of the process conditional on its survival, as 
well as of its moment asymptotics, described in Theorem 9.1. In particular, we will 
go part way to explaining why higher moments can all be written in terms of only 
the second moment functional .V [ϕ] given in (9.9). 

For convenience, let us assume that the conditions of Theorem 10.1 are in force. 
Recall that this theorem tells us that 

. lim
t→∞ tPδx (ζ > t) = 2ϕ(x)

Σ
, (11.25) 

where .Σ = ϕ̃
[

γV [ϕ]]. In particular, this tells us that 

. lim
t→∞

Pδy (ζ > t)

Pδx (ζ > t + s)
= ϕ(y)

ϕ(x)
, x, y ∈ E, s ≥ 0. (11.26) 

An argument involving dominated convergence now allows us to conclude 
from (11.26) that 

. lim
t→∞Eδx

[

e−Xs [g]
∣
∣
∣ ζ > t + s

]

= lim
t→∞

Eδx

[

e−Xs [g]]

Pδx (ζ > t + s)
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= lim 
t→∞ 

Eδx

[

e−Xs [g] PXs (ζ > t) 
Pδx (ζ > t + s)

]

= Eδx

[

e−Xs [g] Xs[ϕ] 
ϕ(x)

]

. (11.27) 

The above calculation tells us that the way to ensure that the critical BMP survives 
is by selecting a single genealogical line of descent, the spine, and ensuring that 
it never dies out. This is sometimes referred to as the immortal particle as, from 
Lemma 11.1, we see that it has stationary distribution given by .ϕ(x)ϕ̃(dx), .x ∈ E. 

In the light of this conditioning, let us now turn our attention to understanding 
how the spine decomposition heuristically explains why the observed asymptotic 
moment behaviour in Theorem 9.1 depends only on the second moment functional 
.ϕ̃
[

γV [ϕ]]. 
Let us momentarily take for granted (11.25) and the moment asymptotics of 

Theorem 9.1 and use them to give the promised heuristic explanation of why the 
asymptotic moments in Theorem 9.1 all end up written in terms of the second 
moment functional .V [ϕ]. 

Writing 

.T(k)
t [f ](x) = Eδx [〈f,Xt 〉k|ζ > t]Pδx (ζ > t), (11.28) 

we can consider the behaviour of the conditional moments in (11.28) via the change 
of measure (11.2). In particular, this means that we can write, for .f ∈ B+(E), 

.Xt [f ] = f (ξ
ϕ
t ) +

nt∑

i=1

Ni∑

j=1

X
ij
t−Ti

[f ], (11.29) 

where: 

• . ξϕ is the spine. 
• . nt is the number of branching events along the spine, which arrive at a rate that 

depends on the motion of . ξ . 
• . Ni is the number of offspring produced such that, at the i-th such branching 

event, which occurs at time .Ti ≤ t . 
• .X

ij
t−Ti

, .j = 1, . . . , Ni , are i.i.d. copies of the original branching Markov process 
initiated from .(xj , j = 1, · · · , Ni), the positions of the offspring produced at the 
branching event. 

In other words, that under . Pϕ , the process X can be decomposed into a single 
immortal trajectory, of which copies of the original process .(X,P) immigrate 
simultaneously from groups of siblings. 

With this in mind, let us consider genealogical lines of descent that contribute to 
the bulk of the mass of the k-th moment at large times t . For each copy of .(X,P) that 
immigrates onto the spine at time .s > 0, the probability that the process survives to
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time .t ≥ s, thus contributing to the bulk of the k-th moment at time t , is  . O(1/(t −
s)) ≈ O(1/t), cf.  (11.25). If there are multiple offspring at an immigration event at 
time s, then the chance that at least two of these offspring contribute to the bulk of 
the k-th moment at time t is .O(1/t2). Moreover, from Lemma 11.1, the semigroup 
of the spine limits to a stationary distribution .ϕ(x)ϕ̃(dx), .x ∈ E. This stationary 
behaviour has the effect that the arrival of branching events along the spine begins 
to look increasingly like a Poisson process as .t → ∞. Hence, for large t , .nt ≈ O(t). 

Putting these pieces together, as .t → ∞, there are approximately .O(t) branch 
points along the spine, each of which has the greatest likelihood of a single offspring 
among immigrating siblings contributing to the bulk of the k-th moment at time t , 
with probability of order .O(1/t). Thus, it is clear that we only expect to see one of 
each sibling group of immigrants along the spine contributing to the mass of the k-th 
moment at time t . Now  let . βϕ denote the spatial rate at which offspring immigrates 
onto the spine and let .{x1, . . . , xN } denote their positions at the point of branching 
including the position of the spine at this instance. Let .Pϕ denote the law of this 
offspring distribution, and suppose that . i∗ is the (random) index of the offspring that 
continues the evolution of the spine. The rate at which a “uniform selection” of a 
single offspring occurs that is not the spine at a branching event (seen through the 
function .f ∈ B+(E)) is given by 

. γ ϕ(x)E ϕ
x

[
N
∑

i=1

f (xi)1(i /=i∗)

]

= γ (x)
Ex

[

Z[ϕ]]
ϕ(x)

Ex

×

⎡

⎢
⎢
⎣

Z[ϕ]
Ex

[

Z[ϕ]]
N
∑

i=1

ϕ(xi)

Z[ϕ]
N
∑

i=1
j /=i

f (xj )

⎤

⎥
⎥
⎦

= γ (x)

ϕ(x)
Ex

⎡

⎢
⎢
⎣

N
∑

i=1

ϕ(xi)

N
∑

i=1
j /=i

f (xj )

⎤

⎥
⎥
⎦

= γ (x)

ϕ(x)
Ex

[

Z[f ]Z[ϕ] − Z[ϕf ]] , (11.30) 

where we have used the features of the spine decomposition given in (11.3), (11.5) 
and (11.6). 

We know from the assumed behaviour of the first moment in (G2) that it is the 
projection of .〈f,Xt 〉 on to .Xt [ϕ], with coefficient .〈f, ϕ̃〉, which dominates the mean 
growth. In this spirit, let us take .f = ϕ for simplicity, and we see that in (11.30) we 
get precisely .V [ϕ](x)/ϕ(x) on the right-hand side. 

Hence, finally, we conclude our heuristic by observing that the rate at which 
immigration off the spine contributes to the bulk of the k-th moment limit of . Xt [ϕ]
is determined by the second moment functional .V [ϕ]; together with (11.28) and the
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associated remarks above, this goes some way to explaining the appearance of the 
limit in Theorem 9.1. 

11.4 T -Skeletal Decomposition 

In this section, we remain in the setting of a general BMP, as described in Chap. 8. 
Our aim is to provide a more general skeletal decomposition to the one presented in 
Chap. 6. In particular, under appropriate assumptions, we decompose the branching 
process into the genealogies that survive up to time .T < ∞, in which individuals 
will carry the mark . ↑, and those that die out before time T , in which individuals 
will carry the mark . ↓. The calculations we present are robust, and the reader is 
encouraged to consider that they are equally valid for the setting .T = ∞ (as 
presented in Chap. 6), when the process survives with positive probability. We will 
provide further remarks at the end of this section to this end. The reader will note 
that we have not assumed (G1) or (G2) in our analysis. 

As with the skeletal decomposition of the NBP in Sect. 6.4 (albeit now in finite 
time), we see that our BMP decomposes as equal in law to a “thinner” tree of all 
.↑-marked individuals, dressed with immigrating trees of all .↓-marked individuals. 

For now, let us fix .0 ≤ t ≤ T < ∞. In order to describe the evolution of the 
.{↑,↓}-valued marks along the running population, consider the configuration of the 
BMP at time t , with positions in E given by .{xj (t), j = 1, · · · , Nt }. Given  . FT , 
if particle i is such that it has descendants alive at time T , then we define its mark 
.cT

i (t) =↑. On the other hand, if every line of descent from the i-th particle has 
become extinct by time T , then define its mark .cT

i (t) =↓. 
Next, set 

. wT (x) := Pδx (ζ < T ), 0 ≤ T < ∞, x ∈ E,

where we recall that .ζ = inf{t > 0 : Xt [1] = 0} is the extinction time of the 
process. We will also frequently use the notation 

. pT (x) := Pδx (ζ > T ) = 1 − wT (x), 0 ≤ T < ∞,

for the survival (up to time T ) probability. The quantity . wT will be central to the 
skeletal decomposition. The extreme cases that .wT ≡ 0 and .wT ≡ 1 will turn out 
to be degenerate for our purposes. With this in mind, there are other exclusions we 
need to be mindful of which lead us to the following assumptions that are in force 
throughout this section: 

(G9) Extinction by time  T is uniformly bounded away from zero, 

. inf
x∈E

wT (x) > 0.
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(G10) Extinction by time  T is not a certainty, 

. wT (x) < 1 for x ∈ E.

As alluded to in the introduction to this section, we want to describe how the 
spatial genealogical tree of the BMP up to time T can be split into a spatial 
genealogical subtree, consisting of .↑-labelled particles (the skeleton), which is 
dressed with trees of .↓-labelled particles. To this end, let . P↕,T = (P

↕,T
μ , μ ∈

Mc(E)) denote the probabilities of the .{↑,↓}-marked BMP, where . μ ∈ Mc(E)

is the initial spatial configuration of particles. Then, writing as before . {xi(t) : i =
1, . . . , Nt } for the set of particles alive at time t , we have the following relationship 
between .P

↕,T
μ and . Pμ: 

.
dP↕,T

μ

dPμ

∣
∣
∣
∣
Ft

=
Nt∏

i=1

(

1(cT
i (t)=↑) + 1(cT

i (t)=↓)

)

= 1. (11.31) 

Projecting onto . Ft , for .t ≥ 0, we have  

. 
dP↕,T

δx

dPδx

∣
∣
∣
∣
Ft

= Eδx

(
Nt∏

i=1

(

1(ci (t)=↑) + 1(cT
i (t)=↓)

)
∣
∣
∣
∣
Ft

)

=
∑

I⊆{1,...Nt }

∏

i∈I

Pδx (c
T
i (t) =↑ |Ft )

∏

i∈{1,...,Nt }\I
Pδx (c

T
i (t) =↓ |Ft )

=
∑

I⊆{1,...Nt }

∏

i∈I

pT −t (xi(t))
∏

i∈{1,...,Nt }\I
wT −t (xi(t)), (11.32) 

where we understand the sum to be taken over all subsets of .{1, . . . , Nt }, each of 
which is denoted by I , and we have appealed to the branching Markov property (8.6) 
in the last equality. Technically speaking, the right-hand side of (11.32) is equal to 
unity on account of the fact that the right-hand side of (11.31) is unity. Despite the 
rather complex looking identity for (11.32), this is indeed true since, for any . n ∈ N

and .a1, . . . , an, b1, . . . , bn ≥ 0, 

.

n
∏

i=1

(ai + bi) =
∑

I⊂{1,...,n}

∏

i∈I

ai

∏

j∈{1,...,n}\I
bj , (11.33) 

where the sum is taken over all subsets I of .{1, . . . , n}. Hence, for any .t ≤ T , 

.

∑

I⊂{1,...,Nt }

∏

i∈I

pT −t (xi(t))
∏

j∈{1,...,Nt }\I
wT −t (xj (t))
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= 
Nt∏

i=1 

(pT −t (xi(t)) + wT −t (xi(t))) = 1. 

The decomposition in (11.32) is the starting point of how we break up the law of 
the .(P,G)-BMP according to subtrees that are categorised as . ↓ and subtrees that are 
categorised as . ↑ with . ↓ dressing, the so-called skeletal decomposition. 

In what follows, we consider different ways that the extinction probability . wT

can be used to condition .(X,P). These conditioned versions are important as, when 
conditionally dependent copies of them are put together in the right way, we can 
begin to interpret the meaning of the change of measure (11.32). 

↓-Trees 

We start by describing the evolution of the trees conditioned to be extinct by time 
T . Thanks to the branching property, it suffices to consider trees that are issued with 
a single particle with mark . ↓. By definition of the mark .cT

∅ (0) =↓, where . ∅ is the 
label of the initial ancestral particle, this is the same as understanding the law of 
.(X,P) conditioned to become extinct. Indeed, for . A ∈ Ft

. P
↓,T
δx

(A) := P
↕,T
δx

(A|cT
∅ (0) =↓)

= P
↕,T
δx

(A ; cT
i (t) =↓ for each i = 1, . . . , Nt )

P
↕,T
δx

(cT
∅ (0) =↓)

= Eδx [1A

∏Nt

i=1 wT −t (xi(t))]
wT (x)

. (11.34) 

Moreover, conditioning the extinction event .{ζ < T } on . Ft , for .0 ≤ t ≤ T , yields 

.wT (x) = Eδx

[
Nt∏

i=1

wT −t (xi(t))

]

. (11.35) 

Thus we may use (11.35) to define the following change of measure, 

.
dP↓,T

μ

dPμ

∣
∣
∣
∣
Ft

:=
∏Nt

i=1 wT −t (xi(t))
∏n

i=1 wT (xi)
, (11.36) 

for .μ = ∑n
i=1 δxi

∈ Mc(E). It is also straightforward to see that, using the non-
linear evolution equation (8.7) and (11.35), . wT satisfies
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.wT (x) = P̂t [wT −t ](x) +
∫ t

0
Ps

[

wT −s

G[wT −s]
wT −s

]

(x) ds, x ∈ E, (11.37) 

where .(P̂t , t ≥ 0) is the adjusted semigroup that returns a value of 1 on the event 
of killing, and we recall that . G is the branching mechanism given by (8.2). Using  
Theorem 2.1, it follows  that  

. wT (x) = Ex

[

wT −t (ξt∧k) exp
(∫ t∧k

0

G[wT −s](ξs)

wT −s(ξs)

)]

, x ∈ E, 0 ≤ t ≤ T ,

(11.38) 

where . k is the lifetime of the process . ξ (which we distinguish from . ζ , the lifetime of 
the branching Markov process X). This identity will turn out to be extremely useful 
in our analysis. In particular, the equality (11.38) together with the Markov property 
of . ξ implies that the object in the expectation on the right-hand side of (11.38) is a 
martingale. 

We are now in a position to characterise the law of the process under (11.36). 

Lemma 11.2 (.↓-Trees) Under .P↓,T
δx

, .(Xt , t ≤ T ) is a time-inhomogeneous BMP 

with motion semigroup .P↓,T and branching mechanism .(G↓,T
s , s ≤ T ) defined 

as follows. The motion semigroup .P↓,T is that of the Markov process . ξ with 
probabilities .(P↓,T

x , x ∈ E), where 

. 
dP↓,T

x

dPx

∣
∣
∣
∣
∣
σ(ξs ,s≤t)

= wT −t (ξt∧k)
wT (x)

exp

(∫ t∧k

0

G[wT −s](ξs)

wT −s(ξs)
ds

)

, t ≥ 0.

(11.39) 

For .x ∈ E and .f ∈ B+
1 (E), when a branching event occurs at time .s ≤ T , the  

branching mechanism is given by 

.G↓,T
s [f ](x) = 1

wT −s(x)
[G[f wT −s] − fG[wT −s]] (x). (11.40) 

Proof First let us show that the change of measure (11.36) results in a particle pro-
cess that respects the Markov branching property. It is clear from the conditioning 
in (11.36) that, by construction, every particle in the resulting process under the new 
measure .P

↓,T
μ must carry the mark . ↓, i.e., become extinct by time T . 

Let us define, for .g ∈ B+
1 (E), .x ∈ E, and .0 ≤ t ≤ T , 

. u↓,T
t [g](x) = E

↕,T
δx

[
Nt∏

i=1

g(xi(t))

∣
∣
∣
∣
∣
cT
∅ (0) =↓

]

= 1

wT (x)
ut [gwT −t ](x),

(11.41)
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which describes the evolution of the process X under .P↓,T . In particular, for . g ∈
B+
1 (E), .x ∈ E and .s, t ≥ 0 such that .t + s < T , note that 

. E
↓,T
δx

⎡

⎣

Nt+s∏

i=1

g(xi(t + s))

∣
∣
∣
∣
∣
∣

Ft

⎤

⎦

= 1

wT (x)

Nt∏

i=1

wT −t (xi(t))Eδx

⎡

⎣

∏Ni
s

j=1 g(xi
j (s))wT −t−s(x

i
j (s))

wT −t (xi(t))

∣
∣
∣
∣
∣
∣

Ft

⎤

⎦

= 1

wT (x)

Nt∏

i=1

wT −t (xi(t))u
↓,T −t
s [g](xi(t)), (11.42) 

where, given . Ft , .{(xi
j (s)), j = 1, · · · , Ni

s } is the configuration of particles at time 
.t + s that are descendants of the i-th particle alive at time t for .i = 1, . . . , Nt . The  
equality (11.42) is a manifestation of the Markov branching property. 

Given the statement of the lemma, it thus suffices for the remainder of the proof 
to show that, for .g ∈ B+

1 (E), 

. u↓,T
t [g](x) = P̂↓,T

t [g](x) +
∫ t

0
P↓,T

s [G↓,T
s [u↓,T −s

t−s [g]](x)ds, 0 ≤ t ≤ T , x ∈ E,

(11.43) 

holds, where, similarly to Chap. 5, .P̂↓,T is an adjustment of . ̂P that returns the value 
one on the event of killing. (Recall this is a consequence of the empty product 
being defined as unity.) The reader will, by now, recognise the above equation 
as the semigroup evolution equation of a BMP, albeit a time-inhomogeneous one, 
with Markov motion affiliated to the semigroup .P↓,T and time-dependent branching 
mechanism .(G↓,T

s , s ≤ T ). 
Using (11.41) and splitting the .(P,G)-BMP on the first branching event, it 

follows that, for .g ∈ B+
1 (E) and .0 ≤ t ≤ T , 

. u↓,T
t [g] = 1

wT

P̂t [gwT −t ] + 1

wT

∫ t

0
Ps[G[ut−s[gwT −t ]]]ds

= 1

wT

P̂t [gwT −t ] + 1

wT

∫ t

0
Ps[G[wT −su

↓,T −s
t−s [g]]]ds

= 1

wT

P̂t [gwT −t ] + 1

wT

∫ t

0
Ps

[

wT −s

G[wT −su
↓,T −s
t−s [g]]

wT −s

]

ds

+ 1

wT

∫ t

0
Ps

[
G[wT −s]
wT −s

wT −su
↓,T −s
t−s [g]

]

ds

− 1

wT

∫ t

0
Ps

[
G[wT −s]
wT −s

wT −su
↓,T −s
t−s [g]

]

ds. (11.44)
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Applying Theorem 2.1 to the above, we have 

. u↓,T
t [g](x) = 1

wT (x)
Ex

[

g(ξt∧k)wT −t (ξt∧k) exp
(∫ t∧k

0

G[wT −u](ξu)

wT −u(ξu)
du

)]

+ 1

wT (x)
Ex

[ ∫ t∧k

0

G[wT −su
↓,T −s
t−s [g]](ξs)

wT −s(ξs)
wT −s(ξs)

exp

(∫ s

0

G[wT −u](ξu)

wT −u(ξu)
du

)

ds

]

− 1

wT (x)
Ex

[ ∫ t∧k

0

G[wT −s](ξs)

wT −s(ξs)
u

↓,T −s
t−s [g](ξs)wT −s(ξs)

exp

(∫ s

0

G[wT −u](ξu)

wT −u(ξu)
du

)

ds

]

= P̂↓,T
t [g](x)

+
∫ t

0
P↓,T

s

[

Gs[wT −su
↓,T −s
t−s [g]]

wT −s

− Gs[wT −s]
wT −s

u
↓,T −s
t−s [g]

]

(x)ds

= P̂↓,T
t [g](x) +

∫ t

0
P↓,T

s

[

G↓,T
s [u↓,T −s

t−s [g]
]

(x)ds,

where we have used the definitions (11.39) and (11.40) to obtain the last two 
equalities. ⨅⨆

Let us study, in more detail, the structure of the branching mechanism .G↓,T
s . 

Using the definition (11.40), we have,  for .f ∈ B+
1 (E) and .x ∈ E, 

. G↓,T
s [f ](x) = 1

wT −s(x)
[G[f wT −s] − fG[wT −s]] (x)

= 1

wT −s(x)

[

γ (x)Ex

[
N
∏

i=1

f (xi)wT −s(xi)

]

−γ (x)f (x)wT −s(x) − fG[wT −s](x)]

= γ (x)

wT −s(x)
Ex

[
N
∏

i=1

f (xi)wT −s(xi)

]

−
(

γ (x) + G[wT −s]
wT −s

(x)

)

f (x)

= γ ↓,T −s(x)

(

γ (x)

γ ↓,T −s(x)wT −s(x)
Ex

[
N
∏

i=1

wT −s(xi)f (xi)

]

− f (x)

)

,

(11.45) 

where
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.γ ↓,T −s(x) := γ (x) + G[wT −s](x)

wT −s(x)
= γ (x)

wT −s(x)
Ex

[ N
∏

j=1

wT −s(xj )

]

. (11.46) 

Now, returning to (11.45), using the above definition of .γ ↓,T −s , it is straightfor-
ward to show that 

. 
γ (x)

γ ↓,T −s(x)wT −s(x)

N
∏

i=1

wT −s(xi) =
∏N

i=1 wT −s(xi)

Ex

[
∏N

j=1 wT −s(xj )
] ,

whose expectation under . Ex is unity. Thus we may define the following change of 
measure 

.
dP↓,T −s

x

dPx

∣
∣
∣
∣
∣
σ(N,x1,...,xN )

= γ (x)

γ ↓,T −s(x)wT −s(x)

N
∏

i=1

wT −s(xi). (11.47) 

Combining this with (11.45), we get the conclusion of the following corollary. 

Corollary 11.1 For .f ∈ B+
1 (E) and .s ≤ T , 

. G↓,T
s [f ](x) = γ ↓,T −s(x)E ↓,T −s

x

[ N
∏

j=1

f (xj ) − f (x)

]

, x ∈ E,

where .γ ↓,T −s(x) is defined in (11.46) and .P↓,T −s
x is defined in (11.47). 

Dressed ↑-Trees 

In a similar spirit to the previous section, we can look at the law of our BMP, when 
issued from a single ancestor with mark . ↑, in other words, conditioned to have a 
subtree that survives until time T . To this end, for .A ∈ Ft , .x ∈ E and .t ≤ T , note 
that 

. P
↕,T
δx

(A | cT
∅ (0) =↑) = P

↕,T
δx

(A; cT −t
i (t) =↑ for at least one i = 1, . . . , Nt )

P
↕,T
δx

(cT
∅ (0) =↑)

= Eδx [1A(1 −∏Nt

i=1 wT −t (xi(t)))]
pT (x)

. (11.48) 

We want to describe our BMP under .P↕,T
δx

(· | cT
∅ (0) =↑). In order to do so, we 

first need to introduce a type-.↑-type-. ↓ BMP. Our type-.↑-type-. ↓ BMP process, say
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.X↕,T = (X
↕,T
t , t ≤ T ), has an initial ancestor that is of type . ↑. We will implicitly 

assume (and suppress from the notation .X↕,T ) that .X↕,T = δx , for .x ∈ E. Particles 
in .X↕,T of type . ↑ move as a .P↑,T -Markov process, for some semigroup .P↑,T , which 
we will introduce in the lemma below. When a branching event occurs for a type-
. ↑ particle, both type-. ↑ and type-. ↓ particles may be produced, but always at least 
one type-. ↑ is produced. Type-. ↑ particles may be thought of as offspring, and any 
additional type-. ↓ particles may be thought of as immigrants. Type-. ↓ particles that 
are created can only subsequently produce type-. ↓ particles, giving rise to .↓-trees, 
as described above. 

Lemma 11.3 (Dressed .↑-Trees) For .x ∈ E, the process .X↕,T is equal in law 
to X under .Pδx (·|ζ > T ). Moreover, both are equal in law to a dressed time-
inhomogeneous BMP, say .X↑,T , where the motion semigroup .P↑,T corresponds to 
the Markov process . ξ on .E∪{†}with probabilities .(P↑,T

x , x ∈ E) given by (recalling 
that p is valued 0 on . †) 

.
dP↑,T

x

dPx

∣
∣
∣
∣
∣
σ(ξs ,s≤t)

= pT −t (ξt )

pT (x)
exp

(

−
∫ t

0

G[wT −s](ξs)

pT −s(ξs)
ds

)

, t ≤ T , (11.49) 

and the branching mechanism at time s is given by 

. G↑,T
s [f ] = 1

pT −s

(G[pT −sf + wT −s] − (1 − f )G[wT −s]) , f ∈ B+
1 (E).

(11.50) 

The dressing consists of additional particles, which are immigrated non-locally in 
space at the branch points of .X↑,T , with each immigrated particle at time . s ∈ [0, T )

continuing to evolve as an independent copy of .(X↓,T −s ,P↓,T −s) from their respec-
tive space-time point of immigration, such that the joint branching/immigration 
mechanism of type-. ↑ offspring and type-. ↓ immigrants at time .s ∈ [0, T ] is given by 

. G↕,T
s [f, g](x)

:= γ (x)

pT −s(x)
Ex

[
∑

I⊆{1,...,N}
|I |≥1

∏

i∈I

pT −s(xi)f (xi)
∏

j∈{1,...,N}\I
wT −s(xj )g(xj )

]

− γ ↕,T −s(x)f (x) (11.51) 

and 

. γ ↕,T −s(x) = γ (x)

pT −s(x)
Ex

⎡

⎣1 −
N
∏

j=1

wT −s(xj )

⎤

⎦ = γ (x) − G[wT −s](x)

pT −s(x)
.

(11.52)
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Proof We may think of .((xi(t), c
T −t
i (t)), i ≤ Nt), .t ≤ T , under .P↕,T −t as 

a two-type branching process. To this end, for .t ≤ T , let us write . N↑,T
t =

∑Nt

i=1 1(cT −t
i (t)=↑)

and .N
↓,T
t = Nt − N

↑,T
t . Define, for .f, g ∈ B+

1 (E), 

.u↕,T
t [f, g](x) = E

↕
δx

[

ΠT
t [f, g]

∣
∣
∣ c

T
∅ (0) =↑

]

, t ≥ 0, (11.53) 

where, for .t ≥ 0, 

. ΠT
t [f, g] =

N
↑,T
t∏

i=1

pT −t (x
↑
i (t))f (x

↑
i (t))

N
↓,T
t∏

j=1

wT −t (x
↓
j (t))g(x

↓
j (t)),

where 

. (x
↑
i (t), i = 1, · · · , N

↑,T
t ) = (xi(t) such that c

T
i (t) =↑, i = 1 · · · Nt)

and .(x↓
i (t), i = 1, · · · , N

↓,T
t ) is similarly defined. Clearly, there is an implicit T 

dependence on each of the . x
↑
i and . x

↓
j ; however, we suppress this dependency in the 

notation for the sake of simplicity. 
We can break the expectation in the definition of .u↕,T

t [f, g] over the first 
branching event, noting that, until that moment occurs, the initial ancestor is 
necessarily of type . ↑. Again remembering .pT (†) = 0, we have  

. u↕,T
t [f, g](x)

=
Eδx

[

ΠT
t [f, g]1(cT∅ (0)=↑)

]

Pδx (c
T
∅ (0) =↑)

= 1

pT (x)
Ex

[

pT −t (ξt )f (ξt )e
− ∫ t

0 γ (ξu)du
]

+ 1

pT (x)
Ex

[ ∫ t

0
pT −s(ξs)

γ (ξs)

pT −s(ξs)
e− ∫ s

0 γ (ξu)du

× Eξs

[
∑

I⊆{1,...,N}
|I |≥1

∏

i∈I

pT −s(xi)u
↕,T −s
t−s [f, g](xi)

∏

j∈{1,...,N}\I
wT −s(xj )u

↓,T −s
t−s [g](xj )

]

ds

]

. (11.54) 

To help the reader interpret (11.54) better, we note that the first term on the 
right-hand side comes from the event that no branching occurs up to time t , in
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which case the initial ancestor is positioned at . ξt . Moreover, we have used the 
fact that .Pδx (c

T
∅ (0) =↑ |Ft ) = pT −t (ξt ). The second term is the consequence 

of a branching event occurring at time .s ∈ [0, t], at which point in time, the 
initial ancestor is positioned at . ξs and thus has offspring scattered at . (xi, i =
1 · · · , N) according to .Pξs . The contribution thereof from time s to t can either 
be expressed as .u↕,T −s

t−s [f, g], with probability .pT −s , if a given offspring is of type-
. ↑ (thereby growing a tree of particles marked both . ↑ and . ↓), or be expressed 
as .u↓,T −s

t−s [g], with probability .wT −s , if a given offspring is of type-. ↓ (thereby 
growing a tree of particles marked only with . ↓). Hence, projecting the expectation 
of .ΠT

t [f, g]1(cT∅ (0)=↑) onto the given configuration .(xi, i = 1 · · · , N) at time s, we  

get the sum inside the expectation with respect to .Pξs , catering for all the possible 
markings of the offspring of the initial ancestor, while ensuring that at least one of 
them is of type . ↑ (which guarantees .cT

∅ (0) =↑). In both expectations, the event of 
killing is accommodated for thanks to the fact that .pT (†) = f (†) = γ (†) = 0. 

We may now substitute the definition (11.51) into (11.54) to get 

. u↕,T
t [f, g](x)

= 1

pT (x)
Ex

[

pT −t (ξt )f (ξt )e
− ∫ t

0 γ (ξu)du
]

+ 1

pT (x)
Ex

[ ∫ t

0
pT −s(ξs)

γ (ξs)

pT −s(ξs)
e− ∫ s

0 γ (ξu)du

×
[

G↕
T −s[u↕,T −s

t−s [f, g], u↓,T −s
t−s [g]](ξs) + γ ↕,T −s(ξs)u

↕,T −s
t−s [f, g](ξs)

]

ds

]

.

(11.55) 

Next, recall the first equality in (11.52) that for any .t ≤ T , . γ (x) = γ ↕,T −t (x) +
G[wT −t ](x)/pT −t (x). In each of the terms on the right-hand side of (11.55), we can 
exchange the exponential potential .exp(− ∫ ·

0 γ (ξu)du) for the exponential potential 
.exp(− ∫ ·

0 G[w](ξu)/p(ξu)du) by transferring the difference in the exponent to an 
additive potential using Theorem 2.1. In this exchange, the term 

. γ ↕,T −s(ξs)u
↕,T −s
t−s [f, g](ξs)

is removed as an additive potential on the right-hand side of (11.55) and replaced as 
a multiplicative potential. Then recalling the change of measure (11.49) that defines 
the semigroup . P↑, we get that, on E, 

. u↕,T
t [f, g] = P↑,T −t

t [f ] +
∫ t

0
P↑,T −s

s

[

G↕
T −s[u↕,T −s

t−s [f, g], u↓,T −s
t−s [g]]

]

ds, t ≤ T .

(11.56)
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For the first term on the right-hand side of (11.56), there is no need to define the 
adjusted semigroup .P̂↑,T as the semigroup .P↑,T is that of a conservative process on 
E. Indeed, the change of measure (11.49) defines the law of a conservative Markov 
process. To see why, note from Eq. (11.37) that can be rearranged to give 

. pT (x) = 1 − wT (x)

= 1 − P̂t [wT −t ](x) −
∫ t

0
Ps

[

pT −s

G[wT −s]
pT −s

]

(x) ds

= Pt [pT −t ](x) −
∫ t

0
Ps

[

pT −s

G[wT −s]
pT −s

]

(x) ds, x ∈ E, (11.57) 

where we have multiplied and divided by .pT −s in the integral term instead of .wT −s . 
Using Theorem 2.1, we can thus interpret 11.57 as saying 

. pT (x) = Ex

[

pT −t (ξt ) exp

(

−
∫ t

0

G[wT −s](ξs)

pT −s(ξs)
ds

)]

, x ∈ E, t ∈ [0, T ].

Together with the Markov property, the above identity is sufficient to show that the 
right-hand side of (11.49) is a unit mean martingale, rendering the interpretation of 
(11.49) as that of a change of measure describing a conservative process. 

Returning to (11.56), we see that it is the semigroup evolution equation of a two-
type BMP in which .↓-marked particles immigrate off an .↑-marked BMP. We have 
yet to verify, however, that the .↑-marked BMP is indeed the process described in the 
statement of the proposition. In order to do this, we need to show that . G↑,T

s [f ] =
G↕,T

s [f, 1], for all .f ∈ B+
1 (E) and .0 ≤ s ≤ T , where .G↑,T

s was given in (11.50). 
Using (11.33) and the definition of .γ ↕,s in (11.52), for  .x ∈ E and .0 ≤ s ≤ T , 

we have 

.G↑,T
s [f ](x) := G↕,T

s [f, 1](x)

= γ (x)

pT −s(x)
Ex

[
∑

I⊆{1,...,N}
|I |≥1

∏

i∈I

pT −s(xi)f (xi)
∏

i∈{1,...,N}\I
wT −s(xi)

]

− f (x)
γ (x)

pT −s(x)
Ex

[

1 −
N
∏

i=1

wT −s(xi)

]

= γ (x)

pT −s(x)
Ex

[ N
∏

k=1

(pT −s(xi)f (xi) + wT −s(xi)) −
N
∏

k=1

wT −s(xk)

]

− f (x)
1

pT −s(x)
[γ (x) − G[wT −s](x) − γ (x)wT −s(x)]
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= 
1 

pT −s(x) 
[G[pT −sf + wT −s] 

+γ (x)(pT −s(x)f (x) + wT −s(x)) − G[wT −s](x) − γ (x)wT −s(x)] 

− f (x)  
1 

pT −s(x)
[γ (x)  − G[wT −s](x) − γ (x)wT −s(x)] 

= 1 

pT −s(x) 
{G[pT −sf + wT −s](x) − (1 − f )G[wT −s](x)} , 

since .ps(x) + ws(x) = 1. This completes the proof. ⨅⨆
As with the process .(X,P↓,T ), we can develop the expression for the branching 

mechanism .G↕,T
s [f, g] further and show that it can be associated with a change of 

measure of the original offspring distribution. 
In a similar manner to (11.32), the offspring distribution associated with the two-

type tree, say .(P↕,T −t
x , 0 ≤ t ≤ T ), can be defined in terms of an additional random 

selection from .(xi, i = 1, . . . , N) under . Px . To this end, for .x ∈ E and .0 ≤ t ≤ T , 
set 

. 
dP↕,T −t

x

dPx

∣
∣
∣
∣
σ(N;x1,...,xN )

:= γ (x)

γ ↕,s(x)pT −t (x)
Ex

⎡

⎢
⎢
⎣

∑

I⊂{1,...,N}
|I |≥1

∏

i∈I

pT −t (xi)
∏

i∈{1,...,N}\I
wT −t (xi)

⎤

⎥
⎥
⎦

.

(11.58) 

Note that we require .|I | ≥ 1 in the sum since there must be at least one particle 
whose genealogy survives until time T by definition of . X↕. Using the definition of 
.γ ↕,T −t in (11.52) and the identity in (11.33), we have  

. 
γ (x)

γ ↕,T −t (x)pT −t (x)
Ex

⎡

⎢
⎢
⎣

∑

I⊂{1,...,N}
|I |≥1

∏

i∈I

pT −t (xi)
∏

i∈{1,...,N}\I
wT −t (xi)

⎤

⎥
⎥
⎦

=
∑

I⊂{1,...,N} 1|I |≥1
∏

i∈I pT −t (xi)
∏

i∈{1,...,N}\I wT −t (xi)

1 − Ex[∏N
i=1 wT −t (xi)]

= 1, (11.59) 

so that (11.58) is indeed a change of measure.
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Recalling (11.51), the branching mechanism of the type-.↑-type-. ↓ process at time 
s can hence be identified as per the statement of the following corollary. 

Corollary 11.2 We have for .f, g ∈ B+
1 (E) and .x ∈ E, 

. G↕,T
s [f, g](x) = γ ↕,T −s(x)

⎛

⎝E ↕,T −s
x

⎡

⎣

N
↑,T
s∏

i=1

f (x
↑
i )

N
↓,T
s∏

j=1

g(x
↓
i )

⎤

⎦− f (x)

⎞

⎠ ,

(11.60) 

where .γ ↕,T −s(x) is defined in (11.52), .P↕,T −s
x is defined in (11.58), and, given a 

branching event at time s, the  set  .(x↑
i ; i = 1, . . . , N↑,T

s ) denotes those particles 

with descendants alive at time T and .(x↓
i ; i = 1, . . . , N↓,T

s ) denotes those whose 
descendants die out by time T . 

We can now state the main theorem of this section. 

Theorem 11.2 (T -Skeletal Decomposition) Suppose that .μ = ∑n
i=1 δxi

, for  . n ∈
N and .x1, . . . , xn ∈ E. Then .(X,P

↕,T
μ ) is equal in law to 

.

n
∑

i=1

(

ΘT
i X

↕,T
t (i) + (1 − ΘT

i )X
↓,T
t (i)

)

, t ≥ 0, (11.61) 

where, for each .i = 1, . . . , n, .ΘT
i is an independent Bernoulli random variable with 

probability of success given by 

.pT (xi) := 1 − wT (xi) (11.62) 

and the processes .X↓,T (i) and .X↕,T (i) are independent copies of .(X,P
↓,T
δxi

) and 

.(X,P
↕,T
δxi

(·|cT
∅ (0) =↑)), respectively. 

Proof As previously, we may think of .((xi(t), c
T
i (t)), i ≤ Nt), .0 ≤ t ≤ T , as a  

two-type branching process under .P↕,T . The change of measure (11.32) gives us 
that, for .μ =∑n

i=1 δxi
with .n ≥ 1 and .xi ∈ E, .i = 1, . . . , n, 

. E
↕,T
μ

[

ΠT
t [f, g]

]

=
∑

I⊆{1,...,n}

∏

i∈I

pT −t (xi)u
↕,T −t
t [f, g](xi)

∏

i∈{1,...,n}\I
wT −t (xi)u

↓,T −t
t [g](xi).

(11.63) 

What this shows is that the change of measure (11.32) (which we recall is, in fact, 
unity) is equivalent to a Doob h-transform on a two-type branching particle system 
(i.e., types .{↑,↓}) where we consider the system after disregarding the marks. The
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Fig. 11.1 A simulation of a branching Brownian motion in one dimension (vertical axis) with 
150 initial individuals, with time running from left to right. Individuals reproduce locally and 
have either 0 or 2 offspring. The darker regions in the figure are indicative of a concentration of 
subcritical dressing, that is, the .↓-marked subtrees, immigrating off the genealogies that survive to 
time T (the width of the diagram), that is, the .↑-marked individuals 

effect of this Doob h-transform on type-. ↓ particles is that they generate .↓-trees, 
as described in Lemma 11.2, whereas type-. ↑ particles generate a dressed .↑-tree as 
described in Lemma 11.3. ⨅⨆

As alluded to in the introduction to this section, the skeletal decomposition, 
Theorem 11.2, paints a picture in which a BMP can be identified as a series of 
thinner trees of .↑-marked individuals that survive to the prescribed time horizon T , 
and all other mass takes the form of .↓-subtrees that die out by time T , either rooted 
at time .t = 0 or rooted on the “.↑-trees” as a dressing. The .↑-trees are generally 
much thinner than .↓-trees. The latter consume the bulk of the mass in the particle 
system. Figure 11.1 demonstrates precisely this point via a simulation of a branching 
Brownian motion in one dimension with time running from left to right.1 The .↑-
trees are not specifically visible in this figure, where all particles are coloured black 
and, in any case, are largely drowned out by the .↓-marked individuals. However, one 
notes that the darker streaks where there is concentration of mass appear to roughly 
outline the shape of a tree-like structure. Indeed, it is the dressing of short-lived 
.↓-marked subtrees that huddle around the long and thin (in this picture) .↑-trees, 
thickening them up, manifesting in the aforementioned “darker streaks”. 

Remark 11.1 It is an easy consequence of Theorem 11.2 and the inherent underly-
ing Markovian structure that, for .μ ∈ Mc(E), and .t ∈ [0, T ], the  law of . (Xt ,P

↕,T
μ )

conditional on .Ft = σ(Xs, s ≤ t) is equal to that of a Binomial point process with

1 This image was produced using software written by Matt Roberts. The authors are most grateful 
for his assistance. 
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intensity .p(·)Xt (·) under . Pμ. The latter, written .BinPP(pXt), is an atomic random 
measure given by 

. BinPP(pT −tXt ) =
Nt∑

i=1

Biδxi (t),

where (we recall) that .Xt =∑Nt

i=1 δxi(t) and . Bi is a Bernoulli random variable with 
probability .pT −t (xi(t)), .i = 1, · · · , Nt . 

Remark 11.2 As alluded to at the start of this section, the reader was encouraged 
to question whether it is necessary in our analysis to assume that .T < ∞. Careful 
inspection of the proofs reveals that the only thing that is really needed of the time 
horizon are the assumptions (G9) and (G10). If we replace the aforesaid assumptions 
simply by the exact same statements with .T = ∞, then all of the proofs proceed 
verbatim. In that case, the assumptions become that 

. inf
x∈E

w(x) > 0 and w(x) < 1 for x ∈ E, (11.64) 

where .w(x) = Pδx (ζ < ∞) is the probability of extinction. In the next chapter, we 
will develop more results that firm up the notion that, under the assumption (G2), 
the sign of . λ∗ dictates whether the process becomes extinct or not. 

11.5 Spine Emerging from the Skeleton at Criticality 

What is the relationship between the spine and the T -skeletal decomposition? In 
the setting of a critical BMP, the two can be coupled by considering what happens 
when we condition a BMP to survive as .T → ∞. In terms of the skeleton, this 
corresponds to conditioning the number of .↑-marked initial ancestors to be at least 
one as .T → ∞. 

Let us thus put ourselves into the critical setting, and suppose that the assump-
tions of Theorem 10.1 are henceforth at our disposal. In that case, we also then have 
at our disposal that, uniformly for .x ∈ E, 

. lim
T →∞ TpT (x) = ϕ(x)

Σ
, (11.65) 

where we recall that . ϕ is the right eigenfunction in (G2) and . Σ is the constant given 
by (10.5). 

Now consider the setup in Theorem 11.2, namely that we have a BMP .(X,Pμ), 
where .μ ∈ Mc(E) taking the form .μ =∑n

i=1 δxi
, with .n ∈ N and .xi ∈ E. We start  

by looking at the number of individuals in the skeletal decomposition at time . t = 0
that are marked by . ↑. To this end, let us further assume the following is in force:
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(G11) . limT →∞ infx∈E wT (x) = 1.

Note that (G11) implies (G8). By appealing to Theorem 11.2, we have for  . k =
1, · · · , n, 

. lim
T →∞P

↕,T
μ (N↑ = k|N↑ ≥ 1)

= lim
T →∞

∑

I⊂{1,··· ,n},|I |=k

∏

j∈I pT (xj )
∏

𝓁∈{1,··· ,n}\I wT (x𝓁)

1 −∏n
i=1 wT (xi)

, (11.66) 

where . N↑ is the number of individuals at time .t = 0 marked by . ↑ and the sum is 
taken over all subsets of size k of .{1, · · · , n}. In words, (11.66) gives the asymptotic 
probability as .T → ∞ that, conditional on X surviving to time T , there are k 
individuals at time .t = 0 that carry the mark . ↑. 

We note that if .k = 1 in (11.66), then we claim that 

. lim
T →∞P

↕,T
μ (N↑ = 1|N↑ ≥ 1) = lim

T →∞

∑n
j=1 pT (xj )

∏

𝓁 /=j wT (x𝓁)

1 −∏n
i=1 wT (xi)

= 1.

(11.67) 

To see why, consider the mapping .(x1, · · · , xn) I→ ∏n
i=1 xi around .(0, · · · , 0) on 

.[0, 1]n. The multi-dimensional Taylor’s formula tells us that 

.

n
∏

i=1

xi = 1 +
n
∑

j=1

(xj − 1) + O(
∑

i<j

xixj ). (11.68) 

Using (11.68) in (11.67), we have  

. lim
T →∞P

↕,T
μ (N↑ = 1|N↑ ≥ 1) = lim

T →∞

∑n
j=1 pT (xj )

∏

𝓁 /=j wT (x𝓁)
∑n

j=1 pT (xj ) + O(
∑

j<i pT (xj )pT (xi))
.

(11.69) 

Dividing and multiplying the denominator and numerator by T in (11.69), by  
appealing to (11.65) and noting that .TpT (xi)pT (xj ) → 0 as .T → ∞, (11.67) 
follows. 

The proof of (11.67) in fact shows something more particular. Indeed, now it is 
clear that the number of .↑-marked initial ancestors concentrates on one individual 
conditionally on survival as .T → ∞, if we label the index of that one individual by 
. i∗, then we see that 

. lim
T →∞P

↕,T
μ (i∗ = k|N↑ ≥ 1) = lim

T →∞
pT (xk)

∏

𝓁 /=k wT (x𝓁)
∑n

j=1 pT (xj ) + O(
∑

j<i pT (xj )pT (xi))
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= ϕ(xk)
∑n 

i=1 ϕ(xi) 
, 

which again follows by dividing and multiplying by T before taking limits in the 
first equality and using (11.65) to obtain the right-hand side. 

The limit (11.67) tells us that, for BMPs that become extinct under the assump-
tions we have made, conditional on survival, as .T → ∞, the skeleton concentrates 
on a single individual dressed tree rooted at .t = 0, which carries all the .↑-marked 
individuals in its tree of descendants. 

Now consider the change of measure (11.39) that defined .P↓,T . Thanks to (G11), 
we see that .P↓,T converges weakly to . P. Similarly, considering (11.49) and the 
change of measure that defines .P↑,T , we have,  for .x ∈ E, 

. 
G[1 − pT ](x)

pT (x)
= A[pT ](x) − 1

2γ (x)V [pT ](x) + 1
2γ (x)V [pT ](x)

pT (x)

−
γ (x)Ex

[
∑N

i=1 pT (xi) − pT (x)
]

pT (x)
, (11.70) 

where we have used the notation from (10.14) and Lemma 10.2. Dividing and 
multiplying by T again and then taking .T → ∞, we can use the estimates in 
Lemma 10.2 and the fact that 

. lim
T →∞

pT −t (y)

pT (x)
= ϕ(y)

ϕ(x)
,

uniformly for .x, y ∈ E to deduce that, due to Lemma 10.5, we have  

. lim
T →∞

G[1 − pT ](x)

pT (x)
= −γ (x)

m[ϕ](x) − ϕ(x)

ϕ(x)
, (11.71) 

uniformly for .x ∈ E. Note that the product of two or more probabilities .pT −t will 
tend to zero, e.g., in the term .V [pT ](x), even with the help of a multiplying factor 
T , which explains why the first factor on the right-hand side of (11.70) goes to zero. 
Hence, recalling the definition (11.4), we see that .P↓,T

x converges weakly to the law 
of the process with associated semigroup . Pϕ . 

Now consider the branching mechanisms .G↓,T and .G↕,T , defined in (11.40) 
and (11.60), respectively, as .T → ∞. In the case of .G↓,T , it is straightforward 
to see that 

. lim
T →∞G↓,T

s [f ](x) = G[f ](x),

uniformly, for .x ∈ E and .f ∈ B+
1 (E). Moreover, for .G↕,T , we note from the 

representation in (11.51) and (11.52) that, with the help of (11.71),
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. lim
T →∞ γ ↕,T (x) = γ (x)

m[ϕ](x)

ϕ(x)
, (11.72) 

uniformly in .x ∈ E. Moreover, again by dividing and multiplying by T , we get, 
uniformly for .x ∈ E and .f, g ∈ B+

1 (E), 

. lim
T →∞G↕,T

s [f, g](x)

:= lim
T →∞

γ (x)

pT −s(x)
Ex

[
∑

I⊆{1,...,N}
|I |≥1

∏

i∈I

pT −s(xi)f (xi)
∏

j∈{1,...,N}\I
wT −s(xi)g(xj )

]

− γ (x)
m[ϕ](x)

ϕ(x)
f (x)

= lim
T →∞ γ (x)Ex

[ N
∑

i=1

TpT −s(xi)

TpT −s(x)
f (xi)

∏

j /=i

g(xj )

]

+ lim
T →∞ γ (x)Ex

[
∑

I⊆{1,...,N}
|I |≥2

T
∏

i∈I

pT −s(xi)f (xi)

TpT −s(x)

∏

j∈{1,...,N}\I
g(xj )

]

− γ (x)
m[ϕ](x)

ϕ(x)
f (x)

= γ (x)Ex

[ N
∑

i=1

ϕ(xi)

ϕ(x)
f (xi)

∏

j /=i

g(xj )

]

− γ (x)
m[ϕ](x)

ϕ(x)
f (x).

Recalling the expressions (11.5) and (11.6), we conclude that, uniformly for . x ∈ E

and .f, g ∈ B+
1 (E), 

. lim
T →∞G↕,T

s [f, g](x) = γ ϕ(x)Ex

[
Z[ϕ]

m[ϕ](x)

N
∑

i=1

ϕ(xi)

Z[ϕ] f (xi)
∏

j /=i

g(xj )

]

−γ ϕ(x)f (x).

This indicates that (conditionally on survival as .T → ∞) an  .↑-marked individual 
will branch at rate . γ ϕ , at which point it generates a copy of . Z under .Pϕ (defined 
via the change of measure (11.6)), and one individual is chosen to continue as a 
.↑-marked process and the remaining individuals are assigned .↓-marks. 

Putting all these pieces together, in the conditional limiting sense, as .T → ∞, 
we see that there is concentration in distribution on one initial ancestor with an .↑-
mark such that this is the i-th initial ancestor with probability proportional to .ϕ(xi), 
and all other initial ancestors take the mark . ↓. Moreover, the rate at which more than 
one .↑-marked individual appears at any branching event drops to zero. At the same 
time, the law of the motion and the branching mechanism for .↓-marked particles
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settle down to those of .(X,P), and the law of the motion of the single genealogy of 
the .↑-marked particles and the branching mechanism for its dressing settle down to 
that of the spine. 

On a final note, we mention that, in spite of the multiple asymptotic calculations 
above, the collapse of the skeleton to the spine on conditioning to survive to T 
and letting .T → ∞ is in fact easy to see as inevitable. Under the assumptions of 
Theorem 10.1 together with (G11), for any .f ∈ B+(E) and .μ ∈ Mc(E), the  
Markov property and dominated convergence tell us that 

. lim
T →∞E

↕,T
μ

[

e−Xt [f ]
∣
∣
∣N

↑ ≥ 1
]

= lim
T →∞Eμ

[

e−Xt [f ]
∣
∣
∣ T < ζ

]

= Eμ

[
PXt (T − t < ζ )

Pμ(T < ζ)
e−Xt [f ]

]

= Eμ

[
Xt [ϕ]
μ[ϕ] e

−Xt [f ]
]

.

Hence, the asymptotic conditioning corresponds to the martingale change of 
measure that induces the spine decomposition. 

11.6 Comments 

The idea of a spine decomposition is a natural progression from the many-to-one 
formula, giving a path decomposition rather than a distributional identity. Early 
spine decompositions in the setting of BMPs are found in the work of Chauvin 
et al. [23], although they indicate the connection of their work to Palm measures for 
branching processes studied in numerous earlier works. A deeper understanding 
of spines for branching random walks and their relation to martingale changes 
of measure was uncovered by Lyons [97], leading to a sequence of subsequent 
articles for a variety of other spatial branching models [17, 87, 104]. In parallel, the 
notion of a spine decomposition emerged in the superprocess literature, see, e.g., 
Roelly-Coppoletta and Rouault [115] and Evans [59] as well as [56, 58, 114]. Spine 
decompositions have increasingly become the main tool to prove results concerning 
the growth and spread of spatial branching processes as well as fragmentation and 
growth fragmentation processes; cf. [1, 2, 11, 14, 15, 53, 58, 124, 125]. 

In this respect, Theorem 11.1 and Lemma 11.1 are but another addition to a very 
robust theory of spine decompositions, with the specialised feature being that of 
non-local reproduction. Their proofs can be seen as taking influence from many 
if not all of the aforementioned literature. The non-local nature of these results is 
largely inspired by the proofs from the NBP setting in Horton et al. [74]. 

Skeletal decompositions are also well explored in a variety of settings for branch-
ing processes as well as superprocesses. See, for example, [10, 51, 56, 60, 64, 68, 88]. 
The setup in Sect. 11.4 reproduces results given in Harris et al. [69] for non-
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local branching Markov processes, albeit for a finite time horizon. Addressing the 
additional complexities due to working over a finite time horizon is inspired by 
the finite time skeletal decomposition given in Etheridge and Williams [56]. The 
idea that a spine emerges from the skeletal decomposition in the critical setting by 
conditioning on survival to a time horizon T as .T → ∞ also comes from Etheridge 
and Williams [56]. The robustness of this concept has also been demonstrated in 
Harris et al. [68] for branching Brownian motion in a bounded domain and Fekete 
et al. [63] for continuous-state branching processes.



Chapter 12 
Martingale Convergence and Laws of 
Large Numbers 

As usual, we will work in the setting that our branching Markov process, .(X,P), 
belongs to the Asmussen–Hering class, that is to say, (G2) is satisfied. In Chap. 11, 
we introduced the process 

. Wt = e−λ∗t Xt [ϕ]
μ[ϕ] , t ≥ 0,

which is a martingale under . Pμ, .μ ∈ Mc(E). As remarked earlier, this is a non-
negative martingale and hence has an almost sure limit, .W∞ := limt→∞ Wt , thanks 
to the classical Martingale convergence theorem. In this chapter, we explore the 
important relationship between the limit of this martingale and the survival set of 
X. Moreover, in the setting of supercriticality, we revisit the relationship between 
the aforesaid martingale and, whenever it is well defined, the limit as .t → ∞ of the 
more general path functional 

.e−λ∗tXt [f ], t ≥ 0, f ∈ B+(E), (12.1) 

and its relationship to the martingale limit .W∞. 
As we have seen in the setting of the NBP (cf. Theorem 6.3), the reason why the 

limit of this path functional is of such interest is that, under the assumption (G2), 
its limit should mimic, in the pathwise sense, the behaviour of the discounted 
expectation semigroup .(ψt , t ≥ 0). Indeed, .Eδx [e−λ∗tXt [f ]] = e−λ∗tψt [f ](x), 
.x ∈ E, t ≥ 0. 

As a first step towards this goal, we first address the relationship between the 
convergence of the martingale (12.1) to a non-trivial limit and its relationship to the 
survival event. 
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12.1 Martingale Convergence and Survival 

Recall from Chap. 11 that, under the assumptions (G1) and (G2), we can use . W =
(Wt , t ≥ 0) to define a change of measure 

.
dPϕ

μ

dPμ

∣
∣
∣
∣
Ft

= Wt, t ≥ 0, (12.2) 

and, moreover, that .(X,Pϕ) enjoys a spine decomposition, which will be of use 
throughout this chapter. The following result provides a simple dichotomy between 
convergence to a trivial vs. non-trivial limit accordingly as .λ∗ ≤ 0 vs. .λ∗ > 0. 

Theorem 12.1 Under the assumption (G2) and the existence of second moments as 
in (G2) for .k = 2, we have the following cases for the martingale W : 

(i) If .λ∗ > 0, then W is .L2(P) convergent (and hence has a non-trivial limit). 
(ii) If .λ∗ < 0, then .W∞ = 0-almost surely. 
(iii) If .λ∗ = 0, and additionally (G8) holds, then .W∞ = 0-almost surely. 

Proof From (12.2), by considering the inverse of the change of measure, we see that 
.1/W is a non-negative .Pϕ-supermartingale. Hence, since .1/W is non-negative, its 
limit automatically exists thanks to the Martingale convergence theorem. Standard 
measure theory for martingale change of measures also tells us that for a measurable 
set, A, on the ambient measurable space, we have, for each .μ ∈ Mc(E), 

. Pμ(A) = E
ϕ
μ[W∞1(A∩{W∞<∞})] + P

ϕ
μ(A ∩ {W∞ = ∞}).

The consequence of this decomposition is that the measures .Pμ and .P
ϕ
μ are 

orthogonal on the ambient measurable space if and only if 

.P
ϕ
μ (W∞ = ∞) = 1, (12.3) 

in which case, the martingale limit satisfies .Pμ(W∞ = 0) = 1. Moreover, .Pμ is 
absolutely continuous with respect to . Pϕ

μ if and only if 

.P
ϕ
μ (W∞ < ∞) = 1, (12.4) 

in which case we have .Eμ[W∞] = 1, and hence, the martingale experiences . L1(Pμ)

convergence. This forms the basis of the proof in all three cases. 
(i) Let us first deal with the case that .λ∗ > 0. From Theorem 9.2, we have, using 

Fatou’s Lemma and (12.2), that 

.E
ϕ
μ

[

lim inf
t→∞ Wt

]

≤ lim inf
t→∞ E

ϕ
μ [Wt ] ≤ lim

t→∞Eμ[W 2
t ] < ∞. (12.5)
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The expectation in (12.5) ensures that .Pμ(lim inft→∞ Wt < ∞) = 1, and hence, 
since the limit exists, .limt→∞ Wt is .P

ϕ
μ-almost surely finite. Combined with (12.4), 

this will tell us that W is an .L1(P)-martingale. 
Despite now knowing that W is an .L1(P)-martingale, we still need to prove the 

stronger result that it is an .L2(P)-martingale. This is nonetheless a straightforward 
conclusion from (12.5) and Doob’s martingale inequality. Indeed, let us write . W̃t =
Wt − 1, .t ≥ 0, so that . W̃ is a zero-mean martingale with limit .W̃∞ = W∞ − 1. As  
in (12.5), Theorem 9.2 gives us that .limt→∞ Eμ[W̃ 2

t ] < ∞. By Doob’s martingale 
inequality, it follows that .Eμ[sups≥0 W 2

s ] < ∞; hence, dominated convergence 
implies that .limt→∞ Eμ[W̃ 2

t ] = Eμ[W̃ 2∞] < ∞. Jensen’s inequality tells us that 
.(W̃ 2

t , t ≥ 0) is a submartingale, so that, in fact, .Eμ[W̃ 2
t ] ↑ Eμ[W̃ 2∞]. We can now 

write 

. lim
t→∞Eμ[(Wt − W∞)2] = lim

t→∞Eμ[(W̃t − W̃∞)2] = Eμ[W̃ 2∞] − lim
t→∞Eμ[W̃ 2

t ] = 0,

and the required .L2(P) convergence holds. 
(ii) Next, for the case .λ∗ < 0, it is easy to see that 

. Wt ≥ e−λ∗t ϕ(ξ
ϕ
t ), t ≥ 0,

where . ξϕ is the spine given in the decomposition of Sect. 11.1. The boundedness 
of . ϕ, the stationary behaviour of the spine .Pϕ (cf. Lemma 11.1), and the strict 
negativity of . λ∗ ensure that .Pϕ

μ(lim supt→∞Wt = ∞) = 1 for all .μ ∈ Mc(E), 
and hence, from (12.3), .Pμ(W∞ = 0) = 1. 

(iii) Finally, for the case .λ∗ = 0, we recall from Lemma 10.1 that, under our 
assumptions, .Pμ(ζ < ∞) = 1, where .ζ = inf{t > 0 : Xt [1] = 0} and .μ ∈ Mc(E). 
On account of the trivial fact that .{ζ < ∞} ⊆ {W∞ = 0}, the desired conclusion 
follows. ⨅⨆

It is perhaps worth noting that the proof of (iii) could equally serve as the proof 
of (ii) albeit that we have not yet established the seemingly obvious fact that if 
extinction is almost sure in the critical setting (with the assumptions (G2), (G8)), 
then it should also be almost sure in the subcritical setting too. In fact, the next 
section will tidy up these concurrences. 

Theorem 12.2 Under the assumptions (G2), (G6), and (G8), we also have that the 
events .{W∞ = 0} and .{ζ < ∞}-almost surely agree under . P, where . ζ = inf{t > 0 :
Xt [1] = 0} is the time of extinction of the BMP. In particular, there is almost sure 
extinction if and only if .λ∗ ≤ 0. 

Before proving Theorem 12.2, let us first extract a result that lies implicitly in the 
proof of Lemma 10.1, specifically from the derivation of (10.9). 

Lemma 12.1 Assume (G2) and (G8), then 

. lim
t→∞ Xt [ϕ] = ∞ on {ζ = ∞}. (12.6)
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Proof The proof of the above fact can be found in Lemma 10.1 in the critical case; 
however, the proof does not really require .λ∗ = 0. Indeed, the only adjustment 
needed is the estimate (10.10), which has an obvious replacement. The rest of the 
proof goes through verbatim. We leave this as an exercise for the reader to check. 

⨅⨆
Proof (of Theorem 12.2) Recall the trivial observation that .{ζ < ∞} ⊆ {W∞ = 0}, 
and hence, 

.Pμ(ζ < ∞) ≤ Pμ(W∞ = 0), (12.7) 

for all .μ ∈ Mc(E). It thus suffices to show that (12.7) holds with the inequality 
reversed. 

Taking note of Lemma 12.1, when .λ∗ ≤ 0, since .Wt = e−λ∗tXt [ϕ] ≥ Xt [ϕ], the  
conclusion of Theorem 12.1 immediately implies that .{W∞ = 0} ⊆ {ζ < ∞}. This  
gives us the inequality the other way around to (12.7). 

Next we consider the setting that .λ∗ > 0. Due to our assumptions and the 
boundedness of . ϕ, cf. (G2), and boundedness of the number of offspring (G6), we 
have uniformly, for all times t such that there is a discontinuity in W , that . |Wt −Wt−|
is uniformly bounded by some constant .M > 0, .Pδx -almost surely, .x ∈ E. Defining 
the stopping time .T1 = inf{t ≥ 0,Wt ≥ 1}, using the fact that W is a non-negative, 
.L2(P)-martingale, and hence uniformly integrable, by appealing to Doob’s optional 
stopping theorem, we deduce that, for all .x ∈ E, 

. 1 = Eδx [WT1 ] = Eδx [WT11{W∞>0}] ≤ 1

ϕ(x)
Eδx ((1 + M)1{W∞>0}).

It follows that, for all .x ∈ E, .Pδx (W∞ > 0) ≥ ϕ(x)/(1 + M). Hence, that there 
exists .c1 > 0 such that 

. Pδx (W∞ = 0) ≤ 1 − c1ϕ(x), x ∈ E.

Now, using the branching property, we obtain for all .μ = ∑n
i=1 δxi

∈ Mc(E), 

. log Pμ(W∞ = 0) ≤
n

∑

i=1

log (1 − c1ϕ(xi)) ≤ −c1

n
∑

i=1

ϕ(xi) = −c1μ[ϕ].

From (12.6), we have, on .{ζ = ∞}, 

. lim sup
n→∞

logPXn(W∞ = 0) ≤ −c1 lim
n→∞ Xn[ϕ] = −∞.

With the upper bound of any probability being unity, we can thus write 

. lim sup
n→∞

PXn(W∞ = 0) ≤ 1{ζ<∞}.
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The branching Markov property now entails 

. Pμ(W∞ = 0) = Eμ

[

PXn(W∞ = 0)
]

, ∀n ∈ N, μ ∈ Mc(E).

The reverse Fatou’s lemma now gives us 

. Pμ(W∞ = 0) = lim sup
n→∞

Eμ

[

PXn(W∞ = 0)
]

≤ Eμ

[

lim sup
n→∞

PXn(W∞ = 0)

]

≤ Eμ

[

1{ζ<∞}
]

= Pμ(ζ < ∞).

Together with (12.7), this completes the proof of the theorem. ⨅⨆

12.2 Strong Law of Large Numbers 

The following fundamental result provides a stochastic analogue to (G2). It 
also shows that just as the leading order behaviour of the linear semigroup is 
described by the eigentriplet .(λ∗, ϕ, ϕ̃), the leading order stochastic behaviour of 
linear functionals is analogously described by the same eigentriple, albeit via the 
martingale W . 

Theorem 12.3 Suppose .λ∗ > 0, (G2) holds, as well as second moments in the form 
of (G2) for .k = 2. Suppose, moreover that, for all open . Ω compactly embedded 
subsets of E, 

. lim inf
t→0

PΩ
t [1](x) ≥ 1Ω(x), (12.8) 

where .(PΩ
t , t ≥ 0) is the movement semigroup killed on exiting . Ω , for .(X,P). Then, 

for any .g ∈ B+(E) such that, .g/ϕ ∈ B+(E) and initial configuration .μ ∈ Mc(E), 

.e−λ∗t Xt [g]
μ[ϕ] → ϕ̃[g]W∞, (12.9) 

.Pμ-almost surely. 

We think of this result as a strong law of large numbers because, combining it 
with the conclusion of Theorem 12.1, it infers that, almost surely, on .{ζ < ∞}, 

. lim
t→∞

∑Nt

i=1 g(xi(t))ϕ(xi(t))
∑Nt

i=1 ϕ(xi(t))
= lim

t→∞
Xt [ϕg]
Xt [ϕ] = ϕ̃[ϕg].
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With weaker assumptions than Theorem 12.3 slightly, we can also recover the 
same strong law of large numbers, albeit in the sense of . L2 convergence. 

Corollary 12.1 Suppose .λ∗ > 0, (G2) holds, as well as second moments in the 
form of (G2) for .k = 2. For any .g ∈ B+(E) and .μ ∈ Mc(E), the limit (12.29) 
holds in the .L2(Pμ) sense. 

Let us consider a number of examples for which this and other conditions can be 
verified for Theorem 12.3. 

Branching Feller Processes The assumption (12.8) is somewhat unusual but is 
automatically satisfied for any process with paths that are right continuous. Indeed, 
for such a setting, one appeals directly to Fatou’s lemma to conclude that 

. lim inf
t→0

PΩ
t [1](x) = lim inf

t→0
Ex[1Ω(ξt )] ≥ Ex[lim inf

t→0
1Ω(ξt )] = 1Ω(x),

for .x ∈ E. 

Recall from the end of Sect. 2.3, the definition of a Feller process. Feller 
processes can be constructed with right-continuous paths, and hence, (12.8) is 
also automatically satisfied for branching Feller processes. This would include, 
for example, the setting of branching Brownian motion in a compact domain. 
Importantly, the Feller property is not a necessary requirement as the next example 
shows. 

Neutron Branching Process The setting of the NBP in Theorem 6.3 is auto-
matically covered by Theorem 12.3. Indeed, if we go back to the setting of the 
NBP on .D × V , by thinking of scatter events as a special case of branching (in 
which precisely one offspring is produced), the process .(ξ,P) is nothing more 
than a linear drift. More precisely, under .P(r,υ), .ξt = r + υt for . t < κD

r,υ , after  
which time it is sent to a cemetery state. Similarly, it is sent to a cemetery state 
if neutron absorption occurs in D (i.e., a fission event with no offspring). For . Ω
open and compactly embedded in .D × V , it is trivial to see that (12.8) holds. It is 
notable that .(ξ,P) is not a Feller process because its semigroup can easily fail to be 
continuous in the variable . υ. To see why, consider Fig. 12.1, and the behaviour of 
.Pt [g](r, υ) = E(r,υ)[g(r + υt, υ)1(t<κD

r,υ )] as the velocity moves from . υ ' to . υ ''. 

Multi-type Branching Process In Sect. 11.2, we considered the most basic of non-
local branching Markov processes. That is, individuals have no associated motion 
and have type belonging to .{1, · · · , n}. Because there is no movement and the type 
space is so basic, the condition (12.8) is automatically satisfied. As before, we think 
of .(Xt , t ≥ 0) as a vector .Xt = (Xt (1), · · · , Xt (n)), where .Xt(i) simply counts the 
number of individuals of type i alive at time .t ≥ 0. The conclusion of Theorem 12.3 
can be re-worded as showing that the number of individuals of each type grows at 
the same rate. More precisely, 

. lim
t→∞ e−λ∗tXt (i) = ϕ̃iϕjW∞, Pδj

− a.s.,
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Fig. 12.1 For the given 
domain D, it is easy to see 
that .κD

r,υ is not continuous in 
the variable . υ ∈ V , and  
hence, neither is .Pt [g](r, υ). 
This implies that . P is not 
necessarily a Feller 
semigroup 

υ'

υ''
D

where (G2) can be understood as the existence of right and left eigenvectors, say 
.ϕ = (ϕ1, · · · , ϕn) and .ϕ̃ = (ϕ̃1, · · · , ϕ̃n) with eigenvalue .λ∗ ∈ R for the mean 
semigroup matrix .ψt(i, j) = Ei[Xt(j)], .i, j ∈ {1, · · · , n}. 

12.3 Proof of the Strong Law of Large Numbers 

We prove Theorem 12.3 by breaking it up into several parts. Starting with the 
following lemma, we first prove that Theorem 12.3 holds along lattice times. Just 
before we state the next lemma, let us quickly recall the filtration . Ft = σ(Xs : s ≤
t), for .t ≥ 0. 

Lemma 12.2 Fix .δ > 0, and assume that (G2) is in force together with the 
assumption of second moments, .(G2) for .k = 2, and .λ∗ > 0. For  .g ∈ B+(E), 
define 

.Ut = e−λ∗tXt [g], t ≥ 0. (12.10) 

Then, for any non-decreasing sequence .(mn)n≥0 with .m0 > 0 and .x ∈ E, 

. lim
n→∞ |U(mn+n)δ − E[U(mn+n)δ|Fnδ]| = 0, Pδx -a.s.. (12.11) 

Proof Thanks to the Borel–Cantelli lemma, it is sufficient to prove that for each 
.x ∈ E and all .ε > 0, 

.

∑

n≥1

Pδx

(∣
∣U(mn+n)δ − E[U(mn+n)δ|Fnδ]

∣
∣ > ε

)

< ∞. (12.12) 

To this end, note that Markov’s inequality gives
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. Pδx

(∣
∣U(mn+n)δ − E[ U(mn+n)δ|Fnδ]

∣
∣ > ε )

≤ ε−2
Eδx

(∣
∣U(mn+n)δ − E[U(mn+n)δ|Fnδ]

∣
∣
2
)

. (12.13) 

Hence, let us consider the term in the conditional expectation on the right-hand side 
above. First note that 

.U(mn+n)δ − E[U(mn+n)δ|Fnδ] =
Nnδ∑

i=1

e−nδλ∗(U(i)
mnδ − E[U(i)

mnδ|Fnδ]), (12.14) 

where, given . Ft , the .U(i) are independent and equal in distribution to U under . Pδxi (t)

and .(xi(t) : i = 1, · · · , Nt ) describes the configuration of X at time .t ≥ 0. Note, 
in particular, conditional on . Fnδ , .Zi = U

(i)
mnδ − E(U

(i)
mnδ|Fnδ) are independent with 

zero mean. The formula for the variance of sums of zero-mean independent random 
variables together with the inequality .|a + b|2 ≤ 2(|a|2 + |b|2) now gives us 

. E(|U(mn+n)δ − E[U(mn+n)δ|Fnδ]|2|Fnδ)

=
Nnδ∑

i=1

e−2λ∗nδ
E

[∣
∣
∣
∣
U

(i)
mnδ − E[U(i)

mnδ|Fnδ]
∣
∣
∣
∣

2
∣
∣
∣
∣
∣
Fnδ

]

≤
Nnδ∑

i=1

e−2λ∗nδ
E

[

2(|U(i)
mnδ|2 + |E[U(i)

mnδ|Fnδ]|2)|Fnδ

]

≤ 4
Nnδ∑

i=1

e−2λ∗nδ
E

[

|U(i)
mnδ|2|Fnδ

]

, (12.15) 

where we have used Jensen’s inequality in the final inequality. Hence, with . (xi(nδ) :
i = 1, . . . , Nnδ) describing the configurations of the particles at time . nδ in X, we  
have 

. 

∞
∑

n=1

E

[

|U(mn+n)δ − E(U(mn+n)δ|Fnδ)|2
]

≤ 4
∞
∑

n=1

e−2λ∗nδ
Eδx

[
Nnδ∑

i=1

Eδxi (nδ)

[

U2
mnδ

]
]

≤ 4‖g‖2
∞
∑

n=1

e−2λ∗nδ
Eδx

[
Nnδ∑

i=1

ϕ(xi(nδ))
e−2λ∗mnδψ

(2)
mnδ[g](xi(nδ))

ϕ(xi(nδ))

]

,

(12.16)
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where we have used the notation from Theorem 9.2 in the final inequality. The latter 
also tells us that, by choosing .mn sufficiently large, we can uniformly bound the 
ratio on the right-hand side of (12.16) by a constant. 

Recalling that . ϕ is an eigenfunction for the linear semigroup of X, there exists a 
constant .K ∈ (0,∞) such that 

. 

∞
∑

n=1

E

[

|U(mn+n)δ − E(U(mn+n)δ|Fnδ)|2
]

≤ K‖g‖2
∑

n≥1

e−2λ∗nδ
Eδx [Xnδ[ϕ]]

= K‖g‖2ϕ(x)
∑

n≥1

e−λ∗nδ < ∞.

(12.17) 

The result now follows by (12.12) and (12.13). ⨅⨆
Let us now return to the proof of our main strong law of large numbers 

result, albeit, first for convergence on lattice times. Notably, this allows for weaker 
assumptions than Theorem 12.3. 

Theorem 12.4 Suppose .λ∗ > 0, (G2) holds, as well as second moments, i.e., (G2) 
for .k = 2. Then, for any .g ∈ B+(E), .δ > 0, and any initial configuration . μ ∈
Mc(E), 

.e−λ∗nδ Xnδ[g]
μ[ϕ] → ϕ̃[g]W∞, (12.18) 

.Pμ-almost surely. 

Proof It suffices to prove the result for .μ = δx , .x ∈ E, since then, for . μ =
∑n

i=1 δxi
, we have under . Pμ, 

. lim
t→∞ e−λ∗tXt [g] =

n
∑

i=1

lim
t→∞ e−λ∗tX(i)

t [g] =
n

∑

i=1

ϕ(xi)ϕ̃[g]W(i)∞ = ϕ̃[g]μ[ϕ]W∞,

where .X(i) (resp., .W(i)) are independent copies of . X (resp. . W ) under .Pδxi
, . i =

1, · · · , n. 
We have already noted that 

. Eδx

[

Ut+s

∣
∣Ft

] =
Nt∑

i=1

e−λ∗t Ū (i)
s ,

where, given . Ft , the .Ū
(i)
s are independent and equal in law to .Eδxi (t)

[Us], where 
.(xi(t) : i = 1, · · · , Nt ) describes the configuration of . X at time .t ≥ 0. Hence, 
using (8.14), we have
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. Eδx [Ut+s |Ft ] =
Nt∑

i=1

e−λ∗tEδxi (t)

[

e−λ∗sXs[g]]

= ϕ(x)ϕ̃[g]Wt

+
Nt∑

i=1

e−λ∗t
(

e−λ∗s ψs[g](xi(t))

ϕ(xi(t))
− ϕ̃[g]

)

ϕ(xi(t)).

(12.19) 

Appealing (G2), we can pick . s sufficiently large so that, for any given .ε > 0, 

.‖e−λ∗sϕ−1ψs[g] − ϕ̃[g]‖ < ε. (12.20) 

Combining this with (12.19), since we may take . ε arbitrarily small, we conclude 

. lim
t→∞

∣
∣Eδx [Ut+s |Ft ] − W∞ϕ̃[g]ϕ(x)

∣
∣ = 0. (12.21) 

The above combined with the conclusion of Lemma 12.2 gives the desired limit 
along lattice sequences. 

⨅⨆
By piecing together various calculations from the previous two results, we can 

also quickly deliver the proof of Corollary 12.1. 

Proof (of Corollary 12.1) In the spirit of the calculations in (12.15), (12.19), and 
the already established . L2 convergence of W , for each .μ ∈ Mc(E), we can control 
the .L2(Pμ) distance of .(Ut+s − Eμ[Ut+s |Ft ]), .(Eμ[Ut+s |Ft ] − μ[ϕ]ϕ̃[g]Wt), and 
.(Wt − W∞). Hence, by the triangle inequality, we have in the sense of . L2(Pμ)

convergence, .limt→∞ Ut = μ[ϕ]ϕ̃[g]W∞, as required. ⨅⨆
We now make the transition from lattice times to continuous times. 

Proof (of Theorem 12.3 Along the Full Sequence) Suppose that . Ω is an open set 
that is compactly embedded in E and fix .0 < δ ⪡ 1. If .t ∈ [nδ, (n + 1)δ), then 
since .1 ≥ 1Ω , 

. e−λ∗tXt [1Ω ] = e−λ∗(t−nδ)

Nnδ∑

i=1

e−λ∗nδ

N
(i)
t−nδ∑

j=1

1Ω(x
(i)
j (t − nδ))

≥ e−λ∗δ
Nnδ∑

i=1

e−λ∗nδ1Ω(xi(nδ))X
(i)
t−nδ[1Ω ], (12.22) 

where .(x(i)
j (s), j = 1, · · · , N

(i)
s ) are the collection of offspring at time .s ≥ 0 in 

the subtree .(X(i),Pδxi (nδ)
) rooted at the i-th individual alive at time . nδ, for each 

.i = 1, · · · , Nnδ . Now note that, given . Fnδ , for all .s ∈ [0, δ],
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. X(i)
s [1Ω ] ≥ 1{X(i)

s [1Ω ]≥1} ≥ 1{X(i)
u [1Ω ]≥1, for all u∈[0,δ]}.

Hence, from the inequality (12.22), we can derive the more convenient inequality 

.e−λ∗tXt [1Ω ] ≥ e−λ∗δ
Nnδ∑

i=1

e−λ∗nδ1Ω(xi(nδ))Ξδ(xi(nδ)), (12.23) 

where 

. Ξδ(x) := 1{Xt [1Ω ]≥1 for all t∈[0,δ]},

for .X0 = δx , .x ∈ E. 
Next note that if we trace the path of .(X,Pδx ) over the small time horizon .[0, δ], 

then with high probability as .δ ↓ 0, no branching event has occurred and the 
requirement that .Xt [1Ω ] ≥ 1 for .t ∈ [0, δ] is close to the requirement that the initial 
ancestor remains in . Ω prior to time . δ. Indeed, suppose . T1 is the first branching time 
of .(X,Pδx ) and let .ηδ(x) = Eδx [Ξδ(x)] ≤ 1, then we have 

. ηδ(x) = Pδx (Xt [1Ω ] ≥ 1 for all t ∈ [0, δ])
≥ Pδx (Xt [1Ω ] ≥ 1 for all t ∈ [0, δ], δ < T1)

= Ex

[

1(ξt∈Ω, for all t∈[0,δ])e− ∫ δ
0 γ (ξs )ds

]

= PΩ
δ [1](x) − Ex

[

1(ξt∈Ω, for all t∈[0,δ])
(

1 − e− ∫ δ
0 γ (ξs )ds

)]

, (12.24) 

where we recall that .(ξ,Px) and . γ denote the law of particles’ motion and the 
branching rate in .(X,P), respectively, and .(PΩ

t , t ≥ 0) is the semigroup of .(ξ,P), 
killed on exiting . Ω . Thanks to the assumption .γ ∈ B+(E) (cf. Chap. 8), it is easy to 
show that the second term on the right-hand side of (12.24) tends to zero as .δ → 0, 
since 

. Ex

[

1(ξt∈Ω, for all t∈[0,δ])
(

1 − e− ∫ δ
0 γ (ξs )ds

)]

≤ Ex

[

1(ξt∈Ω, for all t∈[0,δ])
∫ δ

0
γ (ξs)ds

]

≤ δ‖γ ‖.

Thanks to the assumption (12.8), we have from  (12.24), 

. lim inf
δ↓0

ηδ(x) ≥ 1Ω(x), x ∈ E. (12.25)
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If we denote the summation on the right-hand side of (12.23) by .Ũnδ(x), then 
we can apply similar arguments to those given in the proof of Lemma 12.2, see in  
particular (12.16), to show that, for some constant .C ∈ (0,∞), 

. 

∞
∑

n=1

Eδx

[

|Ũnδ − E[Ũnδ|Fnδ]|2
]

≤ C

∞
∑

n=1

e−2λ∗nδ
Eδx

[
Nnδ∑

i=1

1Ω(xi(nδ))2
Eδxi (nδ)

[(Ξδ)2]
]

≤ C

∞
∑

n=1

e−2λ∗nδ
Eδx [Xnδ[1Ω ]]

= C

∞
∑

n=1

e−2λ∗nδψnδ[1Ω ](x). (12.26) 

The assumption (G2) now tells us that the sum on the right-hand side of (12.26) is 
finite. 

Noting from (12.23) that 

. E[Ũnδ|Fnδ] = e−λ∗nδXnδ[1Ωηδ],

the consequence of (12.26), when taken in the light of the Borel–Cantelli lemma, 
the lower bound (12.23), and Theorem 12.4, means that, .Pδx -almost surely, 

. lim inf
t→∞ e−λ∗tXt [1Ω ] ≥ e−λ∗δϕ̃[1Ωηδ]W∞ϕ(x).

Letting .δ ↓ 0 with the help of (12.25) and Fatou’s lemma in the above inequality 
yields 

. lim inf
t→∞ e−λ∗tXt [1Ω ] ≥ ϕ̃[1Ω ]W∞ϕ(x), (12.27) 

.Pδx -almost surely. 
From (12.27), we can easily replace .1Ω by simple measurable functions in 

.B+(E), from where, we can upgrade by lower approximation to measurable . g ∈
B+(E). Indeed, suppose that .(gn, n ≥ 1) is a sequence of simple functions in 
.B+(E) such that .gn ↑ g ∈ B+(E). Then, since .g ≥ gn, 

. lim inf
t→∞ e−λ∗tXt [g] ≥ lim inf

t→∞ e−λ∗tXt [gn] ≥ ϕ̃[gn]W∞ϕ(x),

and hence, taking limits as .n → ∞ on the right-hand side with the help of monotone 
convergence, we have
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. lim inf
t→∞ e−λ∗tXt [g] ≥ ϕ̃[g]W∞ϕ(x). (12.28) 

To complete the proof of Theorem 12.3, it now suffices to show that, .Pδx -
almost surely, .lim supt→∞ e−λ∗tXt [g] ≤ ϕ̃[g]W∞ϕ(x), for .g ∈ B+(E) and 
.g/ϕ ∈ B+(E). To this end, note that, for .0 ≤ g ≤ cϕ, for some constant . c > 0
(which, without loss of generality, we may take equal to 1), 

. lim sup
t→∞

e−λ∗tXt [g] = lim sup
t→∞

(

ϕ(x)Wt − e−λ∗tXt [ϕ − g])

= ϕ(x)W∞ − lim inf
t→∞ e−λ∗tXt [ϕ − g]

≤ ϕ(x)W∞ − ϕ̃[ϕ − g]ϕ(x)W∞
= ϕ̃[g]W∞ϕ(x)

as required, where we have used the normalisation .ϕ̃[ϕ] = 1. ⨅⨆

12.4 Discrete-Time Strong Law of Large Numbers 

For this section, we recall the notation from Sect. 8.7. Just as in the continuous-time 
setting, it is easy to show that .W = (Wn, n ≥ 0), where 

. Wn = ρ−n∗
Xn[ω]
μ[ω] , n ≥ 0,

is a .Pμ-martingale, for .μ ∈ Mc(E). Moreover, being a non-negative martingale, it 
has an almost sure limit, denoted by .W∞. In a similar spirit to the calculation (12.5), 
using the (second) moment convergence results in Theorem 9.8, it is straightforward 
to show that . W is an .L2-convergent martingale. 

The calculations in the previous section that lead to Lemma 12.2 and The-
orem 12.4 can be easily replicated in discrete time. The details are left to the 
reader, but there is little to change. Since the time index is now discrete rather than 
continuous, we automatically get for free the following result. 

Theorem 12.5 Suppose that .ρ∗ > 1 and (G4) hold, together with second moments 
of the offspring distribution, i.e., (G5), for .k = 2. Then, for any .g ∈ B+(E) and any 
initial configuration .μ ∈ Mc(E), 

.ρn∗
Xn[g]
μ[ω] → ϕ̃[g]W∞, (12.29) 

.Pμ-almost surely.
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12.5 Comments 

The proof of Theorem 12.1 is a variant of a standard one appealing to a standard 
measure theoretical dichotomy (cf. p. 242 of [47]), which has been used to analyse 
the convergence of many analogous martingales in the setting of different spatial 
branching processes. We mention [12, 97, 124], and [58] to name but a few of the 
contexts with similar results. The proof of Theorem 12.3 principally uses techniques 
that have been used a number of times in the literature, developed by [4, 24, 54] 
among others.
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(H4) Fission offspring are bounded in number by the constant 
nmax > 1 

54 

(H5): There exists a constant C >  0 such that for all 
g ∈ L+∞(D × V ), 〈ϕ̃, σfV[g]〉 ≥ C〈ϕ̃, ĝ2〉, where  
ĝ : D → [0,∞) : r I→ ∫

V g(r, υ ')dυ '

104 

(G1) supx∈E Ex [N ] < ∞ 156 

(G2) There exists an eigenvalue λ∗ ∈ R and a corresponding right 
eigenfunction ϕ ∈ B+(E) and left eigenmeasure ϕ̃ ∈ Mf (E) 
such that, for f ∈ B+(E) and μ ∈ Mf (E),
〈ψt [ϕ], μ〉 = eλ∗t 〈ϕ, μ〉 and 〈ψt [f ], ϕ̃〉 = eλ∗t 〈f, ϕ̃〉. Further 
let us define 
Δt = supx∈E,f ∈B+ 

1 (E) |ϕ(x)−1e−λ∗t ψt [f ](x) − 〈ϕ̃, f 〉|, t  ≥ 0. 
We suppose that supt≥0 Δt < ∞ and limt→∞ Δt = 0. 

157 

(G3) supx∈E Ex [Z[1]k] < ∞ 170 

(G4) There exists an eigenvalue ρ ∈ R, and a corresponding right 
eigenfunction 0 < ω  ∈ B+(E) and left eigenmeasure 
ω̃ ∈ Mf (E) such that, for f ∈ B+(E) and μ ∈ Mf (E), 
μ [Φn[ω]] = ρn μ[ω] and ω̃ [Φn[f ]] = ρn ω̃[f ]. Further let us 
define Δn = supx∈E,g∈B1(E) |ω(x)−1ρ−n Φn[f ](x) − ω̃[f ]|, 
for n ≥ 0. We suppose that supn≥0 Δn < ∞ and 
limn→∞ Δn = 0. 

187 

(G5) supx∈E Ex(Z [1]k ) <  ∞. 188 

(G6) Offspring numbers are bounded by nmax 196 

(G7) Irreducible branching condition, 〈γ V [g], ϕ̃〉 ≥  C〈g, ϕ̃〉2 196 

(G8) Uniform extinction condition, supx∈E Px(t < ζ ) < 1 for all  
sufficiently large t >  0. 

196 

(G9) Extinction by time T is uniformly bounded away from zero, 
infx∈E Pδx (ζ < T ) > 0, for 0 ≤ T <  ∞. 

223 

(G10) Extinction by time T is not a certainty, Pδx (ζ < T ) < 1 for  
x ∈ E and 0 ≤ T <  ∞. 

224 

(G11) limT →∞ infx∈E wT (x) = 1. 238 

Mathematical Notation 

† Cemetery state 20

‖·‖ The supremum norm on B+(E) 32

〈·, ·〉 Inner product on L2(E) 32 

μ[f ] Integral of f with respect to the measure μ 31 

α(r, υ) A mixed rate of scatter and fission 68 

β(r, υ) The function σf(r, υ)
(∫

V πf(r, υ, υ ')dυ ' − 1
)

67 

γ The branching rate for a BMP 149 

γ ϕ Branching rate along the spine for a BMP 210 

γ ↕ Branching rate of the BMP dressed ↑-marked tree 230
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ζ Lifetime of stochastic process 20, 103 

η Left eigenmeasure 32, 70 

θ A mixed scatter and fission density 132 

κD 
r,υ The time a linear drift from r with velocity υ leaves the 

domain D 
47 

λc Leading eigenvalue in Perron–Frobenius decomposition of 
Markov semigroup 

30 

λ∗ Leading eigenvalue for the NBP or BMP 70, 157 

ξ A Markov process (which serves as the motion process for 
each particle in a BMP) 

156 

π A mixed scatter and fission density 68 

πf Average neutron mass creation at fission 6 

πs Scatter distribution 6 

ρ∗ Leading eigenvalue in Perron–Frobenius decomposition of 
discrete-time Markov semigroup 

187 

σf Rate at which fission occurs 6 

σ
↓ 
f Rate at which fission occurs in ↓ subtree of skeletal 

decomposition 
120 

σ
↕
f Rate at which fission occurs in ↑ subtree of skeletal 

decomposition 
121 

σs Rate at which neutron scatter occurs 6 

Σ The constant equal to 〈σfV [ϕ], ϕ̃〉 for NBP and ϕ̃
[
γ V [ϕ]]

of BMP 
104, 196 

ϕ Right eigenfunction in the Perron–Frobenius decomposition 
for NBP and BMP 

32, 70, 136, 157 

ϕ̃ Left eigenmeasure (or density thereof) in the 
Perron–Frobenius decomposition for NBP and BMP 

32, 70, 136, 157 

Φn First moment semigroup of generation NBP or discrete-time 
BMP 

129, 165 

ψt First moment semigroup of NBP or BMP 57, 155 

ψ (k) 
t The k-th moment functional of the NBP or BMP 100, 169 

Ψt Solution to the NTE in L2(D × V ) 5, 43 

Ψ̂t Solution to the dual NTE in the L2(D × V )  space 45 

ω Right eigenfunction in the Perron–Frobenius decomposition 
for generational NBP or discrete-time BMP 

134, 187 

ω̃ Left eigenmeasure in the Perron–Frobenius decomposition 
for generational NBP or discrete-time BMP 

134, 187 

a(t) The survival probability integrated against ϕ̃ 195 

A Difference of non-linear and linear branching operators 160 

B(E) Bounded measurable functions on E taking value zero on † 21, 47 

B+(E) Non-negative bounded measurable functions on E taking 
value zero on † 

21, 47 

B+ 
1 (E) Functions in B+(E) bounded by unity 93, 150 

B(x) The function γ (x)(m[1](x) − 1) 156 

Dom(·) The domain of the operator in brackets on L2(D × V ) 11
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E Underlying state space of Markov process 19 

F Infinitesimal generator of fission events for the backward 
NTE or linear branching operator for BMP 

45, 155 

F Forward infinitesimal generator of fission events 10 

F̂ The L2(D × V )  dual of the infinitesimal generator of fission 
events 

127 

Ft Filtration of NBP or BMP 55, 151 

Gt Filtration of the general Markov process ξ 19 

G The sum of the transport, scatter, and fission forward 
operators 

10 

Ĝ The L2(D × V )  dual operator of G 45 

G Branching mechanism for NBP or BMP 93, 150 

G↑, G↑,T Branching mechanism for ↑-marked individuals in the 
skeletal (resp., T -skeletal) decomposition for NBP or BMP 

122, 230 

G↓, G↓,T Branching mechanism for ↓-marked individuals in the 
skeletal (resp., T -skeletal) decomposition for NBP or BMP 

119, 229 

G↕, G↕,T Joint branching mechanism for ↑- and ↓-marked individuals 
in the skeletal (resp., T -skeletal) decomposition for NBP or 
BMP 

121, 230 

I (k) 
t The k-th moment functional of running occupation measure 

for NBP or BMP 
102, 169 

keff Generational-time eigenvalue for neutron transport operators 128 

Kn Filtration of NGP or discrete-time BMP 129, 165 

L2(E) The space of square integrable functions on E 10 

Mf (E) Space of finite measures on E 32 

Mc(E) Space of finite counting measures on E 53, 151 

m(r, υ) Mean number of neutrons produced at a fission event from 
an incoming neutron with configuration (r, υ) 

132 

m[·] Mean operator for offspring 155 

p, pT Survival probability (resp., to time T ) for NBP or BMP 116, 223 

P Law of NBP or BMP 54 

P
ϕ Change of measure with respect to W 209 

P̃
ϕ Law of the dressed spine 112 

P
↓, P↓,T Law of the NBP or BMP conditioned to become extinct 

(resp., by time T ) 
119, 225 

P̂ϕ Marginal semigroup of the spine for BMP 211 

P Law of Markov process for NRW and BMP 20, 49, 156 

Pαπ Law of Markov process for NRW and BMP in the case that 
the scatter rate α and scatter kernel π are specified 

49 

Pσπ,† Law of Markov process for NRW and BMP in the case that 
the scatter rate α and scatter kernel π are specified, with 
additional killing 

135 

P̂ Probabilities of underlying Markov process with additional 
jumps 

156 

P† Law of (R, Υ ) with additional killing at rate β̄ − β 69
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P↓, P↓,T Law of the Markov process describing movement of 
↓-marked particles in the NBP or BMP skeletal (resp., 
T -skeletal) decomposition 

119, 226 

P↑, P↑,T Law of the Markov process describing movement of 
↑-marked particles in the NBP or BMP skeletal (resp., 
T -skeletal) decomposition 

122, 230 

P
↕, P↕,T Law of ↑-marked dressed tree for NBP or BMP 118, 224 

P† Semigroup associated to (R, Υ ) under P† 59 

P Expectation semigroup σsπs-NRW killed when it exits D or 
expectation semigroup of underlying Markov process for 
BMP 

64, 149 

Pϕ Motion biased semigroup of the spine for a BMP 210 

PΩ Movement semigroup of P killed on exiting Ω 247 

Pc Semigroup of Markov process after change of measure with 
ground state eigenfunction 

36 

P Branching point process probabilities for discrete-time 
model 

164 

P Fission point process probabilities or branching point 
process probabilities 

53, 149 

Pϕ Fission point process probabilities or branching point 
process probabilities along the spine 

112, 210 

P↓, P↓,T Fission point process probabilities or branching point 
process probabilities for ↓-marked trees in the skeletal 
(resp., T -skeletal) decomposition 

120, 229 

P↕, P↕,T Joint fission point process probabilities or branching point 
process probabilities for ↓-marked and ↑-marked trees in 
the skeletal (resp., T -skeletal) decomposition 

121, 234 

Q Expectation semigroup of Markov process 21 

Qγ Expectation semigroup of Markov process with potential γ 21 

Q Source term for the forward NTE 6 

S Infinitesimal generator of scattering event for backward 
NTE 

45 

S Forward scatter operator 10 

Ŝ The L2(D × V )  dual of the forward scatter operator 127 

T Infinitesimal generator of transport for backward NTE 45 

T Forward transport operator 10 

T̂ The L2(D × V )  dual of the forward transport operator 127 

ut [f, g] Solution to the re-oriented non-linear evolution equation for 
BMP and its running occupation 

160 

ut (x) The probability of survival for both BMP and NBP 195 

u↕,T 
t Non-linear semigroup of the dressed ↑-marked T -skeleton 

for the BMP 
231 

u↓,T 
t Non-linear semigroup of the BMP conditioned to become 

extinct by time T 
226 

vt [f ] Solution to the non-linear semigroup (Pàl–Bell) equation for 
NBP or BMP 

92, 152 

vt [f, g] Solution to the non-linear semigroup equation for BMP and 
its running occupation 

161
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Vn[f ] Non-linear semigroup of the discrete-time BMP 165 

V [f, g] Two-point fission or branching operator 94 

V [f ] Fission or branching variance operator 94, 173196 

w, wT Extinction probability (resp., by time T) 116, 223 

Wt The unit mean martingale 〈ϕ, Xt 〉/〈ϕ, μ〉 for NBPs or 
equivalently, Xt [ϕ]/μ[ϕ] for BMPs, under Pμ 

108, 111, 209 

Wn The unit mean martingale Xn[ω]/μ[ω] under Pμ 255 

Xt Neutron branching process or branching Markov process 52 

Xn Branching Markov process in discrete time 52164 

X
↑,T 
t The T -skeleton of X 230 

X
↕,T 
t The dressed T -skeleton of X 230 

Z Point process of fission velocities for NBP or branching 
offspring point process for BMP 

53, 149, 151 

Z Branching offspring point process for discrete-time 
processes 

164
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