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We look at the problem of pricing contingent convertible bonds (CoCos) where
the underlying risky asset dynamics are given by a smile conform model, more
precisely, an exponential Lévy process incorporating jumps and heavy tails. A
core mathematical quantity, needed in closed form in order to produce an exact
analytical expression for the price of a CoCo, is the law of the infimum of the
underlying equity price process at a fixed time. With the exception of Brownian
motion with drift, no such closed analytical form is available within the class of
Lévy processes that are suitable for financial modeling. Very recently, however,

J. M. Corcuera is supported by the MCI grant MTM2009-08218. A. Ferreiro-Castilla was par-
tially supported by the MCI grant MTM2009-08869 and FEDER and by a Royal Society Newton
International Fellowship.

121



122 J. M. Corcuera et al

there has been some remarkable progress made with the theory of a large family
of Lévy processes, known as ˇ-processes. Indeed, for this class of Lévy processes,
the law of the infimum at an independent and exponentially distributed random
time can be written down in terms of the roots and poles of its characteristic
exponent, all of which are easily found within regularly spaced intervals along
one of the axes of the complex plane. Combining these results together with a
recently suggested Monte Carlo technique, which capitalizes on the randomized
law of the infimum, we show the efficient and effective numerical pricing of CoCos.
We perform our analysis using a special class of ˇ-processes, known as ˇ-VG,
which have similar characteristics to the classic variance-Gamma model. The
theory is put to work by performing two case studies. After calibrating our model
to market data, we price and analyze one of the Lloyds CoCos as well as the first
Rabo CoCo.

1 INTRODUCTION

A contingent convertible bond (CoCo) is a bond issued by a financial institution where,
upon the appearance of a trigger event, an automatic conversion into a predetermined
number of shares takes place or where a partial write-down of the face value of
the debt is imposed. In this paper, we will focus on CoCos where a conversion in
new shares takes place, but the techniques can be easily applied to write-downs. The
moment of conversion or write-down corresponds to a particular moment where the
issuing bank gets into a state of possible nonviability. This is a situation where the
future of the bank is questioned by the depositors, bondholders and regulators. In
order to quantify such a life-threatening situation, the conversion or write-down is
triggered by a particular predefined event. This automatic conversion makes this asset
class attractive from a regulatory point of view. The conversion of debt into equity
takes place automatically. No shareholder meeting is required and the bank does not
need to issue new shares in difficult market conditions. A general and quantitative
introduction to contingent capital and the structuring, pricing and dynamics of CoCos
can be found in De Spiegeleer and Schoutens (2011a).

In a financial context, CoCos were first launched just before year-end 2009 by
Lloyds Banking Group. Later, in 2010, Rabobank successfully issued their so-called
senior contingent notes. In February 2011, we witnessed the surprise US$2 billion
CoCo issue by Credit Suisse. This placement was very well-received by the market
and it was many times oversubscribed. Yield-hungry investors showed a very large
appetite for these instruments. In the spring of 2011, Bank of Cyprus issued their con-
vertible enhanced capital securities, which combined convertible bond features (for
an introduction to convertible bonds, see De Spiegeleer and Schoutens (2011b)) with
a CoCo and are therefore often called convertible contingent convertibles (CoCoCos).
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TABLE 1 List of issued CoCos.

Issue Issue Accounting Trigger
Issuer date size trigger level (%) Maturity Callable

Lloyds Nov 2009 13 700 CET1 5.00 10–22
Rabo Mar 2010 1250 Equity 7.00 10

capital ratio
Rabo Jan 2011 2000 Equity 8.00 Perpetual After 5.5

capital ratio
Credit Suisse Feb 2011 2000 CET1 7.00 30 After 5.5
Credit Suisse Mar 2012 750 CET1 7.00 10 After 5
Bank of Cyprus May 2011 890 CET1 5.00 Perpetual After 5
ANZ Sep 2011 1250 CET1 5.13 Perpetual After 6
UBS Feb 2012 2000 CET1 5.00 5 After 5
ZKB Feb 2012 590 CET1 7.00 Perpetual After 5.5
Macquarie Mar 2012 250 CET1 5.125 45 After 5

“Issue size” measured in millions of USD; “Maturity” and “Callable” measured in years.

In 2012, the CoCo issuance continued with issues from ZKB, UBS and Credit Suisse.
A summary of the different issues up until time of writing can be found in Table 1.
CoCos have therefore not missed their entry into the market.

Two cornerstones of the CoCo-note construction are the specification of the trigger
event and the conversion price. The latter is the price that a CoCo investor is implicitly
paying at conversion. This price is likely to be much higher than the stock price at
conversion time, and hence, in that case, the CoCo holder suffers a (significant) loss.
Note that the conversion price also determines the number of new shares issued at
conversion and therefore determines the amount of dilution of existing shareholders.

The CoCos issued so far have been set up with an accounting trigger. In this case, a
comparison between the regulatory capital of the bank and the risk-weighted value of
its assets can trigger a conversion of contingent debt into equity. The CoCos issued by
Credit Suisse and Lloyds will convert into shares if their respective core Tier 1 (CT1)
ratios fall below 7% and 5%, respectively. The Credit Suisse contingent convertibles
come with a supplementary regulatory trigger, which is also called a nonviability
trigger. Through this trigger, the Swiss regulator has the power to impose a conversion
into shares if it deems the Credit Suisse Group to be nonviable without public financial
support. The regulator could in theory trigger a conversion into shares even when the
accounting ratio was above the trigger level. In the UK, the regulator itself is steering
away from using the accounting-based triggers. Andrew Haldane, Executive Director
of Financial Stability for the Bank of England, wants regulators to start looking at
market triggers. The share price or average share price, for example, would define the
trigger event very transparently (see Haldane 2011).
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124 J. M. Corcuera et al

Many were expecting CoCos to play a role in the extra surcharge imposed by
Basel to the globally systemically important banks (GSIBs). Although the capital
surcharges imposed by the new Basel III guidelines for the GSIBs eventually did not
allow for contingent capital, ie, CoCos, we estimate that the CoCo market could reach
€150 billion over the next five years, which is in the region of the sizes of the liquid
names in the convertible bond space. Basel III has not only imposed more capital but
also focused on the quality; the CT1 ratio has been set at 7%. This includes a 4.5%
minimum to which a 2.5% capital conservation buffer has been added. Large GSIBs
will also have to meet a supplementary minimum capital surcharge of up to 2.5%.
This extra layer has to be met in CT1 capital. This is an extra surcharge that brings
the minimum CT1 level from 7% to 9.5% for the large international banks that carry
a “too-big-to-fail” label.

The minimum overall capital ratio is set at 10.5% for all Basel III-compliant banks
and up to 13% for the GSIBs. That is 3.5% extra capital on top of the CT1 capital.
This bucket has to consist of 1.5% additional Tier 1 and 2% Tier 2 debt. It is in these
two categories of regulatory capital that CoCos will play an important role. CoCos
do not have CT1 status but remain part of the regulatory capital.

The European Banking Authority (EBA) announced after the European summit
of October 2011 that banks had until June 2012 to build a CT1 capital ratio of 9%,
although they had to submit their plans on how they would reach this target before
January 1, 2012. These stress tests revealed that around €100 billion extra capital
would be needed to reinforce the balance sheets of European banks. The bulk of this
effort needed to come from Greek, Spanish, Italian, Portuguese and French banks.
The EBA clearly left banks the option of using CoCos in this capital raising exercise:
“newly issued private contingent instruments will be accepted if in line with strict
criteria defined in a common European term-sheet that the EBA is finalizing.” (EBA
2011).

Conceptually, CoCos can help to create a system that will prevent the need for and
reduce the cost of government bailouts of financial institutions. These securities could
be used to fulfill higher post-credit-crunch crisis capital requirements without diluting
common equity holders. However, care needs to be taken in the structuring of new
CoCos. The size and the triggering mechanism are crucial and should be determined
with great care. In this paper, we look at the issue of pricing a CoCo under a smile
conform model using the equity derivative approach in De Spiegeleer and Schoutens
(2012) and using credit default swap (CDS) quotes to calibrate the relevant equity
data. For a discussion on the anatomy and construction of CoCos, see De Spiegeleer
and Schoutens (2011b) and the references therein.

In this context, we also believe it is important to employ a variety of models to
price and investigate the dynamics of this new asset class. For the moment, only a
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limited number of models are available. We mention a so-called rule-of-thumb credit-
risk-based model as described in De Spiegeleer et al (2011); an equity derivatives
approach model, as detailed in De Spiegeleer and Schoutens (2012), is also available.
Finally, we mention a couple of firm value models such as Glasserman and Nouri
(2012), Madan and Schoutens (2011) and Madan (2011). This paper follows the
equity derivatives approach but goes beyond the traditional Black–Scholes modeling
as employed in De Spiegeleer and Schoutens (2012). It employs a so-called smile-
conform model from the class of Lévy processes, incorporating fatter tails and jumps in
contrast with the Black–Scholes setting. It is well-documented that the Black–Scholes
model has tails that are too light to accurately model financial data. Non-Brownian
Lévy models in general and the VG and ˇ-VG model in particular have naturally
built-in fatter tail behavior via the underlying semi-heavy tail distribution, and hence
more naturally take tail risk into account. This is reflected in the fact that such Lévy
models can better capture the volatility smile (as is illustrated later in the paper). Since
CoCos are instruments whose payoff is very sensitive to tail risk, Lévy models are,
from a modeling perspective, suitable candidates to investigate the price dynamics of
CoCos. In addition, the ˇ-VG model, by its explicit Wiener–Hopf factorization, has
the advantage that numerical calculations are more tractable and robust. Although
this paper focuses on a particular example, the ˇ-VG model, the technique can be
applied to any Lévy process for which accurate knowledge of the Wiener–Hopf factors
is available. Stable processes, subclasses of spectrally one-sided Lévy processes or
the recently introduced large family of meromorphic Lévy processes, are examples
for which the following methodology is applicable. We refer to Schoutens (2003)
for a general introduction to Lévy processes in finance and to Seneta (2000) for a
historical perspective. For the particular model in question, it is possible to calculate
in semiclosed form the joint distribution of the process and its running minimum
(maximum) processes. Using Wiener–Hopf theory as described in Kuznetsov et al
(2011) allows us to very efficiently simulate the process and its running minimum at
a series of time points. This fast Monte Carlo simulation makes the process extremely
well-suited to numerically price CoCos under an equity derivative approach. Indeed,
under the equity approach, the CoCo is decomposed into a series of equity derivatives
with barrier features. In order to price such barrier options, we need access to the
running minimum process to evaluate whether or not the barrier has been breached.
We have already mentioned that the equity approaches and the abovementioned credit
rule-of-thumb approach work under the framework of an implied stock price barrier.
The breaching of the noncontinuously observable accounting trigger level (in the
examples the CT1 ratio) is assumed to occur when the continuously observable stock
price process falls under the implied stock price barrier.

As always, the more sophisticated the model, the harder it becomes to calibrate the
model and get the numerics done simply and in a realistic amount of time. This paper
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therefore focuses precisely on the ˇ-VG model employed in an equity derivatives
context. This allows us to calibrate the more advanced model on market data and
accomplish an accurate and fast pricing of CoCos.

The theory in this paper is illustrated on market data. The methods are illustrated
on one of the Lloyds CoCos and the first Rabo issue and are readily adaptable to the
other CoCos traded in the market. More precisely, we calibrated the ˇ-VG model on
relevant CDS market data of Lloyds and Rabo and priced by illustration with data as
of October 14, 2011.

2 THE WIENER–HOPF MONTE CARLO TECHNIQUE

Let us assume that X is any Lévy process with law P. Let us define e.q/ to be
an exponentially distributed random variable with parameter q independent of X ,
NXt D supfXs j 0 6 s 6 tg and Xt D inffXs j 0 6 s 6 tg. It is a fact that, for all

Lévy processes,

Xe.q/
d
D S C I; (2.1)

where the equality is in distribution, S and I are independent random variables equal
in distribution to NXe.q/ and Xe.q/, respectively. This equality in distribution is known
as the Wiener–Hopf decomposition.

We are interested in a straightforward method of performing Monte Carlo simula-
tions for expectations of the type EŒF .Xt ; NXt /� for suitable functions F . A straight-
forward Monte Carlo random walk approximation is an obvious way to proceed;
however, it is well-understood that this can introduce significant numerical errors
into the distribution of NXt . The Wiener–Hopf Monte Carlo method offers an alterna-
tive solution to this problem by allowing for exact sampling from the law of .Xg ; NXg/
where g is a random time whose distribution can be concentrated arbitrarily closely
around t depending on the tolerance chosen in the algorithm.

Suppose that e1.1/; e2.1/; : : : is a sequence of independent and identically dis-
tributed (iid) exponentially random variables with unit mean. The basis of the algo-
rithm is the following simple observation, which follows directly from the strong law
of large numbers. For all t > 0,

nX
iD1

t

n
ei .1/! t as n " 1; (2.2)

almost surely. Noting that the random variable on the left-hand side above can
also be written as the sum of n independent random variables with an exponen-
tial distribution having rate n=t , it is equal in law to a Gamma random variable
with parameters n and n=t , henceforth written as g.n; n=t/. For sufficiently large n,
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Kuznetsov et al (2011) argue that a suitable approximation to P.Xt 2 dx; NXt 2 dy/
is P.Xg.n;n=t/ 2 dx; NXg.n;n=t/ 2 dy/.

This approximation gains practical value in the context of Monte Carlo simulation
when we take advantage of the Wiener–Hopf factorization in its probabilistic form
(2.1). The following theorem was proved in Kuznetsov et al (2011) using the stationary
and independent increments of the underlying Lévy process.

Theorem 2.1 Fix n > 1. Then

.Xg.n;n=t/; NXg.n;n=t//
d
D .V .n; n=t/; J.n; n=t//;

where V.n; n=t/ and J.n; n=t/ are defined for n > 1 by

V.n; n=t/ D

nX
jD1

.S .j / C I .j //; (2.3)

J.n; n=t/ D max

� k�1X
jD1

.S .j / C I .j //C S .k/ W k D 1; : : : ; n

�
: (2.4)

Here, fS .j / W j > 1g is an iid sequence of random variables with common distribu-
tion equal to that of NXe1.n=t/ and fI .j / W j > 1g is another iid sequence of random
variables with common distribution equal to that of Xe1.n=t/.

Given (2.2) it is clear that the pair .V .n; n=t/; J.n; n=t// converges in distribu-
tion to .Xt ; NXt /. This suggests that we only need to be able to simulate iid copies
of the distributions of S .1/ and I .1/ and then, by the simple functional transforma-
tion given in (2.3) and (2.4), we may produce a realization of the random variables
.Xg.n;n=t/; NXg.n;n=t//. Given a suitably nice function F and using standard Monte
Carlo methods we estimate, for large k,

EŒF .Xt ; NXt /� '
1

k

kX
mD1

F.V .m/.n; n=t/; J .m/.n; n=t//; (2.5)

where .V .m/.n; n=t/; J .m/.n; n=t// are iid copies of .V .n; n=t/; J.n; n=t//. Indeed,
the strong law of large numbers implies that the right-hand side of (2.5) converges
almost surely as k " 1 to E.F.Xg.n;n=t/; NXg.n;n=t///, which in turn converges as
n " 1 to E.F.Xt ; NXt //.

3 THE ˇ-VG MODEL

The classical model for the evolution of the value of a risky underlying, eg, S D
fStgt>0, that we shall use in this paper is that of an exponential Lévy process (for an
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introduction to Lévy processes in finance, see Schoutens (2003)). That is to say, for
all t > 0,

St D S0eXt ;

where X D fXtgt>0 is a Lévy process. Recall that the law of every Lévy process
is characterized through a triplet .�; �; �/, where � 2 R, � > 0 and � is a measure
concentrated on R n f0g such that

R
R
.1 ^ x2/�.dx/ <1. More precisely, for all

z 2 C, we have
EŒeizXt � D et .iz/;

where

 .z/ D �z C 1
2
�2z2 C

Z
Rnf0g

.ezx � 1 � zx1fjxj<1g/�.dx/: (3.1)

The Lévy processes in which we are interested are called ˇ-VG processes and are
a special example of so-called ˇ-processes introduced by Kuznetsov (2010). Rather
than giving a general overview of the latter class, we shall give a brief description
of the former. The defining characteristic of the ˇ-VG class is the choice of Lévy
measure, which is given by

�.dx/ D

�
c

e�˛1x

.1 � e�x/
1fx>0g C c

e˛2x

.1 � ex/
1fx<0g

�
dx; (3.2)

where˛1; ˛2; c > 0. The above Lévy measure has characteristics which are extremely
close to the Lévy measure of VG processes, which is given by

�.dx/ D

�
C

e�Mx

x
1fx>0g C C

eGx

x
1fx<0g

�
dx;

whereC ,G andM are all strictly positive real numbers. By choosing c D C ,˛1 DM
and ˛2 D G we can easily verify that the Lévy density of the ˇ-VG process exhibits
the same exponential decay for large values of jxj as well as the same polynomial
growth for jxj close to the origin. A comparison of the goodness of fit can be found
in Schoutens and Damme (2010). Note that ˇ-VG processes can also be found under
the name of Lamperti–Stable processes (see Caballero et al 2010).

With the choice of the Lévy density in (3.2), it turns out that we can always arrange
the characteristic exponent (3.1) so that it can be written in the form

 .z/ D �z C 1
2
�2z2 C cŒ�.˛1/ � �.˛1 � z/�C cŒ�.˛2/ � �.˛2 C z/�; (3.3)

where �.x/ D � 0.x/=� .x/, � .x/ is the usual Gamma function and � 2 R, which
is different in value to the � in the representation (3.1).

Using the binomial expansion it is not difficult to show that the density in (3.2) can
otherwise be written in the formX

n>1
an�ne��nx1fx>0g C

X
n>1
Oan O�ne O�nx1fx<0g; (3.4)
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where, for n > 1, the coefficients an, Oan are all positive and �n D ˛1 C .n � 1/

and O�n D ˛2 C .n � 1/. We can also easily show that all the poles of the exponent
 are simple and positioned precisely at f�ngn>1 and f O�ngn>1. For any q > 0, the
roots of the equation  .z/ � q are also all positioned on the real line, say f	ngn>1
and f O	ngn>1 as sequences ordered by magnitude on the positive and negative half
lines respectively. Moreover, these roots and poles respect the remarkable interlacing
property

� � � < � O�2 < �O	2 < � O�1 < �O	1 < 0 < 	1 < �1 < 	2 < �2 < � � � :

It turns out that these roots and poles play a crucial role in describing the distribution
of the running supremum and running infimum of X .

For the case of ˇ-VG processes, we can develop the decomposition (2.1) further by
specifying the distribution of the variables NXe.q/ and Xe.q/ explicitly (see Kuznetsov
et al 2012). Indeed, it can be shown (cf. Ferreiro-Castilla and Utzet 2010, Proposition
2.1) that

NXe.q/
d
D
X
n>1


n; (3.5)

such that, for each n > 1, random variable 
n has distribution given by

	n

�n
ı0.dx/C

�
1 �

	n

�n

�
	ne��nxdx; x > 0; (3.6)

where ı0.dx/ is the Dirac delta measure that places a unit atom at 0. Note that, by the
interlacing property, 	n < �n, and we may interpret the above distribution the result
of tossing a coin with probability 	n=�n of landing on “heads”. If the latter happens,
then
n takes value zero. Otherwise, the value of
n is sampled from an independent
exponential distribution with rate 	n.

In the case of ˇ-VG processes, we can use (3.5) with q D n=t to sample from S .1/.
The reader will note that an obvious analogous approach holds for sampling from I .1/.
It is clearly impossible to draw samples from an infinite number of the distributions
given in (3.6) and then add them together. However, as a suitable approximation, it is
possible to draw samples from a finite but large number of such distributions and then
add them together. Strictly speaking, this may introduce a very small artificial atom
at zero in the approximate distribution for NXe.q/ in the event that the real distribution
has no atom at zero. However, we also note that there is convergence in distribution
and in theL2 norm of the approximation (see Ferreiro-Castilla and Schoutens 2012).

For a comprehensive study of the numerical analysis of the model as well as for the
implementation issues of the algorithm, we refer the reader to Schoutens and Damme
(2010), Ferreiro-Castilla et al (2012) and Ferreiro-Castilla and Schoutens (2012).
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4 CASE STUDY I :THE PRICING OF A LLOYDS CONTINGENT
CONVERTIBLE

This section focuses on the calibration and the pricing of the CoCo with ISIN
XS0459089255. This CoCo has a maturity of 8.48 years.

4.1 Pricing formula

As indicated above, we model the risk-neutral stock price process as an exponential
ˇ-VG process:

St D S0e.r�q/t
exp.Xt /

EŒexp.Xt /�
; S0 > 0;

where r is the risk-free rate and q is the dividend yield.
In the Lloyds CoCo, conversion takes place when the CT1 ratio drops below a

certain minimum level (5%). However, CT1 is an accounting ratio and is not continu-
ously observable. We therefore develop a proxy model, in which we replace the event
that CT1 falls below a certain level, with an equivalent event where the stock price
drops below a barrier S�.

De Spiegeleer and Schoutens (2012) explain how a CoCo bond can be decomposed
in a series of barrier-type derivatives. The decomposition arises from the following
reasoning. When no trigger event takes place during the lifetime of the CoCo, at
maturity, the notional N is returned to the investor, who has received at the coupon
dates ti , i D 1; : : : ; k, a series of amounts ci . We can easily calculate the present value
of the cashflows by simple discounting. However, if the barrier is breached, we have a
conversion trigger and this has two effects. First, all future coupons are canceled, and
second, the investor does not get his notional back at maturity but instead receives
a number of stocks at trigger point. The exact amount is described in the terms of
the CoCo bond and equals Cr D N=Cp , with Cp hence equal to conversion price (in
the Lloyds example, Cp equals 59 pence and corresponds to the price of the Lloyds
stock when these CoCo bonds were issued). The effect of all this is modeled via a
short position in a series of digital barrier options corresponding to each coupon and
knocking in when the barrier levelS� is breached, together with a down-and-in barrier
forward, which also knocks in at the same barrier level. Hence, when the barrier is hit,
the digital barriers eliminate any post-conversion scheduled coupon payments and the
down-and-in barrier forward replaces the notional payoff with an equity position.

Under the Black–Scholes setting with a given flat volatility� , closed-form formulas
exist for the mentioned barrier derivatives and the price of the CoCo, P , is given by

P D AC B C C;

A D N exp.�rT /C
kX
iD1

ci exp.�rti /;
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B D Cr � ŒS0 exp.�qT /.S�=S0/
2�˚.y1/;

�K exp.�rT /.S�=S0/
2��2˚.y1 � �

p
T /

�K exp.�rT /˚.�x1 C �
p
T /C S0 exp.�qT /˚.�x1/�;

C D �

kX
iD1

ci exp.�rti /Œ˚.�x1i C �
p
ti /C .S

�=S0/
2��2˚.y1i � �

p
ti /�;

with
K D Cp;

Cr D
N

Cp
;

x1 D
log.S0=S�/

�
p
T

C ��
p
T ;

y1 D
log.S�=S0/

�
p
T

C ��
p
T ;

x1i D
log.S0=S�/

�
p
ti

C ��
p
ti ;

y1i D
log.S�=S0/

�
p
ti

C ��
p
ti ;

� D
r � q C �2=2

�2
:

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

(4.1)

A is the simple discounting of coupons and notional under no conversion,B reflects
the price of the down-and-in barrier forward (which corresponds to the price of a
down-and-in call minus the price of a down-and-in put, both with strike equal to the
conversion price Cp) and C equals the price of the short position in k digital barriers,
one corresponding to each scheduled coupon payment. Function ˚.x/ denotes the
cumulative distribution function of a standard normal variable. For our Lévy process,
A remains the same, while the definitions of B and C are

B D Cr � exp.�rT / � EŒ.ST �K/1finf06t6T St<S�g�

D Cr � exp.�rT /

� ŒEŒ.ST �K/
C1finf06t6T St<S�g � EŒ.K � ST /

�1finf06t6T St<S�g�;

C D �

kX
iD1

ci exp.�rti /EŒ1finf06t6ti St<S
�g�:

Note that the representation of B is a simplification since it does not incorporate the
time of conversion of the CoCo. However, the impact of this simplification is minor.
When conversion is taking place, the actual company is in distress, and hence it is
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very natural for the company not to pay any more dividends. The impact has been
studied in detail in De Spiegeleer et al (2013) and it is shown to be negligible.

Under more advanced models like the ˇ-VG model, no closed-form formu-
las for barrier-type options are available and we have to rely on other numerical
techniques. Existing methods are based around plain vanilla Monte Carlo, solving
partial-differential-integral equations and Fourier-based methods (see, for example,
Schoutens and Cariboni 2009). In this paper we instead explore numerical methods
based around the Wiener–Hopf Monte Carlo method described in Section 2.

4.2 Calibration on CDS data

Stochastic models need to be calibrated on market data in order to obtain the param-
eters of the model that best reflect the current market situation. We should of course
also pay attention to the real use of the model and hence use data that reflects and
incorporates essential market information relevant to the pricing task. In our situation,
we are dealing with a product that is sensitive to tail risk and in particular to extreme
down moves of the stock price level. In addition, CoCo bonds are typically long-dated,
with maturities exceeding at least five years in most cases. Since we are dealing with
an equity model, ideally we should hence include instruments (say call or put options)
with similar maturities and sensitivity to extreme down moves in the calibration of
the model. However, such vanilla products, such as far out-of-the-money (OTM) puts
with maturities exceeding, eg, five years, are not that available or not really liquid
for individual companies (there is some liquidity in these instruments for some of the
major indexes). Therefore, we need to look for alternative instruments to calibrate our
model and CDSs can be of use here. Indeed, they are suitable instruments for pricing
extreme down-side risk in the long term. Moreover, they are available for many indi-
vidual names, especially for companies active on the bond markets. CDSs are actual
credit risk derivatives, typically handled with credit derivative models. Since we are
employing an equity model, we need to map the information on CDSs into useful
stock price information. This is done by equating the upfront price of the insurance of
default of the company, which can be directly calculated from the CDS spread, into
a premium to be paid for a deep OTM digital put. The payoff of such a digital put
and the triggering of a default are highly correlated events, and hence CDSs contain
essential information for our models. To be precise, we follow the route also proposed
in JP Morgan’s CoCo pricing method by linking CDS quotes with deep OTM digital
put options. The CDS spread under an assumption of 40% recovery is translated into a
zero-recovery upfront premium. Then, this upfront premium is assumed to correspond
with the premium of a deep OTM (European) digital put with the same maturity. The
difference from JP Morgan’s case is twofold. First, we take into account the CDS
term structure and not only use the CDS quotes closest to the CoCo bond maturity,
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TABLE 2 Implied volatilities under Black–Scholes of the CDS premium for Lloyds.

T‚ …„ ƒ
1 2 3 4 5 7 10

CDS (bps) 253.20 286.40 299.30 315.80 325.90 330.20 337.50
r (%) 1.73 1.38 1.53 1.73 1.94 2.35 2.81
Digital put price (%) 4.89 9.88 14.51 19.30 23.66 30.51 38.79
� (%) 114.05 95.96 87.31 82.92 80.19 77.08 77.16

and second, we match the CDSs not with the 95% OTM digital put option, but set the
strike of the digital put on the basis of a mapping between instruments, for which we
have much more information. More precisely, we compare EuroStoxx’s fifty weighted
averaged CDS quotes, translate these into zero-recovery upfront premiums and then
compare them with the digital put price range. We observe a match at the strike 94%
OTM. We hence use that level for the Lloyds (and Rabo) calibration as well, ie, we
translate CDS spreads into implied volatilities at the 6% strike.

In Table 2, we survey the data used as of October 14, 2011. We give the CDS
term structure, the risk-free yield curve (GBP: semi-annual swap spreads). We use
a flat dividend yield of 1.50%. Lloyds stock was trading at 33.25 pence. In the
CDS premium, we have assumed a 40% recovery. The table also gives us the cor-
responding prices of the digital put option and the corresponding (Black–Scholes)
implied volatilities at the 6% strike. It is on the latter that we will calibrate our ˇ-VG
model.

The results of the calibration are shown in Figure 1 on the next page. The optimal
parameter set is given by c D 0:8446, ˛1 D 14:9964 and ˛2 D 1:3660.

4.2.1 Pricing of the Lloyds contingent convertible

Next, we price the Lloyds CoCo under the ˇ-VG model and compare with the tra-
ditional Black–Scholes model as developed in De Spiegeleer and Schoutens (2012).
For the latter, we use a flat volatility of 77.11%, which equals the volatility deter-
mined out of the CDS quotes interpolated at the CoCo’s maturity of 8.19 years. In
Figure 2 on page 135, we plot the CoCo bond price (with a notional of £1000) for
the calibrated ˇ-VG model and the flat volatility Black–Scholes model for a range of
conversion barriers. The implied barrier is the barrier level at which the market quote
(in our case £1099.00) coincides with the model price. We have an implied barrier
level of 3.31 pence (which is equivalent to an implied recovery of about 9.95%) in
the ˇ-VG setting and an implied barrier level of 3.03 pence under Black–Scholes (an
implied recovery of about 9.11%). Under the equity derivative approach presented
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FIGURE 1 ˇ-VG calibration on Lloyds implied volatilities backed out of CDS term structure
as of October 14, 2011.
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here, the trigger depends on the price of the CoCo and vice versa. Figure 2 shows
how this relation is modified when changing the underlying stochastic process from
the Black–Scholes model to the ˇ-VG setting.

5 CASE STUDY II:THE PRICING OF A RABO CONTINGENT
CONVERTIBLE

This section focuses on the calibration and the pricing of Rabobank’s senior contingent
notes with ISIN XS0496281618. The pricing date is again October 14, 2011. On that
day this Rabobank CoCo had a maturity of 8.44 years; the maturity at issue was
equal to 10 years. The CoCo triggers if the equity capital/RWA ratio falls below
7%. If it is triggered, we have not a conversion into shares (because Rabobank does
not have traded equity), but a write-down of 75% of the bond’s notional. The CoCo
pays a yearly coupon of 6.875%; at trigger investors receive a rebate of 25% of the
outstanding notional.
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FIGURE 2 Bond price of Lloyds CoCo XS0459089255, under Black–Scholes and ˇ-VG
dynamics, as of October 14, 2011.
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TABLE 3 Implied volatilities under Black–Scholes of the CDS premium for Rabo.

T‚ …„ ƒ
1 2 3 4 5 7 10

CDS (bps) 50.70 73.70 97.60 109.20 116.30 122.40 127.10
r (%) 2.12 1.62 1.75 1.93 2.13 2.47 2.77
Digital put price (%) 1.00 2.63 4.97 7.13 9.17 12.66 17.19
� (%) 92.35 77.26 71.22 67.03 64.17 60.47 57.89

The CoCo was trading on October 14, 2011 at a price of 88.84%. The Rabo CDS
term structure was given as in Table 3. In that table we also give corresponding interest
rate structure as well as the corresponding “equity” volatility obtained using the same
procedure as in the Lloyds example.

The results of the calibration are shown in Figure 3 on page 137. The optimal
parameter set is given by c D 0:7013, ˛1 D 15:6750 and ˛2 D 1:7141.
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Next, we price the Rabobank CoCo under the ˇ-VG model and compare it with
the traditional Black–Scholes model. The price given under the latter model is

CoCo D AC B C C;

A D N exp.�rT /C
kX
iD1

ci exp.�rti /;

B D �N exp.�rT /.˚.�x1 C �
p
T /C .1 � D2T/2��2˚.y1 � �

p
T //

CRN..1 � D2T/aCb˚.z/C .1 � D2T/a�b˚.z � 2b�
p
T //;

C D �

kX
iD1

ci exp.�rti /Œ˚.�x1i C �
p
ti /C .1 � D2T/2��2˚.y1i � �

p
ti /�;

with

D2T D .S0 � S
�/=S0 D 1 � S

�=S0;

x1 D
log.1 � D2T/

�
p
T

C ��
p
T ;

y1 D
log.1 � D2T/

�
p
T

C ��
p
T ;

x1i D
log.1 � D2T/

�
p
ti

C ��
p
ti ;

y1i D
log.1 � D2T/

�
p
ti

C ��
p
ti ;

� D
r � q C �2=2

�2
;

� D r � q � �2=2; a D �=�2; b D
p
�2 C 2r�2=�2;

z D
log.1 � D2T/

�
p
T

C b�
p
T ;

where D2T is the distance to trigger. A corresponds to the discounting of notional
and coupons, B contains the price of a short position in a digital down-and-in barrier
option with a rebate of 25% of the notional at hitting time and, similarly, C reflects
a stream of digital down-and-in barrier options on the coupons, which all knock
when the CoCo gets triggered. For our Lévy process, A remains the same, while the
definitions of B and C are

B D �
�
N exp.�rT /CRN exp

�
� r inf

06t6T
St < S

�
��

EŒ1finf06t6T St<S�g�;

C D �

kX
iD1

ci exp.�rti /EŒ1finf06t6ti St<S
�g�:
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FIGURE 3 ˇ-VG calibration on Rabobank’s implied volatilities backed out of CDS term
structure as of October 14, 2011.
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For the latter we use a flat volatility of 59.39%, which equals the volatility deter-
mined out of the CDS quotes interpolated at the CoCo’s maturity of 8.44 years, and
a credit spread of 124.37bps, again obtained by interpolation on the CDS curve at
the maturity of the CoCo. In Figure 4 on the next page, we plot the CoCo bond price
(with a notional of €50 000) for the calibrated ˇ-VG model and the flat volatility
Black–Scholes model. The X -axis is now the distance to trigger, defined as in the
formula above.

For the ˇ-VG setting, which is the level corresponding to the market price of
€44 420 (€50 000 � 88.84%), the implied distance to trigger equals 82.32%. For the
Black–Scholes model the implied distance to trigger equals 83.22%.

6 CONCLUSIONS

In this paper, we showed how to price contingent convertibles under smile conform
models with the ˇ-family of Lévy processes introduced in Kuznetsov (2010). Our
analysis focused in particular on the subclass ofˇ-VG process introduced in Schoutens
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FIGURE 4 Rabobank’s senior contingent notes with ISIN XS0496281618 as of October
14, 2011.
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and Damme (2010). We considered a derivative approach that reduces the pricing to
a series of barrier options in which the trigger event is described by the underlying
crossing the barrier. While a lot of literature can be found addressing the particular
problem of pricing barrier options under Lévy models, the approach proposed here
is novel, as it relies on recent results concerning the Wiener–Hopf approach (cf.
Kuznetsov et al 2011).

Contingent convertibles are recent products, but their impact on the market makes
them of considerable importance. For this reason, it is important to have a rich variety
of models under which prices can be obtained. It is worth mentioning here that several
studies are devoted to improving these models, from both the modeling point of
view (Glasserman and Nouri 2012; Madan and Schoutens 2011; Madan 2011) and
the numerical analysis point of view (Ferreiro-Castilla et al 2012). We compared
our methodology against the Black–Scholes model employed in De Spiegeleer and
Schoutens (2011b), showing that, on the one hand, the approach is feasible and, on the
other, that our models better capture the intrinsic nature of these complex products.
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