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Abstract
The neutron transport equation (NTE) describes the flux of neutrons through inhomogeneous
fissile medium.Whilst well treated in the nuclear physics literature, the NTE has had a some-
what scattered treatment in mathematical literature with a variety of different approaches.
Within a probabilistic framework it has somewhat undeservingly received little attention in
recent years; nonetheless, a few probabilistic treatments can be found. In this article our aim is
threefold. First we want to introduce a slightly more general setting for the NTE, which gives
a more complete picture of the different species of particle and radioactive fluxes that are
involved in fission. Secondwe consolidate the classical c0-semigroup approach to solving the
NTE with the method of stochastic representation which involves expectation semigroups.
Third we provide the leading asymptotic of our multi-species NTE, which will turn out to
be crucial for further stochastic analysis of the NTE in forthcoming work (Cox et al. 2019;
Harris et al. 2018; Horton et al. 2018). The methodology used in this paper harmonises the
culture of expectation semigroup analysis from the theory of stochastic processes against
c0-semigroup theory from functional analysis. In this respect, our presentation is thus part
review of existing theory and part presentation of new research results based on generalisation
of existing results.

Keywords Neutron transport equation · Principal eigenvalue · Semigroup theory ·
Perron–Frobenius decomposition

Mathematics Subject Classification Primary 82D75, 60J80, 60J75 · Secondary 60J99

Communicated by Abishek Dhar.

Alexander M.G. Cox, Simon C. Harris, and Andreas E. Kyprianou: supported by EPSRC Grant
EP/P009220/1. Emma Horton is supported by a PhD scholarship with joint funding from EPSRC CDT
SAMBa and industrial partnerWood (formerly Amec Foster Wheeler).

B Andreas E. Kyprianou
a.kyprianou@bath.ac.uk

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-019-02307-2&domain=pdf
http://orcid.org/0000-0001-5151-9126
http://orcid.org/0000-0001-7599-2495


426 A. M. G. Cox et al.

1 Introduction

The neutron transport equation (NTE) describes the flux of neutrons across a directional
planar cross-section in an inhomogeneous fissile medium (typically measured is number of
neutrons per cm2 per second). As such, flux is described as a function of time, t , Euclidian
location, r ∈ R

3, direction of travel, � ∈ S2, speed c > 0 (and hence velocity υ = c�),
and neutron energy, E ∈ R. It is not uncommon in the physics literature, as indeed we shall
do here, to assume that energy is a function of velocity (E = m|υ|2/2), thereby reducing
the number of variables by one. This allows us to describe the dependency of flux more
simply in terms of time and, what we call, the configuration variables (r , υ) ∈ D × V
where D ⊆ R

3 is a smooth, open, connected and bounded domain of concern such that
∂D has zero Lebesgue measure and V is the velocity space, which can now be taken to be
V = {v ∈ R

3 : υmin < |v| < υmax}, where 0 < υmin < υmax < ∞.
Before stating the NTE, let us remind the reader of some elementary nuclear physics,

which is required to describe the evolution of neutron flux. In the most basic of flux models,
there are essentially only four processes at the level of the atomic nuclei which contribute to
the evolution of neutron flux.

The first is spontaneous neutron emission from unstable nuclei. This comes from radioac-
tive isotopes whose nuclei are excited. They cause what is known as non-transmutation
emissions, in which a neutron is ejected with an escape velocity (neutron emission), or,
conversely, what are called transmutation emissions in which the nucleus instantaneously
fragments into two or more nuclei (spontaneous fission) with a range of possible masses,
emitting one or more neutrons with escape velocities in the process.

The second process pertains to neutron scattering. This is where a neutron travelling with
a given velocity passes in close proximity to an atomic nucleus, which, in our model, results
in an instantaneous change of velocity.

The third process is neutron-induced fission. This is the classical setting inwhich a neutron
travelling with a given velocity strikes an atomic nucleus sending it into an excited state, from
which it instantaneously fragments into two or more nuclei, simultaneously releasing one or
more neutrons.

The fourth and final process is neutron capture. In this setting, a neutron travelling with a
given velocity strikes an atomic nucleus, but instead of causing nuclear fission, it is absorbed
into the nucleus. It can also be the case that neutrons decay into other subatomic particles,
and thus disappear from the system. To all intents and purposes, we can treat this as neutron
capture.

When modelling the transmission of neutrons in a fissile material, those neutrons which
have been released from nuclei are known as prompt neutrons.

With more advanced modelling, one can also take account of the fact that some of the
processes described above can also involve other types of nuclear emissions, often in addition
to neutrons. These include alpha and beta particles and gamma radiation. Whilst the former
two are not sufficiently energetic to cause fission, sufficiently energetic gamma rays are able
to induce fission.

Spontaneous fission and neutron-induced fission can also produce what are known as
delayed neutrons. These are neutrons released from a fission product (isotope) some time
after fission has occurred. In terms of modelling, they are spontaneous neutron emissions
which occur at the site of neutron-induced fission but at a moment later in time. Delayed
neutrons are only in a delayed state until they are released after which they are considered as
prompt neutrons.
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Multi-species Neutron Transport Equation 427

We refer to models which take account of the full range of flux profiles as multi-species
models.

2 Neutron Transport Equation

Let us nowwrite down the basic neutron transport equation (prompt neutrons only), which has
been widely considered in a variety of physics and engineering literature (cf. [8,28], to name
but two classical references), and somewhat more sporadically studied in the mathematical
literature. See [6,17,25] for the three most authoritative mathematical texts in more recent
times, as well as e.g. [3,4,13,22,26] for some of the rarer examples of the probabilistic
treatment of the NTE.

Neutron flux at time t ≥ 0 is henceforth identified as �t : D × V → [0,∞), and the
classical presentation of its evolution in time is given by the integro-differential equation,
also known as the forward neutron transport equation,1

∂

∂t
�t (r , υ) = −υ · ∇�t (r , υ) − σ(r , υ)�t (r , υ) + Q(r , υ, t)

+
∫
V

�t (r , υ
′)σs(r , υ ′)πs(r , υ

′, υ)dυ ′

+
∫
V

�t (r , υ
′)σf(r , υ ′)πf(r , υ

′, υ)dυ ′, (2.1)

where the different components (or cross-sections as they are known in the physics literature)
are all uniformly bounded and measurable with the following interpretation:

σs(r , υ
′) : the rate at which scattering occurs from incoming velocity υ ′,

σf(r , υ
′) : the rate at which fission occurs from incoming velocity υ ′,

σ (r , υ) : the sum of the rates σf + σs, also known as the total cross section

πs(r , υ
′, υ)dυ ′ : the scattering yield at velocity υ from incoming velocity υ ′,

satisfying
∫
Vπs(r , υ, υ ′)dυ ′ = 1,

πf(r , υ
′, υ)dυ ′ : the neutron yield at velocity υ from fission with incoming velocity υ ′,

satisfying
∫
Vπf(r , υ, υ ′)dυ ′ < ∞, and

Q(r , υ, t) : non-negative source term.

It is normal to assume that all quantities are uniformly bounded away from infinity. It is also
usual to assume the additional boundary conditions⎧⎨

⎩
�0(r , υ) = g(r , υ) for r ∈ D, υ ∈ V ,

�t (r , υ) = 0 for t ≥ 0 and r ∈ ∂D if υ · nr < 0,
(2.2)

where nr is the outward facing normal of D at r ∈ ∂D and g : D × V → [0,∞) is a
bounded, measurable function which we will later assume has some additional properties.
Roughly speaking, as the forward equation describes where particles could have evolved
from in order to contribute to the current configuration, this boundary condition means that
particles from outside the domain with incoming velocity are not taken into account. The
second of the above two boundary condition is sometimes written �t |∂D− = 0, where

1 Here and everywhere else in the document, ∇ is the gradient operator with respect to the variable r ∈ R
3.
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428 A. M. G. Cox et al.

∂D− = {(r , υ) ∈ ∂D × V : υ · nr < 0}. It is also usual to set Q = 0 when considering
a rector with a multiplying medium, as the resulting fission will overwhelm the radioactive
source term.

The notion of a solution of the form (2.1) turns out to be too strong to expect to make
mathematical sense of it. This is predominantly due to the non-diffusive nature of the equation,
in particular the non-local nature of the scattering and fission operators as well as regularity
issues on the domain D × V in relation to continuity properties of e.g. the operator υ · ∇. It
is much more natural to look for solutions that belong to e.g. an appropriate L2 space. This
is, moreover, helpful when looking to understand (2.1) as a backwards equation, rather than
a forwards equation.

With some rearrangements, the components of (2.1) separate into transport, scattering
and fission. Specifically,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

→
Tg(r , υ) := −υ · ∇g(r , υ) − σ(r , υ)g(r , υ) (forwards transport)

→
Sg(r , υ) := ∫V g(r , υ ′)σs(r , υ)πs(r , υ ′, υ)dυ ′ (forwards scattering)

→
Fg(r , υ) := ∫V g(r , υ ′)σf(r , υ)πf(r , υ ′, υ)dυ ′ (forwards fission)

(2.3)

such that all operators are defined on D × V and their action is zero otherwise. Let us
momentarily consider the operator on the right-hand side of (2.1) as acting on L2(D × V ),
the space of square integrable functions on D × V , and write

〈 f , g〉 =
∫
D×V

f (r , υ)g(r , υ)drdυ

for the associated inner product. Note that, for f , g ∈ L2(D × V ) such that both υ · ∇ f and
υ · ∇g are well defined as distributional derivatives, which are also in the space L2(D × V ),
with g respecting the second of the boundary conditions in (2.2), we can verify with a simple
integration by parts that, for υ ∈ V ,

〈 f , υ · ∇g〉 =
∫

∂D×V
(υ · υ ′) f (r , υ ′)g(r , υ ′)drdυ ′ − 〈υ · ∇ f , g〉 = −〈υ · ∇ f , g〉 (2.4)

providing we insist that f respects the boundary f (r , υ) = 0 for r ∈ ∂D if υ · nr > 0.
Moreover, Fubini’s theorem also tells us that, for example, with f , g ∈ L2(D × V ),

〈
f ,
∫
V
g(·, υ ′)σs(·, υ ′)πs(·, υ ′, ·)dυ ′

〉
=
∫
D×V×V

f (r , υ)σs(r , υ ′)g(r , υ ′)πs(r , υ ′, υ)dυ ′drdυ

=
∫
D×V

σs(r , υ ′)
∫
V

f (r , υ)πs(r , υ ′, υ)dυ g(r , υ ′)drdυ ′

= 〈σs(·, ·)
∫
V

f (·, υ)πs(·, ·, υ)dυ, g〉.

These computations tell us that, for f , g ∈ L2(D × V ) such υ · ∇g and υ · ∇ f are well
defined in the distributional sense and, moreover, that g(r , υ) = 0 for r ∈ ∂D if υ · nr < 0,
and for f ∈ L2(D × V ) such that f (r , υ) = 0 for r ∈ ∂D if υ · nr > 0,

〈 f , (→
T + →

S + →
F)g〉 = 〈(←

T + ←
S + ←

F) f , g〉,
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Multi-species Neutron Transport Equation 429

where now we identify the transport, scattering and fission operators as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

←
T f (r , υ) := υ · ∇ f (r , υ) (backwards transport)

←
S f (r , υ) := σs(r , υ)

∫
V f (r , υ′)πs(r , υ, υ′)dυ′ − σs(r , υ) f (r , υ) (backwards scattering)

←
F f (r , υ) := σf(r , υ)

∫
V f (r , υ′)πf(r , υ, υ′)dυ′ − σf(r , υ) f (r , υ) (backwards fission)

(2.5)

such that all operators are defined on D × V with zero action otherwise. The reader will
immediately note that, although the terms in the sum

←
T+←

S+←
F are identifiable as the adjoint

of the terms in the sum
→
T + →

S + →
F, the same can not be said for the individual ‘T’, ‘S’ and

‘F’ operators. That is to say, the way we have grouped the terms does not allow us to say that
e.g.

←
T is the adjoint operator to

→
T and so on.

The reason for this difference in grouping of terms lies with how one reads the operators in
terms of infinitesimal generators as a probabilist. Although this will not make any difference
in the analysis of this paper, we keep to this notation for the sake of consistency with further
related articles which offer a probabilistic perspective on the backwards NTE; see [5,12,14].

Roughly speaking,
←
T, with an appropriately defined domain, is the generator of the rather

simple Markov process consisting of a deterministic motion with velocity υ, i.e. transport
due to pure advection, with killing on exiting the domain D. Similarly, with an appropriately
defined domain, the operator

←
S is the generator corresponding to scattering, in which a

particle travelling with velocity υ at position r is removed at rate σs and replaced by a new
particle at r with velocity υ ′ chosen with probability πs(r , υ, υ ′)dυ ′. Taking advantage of
the fact that

∫
V πs(r , υ, dυ ′)dυ ′ = 1 we can also write

σs(r , υ)

∫
V

f (r , υ ′)πs(r , υ, υ ′)dυ ′ − σs(r , υ) f (r , υ)

= σs(r , υ)

∫
V
[ f (r , υ ′) − f (r , υ)]πs(r , υ, υ ′)dυ ′

and also note that it takes the classical form of a difference operator. Finally
←
F is the generator

action of a fission even in which a particle travelling with velocity υ at position r is removed
at rate σf and replaced by an average number of particles πf(r , υ, υ ′)dυ ′ moving onwards
from r with velocity υ ′.

This leads us to the so called backwards neutron transport equation (which is also known
as the adjoint neutron transport equation) given by

∂

∂t
ψt (r , υ) = υ · ∇ψt (r , υ) − σ(r , υ)ψt (r , υ)

+ σs(r , υ)

∫
V

ψt (r , υ
′)πs(r , υ, υ ′)dυ ′

+ σf(r , υ)

∫
V

ψt (r , υ
′)πf(r , υ, υ ′)dυ ′, (2.6)

with additional boundary conditions⎧⎨
⎩

ψ0(r , υ) = g(r , υ) for r ∈ D, υ ∈ V ,

ψt (r , υ) = 0 for t ≥ 0 and r ∈ ∂D if υ · nr > 0.
(2.7)

Similarly to previously, the second of these two conditions is often written ψt |∂D+ = 0,
where ∂D+ := {(r , υ) ∈ ∂D × V : υ · nr > 0}.
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430 A. M. G. Cox et al.

Fig. 1 A virtual model of a nuclear reactor core with colour indicating the respective fissile properties of the
virtual materials used. Uranium rods are arranged into hexagonal cells which are arranged within a larger
containment casing (Color figure online)

The NTE has played a prominent role in real-world modelling and, for many years,
has found a home in commercial software which is used in the nuclear safety industry.
In particular, this is most prominent in the modelling and design of environments which are
exposed to radioactivematerial, fromnuclear reactor cores and hospital equipment, through to
equipment used to irradiate produce that is sold in supermarkets, thereby prolonging its shelf-
life. More recently, with the notion of human interplanetary space exploration becoming less
of a sci-fi fantasy andmore of a fast approaching reality, an understanding of how long-lasting
and compact nuclear power sources, for e.g. Moon or Mars bases has become increasingly
important.

Figure 1 illustrates a typical geometrical model of a reactor core rod, cladding and outer
shielding.2 The structural design of such a reactor can easily be stored as virtual environment
(i.e. storing the coordinates of the different geometrical domains and thematerial properties in
each domain) with around 150MB of data, on to which extensive data libraries of numerical
values for the respective quantities σs, σf, πs, πf can be mapped. (It is an otherwise little
known fact that countries which are heavily invested in nuclear power, such as the UK, USA,
France, China, etc., are all in possession of such numerical libraries of cross sections, which
have been carefully built up over decades.)

One of the principal ways in which neutron flux is understood is to look for the leading
eigenvalue and associated ground state eigenfunction. Roughly speaking, this means looking
for an associated triple of eigenvalue λ ∈ R, non-negative right eigenfunction ϕ : D × V →
[0,∞) in L2(D×V ) satisfying ϕ|∂D+ = 0 and a non-negative left eigenfunction ϕ̃ on D×V
in L2(D × V ) satisfying ϕ̃|∂D− = 0 such that

λ〈ϕ, f 〉 = 〈(←
T + ←

S + ←
F)ϕ, f 〉 and λ〈 f , ϕ̃〉 = 〈(←

T + ←
S + ←

F) f , ϕ̃〉.

2 The authors are grateful to Prof. Paul Smith from Wood who has given us permission to use these images
which were constructed with Wood nuclear software ANSWERS.
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As such, this introduces the notion of fissile stability, in particular in the case that λ = 0.
This is naturally the desired scenario3 for a nuclear reactor.

In the physics literature, it is thus often understood that, to leading order, the NTE (2.6)
is solved in the approximate sense

ψt (r , υ) = eλt 〈g, ϕ̃〉ϕ(r , υ) + o(eλt ), t ≥ 0. (2.8)

Note that the scenario that λ > 0 is obviously to be avoided in practice as this would
correspond to a set-up that could result in exponential growth in fission.

The approximation (2.8) can be seen as a functional version of the Perron–Frobenius
Theorem and has given rise to a number of different numerical methods for estimating the
value of the eigenvalue λ as well as the eigenfunctions ϕ and ϕ̃. One approach pertains
to the discretisation of (2.1) followed by the use numerical analytic methods; see [31].
Another pertains to the previously alluded to identification of the solution to the NTE as
the linear semigroup of a Markov branching process, which in turn implies Monte Carlo
methods involving the simulation of the aforesaid branching process. Such methods are
computationally expensive, as branching processes, being tree-like structures, are complex
to simulate, e.g. from the point of view of parallelisation. In related papers to this one, we
will discuss a newMonte Carlo approach to the NTE based on some of the stochastic analysis
we deal with in this article as well as in related work undertaken by the authors of this paper;
see [5,12,14].

The aim of this paper is manifold. First and foremost, we aim to reposition the theory of
the NTE into a contemporary probabilistic setting. We will do this by explaining a precise
relationship between theNTE and a two different families ofMarkov processes via Feynman–
Kac type formulae. Indeed, this article is one of a cluster of forthcoming pieces ofwork,which
take a new and predominantly probabilistic point of view of the NTE; cf. [5,12,14]. Next we
want to introduce the notion of the (multi-species) NTE into the literature, which generalises
(2.1) by simultaneously modeling the flux of all species of particles and radiation involved
in the process of nuclear fission. In doing so we will show that, just as in the classical setting,
one may develop the notion of a lead eigenvalue and eigenfunction, which is an important
part of describing fissile stability. As such, the current article is part review of existing theory
and part presentation of new research results based on generalisation of existing results.

Together with the accompanying papers [5,12,14], we believe that the probabilistic per-
spective presented here, i.e. coupling the solutions to the NTE with averaging procedures
of certain Markov processes, opens up the possibility of many questions that can be con-
sidered at depth in the arena of stochastic analysis and Monte Carlo algorithms, which are
currently missing from the literature. Indeed, returning to the kind of environments seen in
Fig. 1, there are many questions concerning how to analyse and numerically generate the
leading eigenfunctions and eigenvalue to a reasonable degree of precision. Such questions
might include: What is the connection of the eigendecomposition discussed in this paper
and e.g. R-theory or the theory of general Harris recurrence for stochastic processes (cf.
[9,23,24])? How do different stochastic representations lead to different Monte Carlo sim-
ulations? Based on stochastic representation how does one measure convergence of Monte
Carlo algorithms? How strong can they be predicted to be? What kind of variance reduc-
tion techniques does stochastic representation suggest? Does the inclusion of multi-species
models make estimation of the leading eigenvalue more accurate?

3 Strictly speaking the reality is that, nuclear reactors are kept in a slightly supercritical state. The reason for
this is that at criticality, as proved in [12], neutron activity will eventually die out.
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3 Organisation of the Paper

In the next section, we give a brief overview of the key mathematical literature for the NTE.
(Notewedonot stray beyondmathematical literature, as the physics and engineering literature
is significantly more expansive.) Thereafter in Sect. 5, we introduce the multi-species NTE
(MNTE) and its rigorous formulation, existence, uniqueness and asymptotics in the setting
of an abstract Cauchy problem. In particular, we show how the unique solution is identified
as a c0-semigroup in the appropriate L2 space. In Sect. 6, we introduce a spatial branching
process that is constructed using the cross sections that appear in the NTE to describe its
stochastic evolution. Here we introduce its expectation semigroup. In Sect. 7, we provide
a second stochastic representation to the expectation semigroup introduced in the previous
section via a classical method of the many-to-one formula.

Ideally, we would like to claim that the expectation semigroup discussed in Sects. 6
and 7 agree with the c0-semigroup introduced in Sect. 5 (its formal definition appearing just
above Theorem 5.2). This is particularly desired as it forms the foundations of how Monte
Carlo simulation of the physical process can be used to develop a numerical solution to the
MNTE. In Sect. 8, we consolidate the two notions of semigroup and show that there is partial
agreement in an appropriate sense. As far as we are aware, this is a point which is currently
not clearly discussed in the literature. Finally we end the paper with a proof of one of the
main theorems in Sect. 6 which provides the asymptotic behaviour of the solution to the
MNTE in terms of the lead eigenfunction. This is a new result in the multi-species setting
in the sense that we have allowed for multiple types of prompt emissions (both particles and
radioactive emissions) rather than the case of only one type of prompt emission dealt with
in [25]; we also allow for multiple types of delayed emissions (that is, emissions that are
pre-emptively held in an unstable radioactive isotope product from an earlier fission event).
Our proof nonetheless takes inspiration from the classical approach of [6,25], and remains
loyal to the techniques there.

4 Historical Remarks on theMathematical Treatment of the NTE

Classical texts such as Davison and Sykes [8] were once hailed as a bible of mathematical
knowledge during the 1950s postManhattan Project era when rapid technological advances
lead to the construction of the very first nuclear reactors driving commercial power stations.
Around this time, there was an understanding of how to treat the NTE in special geometries
and also by imposing an isotropic scattering and fission, see for example Lehner [18] and
Lehner and Wing [19,20]. It was also understood quite early on that the natural way to
cite the NTE is via the linear differential transport equation associated to a suitably defined
operator on a Banach space. Moreover, it was understood that in this formulation, a spectral
decomposition should play a key role in representing solutions, see e.g. Jörgens [15], Pazy
and Rabinowitz [29]. This notion was promoted by the work of R. Dautray and collaborators,
who showed how c0-semigroups form a natural framework within which one may analyse
the existence and uniqueness of solutions to the NTE; see [6,7]. Moreover, a similar approach
has also been pioneered by Mokhtar-Kharroubi [25].

The probabilistic interpretation of the NTE was appreciated from the very first treatments
of the NTE (see e.g. [8] and references therein, as well as Bell [2]). Indeed, the physical
description of nuclear fission, when governed by basic principles, allowing for additional
randomness, is nothing more than a branching Markov process. Numerous derivations of the
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NTE from this perspective can be found in the literature to various degrees of rigour; see e.g.
Bell [2], Mori et al. [26], Pazy and Rabinowitz [30], Lewins [21] and Pázsit and Pál. [28].

Amoremodern treatment of the probabilistic representation throughFeynman–Kac expec-
tation semigroups and the connection to the theory of Markov diffusions is found in Dautray
et al. [7]. A purely probabilistic can be found in Lapeyre et al. [17]. See also the accompanying
papers to this one [5,12,14].

We finish this section by noting that there is a body of literature that pertains to the
numerical analysis of the NTE. Recent work in this field, including the notion of uncertainty
quantification, can be found in e.g. [22,27,31]. See also references therein.

5 Multi-species (Backwards) Neutron Transport Equation

In the following discussion, rather than talk about typed particles, we prefer to say typed
‘emissions’ as the different types correspond to particles, electromagnetic rays (e.g. gamma
rays) and isotopes (which are considered to be carriers for delayed emissions).

Let us now introduce an advanced version of the NTE, which takes account of both non-
transmutation emissions as well as transmutation emissions, in particular, allowing for the
inclusion of all types of emissions, prompt neutrons, delayed neutrons, alpha, beta and gamma
emissions etc. An important feature (and arguably a restriction) of our model is that only
prompt neutrons can produce delayed emissions.

In order to keep track of the various emission types, we define the type space I :=
{1, . . . ,m} for some m ∈ N, ordered such that

type 1 emissions: prompt neutrons (neutrons released immediately after fission)

types 2, . . . , � emissions: other prompt emissions (e.g. alpha, beta, gamma emissions)

types � + 1, . . . ,m emissions: isotopes (holding types/precursors) that hold delayed emissions.

Finally, the set of admissible velocities for each of the types i can be embedded within a
common space V = {υ ∈ R

3 : υmin ≤ |υ| ≤ υmax}, with 0 < υmin ≤ υmax < ∞). We now
consider the flux, ψt (i, r , υ) of type i emissions through a given region r ∈ D with velocity
υ ∈ V at time t ≥ 0. We are interested in the so called multi-species neutron transport
equation (MNTE) which takes the form

∂

∂t
ψt (i, r , υ) = υ · ∇ψt (i, r , υ) − σ i (r , υ)ψt (i, r , υ)

+ σ i
s(r , υ)

∫
V

ψt (i, r , υ)π i
s(r , υ, υ ′)dυ ′

+ σ i
f(r , υ)

�∑
j=1

∫
V

ψt ( j, r , υ)π
i, j
f (r , υ, υ ′)dυ ′

+ 1(i=1)σ
1
f(r , υ)

m∑
j=�+1

m j (r , υ)ψt ( j, r , υ), (5.1)

for prompt emissions i = 1, . . . , �, whereas, in the case of delayed emissions, i = � +
1, . . . ,m satisfies
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∂

∂t
ψt (i, r , υ) = −λiψt (i, r , υ) + λi

�∑
j=1

∫
V

ψt ( j, r , υ)π
i, j
f (r , υ, υ ′)dυ ′, (5.2)

which is of a simple form because it describes only how these emissions are held in a
suspended state (no advection) before being converted back to prompt emissions. Similarly
to before, have the following interpretation:

σ i
s(r , υ) : the rate at which scattering occurs for a type i emission with incoming

velocity υ,

σ i
f(r , υ) : the rate at which fission occurs for a type i emission with incoming

velocity υ,

σ i (r , υ) : the sum of the rates σ i
f + σ i

s and is known as the total cross section for a

type i emission,

π i
s(r , υ, υ ′)dυ′ : the scattering yield at velocity υ ′from incoming velocity υ for a type i

emission, satisfying
∫
V π i

s(r , υ, υ′)dυ′ = 1,

π
i, j
f (r , υ, υ ′)dυ′ : the average type j yield at velocity υ ′ from fission with incoming velocity

υ for a type i emission satisfying
�∑

j=1

∫
V π

i, j
f (r , υ, υ ′)dυ′ < ∞,

m j (r , υ) : the average type j (unstable) isotope yield from a fission event due to a

type 1 particle with incoming velocity υ,

λi : the decay rate for a type i isotope.

There are a number of assumptions about the many cross sections that appear in the above
equations that will remain in force throughout the remainder of this text.

Assumption 5.1 All cross sections are non-negative, measurable and uniformly bounded
from above. Moreover, all prompt emissions scatter and hence, without loss of generality,
we also assume that for for each i = 1, . . . , �, the terms σ i

sπ
i
s are uniformly bounded away

from the origin on D × V . We need not assume that the cross sections σ i
fπ

i, j
f are uniformly

bounded away from the origin for 1 ≤ i, j ≤ �, with the exception of i = 1, for which it
only makes sense that σ 1

fm
j is uniformly bounded away from 0 for each j = � + 1, . . . ,m.

Without loss of generality, we can assume that 0 < λ�+1 < · · · < λm .

We also assume similar boundary conditions to the single-type case in the sense that
emissions exiting the physical domain D are killed. That is to say⎧⎨

⎩
ψ0(i, r , υ) = g(i, r , υ) for 1 ≤ i ≤ m, r ∈ D, υ ∈ V ,

ψt (i, r , υ) = 0 for 1 ≤ i ≤ �, r ∈ ∂D if υ · nr > 0.
(5.3)

For the second condition, we will writeψt |∂D+ = 0, where ∂D+ = {(i, r , υ) ∈ {1, . . . , �}×
∂D × V : υ · nr > 0}

Classical literature suggests that one can integrate delayed neutrons into the setting of
the NTE by adding an inhomogeneity corresponding to the integral of incoming delayed
neutrons from time −∞ to the present; see e.g. [8]. A vectorial representation such as the
one above can be found, however, in the work of [25]. There, only one category of prompt
emissions are considered with multiple species of delayed neutrons.
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As before, let us define the multi-species backward transport, scattering and fission oper-
ators as they appear in MNTE (5.1) and (5.2), acting on f ∈ ∏m

i=1 L2(D × V ), so that, for
i = 1, . . .m,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

←
Ti f (·, r , υ) := 1(1≤i≤�)υ · ∇ f (i, r , υ)

←
Si f (·, r , υ) := 1(1≤i≤�)

∫
V [ f (i, r , υ ′) − f (i, r , υ)]σ i

s(r , υ)π i
s(r , υ, υ ′)dυ ′

←
Fi f (·, r , υ) := 1(1≤i≤�)

(∑�
j=1

∫
V f ( j, r , υ ′)σ i

f(r , υ)π
i, j
f (r , υ, υ ′)dυ ′ − σ i

f(r , υ) f (i, r , υ ′)
)

+ 1(i=1)
∑m

j=�+1 σ i
f(r , υ)m j (r , υ) f ( j, r , υ)

+ 1(�+1≤i≤m)

(
λi
∑�

j=1

∫
V f ( j, r , υ ′)π i, j

f (r , υ, υ ′)dυ ′ − λi f (i, r , υ)
)

,

with zero action otherwise.
It is not often that MNTE is stated as above in (5.1) and (5.2) in existing literature; see

e.g. [25] for presentation of the NTE in a similar vectorial format, which allows for only one
category of prompt neutrons.

The requirement that all cross sections are uniformly bounded is by far not the weakest
assumption we can make (see e.g. Chapter XXI of [6]).

The precise mathematical sense in which we must understand solutions to the coupled
system (5.1) and (5.2) needs some discussion before we can proceed. To this end, we shall
first introduce some notational conventions.

As alluded to above, we are interested in an vector space of functions, written as the
column vector g(·) = (g(1, ·), . . . , g(m, ·))T, whose entries g(i, ·) : D × V → [0,∞), for
each i = 1, . . . ,m. More precisely we are interested in functions f ∈ ∏m

j=1 L2(D × V ),
which is easily verified to be itself an L2 space with inner product given by

〈 f , g〉 =
m∑
i=1

( f , g)i , where ( f , g)i =
∫
D×V

f (i, r , υ)g(i, r , υ)drdυ. (5.4)

Generally speaking, for a scalar quantity which is indexed by i , say a(i), when written
without the index, we will understand it to be a column vector. Sometimes we will want
to put f ∈ ∏m

j=1 L2(D × V ) on the diagonal of an m × m matrix, in which case we
will write diag( f ). For our transport, scattering and fission operators, we will understand
←
T = diag(

←
T1, . . . ,

←
Tm), however, we will understand

←
F to be the matrix acting on vectors

f ∈∏m
j=1 L2(D × V ), with i, j-th entry given by

←
Fi, j f ( j, r , υ)

:= 1(1≤i, j≤�)

(∫
V

f ( j, r , υ ′)σ i
f(r , υ)π

i, j
f (r , υ, υ ′)dυ ′ − 1(i= j)σ

i
f(r , υ) f (i, r , υ ′)

)

+ 1(i=1,�+1≤ j≤m)σ
i
f(r , υ)m j (r , υ) f ( j, r , υ)

+ 1(�+1≤i≤m,1≤ j≤�)

(
λi

∫
V

f ( j, r , υ ′)π i, j
f (r , υ, υ ′)dυ ′ − 1(i= j)λi f (i, r , υ)

)
.

The operator
←
S can be handled similarly.

We are fundamentally interested in a classical solution to the so-called (initial-value)
abstract Cauchy problem (ACP)

{
∂

∂t
ut = (

←
T + ←

S + ←
F)ut

u0 = g
(5.5)
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where ut is treated as a column vector belonging to the space
∏m

j=1 L2(D × V ), for t ≥ 0.
Specifically this means that, (ut , t ≥ 0) is continuously differentiable in this space. In other
words, there exists a ψ̇t ∈∏m

j=1 L2(D× V ), which is time-continuous in
∏m

j=1 L2(D× V )

with respect to ‖·‖2, such that limh→0 h−1‖ut+h − ut‖2 = ψ̇t for all t ≥ 0.
The theory of c0-semigroups gives us a straightforward approach to describing the unique

solution to (5.5). Recall that a c0-semigroup also goes by the name of a strongly continuous
semigroup and, in the present context, this means a family of time-indexed operators, (Vt , t ≥
0), on

∏m
j=1 L2(D × V ) with the properties that

(i) V0 = Id,
(ii) Vt+s[g] = Vt [Vs[g]], for all s, t ≥ 0, g ∈∏m

j=1 L2(D × V ) and
(iii) for all g ∈∏m

j=1 L2(D × V ), limh→0‖Vh[g] − g‖ = 0.

To see how c0-semigroups relate to (5.5), let us define
←
A := ←

T + ←
S + ←

F and define
(Vt [g], t ≥ 0) the semigroup generated by

←
A via

Vt [g] := exp(t
←
A)g, g ∈

m∏
j=1

L2(D × V ). (5.6)

Note that

Dom(
←
A) :=

⎧⎨
⎩g ∈

m∏
j=1

L2(D × V ) : lim
h→0

h−1‖Vh[g] − g‖2 exists
⎫⎬
⎭

is the domain of
←
A and standard theory (cf. [11]) tells us that Vt [g] ∈ Dom(

←
A) for all t ≥ 0,

with g as above. Proposition II.6.2 of [11] now gives us the relevance to (5.5).

Theorem 5.2 Let (
←
A,Dom(

←
A)) be the generator of a c0-semigroup (Vt , t ≥ 0). If g ∈

Dom(
←
A), then ut := Vt [g] is a representation of the unique classical solution of (5.5).

The reader may well have wondered where the second boundary condition in (5.3) has
gone in the above formulation. This is a matter of interpretation of (

←
T,Dom(

←
T)), and hence

the generator (
←
A,Dom(

←
A)), as we now discuss.

We are interested in the advection semigroup with exponential killing and killing on the
boundary of D,

Ut [g](i, r , υ) = g(i, r + υt, υ)1(t<κD
r,υ ), i = 1, . . . , � and t ≥ 0. (5.7)

where

κD
r ,υ := inf{t > 0 : r + υt /∈ D}. (5.8)

In essence, (Us, s ≥ 0) is the semigroup of the process which moves from a point of issue r in
a straight line with velocity υ and which is killed on hitting ∂D. To see why U := (Us, s ≥ 0)
has the semigroup property, note that

κr+υs,υ = inf{t > 0 : r + υ(t + s) /∈ D} = (κr ,υ − s) ∨ 0,

so that t < κr+υs,υ if and only if t+s < κD
r ,υ . Hence for any g ∈∏m

i=1 L2(D×V ) satisfying
the boundary conditions (5.3), we have from the definition (5.7), for i = 1, . . . , �, r ∈ D,
υ ∈ V ,

Us[Ut [g]](i, r , υ) = Ut [g](i, r + υs, υ)1(s<κD
r,υ )

123



Multi-species Neutron Transport Equation 437

= g(i, r + υ(t + s), υ)1(t<κD
r+υs,υ )1(s<κD

r,υ )

= Ut+s[g](i, r , υ)

It is a straightforward exercise, see e.g. Theorem 2 in Chapter XXI of [6], to show that U
is a c0-semigroup with generator

←
T. Its domain satisfies

Dom(
←
T) =

�∏
i=1

Dom(
←
Ti ) ×

m∏
i=�+1

L2(D × V ), where

Dom(
←
Ti ) =

{
g ∈ L2(D × V ) : υ · ∇g ∈ L2(D × V ) and g|∂D+ = 0

}
. (5.9)

Here, by υ · ∇g ∈ L2(D × V ) we mean that υ · ∇g exists in the distributional sense and is
integrable in the space L2(D × V ).

Thedomainof
←
A canbeno larger thanDom(

←
T). It turns out however thatDom(

←
A) =Dom(

←
T).

To see why, we need only consider that the linear operators of the form

Ki f (i, r , υ) := αi (r , υ)

m∑
j=1

∫
V

f ( j, r , υ ′)π i, j (r , υ, υ ′)dυ,

are continuous mappings from
∏m

i=1 L2(D × V ) into itself, where α and π i, j are non-
negative, measurable and uniformly bounded. The proof is a straightforward exercise which
uses the Cauchy-Schwarz inequality; see for example Lemma XXI.1 of [6]. It follows that
Dom(

←
S) and Dom(

←
F) are both equal to

∏m
i=1 L2(D×V ) and, hence, Dom(

←
A) and Dom(

←
T)

agree.
Note there is no particular necessity to put solutions in an L2 space, onemight equallywork

with the space
∏m

i=1 L p(D×V ), for p ∈ (1,∞). As the readermight suspect, solutions of the
backwards equation in an L p space comes hand in hand with a similarly formulated solution
to the forward equation in the conjugate space

∏m
i=1 Lq(D × V ), where q−1 + p−1 = 1.

See for example Chapter XXI of [6] or [25]. The reader will note the exclusion of the L1

and L∞ conjugacy. The reason for the exclusion boils down to the cumbersome nature of the
advection operator

←
T = υ · ∇. Quite simply it is not possible to verify the strong continuity

property of the advection semigroup

Ut [g](i, r , υ) = g(i, r + υt, υ)1(t<κD
r,υ ), t ≥ 0. (5.10)

where κD
r ,υ := inf{t > 0 : r + υt /∈ D}. Hence we cannot give a meaning to υ · ∇ as a

c0-semigroup on L∞(D × V ). This is unfortunate as the latter is the more natural setting for
probabilistic interpretation of solutions to theACP.Having said that, the backwards scattering
and fission operators, respectively

←
S and

←
F, are well defined on all

∏m
i=1 L p(D × V ) spaces

for p ∈ [1,∞].
One of our main results will be to establish the asymptotic (2.8) but now in the current

setting. Recall that we have assumed that D ⊆ R
3 is a smooth open pathwise connected

bounded domain of concern such that ∂D has zero Lebesgue measure.

Theorem 5.3 Let D be convex. We assume the following irreducibility conditions. For
each i, j ∈ {1, . . . , �} assume that each of the cross sections σ i

f(r , υ)π
i, j
f (r , υ, υ ′),
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σ i
f(r , υ)m j (r , υ) and σ i

s(r , υ)π i
s(r , υ, υ ′) are piece-wise continuous4 on D̄ × V × V and

there exists k = ki, j ∈ {1, . . . , �} such that
σ i
f(r , υ)π

i,k
f (r , υ, υ ′) > 0 on D × V × V (5.11)

and

σ k
f(r , υ)π

k, j
f (r , υ, υ ′) > 0 on D × V × V . (5.12)

Then,

(i) the neutron transport operator
←
A has a simple and isolated eigenvalue λc > −λ�+1,

which is leading in the sense that λc = sup{Re(λ) : λ is an eigenvalue of
←
A} and which

has corresponding non-negative right and left eigenfunctions in
∏m

i=1 L2(D×V ), ϕ and
ϕ̃ respectively and

(ii) there exists an ε > 0 such that, as t → ∞,

‖e−λctVt [ f ] − 〈 f , ϕ̃〉ϕ‖2 = O(e−εt ), (5.13)

for all f ∈ ∏m
i=1 L2(D × V ), where (Vt , t ≥ 0) is defined in (5.6). To give a precise

value for ε, suppose we enumerate the eigenvalues of
←
A in decreasing order by the set

{λ(1), . . . , λ(n)} (noting from earlier that we have at least λ(1) = λc). Then λ(n) > −λ�+1

and we can take any ε such that ε < λc − (λ(2) ∨ (−λ�+1)) where we understand
λ(2) = −∞ if n = 1.

Remark 5.1 It could be argued that the assumptions in the above theorem rule out the possi-
bility that we may, for example, include alpha or beta emissions emissions in the model for
that particular conclusion.Whilst alpha and beta emissions may scatter, they are not energetic
enough to cause fission. The irreducibility conditions (5.11) and (5.12) would thus fail. On
the other hand, it is also known that when such particles are energetic enough, they can draw
gamma radiation or positrons out of nuclei when passing in close proximity. If the latter are
sufficiently energetic, then they can induce fission.

6 Multi-species Neutron Branching Process

Heuristically speaking, (5.5) can be thought of as being closely related to the expectation
semigroup of a Markov branching process, or Multi-species nuclear branching process
(MNBP) as we shall call it, whose infinitesimal generator is

←
T + ←

S + ←
F. Consider the

system of typed emissions whose configurations in D × V at time t ≥ 0 are given by
{ri, j (t), υi, j (t) : i = 1, . . . , N j

t }, where, for each j = 1, . . . ,m, N j
t is the number of type

j emissions alive at time t . In order to describe the system as Markovian, we will represent
it by the atomic measures

Xt ( j, A) =
N j
t∑

i=1

δ(ri, j (t),υi, j (t))(A), j = 1, . . . ,m,

4 A function is piecewise continuous if its domain can be divided into an exhaustive finite partition (e.g.
polytopes) such that there is continuity in each element of the partition. This is precisely how cross sections
are stored in numerical libraries for modelling of nuclear reactor cores.
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where A is a Borel subset of D × V and δ is the Dirac measure defined on the same space.
Then the system can be described via the m-tuple Xt (·) = (Xt (1, ·), . . . , Xt (m, ·)), t ≥ 0,
which evolves as follows.

�A emission of type i ∈ {1, . . . , �}with configuration (r , υ)moves in a straight line with
velocity υ from the point r until one of the following events occur:

• The emission leaves the domain, at which point it is killed.
• Independently of all other emissions, a scattering event occurs when a emission comes in

close proximity to an atomic nucleus and, accordingly, makes an instantaneous change
of velocity. For an emission in the system of type i ∈ {1, . . . , �} with initial position and
velocity (r , υ), if we write T i

s for the random time until the next scattering occurs, then,
independently of any other physical event that may affect the emission,

Pr(T i
s > t) = exp

{
−
∫ t

0
σ i
s(r + υs, υ)ds

}
. (6.1)

• When scattering of an emission of type i ∈ {1, . . . , �} occurs at space-velocity (r , υ),
the new velocity is selected independently with probability π i

s(r , υ, υ ′)dυ ′.
• Independently of all other emissions, a fission event occurs when an emission smashes

into an atomic nucleus. For an emission in the system with initial position and velocity
(r , υ), we will write T i

f for the random time that the next fission occurs. Then indepen-
dently of any other physical event that may affect the emission,

Pr(T i
f > t) = exp

{
−
∫ t

0
σ i
f(r + υs, υ)ds

}
. (6.2)

• When fission occurs, the smashing of the atomic nucleus releases a random number of
other prompt emissions of type i = 1, . . . , �, say Ni, j ≥ 0, which are ejected from
the point of impact with randomly distributed, and possibly corollated, velocities, say
{υi, j

k : k = 1, . . . , Ni, j }. When fission occurs at location r ∈ D from a emission with

incoming velocity υ ∈ V , the quantity π
i, j
f (r , υ, υ ′)dυ ′ describes the average number

of type j prompt emissions released from nuclear fission with outgoing velocity in the
infinitesimal neighbourhood of υ ′. In particular

∫
A

π
i, j
f (r , υ, υ ′)dυ ′ = E

⎡
⎣Ni, j∑

k=1

1
(υ

i, j
k ∈A)

⎤
⎦ , A ∈ B(V ).

• Note, the possibility that Pr(Ni, j = 0) > 0 is possible. If i = j = 1 then this is
tantamount to neutron capture or further decomposition into subatomic particles which
are not counted.

• Further, if the initial emission is a (type 1) neutron, a fission event (occurring at rate σ 1
f )

may result in the production of unstable isotopes (which later release delayed emissions).
On this event, an average number, m j (r , υ), of type j ∈ {� + 1, . . . ,m} isotopes will
be produced from a collision at position r from a neutron with incoming velocity υ. The
isotopes will inherit the configuration of the incoming nucleus at the time of collision.

� An isotope of type i ∈ {�+ 1, . . . ,m} with inherited physical configuration (r , υ) stays
in the same place for an exponentially distributed amount of time with rate λi . At this point,
it produces a random number of type j ∈ {1, . . . , �} prompt emissions, the average number
of which, along with their corresponding velocities, are chosen according to π

i, j
f (r , υ, υ ′),
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in a similar way to previously described. We note that although unstable isotopes stay in the
same spatial position, we will still assign them a velocity as a ‘mark’.

In all cases, it is a natural make the following physical assumption which will remain in
force throughout.

Assumption 6.1 Random emissions of any type are bounded in number by the non-random
constant nmax ≥ 1. In particular this means that

sup
1≤i≤m,1≤ j≤�,r∈D,υ∈V

π
i, j
f (r , υ, V ) ≤ nmax and sup

r ,∈D,υ∈V1,1≤ j≤�

m j (r , υ) ≤ nmax.

For non-negative and uniformly bounded g : ∏m
i=1(D × V ) �→ [0,∞), that is g ∈∏m

i=1 L
+∞(D × V ), define the expectation semigroup

ψt [g](i, r , v) := Eδ(i,r,v)
[〈g, Xt 〉], (6.3)

where Pδ(i,r,v)
is law of the process started from a single type i emission with configuration

(r , υ) with corresponding expectation operator Eδ(i,r,v)
.

As we have assumed that all cross sections are uniformly bounded, ignoring spa-
tial trajectories of neutrons (in particular those that are killed by leaving the domain
D), it is straightforward to compare the growth of (ψt [g], t ≥ 0) against that of a
continuous-time Galton-Watson process with growth rate η{(m × nmax) − 1}, where η =
sup1≤i≤�,r∈D,υ∈V σ i

f(r , υ) + max�+1≤i≤m λi .
The rate of growth η{(m × nmax) − 1} simply assumes that each emission of type i gives

rise to at most nmax emissions of any other type and at a rate which is uniformly bounded by
a uniform upper bound of all possible rates at which fission events occur. Note this rate takes
account of the emission count introduced into the system at a fission event and the single
emission removed from the system which caused the fission event.

It is also straightforward to stochastically upper bound the process 〈1, Xt 〉, t ≥ 0, by
the aforesaid continuous-time Galton Watson process on the same probability space. The
latter process branches whenever X does, topping up the number of offspring always to
nmax, but also it has additional independent branching events at rate (η −1(1≤i≤�)σ

i
f(r , υ)−

1(�+1≤i≤m)λi ) always producing precisely nmax offspring of each of them possible emissions.
If we denote this Galton-Waton process by (Zt , t ≥ 0), then we have both the stochastic

bound 〈1, Xt 〉 ≤ Zt ≤ Zt+s , for all s, t ≥ 0 and the upper estimate

sup
1≤i≤m,r∈D,υ∈V

ψt [g](i, r , υ) ≤ ||g||∞ exp(η((nmax × m) − 1)t), t ≥ 0. (6.4)

If we put g in the smaller space
∏m

i=1 C
+(D×V ), the space of non-negative, continuous and

uniformly bounded vector functions on (D × V ), then we also have by a dominated conver-
gence argument, limt→0 ψt [g] = g in the pointwise sense. Otherwise the latter convergence
is not necessarily clear.

The name ‘expectation semigroup’ is earned thanks to the behaviour of (ψt , t ≥ 0) under
an application of the Markov branching property. Indeed, associated to the MNBP are the
probabilities Pμ for atomic measures of the form

μ =
(

n1∑
i=1

δ(1,ri,1,υi,1), . . . ,

nm∑
i=1

δ(m,ri,m ,υi,m ).

)
=: (μ1, . . . , μm). (6.5)
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TheMarkov branching property dictates that, for g ∈∏m
i=1 L2(D×V ) as before and t ≥ 0,

Eμ[〈g, Xt 〉] =
m∑
j=1

n j∑
i=1

Eδ( j,ri, j ,υi, j )
[〈g, Xt 〉] = 〈Eδ(·,·,·) [〈g, Xt 〉], μ〉

Here we are abusing our earlier notation in (5.4) and writing for finite atomic measures μ of
the form (6.5),

〈g, μ〉 =
m∑
i=1

(g, μ)i , where (g, μ)i =
∫
D×V

g(i, r , υ)μi (dr , dυ). (6.6)

Hence, by conditioning on the configuration of the system at time t ≥ 0, we have, for s ≥ 0,

ψt+s[g](i, r , v) := Eδ(i,r,v)

[
EXt [〈 f , Xs〉]

] = Eδ(i,r,v)
[〈ψs[g], Xt 〉] = ψt [ψs[g]](i, r , v).

(6.7)

The expectation semigroup property of (ψt , t ≥ 0) does not imply that it is necessarily
a c0-semigroup on

∏m
i=1 L2(D × V ). Recalling our earlier discussion, if we were able to

work with (5.5) in the setting of a c0-semigroup on
∏m

i=1 L∞(D × V )), then we would be
much closer to being able to match the expectation semigroup (ψt , t ≥ 0) to the solution
(ut , t ≥ 0). But even then, problems would occur with verifying strong continuity at the
origin.

Nonetheless, classical literature supports the view that it is the physical processes, i.e. in
this setting theMNBP, that provides a stochastic representation of the solution to the backward
MNTE. The authors are not aware of a formal proof of this fact. We will nonetheless try to
address this point shortly in Sect. 8. In the mean time, let us present an alternative ‘mild’ form
of the MNTE (also called a Duhamel solution in the PDE literature) which the semigroup
(ψt , t ≥ 0) more comfortably solves.

Lemma 6.1 The expectation semigroup (ψt [g], t ≥ 0) is the unique solution in
∏m

i=1 L
+∞(D×

V ) to the mild MNTE

ut (i, r , υ) = Ut [g](i, r , υ) +
∫ t

0
Us[(←

S + ←
F)ut−s](i, r , υ)ds, (6.8)

for t ≥ 0, 1 ≤ i ≤ m, r ∈ D, υ ∈ V and g ∈∏m
i=1 L

+∞(D × V ).

Before proceeding to the proof, let us remark that, in the statement of the theorem, we are
not working with (Ut , t ≥ 0) as a c0-semigroup on

∏m
i=1 L∞(D × V ), but a pointwise shift

operator. The reader will recall from the discussion preceding (5.10) that (Ut , t ≥ 0) cannot
be defined as such for

∏m
i=1 L∞(D × V ).

Proof of Lemma 6.1 First suppose we start with an emission of type i . By splitting the expec-
tation in the definition of ψt [g] at the first scattering or fission event, and remembering that
the time κD

r ,υ defined in (5.8) is deterministic, we have for r ∈ D and υ ∈ V ,

ψt [g](i, r , υ)

= e− ∫ t0 σ i (r+υs,υ)ds g(i, r + υt, υ)1(t<κD
r,υ )

+
∫ t∧κD

r,υ

0
σ i (r + υs, υ)e− ∫ s0 σ i (r+υu,υ)du
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×
{

σ i
s(r + υs, υ)

σ i (r + υs, υ)

∫
V

ψt−s[g](i, r + υs, υ ′)π i
s(r + υs, υ, υ ′)dυ ′

+ σ i
f(r + υs, υ)

σ i (r + υs, υ)

( m∑
j=1

∫
V

ψt−s[g]( j, r + υs, υ ′)π i, j
f (r + υs, υ, υ ′)dυ ′

+ 1(i=1)

m∑
j=�+1

m j (r + υs, υ)ψ[g]( j, r + υs, υ, t − s)

)}
ds

= e− ∫ t0 σ i (r+υs,υ)ds g(i, r + υt, υ)1(t<κD
r,υ )

+
∫ t∧κD

r,υ

0
e− ∫ s0 σ i (r+υu,υ)du(

←
Si + ←

Fi + σ i )ψt−s[g](i, r + υs, υ)ds, t ≥ 0.

Now appealing to an analogue of Lemma 1.2, Chapter 4 in [10] (see also the Appendix of
[16]), we can transfer the exponential integrals in each of the terms on the right-hand side
above to a potential term in the integral so that we end with

ψt [g](r , υ) = g(i, r + υt, υ)1(t<κD
r,υ )

+
∫ t∧κD

r,υ

0
(
←
Si + ←

Fi )ψt−s[g](i, r + υs, υ ′)ds, t ≥ 0, (6.9)

which agrees with (6.8), for 1 ≤ i ≤ �.

Following a similar approach, for � + 1 ≤ i ≤ m, r ∈ D, υ,∈ V , we also get

ψt [g](i, r , υ) = g(i, r + υt, υ)1(t<κD
r ,υ ) − λi

∫ t∧κD
r ,υ

0
ψt−s [g](i, r + υs, υ)ds

+
∫ t∧κD

r ,υ

0
λi

⎧⎨
⎩

�∑
j=1

∫
V

ψt−s [g](1, r + υs, υ′)π i, j
f (r + υs, υ, υ′)dυ′

⎫⎬
⎭ ds

= g(i, r + υt, υ)1(t<κD
r ,υ ) +

∫ t∧κD
r ,υ

0
(
←
S i + ←

F i )ψt−s [g](i, r + υs, υ ′)ds, t ≥ 0,

(6.10)

noting in particular that, for � + 1 ≤ i ≤ m,
←
Si ≡ 0. Now putting (6.9) and (6.10) together

we obtain (6.8).
For uniqueness, suppose that (ψ

(i)
t , t ≥ 0), i = 1, 2 are two bounded solutions to (6.8).

Define χt [g] := |ψ(1)
t [g] − ψ

(2)
t [g]| and note that, for i = 1, . . . ,m,

χt [g](i, r , υ) ≤
∫ t∧κD

r,υ

0
|(←
S + ←

F)ψ
(1)
t−s[g](i, r + υs, υ) − (

←
S + ←

F)ψ
(2)
t−s[g](i, r + υs, υ)|ds

≤
∫ t∧κD

r,υ

0
(
←
S + ←

F)|ψ(1)
t−s[g](i, r + υs, υ) − ψ

(2)
t−s[g](i, r + υs, υ)|ds

≤
∫ t∧κD

r,υ

0
(
←
S + ←

F)χt−s[g](i, r + υs, υ)ds

≤ C1

∫ t∧κD
r,υ

0

m∑
j=1

∫
V

χt−s[g]( j, r + υs, υ ′)dυ ′ds
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+ C2

∫ t∧κD
r,υ

0
χt−s[g](i, r + υs, υ)ds (6.11)

for some constantsC1,C2 ∈ (0,∞), where the final inequality follows on account of all cross
sections being uniformly bounded. Now define χ̄t [g] = sup1≤i≤m,r∈D,υ∈V χt [g](i, r , υ),
t ≥ 0. From (6.11) we have that

χ̄t [g] ≤
⎛
⎝C1

m∑
j=1

Vol(V ) + C2

⎞
⎠
∫ t

0
χ̄t−s[g]ds. (6.12)

Reversing the order of integration on the right-hand side above and then applying Grönwall’s
Lemma allows us to conclude that χt [g] ≡ 0, which shows uniqueness. ��

7 Multi-species Neutron RandomWalk and theMany-to-one Lemma

A second probabilistic perspective for analysing the MNTE is possible, seems rarely to have
been discussed in existing literature, if at all. This consists of collapsing the sum of the
operators

←
T + ←

S + ←
F to take the form

←
L +diag(β) for an appropriate choice of β, where

←
L

is the operator which is similar in structure to
←
T + ←

S. In essence, this transformation, which
we will describe more rigorously in a moment, heuristically postulates that the operator
←
T+ ←

S+ ←
F can be reinterpreted via a Feynman–Kac formula as the infinitesimal generator of

a single emissionwhich undergoes linear transport and scattering andwhich also accumulates
potential β.

To describe this more precisely, we need to introduce the notion of amulti-species neutron
random walk (MNRW). In the current setting this means a continuous-time typed random
walk by (Jt , Rt , ϒt ), t ≥ 0, on {1, . . . ,m}×(D×V )with additional cemetery state {†}when
it exits the physical domain D or an emission otherwise disappears from the system. The
MNRWis described by two fundamental quantities (which are functions of the current particle
type, spatial position and velocity). First, a scattering rate αi (r , υ), i ∈ {1, . . . ,m}, r ∈
D, υ, υ ′ ∈ V , such thatαi (r , υ) = λi , for i ∈ {�+1, . . . ,m}. Second, a scattering probability
kernel π i, j (r , υ, υ ′), i, j ∈ {1, . . . ,m}, r ∈ D, υ, υ ′ ∈ V . In the spirit of the description of
the MNBP, the MNRW is described as follows.

� When the MNRW is of type i ∈ {1, . . . , �} with configuration (r , υ), it moves in a
straight line with velocity υ from the point r until one of the following events occur:

• When the MNRW position moves out of D or e.g. it decomposes into an emission type
that is not counted, or is captured in a nucleus, it is instantaneously killed.

• A scattering event occurs and, accordingly, the MNRW keeps the same emission type
but makes an instantaneous change of velocity. If we write T i

s for the random time until
the next scattering occurs, then,

Pr(T i
s > t) = exp

{
−
∫ t

0
αi (r + υs, υ)ds

}
. (7.1)

• When scattering of an emission of type i ∈ {1, . . . , �} occurs at space-velocity (r , υ),
the new velocity is selected independently with probability π i (r , υ, υ ′)dυ ′.

� Otherwise, if � + 1 ≤ i ≤ m, then the emission remains motionless, i.e. the random
walk is dormant, holding its initial position r , but retaining the velocity υ as a mark. After
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an independent and exponentially distributed random time with rate λi , the particle transfers
it type j ∈ {1, . . . , �} and acquires a new velocity υ ′ with probability density π i (r , υ, υ ′).

We can associate to the MNRW the infinitesimal generator

←
Li f (r , v) := 1(i≤�)υ · ∇ f (i, r , υ)1(r∈D)

+ αi (r , υ)

m∑
j=1

∫
V
[ f ( j, r , υ ′) − f (i, r , υ)]π i, j (r , υ, υ ′)dυ ′. (7.2)

for f ∈ Dom(
←
L) = Dom(

←
T). We thus refer to the process as an

←
L-MNRW.

With the notion of the MNRW in hand, let us consider the following algebraic manipula-
tions. For i ∈ {1, . . . , �}, j ∈ {1, . . . ,m}, (r , υ) ∈ D × V and υ ′ ∈ V , define

αi (r , υ) = 1(1≤i≤�)σ
i
s(r , υ)

+ 1(1≤i≤�)σ
i
f(r , υ)

⎛
⎝ �∑

j=1

∫
V

π
i, j
f (r , υ, υ ′)dυ ′ + 1(i=1)

m∑
j=�+1

m j (r , υ)

⎞
⎠

+ 1(�+1≤i≤m)λi

�∑
j=1

∫
V

π
i, j
f (r , υ, υ ′)dυ ′, (7.3)

π i, j (r , υ, υ ′) = (αi (r , υ))−1
[
σ i
s(r , υ)π i

s(r , υ, υ ′)1(1≤i= j≤�)

+ σ i
f(r , υ)

(
π
i, j
f (r , υ, υ ′)1(1≤i, j≤�) + m j (r , υ)1(i=1, j>�))

)

+ λiπ
i, j
f (r , υ, υ ′)1(�+1≤i≤m, j≤�)

]
, (7.4)

β i (r , υ) = αi (r , υ) − 1(1≤i≤�)σ
i
s(r , υ) − 1(�+1≤i≤m)λi − 1(1≤i≤�)σ

i
f(r , υ). (7.5)

Note, in particular, that for each fixed 1 ≤ i ≤ m, r ∈ D and υ ∈ V , π i, j (r , υ, υ ′) is a
probability distribution on {1, . . . ,m} × V in the sense that

∑m
j=1

∫
V π i, j (r , υ, υ ′)dυ ′ = 1.

Note also that the assumption
∑�

j=1

∫
V π

i, j
f (r , υ, υ ′)dυ ′ ≥ 0 ensures that β i ≥ 0, for

1 ≤ i ≤ m.
With simple algebra, we may now identify

(
←
T + ←

S + ←
F) f (r , υ) = ←

L f (r , υ) + diag(β) f (r , υ) (7.6)

where, for f ∈ Dom(
←
A) (for which it was remarked earlier that it is equal to Dom(

←
T)), and

←
L is given by (7.2).

Heuristically speaking, we have algebraically gathered all of the operators into the
infinitesimal generator of an

←
L-MNRW and local potential β. This has the attraction of

leading us the aforementioned single emission representation of the solution to the MNTE
using a single-emission Feynman–Kac representation. Said another way, this means that one
would expect that, in the appropriate sense, the solution to the NTE to be represented in the
form

φt [g](i, r , υ) = E(i,r ,υ)

[
e
∫ t
0 β Js (Rs ,ϒs )dsg(Jt , Rt , ϒt )1(t<τD)

]
, (7.7)
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for t ≥ 0, 1 ≤ i ≤ m, r ∈ D, υ ∈ V . Here P(i,r ,v) for the law of the
←
L-MNRW starting from

a single emission with configuration (i, r , υ), and E(i,r ,v) for the corresponding expectation
operator.

Appealing to theMarkov property for (J , R, ϒ), it is not difficult to show that a semigroup
property similar to (6.7) holds. That is to say, for s, t ≥ 0, 1 ≤ i ≤ m, r ∈ D, υ ∈ V

φs+t [g](i, r , υ) = φs[φt [g]](i, r , υ).

Similarly to the case of (ψt [g], t ≥ 0), if we put g in the smaller space
∏m

i=1 C
+(D × V ))

then we also have limt→0 φt [g] = g in the pointwise sense, but otherwise strong continuity
at t = 0 is unclear. Note also that, since all cross sections are uniformly bounded, then
so is β (in all of its variables) by a constant, say β̄. Hence, for g ∈ ∏m

i=1 L∞(D × V ),
the φt [g] ≤ ‖g‖∞ exp(β̄t), t ≥ 0. As with the case of (ψt [g], t ≥ 0), the notion that
(φt [g], t ≥ 0), solves (5.5) is not a straightforward claim. Nonetheless, as one might expect,
these two expectation semigroups are equal and, we can see this by relating back to (6.8).

Indeed, by conditioning the expectation in the definition of φt [g] on the first scattering
event, and then appealing to the Lemma 1.2, Chapter 4 in [10] in a similar manner to what
was done in the proof of Lemma 6.1, one easily deduces the below result. In the the spatial
branching process literature, this would be called a ‘many-to-one’ lemma.

Lemma 7.1 For g ∈ ∏m
i=1 L

+∞(D × V ), the two expectation semigroups (φt [g], t ≥ 0) and
(ψt [g], t ≥ 0) agree.

8 Consolidating the ACPwith the Expectation Semigroup

We want to understand how the
∏m

i=1 L2(D × V ) semigroup (Vt , t ≥ 0) that represents the
unique solution to the Abstract Cauchy Problem (5.5) relates to the expectation semigroups
(ψt , t ≥ 0) and (φt , t ≥ 0) that offer two different stochastic representations to the mild
Eq. (6.8).

We start by noting that if g ∈ ∏m
i=1 L

+∞(D × V ), then, on account of the fact that
Vol(

∏m
i=1(D × V )) = (

∫
D×V drdυ)m < ∞, we also have g ∈∏m

i=1 L2(D × V ). Since it is
unclear whether (ψt [g], t ≥ 0) is well defined for all g ∈∏m

i=1 L2(D × V ), it makes makes
sense to consider the comparisonwith (Vt [g], t ≥ 0) (defined in (5.6)) for themore restrictive
choice g ∈∏m

i=1 L∞(D×V ). The natural setting in which to make the comparison is in the
space

∏m
i=1 L2(D × V ) as, by (6.4), ‖ψt [g]‖∞ < ∞ and the latter implies ‖ψt [g]‖2 < ∞,

again thanks to the fact that Vol(
∏m

i=1(D × V )) < ∞.

Theorem 8.1 If g ∈∏m
i=1 L

+∞(D × V ) then, for t ≥ 0, Vt [g] = ψt [g] on∏m
i=1 L2(D × V ),

i.e. ‖Vt [g] − ψt [g]‖2 = 0.

Before moving to its proof, the reader should take care to note that this does not imply that
(Vt , t ≥ 0) and (ψt , t ≥ 0) agree as c0-semigroups on

∏m
i=1 L2(D × V ). In particular,

the comparison between the two semigroup operators is only made on
∏m

i=1 L2(D × V ),
and (ψt , t ≥ 0) was not (and in fact cannot be) shown to demonstrate the strong continuity
property on

∏m
i=1 L2(D × V ).

Remark 8.1 If we consider Theorem 8.1 in light of Theorem 5.3, noting that (ψt [g], t ≥ 0)
is a uniformly bounded sequence, it is tempting to want to say that the leading eigenfunction
ϕ belongs to

∏m
i=1 L∞(D×V ). This is not the case necessarily and remains to be proved. In

the setting of a single type of emission, this will be demonstrated in the forthcoming paper
[14].
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Proof of Theorem 8.1 Consider the adjusted ACP with inhomogeneity given by

{
∂ut
∂t

= ←
Tut + (

←
S + ←

F)Vt [g]
u0 = g

(8.1)

By taking the difference of two solutions and invoking the uniqueness of the ACP in∏m
i=1 L2(D × V ) with initial data g = 0, we note that the solution to (8.1) is unique in∏m
i=1 L2(D × V ). However, on the one hand, it is straightforward to verify that

ut = et
←
T g +

∫ t

0
e(t−s)

←
T (

←
S + ←

F)Vs[g]ds, t ≥ 0,

solves (8.1). On the other hand, taking account of the fact that (Vt [g], t ≥ 0) solves (5.5), it
is also the case that

ut = Vt [g], t ≥ 0,

solves (8.1). Uniqueness thus tells us that on
∏m

i=1 L2(D × V ),

Vt [g] = Ut [g] +
∫ t

0
e(t−s)

←
T (

←
S + ←

F)Vs[g]ds = Ut [g] +
∫ t

0
Us[(←

S + ←
F)Vt−s[g]]ds, t ≥ 0,

where in the second equality we have reversed the direction of integration. In conclusion,
where as (ψt [g], t ≥ 0) solves (6.8) in the pointwise sense, (Vt [g], t ≥ 0) solves it in the∏m

i=1 L2(D × V ) sense.
On the other hand, we know that (ψt [g], t ≥ 0) is valued in

∏m
i=1 L2(D × V ), hence we

can consider,

‖ψt [g] − Vt [g]‖2 =
∥∥∥∥
∫ ∫ t

0
Us[(←

S + ←
F){ψt−s[g] − Vt−s[g]}]ds

∥∥∥∥
2
, t ≥ 0.

To this end, let us note that, for T > 0, and wt ∈∏m
i=1 L2(D × V ), t ≤ T , we have

‖
∫ t

0
wsds‖22 =

∫
D×V

(
t
∫ t

0
ws(r , υ)

ds

t

)2

drdυ

≤
∫
D×V

t2
(∫ t

0
ws(r , υ)2

ds

t

)
drdυ

≤ T
∫ t

0
‖ws‖22ds, t ≤ T , (8.2)

where in the first inequality we have used Jensen’s inequality and Cauchy–Schwarz in the
second. Moreover, for f ∈∏m

i=1 L2(D × V ),
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‖Us[ f ]‖22 =
m∑
i=1

∫
D×V

1(s<κD
r,υ ) f (i, r + υs, υ)2drdυ

≤
m∑
i=1

∫
D×V

f (i, r ′, υ)2dr ′dυ

= ‖ f ‖22 (8.3)

where the inequality follows as a consequence that, for eachυ, the integral
∫
D 1(s<κD

r,υ )v(i, r+
υs, υ)2dr integrates over a subdomain of D. Also, we have for the operator

←
S (and similarly

for
←
F), for f ∈∏m

i=1 L2(D × V ),

‖(←
S + diag(σs)) f ‖2 =

(
m∑
i=1

∫
D×V

(∫
V

f (i, r , υ ′)σs(r , υ)π i
s(r , υ, υ ′)dυ ′

)2
drdυ

)1/2

≤ C

(
m∑
i=1

∫
D×V

(∫
V

f (i, r , υ ′) × 1 dυ ′
)2

drdυ

)1/2

≤ C

(
m∑
i=1

Vol(V )

∫
D×V

∫
V

f (i, r , υ ′)2dυ ′dr
)1/2

≤ C max
1≤i≤m

Vol(V )‖ f ‖2, (8.4)

where the constant C appears by upper estimating the uniformly bounded cross sections and
in the second inequality we have used Cauchy-Schwarz.

It thus follows from (8.2), (8.3) and (8.4) that, for t ≤ T , writing ωt = ψt [g] − Vt [g],
t ≥ 0,

‖ωt‖22 =
∥∥∥∥
∫ t

0
Us[(←

S + ←
F)ωt−s]ds

∥∥∥∥
2

2

≤ T
∫ t

0
‖Us[(←

S + ←
F)ωt−s]‖22ds

≤ T
∫ t

0
‖(←
S + ←

F)ωt−s‖22ds

= T
∫ t

0
‖(←
S + ←

F + diag(σ ) − diag(σ ))ωs‖22ds

≤ T
∫ t

0

(
‖(←
S + diag(σs))ωs‖2 + ‖(←

F + diag(σf))ωs‖2 + ‖diag(σ )ωs‖2
)2

ds

≤ C ′
∫ t

0
‖ωs‖22ds, t ≤ T , (8.5)

where the constant C ′ comes from the fact that σ is uniformly bounded. The final inequality
in (8.5) together with Grönwall’s Lemma now tells us that ‖ωt‖2 = 0, for all t ≤ T . Since
T is chosen arbitrarily, it follows that (ψt [g], t ≥ 0) and (Vt [g], t ≥ 0) are indistinguishable
in
∏m

i=1 L2(D × V ). ��
The conclusion of this section is that it is not unreasonable to now understand the expecta-

tion semigroups (ψt [g], t ≥ 0) and (φt [g], t ≥ 0) for non-negative, bounded andmeasurable
g on D × V as the ‘solution’ to the MNTE in place of (Vt [g], t ≥ 0) for the same class of
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g. Indeed, the two agree both in
∏m

i=1 L2(D × V ) and hence (dr × dυ)-Lebesgue almost
everywhere.

The reader will also note that from the perspective ofMonte Carlo simulation, the expecta-
tion semigroup (φt [g], t ≥ 0) carries the potential to be exploited in a way that (ψt [g], t ≥ 0)
cannot. More precisely, where branching trees are difficult to simulate and are not conve-
nient for Monte Carlo computational parallelisation, random walks are. This simple idea is
explored in greater detail in the accompanying paper to this one [5].

9 Asymptotic Behaviour of theMNTE: Proof of Theorem 5.3

In this section we return to the fundamental notion that the solution to the MNTE in the form
(5.5) is described by its leading asymptotics for large times. That is to say, we give the proof
of Theorem 5.3. Our proof follows closely ideas found in Chapters 4 and 5 of [25].

Recall that the quantities αi , π i, j , β i , i, j = 1, . . . ,m were defined in (7.3), (7.4) and
(7.5) respectively. Theywere arranged into the operator

←
A = ←

T+←
S+←

F, such that Dom(
←
A) =

Dom(
←
T), described in (5.9).

For j = 1, . . . ,m, let us introduce the operators Ki, j on L2(D × V ) by

Ki, j f (r , υ) = αi (r , υ)

∫
V

f (r , υ ′)π i, j (r , υ, υ ′)dυ ′.

These are integral operators, which take the form

Ki, j f (r , υ) =
∫
V

f (r , υ ′)ki, j (r , υ, υ ′)dυ ′

on D × V × V , where

ki, j (r , υ, υ ′) = σ i
sπ

i
s(r , υ, υ ′) + σ i

fπ
i, j
f (r , υ, υ ′). (9.1)

A similar computation to (8.4) also shows that Ki, j g ∈ L2(D × V ) when g ∈ L2(D × V ).
Then from (5.1) and (7.4), taking care to note the use of the indicators for the inclusion of
terms for different indices, we can write, for 1 ≤ i ≤ �, for g ∈ Dom(

←
A),

←
Ai g(i, r , υ) = ←

Ti g(i, r , υ) − σ i (r , υ)g(i, r , υ)

+
�∑

j=1

Ki, j g( j, r , υ) + 1(i=1)σ
1(r , υ)

m∑
j=�+1

m j (r , υ)g( j, r , υ) (9.2)

Moreover, for � + 1 ≤ i ≤ m,

←
Ai g(i, r , υ) = −λi g(i, r , υ) +

�∑
j=1

Ki, j g( j, r , υ) (9.3)

With this notation, write

T = diag(
←
T1 − σ 1, . . . ,

←
T� − σ�),

� = diag(λ�+1, . . . , λm),

K◦ = (Ki, j ), for i, j = 1, . . . , �,

M = (Mi, j ), where Mi, j = σ 1(r , υ)m j (r , υ)1(i=1), for i = 1, . . . , �, j = � + 1, . . . ,m,

K◦ = (Ki, j ), for i = � + 1, . . . ,m, j = 1, . . . , �.
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Then the abstract Cauchy problem (5.5) on
∏m

j=1 L2(D × V ) may now be written in matrix
form

∂

∂t
ut = Aut , t ≥ 0.

where A = T + K and

T =
[
T 0
0 −�

]
and K =

[
K◦ M
K◦ 0

]
.

The matrix T is an operator on
∏m

i=1 L2(D × V )) with domain

Dom(T ) =
�∏

i=1

Dom(
←
Ti ) ×

m∏
i=�+1

L2(D × V )

which generates the strongly continuous semigroup (UT
t , t ≥ 0) given by

UT
t [g] =

{
e− ∫ t0 σ i (r+υs,υ)dsUt [g] 1 ≤ i ≤ �

e−λi t � + 1 ≤ i ≤ m,
(9.4)

for g ∈∏m
i=1 L2(D × V )).

In order to prove Theorem 5.3, we consider a different operator that is related to A as
follows. Consider the eigenvalue problem

Aϕ = λϕ, λ > −λ�+1, (9.5)

for ϕ ∈∏m
i=1 L2(D × V ). Write

ϕ◦(·) = (ϕ(1, ·), . . . , ϕ(�, ·)) and ϕ◦(·) = (ϕ(� + 1, ·), . . . , ϕ(m, ·))
so that ϕ is the concatenation (ϕ◦, ϕ◦). Separating this into prompt and delayed initial emis-
sions, it can be written as

Tϕ◦ + K◦ϕ◦ + Mϕ◦ = λϕ◦

λIm−�ϕ◦ = −�ϕ◦ + K◦ϕ◦,

where Im−� is the (m − �) × (m − �) identity matrix. Substituting the second equation into
the first, we get

ϕ◦ = (λIm−� + �)−1K◦ϕ◦ (9.6)

and

(λI� − T)−1K◦(λ)ϕ◦ = ϕ◦ where K◦(λ) = K◦ + M(λIm−� + �)−1K◦. (9.7)

Our strategy is to show that there exists a λc such that (λI� − T)−1K◦(λ) has a leading
eigenvalue 1, and that this is equivalent to λc being an eigenvalue of A. The tool we shall use
to do this is the Krein–Rutman theorem, which we recall here for convenience in a format
that is appropriate for our use; c.f. [6, p. 286].

Theorem 9.1 (Krein–Rutman theorem) Let X be a Banach space and suppose it contains a
convex cone C such that C − C := {h = f − g : f , g ∈ C} is dense in X. Suppose L is a
positive compact linear operator on X such that r(L) := sup{|λ| : λ ∈ �(L)} > 0, where
�(L) is the spectrum of the operatorL. Then r(L) is an eigenvalue ofLwith a corresponding
positive eigenfunction.
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Our proof of Theorem 5.3 requires the following intermediary result below. Before stating
it, the reader is reminded that the eigenvalues λ�+1, . . . , λm are arranged so that λ�+1 is the
smallest. Thus, the condition λ > −λ�+1 ensures that K◦(λ) is well defined. In particular,
(λIm−� + �) is invertible. We will use the obvious meaning for I�.

Proposition 9.1 Under the assumptions of Theorem 5.3, for each λ > −λ�+1, r
(
(λI� −

T)−1K◦(λ)
)
is the leading eigenvalue of (λI� − T)−1K◦(λ) with a corresponding positive

eigenfunction ϕ◦
λ.

Proof In relation to the Krein–Rutman theorem stated above, our Banach space is X =∏m
i=1 L2(D × V ) and the corresponding cone is C =∏m

i=1 L
+
2 (D × V ). It is clear that this

cone is convex, and since every L2 function can be written as the difference of its positive
and negative parts, C satisfies the assumptions of the theorem. We now break the rest of the
proof into a number of steps which are stated with a proof immediately afterwards.

Step 1 First we claim that (λI� − T)−1K◦(λ) is a compact operator.
Fix 1 ≤ i, j ≤ m. By Fubini’s Theorem we have that r �→ Ki, j f (r , υ) is measurable for

g ∈ L2(D × V ). The operators Ki, j are also integral operators and therefore are continuous
on L2(V ) and compact. The assumed piecewise continuity of the cross sections σ i

sπ
i
s and

σ i
fπ

i, j
f and the boundedness of the domain V is sufficient to ensure that r �→ Ki, j · (r , ·)

is continuous under the operator norm on L2(V ) and hence {Ki, j · (r , ·) : r ∈ D} forms a
relatively compact set in the space of linear operators on L2(V ). With these properties, the
mapping r �→ Ki, j · (r , ·), for r ∈ D, is said to be regular. One similarly (but more easily)
shows that r �→ Mi, j · (r , ·) is regular for r ∈ D as operators on L2(V ). By linearity, this
implies that, for 1 ≤ i, j ≤ �, the mapping r �→ K ◦(λ)i, j is also regular. Hence, by [25,
Theorem 4.1], (λI� − T)−1K◦(λ) is a compact operator.

Remark 9.1 It is precisely at the application of [25, Theorem 4.1] that we need the convexity
of the domain D, as this is required within the aforesaid result.

Step 2 Next we show that (λI� − T)−1K◦(λ) is a positive irreducible operator.
Positivity is a straightforward consequence of the assumptions on the operators Ki, j and

the form of the semigroup defined in (9.4). For irreducibility, it is enough to show that there
exists an integer n ≥ 1 such that [(λI� −T)−1K◦(λ)]n f > 0 for each f ∈∏�

i=1 L
+
2 (D×V ).

To this end, note that the entries of K◦(λ)(λI� − T)−1K◦(λ) satisfy

[K◦(λ)(λI� − T)−1K◦(λ)]i, j ≥ [K◦(λI� − T)−1K◦]i, j =
�∑

k=1

Ki,k(λI� − T)−1
k,kKk, j ,

and thatKi,k(λI�−T)−1
k,kKk, j is an integral operator L2(D×V ) → L2(D×V ), 1 ≤ i, j ≤ �,

whose kernel is greater than or equal to∫ ∞

0
e−λ+σ k ( r−r ′

t ))tki,k

(
r ′, r − r ′

t
, v′′
)
kk, j

(
r , v,

r − r ′

t

)
dt

tn
, (9.8)

where σ k(v) = infr∈D{σ k(r , υ)}. Note, in order to produce this estimate, the reader will
note that (λI� − T)−1

k,k is the resolvent of (UT
t , t ≥ 0) in (9.4). If we choose the index k as

in the assumptions (5.11) and (5.12) then the lower bound (9.8) ensures that [K◦(λ)(λI� −
T)−1K◦(λ)]i, j is positivity improving. It follows that [(λI� − T)−1K◦(λ)]2 is also positivity
improving and therefore (λI� − T)−1K◦(λ) is irreducible.

Step 3We claim that there exists a non-negative eigenfunction 0 �= ϕλ ∈∏�
i=1 L2(D×V )

for the operator (λI� − T)−1K◦(λ) with eigenvalue that agrees with r
(
(λI� − T)−1K◦(λ)

)
.
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We use de Pagter’s Theorem, cf. [25, Theorem 5.7], which says that the spectral radius of
an irreducible operator is strictly positive; that is to say r

(
(λI� − T)−1K◦(λ)

)
> 0. In turn

the Krein–Rutman theorem 9.1 states that r
(
(λI� −T)−1K◦(λ)

)
is thus an eigenvalue for the

operator (λI� − T)−1K◦(λ) with a corresponding non-negative eigenfunction ϕ◦
λ. ��

Proof of Theorem 5.3 (i) In looking for a non-negative eigenfunction of
←
A with real eigen-

value, our earlier discussion tells us we must equivalently look for a solution to (9.5) and
hence (9.7). This is equivalent to finding a real value λc such that r

(
(λcI�−T)−1K◦(λc)

) = 1.
We again achieve this goal in steps.

Step 1We want to show that

lim
λ↓−λ�+1

r
(
(λI� − T)−1K◦(λ)

) = ∞. (9.9)

Recall that (λI� − T)−1K◦(λ) is compact and irreducible so by [25, Theorem 5.13] we
have the comparison of the spectral radii,

r
(
(λI� − T)−1K◦(λ)

) ≥ r
(
(λI� − T)−1�[K◦(λ)]), (9.10)

where �[K◦(λ)] is the matrix whose entries are given by �[K◦(λ)] = diag(K◦(λ)1,1, . . . ,

K◦(λ)�,�).
Suppose� is an �×�whose diagonal entries are given by operators�i on L2(D×V ), for

i = 1, . . . , �. If μ ∈ σ(�1), the spectrum of �1, then (μI� − �)1,1 is not invertible, and so
μI� − � is also not invertible. Hence μ ∈ σ(�), the spectrum of �, and so σ(�1) ⊂ σ(�).
Applying this argument to the diagonal matrix (λI� − T)−1�K◦(λ), we have that

σ([(λI� − T)−1�K◦(λ)]1,1) ⊂ σ((λI� − T)−1�K◦(λ)) (9.11)

and so

r
(
(λI� − T)−1�K◦(λ)

) ≥ r
([(λI� − T)−1�K◦(λ)]1,1

)
≥ r
(
(λ − ←

T1 − σ 1)−1�[K◦(λ)]1,1
)
. (9.12)

where, in the final inequality, we have used (9.11).
Next recall that (λI� − T)−1K◦(λ)ϕ◦ = ϕ◦ where K◦(λ) = K◦ + M(λIm−� + �)−1K◦.

Similar reasoning to the proofs of previous steps shows us that (λ− ←
T1 − σ 1)−1�[K◦(λ)]1,1

and (λ − ←
T1 − σ 1)−1σ 1

fm
�+1(K◦)1,�+1 are both compact and irreducible operators, so that

r
(
(λ − ←

T1 − σ 1)−1�[K◦(λ)]1,1
) ≥ r

(
(λ − ←

T1 − σ 1)−1σ 1
fm

�+1(K◦)1,�+1
)

λ + λ�+1
> 0,(9.13)

where the first inequality follows from [25, Theorem 5.13] and the second follows from [25,
Theorem 5.7]. Combining (9.10), (9.12) and (9.13), we have

r
(
(λI� − T)−1K◦(λ)

) ≥ r
(
(λ − ←

T1 − σ 1)−1σ 1
fm

�+1(K◦)1,�+1
)

λ + λ�+1
> 0,

with the latter term tending to ∞ as λ → −λ�+1.
Step 2 Next we need to show that

lim
λ→∞ r

(
(λI� − T)−1K◦(λ)

)
< 1
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The spectral radius r
(
(λI� − T)−1K◦(λ)

)
as is K◦(λ). Using the standard operator norm

‖·‖2 on∏�
i=1 L2(D × V ),

‖K◦(λ)g‖2 = ‖M (diag((λ + λ�+1)
−1, . . . , (λ + λm)−1))K◦g‖2

and, hence, by inspection, K◦(λ) is decreasing with λ and tends to K◦ as λ → ∞. Note,
moreover, that for all g ∈∏�

i=1 L2(D × V ),

(λI� − T)−1K◦(λ)g =
∫ ∞

0
e−λt 〈 f ,UT

t [K◦(λ)g]〉dt,

showing similarly that (λI� − T)−1K◦(λ) is decreasing in λ. Due to [25, Lemma 8.1] (note
that it is not difficult to see from the proof of that lemma that that the order of the operators
there can be reversed), we have

lim
λ→∞ r

(
(λI� − T)−1K◦(λ)

)
< 1.

Step 3 In this penultimate step, we show that we have found a non-negative function of
←
A, with eigenvalue λc.

We have the existence of a λc > −λ�+1 such that r((λI� − T)−1K◦(λ)) = 1. That is to
say, thanks to Proposition 9.1, we have found ϕ◦ = ϕ◦

λc
which solves (9.7), which in turn,

thanks to (9.6) gives us that ϕ◦ = (λIm−� + �)−1K◦ϕ◦
λc

so that with the concatenation

ϕ = (ϕ◦
λc

, (λcIm−� + �)−1K◦ϕ◦
λc

) ≥ 0

we have the eigensolution

Aϕ = λcϕ.

which is equivalent to
←
Aϕ = λcϕ.

Step 4 For the final step we need to show that λc is the leading real eigenvalue of
←
A, i.e.

λc = s(A) := sup{Re(λ) : λ ∈ σ(A)},
where σ(A) is the spectrum of the operator A or equivalently of

←
A. Moreover we need to

show that it is simple and isolated.
We first note that since we have shown that λc ∈ σ(A), in particular that the spectrum

is non-empty, it follows from [25, Theorem 5.2] that s(A) ∈ σ(A). Now suppose that
λc �= s(A) so that, in particular, λc < s(A). Then, thanks again to [25, Lemma 8.1],
r
(
(s(A)I� − T)−1K◦(s(A))

)
< 1 and so 1 is not an eigenvalue of (s(A)I� − T)−1K(s(A)).

Said another way, this means that s(A) is not an eigenvalue of A (and hence of
←
A), leading to

a contradiction. Algebraic and geometric simplicity of λc follows from [6, Remark 12] and
[6, Theorem 7(iii)], respectively. ��

Before turning to the proof of Theorem 5.3 (ii), we must state another intermediary result
which is translated from a general setting of Banach operators to our current situation; cf.
[25, Theorem 4.1] and [1, p. 359, Theorem 22].

Proposition 9.2 Under the assumptions of Theorem 5.3

σ(A) ∩ {Re(λ) : λ > s(T )}
consists of isolated eigenvalues with finite multiplicities, where s(T ) := sup{Re(λ) : λ ∈
σ(T )}.
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Note the Theorem from which the above proposition is derived in [1, p. 359, Theorem 22]
requires as a sufficient condition that (λI −T )−1K is compact, where I is anm×m identity
matrix. This fact easily follows from the conclusion in Step 1 of the proof of Proposition 9.1.

Finally we can complete the proof of Theorem 5.3.

Proof of Theorem 5.3 (ii) It is also easy from the structure of T that−λ�+1, . . . ,−λm , belong
to its spectrum.Moreover, for all i = 1, . . . , �, s(

←
Ti −σ i ) = −∞. Since−λ�+1 is the largest

of these eigenvalues, and λc > −λ�+1 (from part (i) of Theorem 5.3), Proposition 9.2 tells
us that σ(A) ∩ {λ : Re(λ) > −λ�+1} contains at least one isolated eigenvalue with finite
(algebraic) multiplicity (i.e. the lead eigenvalue λc).

Suppose we enumerate the eigenvalues in σ(A) ∩ {λ : Re(λ) > −λ�+1} in decreasing
order by the set {λ(1), . . . , λ(n)} (noting from earlier that we have at least λ(1) = λc and
λ(n) > −λ�+1). Then, from [6, p. 265], for g ∈ Dom(

←
A), we have

Vt [g] =
n∑

k=1

eλ(k)t

⎛
⎝order(λ(k))−1∑

m=0

tm�m
k [g]

⎞
⎠+ O(e−λ�+1t ),

as t → ∞, where �k are projectors in Dom(
←
A).

We are really only interested in the projection onto the eigenfunction that we know exists
in the real part of the spectrum. The projector �1 can be written in the form

�1[g] = 〈g, ϕ̃〉ϕ, g ∈
m∏
i=1

L2(D × V ),

where ϕ̃ is the left-eigenfunction with eigenvalue λc, which is guaranteed to exist by exam-
ining the preceding arguments for

←
A and re-applying them for

→
A := →

T + →
S + →

F, the adjoint
operator of

←
A. Hence, we have the following leading order expansion,

Vt [ f ] = eλct ( f , ϕ̃)ϕ + O(e[λ(2)∨(−λ�+1)]t ).

Note that since, according to Proposition 9.2, λc is isolated, there exists a ε > 0 such that
λ(2) ∨ (−λ�+1) < λc − ε, where we understand λ(2) = −∞ if n = 1. The statement of part
(ii) of Theorem 5.3 now follows. ��
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!h
Abbreviation Description Introduced

NTE Neutron transport equation (2.1), (2.6)
MNTE Multi-species neutron transport equation (5.1), (5.2)
MNBP Multi-species neutron branching process §6
MNRW Multi-species neutron random walk §7
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