Attraction to and repulsion from patches on the hypersphere and hyperplane for isotropic d-dimensional α-stable processes with index in

$$
\alpha \in(0,1] \text { and } d \geq 2 .
$$

Andreas Kyprianou Joint work with:
Tsogzolmaa Saizmaa (National University of Mongolia)
Sandra Palau (National Autonomous University of Mexico)
Matthias Kwasniki (Wroclaw Technical Univeristy)

ISOTROPIC α-STABLE PROCESS IN DIMENSION $d \geq 2$

For $d \geq 2$, let $X:=\left(X_{t}: t \geq 0\right)$ be a d-dimensional isotropic stable process.
∇X has stationary and independent increments (it is a Lévy process)

- Characteristic exponent $\Psi(\theta)=-\log \mathbb{E}_{0}\left(\mathrm{e}^{\mathrm{i} \theta \cdot X_{1}}\right)$ satisfies

$$
\Psi(\theta)=|\theta|^{\alpha}, \quad \theta \in \mathbb{R}
$$

\Rightarrow Necessarily, $\alpha \in(0,2]$, we exclude 2 as it pertains to the setting of a Brownian motion.

- Associated Lévy measure satisfies, for $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$,

$$
\Pi(B)=\frac{2^{\alpha} \Gamma((d+\alpha) / 2)}{\pi^{d / 2}|\Gamma(-\alpha / 2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} \mathrm{~d} y .
$$

- X is Markovian with probabilities denoted by $\mathbb{P}_{x}, x \in \mathbb{R}^{d}$

SAMPLE PATH, $\alpha=1.2$

SAMPLE PATH, $\alpha=0.9$

CONDITIONING TO HIT A PATCH ON A UNIT SPHERE FROM OUTSIDE

CONDITIONING TO CONTINUOUSLY HIT $S \subseteq \mathbb{S}^{d-1}$ FROM OUTSIDE

- Recall $d \geq 2$, the process (X, \mathbb{P}) is transient in the sense that $\lim _{t \rightarrow \infty}\left|X_{t}\right|=\infty$ almost surely.
- Define

$$
\underline{G}(t):=\sup \left\{s \leq t:\left|X_{s}\right|=\inf _{u \leq s}\left|X_{u}\right|\right\}, \quad t \geq 0,
$$

- Transience of (X, \mathbb{P}) means $\underline{G}(\infty):=\lim _{t \rightarrow \infty} \underline{G}(t)$ describes the point of closest reach to the origin in the range of X.
- $A_{\varepsilon}=\{r \theta: r \in(1,1+\varepsilon), \theta \in S\}$ and $B_{\varepsilon}=\{r \theta: r \in(1-\varepsilon, 1), \theta \in S\}$, for $0<\varepsilon<1$

CONDITIONING TO CONTINUOUSLY HIT $S \subseteq \mathbb{S}^{d-1}$ FROM OUTSIDE

- We are interested in the asymptotic conditioning

$$
\mathbb{P}_{x}^{S}(A, t<\zeta)=\lim _{\varepsilon \rightarrow 0} \mathbb{P}_{x}\left(A, t<\tau_{1}^{\oplus} \mid C_{\varepsilon}^{S}\right), \quad A \in \sigma\left(\xi_{u}: u \leq t\right)
$$

where $\tau_{1}^{\oplus}=\inf \left\{t>0:\left|X_{t}\right|<1\right\}$ and $C_{\varepsilon}^{S}:=\left\{X_{\underline{G}(\infty)} \in A_{\varepsilon}\right\}$.

\downarrow Works equally well if we replace $C_{\varepsilon}^{S}:=\left\{X_{\underline{G}(\infty)} \in A_{\varepsilon}\right\}$ by $C_{\varepsilon}^{S}=\left\{X_{\tau_{1}} \in B_{\varepsilon}\right\}$, or indeed $C_{\varepsilon}^{S}=\left\{X_{\tau_{1}^{\oplus}-} \in A_{\varepsilon}\right\}$

POINT OF CLOSEST REACH ${ }^{1}$

Recent work: For $|x|>|z|>0$,

$$
\mathbb{P}_{x}\left(X_{\underline{G}(\infty)} \in \mathrm{d} z\right)=\pi^{-d / 2} \frac{\Gamma(d / 2)^{2}}{\Gamma((d-\alpha) / 2) \Gamma(\alpha / 2)} \frac{\left(|x|^{2}-|z|^{2}\right)^{\alpha / 2}}{|z|^{\alpha}}|x-z|^{-d} \mathrm{~d} z,
$$

[^0]
CONDITIONING TO CONTINUOUSLY HIT $S \subseteq \mathbb{S}^{d-1}$ FROM OUTSIDE

- Remember $C_{\varepsilon}^{S}:=\left\{X_{\underline{G}(\infty)} \in A_{\varepsilon}\right\}$, switch to generalised polar coordinates and estimate

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{\alpha-d} \mathbb{P}_{x}\left(C_{\varepsilon}^{S}\right)=c_{\alpha, d} \int_{S}\left(|x|^{2}-1\right)^{\alpha / 2}|x-\theta|^{-d} \sigma_{1}(\mathrm{~d} \theta)
$$

where $c_{\alpha, d}$ does not depend on x or S and σ_{1} is the unit surface measure on \mathbb{S}^{d-1}.

- Use

$$
\mathbb{P}_{x}\left(A, t<\tau_{\beta}^{\oplus} \mid C_{\varepsilon}^{S}\right)=\mathbb{E}_{x}\left[\boldsymbol{1}_{\left\{A, t<\tau_{\beta}^{\oplus}\right\}} \frac{\mathbb{P}_{X_{t}}\left(C_{\varepsilon}^{S}\right)}{\mathbb{P}_{x}\left(C_{\varepsilon}^{S}\right)}\right], \quad A \in \sigma\left(\xi_{u}: u \leq t\right)
$$

pass the limit through the expectation on the RHS (carefully with DCT!) to get

$$
\left.\frac{d \mathbb{P}_{x}^{S}}{d \mathbb{P}_{x}}\right|_{\mathcal{F}_{t}}=\mathbf{1}_{\left(t<\tau_{1}^{\oplus}\right)} \frac{M_{S}\left(X_{t}\right)}{M_{S}(x)}, \quad \text { if } x \in \overline{\mathbb{B}}_{d}^{c}
$$

with

$$
M_{S}(x)= \begin{cases}\left.\int_{S}|\theta-x|^{-d}| | x\right|^{2}-\left.1\right|^{\alpha / 2} \sigma_{1}(\mathrm{~d} \theta) & \text { if } \sigma_{1}(S)>0 \\ \left.|\vartheta-x|^{-d}| | x\right|^{2}-\left.1\right|^{\alpha / 2} & \text { if } S=\{\vartheta\},\end{cases}
$$

which is a superharmonic function.

DECOUPLING HITTING POSITION

- Suppose ζ is the lifetime of $\left(X, \mathbb{P}^{S}\right)$. Let S^{\prime} be an open subset of S. Then for any $x \in \mathbb{R}^{d} \backslash \overline{\mathbb{B}}_{d}$, we have

$$
\mathbb{P}_{x}^{S}\left(X_{\zeta-} \in S^{\prime}\right)=\frac{\int_{S^{\prime}}|\theta-x|^{-d} \sigma_{1}(\mathrm{~d} \theta)}{\int_{S}|\theta-x|^{-d} \sigma_{1}(\mathrm{~d} \theta)}
$$

\Rightarrow Hence, for $\theta \in S$,

$$
\begin{aligned}
\mathbb{P}_{x}^{S}\left(A \mid X_{\zeta-}=\theta\right) & =\mathbb{E}_{x}^{S}\left[\mathbf{1}_{\varepsilon} \frac{\mathbb{P}_{X_{t}}^{S}\left(X_{\zeta-}=\theta\right)}{\mathbb{P}_{x}^{S}\left(X_{\zeta-}=\theta\right)}\right] \\
& =\mathbb{E}_{x}\left[\mathbf{1}_{\left(A, t<\tau_{1} \oplus\right)} \frac{M_{S}\left(X_{t}\right)}{M_{S}(x)} \frac{M_{\{\theta\}}\left(X_{t}\right)}{M_{S}\left(X_{t}\right)} \frac{M_{S}(x)}{M_{\{\theta\}}(x)}\right] \\
& =\mathbb{E}_{x}\left[\mathbf{1}_{\left(A, t<\tau_{1} \oplus\right)} \frac{M_{\{\theta\}}\left(X_{t}\right)}{M_{\{\theta\}}(x)}\right] \\
& =\mathbb{P}_{x}^{\{\theta\}}(A), \quad A \in \sigma\left(\xi_{u}: u \leq t\right)
\end{aligned}
$$

- So

$$
\mathbb{P}_{x}^{S}(A)=\int_{S} \mathbb{P}_{x}^{\{\theta\}}(A) \frac{|\theta-x|^{-d} \sigma_{1}(\mathrm{~d} \theta)}{\int_{S}|\vartheta-x|^{-d} \sigma_{1}(\mathrm{~d} \vartheta)}
$$

"pick a target uniformly in S with the terminal strike distribution and condition to hit it."

CONDITIONING TO CONTINUOUSLY HIT $S \subseteq \mathbb{S}^{d-1}$ FROM EITHER SIDE

- Now define

$$
\mathbb{P}_{x}^{S}(A, t<\zeta)=\lim _{\varepsilon \rightarrow 0} \mathbb{P}_{x}\left(A \mid \tau_{S_{\varepsilon}}<\infty\right)
$$

where

$$
\tau_{S_{\varepsilon}}=\inf \left\{t>0: X_{t} \in S_{\varepsilon}\right\} \text { and } S_{\varepsilon}:=A_{\varepsilon} \cup B_{\varepsilon}
$$

\rightarrow Note: need to insist on $\alpha \in(0,1]$ because $\mathbb{P}_{x}\left(\tau_{S}<\infty\right)>0$ if $\alpha \in(1,2)$.

CONDITIONING TO CONTINUOUSLY HIT $S \subseteq \mathbb{S}^{d-1}$ FROM EITHER SIDE

Theorem

Suppose that $\alpha \in(0,1]$ and the closed set $S \subseteq \mathbb{S}^{d-1}$ is such that $\sigma_{1}(S)>0$. For $\alpha \in(0,1]$, the process $\left(X, \mathbb{P}^{S}\right)$ is well defined such that

$$
\begin{equation*}
\left.\frac{\mathrm{d} \mathbb{P}_{x}^{S}}{\mathrm{~d} \mathbb{P}_{x}}\right|_{\mathcal{F}_{t}}=\frac{H_{S}\left(X_{t}\right)}{H_{S}(x)}, \quad t \geq 0, x \notin S \tag{1}
\end{equation*}
$$

where

$$
H_{S}(x)=\int_{S}|x-\theta|^{\alpha-d} \sigma_{1}(\mathrm{~d} \theta), \quad x \notin S .
$$

Note, if $S=\{\theta\}$ then it was previously understood ${ }^{2}$ that

$$
H_{S}(x)=|x-\theta|^{\alpha-d}, \quad x \notin S .
$$

So it is still the case for a general S that

$$
\mathbb{P}_{x}^{S}(A)=\int_{S} \mathbb{P}_{x}^{\{\theta\}}(A) \frac{|x-\theta|^{\alpha-d} \sigma_{1}(\mathrm{~d} \theta)}{\int_{S}|x-\vartheta|^{\alpha-d} \sigma_{1}(\mathrm{~d} \vartheta)}
$$

"pick a target uniformly in S with the terminal strike distribution and condition to hit it."

[^1]
CONDITIONING TO CONTINUOUSLY HIT $S \subseteq \mathbb{S}^{d-1}$ FROM EITHER SIDE

Theorem

Let $S \subseteq \mathbb{S}^{d-1}$ be a closed subset such that $\sigma_{1}(S)>0$.
(i) Suppose $\alpha \in(0,1)$. For $x \notin S$,

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{\alpha-1} \mathbb{P}_{x}\left(\tau_{S_{\varepsilon}}<\infty\right)=2^{1-2 \alpha} \frac{\Gamma((d+\alpha-2) / 2)}{\pi^{d / 2} \Gamma(1-\alpha)} \frac{\Gamma((2-\alpha) / 2)}{\Gamma(2-\alpha)} H_{S}(x)
$$

(ii) When $\alpha=1$, we have that, for $x \notin S$,

$$
\lim _{\varepsilon \rightarrow 0}|\log \varepsilon| \mathbb{P}_{x}\left(\tau_{S_{\varepsilon}}<\infty\right)=\frac{\Gamma((d-1) / 2)}{\pi^{(d-1) / 2}} H_{S}(x)
$$

Heuristic for Proof of Theorem 2

- The potential of the isotropic stable process satisfies $\mathbb{E}\left[\int_{0}^{\infty} \mathbf{1}_{\left(X_{t} \in \mathrm{~d} y\right)} \mathrm{d} t\right]=|y|^{\alpha-d}$.
- Let μ_{ε} be a finite measure supported on S_{ε}, which is absolutely continuous with respect to Lebesgue measure ℓ_{d} with density m_{ε} and define its potential by

$$
U \mu_{\varepsilon}(x):=\int_{S_{\varepsilon}}|x-y|^{\alpha-d} \mu_{\varepsilon}(\mathrm{d} y)=\mathbb{E}_{x}\left[\int_{0}^{\infty} m_{\varepsilon}\left(X_{t}\right) \mathrm{d} t\right] \quad x \in \mathbb{R}^{d}
$$

- As $m_{\varepsilon}(y)=0$ for all $y \notin S_{\varepsilon}$. As such, the Strong Markov Property tells us that

$$
\begin{equation*}
U \mu_{\varepsilon}(x)=\mathbb{E}_{x}\left[\mathbf{1}_{\left\{\tau_{S_{\varepsilon}}<\infty\right\}} \int_{\tau_{S_{\varepsilon}}}^{\infty} m_{\varepsilon}\left(X_{t}\right) \mathrm{d} t\right]=\mathbb{E}_{x}\left[U \mu_{\varepsilon}\left(X_{\tau_{\varepsilon}}\right) \mathbf{1}_{\left\{\tau_{S_{\varepsilon}}<\infty\right\}}\right], \quad x \notin S_{\varepsilon} . \tag{2}
\end{equation*}
$$

Note, the above equality is also true when $x \in S_{\varepsilon}$ as, in that case, $\tau_{S_{\varepsilon}}=0$.

- Let us now suppose that μ_{ε} can be chosen in such a away that, for all $x \in S_{\varepsilon}$, $U \mu(x)=1$. Then

$$
\mathbb{P}_{x}\left(\tau_{\varepsilon}<\infty\right)=U \mu_{\varepsilon}(x), \quad x \notin S_{\varepsilon}
$$

- Strategy: 'guess' the measure, μ_{ε}, by verifying

$$
U \mu_{\varepsilon}(x)=1+o(1), \quad x \in S_{\varepsilon} \text { as } \varepsilon \rightarrow 0
$$

so that

$$
(1+o(1)) \mathbb{P}_{x}\left(\tau_{S_{\varepsilon}}<\infty\right)=U \mu_{\varepsilon}(x), \quad x \notin S_{\varepsilon}
$$

- Draw out the the leading order decay in ε from $U \mu_{\varepsilon}(x)$.

Heuristic for Proof of Theorem 2: Flat Earth theory

- Believing in a flat Earth is helpful
- In one dimension, it is known ${ }^{3}$ that for a one-dimensional symmetric stable process,

$$
\int_{-1}^{1}|x-y|^{\alpha-1}(1-y)^{-\alpha / 2}(1+y)^{-\alpha / 2} \mathrm{~d} y=1, \quad x \in[-1,1] .
$$

- Writing $X=|X| \arg (X)$, when X begins in the neighbourhood of S, then $|X|$ begins in the neighbourhood of 1 and $\arg (X)$, essentially, from within S.
- Flat earth theory would imply

$$
\begin{aligned}
\mu_{\varepsilon}(\mathrm{d} y) & =m_{\varepsilon}(y) \ell_{d}(\mathrm{~d} y) \mathbf{1}_{\left(y \in S_{\varepsilon}\right)}, \\
\text { with } \quad m_{\varepsilon}(y) & =c_{\alpha, d}(|y|-(1-\varepsilon))^{-\alpha / 2}(1+\varepsilon-|y|)^{-\alpha / 2}
\end{aligned}
$$

where ℓ_{d} is d-dimensional Lebesgue measure and $c_{\alpha, d, \varepsilon}$ is a constant to be determined so that

$$
U \mu_{\varepsilon}(x)=1+o(1) \quad x \in S_{\varepsilon}
$$

[^2]
THE ASYMPTOTIC DOES NOT DEPEND ON S

- So far we are guessing:

$$
\begin{aligned}
\mu_{\varepsilon}(\mathrm{d} y) & =m_{\varepsilon}(y) \ell_{d}(\mathrm{~d} y) \mathbf{1}_{\left(y \in S_{\varepsilon}\right)}, \\
\text { with } m_{\varepsilon}(y) & =c_{\alpha, d}(|y|-(1-\varepsilon))^{-\alpha / 2}(1+\varepsilon-|y|)^{-\alpha / 2}
\end{aligned}
$$

where ℓ_{d} is d-dimensional Lebesgue measure and $c_{\alpha, d, \varepsilon}$ is a constant to be determined so that

$$
U \mu_{\varepsilon}(x)=1+o(1) \quad x \in S_{\varepsilon}
$$

∇ We don't think that the restriction to S_{ε} is important so we are going to write

$$
\begin{aligned}
\mu_{\varepsilon}(\mathrm{d} y) & =\mu_{\varepsilon}^{(1)}(\mathrm{d} y)-\mu_{\varepsilon}^{(2)}(\mathrm{d} y) \\
\text { with } \mu^{(1)}(\mathrm{d} y) & =m_{\varepsilon}(y) \ell_{d}(\mathrm{~d} y) \text { and } \mu_{\varepsilon}^{(2)}(\mathrm{d} y)=\mathbf{1}_{\left(y \in \mathbb{S}_{\varepsilon}^{d-1} \backslash S_{\varepsilon}\right)} m_{\varepsilon}(y) \ell_{d}(\mathrm{~d} y)
\end{aligned}
$$

where $\mathbb{S}_{\varepsilon}^{d-1}=\left\{x \in \mathbb{R}^{d}: 1-\varepsilon \leq|x| \leq 1+\varepsilon\right\}$.

NASTY CALCULATIONS: $\alpha \in(0,1)$

For $x \in \mathbb{S}_{\varepsilon}^{d-1}$,

$$
\begin{aligned}
& U \mu_{\varepsilon}^{(1)}(x) \\
& =c_{\alpha, d} \int_{\mathbb{S}_{\varepsilon}^{d-1}}|x-y|^{\alpha-d}(|y|-(1-\varepsilon))^{-\alpha / 2}(1+\varepsilon-|y|)^{-\alpha / 2} \ell_{d}(\mathrm{~d} y) \\
& =\frac{2 c_{\alpha, d} \pi^{(d-1) / 2}}{\Gamma((d-1) / 2)} \int_{1-\varepsilon}^{1+\varepsilon} \frac{r^{d-1}}{(r-(1-\varepsilon))^{\alpha / 2}(1+\varepsilon-r)^{\alpha / 2}} \mathrm{~d} r \int_{0}^{\pi} \frac{\sin ^{d-2} \theta \mathrm{~d} \theta}{\left(|x|^{2}-2|x| r \cos \theta+r^{2}\right)^{(d-\alpha) / 2}} \\
& \begin{array}{r}
=\frac{2 c_{\alpha, d} \pi^{d / 2}}{\Gamma(d / 2)}|x|^{\alpha-d} \int_{1-\varepsilon}^{|x|} \frac{{ }_{2} F_{1}\left(\frac{d-\alpha}{2}, 1-\frac{\alpha}{2} ; \frac{d}{2} ;(r /|x|)^{2}\right) r^{d-1}}{(r-(1-\varepsilon))^{\alpha / 2}(1+\varepsilon-r)^{\alpha / 2}} \mathrm{~d} r
\end{array} \\
& \quad+\frac{2 c_{\alpha, d} \pi^{d / 2}}{\Gamma(d / 2)} \int_{|x|}^{1+\varepsilon} \frac{{ }_{2} F_{1}\left(\frac{d-\alpha}{2}, 1-\frac{\alpha}{2} ; \frac{d}{2} ;(|x| / r)^{2}\right) r^{\alpha-1}}{(r-(1-\varepsilon))^{\alpha / 2}(1+\varepsilon-r)^{\alpha / 2}} \mathrm{~d} r . \\
& =\frac{2 c_{\alpha, d} \pi^{d / 2}}{\Gamma(d / 2)} \int_{\frac{1-\varepsilon}{1} \frac{{ }_{2} F_{1}\left(\frac{d-\alpha}{2}, 1-\frac{\alpha}{2} ; \frac{d}{2} ; r^{2}\right) r^{d-1}}{\left(r-\frac{1-\varepsilon}{|x|}\right)^{\alpha / 2}\left(\frac{1+\varepsilon}{|x|}-r\right)^{\alpha / 2}} \mathrm{~d} r} \begin{array}{r}
\quad+\frac{2 c_{\alpha, d} \pi^{d / 2}}{\Gamma(d / 2)} \int_{1}^{\frac{1+\varepsilon}{|1|}} \frac{{ }_{2} F_{1}\left(\frac{d-\alpha}{2}, 1-\frac{\alpha}{2} ; \frac{d}{2} ; r^{-2}\right) r^{\alpha-1}}{\left(r-\frac{1-\varepsilon}{|x|}\right)^{\alpha / 2}\left(\frac{1+\varepsilon}{|x|}-r\right)^{\alpha / 2}} \mathrm{~d} r
\end{array} \\
& =\cdots \cdots \cdots=1+o(1)
\end{aligned}
$$

If we choose

$$
c_{\alpha, d}=\frac{\Gamma((d+\alpha-2) / 2)}{2^{\alpha} \pi^{d / 2} \Gamma(1-\alpha) \Gamma((2-\alpha) / 2)}
$$

THE SAME CONCEPT WORKS WITH A PLANE

Theorem

Suppose that $\alpha \in(0,1]$ and the closed and bounded set $S \subseteq \mathbb{H}^{d-1}$ is such that $0<\ell_{d-1}(S)<\infty$, where we recall that ℓ_{d-1} is $(d-1)$-dimensional Lebesgue measure.
(i) Suppose $\alpha \in(0,1)$. For $x \notin S$,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{\alpha-1} \mathbb{P}_{x}\left(\tau_{S_{\varepsilon}}<\infty\right)=2^{1-\alpha} \pi^{-(d-2) / 2} \frac{\Gamma\left(\frac{d-2}{2}\right) \Gamma\left(\frac{d-\alpha}{2}\right) \Gamma\left(\frac{2-\alpha}{2}\right)^{2}}{\Gamma\left(\frac{1-\alpha}{2}\right) \Gamma\left(\frac{d-1}{2}\right) \Gamma(2-\alpha)} K_{S}(x) \tag{3}
\end{equation*}
$$

where

$$
K_{S}(x)=\int_{S}|x-y|^{\alpha-d} \ell_{d-1}(\mathrm{~d} y), \quad x \notin S
$$

(ii) Suppose $\alpha=1$. For $x \notin S$,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}|\log \varepsilon| \mathbb{P}_{x}\left(\tau_{S_{\varepsilon}}<\infty\right)=\frac{\Gamma\left(\frac{d-2}{2}\right)}{\pi^{(d-2) / 2}} K_{S}(x) \tag{4}
\end{equation*}
$$

(iii) The process $\left(X, \mathbb{P}^{S}\right)$ is well defined such that

$$
\begin{equation*}
\left.\frac{\mathrm{d} \mathbb{P}_{x}^{S}}{\mathrm{~d} \mathbb{P}_{x}}\right|_{\mathcal{F}_{t}}=\frac{K_{S}\left(X_{t}\right)}{K_{S}(x)}, \quad t \geq 0, x \notin S \tag{5}
\end{equation*}
$$

FLAT EARTH VS ROUND EARTH THEORY

- Consider the case $\alpha \in(0,1)$.
- Recall for conditioning a continuous approach to the patch on the sphere from outside we had a scaling with index $\alpha-d$:

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{\alpha-d} \mathbb{P}_{x}\left(X_{\underline{G}(\infty)} \in A_{\varepsilon}\right)=c_{\alpha, d} \int_{S}\left(|x|^{2}-1\right)^{\alpha / 2}|x-\theta|^{-d} \sigma_{1}(\mathrm{~d} \theta)
$$

- Where conditioning a continuous approach to the patch from either side, we had scaling index $\alpha-1$:

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{\alpha-1} \mathbb{P}_{x}\left(\tau_{S_{\varepsilon}}<\infty\right)=2^{1-2 \alpha} \frac{\Gamma((d+\alpha-2) / 2)}{\pi^{d / 2} \Gamma(1-\alpha)} \frac{\Gamma((2-\alpha) / 2)}{\Gamma(2-\alpha)} H_{S}(x)
$$

- In the first case, the conditioned path needs to be observant of the entire sphere. In the second case the conditioned path needs only a localised consideration of S, which appears flat in close proximity.

Thank you!

[^0]: ${ }^{1}$ K. Rivero, Satitkanitkul 2020

[^1]: ${ }^{2}$ K. Rivero, Statitkanitkul 2019

[^2]: ${ }^{3}$ Profeta and Simon 2016

