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A Lifetime of Excursions Through
Random Walks and Lévy Processes

Loïc Chaumont and Andreas E. Kyprianou

Abstract We recall the many highlights of Professor Ron Doney’s career sum-
marising his main contributions to the theory of random walks and Lévy processes.

Keywords Ron Doney · Random walks · Lévy processes

Through this volume, it is with the greatest of admiration that we pay tribute to
the mathematical achievements of Professor Ron Doney. His career has spanned
generations of probabilists and his work continues to play a significant role in the
community. In addition to the major contributions he has made in the theory of
random walks and Lévy processes, Ron is equally appreciated for the support he has
given to younger colleagues. The sentiment and desire to organise both a workshop
and this volume to honour his lifetime achievements surfaced naturally a couple of
years ago at the Lévy process meeting in Samos, as it became apparent that Ron was
approaching his 80th birthday. A huge appreciation of his standing in the community
meant it was very easy to find willing participation in both projects. As a prelude to
this hommage à Ron, let us spend a little time reflecting on his career and his main
achievements.

Ron grew up in working-class Salford in the North West of Greater Manchester at
a time when few leaving school would attend university. Having a veracious appetite
for reading, Ron spent long hours as a schoolboy in Manchester Central Library
where he cultivated his intellect. Coupled with an obvious talent for mathematics,
he found his way to the University of Durham. There he studied Mathematics as an
undergraduate and continued all the way to a PhD under the supervision of Harry
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Reuter, graduating in 1964 aged just 24. Ron’s thesis entitled ‘Some problems on
random walks’ was no doubt inspired by the shift in interests of Harry Reuter from
analysis to probability. At the time of his PhD, all doctoral activity in probability
theory in the UK was essentially supervised either by Harry Reuter or David
Kendall. Because of this, Reuter and Kendall formed StAG, the Stochastic Analysis
Group, which would meet regularly under the auspices of the London Mathematical
Society. From a very young age, Ron thus had the opportunity to engage with his
contemporaries. Back in the 1960s they were precious few in number compared
with the vast numbers that make up the probability PhD community today in the
UK, and included the likes of Rollo Davidson, David Williams, Daryl Daley, David
Vere-Jones, Nick Bingham, John Hawkes and John Kingman.

The time that Ron completed his PhD coincided with a period of expansion in the
UK higher education system which proved to offer numerous opportunities during
the first years of his academic career. From his PhD, Ron was successfully appointed
directly to a lectureship at the University of East Anglia. He spent the academic year
1964–1965 there, but quickly moved on to lectureship at Imperial College London
in 1965, coinciding with the appointment of Harry Reuter to a chair there. During
this early phase, Ron had a slow start to his publication record. His first two papers
[1, 2] concern random walks in three dimensions, followed by a paper concerning
higher dimensional version of the renewal theory [3].

By 1970, Ron had moved back to his native Manchester. He joined the then
world-famous Manchester-Sheffield School of Probability and Statistics, formally
taking up a lectureship at Manchester’s Statistical Laboratory. At this point in
time he moved away from his initial work on random walks to the theory of
Galton-Watson processes and, what were then called, general branching processes
(today they would rather come under the heading of Crump-Mode-Jagers (CMJ)
processes). Although seemingly a change in direction, this was a very natural move
for anyone who harboured interests in random walks and renewal processes. Indeed,
whilst the theory of branching processes has become significantly more exotic in
recent years, the interplay of these two fields still remains highly pertinent today.
Concurrently with the work of Peter Jagers, Ron produced a cluster of articles
through to the mid 1970s looking at growth properties of CMJ processes in which,
among other things, he demonstrated the central role that renewal processes play;
[4–12]. As early as 1972, one finds computations in his work which echo what
would later become known as the method of spines; [6]. Here, Ron also made
contributions to underlying functional equations and the so-called x log x condition,
which precede a number of similar results in the setting of more general spatial
models such as branching random walks. The papers, [8, 9] with Nick Bingham,
are also interesting to reflect upon in terms of how collaborations of the day were
conducted. In a period of no internet or email, and with the probability community in
the UK being very few in number and thinly spread, Ron maintained communication
with Nick through hand-written and mailed letters during the epoch of their
overlapping interests. In a process that has largely been replaced by googling, this
involved sharing sample calculations, summaries of articles they had found and
broader mathematical ideas. In the case of Ron and Nick, this led not only two these
two papers, but calculations that lay dormant, surfacing over a decade later in [13].
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Ron Doney in 1972, Manchester

By 1977, Ron was back to random walks, albeit now in one dimension. As a
passive observer, it appears that there was an awakening in Ron’s understanding
of how many problems still remained open for general one-dimensional random
walks, particularly when looking at them in terms of excursions. Aside from some
works on Markov chains and Brownian motion, [14–16], Ron’s work focused
mostly on random walks through the 1980s. The prominence of his contributions
lay with his use of Spitzer’s condition as well as the problem of characterising the
moments and tail behaviour of ladder variables in relation to assumptions on the
underlying random walk; [17–24]. He began a growing interest in arcsine laws and
random walks in the domain of attraction of stable laws as well as stable processes
themselves; [13, 25–27]. Most notable of the latter is a remarkable paper on the
Wiener-Hopf factorisation of stable processes [27], the significance of which would
become apparent many years later after 2010 thanks to continued work of a number
of authors, most notably Alexey Kuznetsov. It was also during the 1980s that Ron
took two sabbaticals in Canada. The first stay was in Vancouver in 1980–1981,
visiting Cindy Greenwood, which also allowed him the chance to connect with
Sidney Port, Ed Perkins and John Walsh. For the second, he visited George O’Brien
in York University, Toronto in 1988–1989.

Moving into the 1990s, many things changed for Ron’s research, least of all,
his rate of publication, [28–51]. The previous work he had done on ladder heights
and Spitzer’s condition culminated in one of Ron’s most important and widely
appreciated results: For random walks (and shortly after for Lévy processes), he
proved that Spitzer’s condition was equivalent to the convergence of the positivity
probability, [40, 50]. Ron found himself catapulted into a rapidly growing and much
better organised global community of probabilists with shared interests to his own.
Although he largely continued publishing in the context of random walks, it was
during this decade that Ron became increasingly exposed to the theory of Lévy
processes.

The 1990s was also the decade that saw Ron begin to jointly co-author many
more of his papers. There were a number of factors at play here. During the
first twenty five years of Ron’s career it was quite common for academics to
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Ron Doney’s departmental photo as it appeared on the entrance to the Mathematics Tower in the
1990s

author papers alone, least of all because, within the field of probability theory,
probabilists were few and far between. The 1990s was the decade of globalisation
and the prevalence of email and internet made international connectivity and
communication much easier. But perhaps most importantly in this respect was Ron’s
collaboration with a young French mathematician by the name of Jean Bertoin,
which dramatically opened up his relationship with the Parisian (and more generally
the French) school of probability for the rest of his career.

In the early 1990s, Ron had made contact with Jean Bertoin, who was very
interested in random walks, but also in capturing and expanding on the less-well
explored theory of Lévy processes. It was Ron’s first paper on Lévy processes, [30],
which had caught the interest of Jean and they began sending each other preprints.
They first met in person in Luminy during one of the Journées de Probabilités
in 1992 organised by Azéma and Yor. At the time, Ron was interested in a paper
by Keener on the simple RW conditioned to stay positive that had been published
that year. Although others had written on the topic of conditioned random walks, it
was the joint work of Jean and Ron [39] that ensued, which formalised a robust
approach to the notion of such conditionings and led the way for a number of
articles on conditioned processes, particularly in the setting of Lévy processes.
Reflecting on earlier remarks about how the theory of random walks and branching
processes are so closely intertwined, it is worth noting that the paper [39] ended up
playing a hugely influential role in the theory of branching random walks, branching
Brownian motion and (growth) fragmentation processes, where conditioning of the
spine in the spirit of their work proved to be instrumental in understanding the so-
called derivative martingale.

The collaboration between Jean and Ron was relatively intensive for a period of
3–4 years with six of their seven co-authored papers, [36–39, 41, 44, 50], appearing
between 1994 and 1997. During this period, Jean would visit Ron regularly, often
working at his home in the village of Whaley Bridge, South East of Manchester.
Their daily working routine would be interlaced with regular hikes out into the Peak
District which lies just beyond Ron’s back door.
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Through his collaboration with Jean Bertoin, Ron also started to visit Paris more
often. There, he became acquainted with a new generation of young probabilists
who were being guided towards the theory of Lévy processes. Loïc Chaumont was
the first PhD student of Jean who also became a long-time collaborator of Ron.
Their collaboration spans 8 papers to date, [51–58], in which they cover the study
of perturbed Brownian motion, distributional decompositions of the general Wiener-
Hopf factorisation and Lévy processes conditioned to stay positive. It is perhaps
the latter, [55, 56], for which they are best known as co-authors, building on the
PhD thesis of Loïc for conditioned Lévy processes that had, in turn, grown out of
the formalisation for conditioned random walks that Ron had undertaken with Jean
Bertoin. It was also during the mid 1990s that Larbi Alili, a contemporary of Loïc
and PhD student of Marc Yor, became the postdoc of Ron on a competitively funded
EPSRC project; cf. [49, 54, 59]. Philippe Marchal, another gifted young probabilist
from the Paris school, was also a regular visitor to Manchester during this period.
Another young French probabilist whose work greatly impressed Ron at the turn
of the Millennium was Vincent Vigon. Aside from Ron’s admiration of Vincent’s
unexpected emergence from Rouen rather than Paris, what impressed him the most
was that Vigon had established a necessary and sufficient condition, in the form of
an explicit integral test, for when a Lévy process of unbounded variation with no
Gaussian component creeps; in particular, this result showed that Ron’s previous
conjecture on this matter, which had been assimilated from the long-term behaviour
of random walks, was wrong.

The new Millennium brought about yet further change for Ron. His publication
rate went up yet another gear, with almost as many articles published during this
decade as in the previous two. This was all thanks to his increased exposure to
collaborative partnership as well as the inevitable depth of understanding of random
walks and Lévy processes he had acquired; [44, 52–56, 59–84]. It was also during
this decade that Ron began an extremely fruitful collaboration with Ross Maller,
publishing 10 papers together; [44, 63, 64, 68, 70, 75, 76, 79, 81, 83, 85]. On a visit
to the UK, Ross was advised by Charles Goldie to go and spend time in Manchester
visiting Ron. He did and they immediately started producing material. In a number
of important papers [64, 68, 83], Ross and Ron first investigated the asymptotic
behaviour of random walks and Lévy processes at deterministic times and at first
passage times across a fixed level. In another series of remarkable works [44, 76,
79, 81] they considered first passage times across power law boundaries of random
walks, Lévy processes and their reflected version at the infimum. In particular they
obtained necessary and sufficient conditions for these first passage times to have
finite moments.

By now, there was widespread renewed interest in the theory of fluctuations
for Lévy processes and the study of their overshoots had become very popular.
Two articles by Ron, written with Phil Griffin [65, 71] bear witness to this. It was
also during this time that Ron collaborated with Andreas Kyprianou and wrote
one of his most cited articles on the so-called quintuple law, [77]. The latter
gives a distributional identity for a suite of five important and commonly used path
functionals of a Lévy process at first passage over a fixed level in terms of its ladder
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Taken on the 24th July 2009 at the 8th International Conference on Lévy processes, held in Angers,
Ron Doney sits with Marc Yor to celebrate Marc’s 60th birthday

potentials and Lévy measure. In essence, the result constitutes a ‘disintegration’ of
the Wiener–Hopf factorisation. Ron also began a fruitful collaboration with Mladen
Savov during this period; [83, 86, 87]. Mladen, who came to Manchester from
Bulgaria, proved to be the most accomplished of Ron’s several PhD students in
the field of probability theory.

A very important event of this decade for Ron was his invitation to give a lecture
at the famous Saint-Flour summer school in 2005. It was arguably the first major
recognition of Ron’s career by the mathematical community. For Ron, this also
presented the opportunity to write a book on fluctuation theory for Lévy processes,
[80], which remains an important reference in the domain to date. Ron found himself
centre-stage as part of a huge community of researchers now working specifically in
the field of random walks and Lévy processes. He spoke at many venues, including
a rapid succession of workshops and congresses devoted to Lévy processes and was
elected as a Fellow of the Institute of Mathematical Statistics in 2006. Moreover,
in 2005, Manchester hosted the 4th international workshop on Lévy processes. This
was a huge undertaking given the large number of attendees, but nonetheless an
important moment that asserted the importance of Manchester’s probability group
and, in particular, Ron’s identity as a highly accomplished researcher in this field.

The next decade, 2010–2020, saw an invitation by the Bernoulli Society for Ron
to give a prestigious plenary lecture at the 2013 Stochastic Processes and their
Applications congress in Boulder, Colorado. Together with his lectures at Saint
Flour, this stands as quite an important recognition of his achievements from the
international mathematical community. Technically speaking, Ron retired in 2006,
however, as a special case given the quality of his research output, Manchester had
gladly continued his appointment beyond his 67th birthday, right through until 2014,
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on a purely research basis. Now in his seventies, one might say Ron worked at a
slower rate, however, although publishing in lower volume, one sees remarkable
crowning quality in his work with an exceptional number of his papers appearing in
the top two probability journals Annals of Probability and Probability Theory and
Related Fields; [57, 58, 85–99].

These works are marked by two projects in which Ron revisited old obsessions.
The first is a cluster of papers, co-authored with Víctor Rivero. Ron went back to
the first passage times of Lévy processes and obtained sharp results for the local
behaviour of their distribution, [93, 95, 96]. The second concerns improving the
classical Gnedenko and Stone local limit theorems. In collaboration with Francesco
Caravenna [98], Ron obtained necessary and sufficient conditions for random walks
in the domain of attraction of a stable law to satisfy the strong renewal theorem.
This work, as well as [99], solve a long-standing problem which dates back to the
1960s. This second achievement is the one that Ron himself quietly admits he is
most proud of, and rightly so.

As Ron’s career wound down, he had the pleasure of watching the probability
group in Manchester dramatically grow in size. With 10 members around the time
of his final retirement, this was something he had dreamed of for many years. Ron
was appointed in Manchester at a time that it stood as a global stronghold for
probability and statistics. The Manchester Statistical Laboratory was half of the very
unique two-university Manchester-Sheffield School of Probability and Statistics,
the brain child of Joe Gani. With changing times the Manchester-Sheffield School
disbanded and, aside from Fredos Papangelou, who joined in 1973, Ron was the
only other probabilist who remained in the Statistical Laboratory for a number of
years to come. The 1980s were hard times for British academia, but the growth
in the international community around Ron’s research interests through the 1990s
was mirrored by the growth of the probability group in Manchester. The turn of
the Millennium saw the merger of the University of Manchester (more formally, the
Victoria University of Manchester) with UMIST (University of Manchester Institute
of Science and Technology), which opened the door to new opportunities. Many
of the probability appointments in Manchester since then clearly reflect the strong
association of Manchester with the theory of random walks and Lévy processes;
something that is directly tethered to Ron’s towering achievements as a researcher.

As alluded to at the start of this article, Ron is appreciated as much for
his encouragement of young researchers as he is for the mathematics that he
has produced. Just as the authors of this article see Ron as one of the major
influencing characters in their own careers, both through academic mentorship and
mathematical discourse, so do many others among our community, both in the UK
and around the globe. There are simply too many to list here, moreover, an attempt
to do so would carry the risk that we forget names. But it should be said that, when
the idea of holding a workshop for Ron’s 80th birthday surfaced, this was carried
forward with gusto by an emotional surge of support from the many who belong to
the aforementioned list.

As a humble researcher who cares little for the limelight, Ron did not always
get the honours he deserved. Towards his retirement, the number of researchers
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in probability theory exploded exponentially and Ron’s contribution to a classical
field, which now lies in the DNA of many modern research endeavours, is often
overlooked. One goal of this volume and the accompanying conference is to try to
correct this.

We hope the contents of this volume will stimulate Ron to think about his next
piece of work. He currently has 99 publications and we are all keenly awaiting his
100th!

References

1. Doney, R.A.: Recurrent and transient sets for 3-dimensional random walks. Z. Wahrschein-
lichkeitstheorie und Verw. Gebiete 4, 253–259 (1965)

2. Doney, R.A.: Hits on an axis by the simple random walk in three dimensions. Z. Wahrschein-
lichkeitstheorie und Verw. Gebiete 5, 146–155 (1966)

3. Doney, R.A.: An analogue of the renewal theorem in higher dimensions. Proc. Lond. Math.
Soc. (3) 16, 669–684 (1966)

4. Doney, R.A.: The progeny of a branching process. J. Appl. Probab. 8, 407–412 (1971)
5. Doney, R.A.: Age-dependent birth and death processes. Z. Wahrscheinlichkeitstheorie und

Verw. Gebiete 22, 69–90 (1972)
6. Doney, R.A.: A limit theorem for a class of supercritical branching processes. J. Appl. Probab.

9, 707–724 (1972)
7. Doney, R.A.: On a functional equation for general branching processes. In: J. Appl. Probab.

10, 198–205 (1973)
8. Bingham, N.H., Doney, R.A.: Asymptotic properties of supercritical branching processes. I.

The Galton-Watson process. Adv. Appl. Probab. 6, 711–731 (1974)
9. Bingham, N.H., Doney, R.A.: Asymptotic properties of supercritical branching processes. II.

Crump-Mode and Jirina processes. Adv. Appl. Probab. 7, 66–82 (1975)
10. Doney, R.A.: On single- and multi-type general age-dependent branching processes. J. Appl.

Probab. 13(2), 239–246 (1976)
11. Doney, R.A.: A note on the subcritical generalized age-dependent branching process. J. Appl.

Probab. 13(4), 798–803 (1976)
12. Doney, R.A.: A note on a condition satisfied by certain random walks. J. Appl. Probab. 14(4),

843–849 (1977)
13. Bingham, N.H., Doney, R.A.: On higher-dimensional analogues of the arc-sine law. J. Appl.

Probab. 25(1), 120–131 (1988)
14. Doney, R.A.: Letter to the editor: “On conditional passage time structure of birthdeath

processes” [J. Appl. Probab. 21(1), 10–21 (1984); MR0732667 (85k:60119)] by U. Sumita”. J.
Appl. Probab. 21(3), 673–674 (1984)

15. Doney, R.A.: A note on some results of Schuh. J. Appl. Probab. 21(1), 192–196 (1984)
16. Doney, R.A., Grey, D.R.: Some remarks on Brownian motion with drift. J. Appl. Probab. 26(3),

659–663 (1989)
17. Doney, R.A.: Moments of ladder heights in random walks. J. Appl. Probab. 17(1), 248–252

(1980)
18. Doney, R.A.: Spitzer’s condition for asymptotically symmetric random walk. J. Appl. Probab.

17(3), 856–859 (1980)
19. Doney, R.A.: On the exact asymptotic behaviour of the distribution of ladder epochs. Stoch.

Process. Appl. 12(2), 203–214 (1982)
20. Doney, R.A.: On the existence of the mean ladder height for random walk. Z. Wahrsch. Verw.

Gebiete 59(3), 373–382 (1982)



A Lifetime of Excursions Through Random Walks and Lévy Processes 9

21. Doney, R.A.: A note on conditioned random walk. J. Appl. Probab. 20(2), 409–412 (1983)
22. Doney, R.A.: On the asymptotic behaviour of first passage times for transient random walk.

Probab. Theory Relat. Fields 81(2), 239–246 (1989)
23. Doney, R.A.: A large deviation local limit theorem. Math. Proc. Camb. Philos. Soc. 105(3),

575–577 (1989)
24. Doney, R.A.: Last exit times for random walks. Stoch. Process. Appl. 31(2), 321–331 (1989)
25. Doney, R.A.: Conditional limit theorems for asymptotically stable random walks. Z. Wahrsch.

Verw. Gebiete 70(3), 351–360 (1985)
26. Doney, R.A.: On the maxima of random walks and stable processes and the arc-sine law. Bull.

Lond. Math. Soc. 19(2), 177–182 (1987)
27. Doney, R.A.: On Wiener-Hopf factorisation and the distribution of extrema for certain stable

processes. Ann. Probab. 15(4), 1352–1362 (1987)
28. Doney, R.A.: A bivariate local limit theorem. J. Multivariate Anal. 36(1), 95–102 (1991)
29. Doney, R.A., O’Brien, G.L.: Loud shot noise. Ann. Appl. Probab. 1(1), 88–103 (1991)
30. Doney, R.A.: Hitting probabilities for spectrally positive Lévy processes. J. Lond. Math. Soc.

(2) 44(3), 566–576 (1991)
31. Doney, R.A., Goldie, C.M.: Letter to the editor: “Autoregressive processes and first-hit proba-

bilities for randomized random walks” [J. Appl. Probab. 28(2), 347–359 (1991); MR1104571
(93a:60100)] by R. Epstein-Feldman”. J. Appl. Probab. 29(1), 244 (1992)

32. Doney, R.A., O’Brien, G.L.: Thickened renewal processes. Stoch. Process. Appl. 43(1), 1–8
(1992)

33. Doney, R.A., Greenwood, P.E.: On the joint distribution of ladder variables of random walk.
Probab. Theory Relat. Fields 94(4), 457–472 (1993)

34. Doney, R.A.: A path decomposition for Lévy processes. Stoch. Process. Appl. 47(2), 167–181
(1993)

35. Doney, R.A.: Some results involving the maximum of Brownian motion. J. Appl. Probab. 30(4),
805–818 (1993)

36. Bertoin, J., Doney, R.A.: On the local behaviour of ladder height distributions. J. Appl. Probab.
31(3), 816–821 (1994)

37. Bertoin, J., Doney, R.A.: Cramér’s estimate for Lévy processes. Statist. Probab. Lett. 21(5),
363–365 (1994)

38. Bertoin, J., Doney, R.A.: On conditioning random walks in an exponential family to stay
nonnegative. In: Séminaire de Probabilités, XXVIII. Lecture Notes in Mathematics, vol. 1583,
pp. 116–121. Springer, Berlin (1994)

39. Bertoin, J., Doney, R.A.: On conditioning a random walk to stay nonnegative. Ann. Probab.
22(4), 2152–2167 (1994)

40. Doney, R.A.: Spitzer’s condition and ladder variables in random walks. Probab. Theory Relat.
Fields 101(4), 577–580 (1995)

41. Bertoin, J., Doney, R.A.: Some asymptotic results for transient random walks. Adv. Appl.
Probab. 28(1), 207–226 (1996)

42. Doney, R.A.: Increase of Lévy processes. Ann. Probab. 24(2), 961–970 (1996)
43. Doney, R.A.: One-sided local large deviation and renewal theorems in the case of infinite mean.

Probab. Theory Relat. Fields 107(4), 451–465 (1997)
44. Bertoin, J., Doney, R.A., Maller, R.A.: Passage of Lévy processes across power law boundaries

at small times. Ann. Probab. 36(1), 160–197 (2008)
45. Doney, R.A., Yor, M.: On a formula of Takács for Brownian motion with drift. J. Appl. Probab.

35(2), 272–280 (1998)
46. Doney, R.A.: Some calculations for perturbed Brownian motion. In: Séminaire de Probabilités,

XXXII. Lecture Notes in Mathematics, vol. 1686, pp. 231–236. Springer, Berlin (1998)
47. Doney, R.A., Warren, J., Yor, M.: Perturbed Bessel processes. In: Séminaire de Probabilités,

XXXII. Lecture Notes in Mathematics, vol. 1686, pp. 237–249. Springer, Berlin (1998)
48. Doney, R.A.: The Martin boundary and ratio limit theorems for killed random walks. J. Lond.

Math. Soc. (2) 58(3), 761–768 (1998)



10 L. Chaumont and A. E. Kyprianou

49. Alili, L., Doney, R.A.: Wiener-Hopf factorization revisited and some applications. Stoch.
Stoch. Rep. 66(1–2), 87–102 (1999)

50. Bertoin, J., Doney, R.A.: Spitzer’s condition for random walks and Lévy processes. Ann. Inst.
H. Poincaré Probab. Statist. 33(2), 167–178 (1997)

51. Chaumont, L., Doney, R.A.: Pathwise uniqueness for perturbed versions of Brownian motion
and reflected Brownian motion. Probab. Theory Relat. Fields 113(4), 519–534 (1999)

52. Chaumont, L., Doney, R.A.: Some calculations for doubly perturbed Brownian motion. Stoch.
Process. Appl. 85(1), 61–74 (2000)

53. Chaumont, L., Doney, R.A., Hu, Y.: Upper and lower limits of doubly perturbed Brownian
motion. Ann. Inst. H. Poincaré Probab. Statist. 36(2), 219–249 (2000)

54. Alili, L., Chaumont, L., Doney, R.A.: On a fluctuation identity for random walks and Lévy
processes. Bull. Lond. Math. Soc. 37(1), 141–148 (2005)

55. Chaumont, L., Doney, R.A.: On Lévy processes conditioned to stay positive. Electron. J.
Probab. 10(28), 948–961 (2005)

56. Chaumont, L., Doney, R.A.: Corrections to: “On Lévy processes conditioned to stay positive”
[Electron J. Probab. 10(28), 948–961 (2005); MR2164035]. Electron. J. Probab. 13(1), 1–4
(2008)

57. Chaumont, L., Doney, R.A.: Invariance principles for local times at the maximum of random
walks and Lévy processes. Ann. Probab. 38(4), 1368–1389 (2010)

58. Chaumont, L., Doney, R.A.: On distributions determined by their upward, space-time Wiener-
Hopf factor. J. Theor. Probab. 33(2), 1011–1033 (2020)

59. Alili, L., Doney, R.A.: Martin boundaries associated with a killed random walk. Ann. Inst. H.
Poincaré Probab. Statist. 37(3), 313–338 (2001)

60. Doney, R.A.: A local limit theorem for moderate deviations. Bull. Lond. Math. Soc. 33(1),
100–108 (2001)

61. Doney, R.A.: Fluctuation theory for Lévy processes. Lévy processes, pp. 57–66. Birkhäuser,
Boston (2001)

62. Doney, R.A., Nakhi, Y.B.: Perturbed and non-perturbed Brownian taboo processes. Ann. Inst.
H. Poincaré Probab. Statist. 37(6), 725–736 (2001)

63. Doney, R.A., Maller, R.A.: Random walks crossing curved boundaries: a functional limit
theorem, stability and asymptotic distributions for exit times and positions. Adv. Appl. Probab.
32(4), 1117–1149 (2000)

64. Doney, R.A., Maller, R.A.: Stability of the overshoot for Lévy processes. Ann. Probab. 30(1),
188–212 (2002)

65. Doney, R.A., Griffin, P.S.: Overshoots over curved boundaries. II. Adv. Appl. Probab. 36(4),
1148–1174 (2004)

66. Doney, R.A., Marchal, P.: A third arc-sine theorem. Bull. Lond. Math. Soc. 35(4), 536–540
(2003)

67. Doney, R.A.: Small-time behaviour of Lévy processes. Electron. J. Probab. 9(8), 209–229
(2004)

68. Doney, R.A., Maller, R.A.: Stability and attraction to normality for Lévy processes at zero and
at infinity. J. Theor. Probab. 15(3), 751–792 (2002)

69. Doney, R.A.: Stochastic bounds for Lévy processes. Ann. Probab. 32(2), 1545–1552 (2004)
70. Doney, R.A., Maller, R.A.: Moments of passage times for Lévy processes. Ann. Inst. H.

Poincaré Probab. Statist. 40(3), 279–297 (2004)
71. Doney, R.A., Griffin, P.S.: Overshoots over curved boundaries. Adv. Appl. Probab. 35(2), 417–

448 (2003)
72. Doney, R.A., Zhang, T.: Perturbed Skorohod equations and perturbed reflected diffusion

processes. Ann. Inst. H. Poincaré Probab. Statist. 41(1), 107–121 (2005)
73. Doney, R.A.: Tanaka’s construction for random walks and Lévy processes. In: Séminaire de

Probabilités XXXVIII. Lecture Notes in Mathematics, vol. 1857, pp. 1–4. Springer, Berlin
(2005)



A Lifetime of Excursions Through Random Walks and Lévy Processes 11

74. Doney, R.A.: Some excursion calculations for spectrally one-sided Lévy processes. In:
Séminaire de Probabilités XXXVIII. Lecture Notes in Mathematics, vol. 1857, pp. 5–15.
Springer, Berlin (2005)

75. Doney, R.A., Maller, R.A.: Cramér’s estimate for a reflected Lévy process. Ann. Appl. Probab.
15(2), 1445–1450 (2005)

76. Doney, R.A., Maller, R.A.: Passage times of random walks and Lévy processes across power
law boundaries. Probab. Theory Relat. Fields 133(1), 57–70 (2005)

77. Doney, R.A., Kyprianou, A.E.: Overshoots and undershoots of Lévy processes. Ann. Appl.
Probab. 16(1), 91–106 (2006)

78. Bryn-Jones, A., Doney, R.A.: A functional limit theorem for random walk conditioned to stay
non-negative. J. Lond. Math. Soc. (2) 74(1), 244–258 (2006)

79. Doney, R.A., Maller, R.A.: Almost sure relative stability of the overshoot of power law
boundaries. J. Theor. Probab. 20(1), 47–63 (2007)

80. Doney, R.A.: Fluctuation Theory for Lévy Processes. Lecture Notes in Mathematics, vol. 1897.
Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, 6–23 July
2005, Edited and with a foreword by Jean Picard, pp. x+147. Springer, Berlin (2007)

81. Doney, R.A., Maller, R.A.: Curve crossing for random walks reflected at their maximum. Ann.
Probab. 35(4), 1351–1373 (2007)

82. Doney, R.A.: A note on the supremum of a stable process. In: Stochastics vol. 80(2–3). IMS
Lecture Notes–Monograph Series (2008), pp. 151–155

83. Doney, R.A., Maller, R.A., Savov, M.S.: Renewal theorems and stability for the reflected
process. Stoch. Process. Appl. 119(4), 1270–1297 (2009)

84. Doney, R.A.: Asymptotic analysis of random walks: heavy-tailed distributions [book review of
MR2424161]. J. Am. Statist. Assoc. 104(488), 1714 (2009)

85. Doney, R.A., Klüppelberg, C., Maller, R.A.: Passage time and fluctuation calculations for
subexponential Lévy processes. Bernoulli 22(3), 1491–1519 (2016)

86. Doney, R.A., Savov, M.S.: The asymptotic behavior of densities related to the supremum of a
stable process. Ann. Probab. 38(1), 316–326 (2010)

87. Doney, R.A., Savov, M.S.: Right inverses of Lévy processes. Ann. Probab. 38(4), 1390–1400
(2010)

88. Doney, R.A., Korshunov, D.A.: Local asymptotics for the time of first return to the origin of
transient random walk. Statist. Probab. Lett. 81(9), 1419–1424 (2011)

89. Doney, R.A., Jones, E.M.: Conditioned random walks and Lévy processes. Bull. Lond. Math.
Soc. 44(1), 139–150 (2012)

90. Doney, R.A.: Local behaviour of first passage probabilities. Probab. Theory Relat. Fields
152(3–4), 559–588 (2012)

91. Bertoin, J., et al.: Lévy processes at Saint-Flour. Probability at saint-Flour, pp. viii+476.
Springer, Heidelberg (2012)

92. Doney, R.A., Jones, E.M.: Large deviation results for random walks conditioned to stay
positive. Electron. Commun. Probab. 17(38), 11 (2012)

93. Doney, R.A., Rivero, V.: Asymptotic behaviour of first passage time distributions for Lévy
processes. Probab. Theory Relat. Fields 157(1–2), 1–45 (2013)

94. Doney, R.A., Vakeroudis, S.: Windings of planar stable processes. In: Séminaire de Probabilités
XLV. Lecture Notes in Mathematics, vol. 2078, pp. 277–300. Springer, Cham (2013)

95. Doney, R.A., Víctor M. Rivero. Asymptotic behaviour of first passage time distributions for
subordinators. Electron. J. Probab. 20(91), 28 (2015)

96. Doney, R.A., Rivero, V.: Erratum to: asymptotic behaviour of first passage time distributions
for Lévy processes [MR3101839]. Probab. Theory Relat. Fields 164(3–4), 1079–1083 (2016)

97. Doney, R.A., Griffin, P.S.: Cramér’s estimate for the reflected process revisited. Ann. Appl.
Probab. 28(6), 3629–3651 (2018)

98. Caravenna, F., Doney, R.A.: Local large deviations and the strong renewal theorem. Electron.
J. Probab. 24, Paper No. 72, 48 (2019)

99. Doney, R.A.: The remainder in the renewal theorem. Electron. Commun. Probab. 25, Paper
No. 5, 8 (2020)



Path Decompositions of Perturbed
Reflecting Brownian Motions

Elie Aïdékon, Yueyun Hu, and Zhan Shi

Abstract We are interested in path decompositions of a perturbed reflecting
Brownian motion (PRBM) at the hitting times and at the minimum. Our study
relies on the loop soups developed by Lawler and Werner (Probab Theory Relat
Fields 4:197–217, 2004) and Le Jan (Ann Probab 38:1280–1319, 2010; Markov
Paths, Loops and Fields. École d’été Saint-Flour XXXVIII 2008. Lecture Notes in
Mathematics vol 2026. Springer, Berlin, 2011), in particular on a result discovered
by Lupu (Mém Soc Math Fr (N.S.) 158, 2018) identifying the law of the excursions
of the PRBM above its past minimum with the loop measure of Brownian bridges.

Keywords Perturbed reflecting Brownian motion · Path decomposition ·
Brownian loop soup · Poisson–Dirichlet distribution

1 Introduction

Let (Bt , t ≥ 0) be a standard one-dimensional Brownian motion. Let

Lt := lim
ε→0

1

ε

∫ t

0
1{0<Bs≤ε} ds , a.s.,

E. Aïdékon
Fudan University, Shanghai, China

LPSM, Sorbonne Université Paris VI, Paris, France

Institut Universitaire de France, Paris, France
e-mail: elie.aidekon@upmc.fr

Y. Hu (�)
LAGA, Université Sorbonne Paris Nord, Villetaneuse, France
e-mail: yueyun@math.univ-paris13.fr

Z. Shi
LPSM, Sorbonne Université Paris VI, Paris, France
e-mail: zhan.shi@upmc.fr

© Springer Nature Switzerland AG 2021
L. Chaumont, A. E. Kyprianou (eds.), A Lifetime of Excursions Through
Random Walks and Lévy Processes, Progress in Probability 78,
https://doi.org/10.1007/978-3-030-83309-1_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83309-1_2&domain=pdf
mailto:elie.aidekon@upmc.fr
mailto:yueyun@math.univ-paris13.fr
mailto:zhan.shi@upmc.fr
https://doi.org/10.1007/978-3-030-83309-1_2


14 E. Aïdékon et al.

be the local time at time t and position 0. We take a continuous version of (Lt , t ≥
0). Let μ ∈ R\{0} be a fixed parameter. Consider the perturbed reflecting Brownian
motion (PRBM)

Xt := |Bt | − μLt , t ≥ 0. (1.1)

The PRBM family contains two important special members: Brownian motion (μ =
1; this is seen using Lévy’s identity), and the three-dimensional Bessel process (μ =
−1; seen by means of Lévy’s and Pitman’s identities).

The PRBM, sometimes also referred to as the μ-process and appearing in the
literature as the limiting process in the winding problem for three-dimensional
Brownian motion around lines (Le Gall and Yor [12]), turns out to have remarkable
properties such as the Ray–Knight theorems (Le Gall and Yor [11], Werner [24],
Perman [18], Perman and Werner [19]), and Lévy’s arc sine law (Petit [20],
Carmona, Petit and Yor [4]). The process can also be viewed as (non-reflecting)
Brownian motion perturbed by its one-sided maximum (Davis [6], Perman and
Werner [19], Chaumont and Doney [5]). As explained on page 100 of Yor [25],
these simply formulated and beautiful results were proved for the PRBM because
of the scaling property and the strong Markov property of (|B|, L) via excursion
theory.

We study in this paper path decompositions of the PRBM. Apart from their own
interests, these decompositions can be used to understand the dual of general Jacobi
stochastic flows which will be given in a forthcoming work, extending the work
of Bertoin and Le Gall [2] who proved that the Jacobi flows of parameters (0, 0)
and (2, 2) are dual with each other. These stochastic flows are connected to other
important probabilistic objets in the study of population genetics such as flows of
Fleming–Viot processes. Technically, our study of the PRBM often relies on the
powerful tool of loop soups (Lawler and Werner [10], Le Jan [13, 14]), and in
particular, on a result discovered by Lupu [15] identifying the law of the excursions
of the PRBM above its past minimum with the loop measure of Brownian bridges.
The point of view via loop soups has two main advantages: (i) its nice properties
under rerooting allows to shed light on or extend some previously known results,
see Proposition 2.6 or Theorem 5.3, and (ii) thanks to the independence structure
in the Poisson point process representation of the loop measure, it helps to make
arguments of conditioning rigorous: for instance, we show in Lemma 3.1 a path
decomposition for PRBM, originated from Perman [18].

Our path decompositions focus on two families of random times of a recurrent
PRBM: first hitting times (Sect. 3), and times at which the PRBM reaches its past
minimum (Sect. 4). To illustrate the kind of results we have obtained, let us state two
examples. The first one, Theorem 3.2, yields in the special case μ = 1 the classical
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Williams’ Brownian path decomposition theorem (Revuz and Yor [21], Theorem
VII.4.9). The second, Theorem 4.3, in the special case μ = 1, states as follows:

Theorem 4.3 (special case μ = 1) Consider B up to the first time that L reaches
1, time-changed to remove its excursions above zero. We decompose this path
at the minimum into the post- and time reversed pre- minimum processes. The
two processes are independent and distributed as X1 and X2, time-changed to
remove their excursions above level H 1,2, where X1 and X2 are independent three-
dimensional Bessel processes and H 1,2 is the last level at which the sum of the total
local times of X1 and X2 equals 1.

The rest of this paper is organized as follows.

• Section 2: we recall Lupu [15]’s connection between the PRBM and the
Brownian loop soup, and some known results on the PRBM. We also study the
minimums of the PRBM considered up to its inverse local times (the process
J defined in (2.4)). The main (new) result in this section is Proposition 2.6, a
description of the jumping times of J ;

• Section 3: we study the path decomposition at the hitting time of the PRBM.
We prove that conditioned on its minimum, the PRBM can be split into four
independent processes (see Fig. 1) and describe their laws in Theorems 3.2
and 3.3;

• Section 4: we study the path decomposition at the minimum of the PRBM
considered up to its inverse local time. Theorem 4.3 deals with the recurrent case
and describes the laws of the post- and time reversed pre- minimum processes.
A similar decomposition is obtained in Proposition 4.4 for the transient case (see
Fig. 2);

Fig. 1 The four processes in Theorem 3.2
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Fig. 2 Under P(−δ), Xt → ∞ a.s.

• Section 5: we extend the perturbed Bessel process studied in Doney, Warren and
Yor [7] to the perturbed Bessel process with a positive local time at 0. The main
result in this section (Theorem 5.3) gives an extension of Theorem 2.2 of Doney,
Warren and Yor [7].

2 Preliminaries

This section is divided into three subsections. We recall in Sect. 2.1 Lupu [15]’s
description (Proposition 2.2) on the excursions of the PRBM above its past
minimum in terms of Brownian loop soup, and we collect the intensities of various
Poisson point processes in Lemma 2.3. In Sect. 2.2, we study the minimum process
J (x) defined in (2.4) and describe the jump times of J (·) by means of Poisson–
Dirichlet distributions in Proposition 2.6. Finally in Sect. 2.3 we recall some known
results on the PRBM. We also introduce some notations (in particular Notations 2.1
and 2.11) which are used throughout the paper.

2.1 The Brownian Loop Soup

Lupu [15] showed a connection between perturbed reflecting Brownian motions
and the Brownian loop soup. We rely on [15] and review this connection in this
subsection. Let K denote the set of continuous functions γ : [0, T (γ )] → R with
some T (γ ) ∈ (0,∞), endowed with a metric dK(γ, γ̂ ) := | log T (γ )− log T (γ̂ )|+
sup0≤s≤1 |γ (sT (γ ))− γ̂ (sT (γ̂ ))| for any γ, γ̂ ∈ K. A rooted loop is an element γ
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of K such that γ (0) = γ (T (γ )) (Section 3.1, p. 29). On the space of rooted loops,
one defines the measure (Definition 3.8, p.37)

μloop(dγ ) :=
∫
t>0

∫
x∈R

P t
x,x(dγ )pt (x, x)dx

dt

t
,

where P t
x,x is the distribution of the Brownian bridge of length t from x to x, and

pt(x, x) is the heat kernel pt(x, x) = 1√
2πt

. An unrooted loop is the equivalence

class of all loops obtained from one another by time-shift, and μ∗
loop denotes the

projection of μloop on the space of unrooted loops. For any fixed β > 0, the
Brownian loop soup of intensity measure β is the Poisson point process on the
space of unrooted loops with intensity measure given by βμ∗

loop (Definition 4.2, p.
60). We denote it by Lβ .

For any real q , we let γ −q denote the loop (γ (t)−q, 0 ≤ t ≤ T (γ )). We write
min γ , resp. max γ for the minimum, resp. maximum of γ . If γ denotes a loop, the
loop γ rooted at its minimum is the rooted loop obtained by shifting the starting
time of the loop to the hitting time of min γ . Similarly for the loop γ rooted at its
maximum. By an abuse of notation, we will often write γ for its range. For example
0 ∈ γ means that γ visits the point 0.

Similarly to Lupu [15], Section 5.2, define

Q↑
β := {min γ, γ ∈ Lβ}, Q↓

β := {maxγ, γ ∈ Lβ }.

For any q ∈ Q↑
β and γ ∈ Lβ such that min γ = q , define e↑q as the loop γ −q rooted

at its minimum. It is an excursion above 0. Define similarly, for any q ∈ Q↓
β , e↓q as

the excursion below 0 given by γ − q rooted at its maximum. The point measure
{(q, e

↓
q ), q ∈ Q↓

β} has the same distribution as {−(q, e↑q ), q ∈ Q↑
β}.

Notation 2.1 For δ > 0, let Pδ (resp. P(−δ)) be the probability measure under which
(Xt)t≥0 is distributed as the PRBM (|Bt | − μLt )t≥0 defined in (1.1) with μ = 2

δ

(resp. μ = − 2
δ
).

Note that under Pδ, (Xt)t≥0 is recurrent whereas under P(−δ), limt→∞Xt = +∞
a.s. Define

It := inf
0≤s≤t Xs, t ≥ 0.

We will use the same notation {(q, e↑X,q), q ∈ Q↑
X} to denote

• under Pδ: the excursions away from R × {0} (q is seen as a real number) of the
process (It , Xt − It );

• under P(−δ): the excursions away from R×{0} of the process (Ît , Xt − Ît ) where
Ît := infs≥t Xs .
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The following proposition is for example Proposition 5.2 of [15]. One can also
see it from [11] or [1] (together with Proposition 3.18 of [15]).

Proposition 2.2 (Lupu [15]) Let δ > 0. The point measure {(q, e↑X,q), q ∈ Q↑
X}

is distributed under Pδ , respectively P
(−δ), as {(q, e↑q ), q ∈ Q↑

δ
2
∩ (−∞, 0)}, resp.

{(q, e
↑
q ), q ∈ Q↑

δ
2
∩ (0,∞)}.

Actually, Proposition 5.2 [15] states the previous proposition in a slightly
different way. In the same way that standard Brownian motion can be constructed
from its excursions away from 0, Lupu shows that one can construct the perturbed
Brownian motions from the Brownian loop soup by “gluing” the loops of the
Brownian loop soup rooted at their minimum and ordered by decreasing minima.

We close this section by collecting the intensities of various Poisson point
processes. It comes from computations of [15].

Denote by n the Itô measure on Brownian excursions and n+ (resp. n−) the
restriction of n on positive excursions (resp. negative excursions). For any loop γ ,
let �0

γ := limε→0
∫ T (γ )

0 1{0<γ (t)<ε}dt be its (total) local time at 0.
In the following lemma, we identify a Poisson point process with its atoms.

Lemma 2.3 Let δ > 0.

(i) The collection {(q, e↑q ), q ∈ Q↑
δ
2
} is a Poisson point process of intensity

measure δda ⊗ n+(de).
(ii) The collection {(q, e↓q ), q ∈ Q↓

δ
2

such that q + e
↓
q ⊂ (0,∞)} is a Poisson

point process of intensity measure δ1{a>0}da ⊗ 1{min e>−a}n−(de).
(iii) The collection {min γ, γ ∈ L δ

2
such that 0 ∈ γ } is a Poisson point process of

intensity measure δ
2|a|1{a<0}da.

(iv) Let m > 0. The collection {�0
γ , γ ∈ L δ

2
such that min γ ∈ [−m, 0], 0 ∈ γ } is

a Poisson point process of intensity measure 1{�>0} δ
2�e

−�/2md�.
(v) The collection {(�0

γ , γ ), γ ∈ L δ
2

such that 0 ∈ γ } is a Poisson point process

of intensity measure δ
2 1{�>0} d�

�
P
∗((Bt , 0 ≤ t ≤ τB� ) ∈ dγ ), where τB� :=

inf{s > 0 : Ls > �} denotes the inverse of the Brownian local time, and
P
∗((Bt , 0 ≤ t ≤ τB� ) ∈ •) is the projection of P((Bt , 0 ≤ t ≤ τB� ) ∈ •) on

the space of unrooted loops.

Proof Item (i) is Proposition 3.18, p. 44 of [15]. Item (ii) follows from the equality

in distribution {(q, e
↓
q ), q ∈ Q↓

δ
2
} (law)= {−(q, e↑q ), q ∈ Q↑

δ
2
} and (i). Item (iii) comes

from (i) and the fact that n+(r ∈ e) = 1
2r for any r > 0 where, here and in the

sequel, e denotes a Brownian excursion. We prove now (iv). The intensity measure
is given by

δ

∫ 0

−m
n+
(
�
|a|
e ∈ d�, |a| ∈ e

)
da
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where �re denotes the local time at r of the excursion e. Under n+, conditionally on
|a| ∈ e, the excursion after hitting |a| is a Brownian motion killed at 0. Therefore

n+
(
�
|a|
e ∈ d�

∣∣ |a| ∈ e
) = P|a|(L|a|

T B
0

∈ d�) = 1

2|a|e
− �

2|a| d�,

where under P|a|, the Brownian motionB starts at |a| and L
|a|
T B

0
denotes its local time

at position |a| up to T B
0 := inf{t > 0 : Bt = 0}, and the last equality follows from

the standard Brownian excursion theory. Hence the intensity measure is given by

δ

∫ 0

−m
1

4a2 e
− �

2|a| d� da = δ

2�
e−�/2m d�.

Finally, (v) comes from Corollary 3.12, equation (3.3.5) p. 39 of [15]. ��

2.2 The Poisson–Dirichlet Distribution

For a vector D = (D1,D2, . . .) and a real r , we denote by rD the vector
(rD1, rD2, . . .). We recall that for a, b > 0, the density of the gamma (a, b)

distribution is given by

1

	(a)ba
xa−1e−

x
b 1{x>0},

and the density of the beta (a, b) distribution is

	(a + b)

	(a)	(b)
xa−1(1 − x)b−11{x∈(0,1)}.

We introduce the Poisson–Dirichlet distribution, relying on Perman, Pitman
and Yor [17]. Let β > 0. Consider a Poisson point process of intensity measure
β
x
e−x1{x>0} dx and denote by 
(1) ≥ 
(2) ≥ . . . its atoms. We can see them also as

the jump sizes, ordered decreasingly, of a gamma subordinator of parameters (β, 1)
up to time 1. The sum T :=∑

i≥1 
(i) has a gamma (β, 1) distribution. The random
variable on the infinite simplex defined by

(P(1), P(2), . . .) :=
(

(1)

T
,

(2)

T
, . . .

)

has the Poisson–Dirichlet distribution with parameter β [9], and is independent of
T ([16], also Corollary 2.3 of [17]).
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Consider a decreasingly ordered positive vector (ξ(1), ξ(2), . . .) of finite sum∑
i≥1 ξ(i) < ∞. A size-biased random permutation, denoted by (ξ1, ξ2, . . .), is

a permutation of (ξ(1), ξ(2), . . .) such that, conditionally on ξ1 = ξ(i1), . . . , ξj =
ξ(ij ), the term ξj+1 is chosen to be ξ(k) for k /∈ {i1, . . . , ij } with probability

ξ(k)∑
i≥1 ξ(i)−(ξ1+...+ξj ) . The indices (ij , j ≥ 1) can be constructed by taking i.i.d.

exponential random variables of parameter 1, denoted by (εi, i ≥ 1), and by
ordering N increasingly with respect to the total order k1 ≤ k2 if and only if
ξ(k1)/εk1 ≥ ξ(k2)/εk2 (Lemma 4.4 of [17]). A result from McCloskey [16] says that
the (Pi, i ≥ 1) obtained from the (P(1), P(2), . . .) by size-biased ordering can also
be obtained via the stick-breaking construction:

Pi = (1 − Ui)

i−1∏
j=1

Uj

where Ui, i ≥ 1 are i.i.d. with law beta (β, 1). Let

Dβ := (D1,D2, . . .) (2.1)

be the point measure in [0, 1] defined by Di :=∏i
j=1 Uj , for i ≥ 1.

Lemma 2.4 Let m > 0, β > 0 and �β be a Poisson point process of intensity

measure β
a

1{a>0}da. We denote by a(m)1 > a
(m)
2 > . . . the points of �β belonging to

[0,m]. Then
(
a
(m)
i , i ≥ 1

)
is distributed as mDβ .

Proof For 0 ≤ a ≤ 1,

P
( 1

m
a
(m)
1 ≤ a

) = exp
(−

∫ m

am

β

x
dx
) = aβ.

Therefore it is a beta (β, 1) distribution. Conditionally on {a(m)1 = a}, the law of �β

restricted to [0, a(m)1 ) is the one of �β restricted to [0, a). By iteration we get the
Lemma. ��

Denote by L(t, r), r ∈ R and t ≥ 0, the local time of X at time t and position r .
Let

τr (t) := inf{s ≥ 0 : L(s, r) > t}, (2.2)

be the inverse local time of X. Denote by

Tr := inf{t ≥ 0 : Xt = r} (2.3)
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the hitting time of r . We are interested in the process (J (x))x≥0 defined as follows:

J (x) := inf{Xs, s ≤ τ0(x)}, x ≥ 0. (2.4)

Observe that under Pδ, J is a Markov process. It has been studied in Section 4 of
[3]. The perturbed reflecting Brownian motions are related to the Poisson–Dirichlet
via the following proposition.

Proposition 2.5 Let δ > 0. Under P
δ , the range {J (x), x > 0} is distributed as

−�β with β = δ
2 . Consequently, for any m > 0, the range of J in [−m, 0], ordered

increasingly, is distributed as −mDβ .

Proof Recall Proposition 2.2. Note that the range {J (x), x > 0} is equal to
{min γ : 0 ∈ γ, γ ∈ L δ

2
}, hence the first statement is (iii) of Lemma 2.3. The

second statement is Lemma 2.4. ��
Under Pδ, for m > 0, let

T J−m := inf{x > 0 : J (x) ≤ −m} (2.5)

be the first passage time of −m by J . The main result in this subsection is the
following description of the jump times of J before its first passage time of −m:

Proposition 2.6 For m > 0, let x(m)1 > x
(m)
2 > . . . denote the jumping times of J

before time T J−m. Under Pδ:

(i) [25] T J−m follows a gamma ( δ2 , 2m) distribution. Consequently, for any x > 0,
−1
J (x)

follows a gamma ( δ2 ,
2
x

) distribution.

(ii) T J−m is independent of 1
T J−m

(x
(m)
1 , x

(m)
2 , . . .).

(iii) 1
T J−m

(x
(m)
1 , x

(m)
2 , . . .) is distributed as Dβ with β = δ

2 .

Statement (i) of Proposition 2.6 is not new. It is contained in Proposition 9.1,
Chapter 9.2, p. 123, of Yor [25]. For the sake of completeness we give here another
proof of (i) based on Lemma 2.3.

Proof (i) Lemma 2.3, (iv) says that {�0
γ , γ ∈ L δ

2
such that min γ ∈ (−m, 0], 0 ∈

γ } forms a Poisson point process of intensity measure 1{�>0} δ
2�e

−�/2md�, whose

atoms are exactly the (non-ordered) sequence {x(m)i−1 − x
(m)
i , i ≥ 1} where x(m)0 :=

T J−m. Note that T J−m = L(T−m, 0) =∑
minγ∈(−m,0], 0∈γ �0

γ .

Let for i ≥ 1, d(m)i := (x
(m)
i−1 − x

(m)
i )/T J−m and denote by {d(m)(1) > d

(m)
(2) > . . .}

the sequence ordered decreasingly. Then the properties of the Poisson–Dirichlet
distribution recalled at the beginning of the section imply that T J−m is independent

of the point measure {d(m)(1) , d
(m)
(2) , . . .} and that T J−m/2m follows a gamma ( δ2 , 1)

distribution. Also, the second statement of (i) comes from the observation that
{J (x) > −m} = {T J−m > x}. This proves (i).
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(ii) and (iii): It remains to show that the vector (d(m)1 , d
(m)
2 , . . .) is a size-biased

ordering of {d(m)(1) , d
(m)
(2) , . . .}, and that this size-biased ordering is still independent

of T J−m.
To this end, denote by {(−mi, i ∈ I)} the range of J . By Proposition 2.5, the

point measure {ln(mi), i ∈ I} is a Poisson point process on R of intensity measure
δ
2 dt .

When J jumps at some −mi , the time to jump at −mi+1 is exponentially
distributed with parameter n−(min e ≤ −mi) = 1

2mi
(it is the local time at 0 of a

Brownian motion when it hits level −mi , by Markov property of the process (X, I)
under Pδ).

Denote by εi the exponential of parameter 1 obtained as the waiting time between
jumps to −mi and to −mi+1, divided by 2mi . Conditionally on {(mi, i ∈ I)}, the
random variables (εi, i ∈ I) are i.i.d. and exponentially distributed with parameter
1. Then {(ln(mi), εi), i ∈ I} is a Poisson point process on R × R+ of intensity
measure δ

2 dt ⊗ e−xdx. It is straightforward to check that {(ln(2miεi), εi), i ∈ I} is
still a Poisson point process with the same intensity measure.

Suppose that we enumerated the range of J with I = Z so that (−mi, i ≥ 1) are
the atoms of the range in (−m, 0) ranked increasingly. Then, 2miεi = T J−md

(m)
i =:

ξi for any i ≥ 1. We deduce that, conditionally on {T J−md
(m)
i , i ≥ 1}, the

vector (ε1, ε2, . . .) consists of i.i.d. random variables exponentially distributed with
parameter 1, and i ≤ j if and only if ξi/εi ≥ ξj /εj . From the description of size-
biased ordering at the beginning of this section, we conclude that the (ξi , i ≥ 1) are
indeed size-biased ordered, hence also (d(m)1 , d

(m)
2 , . . .). ��

Since T J−m = L(T−m, 0), the statement (i) of Proposition 2.6 says

L(T−m, 0)
(law)= gamma(

δ

2
, 2m). (2.6)

Corollary 2.7 Let δ > 0. Under P
δ , the collection of jumping times of J is

distributed as �β with β = δ
2 .

Proof From Proposition 2.6 and Lemma 2.4, we can couple the jumping times of J
which are strictly smaller than the passage time of −m with �β restricted to [0, Zm]
where Zm is gamma ( δ2 , 2m) distributed, independent of �β . Letting m → +∞
gives the Corollary. ��

2.3 Some Known Results

At first we recall two Ray–Knight theorems:

Proposition 2.8 (Le Gall and Yor [11]) Let δ > 0. Under P
(−δ), the process(

L(∞, t), t ≥ 0
)

is the square of a Bessel process of dimension δ starting from
0 reflected at 0.
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Proposition 2.9 (Carmona, Petit and Yor [4], Werner [24]) Let δ > 0 and a ≥ 0.
Under P

δ, the process
(
L(τ0(a),−t), t ≥ 0

)
is the square of a Bessel process of

dimension (2 − δ) starting from a absorbed at 0.

We have the following independence result.

Proposition 2.10 (Yor [25], Proposition 9.1) Let δ > 0. Under Pδ, for any fixed
x > 0, L(TJ(x), 0)/x is independent of J (x) and follows a beta ( δ2 , 1) distribution.

We introduce some notations which will be used in Sect. 4.

Notation 2.11 Let h ∈ R. We define the process X−,h obtained by gluing the
excursions of X below h as follows. Let for t ≥ 0,

A
−,h
t :=

∫ t

0
1{Xs≤h}ds, α

−,h
t := inf{u > 0, A−,h

u > t},

with the usual convention inf∅ := ∞. Define

X
−,h
t := X

α
−,h
t

, t < A−,h∞ :=
∫ ∞

0
1{Xs≤h}ds.

Similarly, we define A
+,h
t , α+,h

t and X+,h by replacing Xs ≤ h by Xs > h.
When the process is denoted by X with some superscript, the analogous quantities
will hold the same superscript. For example for r ∈ R, � > 0, τ+,hr (�) = inf{t >
0 : L+,h(t, r) > �}, where L+,h(t, r) denotes the local time of X+,h at position r

and time t .

Proposition 2.12 (Perman and Werner [19]) Let δ > 0. Under P
δ, the two

processes X+,0 and X−,0 are independent. Moreover, X+,0 is a reflecting Brownian
motion, and the process (X−,0

t , infs≤t X−,0
s )t≥0 is strongly Markovian.

Let m > 0. We look at these processes up to the first time the process X hits
level −m. In this case, there is a dependence between X−,0 and X+,0 due to their
duration. This dependence is taken care of by conditioning on the (common) local
time at 0 of X−,0 and X+,0. It is the content of the following corollary.

Corollary 2.13 Let δ > 0. Fix m > 0. Under P
δ, conditionally on (X

−,0
t , t ≤

A
−,0
T−m), the process (X+,0

t , t ≤ A
+,0
T−m) is a reflecting Brownian motion stopped at

time τ+,00 (�) where � = L−,0(A−,0
T−m, 0) = L(T−m, 0).

Proof By Proposition 2.12, conditionally onX−,0, the process (X+,0
τ
+,0
0 (t)

, t ≥ 0) is a

reflecting Brownian motion indexed by its inverse local time. Observe that A+,0
T−m =

τ
+,0
0 (�) with � = L−,0(0, T −,0

−m ). It proves the Corollary. ��
As mentioned in Section 3 of Werner [24], we have the following duality between

P
(−δ) and P

δ .
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Proposition 2.14 (Werner [24]) Let δ > 0. For any m > 0, the process (XT−m−t +
m, t ≤ T−m) under P

δ has the distribution of (Xt , t ≤ Dm) under P
(−δ), where

Dm := sup{t > 0 : Xt = m} denotes the last passage time at m.

3 Decomposition at a Hitting Time

The following lemma is Lemma 2.3 in Perman [18], together with the duality stated
in Proposition 2.14. Recall that under P(−2), X is a Bessel process of dimension 3.
We refer to (2.3) for the definition of the first hitting time Tr and to (2.4) for the
process J (x).

Lemma 3.1 (Perman [18]) Let δ > 0. Let m, x > 0 and y ∈ (0, x). Define the
processes

Z1 := (XTJ(x)−t − J (x))t∈[0,TJ (x)] Z2 := (XTJ(x)+t − J (x))t∈[0,τ0(x)−TJ(x)].

Under Pδ(·|J (x) = −m,L(TJ (x), 0) = y):

(i) Z1 and Z2 are independent,
(ii) Z1 is distributed as (Xt )t∈[0,Dm] under P(−δ)(·|L(∞,m) = y),

(iii) Z2 is distributed as (Xt )t∈[0,Dm] under P(−2)(·|L(∞,m) = x − y),

with Dm := sup{t > 0 : Xt = m}.
Proof For the sake of completeness, we give here a proof which is different from
Perman [18]’s.

By Proposition 2.2, we can identify under Pδ the point measure {(q, e↑X,q), q ∈
Q↑
X} with {(q, e↑q ), q ∈ Q↑

δ
2
∩(−∞, 0)}. Using the notations in Lemma 2.3, we have

L(TJ(x), 0) =
∑

q∈Q↑
δ
2
∩(J (x),0)

�0
γ < x ≤

∑
q∈Q↑

δ
2
∩[J (x),0)

�0
γ ,

where in the above sum γ is the (unique) loop in L δ
2

such that min γ = q . Let

�r(e) be the local time of the excursion e at level r . We claim that conditioning
on {J (x) = −m,L(TJ (x), 0) = y}, e↑J (x) and {(q, e↑q ), q ∈ Q↑

δ
2
∩ (J (x), 0)} are

independent and distributed as a Brownian excursion e under n+(· | �m(e) > x− y),
and {(q, e

↑
q ), q ∈ Q↑

δ
2
∩ (−m, 0)} conditioned on {ξm = y} respectively, where

ξm :=∑
q∈Q↑

δ
2
∩(−m,0) �

0
γ .

In fact, let F : R− × K → R+, G : K → R+ and f : R2 → R+ be three
measurable functions. Note that ξm = ∑

q∈Q↑
δ
2
∩(−m,0) �

|q|(e↑q ). By Proposition 2.2,
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we deduce from the master formula that

E
δ

⎡
⎣e

−∑
q∈Q↑

δ
2
∩(J (x),0) F (q,e

↑
q )

G(e
↑
J (x)) f (J (x),L(TJ(x), 0))

⎤
⎦

= E
δ

⎡
⎣∑
m>0

e
−∑

q∈Q↑
δ
2
∩(−m,0) F (q,e

↑
q )

G(e
↑
−m) f (−m, ξm) 1{ξm<x,�m( e↑−m)>x−ξm}

⎤
⎦

= δ

∫ ∞

0
dmE

⎡
⎣e

−∑
q∈Q↑

δ
2
∩(−m,0) F (q,e

↑
q )

f (−m, ξm) 1{ξm<x}
∫

n+(de)G(e) 1{�m(e)>x−ξm}

⎤
⎦ ,

by using Lemma 2.3(i). The claim follows.
Now we observe that Z2 is measurable with respect to e

↑
J (x) whereas Z1 is to

{(q, e↑q ), q ∈ Q↑
δ
2
∩ (J (x), 0)}. It yields (i). Moreover, conditioning on {J (x) =

−m,L(TJ (x), 0) = y}, Z2 is distributed as (et )t∈[0,σmx−y], under n+(· | �m(e) > x −
y), where σmx−y := inf{t > 0 : �mt ( e) = x − y} with �mt (e) being the local time
at level m at time t . The latter process has the same law as (Xt )t∈[0,Dm] under

P
(−2)(·|L(∞,m) = x − y).1 We get (iii).

To prove (ii), we denote by ê the time-reversal of a loop e. By Proposition 2.14,
{(m + q, ê

↑
q,X), q ∈ Q↑

X ∩ (−m, 0)} under P
δ is distributed as {(q, e↑q,X), q ∈

Q↑
X ∩ (0,m)} under P(−δ). Note that under Pδ(·|J (x) = −m,L(TJ (x), 0) = y), Z1

can be constructed from {(m+q, ê
↑
q,X), q ∈ Q↑

X∩(−m, 0)}. ThenZ1 is distributed

as (Xt )0≤t≤Dm
under P(−δ)(·|∑

q∈Q↑
X∩(0,m) �

m−q ( e↑q,X) = y). Finally remark that∑
q∈Q↑

X∩(0,m) �
m−q (e↑q,X) = L(Dm,m) = L(∞,m). We get (ii). This completes

the proof of Lemma 3.1.
��

Fix m > 0. The following Theorems 3.2 and 3.3 describe the path decomposition
of (Xt ) at T−m. Let gm := sup{t ∈ [0, T−m] : Xt = 0}. Recall that Igm =
inf0≤s≤gm Xs . Define

dm := inf{t > gm : Xt = Igm}.

1Under n+(· | �m(e) > x − y), an excursion up to the inverse local time x − y at position
m is a three-dimensional Bessel process, up to the hitting time of m, followed by a Brownian
motion starting at m stopped at local time at level m given by x − y, this Brownian motion being
conditioned on not touching 0 during that time. By excursion theory, the time-reversed process is
distributed as a Brownian motion starting at level m stopped at the hitting time of 0 conditioned
on the local time at m being equal to x − y. We conclude by William’s time reversal theorem
(Corollary VII.4.6 of [21]).
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Theorem 3.2 Let δ > 0. Fix m > 0. Under Pδ, the random variable 1
m
|Igm | is beta

( δ2 , 1) distributed. Moreover, for 0 < a < m, conditionally on {Igm = −a}, the four
processes

(Xt , t ∈ [0, T−a]),
(Xgm−t , t ∈ [0,gm − T−a],
(−Xgm+t , t ∈ [0,dm − gm]),
(Xdm+t + a, t ∈ [0, T−m − dm]),

are independent, with law respectively the one of:

(i) X under Pδ up to the hitting time of −a;
(ii) a Brownian motion up to the hitting time of −a;

(iii) a Bessel process of dimension 3 from 0 stopped when hitting a;
(iv) X under Pδ conditionally on {T−(m−a) < Ta}.
Proof To get the distribution of 1

m
Igm we proceed as follows: under P

δ , X is
measurable with respect to its excursions above the infimum, that we denoted by
(e

↑
q,X, q ∈ Q↑

X), that we identify with (e
↑
q , q ∈ Q↑

δ
2
) by Proposition 2.2. The

variable Igm is the global minimum of the loops γ such that min γ > −m and 0 ∈ γ .
By Lemma 2.3(iii), we get the law of Igm (it is also a consequence of Lemma 2.4
together with Proposition 2.5).

Let γ̃ be the loop such that min γ̃ = Igm and call −a = Igm its minimum.
Conditioning on γ̃ and loops hitting (−∞,−a), the loops γ such that min γ > −a
are distributed as the usual Brownian loop soup L δ

2
in (−a,∞). It gives (i) by

Proposition 2.2. Conditioning on min γ̃ = Igm = −a and on loops hitting
(−∞,−a), the loop γ̃ − min γ̃ has the measure n+(de|max e > a). Therefore (ii)
and (iii) come from the usual decomposition of the Itô measure. Finally conditioning
on min γ̃ = Igm = −a, the collection of loops γ with min γ ∈ (−m,−a) is
distributed as the Brownian loop soup L δ

2
restricted to loops γ such that min γ ∈

(−m,−a) conditioned on the event that none of these loops hit 0. We deduce (iv).
��

The following theorem gives the path decomposition when conditioning on
(L(T−m, 0), Igm). Recall (2.6) for the law of L(T−m, 0).

Theorem 3.3 We keep the notations of Theorem 3.2. Under Pδ ,

(i) the density of (L(T−m, 0), |Igm |) is given by a−2

2	( δ2 )
( x

2m)
δ
2 e− x

2a for x > 0 and

0 < a < m.
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(ii) conditionally on {L(T−m, 0) = x, Igm = −a}, the three processes

(Xt , t ∈ [0,gm]),
(−Xgm+t , t ∈ [0,dm − gm]),
(Xdm+t + a, t ∈ [0, T−m − dm]),

are independent and distributed respectively as

(Xt , t ∈ [0, τ0(x)]) under Pδ(· | J (x) = −a),
a Bessel process of dimension 3 starting from 0 stopped when hittinga,

X under Pδ conditionally on {T−(m−a) < Ta};

Proof By Theorem 3.2, conditionally on {Igm = −a}, the three processes

(Xt , t ∈ [0,gm]),
(−Xgm+t , t ∈ [0,dm − gm]),
(Xdm+t + a, t ∈ [0, T−m − dm]),

are independent. Since L(T−m, 0) is measurable with respect to σ(Xt , t ∈ [0,gm]),
we obtain the independence of the three processes in (ii) and the claimed laws of the
last two processes in (ii).

To complete the proof, it is enough to show that for any bounded continuous
functional � on K and any bounded continuous function f : R2 → R,

E
δ[�(Xt , t ∈ [0,gm])f (L(T−m, 0), Igm)] (3.1)

=
∫ ∞

0

∫ m

0
E
δ[�(Xt , t ∈ [0, τ0(x)]) | J (x) = −a]f (x,−a) a−2

2	( δ2 )
(
x

2m
)
δ
2 e−

x
2a dadx.

By Theorem 3.2,

E
δ[�(Xt , t ∈ [0,gm])f (L(T−m, 0), Igm)]

=
∫ m

0

δ

2
m− δ

2 a
δ
2−1

E
δ[�(X1,a ⊕X2,a)f (L0(X1,a)+ L0(X2,a),−a)]da, (3.2)

where X1,a
s := Xs, s ≤ T−a , X2,a is the time-reversal of an independent Brownian

motion up to its hitting time of −a (so X2,a starts from −a and ends at 0),
X1,a ⊕ X2,a denotes the process obtained by gluing X2,a and X1,a at time T−a ,
and L0(X1,a) (resp. L0(X2,a)) is the local time at position 0 of X1,a (resp. X2,a).
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The standard excursion theory says that Pδ(L0(X2,a) ∈ dz) = 1
2a e

− z
2a dz, z > 0.

By (2.6), L0(X1,a)
(law)= gamma( δ2 , 2a). Then for any bounded Borel function h, we

have

E
δ[�(X1,a ⊕X2,a) h(L0(X1,a )+ L0(X2,a)]

=
∫ ∞

0

∫ ∞

0
h(y + z)Eδ[�(X1,a ⊕X2,a)|L0(X1,a ) = y, L0(X2,a ) = z] (2a)

−1− δ
2

	( δ2 )
y

δ
2 −1e−

y+z
2a dydz

=
∫ ∞

0
h(x)

∫ x

0
E
δ[�(X1,a ⊕X2,a )|L0(X1,a ) = y, L0(X2,a ) = x − y] (2a)

−1− δ
2

	( δ2 )
y

δ
2 −1e−

x
2a dydx

=
∫ ∞

0
h(x)

∫ x

0
E
δ[�(Xt , t ≤ τ0(x))|J (x) = −a, L(TJ(x), 0) = y] (2a)

−1− δ
2

	( δ2 )
y

δ
2 −1e−

x
2a dydx,

where the last equality is due to Lemma 3.1. Since P
δ(L(TJ (x), 0) ∈ dy) =

δ
2x

− δ
2 y

δ
2−11{0<y<x}dy (see Proposition 2.10), we get that

E
δ[�(X1,a ⊕X2,a) h(L0(X1,a)+ L0(X2,a)]

=
∫ ∞

0
h(x)Eδ[�(Xt, t ≤ τ0(x))|J (x) = −a] (2a)

−1− δ
2

	(1 + δ
2 )

x
δ
2 e−

x
2a dx,

which in view of (3.2) yields (3.1) and completes the proof of the Proposition. ��
Remark 3.4 We may also directly prove (i) as follows: In view of (2.6), it is enough
to show

P
δ
(|Igm | ∈ da |L(T−m, 0) = x

) = x

2a2
e−

x
2a+ x

2m 1{0<a<m}da. (3.3)

To this end, we shall prove that conditionally on {L(T−m, 0) = x}, Igm is
distributed as inf0≤t≤τB0 (x) B(t) conditioned on {inf0≤t≤τB0 (x) B(t) > −m}, where

τB0 (x) := inf{t > 0 : Lt > x} denotes the first time when the local time at 0 of B
attains x.

Consider the Brownian loop soup L δ
2
. In this setting (recalling Proposition 2.2),

Igm = inf
γ∈L δ

2

{
q : q = min γ > −m, 0 ∈ γ

}
,

and

L(T−m, 0) =
∑
γ∈L δ

2

�0
γ 1{min γ∈(−m,0),0∈γ }.
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From (v) of Lemma 2.3, conditionally on {�0
γ : γ ∈ L δ

2
, 0 ∈ γ }, the loops γ

such that 0 ∈ γ are (the projection on the space of unrooted loops of) independent
Brownian motions stopped at τ �0 with � = �0

γ . Then, the loops γ such that 0 ∈ γ and
min γ > −m are merely (the projection of) independent Brownian motions stopped
at local time given by �0

γ , conditioned on not hitting −m. The conditional density
(3.3) of Igm follows from standard Brownian excursion theory. �
Corollary 3.5 Let us keep the notations of Theorem 3.2. Let x > 0 and m >

a > 0. Under P
δ, the conditional law of the process (Xt , t ∈ [0,gm]) given

{L(T−m, 0) = x} is equal to the (unconditional) law of (Xt , t ∈ [0, τ0(x)]) biased

by cm,x,δ|J (x)| δ2−11{J (x)>−m}, with

cm,x,δ := 	(
δ

2
) (
x

2
)1−

δ
2 e

x
2m .

Proof Let � be a bounded continuous functional on K. Recall from (2.6) that the
density function of L(T−m, 0) is 1

	( δ2 )
(2m)− δ

2 x
δ
2−1e− x

2m , x > 0. Considering some

f in (3.1) which only depends on the first coordinate, we see that for all x > 0,

E
δ[�(Xt, t ∈ [0,gm]) |L(T−m, 0) = x]

=
∫ m

0
E
δ[�(Xt , t ∈ [0, τ0(x)]) | J (x) = −a]x

2
a−2e−

x
2a+ x

2m da

= cm,x,δ E
δ[�(Xt, t ∈ [0, τ0(x)]) |J (x)| δ2−1 1{J (x)>−m}], (3.4)

by using the fact that the density of |J (x)| is a → 1
	( δ2 )

( x2 )
δ
2 a− δ

2−1e− x
2a . This proves

Corollary 3.5. ��
Remark 3.6 Note that the conditional expectation term on the left-hand-side of (3.4)
is a continuous function of (m, x), this fact will be used later on.

As an application of the above decomposition results, we give an another proof
of Proposition 2.6(ii) and (iii).

Another proof of Proposition 2.6(ii) and (iii) Notice that T J−m = L(T−m, 0). Con-

ditioning on T J−m = x: by Corollary 3.5, x(m)1 is distributed as L(TJ(x), 0) under

Pδ biased by J (x)
δ
2−11{J (x)>−m}. By the independence of L(TJ(x), 0) and J (x) of

Proposition 2.10, the biased law of L(TJ(x), 0) is the same as under Pδ , hence is

x times a beta ( δ2 , 1) random variable. Moreover, conditionally on x
(m)
1 = y and

J (x) = −m1, the process before TJ(x) is simply the process X under Pδ before
hitting T−m1 conditioned on L(T−m1, 0) = y (by Corollary 3.5 and Lemma 3.1).
Therefore we can iterate and get Proposition 2.6. ��
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4 Decomposition at the Minimum

Let δ > 0. Let X1 be a copy of the processX under P(−δ) and X2 be an independent
Bessel process of dimension 3, both starting at 0. Recall Notation 2.11. From our
notations, L1(∞, r), resp. L2(∞, r), denotes the total local time at height r of X1,
resp. X2, while X

−,h
1 , X−,h

2 are obtained by gluing the excursions below h of X1
and X2 respectively. We set

H 1,2 := sup{r ≥ 0 : L1(∞, r)+ L2(∞, r) = 1}. (4.1)

Proposition 2.8 yields that the processL1(∞, r)+L2(∞, r), r ≥ 0 is distributed
as the square of a Bessel process of dimension δ+2, starting from 0. ThenH 1,2 < ∞
a.s.

Lemma 4.1 Let δ > 0. Let m > 0 and x ∈ (0, 1). Conditionally on {H 1,2 =
m,L1(∞,H 1,2) = x}:

(i) X
−,H 1,2

1 and X−,H 1,2

2 are independent;

(ii) X
−,H 1,2

1 is distributed as (X−,m
t , t < A

−,m∞ ) under P(−δ)(·|L1(∞,m) = x);

(iii) X
−,H 1,2

2 is distributed as (X−,m
t , t < A

−,m∞ ) under P(−2)(·|L2(∞,m) = 1 −
x),

where A−,m∞ = ∫∞
0 1{Xt≤m}dt is the total lifetime of the process X−,m.

Proof First we describe the law of (X−,m
t , t < A

−,m∞ ) under P(−δ)(·|L1(∞,m) =
x). Let Dm := sup{t > 0 : Xt ≤ m} be the last passage time of X at m [note that
under P(−δ), Xt → ∞ as t → ∞]. By the duality of Proposition 2.14, {XDm−t −
m, 0 ≤ t ≤ Dm}, under P(−δ), has the same law as {Xt , 0 ≤ t ≤ T−m} under Pδ .
Corollary 3.5 gives then the law of (Xt , t ≤ Dm) under P(−δ)(·|L(∞,m) = x).
The process (X−,m

t , t < A
−,m∞ ) is a measurable function of (Xt , t ≤ Dm). Note

that m → (X
−,m
1 ,X

−,m
2 ) is continuous.2 From Corollary 3.5, we may find a regular

2For instance, we may show that for any T > 0, almost surely sup0≤t≤T |X−,m′
t − X

−,m
t | → 0

as m′ → m. Let us give a proof by contradiction. Suppose there exists some ε0 > 0, a sequence
(tk) in [0, T ] and mk → m such that |X−,mk

tk
− X

−,m
tk

| > ε0. Write for simplification sk := α
−,m
tk

and s′k := α
−,mk
tk

. Consider the case mk > m (the other direction can be treated in a similar
way). Then sk ≥ s′k and |Xs′

k
− Xsk | > ε0 for all k. Since Xsk ≤ m and Xs′

k
≤ mk , either

Xsk ≤ m − ε0
2 or Xs′k ≤ m − ε0

2 for all large k. Consider for example the case Xs′k ≤ m − ε0
2 .

By the uniform continuity of Xt on every compact, there exists some δ0 > 0 such that Xu ≤ m

for all |u − s′k | ≤ δ0 and k ≥ 1. Then for any s ≥ s′k ,
∫ s
s′k

1{Xu≤m}du ≥ min(δ0, s − s′k). Note

that by definition,
∫ sk
s′
k

1{Xu≤m}du = tk − ∫ s′k
0 1{Xu≤m}du = ∫ mk

m
L(s′k, x)dx ≤ ζ (mk − m), with

ζ := supx∈R L(α
−,m
T , x). It follows that for all sufficiently large k, 0 ≤ sk − s′k ≤ ζ (mk − m).

Consequently Xsk −Xs′k → 0 as mk → m, in contradiction with the assumption that |Xs′k −Xsk | >
ε0 for all k. This proves the continuity of m → X−,m.
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version of the law of (X−,m
t , t < A

−,m∞ ) under P(−δ)(·|L(∞,m) = x) such that for
any bounded continuous functional F on K, the application

(m, x) �→ E
(−δ)[F(X−,m

t , t < A−,m∞ )|L(∞,m) = x
]

is continuous.
Now let us write H := H 1,2 for concision. Let F1 and F2 be two bounded

continuous functionals on K and g : R2+ → R be a bounded continuous function.
Let Hn := 2−n�2nH � for any n ≥ 1. By the continuity of m → (X

−,m
1 ,X

−,m
2 ) and

that of (L1(∞,m),L2(∞,m)), we have

E

[
F1(X

−,H
1 )F2(X

−,H
2 )g(H,L1(∞,H))

]
= lim

n→∞E

[
F1(X

1,Hn)F2(X
2,Hn )g(Hn,L

1(∞,Hn))
]
.

Note that

E

[
F1(X

−,Hn

1 )F2(X
−,Hn

2 )g(Hn,L
1(∞,Hn))

]

=
∞∑
j=0

E

[
F1(X

−, j

2n

1 )F2(X
−, j

2n

2 )g
( j

2n
, L1(∞,

j

2n
)
)
1{ j

2n≤H<
j+1
2n }
]
.

By the independence property of Corollary 2.13 and the duality of Proposi-

tion 2.14, conditioning on {L1(∞,
j
2n ), L

2(∞,
j
2n )}, the processes (X

−, j

2n

1 ,X
−, j

2n

2 )

are independent, and independent of (X
+, j

2n

1 ,X
+, j

2n

2 ). Since { j
2n ≤ H <

j+1
2n } is

measurable with respect to σ(X
+, j

2n

1 ,X
+, j

2n

2 ), we get that for each j ≥ 0,

E

[
F1(X

−, j

2n

1 )F2(X
−, j

2n

2 )g
( j

2n
, L1(∞,

j

2n
)
)
1{ j

2n≤H<
j+1
2n }
]

= E

[
�1
( j

2n
, L1(∞,

j

2n
)
)
�2
( j

2n
, L2(∞,

j

2n
)
)
g
( j

2n
, L1(∞,

j

2n
)
)
1{ j

2n≤H<
j+1
2n }
]
,

where

�1(m, x) := E[F1(X
−,m
1 ) |L1(∞, m) = x], �2(m, x) := E[F2(X

−,m
2 ) |L2(∞,m) = x].

By Remark 3.6, �1 and �2 are continuous functions in (m, x). Taking the sum over
j we get that

E

[
F1(X

−,Hn

1 )F2(X
−,Hn

2 )g(Hn,L
1(∞,Hn))

]

= E

[
�1(Hn,L

1(∞,Hn))�2(Hn,L
2(∞,Hn))g(Hn,L

1(∞,Hn))
]
.
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Since �1 and �2 are bounded and continuous, the dominated convergence theorem
yields that

E

[
F1(X

−,H
1 )F2(X

−,H
2 )g(H,L1(∞,H))

]

= lim
n→∞E

[
F1(X

−,Hn

1 )F2(X
−,Hn

2 )g(Hn,L
1(∞,Hn))

]

= E

[
�1(H,L1(∞,H))�2(H,L2(∞,H))g(H,L1(∞,H))

]
, (4.2)

proving Lemma 4.1 as L2(∞,H) = 1 − L1(∞,H). ��
Remark 4.2 Let δ > 2. Consider the process X under P(−δ) and the total local time
L(∞, r) of X at position r ≥ 0. For x > 0, let

Hx := sup{r ≥ 0 : L(∞, r) = x}.

By Proposition 2.8, Hx < ∞, P(−δ)-a.s. Note that the same arguments leading to
(4.2) shows that

E

[
F1(X

−,Hx )g(Hx,L(∞,Hx))
]
= E

[
�1(Hx,L(∞,Hx))g(Hx,L(∞,Hx))

]
,

where �1(m, x) := E[F1(X
−,m) |L(∞,m) = x] for m > 0, x > 0. Since

L(∞,Hx) = x, we obtain that conditionally on {Hx = m}, the process X−,Hx

is distributed as (X−,m
t , t < A

−,m∞ ) under P(−δ)(·|L(∞,m) = x).

Recall (2.3), (2.4) and (4.1). The main result in this section is the following path
decomposition of (Xt) at TJ(1) = inf{t ∈ [0, τ0(1)] : Xt = J (1)}, the unique time
before τ0(1) at which X reaches its minimum J (1).

Theorem 4.3 Let δ > 0. Define Z1 := (XTJ(1)−t − J (1))t∈[0,TJ (1)] and Z2 :=
(XTJ(1)+t − J (1))t∈[0,τ0(1)−TJ(1)]. Under Pδ , the couple of processes

(
Z

−,|J (1)|
1 , Z

−,|J (1)|
2

)

is distributed as (X−,H 1,2

1 ,X
−,H 1,2

2 ).

Proof From Lemmas 3.1 and 4.1, it remains to prove that the joint law of
(|J (1)|, L(TJ (1), 0)) is the same as (H 1,2, L1(∞,H 1,2)). Recall the law of
(J (1), L(TJ (1), 0)) from Propositions 2.6(i) and 2.10. Define a process (Yt , −∞ <

t < ∞) with values in [0, 1] defined by time-change as

YAm = L1(∞,m)

L1(∞,m)+ L2(∞,m)
,
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where Am := ∫ m
1

dh
L1(∞,h)+L2(∞,h)

for any m > 0 (as such limm→0 Am = −∞
a.s.). Following Warren and Yor [23], equation (3.1), we call Jacobi process of

parameters d, d ′ ≥ 0 the diffusion with generator 2y(1−y) d2

dy2 +(d−(d+d ′)y) d
dy .

We claim that Y is a stationary Jacobi process of parameter (δ, 2), independent of
(L1(∞,m) + L2(∞,m), m ≥ 0). It is a consequence of Proposition 8 of Warren
and Yor [23]. Let us see why.

First, notice that L1(∞,m)

L1(∞,m)+L2(∞,m)
is a beta ( δ2 , 1)-random variable for any

m > 0, because L1(∞,m) and L2(∞,m) are independent and distributed as
gamma ( δ2 , 2m) and gamma (1, 2m) respectively, by Proposition 2.8 and the duality
in Proposition 2.14. It is independent of L1(∞,m) + L2(∞,m), hence by the
Markov property, also of (L1(∞, h)+ L2(∞, h), h ≥ m).

Let t0 ∈ R. By Proposition 8 of [23], for any m ∈ (0, 1), conditioning on
(L1(∞, h) + L2(∞, h), h ≥ m) , the process (Yh+Am, h ≥ 0) is distributed
as a Jacobi process starting from a beta ( δ2 , 1) random variable, hence stationary.
Notice that Am is measurable with respect to σ(L1(∞, h)+ L2(∞, h), h ≥ m).
We deduce that, conditioned on (L1(∞, h)+ L2(∞, h), h ≥ m) and Am ≤ t0, the
process (Yh, h ≥ t0) is a Jacobi process starting from a beta ( δ2 , 1) random variable.
Letting m → 0 we see that Y is a stationary Jacobi process of parameter (δ, 2),
independent of (L1(∞,m)+ L2(∞,m), m ≥ 0).

Since L1(∞,H 1,2) = YA
H1,2 and AH 1,2,H 1,2 are measurable with respect

to σ {L1(∞,m) + L2(∞,m), m ≥ 0}, we deduce that the random variable
L1(∞,H 1,2) follows the beta ( δ2 , 1) distribution and that H 1,2 and L1(∞,H 1,2)

are independent. Finally, the random variable H 1,2 is the exit time at 1 of a square
Bessel process of dimension 2 + δ by Proposition 2.8, whose density is equal to

1
	( δ2 )

2− δ
2 t− δ

2−1e− 1
2t for t > 0 (Exercise (1.18), Chapter XI of Revuz and Yor [21]).

By Proposition 2.6(i), we see that |J (1)| is distributed as H 1,2. This completes the
proof. ��

The rest of this section is devoted to a path decomposition of X under P(−δ) for
δ > 2. For x > 0, let as in Remark 4.2,

Hx := sup{r ≥ 0 : L(∞, r) = x}.

Define

Sx := sup{t ≥ 0 : Xt = Hx}, Ĵx := inf{Xt , t ≥ THx } −Hx,

where as before THx := inf{t ≥ 0 : Xt = Hx} is the hitting time of Hx by X.
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Write Cx := Hx + Ĵx . We consider the following three processes:

X(1) := (XSx−t −Hx, t ∈ [0, Sx − THx ]),
X(2) := −(XTHx−t −Hx, t ∈ [0, THx −Dx ]),
X(3) := (XDx−t − Cx, t ∈ [0,Dx ]),

where Dx := sup{t < THx : Xt = Cx}.
Furthermore, let X(1),− be the process X(1) obtained by removing all its positive

excursions:

X
(1),−
t := X

(1)

α
(1),−
t

,

with α(1),−t := inf{s > 0 : ∫ s0 1{X(1)
u ≤0}du and t ≤ ∫ Sx−THx

0 1{X(1)
u ≤0}du.

Proposition 4.4 Let δ > 2 and x, a > 0.

(i) Under P(−δ), 1
|Ĵx | is distributed as gamma( δ2 ,

2
x
).

(ii) Under P(−δ)(· | Ĵx = −a), the three processes X(1),−, X(2), X(3) are indepen-
dent and distributed respectively as

• (Xt , 0 ≤ t ≤ τ0(x)), under Pδ(·|J (x) = −a), after removing all excursions
above 0;

• a Bessel process (Rt )0≤t≤Taof dimension 3 starting from 0 killed at Ta :=
inf{t > 0 : Rt = a};

• (Xt , 0 ≤ t ≤ T−a(1−u)/u) under Pδ(·|T−a(1−u)/u < Ta), where u ∈ [0, 1] is
independently chosen according to the law beta ( δ2 − 1, 1).

Since Ĵx under P
(−δ) is distributed as J (x) under P

δ , we observe that the
(unconditional) law of X(1),− under P(−δ) is equal to that (Xt , 0 ≤ t ≤ τ0(x)),
under Pδ, after removing all excursions above 0.

Proof Let m > 0. By Remark 4.2, conditionally on {Hx = m}, the process X−,Hx

is distributed as (X−,m
t , t < A

−,m∞ ) under P(−δ)(·|L(∞,m) = x).
Note that conditionally on {Hx = m}, Sx = sup{t > 0 : Xt ≤ m}

is the last passage time of X at m. By the duality of Proposition 2.14, under
P
(−δ)(·|L(∞,m) = x), the process (X

−,m
A

−,m∞ −t − m, t < A
−,m∞ ) is distributed

as {X−,0
t , 0 ≤ t ≤ A

−,0
T−m} under P

δ(·|L(T−m, 0) = x), the process (Xt , 0 ≤
t ≤ T−m) obtained by removing all positive excursions. Furthermore, remark that
Ĵ (x) corresponds to Igm which is defined for the process (Xt , 0 ≤ t ≤ T−m)
under P

δ(·|L(T−m, 0) = x). Then P
(−δ)(|Ĵx | ∈ · |Hx = m) = P

δ(|Igm | ∈
· |L(T−m, 0) = x). We deduce that for any 0 < a < m, the conditional law
of the process (X

−,m
A

−,m∞ −t − m, t < A
−,m∞ ) under P

(−δ)(· |Hx = m, Ĵx = −a)
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is the same as the conditional law of the process {X−,0
t , 0 ≤ t ≤ A

−,0
T−m} under

P
δ(·|L(T−m, 0) = x, Igm = −a).

Then we may apply Theorem 3.3 (ii) to see that conditionally on {Hx = m, Ĵx =
−a}, X(1),−, X(2), and X(3) are independent, and

• X(1),− is distributed as (X
−,0
t , t ≤ A

−,0
τ0(x)

) under P
δ(·|J (x) = −a), where

(X
−,0
t , t ≤ A

−,0
τ0(x)

) is the process obtained from (Xt , 0 ≤ t ≤ τ0(x)) by removing
all positive excursions;

• X(2) is distributed as a three-dimensional Bessel process (Rt )0≤t≤Ta killed at
Ta := inf{t > 0 : Rt = a};

• X(3) is distributed as (Xt , 0 ≤ t ≤ T−(m−a)) under Pδ(·|T−(m−a) < Ta).

Moreover

P
(−δ)(|Ĵx | ∈ da |Hx = m) = P

δ(Igm ∈ da |L(T−m, 0) = x)

= x

2a2 e
− x

2a+ x
2m 1{0<a<m}da,

where the last equality follows from (3.3).
Recall [8] the law of Hx under P(−δ) : For δ > 2,

P(Hx ∈ dm)/dm = ( x2 )
δ
2−1

	( δ2 − 1)
m− δ

2 e−
x

2m , m > 0.

We get

P
(−δ)(|Ĵx | ∈ da) = 1

	( δ2 )
(
x

2
)
δ
2 a−(

δ
2+1) e−

x
2a da, a > 0,

which implies (i).
For any bounded continuous functionals F1, F2, F3 on K, we have

E
(−δ)[F1(X

(1,≤0)) F2(X
(2)) F3(X

(3)) | Ĵx = −a]

=
∫ ∞

a

P
(−δ)(|Ĵx | ∈ da,Hx ∈ dm)

P(|Ĵx | ∈ da)
E
(−δ)[F1(X

(1),− F2(X
(2)) F3(X

(3)) | Ĵx = −a,Hx = m]

= (
δ

2
− 1)

∫ ∞

a

dma
δ
2 −1m− δ

2 E
δ[F1(X

−,0
t , t ≤ A

−,0
τ0(x)

)|J(x) = −a]E[F2(Rt , t ≤ Ta)]

×E
δ[F3(Xt , t ≤ T−(m−a)) | T−(m−a) < Ta]

= E
δ[F1(X

−,0
t , t ≤ A

−,0
τ0(x)

)|J(x) = −a]E[F2(Rt , t ≤ Ta)] ×

(
δ

2
− 1)

∫ 1

0
duu

δ
2 −2

E
δ[F3(Xt , t ≤ T−a(1−u)/u) | T−a(1−u)/u < Ta],

which gives (ii) and completes the proof of the Proposition. ��
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5 The Perturbed Bessel Process and Its Rescaling at a
Stopping Time

We rely on the paper of Doney, Warren and Yor [7], restricting our attention to the
case of dimension d = 3. For κ < 1, the κ-perturbed Bessel process of dimension
d = 3 starting from a ≥ 0 is the process (R3,κ , t ≥ 0) solution of

R3,κ (t) = a +Wt +
∫ t

0

ds

R3,κ (s)
+ κ(S

R3,κ
t − a), (5.1)

where S
R3,κ
t = sup0≤s≤t R3,κ (s) and W is a standard Brownian motion. For a > 0,

it can be constructed as the law of X under the measure P3,κ
a defined by

P
3,κ
a

∣∣
Ft

= 1

a1−κ
Xt∧T0

(St∧T0)
κ
P̃
δ
a

∣∣
Ft

(5.2)

where: δ := 2(1 − κ), St := sup0≤s≤t Xs , and for any a ≥ 0, X under P̃
δ
a is

distributed as a − X under Pδ. Roughly speaking, the κ-perturbed Bessel process
of dimension 3 can be thought of as the process −X under P

δ “conditioned to
stay positive”. The next proposition is very related to Lemma 5.1 of [7]. We let
P

3,κ = P
3,κ
0 be a probability measure under which X is distributed as the process

R3,κ starting from 0. Under P3,κ
a and P̃

δ
a , we denote by {(q, e↓X,q), q ∈ Q↓

X} the

excursions of the process (St ,Xt − St ) away from R × {0}. Notice that, under P̃δ0,
by Proposition 2.2 and the invariance in distribution of the loop soup by the map
x → −x, these excursions are distributed as {(q, e↓q ), q ∈ Q↓

δ
2
∩ (0,∞)}.

Proposition 5.1 Let κ < 1 and δ := 2(1 − κ). The point process {(q, e
↓
X,q), q ∈

Q↓
X} under P3,κ is distributed as the Poisson point process

{(q, e↓q ), q ∈ Q↓
δ
2

such that q + e↓q ⊂ (0,∞)}.

In other words, the excursions of R3,κ below its supremum, seen as unrooted loops,
are distributed as the loops of the Brownian loop soup L δ

2
which entirely lie in the

positive half-line.

Remark 5.2

(i) The intensity measure of this Poisson point process has been computed in (ii)
of Lemma 2.3.

(ii) Similarly to Section 5.1 of Lupu [15], one can construct the process R3,κ
from the loops of the Brownian loop soup L δ

2
which entirely lie in (0,∞),

by rooting them at their maxima and gluing them in the increasing order of
their maxima.
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(iii) The process (R3,κ , S
R3,κ ) is a Markov process. Hence, applying the strong

Markov property under P
3,κ to X at time Ta , we deduce that under P

3,κ
a ,

the excursions below supremum of the process, seen as unrooted loops, are
distributed as the loops of the Brownian loop soup L δ

2
which entirely lie in the

positive half-line and with maximum larger than a. It entails that for a > 0,
the process X under P3,κ

a is the limiting distribution as m → ∞ of the process
X under P̃δa conditioned on hitting m before 0 (the process X is measurable
with respect to its excursions below supremum, which are equally distributed
before time Tm under P3,κ

a and under P̃δa(·|Tm < T0)).

Proof of Proposition 5.1 Let f : R+×K → R+ be measurable. For any 0 < s < s′,
we compute

E
3,κ
[
e
−∑

q∈Q↓
X

∩[s,s′ ] f (q,e
↓
X,q)
]
.

Notice that the integrand is measurable with respect to the σ -algebra σ(Xt , t ∈
[Ts, Ts ′ ]). By the strong Markov property at time Ts and the absolute continuity
(5.2) with a = s there, the previous expectation is equal to

sκ−1 s′

(s′)κ
Ẽ
δ
0

[
e
−∑

q∈Q↓
X
∩[s,s′ ] f (q,e

↓
X,q )

1{T0◦θTs>Ts′ }
]

where θ is the shift operator. Notice that

e
−∑

q∈Q↓
X
∩[s,s′ ] f (q,e

↓
X,q )

1{T0◦θTs>Ts′ } = e
−∑

q∈Q↓
X

∩[s,s′ ],q+ e↓
X,q

⊂(0,∞)
f (q,e↓X,q)

1E

where E is the event that the set of q ∈ Q↓
X ∩ [s, s′] such that q + e

↓
X,q �⊂ (0,∞) is

empty.
We already mentioned that the collection of (q, e↓q,X) for q ∈ Q↓

X is a Poisson

point process under P̃
δ
0, distributed as {(q, e↓q ), q ∈ Q↓

δ
2

∩ (0,∞)}. By the

independence property of Poisson point processes, we deduce that

E
3,κ
[
e
−∑

q∈Q↓
X
∩[s,s′ ] f (q,e

↓
X,q )
]
= cẼδ

[
e
−∑

q∈Q↓
X
∩[s,s′ ],q+e↓

X,q
⊂(0,∞)

f (q,e↓X,q )]

for some constant c which is necessarily 1. The Proposition follows. ��
In the rest of this section, we will extend the definition of perturbed Bessel

processes to allow some positive local time at 0.
Let x ≥ 0. We define a kind of perturbed Bessel process Rx

3,κ with local time x
at position 0. More precisely, for κ < 1 and δ = 2(1 − κ), we denote by Rx

3,κ the

process obtained by concatenation in the following way: take −X under Pδ up to
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time τ0(x), biased by |J (x)| δ2−1 followed by a Bessel of dimension 3 killed when
hitting |J (x)|, followed by the κ-pertubed process R3,κ starting from |J (x)|. Recall
Theorem 3.3. Corollary 3.5 and Remark 5.2(iii) show that, when x > 0, Rx

3,κ is the

limit in distribution of the process (−Xt, t ≤ T−m) under Pδ(·|L(T−m, 0) = x)

as m → ∞. Clearly when x = 0, R0
3,κ coincides with R3,κ defined previously in

(5.1) with a = 0. The following theorem shows that one can recover the process
Rx

3,κ by a suitable time-space scaling of a conditioned PRBM up to a hitting time.
It is an extension of Theorem 2.2 equation (2.5) of Doney, Warren, Yor [7] [which
corresponds to the case x = 0 and m = 1].

Theorem 5.3 Suppose κ < 1 and let δ := 2(1 − κ). Fix m > 0 and x ≥ 0. Let the
space-change

θ(z) :=
{
− mz

m+z if z ≥ 0,
−z if z < 0,

and the time-change

At :=
∫ t

0

(
θ ′
(
Rx

3,κ (s)
))2ds, t ≥ 0.

If X̃ is defined via θ
(
Rx

3,κ (t)
) := X̃At , then X̃ is distributed as (Xt , 0 ≤ t ≤ T−m)

under Pδ(·|L(T−m, 0) = x).

Proof First we describe the excursions above infimum ofX underPδ(·|L(T−m, 0) =
x) in terms of the Brownian loop soup L δ

2
. For the loops which hit 0, we use again

the same observation as in the proof of (3.3): conditionally on {�0
γ : γ ∈ L δ

2
, 0 ∈ γ },

the loops γ such that min γ > −m are (the projection on the space of unrooted loops
of) independent Brownian motions stopped at local time given by �0

γ , conditioned
on not hitting −m.

Remark that the set {�0
γ : γ ∈ L δ

2
, 0 ∈ γ,minγ > −m} is equal to the (non-

ordered) set {x(m)i−1 − x
(m)
i }i≥1 in the notation of Proposition 2.6, and L(T−m, 0) =

T J−m. By Proposition 2.6, conditionally on {L(T−m, 0) = x}, the ordered sequence
of (�0

γ : γ ∈ L δ
2
, 0 ∈ γ,minγ > −m) is distributed as x(P(1), P(2), . . .), where

(P(1), P(2), . . .) has the Poisson–Dirichlet distribution of parameter δ
2 .

Note that the loops γ of L δ
2

such that γ ⊂ (−m, 0) are independent of

L(T−m, 0). Then the excursions above infimum of X (seen as unrooted loops) under
P
δ(·|L(T−m, 0) = x) consists in the superposition of:

• the loops γ of the Brownian loop soup L δ
2

such that γ ⊂ (−m, 0);
• an independent collection of independent Brownian motions stopped at local time

x(P(1), P(2), . . .), where (P(1), P(2), . . .) has the Poisson–Dirichlet distribution
of parameter δ

2 .
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Let m → ∞, we deduce that the excursions below supremum of Rx
3,κ (seen as

unrooted loops) consists in the superposition of:

• the loops γ of the Brownian loop soup L δ
2

such that min γ > 0;
• an independent collection of independent Brownian motions stopped at local time

x(P(1), P(2), . . .), where (P(1), P(2), . . .) has the Poisson–Dirichlet distribution
of parameter δ

2 .

Note that via the transformation θ(Rx
3,κ (t)) = X̃At , the excursions of Rx

3,κ

below their current supremum are transformed into excursions of X̃ above their
current infimum. Since the law of Rx

3,κ is characterized by the law of its excursions

below their current supremum (exactly as Remark 5.2(ii)), and the law of X̃ is
characterized by the law of its excursions above their current infimum in a similar
way, we only have to focus on the law of those excursions and show that applying
the transformation in space θ and in time A−1

t , say �,3

(a) the loops γ of the Brownian loop soup L δ
2

such that min γ > 0 are transformed
into loops γ̃ of Lδ/2 such that max γ̃ < 0 and min γ̃ > −m;

(b) for any � > 0, a Brownian motion (Bt , 0 ≤ t ≤ τB� ) stopped at local time � is
transformed into (Bt , 0 ≤ t ≤ τB� ) conditioned on {inf0≤t≤τB� Bt > −m}.

Let us prove (a). For a loop γ , we let γ ↑ be the loop γ − min γ rooted at its
minimum, and γ ↓ be the loop γ − max γ rooted at its maximum. Notice that γ ↑ is
a positive excursion above 0, and γ ↓ is a negative excursion below 0. We remark
that for any loop γ with min γ > 0, min�(γ ) = θ(a) with a := max γ , and
�(γ )↑ = �(a + γ ↓) − θ(a). By Lemma 2.3 (ii), for any nonnegative measurable
function f on R− ×K, we have

E

[
e
−∑γ∈Lδ/2 ,min γ>0 f (min�(γ ),�(γ )↑)]

= exp
(
− δ

∫ ∞

0
da
∫

n−(de)(1 − e−f (θ(a),�(a+e)−θ(a)))1{mine>−a}
)

= exp
(
− δ

∫ ∞

0
da
∫

n+(de)(1 − e−f (θ(a),�(a−e)−θ(a)))1{max e<a}
)
.

Let h > 0. Williams’ description of the Itô measure says that under
n+(· | max e = h), the excursion e can be split into two independent

three-dimensional Bessel processes run until they hit h. For a ≥ h, and a three-
dimensional Bessel process R starting from 0 stopped when hitting h, the Itô
formula together with the Dubins-Schwarz representation yield that�(a−R)−θ(a)

is still a three dimensional Bessel process run until it hits θ(a − h)− θ(a) (this can
also be seen as a special case of Theorem 2.2 equation (2.5) of Doney, Warren, Yor

3More precisely for any process (γt , t ≥ 0), �(γ ) is the process defined by θ(γt ) =
�(γ )

( ∫ t
0 (θ

′(γs ))2ds
)
.
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[7] by taking α = 0 there). It follows that under n+(· | max e = h), �(a− e)−θ(a)

is distributed as e under n+(· | max e = θ(a − h) − θ(a)). Consequently, for any
a > 0,

∫
n+(de)(1 − e−f (θ(a),�(a− e)−θ(a)))1{max e<a}

=
∫ a

0

dh

2h2

∫
(1 − e−f (θ(a),e))n+

(
de | max e = θ(a − h)− θ(a)

)

= m2

(m+ a)2

∫ |θ(a)|

0

ds

2s2

∫
(1 − e−f (θ(a),e))n+(de | max e = s)

= m2

(m+ a)2

∫
n+(de)(1 − e−f (θ(a),e))1{max e<|θ(a)|},

where the second equality follows from a change of variables s = θ(a − h)− θ(a).
It follows that

E

[
e
−∑γ∈L δ

2
,min γ>0 f (min�(γ ),�(γ )↑)]

= exp
(
− δ

∫ ∞

0
da

m2

(m+ a)2

∫
n+(de)(1 − e−f (θ(a),e))1{max e<|θ(a)|}

)

= exp
(
− δ

∫ m

0
dy
∫

n+(d e)(1 − e−f (−y,e))1{max e<y}
)
,

after a change of variables y = |θ(a)|. This proves (a).
It remains to show (b). Let (es , s > 0) be the standard Brownian excursion

process. It is well known that (Bs, 0 ≤ s ≤ τB� ) can be constructed from (es, s ≤ �)

(see Revuz and Yor [21] Chapter XII, Proposition 2.5). Observe that the process
�(Bs, 0 ≤ s ≤ τB� ) can be constructed from (�(es ), s ≤ �) in the same way.
To prove (b), it is enough to show that (�(es), s ≤ �) under the Itô measure n, is
distributed as (es , s ≤ �) under n(· | infs≤� min es > −m). To this end, we use the
same observation as in the proof of (a): for any h > 0, under n+(· | max e = h),
�(e) is distributed as −e under n+(· | max e = |θ(h)|). Consequently, for any
nonnegative measurable function f on K,

∫
n+(de)(1 − e−f (�(e))) =

∫ ∞

0

dh

2h2

∫
(1 − e−f (−e)) n+(de | max e = |θ(h)|)

=
∫ m

0

ds

2s2

∫
(1 − e−f (−e))n+(de | max e = s)

=
∫

n+(de)(1 − e−f (−e))1{max e<m},
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where the second equality follows from a change of variables s = |θ(h)|. It follows
that
∫

n(de)(1 − e−f (�(e))) =
∫

n−(de)(1 − e−f (−e))+
∫

n+(de)(1 − e−f (−e))1{maxe<m}

=
∫

n(de)(1 − e−f (e))1{mine>−m},

which together with the exponential formula for the excursion process, yield that
(�(es ), s ≤ �) under n is distributed as (es, s ≤ �) under n(· | infs≤� min es > −m).
This completes the proof of Theorem 5.3. ��
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On Doney’s Striking Factorization
of the Arc-Sine Law
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Abstract In Doney (Bull Lond Math Soc 19(2):177–182, 1987), R. Doney iden-
tifies a striking factorization of the arc-sine law in terms of the suprema of two
independent stable processes of the same index by an elegant random walks approx-
imation. In this paper, we provide an alternative proof and a generalization of this
factorization based on the theory recently developed for the exponential functional
of Lévy processes. As a by-product, we provide some interesting distributional
properties for these variables and also some new examples of the factorization of
the arc-sine law.
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Keywords Lévy processes · arc-sine law · mellin transform · recurrence
equation

1 Introduction

Let Mρ = sup0≤t≤1Xt and M̂ρ = sup0≤t≤1 −X̃t where X = (Xt )t≥0 and
X̃ = (X̃t )t≥0 are two independent copies of a stable process of index α ∈ (0, 2)
and positivity parameter ρ ∈ (0, 1). Doney [9, Theorem 3] proved the following
factorization of the arc-sine random variable Aρ of parameter ρ

Mα
ρ

Mα
ρ + M̂α

ρ

(d)= Aρ (1.1)

where
(d)= stands for the identity in distribution, and the law of Aρ is absolutely

continuous with a density given by

sin(πρ)

π
xρ−1(1 − x)−ρ, x ∈ (0, 1) .

The distributional identity (1.1) is remarkable because the law of the supremum
of a stable process is usually a very complicated object whereas the arc-sine law
has a simple distribution. In recent years, the law of Mρ has been the interest of
many researchers, see e.g. [11, 14, 15, 23, 25] where we can find series or Mellin-
Barnes integral representations for the density of the supremum of a stable process
valid for some set of parameters (α, ρ). We mention that Doney resorts to a limiting
procedure to derive the factorization (1.1) of the arc-sine law. More specifically,
his proof stems on a combination of an identity for each path of a random walk
in the domain of attraction of a stable law with the arc-sine theorem which can be
found in Spitzer [30]. We also mention that the arc-sine law appears surprisingly in
different contexts in probability theory and in particular in the study of functionals
of Brownian motion, see e.g. [8, 19, 22, 31].

The aim of this work is to provide an alternative proof and offer a generalization
of Doney’s factorization of the arc-sine law. The first key step relies on the well-
known fact by now that, through the so-called Lamperti mapping, one can relate the
law of the supremum of a stable process to the one of the exponential functional
of a specific Lévy process, namely the Lamperti-stable process. It is then natural to
wonder whether there are other factorizations of the arc-sine law given in terms of
exponential functionals of more general Lévy processes. This will be achieved by
resorting to the thorough study on the functional equation satisfied by the Mellin
transform of the exponential functional of Lévy processes carried out in Patie and
Savov [27].

Besides proving these identities in a more general framework, the problem of
identifying a factorization of the exponential functionals as a simple distribution
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is interesting on its own since we shall show, on the way, that the law of the
ratio of independent exponential functionals of some Lévy processes is the Beta
prime’s one which is known to belong to some remarkable sets of probability laws.
This new fact is also relevant as the exponential functional of Lévy processes has
attracted the attention of many researchers over the last two decades. The law of
this random variable plays an important role in the study of self-similar processes,
fragmentation and branching processes and is related to other theoretical problems
as for example the moment problem and spectral theory of some non-self-adjoint
semigroups, see [28]. Moreover it also plays an important role in more applied
domains as for example in mathematical finance for the evaluation of Asian options,
in actuarial sciences for random annuities, as well as in domains like astrophysics
and biology. We refer to the survey paper [5] for a more detailed account on some
of the mentioned fields. The remaining part of the paper is organized as follows. We
state our main factorization of the arc-sine law along with some consequences and
examples in the next section. The last section is devoted to the proofs.

2 The Arc-Sine Law and Exponential Functional of Lévy
Processes

Throughout this paper we denote by ξ = (ξt )t≥0 a possibly killed Lévy process
issued from 0 and defined on the probability space (�,F ,P). It means that ξ is
a real-valued stochastic process having independent and stationary increments and
possibly killed at the random time eq , which is independent of ξ and exponentially
distributed with parameter q ≥ 0, where we understand that e0 = +∞. We denote
by � its Lévy-Khintchine exponent, which, for any z ∈ iR, takes the form

logE
[
ezξ1

] = �(z) = az+ 1

2
σ 2z2 +

∫
R

(
ezy − 1 − zyI{|y|<1}

)
�(dy)− q

(2.1)

where a ∈ R, σ ≥ 0 and � is a Radon measure on R satisfying the conditions∫
R
(1 ∧ y2) �(dy) < +∞ and �({0}) = 0. The law of ξ1 is infinitely divisible and

the one of ξ is uniquely characterized by the quadruplet (q, a, σ,�). An excellent
account on Lévy processes can be found in the monographs [4, 10, 16, 29]. Next,
we define the exponential functional associated to the Lévy process ξ by

I� =
∫ ∞

0
eξt dt =

∫ eq

0
eξt dt. (2.2)

The variable I� is well defined if either �(0) = −q < 0 or limt→+∞ ξt = −∞
a.s. This last condition is equivalent to Erickson’s integral tests involving the Lévy
measure � and the drift a, see Bertoin and Yor [5, Theorem 1]. With this remark in
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mind, we denote by N the set of Lévy Khintchine exponents of the form (2.1) for
which the exponential functional I� is well defined, i.e.

N =
{
� of the form (2.1); �(0) < 0 or lim

t→+∞ ξt = −∞ a.s.

}
. (2.3)

Note that N is a subspace of the negative of continuous negative-definite functions,
as defined in [12]. Next, it is well-known that � ∈ N admits an analytical extension
(still denoted by �) to the strip C(0,β) = {z ∈ C; 0 < �(z) < β} with 0 < β if
and only if

∣∣E [ezξ1
]∣∣ < ∞ for all z ∈ C(0,β). Note that the existence of exponential

moments for all z ∈ C(0,β) is equivalent to

∫
y>1

euy�(dy) < ∞ for all u ∈ (0, β). (2.4)

Under this condition, the restriction of � on the real interval (0, β) is convex and the
condition limt→+∞ ξt = −∞ a.s. is equivalent to � ′(0+) < 0, see e.g. [5, Theorem
1 and Remark p.193]. We then define for any β > 0,

Nβ = {� ∈ N ; (2.4) holds} .

Next, for any � ∈ Nβ , let us denote

ρ = sup{u ∈ (0, β); �(u) = 0}

with the usual convention that sup{∅} = +∞ and, introducing the notation

�+ (y) =
∫ ∞

y

�(dr)I{y>0},

we define

Nβ(ρ) =
{
� ∈ Nβ;ρ < ∞, y �→ eβy�+ (y) is non-increasing,∞ < lim

u↑0
u�(u+ β) ≤ 0

}
.

We point out that if � ∈ Nβ(ρ) and limu↑0 u�(u + β) exists then necessarily
limu↑0 u�(u + β) ≤ 0 as, by definition ρ < β, and � is convex increasing on
(ρ, β). Note also that for any � ∈ N with �+ ≡ 0, we always have 0 < ρ < ∞
and thus � ∈ Nβ(ρ) for all β > ρ. We also point out if |�(β)| < ∞, that is �
extends continuously to the line β + iR, then plainly limu↑0 u�(u + β) = 0. We
are now ready to state our main result.
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Theorem 2.1 Assume that � ∈ N1(ρ) with 0 < ρ < 1, then �̂1(z) = �1(−z) ∈
N1 with �̂1(1 − ρ) = 0, where

�1(z) = z

z+ 1
� (z + 1) , z ∈ iR,

and,

I�̂1

I�̂1
+ I�

(d)= Aρ and
I�

I�̂1
+ I�

(d)= A1−ρ (2.5)

where the variables I� and I�̂1
are taken independent.

We proceed by providing some consequences of this main result. We first derive
some interesting distributional properties for the ratio of independent exponential
functionals. To this end, we recall that a positive random variable is hyperbolically
completely monotone if its law is absolutely continuous with a probability density
f on (0,∞) which is such that the function h defined on (0,∞) by

h(w) = f (uv) f (u/v) , with w = v + v−1, (2.6)

is, for each fixed u > 0, completely monotone, i.e. (−1)n dn

dwn h(w) ≥ 0 on (0,∞)

for all integers n ≥ 0. This remarkable set of random variables was introduced
by Bondesson and in [6, Theorem 2], he shows that it is a subset of the class of
generalized gamma convolution. We recall that a positive random variable belongs
to this latter class if it is self-decomposable, and hence infinitely divisible, such
that its Lévy measure �, concentrated on R

+, is such that
∫∞

0 (1 ∧ y)�(dy) < ∞
and �(dy) = k(y)

y
dy where k is completely monotone. We also say that a positive

random variable I is multiplicative infinitely divisible if log I is infinitely divisible.
It turns out that under some conditions the random variables I� is multiplicative
infinitely divisible, see [1, Theorem 1.5] when � is a Bernstein function and [27,
Theorem 4.7] in the general case.

Corollary 2.2 With the notation and assumptions of Theorem 2.1, the random

variables I�
I�̂1

and
I�̂1
I�

are hyperbolically completely monotone and multiplicative

infinitely divisible. Moreover, when ρ = 1
2 , then I�

I�̂1
is self-reciprocal, i.e. it has the

same law than
I�̂1
I�

, and it has the law of C2 where C is a standard Cauchy variable.

Another consequence of Theorem 2.1 is the following.

Corollary 2.3 Doney’s identity (1.1) holds.

We close this section by describing another example illustrating our main factoriza-
tion of the arc-sine law with some classical variables and refer the interested reader
to the thesis [2] for the description of additional examples. Let us consider first S(α)
a positive α-stable variable, with 0 < α < 1, and denote by S−α

γ (α) its γ -length-
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biased random variable, γ > 0, that is for any bounded measurable function g on
R

+, one has

E

[
g(S−α

γ (α))
]
= E

[
S−αγ (α)g(S−α(α))

]
e
[
S−αγ (α)

]

where we recall that E
[
S−αγ (α)

]
< ∞, see e.g. [24, Section 3(3)]. We also denote

by Ga a gamma variable of parameter a > 0.

Corollary 2.4 Let 0 < α, ρ < 1, then we have the following factorization of the
arc-sine law

G−α
α(1−ρ)

G−1
1−ρS

−α
ρ (α) + G−α

α(1−ρ)

(d)= Aρ

where the three variables Gα(1−ρ), Sρ(α) and G1−ρ are taken independent.

3 Proofs

The proof of Theorem 2.1 is split into several intermediate results which might be
of independent interests. First, let (Tβ)β∈R be the group of transformations defined,
for a function f on the complex plane, by

Tβf (z) = z

z + β
f (z+ β) . (3.1)

In what follows, which is a slight extension of [26, Proposition 2.1], we show
that under mild conditions, this family of transformations enables to identify an
invariance property of the subset of Lévy-Khintchine exponents. Note that this
lemma contains the first claim of Theorem 2.1.

Lemma 3.1 Let β+ > 0 and � be of the form (2.1) such that for any β ∈
(0, β+), |�(β)| < ∞. Then, for any β ∈ (0, β+] such that

y �→ eβy�+ (y) is non-increasing on R
+ and −∞ < qβ = lim

u↑0
Tβ� (u) ≤ 0,

we have that Tβ� is also of the form (2.1). More specifically, its killing rate is −qβ ,
its Gaussian coefficient is σ and its Lévy measure takes the form

�β (dy) = eβy
(
�(dy)+ βdy

(
(� (−∞, y)+ q)I{y<0} −�+ (y)

))
, y ∈ R.

(3.2)
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Finally, if, in addition, � ∈ Nβ(ρ) with β ∈ (ρ, β+], then �̂β = T̂β� ∈ Nβ with
�̂β(β − ρ) = 0.

Remark 3.2 Note that when |�(β)| < ∞ then immediately qβ = 0. Moreover, the
situation |�(β+)| = ∞ is allowed if 0 is a removable singularity for Tβ+� with
qβ+ = Tβ+�(0) ≤ 0.

Proof For any β ∈ (0, β+), since in this case plainly qβ = 0, the claim is given
in [26, Proposition 2.1] and thus it remains to prove it only for β = β+. Note also
that the expression of the characteristics of Tβ+� follows from this aforementioned
result and we now show that it is indeed a characteristic exponent of a Lévy process.
To this end, we recall a few properties of the set of all negative definite functions
N(R) and the set of all continuous negative definite functions denoted by CN(R)

and refer to the monograph [12] for an excellent account on these sets of functions.
A function f : R −→ C is an element in N(R) if and only if the following
conditions are fulfilled f (0) ≥ 0, f (z) = f (−z), and for any k ∈ N and any
choice of values z1, · · · , zk ∈ R and complex numbers c1, · · · , ck

k∑
j=1

cj = 0 implies that
k∑

j,l=1

f (zj − zl)cj cl ≤ 0. (3.3)

It is easy to verify that −�(−z) ∈ CN(R), z ∈ iR and it is also well-known that
any element of CN(R) can be written as the negative of a characteristic function
of a Lévy process. Now, we have, for any β ∈ (0, β+), Tβ� (z), z ∈ iR, is the
characteristic exponent of a conservative (qβ = 0) Lévy process. Denote, for u ∈
(−β+, 0)

Tβ+�(u) = lim
β→β+ Tβ�(u), (3.4)

and set Tβ+�(0) := limu↑0 Tβ+� (u) = qβ which is a non-negative constant by
assumption. Then, let

�(z) =
{−Tβ+�(z) if z �= 0

0 if z = 0.

Then � is an element of N(R) since we know from [12, Lemma 3.6.7, p.123] that
the set N(R) is a convex cone which is closed under pointwise convergence. Let
further

�̃(z) =
{−qβ +�(z) if z �= 0
−qβ if z = 0,
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where we recall that qβ ≤ 0. For any k ∈ N and any choice of values z1, · · · , zk ∈ R

and complex numbers c1, · · · , ck with
∑k

j=1 cj = 0, since � ∈ N(R) and −qβ ∈
N(R), we have

k∑
j,l=1

�̃(zj − zl)cj cl =
k∑

j,l=1;zj �=zl
�(zj − zl)cj cl − qβ

k∑
j,l=1;zj �=zl

cj cl − qβ

k∑
j,l=1;zj=zl

cj cl

=
k∑

j,l=1

�(zj − zl)cj cl − qβ

k∑
j,l=1

cj cl ≤
k∑

j,l=1

�(zj − zl)cj cl ≤ 0.

Hence �̃ ∈ N(R) and by continuity, Tβ+� is the characteristic exponent of a
possibly killed Lévy process. Next, let us assume that, in addition, � ∈ Nβ(ρ)

with β ∈ (ρ, β+], then writing �̂β = T̂β�, �̂β is the characteristic exponent of
the dual Lévy process associated to Tβ� and, as �̂β(z) = z

z−β�(−z + β), we

have that �̂β(z) is analytical on the strip C(0,β) and �̂β(β − ρ) = 0. Moreover,
since for u ∈ (0, β), �̂ ′

β(u) = − u
u−β�

′(−u + β) − β

(u−β)2�(−u + β), we get, if

β ∈ (ρ, β+), that �̂ ′
β(0) = −�(β)

β
< 0 as β > ρ, either �(0) < 0 or � ′(0+) < 0

and � is convex on (0, β). Hence, in this case, �̂β ∈ Nβ(β−ρ). Finally, if qβ+ < 0
then clearly �̂β+ ∈ Nβ+(β − ρ) whereas if qβ+ = 0 we complete the proof by
recalling that �̂β+(β+ − ρ) = 0 with β+ − ρ > 0 and the convexity of �̂β . ��
Next, we denote by MI the Mellin transform of a random variable I, that is, for
z ∈ C,

MI(z) = E[Iz−1]

and, mention that the mapping t �→ MI(it + 1) for t real is a positive-definite
function. We proceed by recalling a few basic facts about the Beta prime random
variable, which we denote by Pa,b, a, b > 0, that will be useful in the sequel of the
proof. It can be defined via the identity

Pa,b
(d)= Gb

Ga
(3.5)

where the two variables are gamma variables of parameter b and a respectively, are
considered independent. It is well-known that the law of Ga is absolutely continuous
with the following density

1

	(a)
xa−1e−x, x > 0.
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Pa,b is also a positive variable whose law is absolutely continuous with a density
given by

1

B(a, b)
xb−1 (1 + x)−a−b , x > 0,

where B(a, b) = 	(a)	(b)
	(a+b) is the Beta function. The Mellin transform of Pa,b is

given by

E

[
Pz
a,b

]
= 	(a − z)	(b + z)

	(a)	(b)
, −b < �(z) < a. (3.6)

From (3.6) it is easy to see that Pa,b admits moments of order u for any u ∈ (−b, a).
In particular Pa,b has infinite mean whenever a ≤ 1. We refer to [13] for a nice
exposition on these variables. When ρ = a = 1 − b, we write simply Pρ = Pρ,1−ρ
which is linked to the generalized arc-sine law Aρ of order ρ in the following way

(1 + Pρ)
−1 (d)= Aρ. (3.7)

Simple algebra yields, from the identity (1.1), the following factorization

M̂α
ρ

Mα
ρ

(d)= Pρ. (3.8)

Inspired by this reasoning, we shall prove the factorization of the variable Pρ in
terms of exponential functionals of Lévy processes. To this end, we shall need the
following characterizations of the Mellin transform of the Beta prime variable Pρ .

Lemma 3.3 For any 0 < ρ < 1, we have

MPρ
(z + 1) = 	(z + 1 − ρ)

	(1 − ρ)

	(−z+ ρ)

	(ρ)
(3.9)

which defines an analytical function on the strip C(ρ−1,ρ) with simple poles at the
edges of its domain of analyticity, that is at the points ρ and ρ − 1. Moreover, it is
the unique positive-definite function solution to the recurrence equation, for z ∈ C,

MPρ
(z + 1) = −MPρ

(z), MPρ
(1) = 1. (3.10)

Proof First, from the definition (3.5) of Pρ , one has, for any 0 < ρ < 1 and b > 0,

MPρ,b
(z+ 1) = MGb (z+ 1)MGρ (−z+ 1) = 	(z + b)

	(b)

	(−z + ρ)

	(ρ)
, (3.11)
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and thus, as Pρ = Pρ,1−ρ ,

MPρ
(z+ 1) = 	(z + 1 − ρ)

	(1 − ρ)

	(−z + ρ)

	(ρ)
. (3.12)

As a by-product of classical properties of the gamma function, one gets that z �→
MPρ

(z+ 1) defines an analytical function on the strip C(ρ−1,ρ) and which extends
as a meromorphic function on C with simple poles at the points ρ+n and ρ−1−n,
n ∈ N. Then, using the recurrence relation of the gamma function 	(z + 1) =
z	(z), z ∈ C, we deduce that, for any z ∈ C(ρ−1,ρ),

MPρ
(z + 1) = z− ρ

−z+ ρ

	(z − ρ)

	(1 − ρ)

	(−z + 1 + ρ)

	(ρ)
= −MPρ

(z), (3.13)

which is easily seen to be valid, in fact, for all z ∈ C. To prove the uniqueness, one
notes that any solution of (3.10) can be written as the product MPρ

f where f is a
periodic function with period 1 and f (1) = 1. However, since the Stirling’s formula
yields that for any a ∈ R fixed,

lim|b|→∞ |	(a + ib)||b|−a+ 1
2 e|b|

π
2 = Ca (3.14)

where Ca > 0, see e.g. [18], one gets, from (3.13), that for large |b|,

|MPρ
(1 + i|b|)| ∼ Cρ |b|− 1

2 e−|b|π .

As the Mellin transform of a random variable is bounded on the line 1+ iR, one has
necessarily that |f (z)| ≤ e(|b|+ε)π for any ε > 0 and some C > 0. An application
of Carlson’s theorem on the growth of periodic functions, see [20, p.96, (36)], gives
that f is a constant which completes the proof. ��

We state the following result which is proved in [27] regarding the recurrence
equation solved by the Mellin transform of the exponential functional I� for
a general Lévy process. Note that the exponential functional is defined in the
aforementioned paper with ξ̂ = −ξ , that is for �̂(−z) = �(z).

Lemma 3.4 ([27], Theorem 2.4.) For any � ∈ N , MI� is the unique positive-
definite function solution to the functional equation

MI� (z+ 1) = −z
�(z)

MI� (z), MI� (1) = 1, (3.15)

which is valid (at least) on the dashed line Zc
0(�)\{0}, where we set Z0(�) = {z ∈

iR; �(z) = 0}. If � ∈ N1(ρ), 0 < ρ < 1, the validity of the recurrence equation
(3.15) extends to C(0,2) ∪ Zc

0(�) ∪ Zc
0 (�(.+ 1)) and MI� (z + 1) is analytical on

the strip C(−1,ρ) and meromorphic on C(−1,1) with ρ as unique simple pole.
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We mention that in [27, Theorem 2.1], an explicit representation of the solution
on a strip of the functional equation (3.15) is provided in terms of the co-called
Bernstein-gamma functions. This representation turns out to be very useful to
provide substantial distributional properties, such as a Wiener-Hopf factorization,
smoothness, small and large asymptotic behaviors, of the exponential functional of
any Lévy processes, see Section 2 of the aforementioned paper.

We are now ready to complete the proof of Theorem 2.1. Let� ∈ N1(ρ) and �̃ ∈
N and define the random variable I = I�

I�̃
, where we assumed that the exponential

functionals I� and I�̃ are independent variables. Then, plainly

MI(z+ 1) = MI� (z+ 1)MI�̃ (−z+ 1) (3.16)

and, Lemma 3.4 yields, after a shift by 1, and with MI(1) = 1, that

MI(z+ 2) = −z− 1

�(z+ 1)

�̃(−z)
z

MI(z + 1),

for (at least) any z on the dashed line Zc
0(�(. + 1) ∩ Zc

0(�̃) \ {0, 1}. Therefore, if
one chooses �̃ of the form

�̃(−z) = z+ 1

z
�(z+ 1),

that is �̃(−z) = T1�(z) or �̃(z) = T̂1�(z) = �̂1(z), one gets that �̂1 ∈ N1(1−ρ)

and thus according to Lemma 3.4, MI�̂1
(−z+ 1) is analytical on the strip C(ρ−1,1)

with 1−ρ as a simple pole. Then we obtain, from (3.16), that MI(z+1) is analytical
on the strip C(ρ−1,ρ) with 1 − ρ and ρ as simple poles and it is solution to the
recurrence equation

MI(z+ 1) = −MI(z).

Since plainly MI(it + 1) is a positive-definite function we conclude by the
uniqueness argument given in Lemma 3.3 that

I�
I�̂1

(d)= Pρ. (3.17)

Invoking the identity (3.7), one obtains the first identity in (2.5). To get the second

one, one deduces easily, from (3.17) and (3.5), that
I�̂1
I�

has the same law as P1−ρ ,
and, by means of (3.7) again completes the proof of the Theorem.
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3.1 Proof of Corollary 2.2

First, from (3.17), we deduce easily that
I�̂1
I�

has the same law as P1−ρ . The fact that
the density of the variable P1−ρ is hyperbolic completely monotone was proved in
[6]. Moreover, Berg [3] showed that logGa is infinitely divisible for any a > 0,
we conclude the proof by recalling that the set of infinitely divisible variables
is closed by linear combination of independent variables. Finally, the last claim
follows readily from the definition of Pρ and the connection with the standard
Cauchy variable, which was observed by Pitman and Yor in [21].

3.2 Proof of Corollary 2.3

In order to prove the identity (1.1), we first recall the connection between the law
of the maximum of a stable process and the exponential functional of a specific
Lévy process, usually referred to as the Lamperti-stable process. This link has been
established through the so-called Lamperti transform and we refer to [7, 15] and
[17, Section 2.2] for more details. We proceed by providing the Lévy-Khintchine
exponent �α,ρ of the Lamperti-stable process of parameters (α, ρ), α ∈ (0, 2) and
ρ ∈ (0, 1), which is given by

�α,ρ(z) = − 	(1 + αz)

	(1 − αρ + αz)

	(α − αz)

	(αρ − αz)
, z ∈ C(− 1

α
,1), (3.18)

see [17, Theorem 2.3] where we consider here the exponent of αξ∗ in the notation
of that paper. The following identity in law between the suprema of stable processes
and the exponential functional of Lévy processes can be found, for example, in [15,
p. 133],

M−α
ρ

(d)= I�α,ρ (3.19)

where we recall that Mρ = sup0≤t≤1Xt andX = (Xt )t≥0 is an α stable process with
positivity parameter ρ. Next, observe that �α,ρ(ρ) = 0 and using the recurrence
relation of the gamma function, easy algebra yields

z

z+ 1
�α,ρ(z + 1) = − z

z+ 1

	(1 + α + αz)

	(1 + α(1 − ρ)+ αz)

	(−αz)
	(−α(1 − ρ)− αz)

= − 	(α + αz)

	(α(1 − ρ)+ αz)

	(1 − αz)

	(1 − α(1 − ρ)− αz)
.

Then, we get that limu→0
u

u+1�α,ρ(u+1) = − 	(α)
	(α(1−ρ))

1
	(1−α(1−ρ)) ≤ 0 as always

α(1−ρ) ≤ 1. We could easily check from the form (3.18) of�α,ρ and the expression
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of its Lévy measure given in [15] that y �→ ey�+ (y) is non-decreasing on R
+.

Instead, we simply observe from the computation above that

�̂1(z) = T1�α,ρ(−z) = − 	(α − αz)

	(α(1 − ρ)− αz)

	(1 + αz)

	(1 − α(1 − ρ)+ αz)
= �α,1−ρ(z),

which is the characteristic exponent of the Lamperti-stable process with parameter
(α, 1 − ρ). Hence, similarly to (3.19), we have the following identity in law

M̂−α
1

(d)= I�̂1
,

which by an application of Theorem 2.1 completes the proof.

3.3 Proof of Corollary 2.4

Let us now consider, for any α ∈ (0, 1),

�̂α(z) = 	(1 + α − αz)

α	(−αz) , z ∈ C(−∞,1+ 1
α
).

In [24, Section 3.1], it is shown that �̂α is the Lévy-Khintchine exponent of a
spectrally positive Lévy process with a negative mean and that I�̂α

is a positive
self-decomposable variable with

I�̂α

(d)= e−α.

In other words, I�α has the Fréchet distribution of parameter ρ = 1
α
> 1. Observe

that �̂α(ρ) = 0 and thus �̂α does not satisfy the hypothesis of Theorem 2.1.
However, in [24, Section 3.1] it is also shown that, up to a positive multiplicative
constant, the tail of the Lévy measure of �̂α is given by �α(y) = e−(α+1)y/α(1 −
e−y/α)−α−1, y > 0, and thus plainly the mapping eβy�α(y) is non-decreasing on
R

+ for any β ≤ 1
α
+ 1. Then, Lemma 3.3 gives, for any ρ = β − 1

α
≤ 1, that

�̂α,ρ(z) = Tρ+ 1
α
�̂α(z) = z

z + ρ + 1
α

	(α − αρ − αz)

α	(−1 − αρ − αz)
= −z	(α − αρ − αz)

	(−αρ − αz)

is, since limu→0 �̂α,1(u) = limu→0
	(1−αu)

α	(−α−αu) = − 1
	(1−α) < 0, the characteristic

exponent of a Lévy process, as well as, by duality,

�α,ρ(z) = z
	(α − αρ + αz)

	(−αρ + αz)
.
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Note that, if 0 < ρ < 1 then �α,ρ(ρ) = 0 and we deduce by convexity and since
�α,ρ(0) = 0 that � ′

α,ρ(0
+) < 0. Hence �α,ρ ∈ N1(ρ). Using Lemma 3.4, one gets

that

MI�α,ρ (z + 1) = −	(α − αρ + αz)

	(−αρ + αz)
MI�α,ρ (z), MI�α,ρ (1) = 1. (3.20)

As mentioned earlier, [27, Theorem 2.1] provides the solution of this functional
equation which is derived as follows. First we recall that the analytical Wiener-Hopf
factorization of �α,ρ is given by

�α,ρ(z) = −(−z+ ρ)φρ(z)

where φρ(z) = αz
	(α−αρ+αz)
	(1−αρ+αz) is a Bernstein function, see [10]. Then, the solution

of (3.20) takes the form

MI�α,ρ (z+ 1) = 	(z + 1)

Wφρ (z+ 1)
	(ρ − z),

where Wφρ (z + 1) = φρ(z)Wφρ (z), Wφρ (1) = 1. To solve this latter recurrence

equation, we note that φρ(z) = α z
z−ρ

	(α(z+1−ρ))
	(α(z−ρ)) , then easy algebra and the

uniqueness argument used in the proof of Lemma 3.3 yield that Wφρ (z + 1) =
αz

	(1−ρ)	(z+1)	(α(z+1−ρ))
	(z+1−ρ)	(α(1−ρ)) and thus

MI�α,ρ (z+ 1) = α−z 	(z + 1 − ρ)	(α(1 − ρ))

	(1 − ρ)	(z + 1)	(α(z + 1 − ρ))
	(z + 1)	(ρ − z)

= α−z 	(z + 1 − ρ))

	(α(z + 1 − ρ))

	(α(1 − ρ))

	(1 − ρ)
	(ρ − z).

Next, recalling that Sγ (α) is the γ -length biased variable of a positive α-stable
random variable, we observe, from [24, Section 3(3)] that

E

[
S−αz

1−ρ (α)
]
= E

[
S−α(1−ρ+z)(α)

]
E
[
S−α(1−ρ)(α)

] = 	(z + 1 − ρ))

	(α(z + 1 − ρ))

	(α(1 − ρ))

	(1 − ρ)
.

Thus, by Mellin transform identification, we get that

I�α,ρ

(d)= α−1S−α
1−ρ(α)× G−1

1−ρ
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where the variables on the right-hand side are taken independent. Next, we have,
writing simply �1 = T1�α,ρ ,

T1�α,ρ(z) = z
	(α(2 − ρ + z))

	(α(1 − ρ + z))

which yields

MI�̂1
(z+ 1) = 	(α(1 − ρ − z))

	(α(2 − ρ − z))
MI�̂1

(z), M�̂1
(1) = 1.

It is not difficult to check that MI�̂1
(z+1) = 	(α(1−ρ−z)) is the unique positive-

definite solution of this equation. Invoking Theorem 2.1 completes the proof.
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On a Two-Parameter Yule-Simon
Distribution

Erich Baur and Jean Bertoin

Abstract We extend the classical one-parameter Yule-Simon law to a version
depending on two parameters, which in part appeared in Bertoin (J Stat Phys
176(3):679–691, 2019) in the context of a preferential attachment algorithm with
fading memory. By making the link to a general branching process with age-
dependent reproduction rate, we study the tail-asymptotic behavior of the two-
parameter Yule-Simon law, as it was already initiated in Bertoin (J Stat Phys
176(3):679–691, 2019). Finally, by superposing mutations to the branching process,
we propose a model which leads to the two-parameter range of the Yule-Simon law,
generalizing thereby the work of Simon (Biometrika 42(3/4):425–440, 1955) on
limiting word frequencies.

Keywords Yule-Simon model · Crump-Mode-Jagers branching process ·
Population model with neutral mutations · Heavy tail distribution · Preferential
attachment with fading memory

1 Introduction

The standard Yule process Y = (Y (t))t≥0 is a basic population model in continuous
time and with values in N := {1, 2, . . .}. It describes the evolution of the size of a
population started from a single ancestor, where individuals are immortal and give
birth to children at unit rate, independently one from the other. It is well-known
that for every t ≥ 0, Y (t) has the geometric distribution with parameter e−t . As a
consequence, if Tρ denotes an exponentially distributed random time with parameter
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ρ > 0 which is independent of the Yule process, then for every k ∈ N, there is the
identity

P
(
Y (Tρ) = k

) = ρ

∫ ∞

0
e−ρt (1 − e−t )k−1e−tdt = ρB(k, ρ + 1), (1)

where B is the beta function.
The discrete distribution in (1) has been introduced by H.A. Simon [20] in 1955

and is nowadays referred to as the Yule-Simon distribution with parameter ρ. It
arises naturally in preferential attachment models and often explains the occurrence
of heavy tail variables in stochastic modeling. Indeed, the basic estimate

B(k, ρ + 1) ∼ 	(ρ + 1)k−(ρ+1) as k → ∞,

implies that the Yule-Simon distribution has a fat tail with exponent ρ.
The present work is devoted to a two-parameter generalization of the Yule-Simon

distribution, which results from letting the fertility (i.e. the reproduction rate) of
individuals in the population model depend on their age. Specifically, imagine that
now the rate at which an individual of age a ≥ 0 begets children is e−θa for some
fixed θ ∈ R. So for θ > 0 the fertility decays with constant rate θ as individuals
get older, whereas for θ < 0, the fertility increases with constant rate −θ . Denote
the size of the population at time t by Yθ (t). In other words, Yθ = (Yθ (t))t≥0 is a
general (or Crump-Mode-Jagers) branching process, such that the point process on
[0,∞) that describes the ages at which a typical individual begets a child is Poisson
with intensity measure e−θtdt . For θ = 0, Y0 = Y is the usual Yule process.

Definition 1.1 Let θ ∈ R and ρ > 0. Consider Yθ as above and let Tρ be an
exponential random time with parameter ρ > 0, independent of Yθ . We call the law
of the discrete random variable

Xθ,ρ := Yθ (Tρ)

the Yule-Simon distribution with parameters (θ, ρ).

A key difference with the original Yule-Simon distribution, which corresponds
to θ = 0, is that no close expression for the two-parameter distribution is known.1

Actually, the general branching process Yθ is not even Markovian for θ �= 0, and
its one-dimensional distributions are not explicit. This generalization of the Yule-
Simon distribution has recently appeared in [1] for θ > 0 and ρ > (1 − θ)+, in
connection with a preferential attachment model with fading memory in the vein of
Simon’s original model. We shall point out in Sect. 5 that the range of parameters
θ ≤ 0 and ρ > 0 arises similarly for a family of related models.

1Although the probability P(Xθ,ρ = 1) can easily be computed in terms of an incomplete Gamma
function, the calculations needed to determine P(Xθ,ρ = k) for k ≥ 2 become soon intractable.
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One of the purposes of the present contribution is to describe some features of
the two-parameter Yule-Simon law, notably by completing [1] and determining the
tail-asymptotic behavior of Xθ,ρ . It was observed in [1] that the parameter θ = 1 is
critical, in the sense that when θ < 1, Xθ,ρ has a fat tail with exponent ρ/(1 − θ),
whereas when θ > 1, some exponential moments of positive order of Xθ,ρ are
finite. We show here in Sect. 4 that when θ > 1, the tail of Xθ,ρ is actually decaying
exponentially fast with exponent ln θ − 1 + 1/θ . Further, in the critical case θ = 1,
we show that X1,ρ has a stretched exponential tail with stretching exponent 1/3.

By superposing independent neutral mutations at each birth with fixed proba-
bility 1 − p ∈ (0, 1) to the classical Yule process, the original Yule-Simon law
with parameter ρ = 1/p captures the limit number of species of a genetic type
chosen uniformly at random among all types, upon letting time tend to infinity. This
fact is essentially a rephrasing of Simon’s results in [20]. We give some (historical)
background in Sect. 5 and extend Simon’s observations to more general branching
processes, for which the two-parameter distribution from Definition 1.1 is observed.

In a similar vein, the number of species belonging to a genus chosen uniformly at
random has been studied for generalized Yule models in several works by Lansky,
Polito, Sacerdote and further co-authors, both at fixed times t and upon letting t →
∞. For instance, in [12], the linear birth process governing the growth of species
is replaced by a birth-and-death process, whereas in [13], a fractional nonlinear
birth process is considered instead. Both works are formulated in the framework of
World Wide Web modeling. Recently, Polito [17] changed also the dynamics of how
different genera appear, leading to a considerably different limit behavior.

The rest of this article is organized as follows. In the following Sect. 2,
we analyze the branching process Yθ introduced above and study its large-time
behavior. In Sect. 3, we develop an integral representation for the tail distribution
of the two-parameter Yule-Simon law, which lies at the heart of our study of the tail
asymptotics of Xθ,ρ in the subsequent Sect. 4. This part complements the work [1]
and contains our main results. In the last Sect. 5, we relate the generalized Yule-
Simon distribution to a population model with mutations, in the spirit of Simon’s
original work [20].

2 Preliminaries on the General Branching Process Yθ

The purpose of this section is to gather some basic features about the general
branching process Yθ that has been described in the introduction. We start with a
construction of Yθ in terms of a certain branching random walk.

Specifically, we consider a sequence Z = (Zn)n≥0 of point processes on [0,∞)

which is constructed recursively as follows. First, Z0 = δ0 is the Dirac point mass
at 0, and for any n ≥ 0, Zn+1 is obtained from Zn by replacing each and every atom
of Zn, say located at z ≥ 0, by a random cloud of atoms {z+ωzi }Nz

i=1, where {ωz
i }Nz

i=1
is the family of atoms of a Poisson point measure on [0,∞) with intensity e−θtdt
and to different atoms z correspond independent such Poisson point measures. In
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particular, each Nz has the Poisson distribution with parameter 1/θ when θ > 0,
whereas Nz = ∞ a.s. when θ ≤ 0. If we now interpret [0,∞) as a set of times,
the locations of atoms as birth-times of individuals, and consider the number of
individuals born on the time-interval [0, t],

Yθ (t) :=
∞∑
n=0

Zn([0, t]) , t ≥ 0,

then Yθ = (Yθ (t))t≥0 is a version of the general branching process generalizing the
standard Yule process that was discussed in the introduction.

We readily observe the following formula for the first moments:

Proposition 2.1 One has for every t ≥ 0:

E(Yθ (t)) =
{
(e(1−θ)t − θ)/(1 − θ) if θ �= 1,

1 + t if θ = 1.

Proof By definition, the intensity of the point process Z1 is e−θtdt , and by the
branching property, the intensity of Zn is the nth convolution product of the latter.
Considering Laplace transforms, we see that for any q > 1 − θ :

q

∫ ∞

0
E (Yθ (t)) e−qtdt = q

∫ ∞

0
e−qt

( ∞∑
n=0

E (Zn([0, t]))
)

dt

=
∞∑
n=0

E

(∫ ∞

0
e−qtZn(dt)

)

=
∞∑
n=0

(θ + q)−n

= θ + q

θ + q − 1
.

Inverting this Laplace transform yields our claim. ��
Remark 2.2 The calculation above shows that a two-parameter Yule-Simon variable
Xθ,ρ , as in Definition 1.1, is integrable if and only if θ + ρ > 1, and in that case we
have

E(Xθ,ρ) = θ + ρ

θ + ρ − 1
.

Proposition 2.1 ensures the finiteness of the branching process Yθ observed at
any time. Further, it should be plain that the atoms of the branching random walk
Z (at all generations) occupy different locations. Thus Yθ is a counting process,
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in the sense that its sample paths take values in N, are non-decreasing and all its
jumps have unit size. We next discuss its large time asymptotic behavior, and in this
direction, we write

Yθ (∞) = lim
t→∞ ↑ Yθ (t) ∈ N̄ := N ∪ {∞}

for its terminal value.

Proposition 2.3

(i) If θ > 0, then Yθ (∞) has the Borel distribution with parameter 1/θ , viz.

P(Yθ (∞) = n) = e−n/θ (n/θ)n−1

n! for every n ∈ N.

In particular P(Yθ (∞) < ∞) = 1 if and only if θ ≥ 1.
(ii) If θ < 1, then

lim
t→∞ e(θ−1)tYθ (t) = Wθ in probability,

where Wθ ≥ 0 is a random variable in Lk(P) for any k ≥ 1. Moreover, the
events {Wθ = 0} and {Yθ (∞) < ∞} coincide a.s., and are both negligible (i.e.
have probability 0) if θ ≤ 0.

Proof

(i) When θ > 0, (Zn([0,∞))n≥0 is a Galton-Watson process with reproduction
law given by the Poisson distribution with parameter 1/θ . In particular, it is
critical for θ = 1, sub-critical for θ > 1, and super-critical for θ < 1. In
this setting, Yθ (∞) is the total population generated by a single ancestor in this
Galton-Watson process; since the reproduction law is Poisson, it is well-known
that Yθ (∞) is distributed according to the Borel distribution with parameter
1/θ .

(ii) The claims follow by specializing to our setting well-known results on general
branching processes. More precisely, the fact that

∫∞
0 e−(1−θ)te−θtdt = 1

shows that the so-called Malthus exponent of the general branching process
Yθ equals 1 − θ . Then we just combine Theorem A of Doney [4], Theorem 1 of
Bingham and Doney [2], and Theorem 3.1 in Nerman [15].

��
Finally, it will be convenient to also introduce

Fθ (t) :=
∞∑
n=0

∫ t

0
e−θ(t−s)Zn(ds), t ≥ 0.

We call Fθ = (Fθ (t))t≥0 the fertility process; it can be interpreted as follows. Recall
that an atom, say at s ≥ 0, of the branching random walk (at any generation n) is
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viewed as the birth-time of an individual, and t − s is thus its age at time t ≥ s.
The times at which this individual begets children form a Poisson point measure on
[s,∞) with intensity e−θ(t−s)dt . Hence, Fθ (t) should be viewed as the total rate of
birth (therefore the name fertility) at time t for the population model described by
Yθ .

Proposition 2.4 The fertility process Fθ is a Markov process on (0,∞) with
infinitesimal generator

Gθf (x) = −θxf ′(x)+ x(f (x + 1)− f (x)), (2)

say for f : (0,∞) → R a bounded C1 function with bounded derivative f ′.

Remark 2.5 Specialists will have recognized from (2) that the fertility Fθ is a so-
called continuous state branching process; see [10] and Chapter 12 in [11] for
background.

Proof The fertility process starts from Fθ (0) = 1, takes values in (0,∞), decays
exponentially with constant rate θ (by convention, exponential decay with rate θ <

0 means exponential increase with rate −θ > 0), and makes jumps of unit size
corresponding to birth events at time t . That is, there is the identity

Fθ(t) = Yθ (t)− θ

∫ t

0
Fθ (s)ds. (3)

The claim should now be intuitively obvious since Fθ (t) is also the rate at time t at
which the counting process Yθ has a jump of unit size.

To give a rigorous proof, we introduce the filtration Ft = σ(1[0,t ]Zn : n ∈ N)

for t ≥ 0. Since the point measure Z1 is Poisson with intensity e−θsds, the process

Z1([0, t])−
∫ t

0
e−θsds, t ≥ 0

is an (Ft )-martingale. By the branching property, we have more generally that for
any n ≥ 0,

Zn+1([0, t])−
∫ t

0

∫ s

0
e−θ(s−r)Zn(dr)ds, t ≥ 0

is also an (Ft )-martingale, and summing over all generations, we conclude that

Yθ (t)−
∫ t

0
Fθ (s)ds is an (Ft )-martingale. (4)
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As Yθ is a counting process, we deduce from (3) that for any bounded C1 function
f : (0,∞) → R with bounded derivative, there is the identity

f (Fθ (t))−f (1) = −θ
∫ t

0
Fθ (s)f

′(Fθ (s))ds+
∫ t

0
(f (Fθ (s−)+1)−f (Fθ (s−))dYθ (s).

We now see from (4) that

f (Fθ (t))−
∫ t

0
Gθ (Fθ (s))ds is an (Ft )-martingale.

It is readily checked that the martingale problem above is well-posed, and the
statement follows; see Section 4.4 in [9] for background. ��

We point out that for f (x) = x, we get Gθf = (1 − θ)f , and it follows that
E(Fθ (t)) = e(1−θ)t for all t ≥ 0. We then see from (3) that for θ �= 1,

E(Yθ (t)) = e(1−θ)t + θ

∫ t

0
e(1−θ)sds = 1

1 − θ
(e(1−θ)t − θ),

and that E(Y1(t)) = 1 + t for θ = 1, hence recovering Proposition 2.1.

3 Poissonian Representation for the Tail Distribution

The purpose of this section is to point at the following representation of the tail
distribution of the two-parameter Yule-Simon distribution. We first introduce a
standard Poisson process N = (N(t))t≥0. We write

γ (n) := inf{t > 0 : N(t) = n}

for every n ∈ N (so that γ (n) has the Gamma distribution with parameters (n, 1)),
and

ζθ := inf{t > 0 : N(t) + 1 − θt = 0} (5)

for θ ∈ R (in particular ζθ = ∞ a.s. when θ ≤ 0).

Proposition 3.1 Let θ ∈ R and ρ > 0. For every n ∈ N, one has

P(Xθ,ρ > n) = E

(
exp

(
−ρ

∫ γ (n)

0
(N(t)+ 1 − θt)−1dt

)
1γ (n)<ζθ

)
.

This identity could be inferred from [1]; for the sake of completeness, we shall
provide here an independent proof based on Proposition 2.4 and the identity (3).
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Proof of Proposition 3.1 Observe from Proposition 2.4 that the infinitesimal gener-
ator Gθ of the fertility process fulfills

x−1Gθf (x) = −θf ′(x)+ (f (x + 1)− f (x)), x > 0,

and that the right-hand side is the infinitesimal generator of a standard Poisson
process with drift −θ absorbed at 0. If we write

ξθ (t) := N(t ∧ ζθ )+ 1 − θ(t ∧ ζθ ) for t ≥ 0,

so that the process ξθ is that described above and started from ξθ (0) = 1, then by
Volkonskii’s formula (see e.g. Formula (21.6) of Section III.21 in [19]), the fertility
can be expressed as a time-change of ξθ . Specifically, the map t �→ ∫ t

0 ξθ (s)
−1ds is

bijective from [0, ζθ ) to R+, and if we denote its inverse by σθ , then the processes
Fθ and ξθ ◦ σθ have the same distribution; we can henceforth assume that they are
actually identical.

In this setting, we can further identify σθ (t) =
∫ t

0 Fθ (s)ds and then deduce from
(3) that Yθ (t) = 1 + N(σθ (t)). As a consequence, if we write

τθ (n) := inf{t > 0 : Yθ (t) > n},

then we have also

τθ (n) = inf{t > 0 : N ◦ σθ (t) = n} =
{∫ γ (n)

0 ξθ (s)
−1ds if γ (n) < ζθ ,

∞ otherwise.

Finally, recall from Definition 1.1 that Tρ has the exponential distribution with
parameter ρ > 0 and is independent of Yθ , so

P(Xθ,ρ > n) = P(Yθ (Tρ) > n) = E
(
exp(−ρτθ (n))1τθ (n)<∞

)
.

This completes the proof. ��
Remark 3.2 Following up Remark 2.5, the application of Volkonskii’s formula in
the proof above amounts to the well-known Lamperti’s transformation that relates
continuous state branching processes and Lévy processes without negative jumps
via a time-change; see [3] for a complete account.

We conclude this section by pointing at a simple inequality between the tail
distributions of Yule-Simon processes with different parameters.

Corollary 3.3

(i) The random variable Xθ,ρ decreases stochastically in the parameters θ and ρ.
That is, for every θ ′ ≥ θ and ρ′ ≥ ρ > 0, one has

P(Xθ ′,ρ′ > n) ≤ P(Xθ,ρ > n) for all n ∈ N.
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(ii) For every θ ∈ R, ρ > 0 and a > 1, one has

P(Xθ,ρ > n)a ≤ P(Xθ,aρ > n) for all n ∈ N.

Proof

(i) It should be plain from the construction of the general branching process Yθ
in the preceding section, that for any θ ≤ θ ′, one can obtain Yθ ′ from Yθ by
thinning (i.e. random killing of individuals and their descent). In particular
Yθ and Yθ ′ can be coupled in such a way that Yθ (t) ≥ Yθ ′(t) for all t ≥ 0.
Obviously, we may also couple Tρ and Tρ′ such that Tρ ≥ Tρ′ (for instance by
defining Tρ′ = ρ

ρ′ Tρ ), and our claim follows from the fact that individuals are
eternal in the population model. Alternatively, we can also deduce the claim by
inspecting Proposition 3.1.

(ii) This follows immediately from Hölder’s inequality and Proposition 3.1.
��

4 Tail Asymptotic Behaviors

We now state the main results of this work which completes that of [1]. The asymp-
totic behavior of the tail distribution of a two parameter Yule-Simon distribution
exhibits a phase transition between exponential and power decay for the critical
parameter θ = 1; here is the precise statement.

Theorem 4.1 Let ρ > 0.

(i) If θ < 1, then there exists a constant C = C(θ, ρ) ∈ (0,∞) such that, as
n → ∞:

P(Xθ,ρ > n) ∼ Cn−ρ/(1−θ).

(ii) If θ > 1, then as n → ∞:

lnP(Xθ,ρ > n) ∼ −(ln θ − 1 + 1/θ)n.

This phase transition can be explained as follows. We rewrite Proposition 3.1 in the
form

P(Xθ,ρ > n) = E

(
exp

(
−ρ

∫ γ (n)

0
(N(t)+ 1 − θt)−1dt

)
| γ (n) < ζθ

)
×P(γ (n) < ζθ ).

On the one hand, the probability that γ (n) < ζθ remains bounded away from 0 when
θ < 1 and decays exponentially fast when θ > 1. On the other hand, for θ < 1,
the integral

∫ γ (n)
0 (N(t) + 1 − θt)−1dt is of order ln n on the event {γ (n) < ζθ },
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and therefore the first term in the product decays as a power of n when n tends to
infinity. Last, when θ > 1, the first term in the product decays sub-exponentially
fast.

In the critical case θ = 1, we observe from the combination of Theorem 4.1 and
Corollary 3.3 that the tail of X1,ρ is neither fat nor light, in the sense that

exp(−αn) � P(X1,ρ > n) � n−β

for all α, β > 0. We obtain a more precise estimate of stretched exponential type.
In the following statement, f � g means lim supn→∞ f (n)/g(n) ≤ 1.

Theorem 4.2 Consider the critical case θ = 1, and let ρ > 0. Then we have as
n → ∞:

−20(ρ2n)1/3 � lnP(X1,ρ > n) � −(1/2)1/3(ρ2n)1/3.

Remark 4.3 Note that Theorems 4.1 and 4.2 entail that the series
∑

n≥0 P(Xθ,ρ >

n) converges if and only if θ + ρ > 1, in agreement with Remark 2.2.
The methods we use to prove Theorem 4.2 seem not to be fine enough to obtain

the exact asymptotics of n−1/3 lnP(X1,ρ > n). More specifically, for the lower
bound we employ estimates for first exits through moving boundaries proved by
Portnoy [18] first for Brownian motion and then transferred via the KMT-embedding
to general sums of independent random variables. The constant c1 = 20 is an
(rough) outcome of our proof and clearly not optimal.

For obtaining the upper bound, we consider an appropriate exponential martin-
gale and apply optional stopping. The constant c2 = (1/2)1/3 provides the best
value given our method, but is very likely not the optimal value neither.

Theorem 4.1(i) has been established in Theorem 1(ii) of [1] in the case θ ∈ (0, 1)
and ρ > 1−θ . Specifically, the parameters α and p̄ there are such that, in the present
notation, θ = α/p̄(α + 1) and p̄(α + 1) = 1/ρ. Taking this into account, we see
that the claim here extends Theorem 1(ii) in [1] to a larger set of parameters. The
argument is essentially the same, relying now on Proposition 2.3(ii) here rather than
on the less general Corollary 2 in [1], and we won’t repeat it.

We next turn our attention to the proof of Theorem 4.1(ii), which partly relies
on the following elementary result on first-passage times of Poisson processes with
drift (we refer to [5–7] for related estimates in the setting of general random walks
and Lévy processes).

Lemma 4.4 Let b > 1, x > 0, and define ν(x) := inf{t > 0 : bt −N(t) > x}. The
distribution of the integer-valued variable bν(x)− x fulfills

P(bν(x) − x = n) = 1

n! e−(x+n)/bx(x + n)n−1b−n ∼ xex(1−1/b)

√
2πn3

en(1−1/b−ln b) as n → ∞.
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As a consequence,

lim
t→∞ t−1 lnP(ν(x) ≥ t) = −(b ln b − b + 1).

Proof The event bν(x) = x holds if and only if the Poisson process N stays at 0
up to time x/b at least, which occurs with probability e−x/b. The first identity in the
statement is thus plain for n = 0. Next, note that, since the variable bν(x)− x must
take integer values whenever it is finite, there is the identity

bν(x)− x = inf{j ≥ 0 : N((j + x)/b) = j }.

On the event N(x/b) = k ∈ N, set N ′(t) = N(t + x/b)− k, and write

bν(x)− x = inf{j ∈ N : N ′(j/b) = j − k}.

Since N ′ is again a standard Poisson process, Kemperman’s formula (see, e.g.
Equation (6.3) in [16]) applied to the random walk N ′(·/b) gives for any n ≥ k

P(bν(x)− x = n | N(x/b) = k) = k

n
· e−n/b(n/b)n−k

(n− k)! .

Since N(x/b) has the Poisson distribution with parameter x/b, this yields for any
n ≥ 1

P(bν(x)− x = n) = e−(x+n)/b
n∑

k=1

(x/b)k

k! · k
n

· (n/b)
n−k

(n− k)!

= 1

n!e
−(x+n)/b(x/b)

n∑
k=1

(x/b)k−1(n/b)n−k · (n− 1)!
(k − 1)!(n− k)!

= 1

n!e
−(x+n)/bx(x + n)n−1b−n,

where we used Newton’s binomial formula at the third line. The second assertion
in the claim follows from Stirling’s formula, and the third one is a much weaker
version. ��

We can now proceed to the proof of Theorem 4.1(ii).

Proof of Theorem 4.1(ii) The upper-bound is easy. Indeed on the one hand, Propo-
sition 3.1 yields

P(Xθ,ρ > n) ≤ P(γ (n) < ζθ ),
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and on the other hand, since N(ζθ ) + 1 = θζθ , on the event {γ (n) < ζθ }, one has
obviously N(ζθ ) ≥ n, and a fortiori θζθ > n. Thus P(Xθ,ρ > n) is bounded from
above by P(ζθ > n/θ), and we conclude from Lemma 4.4 specialized for x = 1
and b = θ that

lim sup
n→∞

n−1 lnP(Xθ,ρ > n) ≤ −(ln θ − 1 + 1/θ).

In order to establish a converse lower bound, let ε ∈ (0, 1) be arbitrarily small,
and consider the event

�(n, θ, ε) := {N(t) + 1 − ε − (θ + ε)t ≥ 0 for all 0 ≤ t ≤ γ (n)}.

On that event, one has N(t) + 1 − θt ≥ ε(1 + t) for all 0 ≤ t ≤ γ (n), and hence

exp

(
−ρ

∫ γ (n)

0
(N(t)+ 1 − θt)−1dt

)
≥ (γ (n)+ 1)−ρ/ε ≥ (n/(θ + ε))−ρ/ε,

where for the second inequality, we used that N(γ (n)) + 1 − ε ≥ (θ + ε)γ (n).
We are left with estimating P(�(n, θ, ε)). Set b = θ + ε and use the notation of

Lemma 4.4, so that

�(n, θ, ε) = {γ (n) < ν(1 − ε)}.

On the event {bν(1 − ε) ≥ n}, one has

N(ν(1 − ε)) = bν(1 − ε)− 1 + ε ≥ n+ ε − 1,

so actually γ (n) < ν(1−ε). Hence {bν(1−ε) ≥ n} ⊂ �(n, θ, ε), and we conclude
from Lemma 4.4 that

lim inf
n→∞ n−1 lnP(�(n, θ, ε)) ≥ 1 − ln b − 1/b.

Putting the pieces together, we have shown that for any b > θ

lim inf
n→∞ n−1 lnE

(
exp

(
−ρ

∫ γ (n)

0
(N(t)+ 1 − θt)−1dt

)
1γ (n)<ζθ

)
≥ 1−ln b−1/b.

Thanks to Proposition 3.1, this completes the proof. ��
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We next establish Theorem 4.2.

Proof of Theorem 4.2 We use the abbreviations ξ(t) := N(t) + 1 − t and ζ := ζ1,
and start with the lower bound. We let 0 < ε < 1. First note that there are the
inclusions of events

{γ (n) < ζ } ⊃ {γ (n) < min{ζ, (1 + ε)n}} ⊃ {ξ(t) > 0 for all 0 ≤ t ≤ (1 + ε)n , γ (n) < (1 + ε)n}
⊃ {ξ(t) > ρ1/3t2/3 for all 0 < t ≤ (1 + ε)n , γ (n) < (1 + ε)n}.

In particular, with Proposition 3.1 at hand, we obtain for small ε and large n

P(X1,ρ > n) = E

(
exp

(
−ρ

∫ γ (n)

0
(ξ(t))−1dt

)
1γ (n)<ζ

)

≥ exp

(
−ρ

∫ (1+ε)n

0

1

ρ1/3t2/3
dt

)
P
(
ξ(t) > ρ1/3t2/3 for all 0 < t ≤ (1 + ε)n , γ (n) < (1 + ε)n

)

≥ exp
(
−4(ρ2n)1/3

)
P
(
ξ(t) > ρ1/3t2/3 for all 0 < t ≤ (1 + ε)n

) − P (γ (n) ≥ (1 + ε)n) ,

where for the last line, we used that exp(−3(ρ2(1 + ε)n)1/3) ≥ exp(−4(ρ2n)1/3)

for small ε, and that P(A ∩ B) ≥ P(A) − P(Bc) for arbitrary events A,B.
From an elementary large deviation estimate for a sum of n independent standard
exponentials, we know that for some λ > 0

P (γ (n) ≥ (1 + ε)n) = O(exp(−λ ε2n)). (6)

Therefore, our claim follows if we show a bound of the form

P

(
ξ(t) > ρ1/3t2/3 for all 0 < t ≤ (1 + ε)n

)
≥ exp

(
−16(ρ2n)1/3

)
(7)

for large n. Essentially, this can be deduced from [18, Theorem 4.1]: In the notation
from there, we may consider the random walk Sj = N(j) − j , j ∈ N, and the
function

g(t) := 3

2
ρ1/3(t + max{ρ, 1})2/3 − 2 max{ρ, ρ1/3} , t ≥ 0.

The function g is monotone increasing with g(0) < 0 and regularly varying with
index 2/3. Moreover, it is readily checked that

sup
t≥1

(
g
(
(2/3)t

)− g
(
(2/3)(t − 1)

)) ≤ 2/3 .
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Therefore, the assumptions of [18, Theorem 4.1] are fulfilled, which ensures after a
small calculation that for ε sufficiently small and n large enough,

P
(
Sj > g(j) for all j = 1, . . . , �(1 + ε)n�) ≥ exp

(
−16(ρ2n)1/3

)
. (8)

Now let us define for 0 ≤ t0 < t1 the event

E(t0, t1) :=
{
ξ(t) > ρ1/3t2/3 for all t0 < t ≤ t1

}
.

For j ∈ N and t ∈ R with j ≤ t ≤ j + 1, we have ξ(t) ≥ Sj and, provided
j ≥ ρ0 := 8 ρ", also

g(j) ≥ ρ1/3(j + 1)2/3 ≥ ρ1/3t2/3.

Therefore, by (8),

P (E(ρ0, (1 + ε)n)) ≥ P
(
Sj > g(j) for all j = ρ0, . . . , �(1 + ε)n�) ≥ exp

(
−16(ρ2n)1/3

)
.

(9)

Writing

P (E(0, (1 + ε)n)) = P (E(ρ0, (1 + ε)n) | E(0, ρ0)) · P (E(0, ρ0)) ,

we note that P (E(0, ρ0)) is bounded from below by a strictly positive constant
(depending on ρ). Moreover, since ξ is a spatially homogeneous Markov process,
we clearly have

P (E(ρ0, (1 + ε)n) | E(0, ρ0)) ≥ P (E(ρ0, (1 + ε)n)) ,

so that our claim (7) follows from (9). En passant, let us mention that n1/3 is the
correct stretch for the exponential in (7). Indeed, this can be seen from Theorem 4.2
in [18], where an analogous upper bound on the probability in (7) is given.

We now turn our attention to the upper bound. We fix a small 0 < ε < 1. On the
event

{
γ (n) ≥ (1 − ε)n and sup

t≤(1−ε)n
ξ(t) ≤ (2ρ)1/3n2/3

}
,

we have

exp

(
−ρ

∫ γ (n)

0
ξ(t)−1dt

)
≤ exp

(
−(1 − ε)(ρ2/2)1/3n1/3

)
,
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and from Proposition 3.1, P(X1,ρ > n) can be bounded from above by

exp
(
−(1 − ε)(ρ2/2)1/3n1/3

)
+P(γ (n) < (1 − ε)n)+ P( sup

t≤(1−ε)n
ξ(t) > (2ρ)1/3n2/3).

On the one hand, from an elementary large deviation estimate similar to (6), we get
that for some λ > 0:

P(γ (n) < (1 − ε)n) = P(N((1 − ε)n) ≥ n) = O(exp(−λε2n)).

On the other hand, ξ is a Lévy process with no negative jumps started from 1 such
that

E(exp(q(ξ(t)− 1))) = exp
(
t (eq − 1 − q)

)
, t ≥ 0.

It follows classically that the process

exp
(
qξ(t)− t (eq − 1 − q)

)
, t ≥ 0

is a martingale started from eq . An application of the optional sampling theorem at
the first passage time of ξ above (2ρ)1/3n2/3 yields the upper-bound

exp
(
q(2ρ)1/3n2/3 − (1 − ε)n(eq − 1 − q)

)
P( sup

t≤(1−ε)n
ξ(t) > (2ρ)1/3n2/3) ≤ eq .

Specializing this for q = (2ρ)1/3n−1/3, we deduce that for n large enough

P( sup
t≤(1−ε)n

ξ(t) > (2ρ)1/3n2/3) ≤ exp
(
−(1 + (ε/2))(ρ2/2)1/3n1/3

)
.

Since ε > 0 can be taken arbitrarily small, this completes the proof. ��

5 Connection with a Population Model with Neutral
Mutations

The Yule-Simon distribution originates from [20], where Simon introduced a simple
random algorithm to exemplify the appearance of (1) in various statistical models.
More specifically, he proposed a probabilistic model for describing observed
linguistic (but also economic and biological) data leading to (1).

We shall now give some details of Simon’s model, which he described in terms
of word frequencies. Imagine a book that is being written has reached a length of
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n words. Write f (k, n) for the number of different words which occurred exactly k
times in the first n words. Simon works under the following two assumptions:

A1 The probability that the (n + 1)-st word is a word that has already appeared
exactly k times is proportional to kf (k, n);

A2 The probability that the (n + 1)-st word is a new word is a constant α

independent of n.

Setting

ρ = 1

1 − α
, (10)

he argues that under these two assumptions, the relative frequencies of words that
have occurred exactly k times are in the limit n → ∞ described by a Yule-Simon
law (1) with parameter ρ.

Simon’s paper initiated a lively dispute between Simon and Mandelbrot (known
as the Simon-Mandelbrot debate) on the validity and practical relevance of Simon’s
model. We mention only Mandelbrot’s reply [14] and Simon’s response [21], but the
discussions includes further (final) notes and post scripta. While Simon’s derivation
presupposes ρ > 1, see (10), the discussion between the two gentlemen evolved in
particular around the adequacy and meaning of Simon’s model when 0 < ρ < 1;
see pp. 95–96 in [14].

It is one of the purposes of this section to specify a probabilistic population model
for which the Yule-Simon law is observed in all cases ρ > 0. To that aim, it is
convenient to first recast Simon’s model in terms of random recursive forests, and
then interpret the latter as a population model with neutral mutations. By letting the
rate of mutation asymptotically decrease to zero in an appropriate way, we will then
obtain the whole family of one-parameter Yule-Simon laws.

However, we will go further: A natural generalization of Simon’s algorithm,
which we formulate in terms of a more general population model with age-
dependent reproduction rate, will finally result in the two-parameter Yule-Simon
laws (Proposition 5.1).

5.1 Simon’s Model in Terms of Yule Processes with Mutations

Fix p ∈ (0, 1), take n # 1 and view [n] := {1, . . . , n} as a set of vertices. We
equip every vertex 2 ≤ � ≤ n with a pair of variables (ε(�), u(�)), independently
of the other vertices. Specifically, each ε(�) is a Bernoulli variable with parameter
p, i.e. P(ε(�) = 1) = 1 − P(ε(�) = 0) = p, and u(�) is independent of ε(�) and
has the uniform distribution on [� − 1]. Simon’s algorithm amounts to creating an
edge between � and u(�) if and only if ε(�) = 1. The resulting random graph is
a random forest and yields a partition of [n] into random sub-trees. In this setting,
Simon showed that for every k ≥ 1, the proportion of trees of size k, i.e. the ratio
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between the number of sub-trees of size k and the total number of sub-trees in the
random forest, converges on average as n → ∞ to ρB(k, ρ + 1), where ρ = 1/p.

Let us next enlighten the connection with a standard Yule process Y = Y0. We
start by enumerating the individuals of the population model described by the Yule
process in the increasing order of their birth dates (so the ancestor is the vertex 1,
its first child the vertex 2, . . . ), and stop the process at time

T (n) := inf{t ≥ 0 : Y (t) = n}

when the population has reached size n. Clearly, the parent u(�) of an individual 2 ≤
� ≤ n has the uniform distribution on [�−1], independently of the other individuals.
The genealogical tree obtained by creating edges between parents and their children
is known as a random recursive tree of size n; see e.g. [8]. Next imagine that neutral
mutations are superposed to the genealogical structure, so that each child is either
a clone of its parent or a mutant with a new genetic type, and more precisely, the
individual � is a mutant if and only if ε(�) = 0, where (ε(�))�≥2 is a sequence of
i.i.d. Bernoulli variables with parameter p, independent of the sequence (u(�))�≥2.
The partition of the population into sub-populations of the same genetic type, often
referred to as the allelic partition, corresponds to an independent Bernoulli bond
percolation with parameter p on the genealogical tree, that is, it amounts to deleting
each edge with probability 1 − p, independently of the other edges. The resulting
forest has the same distribution as that obtained from Simon’s algorithm.

Simon’s result can then be re-interpreted by stating that the distribution of the
size of a typical sub-tree after percolation (i.e. the number of individuals having the
same genetic type as a mutant picked uniformly at random amongst all mutants)
converges as n → ∞ to the Yule-Simon distribution with parameter ρ = 1/p. This
can be established as follows. Observe first that a typical mutant is born at time
T (�Un�), where U is an independent uniform variable on [0, 1]. By the branching
property, a typical sub-tree can thus be viewed as the genealogical tree of a Yule
process with birth rate p per individual (recall that p is the probability for a child to
be a clone of its parent), stopped at time T (n)− T (�Un�). Then recall that

lim
t→∞ e−tY (t) = W a.s.,

where W > 0 is some random variable, and hence

T (n)− T (�Un�) ∼ ln(n/W)− ln(Un/W) = − lnU as n → ∞.

Since a Yule process with birth rate p per individual and taken at time t ≥ 0 has
the geometric distribution with parameter e−pt , and −p lnU has the exponential
distribution with parameter ρ = 1/p, we conclude that the distribution of the size
of a typical sub-tree after percolation converges as n → ∞ to (1).

In the following section, we shall generalize Simon’s algorithm in two different
directions.
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5.2 A Generalization of Simon’s Model

The random algorithm described above only yields Yule-Simon distributions with
parameter ρ > 1. A modification dealing with the case ρ ≤ 1 has already been
suggested in Simon’s article, see Case II on page 431 in [20]; let us now elaborate
on this more specifically.

The Full Range of the One-Parameter Yule-Simon Law

Let us now assume that the ε(�) are independent Bernoulli variables with parameter
p = p(�) depending possibly on �, again everything independent of the u(�)’s. As
previously, the individuals � such that ε(�) = 0 are viewed as mutants, and those
with ε(�) = 1 as clones.

We shall consider two mutually exclusive asymptotic regimes:

(a) limn→∞ p(n) = 1/ρ for some ρ > 1,
(b) limn→∞ p(n) = 1, and

∑n
�=1(1 − p(�)) is regularly varying with index

ρ ∈ (0, 1].

Plainly, case (a) holds in particular when the ε(�)’s form an i.i.d. sequence of
Bernoulli variables with parameter p = 1/ρ as in the preceding section. Regime
(b) is a situation where mutations are asymptotically rare. In terms of the number of
mutants m(n) = n −∑n

�=2 ε(�), (b) is implying that, in probability, m(n) = o(n),
and m(n) is regularly varying with index ρ.

Just as before, we consider the allelic partition at time T (n), i.e. the partition of
the population into sub-population bearing the same genetic type. As we shall see in
the following Proposition 5.1, this population model leads under the two different
regimes to the full range of the one-parameter Yule-Simon law when studying the
limit size of a typical sub-population.

A Two-Parameter Generalization

It remains to appropriately extend the model in order to encompass the two-
parameter Yule-Simon distributions. To that aim, we replace the underlying standard
Yule process Y = Y0 by a general branching process Yθ as considered in the intro-
duction. Again, we consider independently a sequence (ε(�))�≥2 of {0, 1}-valued
random variables indicating which individuals are clones or mutants, respectively,
and exactly as before, we may study the allelic partition at the time

Tθ (n) = inf{t ≥ 0 : Yθ (t) = n} (11)
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when the total population size n is reached. We stress that the case θ = 0
corresponds to the one-parameter model described just above: We have Y0 = Y ,
and consequently T0(n) = T (n).

We are now in position to formulate a limit result for the proportion of sub-
populations of size k in our extended model, generalizing Simon’s result to the two-
parameter Yule-Simon distributions. For the sake of simplicity, we focus on the
case θ ≤ 0 when the total population in the general branching process Yθ is infinite
almost surely.

Proposition 5.1 Let θ ≤ 0 and ρ > 0, consider a general branching process Yθ
as in Sect. 2, and define Tθ (n) as in (11). Let further (ε(�))�≥2 be a sequence of
variables in {0, 1} which is independent of the branching process and fulfills one
of the regimes (a) or (b). Regard every individual � with ε(�) = 0 as a mutant,
and consider at time Tθ (n) the (allelic) partition of the whole population into sub-
populations of individuals with the same genetic type.

For every k ∈ N, write Qn(k) for the proportion of sub-populations of size k (i.e.
the number of such sub-populations divided by the total number of mutants) in the
allelic partition at time Tθ (n). Then

lim
n→∞Qn(k) = P(Xϑ,� = k) in probability,

where

(ϑ, �) =
{
(θρ, (1 − θ)ρ) in regime (a),
(θ, (1 − θ)ρ) in regime (b).

Remark 5.2 We stress that our model leads to the complete range of parameters
(ϑ, �) of the Yule-Simon distribution satisfying ϑ ≤ 0 and � > 0. Indeed, if ϑ +
� > 1, then the size of a typical sub-tree converges in law with the choices θ :=
ϑ/(ϑ + �) and ρ := ϑ + � under regime (a) to Xϑ,�. If ϑ + � ≤ 1, then θ := ϑ and
ρ := �/(1 − ϑ) under regime (b) yield the law Xϑ,�.

Remark 5.3 The conditional expectation of the size of a typical sub-tree given that
there are m(n) mutants in the population of total size n is clearly n/m(n). Note that
m(n) ∼ (1−1/ρ)n in regime (a), whereas m(n) = o(n) in regime (b). We may thus
expect from Proposition 5.1 that

E(Xθρ,(1−θ)ρ) = ρ/(ρ − 1) when θ ≤ 0 and ρ > 1,

and that

E(Xθ,(1−θ)ρ) = ∞ when θ ≤ 0and ρ ≤ 1.

That these identities indeed hold has already been observed in Remark 2.2.
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We now present the main steps of the proof of Proposition 5.1, leaving some
of the technical details to the interested readers. We start with an elementary
observation in the case constant mutation rates.

Lemma 5.4 Suppose that p(n) ≡ 1/ρ for some fixed ρ > 1. The process Ỹθ,ρ =
(Ỹθ,ρ(t))t≥0 of the size of the sub-population bearing the same type as the ancestor
has then the same distribution as (Yθρ(t/ρ))t≥0.

Proof Since Ỹθ, ρ is obtained from Yθ by killing each of its child (of course, together
with its descent) with probability 1 − 1/ρ and independently of the others, Ỹθ, ρ is
also a general branching process. More precisely, thanks to the thinning property of
Poisson random measures, typical individuals in Ỹθ, ρ reproduce at ages according
to a Poisson point measure on [0,∞) with intensity ρ−1e−θtdt , and the statement
follows from the change of variables s = t/ρ. ��

We next return to the general situation where mutation rates p(n) may depend
on n, and state two technical lemmas involving convergence in distribution in
D([0,∞), R) × D([0,∞), R), where D([0,∞), R) is the Skorokhod space of
càdlàg functions from [0,∞) to R.

Lemma 5.5 Suppose
∑

n≥1 p(n) = ∞, so there are infinitely many mutants a.s.
Let i, j ≥ 1, and let Y i

θ = (Y i
θ (t))t≥0 denote the process of the size of the sub-

population (both clones and mutants descents) generated by the ith mutant as a

function of its age. Then Y i
θ

(d)= Y
j
θ

(d)= Yθ , and for i, j → ∞, i �= j ,

(
Y i
θ , Y

j
θ

)
(d)$⇒ (

Y ′
θ , Y

′′
θ

)
,

where Y ′
θ and Y ′′

θ are independent copies of Yθ .

Proof This is an immediate consequence of the branching property of Yθ , noting
that the probability that the individuals labelled i and j are in the same sub-
population tends to zero for i �= j → ∞. ��
Lemma 5.6 Let i, j ≥ 1, and let Ỹ i

θ denote the process of the size of the clonal sub-
population generated by the ith mutant (i.e. Ỹ i

θ (t) is the size of the sub-population
bearing the same genetic type as the ith mutant when the latter has age t). Then

Ỹ i
θ

(d)= Ỹ
j
θ , and we have the following convergence for i, j → ∞, i �= j :

(
Ỹ i
θ , Ỹ

j
θ

)
(d)$⇒

{(
Ỹ ′
θ, ρ, Ỹ

′′
θ, ρ

)
in regime (a),

(Y ′
θ , Y

′′
θ ) in regime (b),

where Ỹ ′
θ, ρ , Ỹ ′′

θ, ρ are independent copies of the process Ỹθ, ρ in Lemma 5.4, and Y ′
θ ,

Y ′′
θ are independent copies of Yθ .
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Proof Recall that Ỹ i
θ is obtained from Y i

θ by superposing neutral mutations to the
latter and keeping only the clones of i. Since the nth individual is a mutant with
probability 1 − p(n), the claim now follows readily from Lemma 5.5 and the fact
that p(n) → 1/ρ in regime (a), whereas p(n) → 1 in regime (b). ��

We now have all the ingredients needed for the proof of Proposition 5.1.

Proof of Proposition 5.1 We will argue that

lim
n→∞E

(
Qi
n(k)

)
= P(Xϑ,� = k)i for i = 1, 2 .

The claim then follows via the second moment method.
As before, let us write m(n) for the number of mutants among the first n

individuals, i.e. at time Tθ (n). Writing bi for the birth-time of the ith mutant (with
b1 := 0, interpreting the first individual as a mutant), we have

E (Qn(k)) = E

⎛
⎝ 1

m(n)

m(n)∑
i=1

11{
Ỹ i
θ (Tθ (n)−bi)=k

}
⎞
⎠ .

We will first prove convergence of the first moment of Qn(k). From Proposition 2.3
we deduce that the time Tθ (n) at which the population reaches size n satisfies

Tθ (n) = (1 − θ)−1 ln(n/Wθ )+ o(1) (12)

in probability, where Wθ > 0 denotes the limit in probability of e(θ−1)tYθ (t) as
t → ∞.

Let us first consider regime (a), where p(n) → 1/ρ as n → ∞. For i tending to
infinity, it follows that

bi = (1 − θ)−1 ln (i/((1 − 1/ρ)Wθ))+ o(1)

in probability. By the law of large numbers, we have for the number of mutants
that m(n) ∼ (1 − 1/ρ)n almost surely. Combining the last display with (12) and
Lemma 5.6, we deduce by a Riemann-type approximation that

lim
n→∞E (Qn(k)) = P

(
Ỹθ,ρ

(
−(1 − θ)−1 lnU

)
= k

)

for n → ∞, where U is an independent uniform variable on (0, 1).
Note that the random variable −(1 − θ)−1 lnU inside the last probability has

the law of an exponentially distributed random variable T1−θ with parameter 1 − θ .
Now, thanks to Lemma 5.4,

P

(
Ỹθ,ρ (T1−θ ) = k

)
= P

(
Yθρ (T1−θ /ρ) = k

) = P(Xθρ,(1−θ)ρ = k),
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where for the last equality, we used that T1−θ /ρ is exponentially distributed with
parameter (1 − θ)ρ.
In regime (b), mutations become asymptotically rare, i.e. p(n) → 1 for n → ∞,
and the number of mutants m(n) is regularly varying with index ρ ∈ (0, 1]. Now,
if i = i(n) = �rρm(n)� for some r ∈ (0, 1), it follows that the ith mutant is born
when there are approximately rn individuals in the population system. Therefore,
in probability as n → ∞,

bi ∼ (1 − θ)−1 ln (rn/Wθ)+ o(1).

A approximation similar to that in regime (a) then allows us to deduce that

lim
n→∞E (Qn(k)) = P

(
Yθ

(
−(1 − θ)−1(1/ρ) lnU

)
= k

)
.

Since −(1 − θ)−1(1/ρ) lnU is exponentially distributed with parameter (1 − θ)ρ,
the last expressions is equal to P(Xρ,(1−θ)ρ = k).

As far as the second moment is concerned, it is a consequence of the asymptotic
independence derived in Lemma 5.6 that

E

(
Q2
n(k)

)
∼ E (Qn(k))

2

as n → ∞, proving our claim in both regimes (a) and (b). ��
We shall now conclude this work by presenting an alternative proof of Proposi-

tion 5.1 in the special (and important) case when p(n) ≡ 1/ρ for some fixed ρ > 1,
by making the connection with results of Nerman [15]. We thus consider the general
branching process Yθ , where each child is a clone of its parent with fixed probability
1/ρ, or a mutant bearing a new genetic type with complementary probability
1 − 1/ρ, independently of the other individuals. We regard this population model
as a branching particle system, in which the particles represent the clonal sub-
populations. This means that the birth of a mutant child in the population is viewed
as the birth of a new particle in the system; the size of the latter then grows as time
passes and is given by the size of the sub-population having the same genetic type
as this mutant.

The process of the size of a typical particle as a function of the age of the mutant
ancestor has the same distribution as the process Ỹθ,ρ in Lemma 5.4. Moreover, each
particle also gives birth as time passes to daughter particles (i.e. to new mutants)
which in turn evolve independently one from the others and according to the same
dynamics. In words, the particle system is another general branching process.

Observe that the rate at which a particle with size � gives birth to a daughter
particle equals (1−1/ρ)�; hence the reproduction intensity measure μ̃ of branching
particle system is given by

μ̃(dt) = (1 − 1/ρ)E(Ỹθ,ρ(t))dt .
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So Proposition 2.1 and Lemma 5.4 yield

μ̃(dt) = 1 − 1/ρ

1 − θρ

(
e(1−θρ)t/ρ − θρ

)
dt .

It is now readily checked that the so-called Malthusian parameter (see Equation
(1.4) in [15]) of the branching particle system equals 1 − θ , namely we have

∫ ∞

0
e−(1−θ)t μ̃(dt) = 1.

Finally, let us write Zt for the number of particles (i.e. of genetic types) at time
t . For any k ≥ 1, write Zk

t for the number of particles with size k at time t , i.e.
the number of sub-populations with size exactly k in the allelic partition at time t .
According to Theorem 6.3 and Equation (2.7) in [15] (the reader will easily check
that the assumptions there are fulfilled in our framework), one has

lim
t→∞

Zk
t

Zt
= (1 − θ)

∫ ∞

0
e−(1−θ)tP(Ỹθ,ρ(t) = k)dt, almost surely.

Recalling Lemma 5.4, we have thus

lim
t→∞

Zk
t

Zt

= P(Yθρ(T(1−θ)ρ) = k) = P(Xθρ,(1−θ)ρ = k), almost surely.

It only remains to observe that for t = Tθ (n), one has Zk
t /Zt = Qn(k), and we thus

have arrived at the claim made in Proposition 5.1.
Finally, we point out that the argument above also applies for θ ∈ (0, 1), provided

that one works conditionally on the event that the total number of mutants is infinite,
which has then a positive probability.
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The Limit Distribution of a Singular
Sequence of Itô Integrals

Denis Bell

Abstract We give an alternative, elementary proof of a result of Peccati and Yor
concerning the limit law of a sequence of Itô integrals with integrands having
singular asymptotic behavior.

Keywords Brownian motion · Itô integrals · Limit law

1 Introduction and Statement of the Theorem

The purpose of this note is to provide a short, elementary proof of the following
result.

Theorem 1.1 Let w = {wt : t ≥ 0} be a standard Brownian motion. Consider the
sequence of Itô integrals

Xn = √
n

∫ 1

0
tnwtdwt , n ≥ 1.

Then Xn converges in distribution as n → ∞ to the law of |√
2
w1η, where η is a

standard normal random variable independent of w.

Theorem 1.1 was originally proved by Peccati and Yor [4] in 2004. The
subsequent introduction into this field of significant modern areas of stochastic
analysis, namely Malliavin calculus, Skorohod integration and fractional Brownian
motion, has resulted in a surge of ever more general limit theorems of this type.
Recent examples are Nourdin, Nualart and Peccati [2], Pratelli and Rigo [5], and
Bell, Bolaños and Nualart [1]. (See Peccati [3] for a survey of results in this area.)
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Our proof of Theorem 1.1 was, in fact, the point of departure for the approach in
[1]. However, the argument is especially transparent in the simpler context treated
here. For this reason, we thought it worthwhile to present separately in this context.

2 Proof of the Theorem

The idea behind the proof of Theorem 1.1 is as follows. As n → ∞, the
integrands tnwt defining the Xn, when scaled by the factor

√
n, converge (or, more

accurately diverge) to a delta function based at the right-hand endpoint 1 of the
range of integration. Thus the limit distribution is determined by the behavior of
the integrals over infinitesimal neighborhoods of t = 1. But in such infinitesimal
neighborhoods, the integrals behave asymptotically as the product of w1 and an
independent Gaussian increment. This observation both motivates the result and
suggests a method of proof.

We define below a sequence

αn ↑ 1 (1)

and a sequence of deterministic functions gn such that

∫ 1

αn

g2
n(t)dt →

1

2
(2)

and

E[Xn − Yn]2 → 0, (3)

where

Yn ≡ w(αn)

∫ 1

αn

gn(t)dwt , (4)

This will suffice to prove the theorem since L2-convergence implies convergence
in law, and the limit law of Yn is easily seen to have the desired form.

The details of this construction are as follows. First, note that

E[X2
n] = n

∫ 1

0
t2n+1dt = n

2n+ 2
→ 1/2
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and, assuming we have chosen αn and gn so that (1) and (2) hold

E[Y 2
n ] = αn

∫ 1

αn

g2
n(t)dt → 1/2.

Hence (3) will follow provided also

E[XnYn] → 1

2
.

Now

E[XnYn] =
√
nE
[
w(αn)

∫ 1

αn

tndwt

∫ 1

αn

gn(t)dwt

]

= √
nαn

∫ 1

αn

tngn(t)dt.

So we require that

√
n

∫ 1

αn

tngn(t)dt → 1

2
.

Choose gn(t) = √
ntn. We then need to define the αn such that

∫ 1

αn

nt2ndt = n

2n+ 1
[1 − α2n+1

n ] → 1/2,

i.e.

α2n+1
n → 0 (5)

This is achieved by setting

αn = 1 − logn

n
.

Since logn/n → 0 and αnn ∼ 1/n, as n → ∞, both (1) and (5) hold and we are
done. �
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3 Concluding Remarks

1. The scaling factor
√
n contained in the sequence Xn, is an intrinsic feature

of the Itô integrals considered here. In [1, 2, 5], where analogous results are
obtained for Skorohod integrals with respect to fractional Brownian motion,
the appropriate scaling for the integrals proves to be nH , where H is the Hurst
parameter of the driving fBm.

2. The choice of the weighting sequence αn = 1 − logn/n introduced above is
a little delicate and is a crucial element in the proof of the theorem. Such a
sequence also plays a role in the proofs of the more general results in [1]. It
turns out that this same weighting works in the more general setting. In view of
the dependence of the form of the result on the parameter H noted in Remark
1, this strikes the author as somewhat surprising.
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On Multivariate Quasi-infinitely Divisible
Distributions

David Berger, Merve Kutlu, and Alexander Lindner

Abstract A quasi-infinitely divisible distribution on R
d is a probability distribution

μ on R
d whose characteristic function can be written as the quotient of the

characteristic functions of two infinitely divisible distributions on R
d . Equivalently,

it can be characterised as a probability distribution whose characteristic function
has a Lévy–Khintchine type representation with a “signed Lévy measure”, a so
called quasi–Lévy measure, rather than a Lévy measure. A systematic study of such
distributions in the univariate case has been carried out in Lindner, Pan and Sato
(Trans Am Math Soc 370:8483–8520, 2018). The goal of the present paper is to
collect some known results on multivariate quasi-infinitely divisible distributions
and to extend some of the univariate results to the multivariate setting. In particular,
conditions for weak convergence, moment and support properties are considered.
A special emphasis is put on examples of such distributions and in particular on
Z
d -valued quasi-infinitely divisible distributions.

Keywords Infinitely divisible distribution · quasi-infinitely divisible
distribution · signed Lévy measure
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1 Introduction

The class of Lévy processes may be considered to be one of the most important
classes of stochastic processes. On the one hand, Lévy processes generalise
Brownian motion, stable Lévy processes or compound Poisson processes, on the
other hand they are the natural continuous time analogue of random walks and as
those are interesting both from a purely theoretical point of view, but also from
a practical point of view as drivers of stochastic differential equations, similar to
time series being driven by i.i.d. noise. Excellent books on Lévy processes include
the expositions by Applebaum [2], Bertoin [6], Doney [13], Kyprianou [20] or
Sato [32]. We do not attempt to summarise Ron Doney’s numerous, important and
deep contributions to the understanding of Lévy processes, but confine ourselves to
mentioning some of his works on small and large time behaviour of Lévy processes,
such as Bertoin et al. [7], Doney [12] or Doney and Maller [14], which have been of
particular importance for the research of one of the authors of this article.

The class of R
d -valued Lévy processes corresponds naturally to the class of

infinitely divisible distributions on R
d , which is an important and well-studied

class of distributions, see e.g. [32] for various of its properties. Infinitely divisible
distributions (and hence Lévy processes) are completely characterised by the Lévy-
Khintchine formula, according to which μ is infinitely divisible if and only if its
characteristic function R

d & z �→ μ̂(z) = ∫
Rd ei〈z,x〉μ(dx) can be expressed for all

z ∈ R
d as

μ̂(z) = exp

(
i〈γ, z〉 − 1

2
〈z,Az〉 +

∫
Rd

(
ei〈z,x〉 − 1 − i〈z, x〉1[0,1](|x|)

)
ν(dx)

)
,

(1.1)

with a symmetric non-negative definite matrix A ∈ R
d×d , a constant γ ∈ R

d and
a Lévy measure ν on R

d , that is, a Borel measure on R
d satisfying ν({0}) = 0

and
∫
R
(1 ∧ |x|2)ν(dx) < ∞. The triplet (A, ν, γ ) is unique and called the

(standard) characteristic triplet of the infinitely divisible distribution μ. By (1.1),
the characteristic function of an infinitely divisible distribution must obviously be
zero-free.

The class of quasi-infinitely divisible distributions on R
d is much less known.

Their definition is as follows (see Lindner et al. [21, Remark 2.4]):

Definition 1.1 A probability distribution μ on R
d is called quasi-infinitely divisi-

ble, if its characteristic function μ̂ admits the representation μ̂(z) = μ̂1(z)/μ̂2(z)

for all z ∈ R
d with infinitely divisible distributions μ1 and μ2.

Rewriting this as μ̂(z)μ̂2(z) = μ̂1(z), we see that a probability distribution μ

on R
d is quasi-infinitely divisible if and only if there are two infinitely divisible

distributions μ1 and μ2 on R
d such that

μ ∗ μ2 = μ1.
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So quasi-infinitely divisible distributions arise naturally in the factorisation problem
of infinitely divisible distributions, where one of the factors is infinitely divisible,
and the other is then necessarily quasi-infinitely divisible. If μ,μ1, μ2 are related
as in Definition 1.1, and if (A1, ν1, γ1) and (A2, ν2, γ2) denote the characteristic
triplets of μ1 and μ2, respectively, then it is easy to see that the characteristic
function μ̂ of μ has a Lévy–Khintchine type representation as in (1.1), with
γ = γ1 − γ2, A = A1 − A2 and ν = ν1 − ν2, where in the definition of ν one has
to be a bit careful since ν1(B) − ν2(B) will not be defined for Borel sets B ⊂ R

d

with ν1(B) = ν2(B) = ∞. It is however defined if min{ν1(B), ν2(B)} < ∞, in
particular if B is bounded away from zero. We will formalise this in Definition 2.1
and call ν = ν1 − ν2 a quasi-Lévy (type) measure, so basically a “signed” Lévy
measure with some extra care taken for sets that are not bounded away from zero. In
Theorem 2.2 we shall then give a Lévy–Khintchine type formula for quasi-infinitely
divisible distributions with these quasi-Lévy (type) measures.

Quasi-infinitely divisible distributions have already appeared (although not under
this name) in early works of Linnik [23], Linnik and Ostrovskiĭ [24], Gnedenko and
Kolmogorov [15] or Cuppens [9, 10], to name just a few, but a systematic study
of them in one dimension was only initiated in [21]. The name “quasi-infinitely
divisible” for such distributions seems to have been used the first time in Lindner
and Sato [22].

The class of quasi-infinitely divisible distributions is larger than it might appear
on first sight. For example, Cuppens [9, Prop. 1], [10, Thm. 4.3.7] showed that
a probability distribution on R

d that has an atom of mass greater than 1/2 is
quasi-infinitely divisible, and in [21, Theorem 8.1] it was shown that a distribution
supported in Z is quasi-infinitely divisible if and only if its characteristic function
has no zeroes, which in [5, Theorem 3.2] was extended to Z

d -valued distributions.
For example, a binomial distribution b(n, p) on Z is quasi-infinitely divisible if and
only if p �= 1/2. Quasi-infinite divisibility of one-dimensional distributions of the
formμ = pδx0 +(1−p)μac with p ∈ (0, 1] and an absolutely continuousμac on R

has been characterised in Berger [4, Thm. 4.6]. Further, as shown in [21, Theorem
4.1], in dimension 1 the class of quasi-infinitely divisible distributions on R is dense
in the class of all probability distributions with respect to weak convergence. Since
there are probability distributions that are not quasi-infinitely divisible, the class of
quasi-infinitely divisible distributions obviously cannot be closed.

Recently, applications of quasi-infinitely divisible distributions have been found
in physics (Demni and Mouayn [11], Chhaiba et al. [8]) and insurance mathe-
matics (Zhang et al. [34]). Quasi-infinitely divisible processes and quasi-infinitely
divisible random measures and integration theory with respect to them have been
considered in Passeggieri [28]. Following Passeggeri, a stochastic process is called
quasi-infinitely divisible if its finite-dimensional distributions are quasi-infinitely
divisible. Quasi-infinitely divisible distributions have also found applications in
number theory, see e.g. Nakamura [25, 26] or Aoyama and Nakamura [1]. We
also mention the recent work of Khartov [18], where compactness criteria for
quasi-infinitely divisible distributions on Z have been derived, and the paper by
Kadankova et al. [16], where an example of a quasi-infinitely divisible distribution
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on the real line whose quasi-Lévy measure has a strictly negative density on (a∗, 0)
for some a∗ < 0 has been constructed.

As mentioned, a systematic study of one-dimensional quasi-infinitely divisible
distributions has only been initiated in [21]. The goal of the present paper is to give
a systematic account of quasi-infinitely divisible distributions on R

d . We will collect
some known results and also extend some of the one-dimensional results in [4] and
[21] to the multivariate setting. To get a flavour of the methods, we have decided
to include occasionally also proofs of already known results, such as the previously
mentioned result of Cuppens [10], according to which a probability distribution on
R
d with an atom of mass greater than 1/2 is quasi-infinitely divisible.
The paper is structured as follows. In Sect. 2 we will formalise the concept

of quasi-Lévy measures and the Lévy–Khintchine type representation of quasi-
infinitely divisible distributions. We show in particular that the matrix A appearing
in the characteristic triplet must be non-negative definite (Lemma 2.5) and that
the introduction of complex quasi-Lévy type measures and complex symmetric
matrices does not lead to new distributions, in the sense that if a probability
distribution has a Lévy–Khintchine type representation with a complex symmetric
matrix A ∈ C

d×d and a complex valued quasi-Lévy measure, then A ∈ R
d×d and ν

is real valued, i.e. a quasi-Lévy measure (Theorem 2.7). In Sect. 3 we give examples
of quasi-infinitely divisible distributions, in particular we reprove Cuppens’ result
(Theorem 3.2) and state some of the examples mentioned previously. We also
show how to construct multivariate quasi-infinitely divisible distributions from
independent one-dimensional quasi-infinitely divisible distributions. Section 4 is
concerned with sufficient conditions for absolute continuity of quasi-infinitely divis-
ible distributions, by extending a classical condition of Kallenberg [17, pp.794–795]
for one-dimensional infinitely divisible distributions to multivariate quasi-infinitely
divisible distributions (Theorem 4.1). This condition seems to be new even in the
case of multivariate infinitely divisible distributions. Section 5 is concerned with
topological properties of the class of quasi-infinitely divisible distributions, like it
being dense with respect to weak convergence in dimension 1. In Sect. 6 we give a
sufficient condition for weak convergence of quasi-infinitely divisible distributions
in terms of their characteristic triplets, and in Sect. 7 we consider some support
properties. Section 8 is concerned with moment conditions for quasi-infinitely
divisible distributions and formulae for the moments in terms of the characteristic
triplet. We end this section by setting some notation.

Throughout, we denote by N = {1, 2, 3, . . .} the natural numbers, by N0 =
N∪{0} the natural numbers including 0, and by Z,Q,R and C the integers, rational
numbers, real numbers and complex numbers, respectively. The real part a of a
complex number z = a + bi with a, b ∈ R is denoted by a = �(z), the imaginary
part by b = )(z), and the complex conjugate by z = a − bi. Vectors in R

d will be
column vectors, we denote by R

n×d the set of all n × d matrices with real entries,
and the transpose of a vector or matrix A is denoted by AT . The Euclidian inner
product in the d-dimensional space Rd is denoted by 〈·, ·〉, and the absolute value of
z = (z1, . . . , zd)

T by |z| = (z2
1 + . . .+ z2

d )
1/2. For two real numbers a, b we denote

the minimum of a and b by a∧b, and for a set A the indicator function ω �→ 1A(ω)
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takes the value 1 for ω ∈ A and 0 for ω /∈ A. For two sets B1, B2 ⊂ R
d and a

vector b ∈ R
d we write b + B1 = {b + c : c ∈ B1} and B1 + B2 := {c + d :

c ∈ B1, d ∈ B2}. By a (probability) distribution on R
d we will always mean a

probability measure on (Rd ,B(Rd)), where B(Rd) denotes the Borel-σ -algebra on
R
d . The Dirac measure at a point x ∈ R

d is denoted by δx , the convolution of two
distributions μ1 and μ2 by μ1 ∗ μ2, and the product measure of them by μ1 ⊗ μ2,
withμ∗n

1 andμ⊗n
1 denoting the n-fold convolution and n-fold product measure ofμ1

with itself. The characteristic function R
d & z �→ ∫

Rd ei〈z,x〉μ(dx) of a probability
distribution μ on R

d is denoted by μ̂, the support of a non-negative measure ν on
R
d by supp(ν), and weak convergence of probability measures is denoted by

w→.
The law (or distribution) of an R

d -valued random vector will be denoted by L(X),
its expectation by E(X). By a signed measure on a σ -algebra we mean a σ -additive
[−∞,∞]-valued set function that assigns the value 0 to the empty set, and we
say that it is finite if it is R-valued. The restriction of a (signed) measure ν on a
measurable space (�,F) to A ⊂ F is denoted by ν|A, and if A is of the form
A = {F ∩A : F ∈ F} with some A ∈ F we occasionally also write ν|A rather than
νA. The support of a signed measure is the support of its total variation measure.

2 The Lévy-Khintchine Type Representation

As already mentioned, quasi-infinitely divisible distributions admit a Lévy-
Khintchine representation, with a quasi-Lévy type measure instead of a Lévy
measure. A quasi-Lévy type measure is, in a sense, the difference between two
Lévy measures ν1 and ν2 and can be seen as a “signed Lévy measure”. However,
this difference is not a signed measure if both, ν1 and ν2 are infinite. On the other
hand, for any neighborhood U of 0, the restrictions of ν1 and ν2 to R

d \ U are
finite, so that the difference is a finite signed measure. The following concept of
[21] formalizes this statement.

Definition 2.1 For r > 0 let Bd
r := {B ∈ B(Rd) : B ⊂ {x ∈ R

d : |x| ≥ r}} and
let Bd

0 := ∪r>0Bd
r . Let ν : Bd

0 → R be a function such that ν|Bd
r

is a finite signed
measure for every r > 0 and denote the total variation, the positive and the negative
part of ν|Bd

r
by |ν|Bd

r
|, ν+|Bd

r
and ν−|Bd

r
, respectively.

(a) Let E0 := {x ∈ R
d : |x| > 1} and for n ∈ N let En := {x ∈ R

d : 1
n+1 < |x| ≤

1
n
}. The positive part ν+ : B(Rd) → [0,∞) of ν is defined by

ν+(B) := lim
r→0

ν+|Bd
r
(B ∩ {x ∈ R

d : |x| > r}) =
∑
n∈N0

ν+|Bd
1/(n+1)

(B ∩ En), B ∈ B(Rd ).
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The well-definedness of the series can easily be seen by a monotonicity
argument, since ν+|Bd

r
(B) = ν+|Bd

s
(B) for all B ∈ Bd

r and 0 < s ≤ r . Moreover,

if (Bm)m∈N is a series of pairwise disjoint elements in B(Rd), then

∑
m∈N

ν+(Bm) =
∑
m∈N

∑
n∈N

ν+(Bm ∩En) =
∑
n∈N

ν+(∪m∈NBm ∩En) = ν+(∪m∈NBm),

so that ν+ is a measure on (Rd,B(Rd)). Analogously, we define the negative
part ν− and total variation |ν| of ν by

ν−(B) := lim
r→0

ν+|Bd
r
(B ∩ {x ∈ R

d : |x| > r})

and

|ν|(B) := lim
r→0

ν+|Bd
r
(B ∩ {x ∈ R

d : |x| > r})

for B ∈ B(Rd).
(b) A function f : R

d → C is said to be integrable with respect to ν, if f is
integrable with respect to |ν|, i.e. if f is integrable with respect to ν+ and ν−.
In this case, we define

∫
Rd

f (x)ν(dx) :=
∫
Rd

f (x)ν+(dx)−
∫
Rd

f (x)ν−(dx).

(c) ν is called a quasi-Lévy type measure on R
d , if the mapping R

d → R, x �→
1 ∧ |x|2 is integrable with respect to ν.

Observe that |ν|({0}) = ν+({0}) = ν−({0}) = 0 by construction. Note that the
mapping ν itself is defined on Bd

0 , which is not a σ -algebra, and hence ν is no signed
measure. But whenever ν has an extension on B(Rd) which is a signed measure, we
will identify ν with this extension and speak of ν as a signed measure. Moreover,
for two Lévy measures ν1 and ν2 on R

d , the mapping ν := (ν1)|Bd
0
− (ν2)|Bd

0
is

obviously a quasi-Lévy type measure on R
d .

Next, we give the Lévy-Khintchine type representation for quasi-infinitely divis-
ible distributions, which we immediately state for general representation functions:
by a representation function on R

d we mean a bounded, Borel measurable function
c : Rd → R

d that satisfies limx→0 |x|−2|c(x)−x| = 0. The representation function
R
d & x �→ x1[0,1](|x|) is called the standard representation function. It is well

known that for every fixed representation function c, a probability distribution μ

is infinitely divisible if and only if its characteristic function has a representation
as in (2.1) below with A ∈ R

d×d being non-negative definite, γ ∈ R
d and ν

being a Lévy measure on R
d ; Equation (1.1) then corresponds to the use of the

standard representation function. The triplet (A, ν, γ ) is then unique and called the
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characteristic triplet of μ with respect to the representation function c, also denoted
by (A, ν, γ )c, cf. [32, Sect. 56]. Observe that only the location parameter γ depends
on the specific choice of the representation function. For the standard representation
function we get the standard characteristic triplet. Let us now come to the Lévy–
Khintchine type representation of quasi-infinitely divisible distributions. This has
already been observed in [21, Rem. 2.4], but we have decided to give the proof in
detail.

Theorem 2.2 Let c be a representation function on R
d . A probability distribution μ

on R
d is quasi-infinitely divisible if and only if its characteristic function μ̂ admits

the representation

μ̂(z) = exp

(
i〈γ, z〉 − 1

2
〈z,Az〉 +

∫
Rd

(
ei〈z,x〉 − 1 − i〈z, c(x)〉

)
ν(dx)

)
(2.1)

for all z ∈ R
d with a symmetric matrix A ∈ R

d×d , a constant γ ∈ R
d and a quasi-

Lévy type measure ν on R
d . In this case, the triplet (A, ν, γ ) in the representation

(2.1) of μ̂ is unique.

Proof It is clear that if μ is quasi-infinitely divisible with μ̂ = μ̂1/μ̂2 and μ1, μ2
being infinitely divisible with characteristic triplets (Ai, νi , γi)c, i = 1, 2, then μ̂

has the representation (2.1) with A = A1 − A2, ν = ν1 − ν2 and γ = γ1 −
γ2. Conversely, let μ be a probability distribution whose characteristic function μ̂

admits the representation (2.1) with a symmetric matrix A ∈ R
d×d , a constant γ ∈

R
d and a quasi-Lévy measure ν on R

d . Since A ∈ R
d×d is symmetric, we can write

A = A+ − A− with non-negative symmetric matrices A+, A− ∈ R
d×d , which can

be seen by diagonalising A, splitting the obtained diagonal matrix into a difference
of two diagonal matrices with non-negative entries, and then transforming these
matrices back. Let μ1 and μ2 be infinitely divisible distributions with characteristic
triplets (A+, ν+, γ ) and (A−, ν−, 0), respectively. Then μ2 ∗ μ = μ1, so that μ is
quasi-infinitely divisible.

The uniqueness of the triplet is proved in Cuppens [10, Thm. 4.3.3] or also Sato
[32, Exercise 12.2], but for clarity in the exposition we repeat the argument. So let
(A1, ν1, γ1) and (A2, ν2, γ2) be two triplets satisfying (2.1). Defining

�j : Rd → R, z �→ i〈γj , z〉 − 1

2
〈z,Ajz〉 +

∫
Rd

(
ei〈z,x〉 − 1 − i〈z, c(x)〉

)
νj (dx)

for j ∈ {1, 2}, it is easily seen that both �1 and �2 are continuous with �j(0) = 0,
implying �1 = �2 by the uniqueness of the distinguished logarithm, cf. [32, Lem.
7.6]. As before we can find symmetric non-negative definite matrices A+

1 , A
−
1 , A

+
2
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and A−
2 such that A1 = A+

1 − A−
1 and A2 = A+

2 − A−
2 . Therefore, the equation

�1 = �2 can be rewritten to

i〈γ1, z〉 − 1

2
〈z, (A+

1 + A−
2 )z〉 +

∫
Rd

(
ei〈z,x〉 − 1 − i〈z, c(x)〉

)
(ν+1 + ν−2 )(dx)

= i〈γ2, z〉 − 1

2
〈z, (A+

2 + A−
1 )z〉 +

∫
Rd

(
ei〈z,x〉 − 1 − i〈z, c(x)〉

)
(ν+2 + ν−1 )(dx)

for all z ∈ R
d . By the uniqueness of the Lévy-Khintchine representation of infinitely

divisible distributions (e.g. [32, Thm. 8.1]), it follows that γ1 = γ2, A+
1 + A−

2 =
A+

2 + A−
1 and ν+1 + ν−2 = ν+2 + ν−1 , which implies that A1 = A2 and ν1 = ν2

(observe that ν+1 , ν
−
1 , ν

+
2 and ν−2 are all finite on Bd

0 ). ��
Definition 2.3 Let c be a representation function on R

d . For a quasi-infinitely
divisible distribution μ on R

d , the representation of μ̂ in (2.1) is called the Lévy-
Khintchine representation of μ and the function �μ : Rd → C given by

�μ(z) := i〈γ, z〉 − 1

2
〈z,Az〉 +

∫
Rd

(
ei〈z,x〉 − 1 − i〈z, c(x)〉

)
ν(dx)

for all z ∈ R
d is called the characteristic exponent of μ. The triplet (A, ν, γ ) is

called the generating triplet or characteristic triplet of μ with respect to c and
denoted by (A, ν, γ )c. The matrix A is called the Gaussian covariance matrix of
μ, the mapping ν the quasi-Lévy measure of μ and the constant γ ∈ R

d the location
parameter of μ with respect to c. When d = 1 we also speak of A as the Gaussian
variance of μ. We write μ ∼ q.i.d.(A, ν, γ )c to state that μ is a quasi-infinitely
divisible distribution with characteristic triplet (A, ν, γ ) with respect to c. If c is
the standard representation function, then (A, ν, γ )c is also called the (standard)
characteristic triplet of μ and is denoted by (A, ν, γ ), omitting the index c.

Remark 2.4

(a) It is easily seen that the Gaussian covariance matrix and the quasi-Lévy
measure of a quasi-infinitely divisible distribution do not depend on the specific
representation function, but the location parameter does.

(b) It is well known that the right-hand side of (2.1) defines the characteristic triplet
of a probability distribution μ for all γ ∈ R

d , all Lévy measures ν on R
d and

all non-negative definite symmetric A ∈ R
d×d , in which case μ is necessarily

infinitely divisible. It is however not true that the right-hand side of (2.1)
defines the characteristic function of a probability distribution for all γ ∈ R

d ,
symmetric matrices A ∈ R

d×d and quasi-Lévy type measures ν. To see this, let
(A, ν, γ )c be the characteristic triplet of a quasi-infinitely divisible distribution
such that A is not non-negative definite or such that ν is not non-negative. If
all such triplets were to give rise to characteristic functions of a probability
distribution, then in particular (n−1A, n−1, n−1γ )c must be the characteristic
triplet of some probability distribution μn, say, for all n ∈ N. It is then easy to
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see that the characteristic function of the n-fold convolution of μn with itself
has Lévy-Khintchine type representation (2.1), so that μ∗n

n = μ for each n ∈ N.
Hence μ is infinitely divisible, and the uniqueness of the characteristic triplet
implies that A is non-negative definite and ν is non-negative, a contradiction. In
Lemma 2.5 below we will actually see that only non-negative definite matrices
A are possible. The quasi-Lévy measure does not need to be a Lévy measure,
examples of which will be given in Sect. 3. However, not every quasi-Lévy type
measure can occur as the quasi-Lévy measure of a quasi-infinitely divisible
distribution, e.g. a quasi-Lévy type measure ν in R with ν− �= 0 and ν+ being
the zero measure or a one-point measure can never be the quasi-Lévy measure
of a quasi-infinitely divisible distribution, as mentioned in [21, Ex. 2.9]. This
is the reason why we distinguish between quasi-Lévy type measures and quasi-
Lévy measures. A quasi-Lévy type measure is any function ν : Bd

0 → R as in
Definition 2.1, while a quasi-Lévy measure is a quasi-Lévy type measure that is
linked to a (necessarily quasi-infinitely divisible) probability distribution.

In [21, Lem. 2.7] it was shown that if (a, ν, γ ) is the characteristic triplet of a
quasi-infinitely divisible distribution on R, then necessarily a ≥ 0. We now extend
this to higher dimensions, by showing that the Gaussian covariance matrix must
necessarily be non-negative definite.

Lemma 2.5 Ifμ is a quasi-infinitely divisible distribution on R
d with characteristic

triplet (A, ν, γ ), then A is non-negative definite.

Proof For z ∈ R
d and t ∈ R it holds

�μ(tz) = it〈γ, z〉 − t2
1

2
〈z,Az〉 +

∫
Rd

(
eit〈z,x〉 − 1 − it〈z, x〉1[0,1](|x|)

)
ν(dx).

Due to [32, Lem. 43.11 (i)] we have

lim
t→∞ t−2

∫
Rd

(
eit〈z,x〉 − 1 − it〈z, x〉1[0,1](|x|)

)
ν±(dx) = 0,

hence limt→∞ t−2�μ(tz) = − 1
2 〈z,Az〉. If 〈z0, Az0〉 < 0 would hold for some

z0 ∈ R
d , then we would obtain |μ̂(tz0)| = | exp(�μ(tz0))| → ∞ as t → ∞, which

is a contradiction. ��
It is natural to ask why one should restrict to symmetric matrices A ∈ R

d×d in
the Lévy-Khintchine type representation and not allow arbitrary matricesA ∈ R

d×d .
The next remark clarifies that this does not lead to new distributions, but that one
would loose uniqueness of the characteristic triplet when allowing more generally
non-symmetric matrices.

Remark 2.6 Given an arbitrary matrix A ∈ R
d×d we can write A = A1 + A2,

where A1 = 1
2 (A + AT ) and A2 = 1

2 (A − AT ). The matrix A1 is symmetric and
A2 satisfies AT

2 = −A2, which implies that 〈z,A2z〉 = zT A2z = (zT A2z)
T =
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zT AT
2 z = −〈z,A2z〉, and therefore 〈z,A2z〉 = 0 for all z ∈ R

d . It follows that
〈z,Az〉 = 〈z,A1z〉 for all z ∈ R

d . Hence, if we do not require that the matrix A

in Theorem 2.2 is symmetric, then the representation of μ̂ in (2.1) is not unique.
Further, the class of distributions μ on R

d whose characteristic function μ̂ allows
the representation (2.1) with an arbitrary matrix A ∈ R

d×d is exactly the class of
quasi-infinitely divisible distributions.

Having seen the reason why we restrict to symmetric matrices, we would now
like to know if we get new distributions (or non-unique triplets) if we also allow
for complex γ ∈ R

d , complex symmetric A ∈ C
d×d and complex quasi-Lévy

measures in the Lévy–Khintchine representation. Berger showed in [4, Thm. 3.2]
that for d = 1 this does not lead to a greater class of distributions, and that then
necessarily γ ∈ R, A ∈ [0,∞) and that ν is real-valued, i.e. a quasi-Lévy measure.
We now generalise this result to distributions onRd . To state this theorem, a complex
quasi-Lévy type measure on R

d is a mapping ν : Bd
0 → C such that �ν and )ν are

quasi-Lévy type measures on R
d . A function f : Rd → C is said to be integrable

with respect to ν, if it is integrable with respect to �ν and )ν. In this case, we define

∫
Rd

f (x)ν(dx) :=
∫
Rd

f (x)(�ν)(dx)+ i
∫
Rd

f (x)()ν)(dx).

Theorem 2.7 Let μ be a distribution on R
d such that its characteristic function

admits the representation

μ̂(z) = exp

(
i〈γ, z〉 − 1

2
〈z,Az〉 +

∫
Rd

(
ei〈z,x〉 − 1 − i〈z, x〉1[0,1](|x|)

)
ν(dx)

)

for every z ∈ R
d with a symmetric matrix A ∈ C

d×d , a complex quasi-Lévy type
measure ν on R

d and γ ∈ C
d . Then A ∈ R

d×d , γ ∈ R
d and )ν = 0, that is, ν is a

quasi-Lévy type measure and μ is quasi-infinitely divisible.

Proof The proof is very much the same as that of [4, Thm. 3.2] in dimension 1, but
we give the full proof for convenience.

For z ∈ R
d we have

|μ̂(z)|2 = μ̂(z)μ̂(−z) = exp

(
−〈z,Az〉 + 2

∫
Rd

(cos〈z, x〉 − 1) ν(dx)

)
.

The function g : R
d → C, z �→ −〈z,Az〉 + 2

∫
Rd (cos〈z, x〉 − 1) ν(dx) is

continuous and satisfies g(0) = 0, implying that g is the distinguished logarithm
of |μ̂|2, see [32, Lem. 7.6]. The uniqueness of the distinguished logarithm implies
that g also has to be the natural logarithm of |μ̂|2, so that g(z) ∈ R for all z ∈ R

d .
Hence,

−1

2
〈z, ()A)z〉 +

∫
Rd

(cos〈z, x〉 − 1) ()ν)(dx) = 0 for all z ∈ R
d . (2.2)
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Further, for z ∈ R
d it holds

μ̂(z)

μ̂(−z) = exp

(
2i

(
〈γ, z〉 +

∫
Rd

(
sin〈z, x〉 − 〈z, x〉1[0,1](|x|)

)
ν(dx)

))

and |μ̂(z)| = |μ̂(z)| = |μ̂(−z)|, so
∣∣∣ μ̂(z)
μ̂(−z)

∣∣∣ = 1 and thus

〈)γ, z〉 +
∫
Rd

(
sin〈z, x〉 − 〈z, x〉1[0,1](|x|)

)
()ν)(dx) = 0 for all z ∈ R

d .

Adding this identity multiplied by i to (2.2) we obtain

�δ0(z) = 0 = i〈)γ, z〉 − 1

2
〈z, ()A)z〉 +

∫
Rd

(
ei〈z,x〉 − 1 − i〈z, x〉1[0,1](|x|)

)
()ν)(dx)

for all z ∈ R
d . By the uniqueness of the Lévy-Khintchine type representation for

the Dirac measure δ0, it follows that )A = 0, )ν = 0 and )γ = 0. ��
In the proof of Lemma 2.5, through �μ(tz) we implicitly were concerned with

the projections of quasi-infinitely divisible distributions onto the lines {tz : t ∈ R}
for given z ∈ R

d . These projections are again quasi-infinitely divisible, and this
holds more generally for affine linear images of random vectors with quasi-infinitely
divisible distribution:

Lemma 2.8 Let X be a random vector in R
d with μ = L(X) being quasi-infinitely

divisible with characteristic triplet (A, ν, γ ). Let b ∈ R
m and M ∈ R

m×d . Then
the distribution of the R

m-valued random vector U := MX + b is quasi-infinitely
divisible with characteristic triplet (AU, νU , γU ), where

AU = MAMT ,

γU = b +Mγ +
∫
Rd

Mx
(
1[0,1](|Mx|)− 1[0,1](|x|)

)
ν(dx) and

νU (B) = ν({x ∈ R
d : Mx ∈ B}) for B ∈ Bm

0 .

Proof We see that

L̂(U)(z) =
∫
Rd

ei〈Mx+b,z〉 μ(dx) = ei〈b,z〉
∫
Rd

ei〈x,MT z〉μ(dx) = ei〈b,z〉μ̂(MT z)

for z ∈ R
m. The rest follows similar to [32, Prop. 11.10]. ��

We conclude this section with a remark that it is also possible to define the drift or
center of a quasi-infinitely divisible distribution, provided the quasi-Lévy measure
satisfies a certain integrability condition.
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Remark 2.9 Let μ ∼ q.i.d.(A, ν, γ ) and suppose that
∫
|x|≤1 |x| |ν|(dx) < ∞. Then

the characteristic function μ̂ of μ can be rewritten to

μ̂(z) = exp

(
i〈γ0, z〉 − 1

2
〈z,Az〉 +

∫
Rd

(
ei〈z,x〉 − 1

)
ν(dx)

)
(2.3)

for all z ∈ R
d , where γ0 = γ − ∫

|x|≤1 xν(dx). This representation is unique and

γ0 is called the drift of μ. Conversely, is μ is a distribution on R
d such that its

characteristic function admits the representation (2.3) for a symmetric matrix A ∈
R
d×d , a quasi-Lévy measure ν on R

d and γ0 ∈ R
d , then one can easily verify

that μ is quasi-infinitely divisible with characteristic triplet (A, ν, γ ), where γ =
γ0 +

∫
|x|≤1 xν(dx). Then (A, ν, γ0) is also called the characteristic triplet of μ with

respect to c(x) = 0 and denoted by (A, ν, γ0)0.
Similarly, if

∫
|x|>1 |x| |ν|(dx) < ∞, then μ̂ admits the representation

μ̂(z) = exp

(
i〈γm, z〉 − 1

2
〈z,Az〉 +

∫
Rd

(
ei〈z,x〉 − 1 − i〈z, x〉

)
ν(dx)

)
(2.4)

for all z ∈ R
d with γm = γ + ∫

|x|>1 x ν(dx). This representation is again unique
and γm is called the center of μ.

3 Examples

A helpful tool to find examples of quasi-infinitely divisible distributions is the
fact that the convolution of quasi-infinitely divisible distributions is again quasi-
infinitely divisible.

Remark 3.1 Let c : R
d → R

d be a representation function. If μ1 ∼
q.i.d.(A1, ν1, γ1)c and μ2 ∼ q.i.d.(A2, ν2, γ2)c, then μ1 ∗ μ2 ∼ q.i.d.(A1 +
A2, ν1 + ν2, γ1 + γ2)c.

An important class of quasi-infinitely divisible distributions was established by
Cuppens [9, Prop. 1], [10, Thm. 4.3.7]. He showed that every distribution which
has an atom of mass λ > 1

2 is quasi-infinitely divisible. We state his result and also
prove it, in order to get an idea of what is behind the theorem.

Theorem 3.2 Let μ = λδa+(1−λ)σ some λ ∈ ( 1
2 , 1], a ∈ R

d and a distribution σ
on R

d that satisfies σ({a}) = 0. Then μ is quasi-infinitely divisible with finite quasi-

Lévy measure ν =
(∑∞

k=1
(−1)k+1

k

(
1−λ
λ

)k
(δ−a ∗ σ)∗k

)
|Bd

0

, Gaussian covariance

matrix 0 and drift a.



On Multivariate Quasi-infinitely Divisible Distributions 99

Proof Shifting μ by a, we can and do assume without loss of generality by

Remark 3.1 that a = 0. Define ρ :=
(∑∞

k=1
(−1)k+1

k

(
1−λ
λ

)k
σ ∗k

)
, where the sum

converges absolutely to the finite signed measure ρ since 0 ≤ 1−λ
λ

< 1. Denote
ν := ρ|Bd

0
as in the statement of the theorem, which then is a finite quasi-Lévy

type measure (observe that ρ({0}) �= 0 is possible although σ({0}) = 0; hence
it is important to subtract any mass of ρ at 0, which is in particular achieved by
restricting ρ to Bd

0 ).
Next, observe that μ̂(z) = λ + (1 − λ)̂σ (z) = λ(1 + 1−λ

λ
σ̂ (z)) for z ∈ R

d .
Again, since 0 ≤ 1−λ

λ
< 1 and |̂σ(z)| ≤ 1 for all z ∈ R

d , the series expansion of
the principal branch of the complex logarithm of log(1 + w) for w ∈ C such that
|w| < 1 gives

log μ̂(z) = logλ+
∞∑
k=1

(−1)k+1

k

(
1 − λ

λ

)k
σ̂ (z)k

= logλ+
∞∑
k=1

(−1)k+1

k

(
1 − λ

λ

)k ∫
Rd

ei〈z,x〉 σ ∗k(dx)

= logλ+
∫
Rd

ei〈z,x〉 ρ(dx)

= logλ+ ρ(Rd)+
∫
Rd

(ei〈z,x〉 − 1) ν(dx)

for every z ∈ R
d . Using the fact that μ̂(0) = 1, we find 0 = log μ̂(0) = logλ +

ρ(Rd), finishing the proof. ��
Lindner et al. [21, Thm. 8.1] showed that a probability distribution μ on Z is

quasi-infinitely divisible if and only if its characteristic function has no zeroes. This
has been extended recently to distributions on Z

d by Berger and Lindner [5, Thm.
3.2]. The precise result is as follows:

Theorem 3.3 Let μ be a distribution that is supported in Z
d . Then μ is quasi-

infinitely divisible if and only if μ̂(z) �= 0 for all z ∈ [0, 2π]d . In that case,
the Gaussian covariance matrix of μ is zero, the quasi-Lévy measure is finite and
supported in Z

d \ {0} and the drift of μ is in Z
d .

The proof given in [5, 21] relies on the Lévy–Wiener theorem, according to which
for a continuous function f : Rd → C that is 2π-periodic in all coordinates and
is such that it has absolutely summable Fourier coefficients, and a holomorphic
function h : D → C on an open subset D ⊂ C such that f ([0, 2π]d) ⊂ C,
also the composition h◦f has absolutely summable Fourier coefficients (i.e. it is an
element of the so called Wiener algebra). The given zero-free characteristic function
μ̂ then has to be modified appropriately in order to apply this Wiener–Lévy theorem
to the distinguished logarithm, and then an argument is needed in order to show
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that the Fourier coefficients are indeed real-valued and not complex. This is carried
out in detail in [5, 21] and we refer to these articles for the detailed proof. We only
mention here that it is also possible to replace the proofs given there for the fact
that the Fourier coefficients are real and not complex by Theorem 2.7 given in the
present article.

Recall that a stochastic process is quasi-infinitely divisible if all of its finite-
dimensional distributions are quasi-infinitely divisible. By Theorem 3.3, for a Z

d -
valued stochastic process this is the case, if and only if the characteristic functions
of its finite-dimensional distributions have no zeros.

There is nothing special about the lattice Z
d and Theorem 3.3 continues to hold

for more general lattices, which is the contents of the next result that generalises
[21, Cor. 3.10] to higher dimensions.

Corollary 3.4 Let M ∈ R
d×d be invertible, b ∈ R

d and μ be a probability
distribution supported in the lattice MZ

d + b = {Mz + b : z ∈ Z
d}. Then μ is

quasi-infinitely divisible if and only if the characteristic function of μ has no zeroes
on (MT )−1([0, 2π]d) = {(MT )−1x : x ∈ [0, 2π]d}. In that case, the Gaussian
covariance matrix of μ is zero, the quasi-Lévy measure is finite and supported in
MZ

d \ {0} and the drift of μ is in MZ
d + b.

Proof Let U be a random vector with distribution μ and define X = M−1(U − b).
Then L(X) is supported in Z

d and μ̂(z) = L̂(U)(z) = ei〈b,z〉L̂(X)(MT z) for z ∈
R
d . The result is then an immediate consequence of Theorem 3.3 together with

Lemma 2.8; here, an easy extension of Lemma 2.8 shows that the drift γU of U is
MγX + b, where γX is the drift of L(X). ��

An interesting application of the previous theorem on Z
d has been given in [5,

Thm. 4.1], where a Cramér–Wold device for infinite divisibility of Zd -distributions
was established. The precise statement is as follows:

Corollary 3.5 Let X be a Z
d -valued random vector with distribution μ. Then the

following are equivalent:

(i) μ is infinitely divisible.
(ii) L(aT X) is infinitely divisible for all a ∈ R

d .
(iii) L(aT X) is infinitely divisible for all a ∈ N

d
0 .

(iv) The characteristic function of μ has no zeroes on R
d and there exists some

a = (a1, . . . , ad)
T ∈ R

d such that a1, . . . , ad are linearly independent over Q
and such that L(aT X) is infinitely divisible.

This result is striking in the sense that a Cramér-Wold device does not hold in
full generality for infinite divisibility of Rd -valued distributions. Indeed, it is even
known that for every α ∈ (0, 1) there exists a d-dimensional random vector X such
that L(aT X) is α-stable for all a ∈ R

d , but that L(X) is not infinitely divisible (see
[31, Sect. 2.2]). The proof of Corollary 3.5 heavily relies on Theorem 3.3, and we
refer to [5, Thm. 4.1] for the details of the proof.

In view of Theorem 3.3 it is natural to ask if every distribution μ whose
characteristic function is zero-free must be quasi-infinitely divisible. That this is
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not the case was shown in [21, Ex. 3.3] by giving a counter example. Let us give
another counter example to this fact:

Example 3.6 Consider the function ϕ : R → (0,∞) given by ϕ(x) = exp(1 −
e|x|). Then ϕ is continuous on R, ϕ(0) = 1 and ϕ′′(x) = (ex − 1) exp(1 + x −
ex) > 0 for all x > 0. Hence ϕ is strictly convex on (0,∞). Since ϕ(x) tends
to 0 as |x| → ∞, Pólya’s theorem implies that ϕ is the characteristic function of
an absolutely continuous distribution μ on R. The distinguished logarithm of μ is
given by �μ(x) = 1 − e|x|. Hence limt→∞ t−2�μ(t) = −∞. It follows that μ
cannot be quasi-infinitely divisible, for if it were, then limt→∞ t−2�μ(t) = −A/2
as shown in the proof of Lemma 2.5, where A ∈ R denotes the Gaussian variance
of μ. Hence we have a one-dimensional distribution μ that is not quasi-infinitely
divisible but whose characteristic function is zero-free. Using Lemma 2.8 it then
is easily seen that δ⊗(d−1)

0 ⊗ μ is a distribution in R
d that is not quasi-infinitely

divisible but whose characteristic function is zero-free. Further examples of such
distributions can be constructed using Proposition 3.10 below.

Let us now give some concrete examples of quasi-infinitely divisible distributions
on Z

d :

Example 3.7

(a) Consider the distribution μ := aδ(0,0) + bδ(1,0) + cδ(0,1) on R
2 with a, b, c ∈

(0, 1). If max{a, b, c} > 1/2, then μ is quasi-infinitely divisible by Cuppens’
result (cf. Theorem 3.2). If max{a, b, c} ≤ 1/2, then μ cannot be quasi-
infinitely divisible, since μ̂ is not zero-free. Indeed, for (x, y) ∈ R

2, μ̂(x, y) =
a + beix + ceiy = 0 if and only if beix = −a − ceiy . The set {beix : x ∈ R}
describes a circle in the complex plane with center 0 and radius b, intersecting
the real axis at the points −b and b, and {−a − ceiy : y ∈ R} describes a circle
in the complex plane with center −a and radius c, intersecting the real axis at
the points −a− c and −a+ c. Now, since max{a, b, c} ≤ 1/2, this implies that
a ≤ b + c, b ≤ a + c and c ≤ a + b, and hence −a − c ≤ −b ≤ −a + c ≤ b.
Therefore, the two circles intersect or touch each other, so they share at least
one common point, which corresponds to a zero of the characteristic function
of μ.

(b) Let p, q ∈ (0, 1) \ {1/2} and consider the distributions μ1 := (1 − p)δ(0,0) +
pδ(1,0) and μ2 := (1 − q)δ(0,0)+ qδ(0,1). Due to Theorem 3.2, the distributions
μ1 and μ2 are quasi-infinitely divisible. Hence, also the distribution μ := μ1 ∗
μ2 = (1 − p)(1 − q)δ(0,0) + p(1 − q)δ(1,0) + (1 − p)qδ(0,1) + pqδ(1,1) is
quasi-infinitely divisible. Observe that it is possible to choose p and q such that
max{pq, (1 − p)(1 − q), p(1 − q), q(1 − p)} < 1/2.

(c) Let μ1, . . . , μd be distributions on R supported in Z such that � μ̂k(z) >

0 for all k ∈ {1, . . . , d} and z ∈ R
d . Examples of such distributions

can be obtained as symmetrisations of distributions supported in Z, whose
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characteristic functions have no zeros. Let 0 ≤ p1, . . . , pd ≤ 1 be such that∑d
k=1 pk = 1 and define the distribution

μ :=
d∑

k=1

pk
∑
l∈Z

μk({l})δlek

on R
d , where ek is the k-th unit vector. Then for z = (z1, . . . , zd )

T ∈ R
d we

have

μ̂(z) =
∑
l∈Zd

μ({l})ei〈z,l〉 =
d∑

k=1

∑
l∈Z\{0}

pkμ({lek})ei〈z,lek〉 + μ({0})

=
d∑

k=1

pk
∑

l∈Z\{0}
μk({l})eilzk +

d∑
k=1

pkμk({0}) =
d∑

k=1

pkμ̂k(zk) �= 0

since � μ̂k(zk) > 0. In particular, μ̂ has no zeros, so μ is quasi-infinitely
divisible by Theorem 3.3.

(d) Let p ∈ [0, 1/4) and consider the symmetric distribution σ := pδ−1 + (1 −
2p)δ0+pδ1. We have σ̂ (z) = pe−iz+1−2p+peiz = 1−2p+2p cos(z) > 0 for
z ∈ R since p < 1/4. With the construction in part (c), choosing μ1 = μ2 = σ

it follows that the distribution

μ := rpδ(−1,0) + rpδ(1,0) + (1 − r)pδ(0,−1) + (1 − r)pδ(0,1) + (1 − 2p)δ(0,0)

is quasi-infinitely divisible for any r ∈ [0, 1].
Similar as in the one-dimensional case in [21, Cor. 8.3], one can show that

a consequence of Theorem 3.3 is that every factor of a quasi-infinitely divisible
distribution that is supported in Z

d is also quasi-infinitely divisible.

Corollary 3.8 Let μ be a quasi-infinitely divisible distribution supported in Z
d . If

μ1 and μ2 are distributions on R
d such that μ = μ1 ∗ μ2, then also μ1 and μ2 are

quasi-infinitely divisible.

Proof This follows in complete analogy to the proof of [21, Cor. 8.3], and is an
easy consequence of Corollary 3.4 and the fact that if μ is supported in Z

d , then
there must be k ∈ R

d such that μ1 is supported in Z
d + k and μ2 is supported in

Z
d − k. ��

Theorem 3.3 is nice since it gives a complete characterisation of quasi-infinite
divisibility in terms of the characteristic function. In the univariate setting Berger [4,
Thm. 4.12] extended this characterisation of quasi-infinitely divisibility to a greater
class of distributions, which we now state without proof:
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Theorem 3.9 Let μ be a distribution on R of the form μ = μd + μac with an
absolutely continuous measure μac and a non-zero discrete measure μd which is
supported in the lattice hZ + d for some r ∈ R, h > 0, such that μ̂d(z) �= 0 for all
z ∈ R. Then μ is quasi-infinitely divisible if and only if μ̂(z) �= 0 for all z ∈ R. In
that case, the Gaussian variance of μ is zero and the quasi-Lévy measure ν satisfies∫
[−1,1] |x| |ν|(dx) < ∞.

It is remarkable that the quasi-Lévy measure ν in Theorem 3.9 can indeed be
infinite although the distribution μ there has atoms; a concrete example for this
phenomenon will be given in Remark 4.5 below. A special case of Theorem 3.9 is
when μd = pδx for some x ∈ R and p > 0. Then μ̂d(z) �= 0 for all z ∈ R and
a distribution of the form μ(dx) = pδx(dx) + (1 − p)f (x) dx, where f : R →
[0,∞) is integrable with integral 1, is quasi-infinitely divisible if and only if μ̂(z) �=
0 for all z ∈ R, cf. [4, Thm. 4.6]. Further applications of Theorem 3.9 include
convex combinations of normal distributions: let μ = ∑n

i=1 piN(bi, ai), where
0 < p1, . . . , pn < 1,

∑n
i=1 pi = 1, 0 < a1 < a2 < . . . < an and b1, . . . , bn ∈ R,

where N(bi, ai) denotes the normal distribution with mean bi and variance ai . Then
μ is quasi-infinitely divisible if and only if μ̂(z) �= 0 for all z ∈ R, as shown
in [4, Rem. 4.12]. Observe that the latter condition is in particular satisfied when
additionally b1 = . . . = bn = 0, and one can even show that

∑n
i=1 piN(0, ai) is

quasi-infinitely divisible, even when some of the variances ai coincide, cf. [4, Ex.
4.16].

It seems likely that Theorem 3.9 continues to hold in the multivariate setting, but
so far we have not proved that. We intend to invest this case in future work. For
the moment, we content ourselves with a recipe for constructing multivariate quasi-
infinitely divisible distributions from independent one-dimensional quasi-infinitely
divisible distributions.

Proposition 3.10 Let X1, . . . , Xd be independent real-valued random variables
and let X = (X1, . . . , Xd)

T . Then the law L(X) of X is quasi-infinitely divisible if
and only if L(Xk) is quasi-infinitely divisible for all k ∈ {1, . . . , d}. In this case, if
(A, ν, γ ) denotes the (standard) characteristic triplet of L(X) and (ak, νk, γk) the
(standard) characteristic triplet of L(Xk), then

A =

⎛
⎜⎜⎜⎜⎝

a1 0 . . . 0

0 a2
. . .

...
...
. . .

. . . 0
0 . . . 0 ad

⎞
⎟⎟⎟⎟⎠ , γ =

⎛
⎜⎝
γ1
...

γd

⎞
⎟⎠ and ν =

d∑
k=1

δ
⊗(k−1)
0 ⊗ νk ⊗ δ

⊗(d−k)
0 .

Proof That quasi-infinite divisibility of L(X) implies quasi-infinite divisibility
of L(Xk) for k = 1, . . . , d is clear from Lemma 2.8. Conversely, let L(Xk) ∼
q.i.d.(ak, νk, γk) for k ∈ {1, . . . , d} with independent X1, . . . , Xd . Using
L̂(X)(z) = ∏d

k=1 L̂(Xk)(zk) for all z = (z1, . . . , zd )
T ∈ R

d it is easy to see
that μ has a Lévy–Khintchine type representation as in (2.1) with A, ν and γ as
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given in the theorem, and hence that L(X) is quasi-infinitely divisible with standard
characteristic triplet (A, ν, γ ). ��

Using Lemma 2.8, the following is now immediate:

Corollary 3.11 Let X = (X1, . . . , Xd)
T with independent real-valued random

variables X1, . . . , Xd such that L(Xk) is quasi-infinitely divisible for each k ∈
{1, . . . , d}. Let further n ∈ N, M ∈ R

n×d and b ∈ R
n. Then also the distribution

L(MX + b) is quasi-infinitely divisible.

4 Conditions for Absolute Continuity

In this section we study absolute continuity of quasi-infinitely divisible distributions
and give some sufficient conditions in terms of the characteristic triplet. Considering
an infinitely divisible distribution on R, Kallenberg [17, p. 794 f.] gave a sufficient
condition on the Lévy measure for the distribution to have a smooth Lebesgue
density. The following theorem generalizes this result for quasi-infinitely divisible
distributions on R

d . In its statement, we denote by Sd−1 := {x ∈ R
d : |x| = 1} the

unit sphere in R
d .

Theorem 4.1 Let μ be a quasi-infinitely divisible distribution on R
d with charac-

teristic triplet (A, ν, γ ). Define

G−(r) := sup
ξ∈Sd−1

ξT
(∫

|x|≤r
xxT ν−(dx )

)
ξ and G+(r) := inf

ξ∈Sd−1
ξT
(∫

|x|≤r
xxT ν+(dx )

)
ξ

for r > 0. Suppose that A is strictly positive definite, or that

lim
r→0

r−2| log r|−1G+(r)
(

1

3
− 2

r2ν−({x ∈ R
d : |x| > r})

G+(r)
− 2

3

G−(r)
G+(r)

)
= ∞

(4.1)

(when G+(r) = 0 for small r > 0 we interpret the left-hand side of (4.1) as 0 and
hence (4.1) to be violated). Then μ has an infinitely often differentiable Lebesgue
density whose derivatives tend to 0 as |x| → ∞.

Proof Suppose first that A is strictly positive definite and let λ0 > 0 be the smallest
eigenvalue of A. By [32, Lem. 43.11 (i)] we have

lim|z|→∞ |z|−2
∫
Rd

(
ei〈z,x〉 − 1 − i〈z, x〉1[0,1](|x|)

)
ν±(dx) = 0.

Since further − 1
2 〈z,Az〉 ≤ −λ0

2 |z|2 for all z ∈ R
d , we have

lim sup|z|→∞ |z|−2�μ(z) ≤ − 1
2λ0, so there exists K > 0 such that |μ̂(z)| =
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e��μ(z) ≤ e−λ0|z|2/4 for all z ∈ R
d with |z| ≥ K . Hence, we have∫

Rd |μ̂(z)||z|kdz < ∞ for all k ∈ N and the claim follows by [32, Prop. 28.1].
Now, suppose that (4.1) is satisfied. Using the fact that 1

3y
2 ≤ 1 − cos(y) ≤ 2

3y
2

for all y ∈ [−1, 1], we estimate

∫
Rd
(1 − cos〈z, x〉) ν+(dx ) ≥ 1

3

∫
|x|≤1/|z|

〈z, x〉2 ν+(dx) = 1

3

∫
|x|≤1/|z|

zT xxT z ν+(dx)

≥ 1

3
|z|2G+ (1/|z|)

and similarly

∫
Rd
(1 − cos〈z, x〉) ν−(dx) ≤ 2

3

∫
|x|≤1/|z|

〈z, x〉2 ν−(dx)+ 2ν−({x ∈ R
d : |x| > 1/|z|})

≤ 2

3
|z|2G− (1/|z|)+ 2ν−({x ∈ R

d : |x| > 1/|z|})

for all z ∈ R
d . Hence, for |z| ≥ 1,

−(log |z|)−1��μ(z) = (log |z|)−1
(

1

2
〈z,Az〉 +

∫
Rd

(1 − cos〈z, x〉)ν(dx)

)

≥ (log |z|)−1
(∫

Rd

(1 − cos〈z, x〉)ν(dx)

)
→ ∞ as |z| → ∞

by assumption. As a consequence, for every k ∈ N there exists K > 0 such
that ��μ(z) ≤ −(k + 2) log |z| for all z ∈ R

d with |z| > K , and therefore
|μ̂(z)| = e��μ(z) ≤ e−(k+2) log |z| = |z|−(k+2) when |z| > K . This implies that∫
Rd |μ̂(z)||z|kdz < ∞ for every k ∈ N and the claim follows. ��

Remark 4.2

(a) Observe that for fixed r ∈ (0, 1), the matrices
∫
|x|≤r xx

T ν±(dx) ∈ R
d×d

are symmetric and non-negative definite and that G+(r) is the smallest eigen-
value of the matrix

∫
|x|≤r xxT ν+(dx) and G−(r) is the largest eigenvalue of∫

|x|≤r xxT ν−(dx).

(b) If μ is infinitely divisible, then ν− = 0 and hence G−(r) = 0 and (4.1) reduces
to

lim
r→0

r−2| log r|−1G+(r) = +∞. (4.2)

Hence, if an infinitely divisible distribution μ on R
d with characteristic triplet

(A, ν+, γ ) is such that A is strictly positive definitive or such that (4.2) is
satisfied, then μ has an infinitely often differentiable Lebesgue density whose
derivatives tend to 0 as |x| → ∞. In dimension d = 1, this reduces to
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A > 0 or limr→0 r
−2| log r|−1

∫
|x|≤r |x|2 ν+(dx) = +∞, which is Kallenberg’s

classical condition [17, p. 794 f.]. The described multivariate generalisation of
Kallenberg’s condition seems to be new even in the case of infinitely divisible
distributions.

(c) Let μ ∼ q.i.d.(A, ν, γ ) in R
d . A sufficient condition for (4.1) to hold is that

(4.2) is satisfied along with G−(r) = o(G+(r)) and r2ν−({x ∈ R
d : |x| >

r}) = o(G+(r)) as r → 0, where we used the “little o” Landau symbol
notation.

(d) Let μ ∼ q.i.d.(A, ν, γ ) in R
d . Define

g−(r) :=
∫
|x|≤r

|x|2 ν−(dx) and g+(r) :=
∫
|x|≤r

|x|2 ν+(dx)

for r > 0. Then

g±(r) =
∫
|x|≤r

trace(xxT ) ν±(dx) = trace

(∫
|x|≤r

xxT ν±(dx)
)
.

Since the trace of a symmetric d × d-matrix is the sum of its eigenvalues, we
observe from (a) that

G−(r) ≤ g−(r) ≤ d G−(r) and G+(r) ≤ g+(r).

So we can conveniently bound G−(r) from below and above in terms of
g−(r), in particular, if we replace G−(r) in (4.1) by g−(r) (and leave the rest
unchanged, in particular we do not replaceG+(r) by g+(r)) then we also obtain
a sufficient condition for μ to have an infinitely often differentiable Lebesgue
density with derivatives tending to 0 as |x| → ∞. A similar remark applies to
(c) above, where we can replace G−(r) by g−(r) (but not G+(r) by g+(r)).

In [21, Thm. 7.1], an Orey-type condition (cf. [32, Prop. 28.3]) was given for
absolute continuity of one-dimensional quasi-infinitely divisible distributions. We
can now generalise this to the multivariate setting:

Corollary 4.3 Let μ be a quasi-infinitely divisible distribution on R
d with charac-

teristic triplet (A, ν, γ ). With the notations of Theorem 4.1, suppose thatA is strictly
positive definite or that there exists some β ∈ (0, 2) such that

lim inf
r→0

r−βG+(r) > lim sup
r→0

r−βG−(r) = 0. (4.3)

Then μ is absolutely continuous and its Lebesgue density f is infinitely often
differentiable with all its derivatives tending to 0 as |x| → ∞.

Proof The case when A is strictly positive definite is clear, so suppose that (4.3) is
satisfied with some β ∈ (0, 2). Then clearly limr→0 r

−2| log r|−1G+(r) = ∞ since
β < 2, and G−(r) = o(G+(r)) as r → 0. By Remark 4.2 (c) it is hence sufficient
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to show that r2ν−({x ∈ R
d : |x| > r}) = o(G+(r)) as r → 0. To see this, define

g−(r) := ∫
|x|≤r |x|2 ν−(dx). Using integration by parts and g−(r) ≤ d G−(r) by

Remark 4.2 (d), we then obtain

ν−({x ∈ R
d : r < |x| ≤ 1}) =

∫ 1

r

s−2 dg−(s)

= g−(1)− r−2g−(r)−
∫ 1

r

g−(s) ds−2

≤ d

(
G−(1)+ 2

∫ 1

r

G−(s)s−3 ds

)

for r ∈ (0, 1]. By (4.3) for every ε > 0 we can find an rε ∈ (0, 1) such that
G−(s) ≤ εsβ for all s ∈ (0, rε], so that we continue to estimate for r < rε

ν−({x ∈ R
d : r < |x| ≤ 1}) ≤ dG−(1)+ 2dG−(1)r−3

ε (1 − rε)+ 2εd
∫ rε

r

sβ−3 ds.

This implies

r2 ν
−({x ∈ R

d : r < |x| ≤ 1})
G+(r)

≤ r2d
G−(1)+ 2G−(1)r−3

ε

G+(r)
+ 2εd

rβ

(2 − β)G+(r)
.

Denoting the limit inferior on the left hand side of (4.3) by L, and observing that
limr→0 r

−2G+(r) = ∞ by (4.3), we obtain

lim sup
r→0

(
r2ν−({x ∈ R

d : r < |x| ≤ 1})/G+(r)
)
≤ 2εd

(2 − β)L
,

and since ε > 0 was arbitrary we see limr→0 r
2ν−({x ∈ R

d : r < |x| ≤
1})/G+(r) = 0. That limr→0 r

2ν−({x ∈ R
d : |x| > 1})/G+(r) = 0 is clear

so that we obtain r2ν−({x ∈ R
d : |x| > r}) = o(G+(r)) as r → 0, finishing the

proof. ��
Example 4.4

(a) Let μ be a non-trivial strictly α-stable rotation invariant distribution on R
d ,

where α ∈ (0, 2). It is well-known that μ has a C∞-density with all
derivatives vanishing at infinity. Let us check that this can also be derived from
Theorem 4.1. The Lévy measure ν of μ is given by ν(dx) = C|x|−(d+α)dx
for some constant C > 0, see [32, Ex. 62.1]. For r > 0 let G+(r) :=
infξ∈Sd−1 ξT

∫
|x|≤r xx

T ν(dx)ξ . Since μ is infinitely divisible, condition (4.1) of
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Theorem 4.1 reduces to (4.2). In order to show that (4.2) is satisfied, let r > 0.
For k, j ∈ {1, . . . , d}, k �= j we obtain

∫
|x|≤r

xkxj ν(dx) = C

∫
|x|≤r

xkxj

|x|d+α dx = 0.

To see that, by symmetry it suffices to consider the case k = d . Then we have

∫
|x|≤r

xdxj

|x|d+α dx =
∫ r

−r
xd

∫

x ′∈Rd−1:
|x ′|≤

√
r2−x2

d

xj(
x2
d + (x ′)2

)(d+α)/2
dx ′dxd,

and the integrand of the outer integral is an odd function. Hence, the matrix
Ar := ∫

|x|≤r xx
T ν(dx) is a diagonal matrix. We compute the trace of Ar as

d∑
k=1

∫
|x|≤r

x2
k ν(dx) = C

∫
|x|≤r

|x|2−α−ddx = C

∫ r

0

∫
sSd−1

s2−α−ddθds

= C

∫ r

0
s2−α−d sd−1ωdds = Cωdr

2−α/(2 − α),

where ωd denotes the (d − 1)-dimensional volume of the surface Sd−1.
Again by symmetry, it follows that Ar = Cωd

d(2−α)r
2−αId with the identity

matrix Id ∈ R
d×d . Therefore, G+(r) = Cωd

d(2−α)r
2−α which implies that

limr→0 r
−2| log r|−1G+(r) = ∞, showing that μ satisfies (4.2).

(b) Now let μ be a non-trivial rotation invariant strictly α-stable distribution on R
d

as in (a), and let σ be a probability distribution on R
d . Sinceμ has a C∞ density

with all derivatives tending to 0 as |x| → ∞, the same is true for the convolution
μ′ := μ ∗ σ . When σ is additionally quasi-infinitely divisible and concentrated
in Z

d , then this can be also seen from Theorem 4.1. To see this, observe that σ
has finite quasi-Lévy measure νσ concentrated in Z

d by Theorem 3.3. It follows
that μ′ has quasi-Lévy measure νσ (dx)+ C|x|−(d+α) dx. Hence the quantities
G±(r) for μ and μ′ coincide when r < 1 (with G−(r) being zero when r <

1). It follows that also μ′ satisfies the assumptions of Theorem 4.1, so that
μ′ has a C∞-density with derivatives tending to 0 as |x| → ∞. This is of
course a constructed example, but it shows that there are cases of quasi-infinitely
divisible distributions that are not infinitely divisible for which the assumptions
of Theorem 4.1 are applicable.

Remark 4.5 While the problem of a complete description of absolute continuity in
terms of the Lévy measure remains challenging for infinitely divisible distributions,
the corresponding question for continuity is completely solved: It is well-known
that an infinitely divisible distribution μ on R

d with characteristic triplet (A, ν, γ )
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is continuous if and only if A �= 0 or ν(R) = ∞, see [32, Theorem 27.4]. The same
characterisation fails however when considering quasi-infinitely divisible distribu-
tions. Berger [4, Ex. 4.7] showed that the distribution μ = 0.001δ0 + 0.999N(1, 1),
whereN(1, 1) is the one-dimensional normal distribution with mean and variance 1,
is quasi-infinitely divisible with infinite quasi-Lévy measure. Observe that μ is not
continuous. Using Proposition 3.10 it is then also easy to construct non-continuous
multivariate quasi-infinitely divisible distributions with infinite quasi-Lévy measure.

5 Topological Properties of the Class of Infinitely Divisible
Distributions

Let QID(Rd) denote the set of all quasi-infinitely divisible distributions on R
d and

P(Rd) the set of all distributions on R
d . Equipped with the Prokhorov-metric π ,

P(Rd) gets a metric space and the convergence in this space corresponds to the
weak convergence of distributions. In this section we will always identify P(Rd)

with this metric space. The aim of this section is to state some topological properties
of QID(Rd) that were already given by [4] and [21] in one dimension. We start with
some results that can be shown similarly in any dimension d ∈ N. The following
was shown in [4, Prop. 5.1] and [21, Sect. 4] in dimension 1.

Theorem 5.1 Let d ∈ N. The set QID(Rd) is neither open nor closed in P(Rd).
Moreover, the set P(Rd) \ QID(Rd ) is dense in P(Rd).

Proof To see that P(Rd) \ QID(Rd) is dense in P(Rd), let μ be an arbitrary
distribution on R

d and let σ be a distribution on R
d such that its characteristic

function σ̂ has zeros. For n ∈ N define the distribution μn by μn(dx) = μ(dx) ∗
σ(ndx). The characteristic function of μn is given by μ̂n(z) = μ̂(z)̂σ (z/n) for
z ∈ R

d and has zeros, hence μn cannot be quasi-infinitely divisible. Furthermore,
μ̂n(z) → μ̂(z) as n → ∞ for every z ∈ R

d , implying that μn
w−→ μ as n → ∞.

Hence, P(Rd)\QID(Rd) is dense in P(Rd), so P(Rd)\QID(Rd) cannot be closed,
therefore QID(Rd ) cannot be an open set. In order to show that QID(Rd ) is not
closed, first observe that for n ∈ N the distribution n+1

2n δ0+ n−1
2n δe1 is quasi-infinitely

divisible due to Theorem 3.2, where e1 = (1, 0, . . . , 0)T ∈ R
d is the first unit vector.

We have

n+ 1

2n
δ0 + n− 1

2n
δe1

w−→ 1

2
δ0 + 1

2
δe1 as n → ∞

and 1
2δ0 + 1

2δe1 is not quasi-infinitely divisible since its characteristic function has
zeros. Hence, the set QID(Rd) cannot be closed. ��

In any topological space and hence in any metric space one can define the notions
of connected and path-connected subsets. Observe that path-connectedness implies
connectedness (see [3, Thm. 3.29]). The following result shows that QID(Rd )
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is path-connected (with respect to the Prokhorov metric) and hence connected,
generalising [4, Prop. 5.2] for QID(R) to arbitrary dimensions.

Theorem 5.2 Let d ∈ N. The set QID(Rd) is path-connected and hence connected
in P(Rd).

Proof Suppose that μ0 and μ1 are quasi-infinitely divisible distributions on R
d . For

t ∈ (0, 1) the distributions σ 0
t and σ 1

t defined by σ 0
t (dx) := μ0(1/(1 − t)dx) and

σ 1
t (dx) := μ1(1/tdx) are also quasi-infinitely divisible by Lemma 2.8. Therefore,

also the distribution μt defined by

μt(dx) := μ0

(
1

1 − t
dx

)
∗ μ1

(
1

t
dx

)

is quasi-infinitely divisible for every t ∈ (0, 1). Note that μ̂t (z) = μ̂0((1 −
t)z)μ̂1(tz) for z ∈ R

d . The mapping

p : [0, 1] → P(Rd), t �→ μt

is continuous, because μ̂s(z) → μ̂t (z) as s → t for all z ∈ R
d and hence μs

w−→ μt

as s → t . Since p(0) = μ0 and p(1) = μ1, it follows that QID(Rd) is path-
connected and hence connected. ��

It is not surprising that P(Rd) \ QID(Rd ) is dense in P(Rd). Much more
surprising is the fact that also QID(R) is dense in dimension 1. This was proved in
[21, Thm. 4.1]. We state the precise result and also give a sketch of the proof along
the lines of [21], in order to discuss afterwards where the obstacles arise when trying
to generalise the result to higher dimensions.

Theorem 5.3 The set of quasi-infinitely divisible distributions on R with Gaussian
variance zero and finite quasi-Lévy measure is dense in P(R).

Sketch of proof Denote by Q(R) the set of all probability measures on R whose
support is a finite set contained in a lattice of the form n−1

Z for some n ∈ N, and
by QID0(R) the set of all quasi-infinitely divisible distributions on R with Gaussian
variance 0 and finite quasi-Lévy measure. It is easily seen that Q(R) is dense in
P(R). Hence, it suffices to show that Q(R) ∩ QID0(R) is dense in Q(R). To show
this, let μ be a distribution in Q(R), say μ = ∑m

k=−m pkδk/n for some m,n ∈ N

with 0 ≤ pk ≤ 1 for all k ∈ {−m, . . . ,m} and
∑m

k=−m pk = 1, and let X be a
random variable with distribution μ. From Lemma 2.8 it is clear that μ = L(X) is
in the closure of Q(R) ∩ QID0(R) if and only if L(nX + m) is in the closure of
Q(R) ∩ QID0(R). Hence it is sufficient to consider distributions μ whose support
is a finite set contained in N0. If the support of μ is contained in {0, . . . ,m} for
some m ∈ N0, then it is easily seen that μ can be approximated arbitrarily well
with distributions having support exactly {0, . . . ,m}, i.e. distributions σ of the form
σ = ∑m

k=0 pkδk with p0, . . . , pm > 0 (strictly positive). So it is sufficient to show
that any such distribution σ can be approximated arbitrarily well by distributions in
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Q(R) ∩ QID0(R). If the characteristic function σ̂ of σ has no zeroes, then we are
done by Theorem 3.3. So suppose that R & z �→ σ̂ (z) = ∑m

k=0 pkeizk has zeroes,
which corresponds to zeroes of the polynomial f given by f (ω) =∑m

k=0 pkω
k for

ω ∈ C on the unit circle. Factorising f , we can write f (ω) = pm
∏m

k=1(ω− ξk) for
ω ∈ C with ξk ∈ C for k ∈ {1, . . . ,m}. For h > 0 let

fh(ω) := pm

m∏
k=1

(ω − ξk − h) for all ω ∈ C. (5.1)

If h is chosen small enough, then fh has no zeros on the unit circle. The polynomial
f has real coefficients, so the non-real roots of f appear in pairs of complex
conjugates. By construction, the same is true for fh, so there exist αh,k ∈ R

for k ∈ {0, . . . ,m} such that fh(ω) = ∑m
k=0 αh,kω

k for all ω ∈ C. Moreover,
αh,k → pk > 0 as h → 0, so we can assume that h is small enough such that
αh,k > 0 for all k ∈ {0, . . . ,m}. Let σh := λ−1 ∑m

k=1 αh,kδk with λ := ∑m
k=0 αh,k .

Then for small enough h > 0, σh is a probability distribution having support
{0, . . . ,m} and the characteristic function of σh has no zeroes. By Theorem 3.3, σh
is quasi-infinitely divisible with finite quasi-Lévy measure and Gaussian variance 0,
and σh

w→ σ as h ↓ 0. ��
It is very tempting now to assume that Theorem 5.3 also holds for Rd -valued

distributions with general d ∈ N. Again it is easily seen that it would suffice to
show that any distribution σ = ∑m

k1,...,kd=0 p(k1,...,kd )δ(k1,...,kd ) with pk1,...,kd > 0
can be approximated arbitrarily well by quasi-infinitely distributions in Z

d . Since a
distribution in Z

d is quasi-infinitely divisible if and only if its characteristic function
has no zeroes, this might appear to be an easy task at first glance. However, it is
not clear how to do a modification as in Equation (5.1), the problem being that
polynomials in more than one variable do not factorise and also that there may be
infinitely many zeroes of such polynomials. We have tried some time to pursue such
a path, but have not succeeded. Having failed in proving Theorem 5.3 for dimensions
d ≥ 2, it is natural to wonder whether such a generalisation may be true at all. Let
us pose this as an open question:

Open Question 5.4 1 Is QID(Rd) dense in P(Rd) for any dimension d ∈ N, or is
it dense only for d = 1, or is it dense for certain dimensions and not for others?

Passeggeri [27, Conjecture 4.1] conjectures that QID(Rd) is dense in P(Rd) for
all dimensions d ∈ N. It is possible that this is true, but we are more inclined to
believe that QID(Rd) will be dense in P(Rd) if and only if d = 1. An indication

1An answer to this question has been obtained recently by Kutlu [19]. Kutlu shows that QID(Rd )

is not dense in P(Rd ) if d ≥ 2, by giving an explicit example of a distribution on R
d which can

not be approximated by quasi-infinitely divisible distributions. In particular, it is shown that its
characteristic function can not be approximated arbitrarily well by zero-free continuous functions
with respect to uniform convergence on every compact set.
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that this might be the case is the fact that the set of all zero-free complex valued
continuous functions on [0, 1]d is dense in the set of all continuous complex valued
functions on [0, 1]d with respect to uniform convergence if and only if d = 1, see
Pears [29, Prop. 3.3.2]. Knowing this, we wonder if even the set of all probability
distributions on R

d having zero-free characteristic function is dense in P(Rd) if
and only if d = 1, but again we do not know the answer. We intend to invest this
question more deeply in the future.

6 Conditions for Weak Convergence

Weak convergence of infinitely divisible distributions can be characterised in terms
of the characteristic triplet, see Sato [32, Thms. 8.7, 56.1]. A full characterization
of the weak convergence of quasi-infinitely divisible distributions seems difficult,
since the class of quasi-infinitely divisible distributions is not closed with respect
to weak convergence. In [21, Thm. 4.3], some sufficient conditions for weak
convergence of one-dimensional quasi-infinitely divisible distributions in terms of
the characteristic pair where given; the characteristic pair of a one-dimensional
quasi-infinitely divisible distribution with characteristic triplet (A, ν, γ )c with
respect to a representation function c : R → R is given by (ζ, γ )c, where ζ is a
finite signed measure on R given by ζ(dx) = Aδ0(dx) + (1 ∧ x2) ν(dx). It is not
so easy to generalise the characteristic pair to the multivariate setting and hence we
will rather work with another characterisation of weak convergence, in line with
the conditions given in [32, Thm. 56.1] for weak convergence of infinitely divisible
distributions.

Denote byC# the set of all bounded, continuous functions f : Rd → R vanishing
on a neighborhood of 0. Then the following provides a sufficient condition for weak
convergence of quasi-infinitely divisible distributions in terms of the characteristic
triplets.

Theorem 6.1 Let c : R
d → R

d be a continuous representation function. Let
(μn)n∈N be a sequence of quasi-infinitely divisible distributions on R

d such that
μn has characteristic triplet (An, νn, γn)c for every n ∈ N and let μ be a quasi-
infinitely divisible distribution on R

d with characteristic triplet (A, ν, γ )c. Suppose
that the following conditions are satisfied.

(i) For all f ∈ C# it holds

lim
n→∞

∫
Rd

f (x)ν±n (dx) =
∫
Rd

f (x)ν±(dx).

(ii) If An,ε is defined by

〈z,An,εz〉 = 〈z,Az〉 +
∫
|x|≤ε

〈z, x〉2ν+n (dx)
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for all n ∈ N and ε > 0, then

lim
ε↓0

lim sup
n→∞

|〈z,An,εz〉 − 〈z,Az〉| = 0 for all z ∈ R
d .

(iii) It holds

lim
ε↓0

lim sup
n→∞

∫
|x|≤ε

|x|2ν−n (dx) = 0.

(iv) γn → γ as n → ∞.

Then μn
w−→ μ as n → ∞.

Proof Let μ1 and μ2 be infinitely divisible distributions with characteristic triplets
(A, ν+, γ )c and (0, ν−, 0)c and for n ∈ N let μ1

n and μ2
n be infinitely divisible

distributions with characteristic triplets (An, ν
+
n , γn)c and (0, ν−n , 0)c, respectively.

Then μ2 ∗ μ = μ1 and μ2
n ∗ μn = μ1

n for every n ∈ N. Further, μ1
n

w−→ μ1 and

μ2
n

w−→ μ2 by [32, Thm. 56.1] and hence μn
w−→ μ as n → ∞ which follows by

considering characteristic functions. ��
The sufficient conditions of Theorem 6.1 are not necessary. An explicit example

in dimension 1 for this fact was given in [21, Example 4.4]. There, a sequence
(μn)n∈N of quasi-infinitely divisible distributions on R with quasi-Lévy measures
νn was constructed with limn→∞ ν−n (R \ [−1, 1]) = ∞ but such that the limit μ
was even infinitely divisible, so that its quasi-Lévy measure ν satisfies ν− = 0.
In particular, condition (i) of Theorem 6.1 is violated in this case. Under the
extra condition that the sequence (ζ−

n )n∈N of finite (positive) measures defined by
ζ−
n (dx) = (1 ∧ |x|2) ν−n (dx) is tight and uniformly bounded, Theorem 4.3 (a,b)

in [21] provides necessary and sufficient conditions for weak convergence of quasi-
infinitely divisible distributions in the univariate case. In view of the above example,
the sequence (ζ−

n ) will not always be tight and uniformly bounded even if the limit
is infinitely divisible, and a complete characterisation without any extra conditions
seems difficult. We hence refrained from any further analysis of sufficient or
necessary conditions in the multivariate case, but confine ourselves to giving a
sufficient condition for a weak limit of quasi-infinitely divisible distributions to be
again quasi-infinitely divisible:

Theorem 6.2 Let c : Rd → R
d be a continuous representation function and for

n ∈ N let μn be a quasi-infinitely divisible distribution on R
d with characteristic

triplet (An, νn, γn)c. Suppose that the sequence (μn)n∈N converges weakly to some
distribution μ and that there exists a Lévy measure σ on R

d such that

lim
n→∞

∫
Rd

f (x)ν−n (dx) =
∫
Rd

f (x)σ (dx)
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for all f ∈ C# and

lim
ε↓0

lim sup
n→∞

∫
|x|≤ε

|x|2ν−n (dx) = 0.

Then μ is quasi-infinitely divisible. If we denote its characteristic triplet by
(A, ν, γ )c, then ν + σ is a Lévy measure,

lim
n→∞

∫
Rd

f (x)ν+n (dx) =
∫
Rd

f (x)(ν + σ)(dx),

γn → γ as n → ∞ and for An,ε ∈ R
d×d defined by

〈z,An,εz〉 = 〈z,Az〉 +
∫
|x|≤ε

〈z, x〉2ν+n (dx)

for all n ∈ N and ε > 0 we have

lim
ε↓0

lim sup
n→∞

|〈z,An,εz〉 − 〈z,Az〉| = 0 for all z ∈ R
d .

Proof Let μ1
n and μ2

n be infinitely divisible distributions with characteristic triplets
(An, ν

+
n , γn)c and (0, ν−n , 0)c, respectively, and μ2 be infinitely divisible with

characteristic triplet (0, σ, 0)c. Then [32, Thm. 56.1] implies μ2
n

w−→ μ2, and hence

also μ1
n = μ2

n ∗ μn
w−→ μ2 ∗ μ as n → ∞. Since μ1

n is infinitely divisible for each
n ∈ N, so isμ2∗μ. If we denote its characteristic triplet by (A, η, γ ), thenμ is quasi
infinitely divisible with characteristic triplet (A, ν, γ )c, where ν = η|B0 −σ|B0 . The
other implications now follow from [32, Thm. 56.1]. ��

7 Support Properties

For infinitely divisible distributions on R, the boundedness of the support from
below can be characterised in terms of the characteristic triplet. More precisely,
an infinitely divisible distribution μ with characteristic triplet (a, ν, γ ) has support
bounded from below if and only if a = 0 and ν is supported in [0,∞), c.f. Sato
[32, Thm. 24.7]. If μ is only quasi-infinitely divisible (and not necessarily infinitely
divisible), then it was shown in [21, Prop. 5.1] that the following two statements (i)
and (ii) are equivalent:

(i) μ is bounded from below, supp(ν−) ⊂ [0,∞) and
∫
|x|≤1 |x| ν−(dx) < ∞.

(ii) a = 0, supp(ν+) ⊂ [0,∞) and
∫
|x|≤1 |x|ν+(dx) < ∞.

Observe that for infinitely divisible distributions we have ν− = 0 and ν+ = ν, so
that the above result reduces to the known characterisation for infinitely divisible
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distributions. Also observe that the condition “μ is bounded from below” can be
rewritten as “there is b ∈ R such that b + supp(μ) ⊂ [0,∞)”. Our goal now is to
extend this result to higher dimensions, and we will be working immediately with
cones rather than only [0,∞)d . Following [30, Def. 4.8], by a cone in R

d we mean
a non-empty closed convex subset K of Rd which is not {0}, does not contain a
straight line through the origin and is such that with x ∈ K and λ ≥ 0 also λx ∈ K .
Observe that this definition is more restrictive than the usual notion of cones in
linear algebra, in the sense that we require additionally a cone to be closed, convex,
non-trivial and one-sided (the latter being sometimes also called “proper”), but in
probability this seems to be more standard and they are the only cones of interest to
us. Obviously, [0,∞)d is a cone, but there are many other examples.

Coming back to the question when a quasi-infinitely divisible distribution has
support contained in a translate of a cone, let us first recall the corresponding results
for infinitely divisible distributions; the equivalence of (i) and (iii) below can be
found in Skorohod [33, Thm. 21 in §3.3] or Rocha-Arteaga and Sato [30, Thm.
4.11], while the equivalence of (ii) and (iii) is stated in Equation (4.35) of [30];
since the latter equivalence is only given in a remark in [30] we provide a short
sketch of the proof for this fact.

Theorem 7.1 Let L = (Lt )t≥0 be a Lévy process in R
d with characteristic triplet

(A, ν, γ ) (i.e. L(L1) has this characteristic triplet) and let K ⊂ R
d be a cone. Then

the following are equivalent:

(i) supp(L(Lt )) ⊂ K for every t ≥ 0.
(ii) supp(L(Lt )) ⊂ K for some t > 0.

(iii) A = 0, supp(ν) ⊂ K ,
∫
|x|≤1 |x| ν(dx) < ∞ and γ 0 ∈ K , where γ 0 is the drift

of L(L1).

Sketch of proof of the equivalence of (i) and (ii). That (i) implies (ii) is clear.
For the converse, assume that supp(L(Lt )) ⊂ K for some t > 0. Since L(Lt ) =
(L(Lt/2))

∗2 we also have supp(L(Lt/2)) ⊂ K; to see that, suppose there were y ∈
supp(L(Lt/2)) \K . Then also 2y /∈ K and by the closedness of K there is an open
ball U containing y with U ∩ K = ∅, (U + U) ∩ K = ∅ and P(Lt/2 ∈ U) > 0.
Then also P(Lt ∈ U + U) > 0, a contradiction. Hence we have supp(Lt/2) ⊂ K

and iterating this argument we obtain supp(L(L2−nt )) ⊂ K for all n ∈ N0. Since
K +K ⊂ K and K is closed we conclude supp(L(Lq2−nt )) ⊂ K for all q, n ∈ N0.
Since {q2−nt : q, n ∈ N0} is dense in [0,∞) we get (i) since L has right-continuous
sample paths. �

We also need the following easy lemma for infinitely divisible distributions with
existing drift. It is well known, but since we were unable to find a ready reference,
we include a short proof.

Lemma 7.2 Let μ be an infinitely divisible distribution on R
d with characteristic

triplet (A, ν, γ ) such that
∫
|x|≤1 |x| ν(dx) < ∞. Then the drift of μ is an element of

supp(μ).
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Proof Let L = (Lt )t≥0 be a Lévy process such that μ = L(L1). By the Lévy–Itô
decomposition we can write Lt = Bt + γ 0t +∑

0<s≤t 
Ls for each t ≥ 0, where
B = (Bt )t≥0 is a Brownian motion with drift 0 and covariance matrix A, γ 0 denotes
the drift ofL (i.e. of L(L1)) and
Ls denotes the jump size ofL at s. Since the three
components are independent and 0 is obviously in the support of both L(Bt ) and of
L(
∑

0<s≤t 
Ls) we conclude that γ 0t ∈ supp(L(Lt )) for each t ≥ 0. ��
With the aid of Theorem 7.1 and Lemma 7.2 we can now obtain the desired gen-

eralisation for multivariate quasi-infinitely divisible distributions that are supported
in cones.

Theorem 7.3 Let μ be a quasi-infinitely divisible distribution on R
d with charac-

teristic triplet (A, ν, γ ) and let K be a cone. Then the following statements are
equivalent:

(i) supp(μ) ⊂ b+K for some b ∈ R
d , supp(ν−) ⊂ K and

∫
|x|≤1 |x| ν−(dx) < ∞.

(ii) A = 0, supp(ν+) ⊂ K and
∫
|x|≤1 |x|ν+(dx) < ∞.

If the equivalent conditions (i) and (ii) are satisfied, then supp(μ) ⊂ K if and only
if the drift of μ lies in K .

Proof Let μ1 and μ2 be infinitely divisible distributions with characteristic triplets
and (A, ν+, γ ) and (0, ν−, 0) , respectively, so that μ1 = μ ∗ μ2. To show that (i)
implies (ii), suppose that supp(μ) ⊂ b + K for some b ∈ R

d , supp(ν−) ⊂ K

and
∫
|x|≤1 |x|ν−(dx) < ∞. Then μ ∗ δ−b is supported in K and denoting the

drift of μ2 by b2 := − ∫|x|≤1 xν
−(dx), the distribution μ2 ∗ δ−b2 is infinitely

divisible with characteristic triplet (0, ν−,−b2) and has drift 0. By Theorem 7.1,
μ2 ∗ δ−b2 is supported in K as well, hence also μ2 ∗ μ ∗ δ−b−b2 = μ1 ∗ δ−b−b2 is
supported in K . Using Theorem 7.1 again, since μ1 ∗ δ−b−b2 is infinitely divisible
with characteristic triplet (A, ν+, γ −b−b2), it follows that A = 0, supp(ν+) ⊂ K

and
∫
|x|≤1 |x| ν+(dx) < ∞. Moreover, it follows that the drift of μ1 ∗ δ−b−b2 is an

element of K , that is,

γ − b − b2 −
∫
|x|≤1

|x|ν+(dx) ∈ K. (7.1)

For the other direction, suppose that (ii) is satisfied and let b1 := γ−∫|x|≤1 x ν
+(dx)

denote the drift of μ1. By Theorem 7.1, the infinitely divisible distribution μ1 ∗δ−b1

is supported in K . Using [32, Lem. 24.1] we obtain supp(μ2) + supp(μ) ⊂ b1 +
supp(μ1 ∗ δ−b1) ⊂ b1 + K . Choosing arbitrary elements u ∈ supp(μ2) and v ∈
supp(μ), we conclude

−b1 + u+ supp(μ) ⊂ −b1 + supp(μ2)+ supp(μ1) ⊂ K, (7.2)

and similarly supp(μ2 ∗ δ−b1+v) = −b1 + v + supp(μ2) ⊂ K . It follows that
supp(μ) ⊂ b1 − u + K and by Theorem 7.1, since μ2 ∗ δ−b1+v is infinitely
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divisible with characteristic triplet (0, ν−,−b1 + v), we have that supp(ν−) ⊂ K

and
∫
|x|≤1 |x|ν−(dx) < ∞.

Now suppose that both (i) and (ii) are satisfied. With the notations above, note
that the drift of μ is b1 − b2. If μ is supported in K , then in (i) we can choose
b = 0 and (7.1) implies that b1 − b2 ∈ K . Conversely, if the drift b1 − b2 of μ
is in K , then by Lemma 7.2 we can choose u = b2 and observe from (7.2) that
supp(μ) ⊂ K + (b1 − b2) ⊂ K , finishing the proof. ��

8 Moments

In this section we study the finiteness of the h-moment of quasi-infinitely divisible
distributions in the case of a submultiplicative function h. Recall that a function
h : Rd → R is submultiplicative if it is non-negative and there exists a constant
C > 0 such that

h(x + y) ≤ Ch(x)h(y) for all x, y ∈ R
d .

Given an infinitely divisible distribution μ and a locally bounded submultiplicative
and measurable function h on R

d , μ has finite h-moment if and only if the Lévy
measure ν of μ restricted to {x ∈ R

d : |x| > 1} has finite h-moment, i.e.∫
Rd h(x) μ(dx) < ∞ if and only if

∫
|x|>1 h(x) ν(dx) < ∞, see [32, Thm. 25.3].

This does not generalise to quasi-infinitely divisible distributions in the sense that∫
Rd h(x) μ(dx) < ∞ is equivalent to

∫
|x|>1 h(x) ν

±(dx) < ∞ (see Example 8.2
below), but it generalises in the sense that

∫
|x|>1 h(x) ν

+(dx) < ∞ is finite if

and only if both
∫
Rd h(x) μ(dx) and

∫
|x|>1 h(x) ν

−(dx) are finite. For univariate
distributions this was shown in [21, Thm. 6.2]. The proof given there easily
generalises to multivariate distributions. We have:

Theorem 8.1 Let μ be a quasi-infinitely divisible distribution on R
d with standard

characteristic triplet (A, ν, γ ) and let h : R
d → [0,∞) be a submultiplicative,

locally bounded and measurable function.

(a) Then (ν+)|{x∈Rd :|x|>1} has finite h-moment if and only if both μ and
(ν−)|{x∈Rd :|x|>1} have finite h-moment, i.e.

∫
|x|>1 h(x) ν

+(dx) < ∞ if and

only if
∫
Rd h(x) μ(dx)+

∫
|x|>1 h(x) ν

−(dx) < ∞.

(b) Let X be a random vector in R
d with distribution μ. Then the following are

true:

(i) If
∫
|x|>1 |x|ν+(dx) < ∞, then the expectationE(X) ofX exists and is given

by

E(X) = γ +
∫
|x|>1

xν(dx) = γm,

which is the center of μ as defined in Remark 2.9.
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(ii) If
∫
|x|>1 |x|2ν+(dx) < ∞, then X has finite second moment and the

covariance matrix Cov(X) ∈ R
d×d of X is given by

Cov(X) = A+
∫
Rd

xxT ν(dx).

(iii) If
∫
|x|>1 e

〈α,x〉ν+(dx) < ∞ for some α ∈ R
d , then E(e〈α,X〉) < ∞ and

E(e〈α,X〉) = exp

(
〈α, γ 〉 + 1

2
〈α,Aα〉 +

∫
Rd

(
e〈α,x〉 − 1 − 〈α, x〉1[0,1](|x|)

)
ν(dx )

)
.

Proof The proof given in [21, Thm. 6.2] carries over word by word to the
multivariate setting. ��

As shown in [21, Ex. 6.3], for univariate quasi-infinitely divisible distributions it
is not true that finiteness of

∫
R
h(x) μ(dx) implies finiteness of

∫
|x|>1 h(x) ν

+(dx).
Let us give another but simpler example of this phenomenon and also remark on the
multivariate setting:

Example 8.2

(a) Let p ∈ (0, 1/2). By Theorem 3.2, the Bernoulli distribution b(1, p) on R is

quasi-infinitely divisible with quasi-Lévy measure ν= ∑∞
k=1

(−1)k+1

k

(
p

1−p
)k

δk . Especially, we obtain ν+ = ∑∞
k=0

1
2k+1

(
p

1−p
)2k+1

δ2k+1. Let c >

− log p
1−p > 0. The function g : R → R, x �→ ecx is submultiplicative and by

the monotone convergence theorem it holds

∫
|x|>1

ecxν+(dx) =
∞∑
k=1

1

2k + 1

(
p

1 − p

)2k+1

e(2k+1)c = ∞,

since p
1−p ec > 1. Similarly,

∫
|x|>1 ecxν−(dx) = ∞, although the Bernoulli-

distribution b(1, p) has finite g-moment.
(b) Let p ∈ (0, 1/2) and X1, . . . , Xd be independent b(1, p)-distributed and define

X = (X1, . . . , Xd)
T . By Proposition 3.10, L(X) is a quasi-infinitely divisible

distribution on R
d whose quasi-Lévy measure ν̃ is concentrated on the axes. Let

c > − log p
1−p and consider the function h : Rd → [0,∞) given by h(x) =

e〈ce1,x〉, where e1 is the first unit vector in R
d . Then h is submultiplicative and∫

|x|>1 h(x) ν̃
±(dx) = +∞ by (a), although L(X) has bounded support and

hence finite h-moment.
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Extremes and Regular Variation

Nick H. Bingham and Adam J. Ostaszewski

Abstract We survey the connections between extreme-value theory and regular
variation, in one and higher dimensions, from the point of view of our recent work
on general regular variation.

Keywords Extreme value · General regular variation · Generalised Pareto
distribution · Peaks over thresholds · Copula · Spectral measure · D-norm ·
Dependence structure · Max-stable process · Spatio-temporal process

1 One Dimension

The simplest case is that of an independent and identically distributed (iid) sequence
(Xn) with law F ; write

Mn := max{X1, · · · ,Xn} or ∨n
1 Xi.

If there are centering constants bn and norming constants an such that

anMn + bn → G in law (n → ∞)

for some non-degenerate probability distribution G, then G is called an extreme-
value distribution (EVD) (or extremal law), and F belongs to the domain of
attraction of G, F ∈ D(G). The EVD are also the max-infinitely divisible (max-
id) laws [6].
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We are working here to within an affine transformation (this would change the
centering and scaling but preserve the limit), that is, to within type (location and
scale) [71, I, IV.14]. Modulo type, the limits G (in one dimension) have a simple
parametric description (see e.g. [13, Th. 8.13.1]):

Theorem 1.1 (Fisher-Tippett theorem, [41], 1928) To within type, the extremal
laws are exactly the following:

�ξ , (ξ > 0); �ξ , (ξ > 0); �,

where the Fréchet (�ξ ), Weibull (�ξ ) and Gumbel (�) laws are given by

�ξ := 0 (x ≤ 0), exp{−x−ξ } (x ≥ 0);

�ξ := exp{−(−x)ξ } (x ≤ 0), 1 (x ≥ 0);

�(x) := exp{−e−x} (x ∈ R).

Particularly for statistical purposes, it is often better to combine these three into
one parametric family, the generalized extreme value (GEV) laws (see e.g. [20,
3.1.3]). These have one extremal parameter α ∈ R and two type parameters μ ∈ R

(location) and σ > 0 (scale):

G(x) := exp
(
−
[
1 + α

(x − μ

σ

)]−1/α)
where

[
· · ·
]
> 0. (GEV )

Here α > 0 corresponds to the Fréchet, α = 0 to the Gumbel (using (1 + x/n)n →
ex as n → ∞; we interpret ex as the ‘n = ∞’, or ‘α = 0’, case, by the ‘L’Hospital
convention’) and α < 0 to the Weibull cases. Takingμ = 0 and σ = 1 for simplicity
(as we may), this gives the extreme-value distributions

Gα(x) := exp(−gα(x)), gα(x) := [1 + αx]−1/α
+ . (EVD)

Here the parameter α ∈ R is called the extreme-value index (EVI) or extremal index.
The upper end-point x+ of F is ∞ for α ≥ 0 (with a power tail for α > 0 and an
exponential tail for α = 0); for α < 0 x+ = −1/α, with a power tail to the left of
x+.

The domains of attraction in the Fréchet and Weibull cases, due to Gnedenko
[46] in 1943 (see e.g. [13, Th. 8.13.2,3]) are simple: writing F := 1 − F for the
tail of F and Rρ for the class of (positive measurable) functions varying regularly
at infinity with index ρ,

(i) F ∈ D(�α) iff F ∈ R−α ;
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(ii) F ∈ D(�α) iff F has finite upper end-point x+ and F(x+ − 1/.) ∈ R−α .
The Gumbel case is more complicated (de Haan [51, 52] in 1970–1971, [13,
Th. 8.13.4]; cf. [13, Ch. 3, De Haan theory]):

(iii) F ∈ D(�) iff

F(t + xa(t))/F(t) → g0(x) := e−x (t → ∞), (∗)

for some auxiliary function a > 0, which may be taken [32, (3.34)] as

a(t) :=
∫ x+

t

F (u)du/F(t) (t < x+), (aux)

and satisfies (in the usual case, x+ = ∞)

a(t + xa(t))/a(t) → 1 (t → ∞). (Beu)

Such functions are called Beurling slowly varying (see e.g. [13, §2.11], [14]
and the references cited there). If also (Beu) holds locally uniformly (i.e.
uniformly on compact x-sets), a is called self-neglecting, a ∈ SN (cf. [10,
§2.5.2]):

a(t + xa(t))/a(t) → 1 (t → ∞) (uniformly on compact x − sets). (SN)

An alternative criterion for D(�) had been given in 1968 by Marcus and
Pinsky [73].

The three domain-of-attraction conditions may be unified (using the L’Hospital
convention as above) as follows: F ∈ D(Gα) iff

F (t + xa(t))/F(t) → gα(x) := (1 + αx)
−1/α
+ (t → ∞) (∗∗)

for some auxiliary function a, and then

a(t + xa(t))/a(t) → 1 + αx (t → ∞), (α Beu)

extending the α = 0 case (Beu) above (see e.g. [10, §2.6]).
For a continuous Beurling slowly varying a, a ∈ SN and a(x) = o(x) (Bloom’s

theorem: [13, §2.11], [14]). The relation (αBeu) with local uniformity defines the
self-equivarying functions a ∈ SE [77]; here a(x)/(1 + αx) ∈ SN and so allows
for a(x) = O(x) (cf. the case a(x) := 1 + αx with α > 0).

Von Mises conditions In 1936, von Mises [76] gave sufficient conditions for
membership of these domains of attraction, assuming that F has a density f (there
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is no essential loss of generality here; see below). We formulate these in terms of
the hazard rate h of survival analysis (see e.g. [24, §2.2]):

h(x) := f (x)/F (x) = f (x)/

∫ ∞

x

f (u)du.

Below, we shall also need the inverse hazard function

i(x) := 1/h(x) =
∫ ∞

x

f (u)du/f (x).

Observe that (when the density f exists, as here) the numerator and denominator in
(aux) are the integrals of those here. As one may integrate (though not necessarily
differentiate) asymptotic relations, we infer that when i exists it may be used as an
auxiliary function a as in (aux).

Recall the Smooth Variation Theorem [13, §1.8]: in any situation in regular
variation, (one is working to within asymptotic equivalence ∼, and so) there is no
essential loss in assuming that F has a density (even a C∞ density) f . Indeed,
Balkema and de Haan [5] show that in all three cases, if F ∈ D(G) for G an
extremal law, then F ∼ F∗, where F∗ satisfies a von Mises condition.

The von Mises conditions in the three cases are (a)–(c) below.

(a) For �α: if x+ = ∞ and

xh(x) = x/i(x) → α > 0 (x → ∞), (vM�)

then F ∈ D(�α).
That (a) is equivalent to (i) in the density case follows by Karamata’s Theorem
[13, §1.6]; [13, Th. 8.13.5].

(b) For �α: if x+ < ∞ and

(x+ − x)h(x) = (x+ − x)/i(x) → α > 0 (x → ∞), (vM�)

then F ∈ �(α).
The proof uses (ii) as above [13, Th. 8.13.6].

(c) Taking x+ = ∞ for simplicity: if

i ′(x) → 0 (x → ∞), (vM�)

then F ∈ D(�) [4]. The proof [13, Th. 8.13.7] hinges on [13, Lemma 8.13.8]:
if a(.) > 0 and a′(t) → 0 as t → ∞, then a ∈ SN . This actually characterises
SN : the representation theorem for a ∈ SN is [14, Th. 9]

a(x) = c(1 + o(1))
∫ x

0
e(u)dy, e ∈ C1, e(x) → 0 (x → ∞).



Extremes and Regular Variation 125

Rates of convergence in the above were studied by Falk and Marohn [38].

Von Mises functions Call a distribution function F a von Mises function with
auxiliary function a if [32, §3.3.3] for some c, d ∈ (0,∞),

F (x) = c exp{−
∫ x

d

dt/a(t)}, a′(t) → 0 (t → ∞).

Then (as above) one can take the auxiliary function a as the inverse hazard function
i, or (see below) the mean excess function e (when it exists). One can pass to full
generality by replacing the constant c above by a function c(x) → c: D(�) consists
of von Mises functions and their tail-equivalent distributions [32, p.144]. And (from
a′ → 0): when x+ = ∞, tails in D(�) decrease faster than any power [32, p.139].
Example: the standard normal law (take a = i and use the Mills ratio).

Peaks over thresholds (POT) As always in extreme-value theory, one has two
conflicting dangers. The maxima – the very high values – are rare, and focussing on
them discards information and may leave too little data. But if one over-compensates
for this by including too much data, one risks distorting things as the extra data
is also informative about the distribution away from the tails. One approach is to
choose a large threshold (which the statistician may choose), u > 0 say, and look
only at the data exceeding u. These are the peaks over thresholds (POT). Here one
focusses on the exceedances Y = X − u when positive, and their conditional law
Fu given X > u. This leads to

Fu(x) = P(Y > xa(u)|Y > 0) = P
(X − u

a(u)
> x|X > u

)

= F(u+ xa(u))/F(u)

→ gα(x) := (1 + αx)
−1/α
+ (u → ∞),

as in (∗∗) above. Thus the conditional distribution of (X−u)/a(u)|X > u has limit

Hα(x) := 1 + logGα(x) = 1 − gα(x) = 1 − (1 + αx)
−1/α
+ , (GPD)

the generalised Pareto distribution (GPD) (‘EVD for max, GPD for POT’).

There are several ways of motivating the use of GPD:

(i) Pickands [79] showed in 1975 that Fu has GPD Hα as limit law iff it has the
corresponding EVD as limit of its maxima, i.e. F ∈ D(Gα). This (in view of
[5]) is the Pickands-Balkema-de Haan theorem [74, Th. 7.20].

(ii) There is threshold stability: if Y is GP and u > 0, then the conditional law of
Y −u|Y > u is also GP, and this characterises the GPD. This property is useful
in applications; see e.g. [74, §7.2.2].

(iii) If N is Poisson and (Y1, · · · , YN )|N are iid GP, then max(Y1, · · · , YN ) has the
corresponding EVD; again, this characterises GPD.
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For details, see e.g. Davison and Smith [28, §2] and the references there.
Statistical work in the one-dimensional setting here centres on the estimation of

the extreme-value index α. One of the commonest estimators here is Hill’s estimator
[59]; see e.g. [74, §7.2.4], [10, §9.5.2].

Mean excess function When the mean of X exists, the mean excess (or mean
exceedance) function of X over the threshold u exists and is

e(u) := E[X − u|X > u].

Integrating by parts,

e(u) =
∫ ∞

u

(x − u)dF (x)/F (u) = −
∫ ∞

u

(x − u)dF (x)/F (u) =
∫ ∞

u

F (x)dx/F (u),

which by (aux) is the general form of the auxiliary function a. Thus, when e exists,
one may take it as the auxiliary function a (in preference to the inverse hazard
function i, if preferred).

Self-exciting processes One way to relax the independence assumption is to allow
self-exciting processes, where an occurrence makes other occurrences more likely.
This is motivated by aftershocks of earthquakes, but also relevant to financial crises.
This uses Hawkes processes [58]; see [74, §7.4.3]. For point processes in extremes
and regular variation, see [82].

General regular variation Referring to (∗) and (αBeu), these can now be recog-
nised as the relevant instances of general regular variation, for which see [15]. The
signature is the argument t+xa(t), where the auxiliary function a is self-neglecting.
See the 3 × 3 table in [15, Th. 3] (relevant here is the top right-hand corner with
κ = −1). Likewise, the limit in (∗∗) gives the (2,3) (or middle right) entry in the
table, with κ = −1, and after taking logs, the (2,1) (or middle left) entry:

logF(t + xa(t))− logF(t) → −1/α log(1 + αx)+ (t → ∞), (∗ ∗ ∗)

exactly of the form studied in [15] (there the RHS is called the kernel, K(x)).
The authors in [32] remark (e.g. their p.140) that regular variation ‘does not seem

to be the right tool’ for describing von Mises functions. The general regular variation
of [14, 15] does seem to be the right tool here, including as it does the Karamata,
Bojanic-Karamata/de Haan and Beurling theories of regular variation.
Note. The unification that general regular variation brings to this classically
important area justifies brief mention here of what it rests on: the theory of Popa
groups and Goldie equations; see [15] for details.

Dependence, time series; extremal index The assumption above most often unjus-
tified in practice is that of independence. We turn briefly now to the simplest
dependent case, a stationary time series (or temporal process; cf. the spatio-temporal
processes in §2 below; we do not pursue the interesting and important question of
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trends). For background here see e.g. the books [68, II], [32, §4.4, Ch. 7], Aldous
[2, C], Berman [8], and the survey [69]. Comparison with the independent case is
useful: let Mn, M̃n be the maxima in the time-series and independent cases (with
the same F ). Under suitable conditions [68, §3.7], for un → ∞ and τ > 0, the
following are equivalent:

nF(un) → τ, P (M̃n ≤ un) → e−τ , P (Mn ≤ un) → e−θτ ,

for some θ ≥ 0, called the extremal index. The extremes tend to cluster [2]; 1/θ is
the mean cluster size (so θ ∈ [0, 1]); for estimating θ , see [95].

Heat waves Often it is not the maxima as such that matter most, but extended
periods of very high levels. Heat waves are notorious for causing large numbers
of excess fatalities; similarly for crop loss in agriculture, disruption with flooding,
etc. For studies here, see Reich et al. [81], Winter and Tawn [97].

2 Higher Dimensions

For general references for multidimensional EVT, see e.g. [32, Ch. 3,5,6], [10, Ch.
8], [55, Part II], [56], [37], [35], [36]. For multidimensional regular variation, see
e.g. Basrak et al. [7].

The situation in dimensions d > 1 is different from and more complicated than
that for d = 1 above, regarding both EVT and Popa theory. We hope to return to
such matters elsewhere.

Copulas The theory above extends directly from dimensions 1 to d , if each X or
x above is now interpreted as a d-vector, x = (x1, · · · , xd) etc. Then, as usual
in dimension d > 1, we split the d-dimensional joint distribution function F into
the marginals F1, · · · , Fd , and the copula C (a distribution function on the d-cube
[0, 1]d with uniform marginals on [0, 1]), which encodes the dependence structure
via Sklar’s theorem ([92]; see e.g. [74, Ch. 5]):

F(x) = F(x1, · · · , xd) = C(F1(x1), · · · , Fd (xd)). (Skla)

In particular, this shows that one may standardise the marginalsFi in any convenient
way, changing only the joint law F but not the copula (dependence structure). One
choice often made in extreme-value theory is to transform to standard Fréchet
marginals,

Fi(x) = exp{−1/x} (x > 0).

When this is done, the EV law is called simple [10, §8.2.2].
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The limit distributions that can arise are now the multivariate extreme-value
(MEV) laws. Their copulas link MEV laws with their GEV margins. With ut :=
(ut1, · · · , utd ) for t > 0, these, the EV copulas, denoted by C0, are characterised by
their scaling relation [74, Th. 7.44]

C0(u
t ) = Ct

0(u) (t > 0). (Sca)

By analogy with stable laws for sums, a law G is max-stable if

Gn(anx + bn) ≡ G(x) (n ∈ N)

for suitable centering and scaling sequences (bn), (an); these are the GEV laws.

Survival copulas In extreme-value theory, it is the upper tails that count. Taking
operations on vectors componentwise and writing

F(x) := P(X ≤ x), F (x) := P(X > x),

one can rewrite Sklar’s theorem in terms of survival functions F , Fi : a d-
dimensional survival function F has a survival copula C with [75, Th. 2.1]

F(x) = C(F1(x1), · · · , Fd(xd)), C(u) = F(F1
−1
(u1), · · ·Fd−1

(ud))

(F,Fi are 1 at +∞; F,Fi are 0 at +∞; they are accordingly often studied for
x ≤ 0, x → −∞ rather than x ≥ 0, x → ∞).

Copula convergence The question of multivariate domains of attraction (MD, or
MDA) decomposes into those for the marginals and for the copula by the Deheuvels-
Galambos theorem ([29, 43]; [74, Th. 7.48]): with F as above, F ∈ MD(H) with

H(x1, · · · , xd) := C0(H1(x1), · · · ,Hd(xd)),

an MEV law with GEV marginals Hi and EV copula C0, iff

(i) Fi ∈ D(Hi), i = 1, · · · , d;
(ii) C ∈ CD(C0) (‘CD for copula domain of attraction’), i.e.

Ct (u
1/t
1 , · · · , u1/t

d ) → C0(u1, · · · , ud) = C0(u) (t → ∞) (u ∈ [0, 1]d).

Peaks over thresholds (POT) The first (and most important) two of the three
properties above of POT in one dimension extend to d dimensions. The first is the d-
dimensional version of the Pickands-Balkema-de Haan theorem, linking EVD and
GPD; the second is threshold stability. For details, see Rootzén and Tajvidi [86],
Rootzén, Segers and Wadsworth [84, 85], Kiriliouk et al. [63].
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Spectral representation The scaling property (Sca) suggests using spherical polar
coordinates, x = (r, θ) say (x ∈ R

d+, r > 0, θ ∈ S
d−1+ ). Then the MEV law G has

(with ∧ for min) a spectral representation

logG(x) =
∫
S+

∧d
i=1

( θi

‖θ‖ logGi(xi)
)
dS(θ) (x = (r, θ) ∈ R

d),

where the spectral measure S satisfies

∫
S+

θi

‖θ‖dS(θ) = 1 (i = 1, · · · , d)

(see e.g. [53], [10, §8.2.3], [72]). The regular-variation (or other limiting) properties
are handled by the radial component, the dependence structure by the spectral
measure.

D-norms The standard (i.e. with unit Fréchet marginals) max-stable (SMS) laws
are those with survival functions of the form

exp{−‖x‖} (x ≤ 0 ∈ R
d),

for some norm, called a D-norm (‘D for dependence’, as this norm encodes the
dependence structure). For a textbook treatment, see Falk [36].

Pickands dependence function An EV copula may be specified by using the
Pickands dependence function, B ([80]; [74, Th. 7.45]): C is a d-dimensional EV
copula iff it has the representation

C(u) = exp
(
B
( logu1∑d

1 ui
, · · · , logud∑d

1 ui

) d∑
1

logui
)
,

where with Sd the d-simplex {x : xi ≥ 0,
∑d

1 xi = 1},

B(w) =
∫
Sd

max(x1w1, · · · , xdwd)dH(x)

withH a finite measure on Sd . Of course, the d-simplex needs only d−1 coordinates
to specify it; such a simplification is most worthwhile when d = 2 (below).

Two dimensions Things can be made more explicit in two dimensions. For the
theory above, one obtains the representation

C(u1, u2) = exp{(logu1 + logu2)A
( logu1

logu1 + logu2

)},
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where

A(w) =
∫ 1

0
max((1 − x)w, x(1 −w))dH(x),

for H a measure on [0, 1]. The Pickands dependence function A here is charac-
terised by the bounds

max(w, 1 −w) ≤ A(w) ≤ 1 (0 ≤ w ≤ 1)

and being (differentiable and) convex.

Archimedean copulas In d dimensions, the Archimedean copula C with generator
ψ is given by

C(u) = ψ(ψ−1(u1)+ · · · + ψ−1(ud)).

Here [75] ψ(0) = 1, ψ(x) → 0 as x → ∞ and ψ is d-monotone (has d − 2
derivatives alternating in sign with (−)d−2ψ(d−2) nonincreasing and convex); this
characterises Archimedean copulas. In particular, for d = 2,

C(u, v) = ψ(ψ−1(u)+ ψ−1(v))

is a copula iff ψ is convex.

An alternative to spherical polars uses the d-simplex Sd in place of Sd+. This leads
to �1-norm symmetric distributions, or simplex distributions, and the Williamson
transform; see [75, §3]. Here the Archimedean generator ψ is the Williamson
transform of the law of the radial part R, and one can read off the domain-of-
attraction behaviour of R from regular-variation conditions on ψ [66, Th. 1]. The
dependence structure is now handled by the simplex measure [44].

This feature that one ‘radial’ variable handles the tail behaviour and regular-
variation aspects, while the others handle the dependence structure, has led to ‘one-
component regular variation’ in this context; see Hitz and Evans [60].

The marginals may require different normalisations; for background here, see
e.g. [83, §6.5.6] (‘standard v. non-standard regular variation’).

Gumbel copulas For θ ∈ [1,∞), the Gumbel copula with parameter θ is the
Archimedean copula with generator ψ(x) = exp{−x1/θ }. This is the only copula
which is both Archimedean and extreme-value ([45]; [75, Cor. 1]).

Archimax copulas Call � a (d-variate) stable tail-dependence function if for xi ≥ 0,

�(x1, · · · , xd) = − logC0(e
−x1, · · · , e−xd )
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for some extreme-value copulaC0. The Archimax copulas [19] are those of the form

Cψ,�(u1, · · · , ud) := (ψ ◦ �)(ψ−1(u1), · · · , ψ−1(ud)).

This construction does indeed yield a copula [19], and in the case d = 2 gives the
Archimedean copulas (A(.) ≡ 1 above) and the extreme-value copulas (ψ(t) =
e−t ), whence the name.

Dependence structure Particularly when d is large, the spectral measure above
may be too general to be useful in practice, and so special types of model are
often used, the commonest being those of Archimedean type. While convenient,
Archimedean copulas are exchangeable, which of course is often not the case
in practice (‘sea and wind’). The arguments of the copula typically represent
covariates, and these are often related by conditional independence relationships;
these may be represented graphically (see e.g. the monograph by Lauritzen [67],
and for applications to extremes, Engelke and Hitz [34]; see also [60]). Hierarchical
relationships between the covariates (e.g. ‘phylogenetic trees’) may be represented
by hierarchical Archimedean copulas; see e.g. Cossette et al. [23]. Special types of
graphs (vines) occur in such contexts; see e.g. Chang and Joe [18], Joe et al. [62],
Lee and Joe [70].

Max-stable processes The case of infinitely many dimensions – stochastic pro-
cesses – is just as important as the case d < ∞ above (the classic setting here
is the whole of the Dutch coastline, rather than just coastal monitoring stations). For
theory here, see e.g. [55, Part III].

A process Y is max-stable if when Yi are independent copies of Y ,
max{Y1, · · · , Yr } has the same distribution as rY for each r ∈ N+. These have

a spectral representation, for which see de Haan [53]. For estimation of max-stable
processes, see e.g. Chan and So [17].

Spatio-temporal processes Spectral representations have useful interpretations for
modelling spatio-temporal processes, e.g. for the storm-profile process or Smith
process [17, 94]:

Z(x) = maxi φ(x −Xi)	i,

where Z(x) represents the maximum effect at location x over an infinite number
of storms centred at random points Xi (forming a homogeneous Poisson process
on R

d ) of strengths 	i (a Poisson point process of rate 1), the effect of each being
φ(t − Xi)	i (here φ is a Gaussian density function with mean 0 and covariance
matrix ", whose contours represent the decreasing effect of a storm away from its
centre). Thus the process measures ‘the all-time worst (storm effect), here’. Perhaps
such models could also be used to describe e.g. the bush fires currently threatening
Australia.
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Spatio-temporal max-stable processes in which the space-time spectral function
decouples into ones for time and for space given time are given by Embrechts, Koch
and Robert [33] (see also [65]). This allows for the different roles of time and space
given time to be modelled separately. They also allow space to be a sphere, necessary
for realistic modelling on a global scale.

Tail dependence Studying asymptotic dependence in multivariate tails is important
in, e.g., risk management, where one may look to diversify by introducing negative
correlation. For very thin tails (e.g., Gaussian) this is not possible in view of
asymptotic independence (Sibuya [91]). But with heavier tails, tail dependence
coefficients are useful here; see e.g. [88], [66, §5].

Tail-dependence coefficients deal with asymptotic dependence between pairs of
coordinates, and so can be assembled into a matrix, the tail-dependence matrix.
This bears some analogy with the correlation matrix in multivariate analysis, which
(together with the mean) is fully informative in the Gaussian case, and partially
informative in general. For various developments here, see e.g. Embrechts et al.
[31, 40, 96].

Applications For more on spatial processes (random fields), spatio-temporal pro-
cesses and applications to such things as weather, see e.g. Smith [94], Schlather
[87], Cooley et al. [21], Davison et al. [27], Davis et al. [25, 26], Huser and Davison
[61], Sharkey and Winter [90], Abu-Awwad et al. [1], Cooley and Thibaud [22].

An extended study of sea and wind, applied to the North Sea flood defences of
the Netherlands, is in de Haan and de Ronde [57].

Particularly with river networks, the spatial relationships between the points at
which the data is sampled is crucial. For a detailed study here, see Asadi et al. [3].

For financial applications (comparison of two exchange rates), see [74, Ex. 7.53].

Statistics The great difference between one and higher dimensions in the statistics
of extreme-value theory is that in the former, parametric methods suffice (whether
one works with EVD or with GPD). In the latter, one has d such one-dimensional
parametric problems (or one d-dimensional one) for the marginals, and a non-
parametric one for the copula. The problem is thus semi-parametric, and may be
treated as such (cf. [9, 64]). But our focus here is on the copula, which needs to
be estimated nonparametrically; see e.g. [28, 42, 48, 49] (cf. [30, 78]), and in two
dimensions, [50, 89].

For peaks over thresholds in higher dimensions, see e.g. [63]; for graphical
methods, see [70].

3 Historical Comments

1. The extremal laws are known as the Fréchet (heavy-tailed, �α), Gumbel
(light-tailed, �) and Weibull (bounded tail, �α) distributions, after Maurice
Fréchet (1878–1973), French mathematician, in 1937, Emil Julius Gumbel



Extremes and Regular Variation 133

(1891–1966), German statistician, in 1935 and 1958, and Waloddi Weibull
(1887–1979), Swedish engineer, in 1939 and 1951.

2. The Pareto distributions are named after Vilfredo Pareto (1848–1923), Italian
economist, in 1896.

3. The remarkable pioneering work of Fisher and Tippett [41] in 1928 of course
pre-dated regular variation, which stems from Karamata in 1930.

4. The remarkable pioneering work of von Mises [76] in 1936 did not use regular
variation, perhaps because he was not familiar with the journal Karamata
published in, Mathematica (Cluj), perhaps because what Karamata was then
famous for was his other 1930 paper, on the (Hardy-Littlewood-)Karamata
Tauberian theorem for Laplace transforms – analysis, while von Mises was an
applied mathematician.

5. The pioneering work of Gnedenko [46] in 1943 on limits of maxima also
did not use regular variation; nor did the classic monograph of Gnedenko
and Kolmogorov [47] of 1949. As a result, the analytic aspects of both were
excessively lengthy, tending to mask the essential probabilistic content.

6. The subject of extreme-value theory was made much more important by the
tragic events of the night of 31 January–1 February 1953. There was great loss
of life in the UK, and much greater loss in the low-lying Netherlands (see e.g.
[54]).

7. The realisation that regular variation was the natural language for limit theorems
in probability is due to Sudakov in 1955 (in Volume 1 of Theory of Probability
and its Applications). But this was not picked up at the time, and was
rediscovered by Feller in Volume II of his book (1966 and 1971). See e.g. [12]
for details.

8. Beurling slow variation appeared in Beurling’s unpublished work of 1957 on
his Tauberian theorem. See e.g. [11], [14, §10.1] for details and references.

9. The first systematic application of regular variation to limit theorems in
probability was de Haan’s 1970 thesis [51]. This has been the thread running
through his extensive and influential work for the last half-century.

10. The Balkema-de Haan paper [5] of 1974 was explicitly a study of applications
of regular variation, and in ‘great age’ set the stage for ‘high thresholds’.

11. Threshold methods were developed by hydrologists in the 1970s. Their theoreti-
cal justification stems from Pickands’s result ([79], Pickands-Balkema-de Haan
theorem), giving a sense in which Fu is well-approximated by some GPD iff F
lies in the domain of attraction of some EVD (cf. [93, §3]). Full references up
to 1990 are in [28].

Postscript
It is a pleasure to contribute to this volume, celebrating Ron Doney’s 80th birthday.
His long and productive career in probability theory has mainly focused on random
walks and (later) Lévy processes, essentially the limit theory of sums. Extreme-
value theory is essentially the limit theory of maxima. Sums and maxima have many
points of contact (see e.g. [13, §8.15]), recently augmented by the fine paper by
Caravenna and Doney [16] related to the Garsia-Lamperti problem (see e.g. [13,
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§§8.6.3, 8.7.1]). A personal point of contact with extremes came for Ron with
flooding and the partial collapse on 6 August 2019 of the dam at Whaley Bridge
near his home. Many residents had to be evacuated, fortunately not including Ron
and Margaret. Any such incident stands as a riposte to climate-change deniers
everywhere. Of course, Australia is much in our minds at the time of writing.

We thank the editors for their kind invitation to contribute to this Festschrift. The
first author thanks the organisers of Extreme Value Analysis 11 for their invitation
to speak at EVA11 in Zagreb in July 2019.

Both authors send their very best wishes to Ron and Margaret.
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66. Larsson, M., Nĕslehová, J.: Extremal behaviour of Archimedean copulas. Adv. Appl. Probab.

43, 185–216 (2011)
67. Lauritzen, S.: Graphical Models. Oxford University Press, Oxford (1996)
68. Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random

Sequences and Processes. Springer, New York (1983)
69. Leadbetter, M.R., Rootzén, H.: Extremal theory for stochastic processes. Ann. Probab. 16,

431–478 (1988)
70. Lee, D., Joe, H.: Multivariate extreme-value copulas with factor and tree dependence structures.

Extremes 21, 147–176 (2018)
71. Loève, M.: Probability Theory, vol. I, II, 4th edn. Springer, New York (1977)
72. Mao, T., Hu, T.: Relations between the spectral measures and dependence of multivariate

extreme value distributions. Extremes 18, 65–84 (2015)
73. Marcus, M.B., Pinsky, M.: On the domain of attrraction of exp(−e−x ). J. Math. Anal. Appl.

28, 440–449 (1968)



Extremes and Regular Variation 137

74. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques,
Tools. Princeton University Press, Princeton (2005) (2nd edn., 2015)
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1 A Unified View on Subclasses of Bernstein Functions

In the sequel all measures will be understood on the space (0,∞) and their densities,
if they have one, are with respect to Lebesgue measure on (0,∞) which will be
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of two measures ν and τ on (0,∞) is defined by:

ν � τ (A) =
∫
(0,∞)2

1lA(xy)ν(dx)τ (dy), if A is a Borel set of (0,∞) .

If ν is absolutely continuous with density function h, then ν�τ is the function given
by

ν � τ (x) = h� τ (x) =
∫
(0,∞)

h

(
x

y

)
τ (dy)

y
, x > 0.

Another nice property of the Mellin convolution is that if a is a real number, then

xa (ν � τ ) = (xaν)� (xaτ ) (1.1)

Notice that all the integrals above may be infinite if ν and/or τ are not finite
measures. A function f defined on (0,∞) is called completely monotone, and we
denote f ∈ CM, if it is infinitely differentiable there satisfies

(−1)nf (n)(x) ≥ 0, for all n = 0, 1, 2, · · · , x > 0. (1.2)

Bernstein’s theorem says that f ∈ CM if, and only if, it is the Laplace transform of
some measure τ on [0,∞):

f (λ) =
∫
[0,∞)

e−λx τ (dx), λ > 0.

Denote τ̌ the image of τ | (0,∞) by the function x �→ 1/x and notice that f has the
representation

f (λ) = τ ({0})+
∫
(0,∞)

e−
λ
x τ̌ (dx) = e−x � (xτ̌ )(λ). (1.3)

A function φ is called a Bernstein function, and we denote φ ∈ BF , if it has the
representation

φ(λ) = q + dλ+
∫
(0,∞)

(1 − e−λx)π(dx), λ ≥ 0 , (1.4)

where q, d ≥ 0, the measure π , supported by (0,∞), satisfies

∫
(0,∞)

(x ∧ 1) π(dx) < ∞.
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The usage is to call q the killing term and d the drift term. Any measure on (0,∞)

that satisfies the preceding integrability condition is called a Lévy measure. As for
completely monotone functions, notice that φ is represented by

φ(λ) = q + dλ+ (1 − e−x)� (xπ̌)(λ).

Bernstein functions are more likely called by probabilists Laplace exponents of
infinite divisible sub-probability distributions or Laplace exponents of (possibly
killed) subordinators, and the previous representation is their Lévy-Khintchine
representation. See [6] for more account on subordinators and Lévy processes.

Next theorem illustrates to what extent the Mellin convolution is involved into
the most popular subclasses of infinitely divisible distributions. Roughly speaking,
we will see that each of these subclass C is associated to a Lévy measures π of the
form π = c � ν, where c is a specified function and ν is some Lévy measure.

Theorem 1.1 Let π be a Lévy measure.

(1) The measure π has a non increasing density if, and only if, π is of the form

π = 1l(0,1](x)dx � ν,

where ν is some a Lévy measure;
(2) The measure xπ(dx) has a non increasing density if, and only if, π is of the

form

π = 1l(0,1](x)
dx

x
� ν,

where ν is a measure which integrates the function g0(x) = x 1l(0,1](x) +
log x 1l[1,∞)(x) (in particular ν is a Lévy measure);

(3) The measure π has a density of the form xa−1 k(x) with a ∈ (−1,∞) and k a
completely monotonic function such that lim

x→+∞ k(x) = 0 if, and only if, π has

the expression

π = xa−1 e−xdx � ν,

where ν is a measure which integrates the function ga given by

ga(x) :=
⎧⎨
⎩
x 1l(0,1](x)+ x−a 1l[1,∞)(x) if a ∈ (−1, 0),
x 1l(0,1](x)+ log x1l[1,∞)(x) if a = 0,
x 1l(0,1](x)+ 1l[1,∞)(x) if a ∈ (0,∞) .

(1.5)

Consequently, ν is a Lévy measure in all cases. Moreover ν may be an arbitrary
Lévy measure in case (1) and in case (3) with a > 0.
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Proof Notice that if μ has a density h, then μ� ν has a density, denoted by h� ν,
and taking values in [0,∞]:

h� ν(x) =
∫
(0,∞)

1

y
h

(
x

y

)
ν(dy), x > 0.

(1) Using the last expression for h(x) = u0(x) = 1l (0,1](x), we have

u0 � ν(x) =
∫ ∞

x

ν(dy)

y
.

Notice that any non-increasing function (taking values in [0,∞]) is of the form
u0 � ν and conversely. Since

∫ ∞

0
(x∧1) (u0�ν)(x) dx =

∫ 1

0

x2

2

ν(dx)

x
+1

2

∫ ∞

1

ν(dy)

y
+
∫ ∞

1

z− 1

z
ν(dz) ,

we deduce that the measure with density
∫∞
x

ν(dy)/y is a Lévy measure if, and
only if, ν integrates the function x ∧ 1 or, in other words, ν is a Lévy measure.

(2) Using the expression of h� ν with h(x) = u1(x) = 1l (0,1](x)/x, we have:

u1 � ν(x) = ν(x,∞)

x
, x > 0.

Notice that any function π , valued in [0,∞], such that xπ(x) is non increasing
is of the form u1 � ν and conversely. After that, note that

∫ ∞

0
(x ∧ 1)u1 � ν(x)dx =

∫ 1

0
x ν(dx)+ ν(1,∞)

∫ ∞

1
log x ν(dx) .

Thus, the measure with density u1 � ν(x) is a Lévy measure if, and only if,
ν(dx) integrates g0(x) = x1l(0,1](x)+ log x 1l(1,∞)(x).

(3) Without surprise, one is tempted to use the fact (1.1) together with representa-
tion (1.3) and write that for some measure τ

xa−1k(x) = xa−1(e−x � (xτ̌ )) = (xa−1e−x)� (xaτ̌ ),

where the transform τ̌ of τ is given right before (1.3). We will do this in
detail and provide the integrability conditions for the involved measures: let
a ∈ (−1,∞), k be a completely monotone function such that k(∞) = 0 and
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π(dx) = xa−1 k(x) 1l (0,∞)dx. By Bernstein theorem, k is the Laplace transform
of a measure on (0,∞), and may be written in the form

k(x) :=
∫
(0,∞)

e−xu uaσ (du), x > 0 . (1.6)

Defining

ha(u) :=
∫ ∞

0
(x ∧ u) xa−1 e−xdx, u > 0,

and using Fubini’s theorem, write

∫
(0,∞)

(x ∧ 1)π(dx) =
∫
(0,∞)

(x ∧ 1)xa−1 k(x)dx =
∫
(0,∞)

ha(u)
σ (du)

u
.

We will now find the necessary and sufficient conditions on σ insuring that the
last integral is finite. First, notice that ha(u) ↗ Γ (a + 1) when u → ∞ and
then ha is bounded for any a > −1. Then, elementary computations give the
following behavior of ha in a neighborhood of 0,

lim
0+

ha(u)

u
= Γ (a), if a > 0 ;

0 < lim inf
0+

ha(u)− u

u| logu| ≤ lim sup
0+

ha(u)− u

u| logu| < ∞, if a = 0 ;

lim
0+

ha(u)

u1−|a| = 1

|a| +
1

1 − |a| , if −1 < a < 0.

and then π is a Lévy measure iff
∫∞

1
σ(du)
u

du < ∞ and

σ([0, 1]) < ∞, if a > 0;∫
(0,1]

| logu| σ(du) < ∞, if a = 0;
∫
(0,1]

σ(du)

u|a|
< ∞, if −1 < a < 0.

Notice that in each case σ([0, 1]) < ∞ and then σ(du)/u is a Lévy measure.
Also notice that the measure ν, defined as the image of σ(du) induced by the
function u �→ 1/u, is also a Lévy measure, so that the integrability properties
of the measure σ are equivalent to ν integrates the function ga in (1.5). In order
to conclude, write

xa−1 k(x) = xa−1
∫
(0,∞)

e−xu ua σ (du) =
∫
(0,∞)

(
x

y

)a−1

e
− x

y
ν(dy)

y
= (ya−1e−y�ν ) (x) .
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(4) After the above developments, the last assertion becomes obvious.
��

Remark 1.2 Below are some classes of Bernstein functions which can be defined
via the correspondence between π and μ obtained in Theorem 1.1:

(i) The class JB of Bernstein function whose Lévy measure is of type (1) is often
called the class the Jurek class of Bernstein functions. It is also characterized
by those function

φ ≥ 0 s.t. λ �→ (x �→ xφ(x))′(λ) ∈ BF .

(ii) Bernstein functions whose Lévy measure is of type (2) is called self-
decomposable Bernstein functions, and we denote SDBF their set. It is
easy to check (see [9, Theorem 2.6 ch. VI], for instance), that

φ ∈ SDBF ⇐⇒ φ(0) ≥ 0 and λ �→ λφ′(λ) ∈ BF .

The class SDBF functions corresponds to self-decomposable distributions:
namely, a r.v. X has a self-decomposable distribution if there exists a family
of positive r.v. (Yc)0<c<1, each Yc is independent from X such that the identity

in distribution holds: X
d= cX + Yc.

(iii) In [7, pp. 49], the class CBF of complete Bernstein functions corresponds
to the Bernstein functions appearing in point (3) of Theorem 1.1 when the
parameter a equals 1. In matrix analysis and operator theory, the name
“operator monotone function” is more common for CBF -functions. Another
feature is that CBF is included into the class of SBF of special Bernstein
functions, i.e. the class of Bernstein functions φ such that λ �→ λ/φ(λ) ∈ BF .
The class CBF will be deeply investigated in next section.

(iv) The class T BF [7, pp. 73] of Thorin Bernstein functions corresponds to a =
0. The class T BF corresponds to the Laplace exponents of the generalized
Gamma distributions, shortly GGC, introduced by Bondesson [1, 2] and
the GGC subordinators studied by James, Roynette and Yor [5]. For more
developments on T BF , see [7].

2 Investigating the Class CBFa

We have seen that the well known Thorin class T BF corresponds to CBF0, and we
will not go into further investigations in it. The simplest CBF -function is given by
λ �→ λ/(λ+ 1).

Point (3) of Theorem 1.1 suggests a generalization of the notion of CBF and
T BF for any parameter a > −1 by introducing the set class CBFa of Bernstein
functions such that the corresponding Lévy measure π has a density of the form
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xa−1k(x) such that k is a completely monotonic function and k(∞) = 0. It is clear
that CBFa ⊂ CBFb for every a ≤ b, and that T BF ⊂ CBFa ∩ SDBF ⊂ CBF
for every 0 ≤ a ≤ 1. The simplest functions in CBFa are given when taking the
complete monotonic functions k of the form k(x) = e−cx , which is the Laplace
transform of the Dirac measure at point c > 0. Then the associated Bernstein
function is

ϕa,b(λ) =
∫ ∞

0
(1 − e−λx) xa−1 e−bx dx =

⎧⎨
⎩
Γ (a)

(
1

ba
− 1

(b + λ)a

)
if a �= 0

log(1 + λ
b
) if a = 0 .

(2.1)

Notice that for a ∈ (−1, 0), these Bernstein functions are those associated to the so-
called tempered stable processes of index α = −a and, for a = 0, it is associated to
the normalized Gamma process. As stated in the next theorem, any CBFa function
is a conic combination of these simple ones. Next theorem is a straightforward
consequence of Theorem 1.1:

Theorem 2.1 (Representation of CBFa-functions) Let a > −1, φ : [0,∞) →
[0,∞), q = φ(0) and d = lim+∞ φ(x)/x < ∞. Then φ belongs to CBFa if, and
only if, it λ �→ φ(λ)− q − dλ is the Mellin convolution of ϕa,1 defined in (2.1) with
some measure. Namely,

φ(λ) =

⎧⎪⎪⎨
⎪⎪⎩

q + dλ+ Γ (a)

∫
(0,∞)

(
1 − ua

(u+ λ)a

)
σ(du), if a �= 0

q + dλ+
∫
(0,∞)

log

(
1 + λ

u

)
σ(du) if a = 0 ,

(2.2)

where σ is a measure that integrates the function ga(1/t) given by (1.5). In this
case, the Lévy measure associated to φ has the density function

xa−1
∫
(0,∞)

e−xt ta σ (dt), x > 0.

Example 2.2 The stable Bernstein function given by the power function λ �→ λα ,
α ∈ (0, 1), is a trivial example of a function in CBFα, because

λα =
∫ ∞

0
(1 − e−λx )

cα

xα+1
dx, where cα = α

Γ (1 − α)
and x �→ k(x) = x−2α ∈ CM,
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In order to prove Proposition 2.4 below, we need some formalism and a Lemma.
Let Sα, α ∈ (0, 1), denotes a normalized positive stable random variable with
density function fα , i.e.

E[e−λSα ] =
∫ ∞

0
e−λxfα(x)dx = e−λα , λ ≥ 0, (2.3)

and observe that for any t > 0,

e−tλα = t−1/α
∫ ∞

0
e−λxfα(xt−1/α)dx . (2.4)

Also, let γt denotes a normalized gamma distributed random variable with parameter
t > 0, i.e.

E[e−λγt ] = 1

(1 + λ)t
, λ ≥ 0.

For any positive r.v. S satisfying E[Ss ] < ∞, s ∈ R, we adopt the notation S(s) for
a version of the size biased distribution of order s:

P(S[s] ∈ dx) = xs

E[Ss ] P(S ∈ dx). (2.5)

Shanbhag and Sreehari [8] showed the remarkable identity in law

γ
1/α
t

d= γαt

S
[−αt ]
α

.

from which we can extract from, when taking two independent and identically
distributed random variables Sα and S′

α , that

γ
1/α
1 Sα

d= γ1 Xα, where Xα = Sα

S′
α

d= 1

Xα

(2.6)

d= γα Yα, where Yα = Sα

(S′
α)

[−α]
d= 1

Y
[−α]
α

(2.7)

γ
1/α
1/α Sα

d= γ1 Zα, where Zα = Sα

(S′
α)

[−1]
d= 1

Z
[−1]
α

, (2.8)

where, in each product, we have used the notation of (2.5) and the r.v.’s involved in
the identities in law are assumed to be independent. Last identities are used in the
following lemma:
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Lemma 2.3 Let α ∈ (0, 1). With the above notations, we have

(1) The function φα(λ) := λα

λα + 1
belongs to CBFα and is represented by

φα(λ) = E

[
λXα

λ+Xα

]
= E

[(
λ

1 + λ Yα

)α]
= 1−E

[
1

(1 + λYα)α

]
, λ ≥ 0;

(2.9)

(2) The function ϕα(λ) := 1 − 1

(λα + 1)1/α
belongs to CBF and is represented by

ϕα(λ) = E
[ λZα

1 + λZα

]
, λ ≥ 0. (2.10)

Proof

(1) Since

1

1 + λα
= E

[
e−λαγ1

]
= E

[
e−λγ

1/α
1 Sα

]
= E

[
e−λγ1 Xα

]
= E

[
1

1 + λXα

]
.

(2.11)

The first equality in (2.9) comes from

φα(λ) = 1 − 1

1 + λα
= 1 − E

[
1

1 + λXα

]
= E

[
λXα

1 + λXα

]
.

Going back to (2.11) and using again (2.6), we obtain the second and third
representations in (2.9) by writing

φα(λ) = λα E[e−λ γ 1/α
1 Sα ] = λα E[e−λ γαYα ] = E

[(
λ

1 + λYα

)α]
,

and also

φα(λ) = 1 − φα(λ)

λα
= 1 − E

[
1

(1 + λYα)α

]
.

Since the third representation of φα meets the one of Theorem 2.1, we deduce
that φα ∈ CBFα.

(2) Similarly, write

ϕα(λ) = 1 − E

[
e
−λ γ 1/α

1/α Sα

]
= 1 − E

[
e−λ γ1 Zα

]
= E

[
λZα

1 + λZα

]
,

and deduce that ϕα ∈ CBF .
��
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We are now able to exhibit additional links between CBFa, a > 0, and CBF :

Proposition 2.4 The following implications are true:

(1) If 0 < a ≤ 1 and φ ∈ CBF , then λ �→ φ(λa) ∈ CBFa and φ(λa)1/a ∈ CBF .
(2) If a ≥ 1 and ϕ ∈ CBFa, then λ �→ ϕ(λ1/a) ∈ CBF .

Remark 2.5 The first assertion of Proposition 2.4 is a refinement of [7, Corollary
7.15]:

a ≥ 1 and φ(λa)1/a ∈ CBF $⇒ φ ∈ CBF .

The latter could be also obtained by a Pick-Nevanlinna argument as in Remark 3.6
below.

Proof of Proposition 2.4 The second assertion in (1) can be found in [7, Corollary
7.15]. In Example 2.2, we have seen that λ �→ λα ∈ CBFα for every 0 < α ≤ 1,
so, we may suppose that φ has no killing nor drift term. The assertions are a conic
combination argument together with the result of Lemma 2.3. For the first assertion
of (1), use the function φa ∈ CBFa given by (2.9), for the assertion (2), use the
function ϕ1/a ∈ CBF given by (2.10), and get the representations

φ(λa) =
∫ ∞

0
φa

(
λ

u

)
ν(du) and ϕ(λa) =

∫ ∞

0
ϕ1/a

(
λ

u

)
μ(du), λ ≥ 0,

where ν and μ are some measure. ��

3 A New Injective Mapping from BF onto CBF

We recall that a CBF function is a Bernstein function whose Lévy measure has
a density which is a completely monotonic function. We recall the connection
between CBF -functions; φ is a CBF -function if, and only if, it admits the
representation:

φ(λ) = q + d +
∫
(0,∞)

λ

λ+ x
ν(dx), λ ≥ 0, (3.1)

where q, d ≥ 0 and ν is a measure which integrates 1 ∧ 1/x.

Another characterization of CBF functions is given by the Pick-Nevanlinna
characterization of CBF -functions:
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Theorem 3.1 (Theorem 6.2 [7]) Let φ a non-negative continuous function on
[0,∞) is a CBF function if, and only if, it has an analytic continuation on
C(−∞, 0] such that

)(φ(z)) ≥ 0, for all z s.t. )(z) > 0.

Notice that any φ ∈ BF has an analytic continuation on the half plane {z, �(z) >
0} which can be extended by continuity to the closed half plane {z, �(z) ≥ 0}
and we still denote by φ this continuous extension. In next theorem we state a
representation similar to (3.1) and valid for any Bernstein function φ. Part (1) of
this theorem is also quoted as [7, Proposition 3.6].1

Theorem 3.2

(1) Let φ ∈ BF represented by (1.4), then, for all λ ≥ 0,

φ(λ) = dλ+
∫ ∞

0

λ

λ2 + u2 v(u) du , (3.2)

where v, given by v(u) := 2�(φ(iu))/π , is a negative definite function (in the
sense of [7, Definition 4.3]) satisfying the integrability condition

∫ ∞

1

v(u)

u2 < ∞. (3.3)

(2) Conversely, let d ≥ 0 and v : R → R+ be a negative definite function satisfying
(3.3), then

λ �→ dλ+
∫ ∞

0

λ

λ2 + u2
v(u) du ∈ BF .

Proof

(1) We suppose without loss of generality that q = d = 0. In this proof, we denote
by (Ct )t≥0 a standard Cauchy process, i.e. a Lévy process such that E[eiuCt ] =
e−t |u|, u ∈ R. Since

φ(ix) =
∫
(0,∞)

(1 − e−ixs)π(ds), x ∈ R,

1The results in Theorem 3.2 (i), Corollaries 3.4, 3.5 and Proposition 3.8 below can be found, with
different proofs, in [7, Proposition 3.6, Proposition 7.22]. As is stated in [7, pp. 34 & 108 and
reference entries 119, 120], the statements of these results are due to S. Fourati and W. Jedidi and
were, with a different proof, communicated by S. Fourati and W. Jedidi in 2010.
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then, for all λ > 0, we can write

φ(λ) =
∫
(0,∞)

(1 − e−λ s) π(ds) =
∫
(0,∞)

E[1 − e−isCλ ]π(ds)

=
∫
(0,∞)

(∫
R

(1 − e−ius) λ

π(u2 + λ2)
du

)
π(ds) =

∫
R

λ

π(u2 + λ2)
φ(iu) du

=
∫ ∞

0

λ

π(u2 + λ2)

(
φ(iu)+ φ(−iu))du = 2

π

∫ ∞

0

λ

(u2 + λ2)
�(φ(iu)) du.

Notice that v(u) := 2�(φ(iu))/π is an even function on R, is a [0,∞)-valued
negative definite function in the sense of [7, Definition 4.3], and representation
(3.2) proves that it necessarily satisfies (3.3).

(2) By [4, Corollary 1.1.6], every [0,∞)-valued, negative definite function v, has
necessarily the form

v(u) = q + cu2 +
∫
R{0}

(1 − cosux)μ(dx),

where q, c ≥ 0 and the Lévy measure μ is symmetric and integrates x2 ∧ 1.
We deduce that v is an even function and necessarily c = 0 because of the
integrability condition (3.3). So, v is actually represented by

v(u) = q + 2
∫
(0,∞)

(1 − cosux)μ(dx).

Then, observe that

∫ ∞

1

v(u)

u2
du = q + 2

∫
(0,∞)

θ(x) μ(dx) < ∞

where

θ(x) =
∫ ∞

1

1 − cos(xt)

t2
dt = x

∫ ∞

x

1 − cos t

t2
dt ≤ 2.

Since limx→0 θ(x)/x = π/2, deduce thatμ necessarily integrates x∧1. Finally,
v is the real part of some Bernstein function φ and conclude with part (1) of this
theorem.

��
Remark 3.3

(i) Note that condition (3.3) on the negative definite function v was obtained as an
immediate consequence of representation (3.2) and is equivalent, in our context,
to the usual integrability condition (on the Lévy measure at 0) for a Lévy process
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to have finite variation paths, see the book of Breiman [3, Exercise 13 p. 316]. In
Vigon’s thesis, [10, Proposition 1.5.3] one can also find a nice proof of condition
(3.3) based on a Fourier single-integral formula.

(ii) In (3.2), it is not clear that the constant functions belong to CBF−. They actually
do, since for all q ≥ 0 and λ > 0,

q = 2

π

∫ ∞

0

λ q

λ2 + u2 du,

then λ �→ φ(λ) = q ∈ CBF−.

Now, it appears natural to introduce the class of functions CBF− associated to
negative definite functions :

CBF− :=
{
λ �→ ϕ(λ) = q + dλ+

∫ ∞

0

λ

λ+ u2 v(u) du

}
,

where q, d ≥ 0 and v : [0,∞) → [0,∞) is a negative definite function, necessarily
satisfying the integrability condition (3.3). It is obvious that CBF− is a (strict)
subclass of CBF .

A reformulation of last theorem gives the following two corollaries quoted as [7,
Proposition 7.22 and Propositon 3.6] respectively. The reader is also addressed to
the footnote before Theorem 3.2.

Corollary 3.4 (Classes BF and CBF− are one-to-one)

(1) If φ is in BF , then λ �→ √
λφ(

√
λ) is in CBF−;

(2) Conversely, any function in CBF− is of the form λ �→ √
λφ(

√
λ), where φ is in

BF .

Corollary 3.5 Any Bernstein function leaves globally invariant the cônes

{
ρeiπθ ; ρ ≥ 0, α ∈ [−σ, σ ] }, for any σ ∈ [0, 1

2
].

Proof The functionψu(λ) = λ/(λ2 +u2), u > 0, maps the half-line
{
ρeiπσ ; ρ ≥

0
}

onto in the cône
{
ρeiπθ ; ρ ≥ 0, θ ∈ [−σ, σ ] }. Since this cone is convex and

closed by any conic combination of ψu, deduce that the integral

2

π

∫ ∞

0

λ

λ2 + u2 �(φ(iu)) du

is in the same cône. ��
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Remark 3.6 The property in the last corollary has to be compared with the much
stronger property fulfilled by a CBF -function: any CBF -function has an analytic
continuation on C \ (−∞, 0] and this continuation leaves globally invariant the
cônes

{
ρeiπθ ; ρ ≥ 0, θ ∈ [0, σ ]

}
, (3.4)

for any σ ∈ [0, 1). Moreover this property fully characterizes the class of CBF -
functions: the Pick-Nevanlinna characterization given in Theorem 3.2 is equivalent
to invariance of the cone (3.4) for σ = 1. This property is not satisfied by
all Bernstein functions. For instance, φ(λ) = 1 − e−λ ∈ BF \ CBF , because
) (5eiπ/4

)
> 0 but ) (φ(5eiπ/4)

)
< 0.

In the following results, we give some extension of Theorem 3.4 by replacing the
function λ �→ √

λ by other functions:

Corollary 3.7 Let φ ∈ BF . Then,

(1) For any function ψ such that λ �→ ψ(λ2) is in BF , we have ψ2 ∈ BF and
φ(ψ) ∈ CBF−.

(2) For any functionψ such thatψ2 is in CBF , the following functions are in CBF :

φ(ψ) · ψ, ψ

φ(ψ)
, φ(1/ψ) · ψ, ψ

φ(1/ψ)

and also

λ · φ(ψ)
ψ

,
λ

φ(ψ) · ψ , λ · φ(1/ψ)
ψ

,
λ

φ(1/ψ) · ψ .

Proof

(1) Since ψ1(λ) := ψ(λ2) ∈ BF , then ψ2(λ) := ψ2(λ) = ψ1(
√
λ)2 ∈ BF . To

get the last claim, just check the complete monotonicity of the derivative of
ψ2. The second assertion is seen by stability by composition of the class BF :
since λ �→ φ(ψ1(λ)) = φ(ψ(λ2)) ∈ BF , then Corollary 3.4 applies on the last
function.

(2) Recall S is the class of Stieltjes functions, i.e. the class of functions obtained
by a double Laplace transform (see [7]) and observe that

ϕ ∈ CBF ⇐⇒ λ �→ ϕ(λ)

λ
∈ S.
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As consequence of [7, (7.1), (7.2), (7.3) pp. 96], obtain that

√
λφ(

√
λ) ∈ CBF ⇐⇒

√
λ

φ(
√
λ)

∈ CBF ⇐⇒ √
λφ(1/

√
λ) ∈ CBF ⇐⇒

√
λ

φ(1/
√
λ)

∈ CBF

(3.5)

⇐⇒

φ(
√
λ)√
λ

∈ S ⇐⇒ 1√
λφ(

√
λ)

∈ S ⇐⇒ φ(1/
√
λ)√

λ
∈ S ⇐⇒ 1√

λφ(1/
√
λ)

∈ S. (3.6)

To get the first claim, compose the four CBF -functions in (3.5) with ψ2 ∈
CBF , and use the stability by composition of the class CBF [7, Corollary 7.9.].
To obtain the last claim, also compose the four S-functions in (3.6) with ψ2 ∈
CBF , use [7, Corollary 7.9], to get that the compositions stays in S, and finally
multiply by λ to get the announced CBF -function in the Corollary.

��
Notice that if ψ belongs to BF , then ψ(

√
λ) satisfies property (1). If further ψ

belongs to CBF then ψ(
√
λ) and

√
ψ(λ) both satisfy property (2).

Now, we summarize the properties that can be stated when composing a
Bernstein function φ with the stable Bernstein function of Example 2.2.

Proposition 3.8 Let α ∈ (0, 1], φ ∈ BF , π be the Lévy measure of φ and π the
right tail of π: π(x) := π(x,∞), x > 0. Then,

(1) λ �→ φα(λ) := λ1−αφ(λα) ∈ BF . Further, φα ∈ CBF whenever

x �→ πα(x) := α xα−1 π(xα) ∈ CM (which is true if φ ∈ CBF);

(2) λ �→ λγ φ(λα) ∈ CBF (resp. CBF−) if α ≤ 1
2 and γ ∈ (α, 1 − α] (resp.

γ = 1
2 ).

Proof Recall that fα , the density function of normalized positive stable r.v., is given
by (2.3).

(1) Since λ �→ λα, λ1−α are both in CBF , there is no loss of generality to take
q = d = 0 in the Lévy-Khintchine representation (1.4) of φ, and then to write

λ1−αφ(λα) = λ

∫ ∞

0
e−λαtπ(t)dt.

It is sufficient to prove that λ �→ ∫∞
0 e−λαtπ(t)dt is the Laplace transform of a

non increasing function. For that, use (2.4) and Fubini’s theorem and get

∫ ∞

0
e−λαtπ(t)dt =

∫ ∞

0
e−λxΠα(x)dx,
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where

Πα(x) :=
∫ ∞

0
fα

( x

t1/α

)
π(t)

dt

t1/α
=
∫ ∞

0
πα

(x
z

)
fα(z)

dz

z
,

and the second representation by the change of variables z = xt− 1
α . Since

for each z > 0, the functions z �→ πα(x/z) are non-increasing (respectively
completely monotone), deduce the same for Πα .

(2) Observe that for α ≤ 1/2, the function λ �→ λα satisfies the properties of
Corollary 3.7: point (2) yields that the function λ �→ λ1−αφ(λα) is in CBF ,
and point (2) yields that

√
λφ(λα) is in CBF−. Taking representation of φ in

Theorem 3.2, we obtain

λγ φ(λα) =
∫ ∞

0

λγ+α

λ2α + u2 v(u)du, where v(u) = 2

π
�(φ(iu)) .

Since 0 < 2α ≤ γ + α ≤ 1, the function λ �→ λγ+α/(λ2α + u2) leaves the
half plane {)(λ) > 0} globally invariant, and then, is a CBF -function for every
u > 0. By the argument of conic combination, this property remains true for
the function λ �→ λγ φ(λα) is CBF . Now, the function ψ(λ) = λα satisfies
property (2) of Corollary 3.7, and then,

√
λφ(λα) ∈ CBF−.

��
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A Transformation for Spectrally Negative
Lévy Processes and Applications

Marie Chazal, Andreas E. Kyprianou, and Pierre Patie

Abstract The aim of this work is to extend and study a family of transformations
between Laplace exponents of Lévy processes which have been introduced recently
in a variety of different contexts, Patie (Bull Sci Math 133(4):355–382, 2009;
Bernoulli 17(2):814–826, 2011), Kyprianou and Patie (Ann Inst H Poincar’ Probab
Statist 47(3):917–928, 2011), Gnedin (Regeneration in Random Combinatorial
Structures. arXiv:0901.4444v1 [math.PR]), Patie and Savov (Electron J Probab
17(38):1–22, 2012), as well as in older work of Urbanik (Probab Math Statist
15:493–513, 1995). We show how some specific instances of this mapping prove
to be useful for a variety of applications.

Keywords Spectrally negative Lévy process · Fluctuation theory · Exponential
functional · Positive self-similar Markov process · Intertwining · Hypergeometric
function

1 Introduction

In this paper we are interested in a Lévy process with no positive jumps, possibly
independently killed at a constant rate, henceforth denoted by ξ = (ξt , t ≥ 0)
with law P. That is to say, under P, ξ is a stochastic process which has almost
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surely càdlàg paths, increments that are stationary and independent and killed at an
independent rate κ ≥ 0. The case that κ = 0 corresponds to no killing. Whilst it is
normal to characterise Lévy processes by their characteristic exponent, in the case
that the jumps are non-positive one may also comfortably work with the Laplace
exponent which satisfies,

E(euξt ) = eψ(u)t , t ≥ 0,

where u ≥ 0. It is a well established fact that the latter Laplace exponent is strictly
convex on [0,∞) and admits the following Lévy-Khintchine representation

ψ(u) = −κ + au+ 1

2
σ 2u2 +

∫
(−∞,0)

(eux − 1 − ux1(|x|<1))�(dx), (1.1)

for u ≥ 0 where κ ≥ 0, a ∈ R, σ 2 ≥ 0 and � is a measure concentrated on
(−∞, 0) satisfying

∫
(−∞,0)(1 ∧ x2)�(dx) < ∞, see for example Bertoin [1].

Note in particular that our definition includes the case that −ξ is a (possibly killed)
subordinator. Indeed, when � satisfies

∫
(−∞,0)(1 ∧ |x|)�(dx) < ∞ and we choose

σ = 0 and a = −d+ ∫
(−1,0) x�(dx) we may write for u ≥ 0,

ψ(u) = −κ − du−
∫
(0,∞)

(1 − e−ux)ν(dx),

where ν(x,∞) = �(−∞,−x). When d ≥ 0, writing St = −ξt for t ≥ 0, d and ν
should be thought of as the drift and Lévy measure of the subordinator S = (St , t ≥
0) respectively. Moreover, writing φ(u) = −ψ(u) for u ≥ 0, we may think of φ as
the Laplace exponent of S in the classical sense, namely

E(e−uSt ) = e−φ(u)t , t ≥ 0.

In general we shall refer to �� as the family of Laplace exponents of (possibly
killed) Lévy processes with no positive jumps which are killed at rate κ ≥ 0 and
are well defined on (�,∞) for � ≤ 0. Note that excluding the cases when −ξ is
not a subordinator then �� boils down to the class of Laplace exponent of (possibly
killed) spectrally negative Lévy processes.

Our main objective is to introduce a parametric family of linear transformations
which serves as a mapping from the space of Laplace exponents of Lévy processes
with no positive jumps into itself and therewith explore how a family of existing
results for Lévy processes may be extrapolated further. The paper is structured
as follows. In the next section we introduce our three-parameters transformation
and derive some basic properties. We also describe its connection with some
transformations which have already appeared in the literature. The remaining part
of the paper deals with the applications of our transformation to different important
issues arising in the framework of Lévy processes and related processes. More
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specifically, in the third section we provide some ways for getting new expressions
for the so-called scale function of Lévy processes. Section 4 is devoted to the
exponential functional of Lévy processes and finally in the last section we develop
some applications to the study of positive self-similar Markov processes.

2 The Transformation Tδ,β

We begin with the definition of our new transformation and consider its properties
as a mapping on ��.

Definition 2.1 Suppose that ψ ∈ �� where � ≤ 0. Then for δ, β ≥ 0, with the
additional constraint that ψ ′(0+) = ψ(0) = 0 if β = 0, let

Tδ,βψ(u) = u+ β − δ

u+ β
ψ(u+ β)− β − δ

β
ψ(β), u ≥ −β.

Let us make some immediate observations on the above definition. Firstly note that
Tδ,β is a linear transform. In the special case that δ = β we shall write Tβ in place
of Tβ,β . The transform Tβ was considered recently for general spectrally negative
Lévy processes in Kyprianou and Patie [23] and for subordinators (as a result of a
path transformation known as sliced splitting) in Gnedin [17]. Next note that, for
β, γ such that β + γ ≥ 0,

Tγ ◦ Tβ = Tγ+β.

In the special case that δ = 0 and β ≥ 0 we have Eβ := T0,β satisfies

Eβψ(u) = ψ(u+ β)− ψ(β), u ≥ −β,

where, as usual, ψ ∈ ��. This is the classical Esscher transform for Lévy
processes with no positive jumps expressed in terms of Laplace exponents. It will
be convenient to note for later that if �(u) := ψ(u)/u then we may write

Tδ,βψ(u) = Eβψ(u) − δEβ�(u).

In particular we see that when β = 0, the assumption that ψ ′(0+) = 0 allows us to
talk safely about �(0+).

One may think of Tδ,β as one of the many possible generalisations of the Esscher
transform. For β ≥ 0, the latter is a well-known linear transformation which maps
�� into itself and has proved to be a very effective tool in analysing many different
fluctuation identities for Lévy processes with no positive jumps. It is natural to ask if
Tδ,β is equally useful in this respect. A first step in answering this question is to first
prove that Tδ,β also maps �� into itself. This has already been done for the specific
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family of transformations Tβ in Lemma 2.1 of [23] and also, for Lévy processes
with two sided jumps, in Proposition 2.1 in [33] .

Proposition 2.2 Suppose that ψ ∈ �� where � ≤ 0. Fix δ, β ≥ 0 with the
additional constraint that ψ ′(0+) = ψ(0) = 0 if β = 0. Then Tδ,βψ ∈ ��−β ⊆ ��

and has no killing component. Moreover, if ψ has Gaussian coefficient σ and jump
measure� then Tδ,βψ also has Gaussian coefficient σ and its Lévy measure is given
by

eβx
(
�(dx)+ δ�(x)dx

)+ δ
κ

β
eβxdx on (−∞, 0),

where �(x) = �(−∞, x) and we understand the final term to be zero whenever
κ = 0. Finally, one has Tβψ ∈ ��−β with l < β < 0 under the additional
requirements that κ = 0 and (eβx�(x))′ = eβx�(dx)+ βeβx�(x)dx is a positive
measure on (−∞, 0).

Proof Recall from earlier that Tδ,βψ(u) = Eβψ(u)− δEβ�(u). Moreover, from its
definition, it is clear that argument of Tδ,β may be taken for all u such that u+ β ≥
�. It is well understood that Eβψ is the Laplace exponent of a spectrally negative
Lévy process without killing whose Gaussian coefficient remains unchanged but
whose Lévy measure is transformed from �(dx) to eβx�(dx). See for example
Chapter 8 of [21]. The proof thus boils down to understanding the contribution from
−δEβφ(u). A straightforward computation based on integration by parts shows that

�(u) = −κ

u
+ (a −�(−1))+ 1

2
σ 2u+

∫ 0

−∞
(1(|x|<1) − eux)�(x)dx.

From this it follows that

−δEβ�(u) = −δ κ
β

u

u+ β
− δ

2
σ 2u− δ

∫ 0

−∞
(1 − eux)eβx�(x)dx

= − δ

2
σ 2u− δ

∫ 0

−∞
(1 − eux)eβx�(x)dx − δ

κ

β

∫ ∞

0
(1 − e−ux)e−βxdx.

Here we understand the final integral above to be zero if κ = 0. In that case we
see that −δEβψ(u) is the Laplace exponent of a spectrally negative Lévy process
which has no Gaussian component and a jump component which is that of a negative
subordinator with jump measure given by δeβx�(x)dx+β−1κδeβxdx on (−∞, 0).
The last claim follows readily from the previous one by choosing δ = β and κ = 0.

��
Whilst it is now clear that the mappings T γ

δ,β may serve as a way of generating
new examples of Lévy processes with no positive jumps from existing ones, our
interest is largely motivated by how the aforesaid transformation interacts with
certain path transformations and fluctuation identities associated to Lévy processes.
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Indeed, as alluded to above, starting with Urbanik [38], the formalisation of these
transformations is motivated by the appearance of particular examples in a number
of such contexts. On account of the diversity of these examples, it is worth recalling
them here briefly for interest. Kyprianou and Patie [23] use the transformation Tβ to
give a natural encoding for the Ciesielski-Taylor identity for a class of self similar
Markov processes (pssMp). In the setting of self-similar continuous-state branching
processes, [28, Proposition 4.11] uses the Tβ transformation to describe a family of
such processes with immigration. Finally, Gnedin [17] introduces a method of sliced
splitting the path of subordinators to generate new examples of subordinators. The
sliced splitting operation he used corresponds to the application of a special case of
the transformation introduced here.

3 Scale Functions for Spectrally Negative Lévy Processes

Scale functions have occupied a central role in the theory of spectrally negative Lévy
processes over the last ten years. They appear naturally in virtually all fluctuation
identities of the latter class and consequently have also been instrumental in solving
a number of problems from within classical applied probability. See Kyprianou [21]
for an account of some of these applications. Despite the fundamental nature of
scale functions in these settings, until recently very few explicit examples of scale
functions have been found. However in the recent work of Hubalek and Kyprianou
[18], Chaumont et al. [14], Patie [28], Kyprianou and Rivero [24] and the survey
paper [20], many new examples as well as general methods for constructing explicit
examples have been uncovered. We add to this list of contemporary literature by
showing that the some of transformations introduced in this paper can be used to
construct new families of scale functions from existing examples.

Henceforth we shall assume that the underlying Lévy process, ξ , is spectrally
negative, but does not have monotone paths. Moreover, we allow, as above, the case
of independent killing at rate κ ≥ 0. For a given spectrally negative Lévy process
with Laplace exponent ψ , its scale function Wψ : [0,∞) �→ [0,∞) is the unique
continuous positive increasing function characterized by its Laplace transform as
follows. For any κ ≥ 0 and u > θ := sup{λ ≥ 0; ψ(λ) = 0},

∫ ∞

0
e−uxWψ(x)dx = 1

ψ(u)
.

In the case that κ > 0, Wψ is also known as the κ-scale function.
Below we show how our new transformation generates new examples of scale

functions from old ones; first in the form of a theorem and then with some examples.
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Theorem 3.1 Let x, β ≥ 0. Then,

WTβψ(x) = e−βxWψ(x)+ β

∫ x

0
e−βyWψ(y)dy. (3.1)

Moreover, if ψ ′(0+) ≤ 0, then for any x, β, δ ≥ 0, we have

WTδ,θ ψ (x) = e−θx
(
Wψ(x)+ δeδx

∫ x

0
e−δyWψ(y)dy

)

Proof The first assertion is proved by observing that

∫ ∞

0
e−uxWTβψ(x)dx = u+ β

uψ(u+ β)

= 1

ψ(u+ β)
+ β

uψ(u+ β)
, (3.2)

which agrees with the Laplace transform of the right hand side of (3.1) for which an
integration by parts is necessary. As scale functions are right continuous, the result
follows by the uniqueness of Laplace transforms.

For the second claim, first note that Tδ,θψ = u+θ−δ
u+θ ψ(u+ θ). A straightforward

calculation shows that for all u+ δ > θ , we have

∫ ∞

0
e−uxe(θ−δ)xWTδ,θ ψ (x)dx = u+ δ

uψ(u+ δ)
. (3.3)

The result now follows from the first part of the theorem. ��
When ψ(0+) > 0 and ψ(0) = 0, the first identity in the above theorem contains

part of the conclusion in Lemma 2 of Kyprianou and Rivero [24]. However, unlike
the aforementioned result, there are no further restrictions on the underlying Lévy
processes and the expression on the right hand side is written directly in terms of the
scale functionWψ as opposed to elements related to the Lévy triple of the underlying
descending ladder height process of ξ .

Note also that in the case that ψ is the Laplace exponent of an unbounded
variation spectrally negative Lévy process, it is known that scale functions are
almost everywhere differentiable and moreover that they are equal to zero at zero;
cf. Chapter 8 of [21]. One may thus integrate by parts the expressions in the theorem
above and obtain the following slightly more compact forms,

WTβψ (x) =
∫ x

0
e−βyW ′

ψ(y)dy and WTδ,θ ψ (x) = e−(θ−δ)x
∫ x

0
e−δyW ′

ψ(y)dy.

We conclude this section by giving some examples.
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Example 3.2 ((Tempered) Stable Processes) Let ψκ,c(u) = (u + c)α − cα − κ

where 1 < α < 2 and κ, c ≥ 0. This is the Laplace exponent of an unbounded
variation tempered stable spectrally negative Lévy process ξ killed at an independent
and exponentially distributed time with rate κ . In the case that c = 0, the underlying
Lévy process is just a regular spectrally negative α-stable Lévy process. In that case
it is known that

∫ ∞

0
e−uxxα−1Eα,α(κx

α)dx = 1

uα − κ

and hence the scale function is given by

Wψκ,0 (x) = xα−1Eα,α(κx
α), x ≥ 0,

where Eα,β(x) =∑∞
n=0

xn

	(αn+β) stands for the generalized Mittag-Leffler function.
(Note in particular that when κ = 0 the expression for the scale function simplifies
to 	(α)−1xα−1). Since

∫ ∞

0
e−uxe−cxWψκ+cα ,0(x)dx = 1

(u+ c)α − cα − κ

it follows that

Wψκ,c (x) = e−cxWψκ+cα ,0(x) = e−cxxα−1Eα,α((κ + cα)xα).

Appealing to the first part of Theorem 3.1 we now know that for β ≥ 0,

WTβψκ,c (x) = e−(β+c)xxα−1Eα,α((κ+cα)xα)+β
∫ x

0
e−(β+c)yyα−1Eα,α((κ+cα)yα)dy.

Note that ψ ′
κ,c(0+) = αcα−1 which is zero if and only if c = 0. We may use the

second and third part of Theorem 3.1 in this case. Hence, for any δ > 0, the scale
function of the spectrally negative Lévy process with Laplace exponent Tδ,0ψ0,0 is

WTδ,0ψ0,0(x) =
1

	(α − 1)
eδx

∫ x

0
e−δyyα−2dy

= δα−1

	(α − 1)
eδx	(α − 1, δx)
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where we have used the recurrence relation for the Gamma function and 	(a, b)

stands for the incomplete Gamma function of parameters a, b > 0. Moreover, we
have, for any β > 0,

WT β
δ,0ψ0,0

(x) = 1

	(α − 1)

(
βα

β − δ
	(α − 1, βx)− e(β−δ)x δα

β − δ
	(α − 1, δx)

)
.

Finally, the scale function of the spectrally negative Lévy process with Laplace
exponent T β

δ,0ψκ,0 is given by

WTδ,0ψκ,0(x) = (x/δ)α−1Eα,α−1

(
x; κ

δ

)

WT β

δ,0ψκ,0
(x) = β

β − δ
(x/β)α−1Eα,α−1

(
x; κ

β

)
− δ

β − δ
e−(β−δ)x (x/δ)α−1Eα,α−1

(
x; κ

δ

)

where we have used the notation

Eα,β (x; κ) =
∞∑
n=0

	(x; αn+ β)κn

	(αn + β)
.

4 Exponential Functional and Length-Biased Distribution

In this part, we aim to study the effect of the transformation to the law of the
exponential functional of some Lévy processes, namely for subordinators and
spectrally negative Lévy processes. We recall that this random variable is defined
by

Iψ =
∫ ∞

0
e−ξs ds.

Note that limt→∞ ξt = +∞ a.s. ⇔ Iψ < ∞ a.s. which is equivalent, in the
spectrally negative case, to E[ξ1] = ψ ′(0+) > 0. We refer to the survey paper of
Bertoin and Yor [7] for further discussion on this random variable. We also mention
that Patie in [29, 30] and [32], provides some explicit characterizations of its law
in the case ξ is a spectrally positive Lévy process. We recall that in [4], it has been
proved that the law of Iψ is absolutely continuous with a density denoted by fψ .

4.1 The Case of Subordinators

Let us first assume that ξ̃ = (ξ̃t , t ≥ 0) is a proper subordinator, that is a non-
negative valued Lévy process which is conservative. Let ξ be the subordinator ξ̃
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killed at rate κ ≥ 0 and we recall that the Laplace exponent φ of ξ is given by
φ(u) = −ψ(u), u ≥ 0. In that case we write Iφ in place of Iψ and if φ(0) = κ , we
have that

Iφ =
∫ ∞

0
e−ξs ds =

∫ eκ

0
e−ξ̃s ds

where eκ stands, throughout, for an exponential random variable of mean κ−1 >

0, independent of ξ (we have e0 = ∞). Before stating our result, we recall that
Carmona et al. [13] determine the law of Iφ through its positive entire moments as
follows

E[Inφ ] =
n!∏n

k=1 φ(k)
, n = 0, 1 . . . . (4.1)

Theorem 4.1 For any κ, β ≥ 0, the following identity

fTβφ(x) =
xβfφ(x)

E[Iβφ ]
, x > 0, (4.2)

holds.

Proof Carmona et al. [13], see also Maulik and Zwart [27, Lemma 2.1], determine
the law of Iφ by computing its positive entire moments which they derive from the
following recursive equation, for any s, β > 0 and κ ≥ 0,

E[I sTβφ] =
Tβφ(s)

s
E[I s−1

Tβφ ] (4.3)

= φ(s + β)

s + β
E[I s−1

Tβφ ].

On the other hand, we also have, for any s, β > 0,

E[I s+βφ ] = φ(s + β)

s + β
E[I s−1+β

φ ].

We get the first assertion by invoking uniqueness, in the space of Mellin transform
of positive random variable, of the solution of such a recurrence equation, given for
instance in the proof of [34, Theorem 2.4, p. 64]. ��

Before providing some new examples, we note from Theorem 4.1 that if Iφ
(d)=

AB for some independent random variables A,B then the positive entire moments
of ITβφ, β > 0, admit the following expression

E[InTβφ] =
E[An+β ]
E[Aβ ]

E[Bn+β ]
E[Bβ ] , n = 0, 1 . . . . (4.4)
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Example 4.2 (Poisson process) Let ξ be a Poisson process with mean c =
− log(q) > 0 with 0 < q < 1, i.e. φ(u) = − log(q)(1 − e−u), u ≥ 0. Biane
et al. [3] computed the law of Iφ by means of q−calculus. More precisely, they
show that its law is self-decomposable and is given by

fφ(dx) =
∞∑
n=0

(−1)ne−y/qn q
n(n−1)

2

(q; q)∞(q; q)n dx, x > 0,

where

(a; q)n =
n−1∏
k=1

(1 − aqj ), (q; q)∞ =
∞∏
k=1

(1 − aqj )

and its Mellin transform is given, for any s > 0, by

E[I sφ] =
	(1 + s)(q1+s; q)∞

(q; q)∞ .

The image of ξ by the mapping Tβ is simply a compound Poisson process with
parameter c and jumps which are exponentially distributed on (0, 1) with parameter
β, i.e. Tβφ(u) = u

u+β (− log(q)(1− e−(u+β))). Thus, we obtain that the law of ITβφ
has an absolute continuous density given by

fTβφ(dx) =
xβ

E[Iβφ ]
∞∑
n=0

e−x/qn(−1)n
q

n(n−1)
2

(q; q)∞(q; q)n dx, x > 0.

To conclude this example, we mention that Bertoin et al. [3] show that the
distribution of the random variable Lφ defined, for any bounded Borel function f ,
by

E[f (Lφ)] = 1

E[I−1
φ ]E[I

−1
φ f (I ′φI

−1
φ )]

with I ′φ an independent copy of Iφ , shares the same moments than the log normal
distribution. It is not difficult to check that such transformation applied to ITβφ does
not yield the same properties.

Example 4.3 (Killed compound Poisson process with exponential jumps) Let
ξ be a compound Poisson process of parameter c > 0 with exponential jumps of
mean b−1 > 0 and killed at a rate κ ≥ 0. Its Laplace exponent has the form φ(u) =
c u
u+b + κ and its Lévy measure is given by ν(dr) = cbe−brdr, r > 0. We obtain

from (4.1) that

E[Inφ ] =
n!	(n + b + 1)	(κb + 1)

((κ + c))n	(b + 1)	(n+ κb + 1)
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where we have set κb = κ
κ+c b. Then, noting that b − κb > 0, we get the identity in

distribution

Iφ
(d)= ((κ + c))−1e1B(κb + 1, b − κb)

where B(a, b) stands for a Beta random variable of parameters a, b > 0 and the
random variables on the right-hand side are considered to be independent. The case
κ = 0 was considered by Carmona et al. [12]. Finally, observing that, for any β ≥ 0,
Tβφ(u) = c u

u+b+β +κ u
u+β and its Lévy measure is νβ(dr) = e−βr (c(b+β)e−br+

κβ)dr, r > 0, we deduce from Theorem 4.1, the identity

ITβφ
(d)= (a(κ + 1))−1G(β + 1)B(κb + β + 1, b − κb)

where G(a) is an independent Gamma random variable with parameter a > 0.

Example 4.4 (The α-stable subordinator) Let us consider, for 0 < α < 1,

φ(u) = uα, u ≥ 0 and in this case ν(dr) = αr−(α+1)

	(1−α) dr, r > 0. The law of Iφ has
been characterized by Carmona et al. [12, Example E and Proposition 3.4]. More
precisely, they show that the random variable Z = log Iφ is self-decomposable and
admits the following Lévy-Khintchine representation

logE[eiuZ] = log(	(1 + iu))1−α

= (1 − α)

(
−iuCγ +

∫ 0

−∞
(eius − ius − 1)

es

|s|(1 − es)
ds

)

where Cγ denotes the Euler constant. First, note that Tβφ(u) = (u+ β)α − β(u+
β)α−1 and νβ(dr) = 1

	(1−α)e
−βrr−(α+1)(α + βr)dr, r > 0. Thus, writing Zβ =

log(ITβφ), we obtain

logE[eiuZβ ] = log

(
	(1 + β + iu)

	(1 + β)

)1−α

= (1 − α)

(
iuϒ(1 + β)+

∫ 0

−∞
(eius − ius − 1)

e(1+β)s

|s|(1 − es)
ds

)

where ϒ stands for the digamma function, ϒ(z) = 	′(z)
	(z)

. Observing that
limα→0 Tβφ(u) = u

u+β , by passing to the limit in the previous identity we recover
the previous example.

Example 4.5 (The Lamperti-stable subordinator) Now let φ(u) = φ0(u) =
(αu)α, u ≥ 0, with 0 < α < 1. This example is treated by Bertoin and Yor in
[7]. They obtain

Iφ
(d)= e1e−α1 .
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Hence, with Tβφ(u) = u
u+β (α(u+ β))α , we get

ITβφ
(d)= G(β + 1)G(β + 1)−α.

4.2 The Spectrally Negative Case

Let us assume now that ξ is a spectrally negative Lévy process. We recall that if
E[ξ1] < 0, then there exits θ > 0 such that

E[eθξ1] = 1 (4.5)

and we write ψθ(u) = ψ(u + θ). We proceed by mentioning that, in this setting,
Bertoin and Yor [6] determined the law of Iψ by computing its negative entire
moments as follows. If ψ(0) = 0 and ψ ′(0+) > 0, then, for any integer n ≥ 1,

E[I−nψ ] = ψ ′(0+)
∏n−1

k=1 ψ(k)

	(n)
, (4.6)

with the convention that E[I−1
ψ ] = ψ ′(0+). Next, it is easily seen that the strong

Markov property for Lévy processes yields, for any a > 0,

Iψ
(d)=
∫ Ta

0
e−ξs ds + e−aI ′ψ

where Ta = inf{s > 0; ξs ≥ a} and I ′ψ is an independent copy of Iψ , see e.g. [35].
Consequently, Iψ is a positive self-decomposable random variable and thus its law
is absolutely continuous with an unimodal density, see Sato [36]. We still denote its
density by fψ . Before stating our next result, we introduce the so-called Erdélyi-
Kober operator of the first kind and we refer to the monograph of Kilbas et al. [19]
for background on fractional operators. It is defined, for a smooth function f, by

D
α,δf (x) = x−α−δ

	(δ)

∫ x

0
rα(x − r)δ−1f (r)dr, x > 0,

where Re(δ) > 0 and Re(α) > 0. Note that this operator can be expressed in terms
of the Markov kernel associated to a Beta random variable. Indeed, after performing
a change of variable, we obtain

D
α,δf (x) = 	(α + 1)

	(α + δ + 1)
E [f (B(α + 1, δ)x)]
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which motivates the following notation

Dα,δf (x) = 	(α + δ + 1)

	(α + 1)
D
α,δf (x). (4.7)

Theorem 4.6

(1) If ψ ′(0+) > 0, then for any β > 0, we have

fTβψ(x) =
x−βfψ(x)
E[I−βψ ]

, x > 0. (4.8)

In particular, Iψ is the length-biased distribution of IT1ψ .
(2) Assume that ψ ′(0+) < 0. Then, for any 0 < δ < θ , we have

ITδ,θ ψ
(d)= B−1(θ − δ, δ)Iψθ . (4.9)

This identity reads in terms of the Erdélyi-Kober operator as follows

fTδ,θ ψ (x) = Dθ−δ−1,δfψθ (x), x > 0.

In particular, we have

fTδ,θ ψ (x) ∼
	(θ)

	(δ)	(θ − δ)
E[I θ−δψθ

] xδ−θ−1 as x → ∞, (4.10)

(f (t) ∼ g(t) as t → a means that limt→a
f (t)
g(t)

= 1 for any a ∈ [0,∞]).
Combining the two previous results, we obtain, for any 0 < δ < θ and β ≥ 0,

fT β
δ,θ ψ

(x) = x−β

E[I−βTδ,θ ψ ]
Dθ−δ−1,δfψθ (x), x > 0

and

fT β
δ,θ ψ

(x) ∼ 	(θ)

	(θ − δ)	(δ)

E[I−βψθ
]

E[I θ−δψθ
] x

δ−θ−β−1 as x → ∞.

Proof We start by recalling the following identity due to Bertoin and Yor [2]

Iψ/Iφ
(d)= e−Me1

where φ(u) = ψ(u)/u, u ≥ 0, that is φ is the Laplace exponent of the ladder height
process of the dual Lévy process, M = supt≥0{−ξt } is the overall maximum of the
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dual Lévy process and the random variables are considered to be independent. Thus,
recalling that E[e−sM ] = ψ ′(0+)/φ(s), we have, for any s > 0,

E[I−(s+1)
ψ ] = ψ ′(0+)	(s + 2)

φ(s + 1)E[I s+1
φ ]

= ψ ′(0+)	(s + 1)

E[I sφ]

= ψ(s)

s
E[I−sψ ] (4.11)

where we have used the recurrence relationship satisfied by Iφ , see (4.3). Similarly
to the case of subordinators, we have, for any s > 0,

E[I−(s+1)
Tβψ ] = Tβψ(s)

s
E[I−sTβψ ]

= ψ(s + β)

s + β
E[I−sTβψ ]

and

E[I−(s+β+1)
ψ ] = ψ(s + β)

s + β
E[I−(s+β+1)

ψ ].

The first claim follows by invoking again uniqueness, in the space of Mellin
transform of positive random variables, of the solution of such a recurrence
equation, given for instance in the proof of [34, Theorem 2.4, p. 64]. Next, we
have both ψ ′

θ (0
+) > 0 and Tδ,θψ ′(0+) = θ−δ

θ
ψ ′
θ (0

+) > 0 as δ < θ . Thus, the
random variables Iψθ and ITδ,θ ψ are well defined. Moreover, from (4.6), we get, for
any integer n ≥ 1,

E[I−nTδ,θ ψ ] =
ψ ′(θ)(θ − δ)

θ

∏n−1
k=1 Tδ,θψ(k)

	(n)

= ψ ′(θ)(θ − δ)

θ

∏n−1
k=1

k+θ−δ
k+θ ψθ (k)

	(n)

= ψ ′(θ)	(n+ θ − δ)	(θ)

	(θ − δ)	(n + θ)

∏n−1
k=1 ψθ(k)

	(n)
.



A Transformation for Spectrally Negative Lévy Processes and Applications 171

The identity (4.9) follows by moments identification. Then, we use this identity to
get, for any x > 0,

fTδ,θ ψ (x) =
	(θ)

	(δ)	(θ − δ)

∫ 1

0
rθ−δ−1(1 − r)δ−1fψθ (xr)dr

= x−θ	(θ)
	(δ)	(θ − δ)

∫ x

0
uθ−δ−1(x − u)δ−1fψθ (u)du

= Dθ−δ−1,δf (x).

Next, we deduce readily from (4.11) that the mapping s �→ E[I−sψθ
] is analytic in the

right-half plane Re(s) > −θ . In particular, for any 0 < δ < θ , we have E[I θ−δψθ
] <

∞. Then, the large asymptotic behavior of the density is obtained by observing that

fTδ,θ ψ (x) =
xδ−θ−1	(θ)

	(δ)	(θ − δ)

∫ x

0
uθ−δ(1 − u/x)δ−1fψθ (u)du

∼ xδ−θ−1	(θ)

	(δ)	(θ − δ)

∫ ∞

0
uθ−δfψθ (u)du as x → ∞,

which completes the proof. ��
Example 4.7 (the spectrally negative Lamperti-stable process) Let us consider
the Lamperti-stable process, i.e., for 1 < α < 2,ψ(u) = ((α−1)(u−1))α, u ≥ 0.
Recall that ψ(1) = 0, ψ1(u) = ((α− 1)u)α and that this example is investigated by
Patie [28]. We get

E[I−nψ1
] = ψ ′(0+)	((α − 1)n+ 1)

	(α + 1)
.

Thus, Iψ1 = e−(α−1)
1 . Then, for any 0 < δ < 1,

ITδ,θ ψ
(d)= B(1 − δ, δ)−1e−(α−1)

1 ,

and for any β > 0

IT β
δ,θ ψ

(d)= B(1 + β − δ, δ)−1G(β + 1)−(α−1).

5 Entrance Laws and Intertwining Relations of pssMp

In this part, we show that the transformations Tδ,β appear in the study of the
entrance law of pssMps. Moreover, also they prove to be useful for the elaboration
of intertwining relations between the semigroups of spectrally negative pssMps. We
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recall that the Markov kernel � associated to the positive random variable V is the
multiplicative kernel defined, for a bounded Borelian function f , by

�f (x) = E[f (V x)].

Then, we say that two Markov semigroups Pt andQt are intertwined by the Markov
kernel � if

Pt� = �Qt, t ≥ 0. (5.1)

We refer to the two papers of Carmona et al. [11] and [13] for a very nice account of
intertwining relationships. In particular, they show, by means of the Beta-Gamma
algebra, that the semigroup of Bessel processes and the one of the so-called self-
similar saw tooth processes are intertwined by the Gamma kernel. Below, we
provide alternative examples of such relations for a large class of pssMps with
stability index 1. Recall that the latter processes were defined in Sect. 2. We also
mention that for any α > −1, δ > 0, the linear operator Dα,δ defined in (4.7) is an
instance of a Markov kernel which is, in this case, associated to the Beta random
variable B(α + 1, δ). In what follows, when X is associated through the Lamperti
mapping to a spectrally negative Lévy process with Laplace exponentψ , we denote
by P

ψ
t its corresponding semigroup. When min(ψ(0), ψ ′(0+)) < 0 and θ < 1,

then P
ψ
t stands for the semigroup of the unique recurrent extension leaving the

boundary point 0 continuously. Using the self-similarity property ofX, we introduce
the positive random variable defined, for any bounded borelian function f , by

P
ψ
t f (0) = E[f (tJψ)].

Recall that Bertoin and Yor [5] showed that, when ψ ′(0+) ≥ 0, the random
variable Jψ is moment-determinate with

E

[
J nψ

]
=
∏n

k=1 ψ(k)

	(n + 1)
, n = 1, 2 . . . (5.2)

Before stating the new intertwining relations, we provide some further infor-
mation concerning the entrance law of pssMps. In particular, we show that the
expression (5.2) of the integer moments still holds for the entrance law of the unique
continuous recurrent extension, i.e. when min

(
ψ(0), ψ ′(0+)

)
< 0 with θ < 1. We

emphasize that we consider both cases when the process X reaches 0 continuously
and by a jump.

Proposition 5.1 Let us assume that min
(
ψ(0), ψ ′(0+)

)
< 0 with θ < 1. Then, we

have the following identity in distribution

Jψ
(d)= B (1 − θ, θ) /IT1−θψθ

(5.3)
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where B(a, b) is taken independent of the random variable IT1−θψθ
. Moreover, the

entrance law of the unique recurrent extension which leaves 0 continuously a.s. is
determined by its positive entire moments as follows

E

[
J nψ

]
=
∏n

k=1 ψ(k)

	(n + 1)
, n = 1, 2 . . .

Proof We start by recalling that Rivero [35, Proposition 3] showed that the q-
potential of the entrance law of the continuous recurrent extension is given, for a
continuous function f , by

∫ ∞

0
e−qtE

[
f (tJψ)

]
dt = q−θ

Cθ

∫ ∞

0
f (u)E

[
e−quIψθ

]
u−θdu

where we have used the self-similarity property of X and set Cθ = 	(1 −
θ)E

[
I θ−1
ψθ

]
. Performing the change of variable t = uIψθ on the right hand side

of the previous identity, one gets

∫ ∞

0
e−qtE

[
f (tJψ)

]
dt = q−θ

Cθ

∫ ∞

0
e−qtE

[
f (tI−1

ψθ
)I θ−1
ψθ

]
t−θ dt.

Choosing f (x) = xs for some s ∈ iR the imaginary line, we get

∫ ∞

0
e−qt tsdt E[J sψ ] = 	 (s + 1) q−s−1

E[J sψ ]

where we have used the integral representation of the Gamma function 	(z) =∫∞
0 e−t tzdt,Re(z) > −1. Moreover, by performing a change of variable, we obtain

∫ ∞

0
tsE[e−qtIψθ ]t−1−θdt = q−s−θ−1	 (s − θ + 1)E[I−s+θ−1

ψθ
]. (5.4)

Putting the pieces together, we deduce that

E[J sψ ] =
	 (s − θ + 1)

	 (s + 1) 	
(
1 − θ

α

) E[I
−s+θ−1
ψθ

]
E[I θ−1

ψθ
] (5.5)
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and the proof of the first claim is completed by moments identification. Next, we
have

E

[
J nψ

]
= 	(n+ 1 − θ)

	(n+ 1)	(1 − θ)E
[
I θ−1
ψθ

]E [I−n+θ−1
ψθ

]

= 	(n+ 1 − θ)

	(n+ 1)	(1 − θ)
E

[
I−nT1−θ ψθ

]

= 	(n+ 1 − θ)

	(n+ 1)	(1 − θ)

ψ(1)

1 − θ

∏n−1
k=1

k
k+1−θ ψ(k + 1)

	(n)

= 	(n + 1 − θ)	(n)	(2 − θ)

	(n+ 1 − θ)	(n+ 1)	(1 − θ)

ψ(1)

1 − θ

∏n−1
k=1 ψ(k + 1)

	(n)

=
∏n

k=1 ψ(k)

	(n + 1)

where we have used, from the second identity, successively the identities (5.5), (4.8),
(4.6) and the recurrence relation of the gamma function. We point out that under the
condition θ < 1, ψ(k) > 0 for any integer k ≥ 1. The proof of the Proposition is
then completed. ��

Before stating our next result, we recall a criteria given by Carmona et al. [11,
Proposition 3.2] for establishing intertwining relations between pssMps. If f and
g are functions of C0(R

+), the space of continuous functions vanishing at infinity,
satisfying the condition:

∀t ≥ 0, Ptf (0) = Ptg(0) then f = g. (5.6)

Then the identity (5.1) is equivalent to the assertion, for all f ∈ C0(R
+),

P1�f (0) = Q1f (0).

Finally, we introduce the following notation, for any s ∈ C,

Mψ(s) = E

[
J is
ψ

]
.

Theorem 5.2

(1) Assume that ψ ′(0+) < 0 and Mψθ (s) �= 0 for any s ∈ R. Then, for any
δ < θ + 1, we have the following intertwining relationship

P
ψθ
t Dθ,δ = Dθ,δP

Tδ,θ ψ
t , t ≥ 0
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and the following factorization

JTδ,θ ψ
(d)= B(1 + θ − δ, δ)Jψθ (5.7)

holds.
(2) Assume that min

(
ψ(0), ψ ′(0+)

)
< 0 with θ < 1, MT−θψθ

(s) �= 0 for any

s ∈ R and that
(∫∞

0 e−θy�(dy + x)
)′

is a positive measure on R
−. Then, we

have the following intertwining relationship

P
T−θψθ
t D1,θ = D1,θP

ψ
t , t ≥ 0

and

Jψ
(d)= B(1 − θ, θ)JT−θψθ

.

(3) Finally, assume that ψ ′(0+) = 0 and Mψ(s) �= 0 for any s ∈ R. Then, for any
δ < 1, we have the following intertwining relationship

P
ψ
t D1,δ = D1,δP

Tδ,0ψ
t , t ≥ 0

and

JTδ,0ψ
(d)= B(1 − δ, δ)Jψ .

Proof First, from the self-similarity property, we observe easily that the condition
(5.6) is equivalent to the requirement that the kernel Mψθ associated to the positive
random variable Jψθ is injective. Since Mψθ (s) �= 0 for any s ∈ R, we deduce that
the multiplicative kernel Mψθ is indeed injective, see e.g. [8, Theorem 4.8.4]. Next,
note that ψ ′

θ (0
+) > 0 and under the condition δ < θ , Tδ,θψ ′(0+) > 0. Hence, from

(5.2), we deduce that, for any n ≥ 1,

E[J nTδ,θ ψ ] =
	(n + 1 + θ − δ)	(θ + 1)

	(1 + θ − δ)	(n+ θ + 1)
E[J nψθ

].

The identity (5.7) follows. Both processes being pssMps, the first intertwining
relation follows from the criteria given above. The proof of the Theorem is
completed by following similar lines of reasoning for the other claims. We simply
indicate that in the case (2), we note that if

e−θx
(∫ x

−∞
eθy�(dy)

)′
=
(∫ 0

−∞
eθy�(dy + x)

)′

is a positive measure on R
− then according to Proposition 2.2, T−θψθ is the Laplace

exponent of a spectrally negative Lévy process. ��
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A nice consequence of the previous result is some interesting relationships
between the eigenfunctions of the semigroups of pssMps. Indeed, it is easily seen
from the intertwining relation (5.1) that if a function f is an eigenfunction with
eigenvalue 1 of the semigroup Pt then �f is an eigenfunction with eigenvalue 1 of
the semigroup Qt . We proceed by introducing some notation taken from Patie [29].
Set a0(ψ) = 1 and define for non-negative integers n

an(ψ)
−1 =

n∏
k=1

ψ(k).

Next, we introduce the entire function Iψ which admits the series representation

Iψ(z) =
∞∑
n=0

an(ψ)z
n, z ∈ C.

In [29, Theorem 1], it is shown that

LψIψ(x) = Iψ(x), x > 0, (5.8)

where, for a smooth function f , the linear operator Lψ is the infinitesimal generator
associated to the semigroup Pψ

t and takes the form

Lψf (x) = σ

2
xf ′′(x)+ bf ′(x) + x−1

∫ ∞

0
f (e−r x)− f (x) + xf ′(x)rI{|r|<1}ν(dr) − κxf (x).

From the Feller property of the semigroup of X, we deduce readily that the identity
(5.8) is equivalent to

e−tPψ
t Iψ(x) = Iψ(x), t, x ≥ 0,

that is Iψ is 1-eigenfunction for Pψ
t . Hence, we deduce from Theorem 5.2 the

following interesting relationship between eigenfunctions.

Corollary 5.3

(1) Let ψ ′(0+) < 0. Then, for any δ < θ + 1, we have the following identity

Dθ,δIψθ (x) = ITδ,θ ψ (x).

(2) If ψ ′(0+) < 0 and θ < 1, then

D1,θIT−θψθ
(x) = Iψ(x).
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(3) Finally, if ψ ′(0+) = 0, then, for any δ < 1, we have

D1,δIψ(x) = ITδ,0ψ(x).

We illustrate this last result by detailing some interesting instances of such
relationships between some known special functions.

Example 5.4 (Mittag-Leffler type functions) Let us consider, for any 1 < α < 2,
the Laplace exponent ψ(u) = (α(u − 1/α))α . We easily check that θ = 1/α and
we have ψ1/α(u) = (αu)α . Observing that

n∏
k=1

ψ1/α(k) =
n∏

k=1

(αk)α = 	 (α(n+ 1))

	(α)
, n ≥ 1,

and using the fact that the random variable Jψθ is moment-determinate, we readily
check, from the expression (5.2), that

Mψθ (s) =
	(α(is + 1))

	(α)	(is + 1)

The pole of the gamma function being the negative integers, the condition
Mψθ (s) �= 0 is satisfied for any s ∈ R. Moreover, we obtain

Iψ1/α (x) = 	(α)Eα,α(x)

where we recall that the Mittag-Leffler function Eα,α is defined in the Example 3.2.
Next, for any δ < 1 + 1/α, we have

ITδ,1/αψ (x) =
	(α)	(1/α + 1 − δ)

	(1/α + 1)

∞∑
n=0

	(n + 1/α + 1)

	(n+ 1/α + 1 − δ)	(αn + α)
xn

= 2F2

(
(1, 1/α + 1), (1, 1)

(1, 1/α + 1 − δ), (α, α)

∣∣∣∣ x
)
,

where 2F2 is the Wright hypergeometric function, see e.g. Braaksma [9, Chap. 12].
Hence, we have

	(α)Dθ,δEα,α(x) = 2F2

(
(1, 1/α + 1), (1, 1)

(1, 1/α + 1 − δ), (α, α)

∣∣∣∣ x
)
.

Example 5.5 Now, for any 1 < α < 2, we set ψ(u) = uα and we note that
ψ ′(0+) = 0. Proceeding as in the previous example, we get

Mψ(s) = 	α−1(is + 1)
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and hence the condition Mψ(s) �= 0 is satisfied for any s ∈ R. We have

Iψ(x) =
∞∑
n=0

1

	α(n+ 1)
xn

and, for any δ < 1, we write

ITδ,0ψ(x) = 	(1 − δ)

∞∑
n=0

	(n+ 1)

	(n + 1 − δ)	α(n+ 1)
xn.

Consequently,

D1,δIψ(x) = ITδ,0ψ(x).
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First-Passage Times for Random Walks
in the Triangular Array Setting

Denis Denisov, Alexander Sakhanenko, and Vitali Wachtel

Abstract In this paper we continue our study of exit times for random walks with
independent but not necessarily identically distributed increments. Our paper “First-
passage times for random walks with non-identically distributed increments” (2018)
was devoted to the case when the random walk is constructed by a fixed sequence
of independent random variables which satisfies the classical Lindeberg condition.
Now we consider a more general situation when we have a triangular array of
independent random variables. Our main assumption is that the entries of every
row are uniformly bounded by a deterministic sequence, which tends to zero as the
number of the row increases.

Keywords Random walk · Triangular array · First-passage time · Central limit
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1 Introduction and the Main Result

1.1 Introduction

Suppose that for each n = 1, 2, . . . we are given independent random variables
X1,n, . . . , Xn,n such that

EXi,n = 0 for all i ≤ n and
n∑
i=1

EX2
i,n = 1. (1)

For each n we consider a random walk

Sk,n := X1,n + · · · +Xk,n, k = 1, 2, . . . , n. (2)

Let {gk,n}nk=1 be deterministic real numbers, and let

Tn := inf{k ≥ 1 : Sk,n ≤ gk,n} (3)

be the first crossing over the moving boundary {gk,n} by the random walk {Sk,n}. The
main purpose of the present paper is to study the asymptotic behaviour, as n → ∞,
of the probability

P(Tn > n) = P
(

min
1≤k≤n(Sk,n − gk,n) > 0

)
. (4)

We shall always assume that the boundary {gk,n} is of a small magnitude, that is,

g∗n := max
1≤k≤n |gk,n| → 0. (5)

Here and in what follows, all unspecified limits are taken with respect to n → ∞.
Furthermore, to avoid trivialities, we shall assume that

P(Tn > n) > 0 for all n ≥ 1. (6)

An important particular case of the triangular array scheme is given by the
following construction. LetX1,X2, . . . be independent random variables with finite
variances such that

EXi = 0 for all i ≥ 1 and B2
n :=

n∑
i=1

EX2
i → ∞. (7)
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For a real deterministic sequence {g1, g2, . . . } set

T := inf{k ≥ 1 : Sk ≤ gk}, where Sk := X1 + · · · +Xk. (8)

Stopping time T is the first crossing over the moving boundary {gk} by the random
walk {Sk}. Clearly, (7)–(8) is a particular case of (1), (2), and (3). Indeed to
obtain (1), (2), and (3) it is sufficient to set

Xk,n = Xk

Bn

, Sk,n = Sk

Bn

, gk,n = gk

Bn

. (9)

However, the triangular array scheme is much more general than (7), (8), and (9).
If the classical Lindeberg condition holds for the sequence {Xk} and gn = o(Bn)

then, according to Theorem 1 in [2],

P(T > n) ∼
√

2

π

U(B2
n)

Bn

, (10)

where U is a positive slowly varying function with the values

U(B2
n) = E[Sn − gn; T > n], n ≥ 1.

The constant
√

2
π

in front of the asymptotics has been inherited from the tail
asymptotics of exit time of standard Brownian motion. Indeed, let W(t) be the
standard Brownian motion and set

τbmx := inf{t > 0 : x +W(t) ≤ 0}, x > 0.

Then,

P(τ bmx > t) = P(|W(t)| ≤ x) = P
(
|W(1)| ≤ x√

t

)
∼
√

2

π

x√
t
, as

x√
t
→ 0.

The continuity of paths of W(t) implies that x+W(τbmx ) = 0. Combining this with
the optional stopping theorem, we obtain

x = E[x +W(τbmx ∧ t)] = E[x +W(t); τbmx > t)] + E[x +W(τbmx ); τbmx ≤ t)]
= E[x +W(t); τbmx > t)].

Therefore, for any fixed x > 0,

P(τ bmx > t) ∼
√

2

π

x√
t
=
√

2

π

E[x +W(t); τbmx > t)]√
t

, as t → ∞.

Thus, the right hand sides here and in (10) are of the same type.
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1.2 Main Result

The purpose of the present note is to generalise the asymptotic relation (10) to the
triangular array setting. More precisely, we are going to show that the following
relation holds

P(Tn > n) ∼
√

2

π
En, (11)

where

En := E[Sn,n − gn,n; Tn > n] = E[−STn,n; Tn ≤ n] − gn,nP(Tn > n). (12)

Unexpectedly for the authors, in contrast to the described above case of a single
sequence, the Lindeberg condition is not sufficient for the validity of (11), see
Example 6. Thus, one has to find a more restrictive condition for (11) to hold. In
this paper we show that (11) holds under the following assumption: there exists a
sequence rn such that

max
1≤i≤n |Xi,n| ≤ rn → 0. (13)

It is clear that under this assumption the triangular array satisfies the Lindeberg
condition and, hence, the Central Limit Theorem holds.

At first glance, (13) might look too restrictive. However we shall construct a
triangular array, see Example 7, in which the assumption (13) becomes necessary
for (11) to hold. Now we state our main result.

Theorem 1 Assume that (5) and (13) are valid. Then there exists an absolute
constant C1 such that

P(Tn > n) ≥
√

2

π
En

(
1 − C1(rn + g∗n)2/3). (14)

On the other hand, there exists an absolute constant C2 such that

P(Tn > n) ≤
√

2

π
En

(
1 + C2(rn + g∗n)2/3), if rn + g∗n ≤ 1/24. (15)

In addition, for m ≤ n,

P(Tn > m) ≤ 4En

B
(n)
m

(16)
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provided that

B(n)
m :=

(
m∑
k=1

EX2
k,n

)1/2

≥ 24(rn + g∗n).

Corollary 2 Under conditions (5), (6) and (13) relation (11) takes place.

Estimates (14) and (15) can be seen as an improved version of (11), with a rate
of convergence. Moreover, the fact, that the dependence on rn and gn is expressed
in a quite explicit way, is very important for our work [3] in progress, where we
analyse unbounded random variables. In this paper we consider first-passage times
of walks Sn = X1 + X2 + . . .+ Xn for which the central limit theorem is valid but
the Lindeberg condition may fail. We use Theorem 1 to analyse the behaviour of
triangular arrays obtained from {Xn} by truncation.

1.3 Triangular Arrays of Weighted Random Variables

Theorem 1 and Corollary 2 can be used in studying first-passage times of weighted
sums of independent random variables.

Suppose that we are given independent random variables X1,X2, . . . such that

EXi = 0 and P(|Xi | ≤ Mi) = 1 for all i ≥ 1, (17)

where M1,M2, . . . are deterministic. For each n we consider a random walk

Uk,n := u1,nX1 + · · · + uk,nXk, k = 1, 2, . . . , n, (18)

and let

τn := inf{k ≥ 1 : Uk,n ≤ Gk,n} (19)

be the first crossing over the moving boundary {Gk,n} by the random walk {Uk,n}.
The main purpose of the present subsection is to study the asymptotic behaviour, as
n → ∞, of the probability

P(τn > n) = P
(

min
1≤k≤n(Uk,n −Gk,n) > 0

)
. (20)

We suppose that {uk,n,Gk,n}nk=1 are deterministic real numbers such that

M := sup
k,n≥1

(|uk,n|Mk + |Gk,n|
)
< ∞ (21)
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and

σ 2
n :=

n∑
k=1

u2
k,nEX2

k → ∞. (22)

Moreover, we assume that

uk,n → uk and Gn,k → gk for every k ≥ 1. (23)

Corollary 3 Assume that the distribution functions of all Xk are continuous. Then,
under assumptions (17), (21), (22) and (23),

σnP(τn > n) →
√

2

π
E[−Uτ ] ∈ [0,∞), (24)

where

Uk := u1X1 + · · · + ukXk and τ := inf{k ≥ 1 : Uk ≤ gk}. (25)

It follows from condition (23) that random walks {Uk,n} introduced in (18) may
be considered as perturbations of the walk {Uk} defined in (25). Thus, we see from
(24) that the influence of perturbations on the behavior of the probability P(τn > n)

is concentrated in the σn.

Example 4 As an example we consider the following method of summation, which
has been suggested by Gaposhkin [4]. Let f : [0, 1] �→ R

+ be a non-degenerate
continuous function. For random variables {Xk} define

Uk(n, f ) :=
k∑

j=1

f

(
j

n

)
Xj, j = 1, 2, . . . , n.

This sequence can be seen as a stochastic integral of f with respect to the random
walk Sk = X1 +X2 + . . . Xk normalized by n.

We assume that the random variables {Xk} are independent and identically
distributed. Furthermore, we assume that X1 satisfies (17) and that its distribution
function is continuous. In this case

σ 2
n (f ) :=

1

n
EX2

1

n∑
j=1

f 2
(
j

n

)
→ σ 2(f ) := EX2

1

∫ 1

0
f 2(t)dt > 0.
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From Corollary 3 with uk,n := f
(
k
n

) → f (0) =: uk , Gk,n ≡ 0 and σn :=√
nσn(f ) we immediately obtain

√
nP
(

min
k≤n Uk(n, f ) > 0

)
→
√

2

π

f (0)

σ (f )
E[−Sτ ] ∈ [0,∞), (26)

where

Sk := X1 + · · · +Xk and τ := inf{k ≥ 1 : Sk ≤ 0}. (27)

3
Clearly, (26) gives one exact asymptotics only when f (0) > 0. The case

f (0) = 0 seems to be much more delicate. If f (0) = 0 then one needs an
information on the behaviour of f near zero. If, for example, f (t) = tα with some
α > 0 then, according to Example 12 in [2],

P
(

min
k≤n Uk(n, f ) > 0

)
= P

⎛
⎝min

k≤n

k∑
j=1

jαXj > 0

⎞
⎠ ∼ Const

nα+1/2 .

Now we give an example of application of our results to study of transition
phenomena.

Example 5 Consider an autoregressive sequence

Un(γ ) = γUn−1(γ )+Xn, n ≥ 0, n = 1, 2, . . . , where U0(γ ) = 0,
(28)

with a non-random γ = γn ∈ (0, 1) and with independent, identically distributed
innovations X1,X2, . . . . As in the previous example, we assume that X1 satisfies
(17) and that its distribution function is continuous. Consider the exit time

T (γ ) := inf{n ≥ 1 : Un(γ ) ≤ 0}.

We want to understand the behavior of the probability P(T (γ ) > n) in the case
when γ = γn depends on n and

γn ∈ (0, 1) and sup
n
n(1 − γn) < ∞. (29)

We now show that the autoregressive sequence Un(γ ) can be transformed to a
random walk, which satisfies the conditions of Corollary 3. First, multiplying (28)
by γ−n, we get

Un(γ )γ
−n = Un(γ )γ

−(n−1) +Xnγ
−n =

n∑
k=1

γ−kXk, n ≥ 1.
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Thus, for each n ≥ 1,

{T (γn) > n} =
⎧⎨
⎩

k∑
j=1

γ
−j
n Xj > 0 for all k ≤ n

⎫⎬
⎭ . (30)

Comparing (30) with (18) and (20), we see that we have a particular case of the
model in Corollary 3 with uk,n = γ−k

n and Gk,n = 0. Clearly, uk,n → 1 for every
fixed k. Furthermore, we infer from (29) that

γ−n
n = e−n logγn = eO(n|γn−1|) = eO(1)

and

σ 2
n (γn) :=

γ−2n
n − 1

1 − γ 2
n

= γ−2
n + γ−4

n + · · · + γ−2n
n = neO(1).

These relations imply that (23) and (21) are fulfilled. Applying Corollary 3, we
arrive at

σn(γn)P(T (γn) > n) →
√

2

πEX2
1

E[−Sτ ] ∈ (0,∞), (31)

where τ is defined in (27). 3

1.4 Discussion of the Assumption (13)

Based on the validity of CLT and considerations in [2] one can expect that the
Lindeberg condition will again be sufficient. However the following example shows
that this is not the case and the situation is more complicated.

Example 6 Let X2,X3, . . . and Y2, Y3, . . . be mutually independent random vari-
ables such that

EXk = EYk = 0, EX2
k = EY 2

k = 1 and P(|Xk| ≤ M) = 1 for all k ≥ 2
(32)

for some finite constant M . It is easy to see that the triangular array

X1,n := Yn√
n
, Xk,n := Xk√

n
, k = 2, 3, . . . , n; n > 1 (33)
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satisfies the Lindeberg condition. Indeed,
∑n

i=1 EX2
i,n = 1 and for every ε > M√

n

one has

n∑
i=1

E[X2
i,n; |Xi,n| > ε] = E[X2

1,n; |X1,n| > ε] ≤ EX2
1,n = EY 2

n

n
= 1

n
→ 0

(34)

due to the fact that |Xk,n| ≤ M√
n

for all k ≥ 2.
We shall also assume that gk,n ≡ 0. For each n > 1 let random variable Yn be

defined as follows

Yn :=

⎧⎪⎪⎨
⎪⎪⎩

Nn, with probability pn := 1
2N2

n
,

0, with probability 1 − 2pn,

−Nn, with probability pn,

(35)

where Nn ≥ 1. Note that EYn = 0 and EY 2
n = 1.

For every n > 1 we set

Un := X2 +X3 + . . .+Xn and Un := min
2≤i≤nUi. (36)

It is easy to see that

{Tn > n} = {Yn = Nn} ∩
{
Un > −Nn

}
.

Noting now that Un ≥ −(n− 1)M , we infer that

{Tn > n} = {Yn = Nn}, for any Nn > (n− 1)M. (37)

In this case we have

En = E[Sn,n; Tn > n] = E
[
Yn + Un√

n
; Yn = Nn

]

= P(Yn = Nn)E
[
Nn + Un√

n

]
= P(Yn = n)

Nn + EUn√
n

= P(Yn = n)
Nn√
n
. (38)

In particular, from (37) and (38) we conclude that

P(Tn > n) = P(Yn = n) = En

√
n

Nn

<
En

√
n

M(n− 1)
= o(En)

provided that Nn > (n− 1)M .
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This example shows that (11) can not hold for all triangular arrays satisfying the
Lindeberg condition. 3
We now construct an array, for which the assumption (13) becomes necessary for
the validity of (11).

Example 7 We consider again the model from the previous example and assume
additionally that the variables X2,X3, . . . have the Rademacher distribution, that
is,

P(Xk = ±1) = 1

2
.

Finally, in order to have random walks on lattices, we shall assume that Nn is a
natural number.

It is then clear that rn := Nn√
n

is the minimal deterministic number such that

max
k≤n |Xk,n| ≤ rn.

As in Example 6, we shall assume that gk,n ≡ 0.
In order to calculate En we note that

En = E[Sn,n; Tn > n] = P
(
X1,n = rn

)
E
[
rn + Un√

n
; rn + Un√

n
> 0

]

= P
(
X1,n = rn

) 1√
n

E
[
Nn + Un;Nn + Un > 0

]
.

It is well known that for m ≥ 1 the sequence (N + Um)1{N+Um>0} is a martingale
with U1 = U1 = 0. This implies that

E[N + Um;N + Um > 0] = N for all m,N ≥ 1.

Consequently,

En = pn
Nn√
n

= pnrn. (39)

Furthermore,

P(Tn > n) = P
(
X1,n = rn

)
P
(
Nn√
n

+ Un√
n
> 0

)
= pnP(Nn + Un > 0).

Using the reflection principle for the symmetric simple random walk, one can show
that

P
(
N + Um > 0

) = P(−N < Um ≤ N) for all m,N ≥ 1. (40)
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Consequently, P(Tn > n) = pnP(−Nn < Un ≤ Nn). Combining this equality with
(39), we obtain

P(Tn > n)

En

= 1

rn
P
(
−rn < Un√

n
≤ rn

)
. (41)

Using the central limit theorem, one obtains

P
(
−rn < Un√

n
≤ rn

)
∼ � (rn) , (42)

where

ϕ(u) := 1√
2π

e−u2/2 and �(x) := 2
∫ x+

0
ϕ(u)du. (43)

We will postpone the proof of (40) and (42) till the end of the paper. Assuming
that (40) and (42) are true, as a result we have

P(Tn > n)

En

∼ � (rn)

rn
.

Noting now that �(a)
a

< 2ϕ(0) =
√

2
π

for every a > 0, we conclude that the
assumption rn → 0 is necessary and sufficient for the validity of (11). More
precisely,

• P(Tn > n) ∼
√

2
π
En iff rn → 0;

• P(Tn > n) ∼ �(a)
a

En iff rn → a > 0;
• P(Tn > n) = o(En) iff rn → ∞.

3
These examples show that the standard asymptotic negligibility condition

max
k≤n P(|Xk,n| > rn) → 0 for some rn ↓ 0

is not sufficient for the validity of (11). (It is well known that this asymptotic
negligibility follows from the Lindeberg condition.) Our assumption (13) is a much
stronger version of the asymptotic negligibility. This fact leads to the question,
whether (11) holds under a weaker assumption. For example, one can consider
arrays satisfying

max
k≤n P(|Xk,n| ≥ rnx) ≤ P(ζ > x), Eζ 2 < ∞
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or

max
k≤n

E|Xk,n|3
EX2

k,n

≤ rn.

(We are grateful to the referee, who has suggested to consider the first of these
assumptions.) We shall try to answer this question in our future works. In the current
paper we are sticking to (13) for the following reasons. First, this assumption allows
us to obtain lower and upper bounds for P(Tn > n), see (14) and (15). These bounds
provide also a rate of convergence in (11). Another, even more important, feature of
these bounds is a very clear form: they contain only g∗n and rn. These estimates play
a crucial role in our ongoing project, where we consider exit times for random walks,
which belong to the domain of attraction of the Brownian motion but the Lindeberg
condition may fail. Second, the use of (13) allows us to give much simpler and
shorter proofs.

2 Proofs

In this section we are going to obtain estimates, which are valid for each fixed n.
For that reason we will sometimes omit the subscript n and introduce the following
simplified notation:

T := Tn, Xk := Xk,n, Sk := Sk,n, gk := gk,n, 1 ≤ k < n (44)

and

ρ := rn + g∗n, B2
k :=

k∑
i=1

EX2
i , B2

k,n := B2
n − B2

k = 1 − B2
k , 1 ≤ k < n.

(45)

2.1 Some Estimates in the Central Limit Theorem

For every integer 1 ≤ k ≤ n and every real y define

Zk := Sk − gk, Ẑk := Zk1{T > k} and Qk,n(y) := P
(
y + min

k≤j≤n(Zj − Zk) > 0
)
.

(46)
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Lemma 1 For all y ∈ R and for all 0 ≤ k < n with Bk,n > 0

∣∣∣∣Qk,n(y)−�
( y

Bk,n

)∣∣∣∣ ≤ C0ρ

Bk,n

1{y > 0}, (47)

where C0 is an absolute constant.

Proof For non-random real y define

qk,n(y) := P
(
y + min

k≤j≤n(Sj − Sk) > 0
)
, n > k ≥ 1. (48)

It follows from Corollary 1 in Arak [1] that there exists an absolute constant CA

such that

∣∣∣∣qk,n(y)− �
( y

Bk,n

)∣∣∣∣ ≤ CA

Bk,n

max
k<j≤n

E|Xj |3
EX2

j

≤ CArn

Bk,n

, (49)

where maximum is taken over all j satisfying EX2
j > 0. In the second step we have

used the inequality E|Xj |3 ≤ rnEX2
j which follows from (13).

We have from (46) that |Zk − Sk | = |gk| ≤ g∗n. Hence, for Qk,n and qk,n defined
in (46) and (48), we have

qk,n(y−) ≤ Qk,n(y) ≤ qk,n(y+), where y± := y ± 2g∗n. (50)

Then we obtain from (49) that

∣∣∣∣qk,n(y±)− �
( y±
Bk,n

)∣∣∣∣ ≤ CArn

Bk,n

. (51)

On the other hand, it is easy to see from (43) that

∣∣∣�
( y±
Bk,n

)
− �

( y

Bk,n

)∣∣∣ ≤ 2ϕ(0)|y± − y|
Bk,n

= 4ϕ(0)g∗n
Bk,n

.

Applying this inequality together with (50) and (51) we immediately obtain (47) for
y > 0 with C0 := CA+4ϕ(0). For y ≤ 0 inequality (47) immediately follows since
Qk,n(y) = 0 = �(y). ��
Lemma 2 If 1 ≤ m ≤ n, then

ES+
m ≥ 3

8
Bm − rn. (52)
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Moreover, for all m satisfying Bm ≥ 24(rn + g∗n) we have

P(T > m) ≤ 3
EẐm

Bm

. (53)

Proof We will use the following extension of the Berry-Esseen inequality due to
Tyurin [5]:

sup
x∈R

|P(Sm > x)− P(Bmη > x)| ≤ 0.5606

∑m
j=1 E|Xj |3
B3
m

≤ 0.5606
rn

Bm

,

when Bm > 0. Here η is a random variable that follows the standard normal
distribution. This inequality implies that, for every C > 0,

ES+
m =

∫ ∞

0
P(Sm > x)dx ≥

∫ CBm

0
P(Sm > x)dx

≥
∫ CBm

0

(
P(Bmη > x)− 0.5606

rn

Bm

)
dx = BmE(η+ ∧ C)− 0.5606Crn.

Further,

E(η+ ∧ C) =
∫ ∞

0
(x ∧ C)ϕ(x)dx =

∫ C

0
x

1

2π
e−x2/2dx + C

∫ ∞

C

ϕ(x)dx

= ϕ(0)− ϕ(C)+ C

∫ ∞

C

ϕ(x)dx.

Taking here C = 1/0.5606 and using tables of the standard normal distribution we
conclude that E(η+ ∧ C) > 0.375 > 3

8 and (52) holds.
Next, according to Lemma 25 in [2],

EZ+
mP(T > m) ≤ EẐm, 1 ≤ m ≤ n. (54)

Therefore, it remains to derive a lower bound for EZ+
m . We first note that

Sm = Zm + gm ≤ Z+
m + g+m ≤ Z+

m + g∗n.

Hence, S+
m ≤ Z+

m + g∗n and, taking into account (52), we get

EZ+
m ≥ ES+

m − g∗n ≥ 3

8
Bm − (rn + g∗n). (55)
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If m is such that Bm
24 ≥ rn + g∗n, then we infer from (54) and (55) that

EẐm ≥ EZ+
mP(T > m) ≥

(
3

8
Bm − (rn + g∗n)

)
P(T > n)

≥
(

3

8
− 1

24

)
BmP(T > m) = 1

3
BmP(T > m).

Thus, (53) is proven. ��

2.2 Estimates for Expectations of ̂Zk

Lemma 3 Let α be a stopping time such that 1 ≤ α ≤ l ≤ n with probability one.
Then

EẐα − EẐl ≤ 2g∗np(α, l) with p(α, l) := P(α < T, α < l). (56)

Moreover,

EẐα − EẐl ≥ E[XT ; α < T ≤ l] − 2g∗np(α, l) ≥ −(2g∗n + rn)p(α, l). (57)

In addition, the equality in (12) takes place.

Proof Define events

A1 := {α < T ≤ l} and A2 := {α < l < T }.

Then, clearly, {α < T, α < l} = A1 ∪ A2. Using Lemma 20 from [2], we obtain

EẐα + E[ST ; T ≤ α] = −E[gα; α < T ]
= −E[gα;A2] − E[gl; α = l < T ] − E[gα;A1],

EẐl + E[ST ; T ≤ l] = −E[gl; T > l] = −E[gl;A2] − E[gl; α = l < T ].
(58)

Thus,

EẐα − EẐl = E[ST − gα;A1] + E[gl − gα;A2]. (59)

Next, by the definition of T ,

gT ≥ ST = ST−1 +XT > gT−1 +XT .
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Hence,

E[ST − gα;A1] ≤ E[gT − gα;A1] ≤ 2g∗nP(A1)

and

E[ST − gα;A1] ≥ E[gT−1 − gα + XT ;A1]
≥ E[XT ;A1] − 2g∗nP(A1) ≥ −(2g∗n + rn)P(A1).

Furthermore,

|E[gn − gα;A2]| ≤ 2g∗nP(A2).

Plugging these estimates into (59), we arrive at desired bounds.
The equality in (12) follows from (58) with l = n. ��
For every h > 0 define

ν(h) := inf{k ≥ 1 : Sk ≥ gk + h} = inf{k ≥ 1 : Zk ≥ h}. (60)

Lemma 4 Suppose that m ≤ n is such that the inequality (53) takes place,

Bm ≥ 24g∗n and h ≥ 6g∗n. (61)

Then

2EẐν(h)∧m ≤ 3EẐm ≤ 4EẐn = 4En, P(Ẑν(h)∧m > 0) ≤ 'En, (62)

2'g∗nEn ≥ EẐν(h)∧m − En ≥ δ(h)− 2'g∗nEn, (63)

where

0 ≥ δ(h) := E[XT ; n ≥ T > ν(h) ∧m] ≥ −'rnEn and ' := 2

h
+ 4

Bm

.

(64)

In particular, (16) takes place.

Proof First, we apply Lemma 3 with l = m and α = ν(h) ∧ m. For this choice of
the stopping time one has

p(ν(h) ∧m,m) = P (ν(h) ∧m < T, ν(h) ∧m < m)

≤ P(Ẑν(h)∧m ≥ h) ≤ EẐν(h)∧m
h

.
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Plugging this bound into (56) and using the inequality h ≥ 6g∗n, we get

EẐν(h)∧m − EẐm ≤ 2g∗n
h

EẐν(h)∧m ≤ EẐν(h)∧m
3

and hence

2

3
EẐν(h)∧m ≤ EẐm. (65)

Next, we apply Lemma 3 with l = n and α = m. In this case
p(m, n) = P(T > m) and we may use (53). Substituting these estimates into (56)
and using (61), we obtain

EẐm − EẐn ≤ 2g∗nP(T > m) ≤ 6g∗n
Bm

EẐm ≤ 1

4
EẐm.

Therefore,

3

4
EẐm ≤ EẐn. (66)

We conclude from (65) and (66) that the first relation in (62) takes place. In
particular, from (53) and (66) we get that (16) holds under assumptions of Lemma 4.

At last, we are going to apply Lemma 3 with l = n > m and α = ν(h) ∧m. For
this choice of the stopping time one has

p(ν(h) ∧m,n) = P (T > ν(h) ∧m) = P(Ẑν(h)∧m > 0)

≤ P(Ẑν(h)∧m ≥ h)+ P (T > m)

≤ EẐν(h)∧m
h

+ 3EẐm

Bm

≤ 2En

h
+ 4En

Bm

= 'En. (67)

Plugging this bound into (56) and (57), we immediately obtain (63). The second
inequality in (62) also follows from (67); and using (13) together with (67) we
find (64).

Thus, all assertions of Lemma 4 are proved.

2.3 Proof of Theorem 1

According to the representation (36) in [2],

P(T > n) = E
[
Qν(h)∧m,n(Zν(h)∧m); T > ν(h) ∧m

]
= EQν(h)∧m,n(Ẑν(h)∧m). (68)
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Lemma 5 Suppose that all assumptions of Lemma 4 are fulfilled and that
Bm,n > 0. Then one has

∣∣∣∣P(T > n)− E�
( Ẑν(h)∧m
Bν(h)∧m,n

)∣∣∣∣ ≤ C0ρ

Bm,n

P(Ẑν(h)∧m > 0)

≤ 2ϕ(0)
1.3C0'ρEn

Bm,n

. (69)

In addition,

E�
( Ẑν(h)∧m
Bν(h)∧m,n

)
≤ 2ϕ(0)En(1 + 2'g∗n)

Bm,n

, (70)

E�
( Ẑν(h)∧m
Bν(h)∧m,n

)
≥ 2ϕ(0)En

(
1 − (rn + h)2

6
− 2'g∗n − 'rn

)
. (71)

Proof Using (47) with y = Ẑν(h)∧m, we obtain the first inequality in (69) as a
consequence of (68). The second inequality in (69) follows from (62).

Next, it has been shown in [2, p. 3328] that

2ϕ(0)a ≥ �(a) ≥ 2ϕ(0)a(1 − a2/6) for all a ≥ 0. (72)

Recall that 0 ≤ z := Ẑν(h)∧m ≤ rn + h and Bn = 1. Hence, by (72),

�
( z

Bν(h)∧m,n

)
≤ �

( z

Bm,n

)
≤ 2ϕ(0)z

Bm,n

, (73)

�
( z

Bν(h)∧m,n

)
≥ �

( z

Bn

)
≥ 2ϕ(0)z

Bn

(
1 − z2

6B2
n

)
≥ 2ϕ(0)z

(
1 − (rn + h)2

6

)
.

(74)

Taking mathematical expectations in (73) and (74) with z = Ẑν(h)∧m, we obtain:

2ϕ(0)EẐν(h)∧m
Bm,n

≥ E�
( Ẑν(h)∧m
Bν(h)∧m,n

)
≥ 2ϕ(0)EẐν(h)∧m

(
1 − (rn + h)2

6

)
. (75)

Now (70) and (71) follow from (75) together with (62) and (63).

Lemma 6 Assume that ρ ≤ 1/64. Then inequalities (14) and (15) take place with
some absolute constants C1 and C2.

Proof Set

m := min{j ≤ n : Bj ≥ 3

2
ρ1/3} and h := ρ1/3. (76)



First-Passage Times for Random Walks in the Triangular Array Setting 199

Noting that rn ≤ ρ ≤ ρ1/3/42 we obtain

B2
m = B2

m−1 + EX2
m <

(
3

2
ρ1/3

)2

+ r2
n ≤ 9

4
ρ2/3 + 1

46 <
1

7
. (77)

Consequently, B2
m,n = 1 − B2

m and we have from (76) that

B2
m,n >

6

7
, 24ρ ≤ 24

42 ρ
1/3 = 3

2
ρ1/3 ≤ Bm, 6gn <

6

42ρ
1/3 < ρ1/3 = h.

(78)

Thus, all assumptions of Lemmas 4 and 5 are satisfied. Hence, Lemma 5 implies
that

2ϕ(0)En(1 − ρ1 − ρ2 − 2'ρ) ≤ P(T > n), (79)

P(T > n) ≤ 2ϕ(0)En(1 + ρ1)(1 + 2'ρ)(1 + ρ3), (80)

where we used that 2g∗n + rn ≤ 2ρ and

ρ1 := 1.3C0'ρ, ρ2 := (rn + h)2

6
, ρ3 := 1

Bm,n

− 1. (81)

Now from (64) and (76) with ρ1/3 ≤ 1/4 we have

ρ' = 2ρ

h
+ 4ρ

Bm

≤ 2ρ2/3 + 4ρ2/3

3/2
< 4.7ρ2/3, rn + h ≤ 1

42ρ
1/3 + ρ1/3.

Then, by (77),

1

Bm,n

= Bm,n

B2
m,n

=
√

1 − B2
m

1 − B2
m

≤ 1 − B2
m/2

1 − B2
m

= 1 + B2
m

2B2
m,n

< 1 + 1.4ρ2/3.

So, these calculations and (81) yield

ρ1 < 5C0ρ
2/3, ρ2 < 0.2ρ2/3, ρ3 < 1.4ρ2/3, 2'ρ < 9.4ρ2/3. (82)

Substituting (82) into (79) we obtain (14) with any C1 ≥ 5C0 + 9.6. On the
other hand from (82) and (80) we may obtain (15) with a constant C2 which may be
calculated in the following way:

C2 = sup
ρ1/3≤1/4

[5C0(1 + 2'ρ)(1 + ρ3)+ 9.4(1 + ρ3)+ 1.4] < ∞.

��
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Thus, when ρ ≤ 1/43, the both assertions of Theorem 1 immediately follow
from Lemma 6. But if ρ > 1/43 then (15) is valid with any C1 ≥ 42 = 16 because
in this case right-hand side in (15) is negative.

Let us turn to the upper bound (15). If ρ ≤ 1
24 but ρ > 1

64 then (16) holds for
m = n; and as a result we have from (16) with any C2 ≥ 32/ϕ(0) that

P(Tn > n) ≤ 4En ≤ 43Enρ
2/3 ≤ 2ϕ(0)En(1 + C2ρ

2/3) for ρ1/3 > 1/4.

So, we have proved all assertions of Theorem 1 in all cases.

2.4 Proof of Corollary 3

In order to apply Corollary 2 we introduce the following triangular array:

Xj,n := uj,nXj

σn
, gj,n := Gj,n

σn
, 1 ≤ j ≤ n, n ≥ 1. (83)

The assumptions in (21) and (22) imply that the array introduced in (83) satisfies
(13) and (5). Thus,

P (τn > n) = P(Tn > n) ∼
√

2

π
E[Sn,n − gn,n; Tn > n]

=
√

2

π

(
E[Sn,n; Tn > n] − gn,nP(Tn > n)

)
.

Here we also used (12). Since gn,n → 0, we conclude that

P (τn > n) ∼
√

2

π
E[Sn,n; Tn > n].

Noting that Sn,n = Un,n/σn, we get

P (τn > n) ∼
√

2

π

1

σn
E[Un,n; τn > n]. (84)

By the optional stopping theorem,

E[Un,n; τn > n] = −E[Uτn,n; τn ≤ n].

It follows from (23) that, for every fixed k ≥ 1,

Uk,n → Uk a.s. (85)
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and, taking into account the continuity of distribution functions,

P(τn > k) = P(U1,n > G1,n, U2,n > G2,n, . . . , Uk,n > Gk,n)

→ P(U1 > g1, U2 > g2, . . . , Uk > gk) = P(τ > k). (86)

Obviously, (86) implies that

P(τn = k) → P(τ = k) for every k ≥ 1. (87)

Furthermore, it follows from the assumptions (17) and (21) that

|Uτn,n| ≤ M on the event {τn ≤ n}. (88)

Then, combining (85), (87) and (88), we conclude that

E[Uτn,n; τn ≤ k] =
k∑

j=1

E[Uj,n; τn = j ] →
k∑

j=1

E[Uj ; τ = j ] = E[Uτ ; τ ≤ k].
(89)

Note also that, by (88) and (86),

lim sup
n→∞

|E[Uτn,n; k < τn ≤ n]| ≤ M lim sup
n→∞

P(τn > k).

Therefore,

lim sup
n→∞

E[Uτn,n; τn ≤ n] ≤ lim sup
n→∞

E[Uτn,n; τn ≤ k] + lim sup
n→∞

|E[Uτn,n; k < τn ≤ n]|

= E[Uτ ; τ ≤ k] +MP(τ > k) (90)

and

lim inf
n→∞ E[Uτn,n; τn ≤ n] ≥ lim inf

n→∞ E[Uτn,n; τn ≤ k] − lim sup
n→∞

|E[Uτn,n; k < τn ≤ n]|

= E[Uτ ; τ ≤ k] −MP(τ > k). (91)

Letting k → ∞ in (90) and (91), and noting that τ is almost surely finite, we infer
that

E[Uτn,n; τn ≤ n] → E[Uτ ].

Consequently, by the optional stopping theorem,

E[Uτn,n; τn > n] = −E[Uτn,n; τn ≤ n] → E[−Uτ ].

Plugging this into (84), we obtain the desired result.
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2.5 Calculations Related to Example 7

Lemma 7 For the simple symmetric random walk {Um} one has

P
(
N + Um > 0

) = P(−N < Um ≤ N) for all m,N ≥ 1

and

sup
N≥1

∣∣∣∣P(−N < Un ≤ N)

�(N/
√
n)

− 1

∣∣∣∣→ 0.

Proof By the reflection principle for symmetric simple random walks,

P
(
N + Um = k,N + Um ≤ 0

) = P(Um = N + k) for every k ≥ 1.

Thus, by the symmetry of the random walk Um,

P
(
N + Um > 0, N + Um ≤ 0

) = P(Um < −N) = P(Um > N).

Therefore,

P
(
N + Um > 0

) = P (N + Um > 0)− P
(
N + Um > 0, N + Um ≤ 0

)
= P(Um > −N)− P(Um > N) = P(−N < Um ≤ N).

We now prove the second statement. Recall that Un is the sum of n − 1 inde-
pendent, Rademacher distributed random variables. By the central limit theorem,
Un/

√
n− 1 converges to the standard normal distribution. Therefore, Un/

√
n has

the same limit. This means that

ε2
n := sup

x>0
|P(−x√n < Un ≤ x

√
n)−�(x)| → 0.

Taking into account that �(x) increases, we conclude that, for every δ > 0,

sup
x≥δ

∣∣∣∣P(−x
√
n < Un ≤ x

√
n)

�(x)
− 1

∣∣∣∣ ≤ ε2
n

�(δ)
.

Choose here δ = εn. Noting that �(εn) ∼ 2ϕ(0)εn, we obtain

sup
N≥εn√n

∣∣∣∣P(−N < Un ≤ N)

�(N/
√
n)

− 1

∣∣∣∣ ≤ ε2
n

�(εn)
∼ εn

2ϕ(0)
→ 0.
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It remains to consider the case N ≤ εn
√
n. Here we shall use the local central

limit theorem. Since Un is 2-periodic,

sup
k: k≡n−1(mod2)

|√n− 1P(Un = k)− 2ϕ(k/
√
n− 1)| → 0.

Noting that

sup
k≤εn√n

|ϕ(k/√n− 1)− ϕ(0)| → 0,

we obtain

sup
N≤εn√n

∣∣∣∣∣
√
n− 1P(−N < Un ≤ N)

2ϕ(0)m(n,N)
− 1

∣∣∣∣∣→ 0,

where

m(n,N) = #{k ∈ (−N,N] : k ≡ n− 1(mod2)}.

Since the interval (−N,N] containsN even and N odd lattice points,m(n,N) = N

for all n, N ≥ 1. Consequently,

sup
N≤εn√n

∣∣∣∣∣
√
n− 1P(−N < Un ≤ N)

2ϕ(0)N
− 1

∣∣∣∣∣→ 0,

It remains now to notice that

�(N/
√
n) ∼ 2ϕ(0)N√

n

uniformly in N ≤ εn
√
n. ��
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On Local Times of Ornstein-Uhlenbeck
Processes

Nathalie Eisenbaum

Abstract We establish expressions of the local time process of an Ornstein-
Uhlenbeck process in terms of the local times on curves of a Brownian motion.

Keywords Local time · Ornstein-Uhlenbeck process

1 Introduction and Main Result

The purpose of this note is to provide expressions of the local time process of an
Ornstein-Uhlenbeck process in terms of the local times of a Brownian motion.
Indeed we have recently been confronted to the lack of such expression. More
precisely, we have recently solved a stochastic differential equation modeling
macrophage dynamics in atherosclerotic plaques [4]. The solution is a functional of
the local time process of an Ornstein-Uhlenbeck process and surprisingly we could
not find in the literature a tractable expression of this local time. Our contribution
below (Theorem 1.1) is based on the notion of local time on curves for Brownian
motion. Various definitions of this notion (see [1, 3, 5]) exist and all coincide. We
remind in Sect. 2, the ones that we need to establish Theorem 1.1. Theorem 1.1 is
established in Sect. 3. Finally in Sect. 4, we make some remarks on the asymptotic
behavior of the local time of the Ornstein-Uhlenbeck process.
Fix λ > 0. Let Y be an Ornstein-Uhlenbeck process solution of

Yt = y0 +Wt − λ

2

∫ t

0
Ysds, (1.1)

where (Wt , t ≥ 0) is a real Brownian motion starting from 0 and y0 a fixed real
number.
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Doob [2] has established the following expression for Y

(Yt , t ≥ 0) = (e−λt/2(Zu(t) + y0), t ≥ 0), (1.2)

where Z = (Zt , t ≥ 0) is a real Brownian motion starting from 0 and u(t) = eλt−1
λ

.
We will denote the local time process of Z by (Lx

t (Z), x ∈ IR, t ≥ 0).
As a continuous semimartingale Y admits a local time process (Ly

t (Y ), y ∈ IR, t ≥
0), satisfying the following occupation time formula ( [8] Chap VI - Corollary 1.6)

∫ t

0
f (Ys)ds =

∫
IR

f (y)L
y
t (Y )dy. (1.3)

Under the assumption that the Ornstein-Uhlenbeck process Y starts at 0, the
expression of its local time at 0 has already been noticed in [6]

(L0
t (Y ), t ≥ 0) = (

∫ eλt−1
λ

0

1√
1 + λs

dL0
s (Z), t ≥ 0).

In [6], the result is given without proof. In their introduction, the authors first
mention that the local time at 0 of a continuous semimartingale M = (ϕ(t)Zt )t≥0
with Z real Brownian motion starting from 0, is given by (L0

t (M))t≥0 =
(
∫ t

0 ϕ(s)dsL
0
s (Z))t≥0. This can be actually obtained as a consequence of the

extended occupation formula

∫ t

0
h(s, Zs)ds =

∫
IR

∫ t

0
h(s, x) dsL

x
s (Z) dx, (1.4)

where dsLx
s (Z) denotes integration with respect to the time variable.

Using (1.2), Y can be written under the form (Mu(t))t≥0, with u(t) = eλt−1
λ

and
ϕ(t) = 1√

1+λt . One then obtains immediately the expression of its local time at 0

L0
t (Y ) = L0

u(t)(M) =
∫ u(t)

0
ϕ(s)dsL

0
s (Z), t ≥ 0.

The problem is that this argument does not lead to a tractable expression of La
t (Y )

for a distinct from 0. The reason is that one has to deal with more general functional
ofZ than functionals of type

∫ t
0 h(s, Zs)ds. More precisely, the key notion to handle

La
t (Y ) is stochastic integration over the plane with respect to the local time process

(Lx
t (Z), x ∈ IR, t ≥ 0) as a doubly-indexed process. We give a brief exposure of

that notion in Sect. 2.
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Theorem 1.1 Fix a real number y0. The Ornstein-Uhlenbeck process Y starting
from y0, admits a local time process (Ly

t (Y ), y ∈ IR, t ≥ 0), related to the local
time process of Z, as follows

(La
t (Y ), a ∈ IR, t ≥ 0) = (

∫ eλt−1
λ

0

1√
1 + λs

dsL
Fa(.)
s (Z), a ∈ IR, t ≥ 0) (1.5)

where F : a → Fa is a functional from IR into the continuous path from IR+ into
IR, defined as follows

Fa(t) = a
√

1 + λt − y0,

and (LFa(.)
t (Z), t ≥ 0) denotes the local time process of Z along the curve Fa .

In particular, one has

(L0
t (Y ), t ≥ 0) = (

∫ eλt−1
λ

0

1√
1 + λs

dsL
−y0
s (Z), t ≥ 0).

Remark 1.2 Note that (1.5) is equivalent to

La
t (Y ) = a

∫ u(t)

0

1

Zs + y0
dsL

Fa(.)
s (Z).

Besides, to avoid integration with respect to (L
Fa(.)
t (Z), t ≥ 0), one can make an

integration by parts, and obtain

La
t (Y ) =

L
Fa(.)
u(t) (Z)

(1 + λu(t))1/2
+ λ/2

∫ u(t)

0
LFa(.)
s (Z)(1 + λs)−3/2ds, a ∈ IR, t ≥ 0.

(1.6)

Remark 1.3 As a diffusion, the Ornstein-Uhlenbeck process Y admits a bicontin-
uous local time � = (�xt (Y ), x ∈ IR, t ≥ 0) with respect to its speed measure m

(m(dy) = 2e− λ
2 y

2
dy). One obviously has

(�xt (Y ), x ∈ IR, t ≥ 0) = (
e
λ
2 x

2

2
Lx
t (Y ), x ∈ IR, t ≥ 0).

But � can also be related to the local time process of the Brownian motionW . Indeed
denote by (Lx

t (W), x ∈ IR, t ≥ 0) the local time process of W . For simplicity
assume that Y starts from 0. Following Orey [7], one obtains

(�xt (Y ), x ∈ IR, t ≥ 0) = (L
ρ(x)
β(t) (W), x ∈ IR, t ≥ 0),
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where ρ is the inverse of S the scale function of Y (S(x) = ∫ x
0 e

λ
2 y

2
dy, x ∈ IR) and

β is the inverse of the function α defined by

α(t) =
∫
IR

Lx
t (W)(m ◦ ρ)(dx) =

∫
IR

L
S(x)
t (W)m(dx).

One finally obtains

(La
t (Y ), a ∈ IR, t ≥ 0) = (2e−

λ
2 a

2
L
ρ(a)

β(t) (W), a ∈ IR, t ≥ 0). (1.7)

Some questions (as questions of stochastic structure) on the local time of Y might
be easier to handle using (1.7) than (1.5).

2 Local Times on Curves

Let Z be a real Brownian motion starting from 0. If one needs a local time of Z
along a deterministic measurable curve b = (b(t), t ≥ 0), the first idea that comes
to mind is to define it as follows

L
b(.)
t (Z) = lim

ε→0

1

2ε

∫ t

0
1[b(s)−ε,b(s)+ε](Zs)ds, (2.1)

which is precisely the definition introduced by Bass and Burdzy in [1]. They show
that the limit is uniform in t on compact sets, in L2.
When b is such that (Zt − b(t))t≥0 is a semi-martingale, then it admits a local
time process and in particular a local time process at 0 which is given by Tanaka’s
formula

L0
t (Z. − b(.)) = |Zt − b(t)| − |b(0)| −

∫ t

0
sgn(Zs − b(s))d(Zs − b(s)). (2.2)

As noticed in [1], in that case the two definitions (2.1) and (2.2) coincide a.s.

L
b(.)
t (Z) = L0

t (Z. − b(.)), t ≥ 0.

In [3], we have defined a local time for Z along any mesurable curve by using
integration with respect to local time over the plane. We first remind this notion
of integration of deterministic functions with respect to local time over the plane.
Consider the space H

H = {F : IR+ × IR → IR : ||F || < ∞},
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where the norm ||.|| is defined by

||F || = 2(
∫ ∞

0

∫
IR

F 2(s, x) exp(−x2

2s
)
dsdx√

2πs
)1/2 +

∫ ∞

0

∫
IR

|xF(s, x)| exp(−x2

2s
)
dsdx

s
√

2πs
.

For F elementary function i.e. such that there exist a finite sequence of IR+,
(si)1≤i≤n, and a finite sequence of IR, (xj )1≤j≤n, with

F(s, x) =
∑

1≤i,j≤n
F (si , xj )1[si ,si+1)(s)1[xj ,xj+1)(x),

one sets

∫ t

0

∫
IR

F (s, x)dLx
s =

∑
1≤i,j≤n

F (si , xj )(L
xj+1
si+1 − L

xj+1
si − L

xj
si+1 + L

xj
si ).

We have shown in [3] that for every F in H, and every sequence of ele-
mentary functions converging to F for the norm ||.||, (Fn)n≥0, the sequence
(
∫ t

0

∫
IR Fn(s, x)dL

x
s )n≥0 converges in L1 uniformly in t on compact sets. The limit

does not depend on the choice of the sequence (Fn) and represents

∫ t

0

∫
IR

F (s, x)dLx
s .

Moreover

IE[|
∫ t

0

∫
IR

F (s, x)dLx
s |] ≤ ||F ||. (2.3)

We remind that for every t > 0, the process (Zt−s, 0 ≤ s ≤ t) is a semimartingale.
Extending a result of [5], we have established in [3], that

∫ v

0

∫
IR

F (s, x)dLx
s =

∫ v

0
F(s, Zs)dZs +

∫ t

t−v
F (t − s, Zt−s)dZt−s, 0 ≤ v ≤ t .

(2.4)

We have also shown (Corollary 3.2 (ii) in [3]) that if ∂F
∂x
(s, x) exists, then

∫ t

0

∫
IR

F (s, x)dLx
s = −

∫ t

0

∂F

∂x
(s, Zs)ds. (2.5)

Finally, it has been established in [3] that for any measurable curve (b(s), s ≥ 0),
one has a.s.

(L
b(.)
t (Z), t ≥ 0) = (

∫ t

0

∫
IR

1{x<b(s)}dLx
s (Z), t ≥ 0). (2.6)
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Using (2.4), one obtains

(Lb(.)
v (Z), 0 ≤ v ≤ t) = (

∫ v

0
1{Zs<b(s)}dZs +

∫ t

t−v
1{Zt−s<b(t−s)}dZt−s , 0 ≤ v ≤ t).

3 Proof of Theorem 1.1

As a continuous semimartingale, the process Y admits a local time process
(L

y
t (Y ), y ∈ IR, t ≥ 0) which satisfies the occupation time formula (1.3). This local

time process admits a bicontinuous modification. Indeed, according to Theorem 1.7
in [8], the local time process of Y is a.s. continuous in t and cadlag in y with the
following discontinuities

L
y
t (Y )− L

y−
t (Y ) = −λ

2

∫ t

0
1(Ys=y)Ysds = −λy

2

∫ t

0
1(Ys=y)ds = 0,

using (1.3). We work with a bicontinuous modification of the local time process of
Y .
Using (1.2), we have

∫ t

0
f (Ys)ds =

∫ t

0
f (e−λs/2(Zu(s) + y0))ds =

∫ eλt−1
λ

0
f (

1√
1 + λu

(Zu + y0))
du

1 + λu
.

(3.1)

We now choose the function f : f (x) = fa,ε(x) = 1
2ε1[a−ε,a+ε](x).

On one hand, using the occupation time formula and the continuity of the local time
process of Y , a.s. for every t ≥ 0, every real a

lim
ε→0

∫ t

0
fa,ε(Ys)ds = La

t (Y ). (3.2)

On the other hand, defining the function Fa,ε on IR+ × IR by

Fa,ε(s, x) =
∫ ∞

x

1

2ε
1[a−ε,a+ε](

y + y0√
1 + λs

)
1

1 + λs
dy,

one notes that for every T > 0, the function Fa,ε(s, x)1[0,T ](s) belongs to H. Using
(2.5), one obtains

∫ eλt−1
λ

0
fa,ε(

1√
1 + λs

(Zs + y0))
ds

1 + λs
=
∫ eλt−1

λ

0

∫
IR

Fa,ε(s, x)dL
x
s (Z),
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where dLx
s (Z) refers to integration over the plane IR+ × IR wrt local times (see

Sect. 2).
For every T > 0, as ε tends to 0, the function Fa,ε(s, x)1[0,T ](s) converges for the
norm ||.|| to 1√

1+λs 1[x,+∞)(a
√

1 + λs − y0)1[0,T ](s). Hence, thanks to (2.3), one
obtains

∫ eλt−1
λ

0

∫
IR

Fa,ε(s, x)dL
x
s (Z)

tends in L1 as ε tends to 0, to

∫ eλt−1
λ

0

∫
IR

1√
1 + λs

1{x<a√1+λs−y0}dL
x
s (Z).

One easily shows that for any measurable bounded function h from IR+ into IR

∫ T

0
h(s)dsL

b(.)
s (Z) =

∫ T

0

∫
IR

h(s)1{x<b(s)}dLx
s (Z).

Consequently,
∫ eλt−1

λ

0

∫
IR Fa,ε(s, x)dL

x
s (Z) tends in L1 to

∫ eλt−1
λ

0

1√
1 + λs

dsL
Fa(.)
s (Z).

Hence, thanks to (3.1),
∫ t

0 fa,ε(Ys)ds tends to
∫ eλt−1

λ

0
1√

1+λs dsL
Fa(.)
s (Z) in L1

uniformly in t on compact sets. This is still true finite-dimensionnaly in a. Using
(3.2), one obtains then (1.5) by continuity arguments. �

4 Some Asymptotics of Local Times

Proposition 4.1 For Y Ornstein-Uhlenbeck process starting from any fixed real
number, the following properties hold for every real a.

(i) lim supt→∞
La
t (Y )

e
λt
2
√

log t
≤ 2

√
2
λ
a.s.

and in particular: lim supt→∞
L0
t (Y )

e
λt
2
√

log(t)
≤
√

2
λ
a.s.

(ii) lim supt→∞
La
t (Y )√
log t

≥
√

2
λ
a.s.



212 N. Eisenbaum

Proof Denote by y0 the starting point of Y . Since Fa(s) is an increasing continuous
function of s, M = (Zt − Fa(t), t ≥ 0) is a continuous semimartingale.
Consequently (2.2) leads to

L
Fa(.)
t (Z) = |Zt + y0 − a

√
1 + λt | − |a − y0| −

∫ t

0
sgn(Zs + y0 − a

√
1 + λs)dZs

+aλ

2

∫ t

0
sgn(Zs + y0 − a

√
1 + λs)

ds√
1 + λs

. (4.1)

Besides, Theorem 1.1 gives the following bounds

L
Fa(.)
u(t) (Z)√

1 + λu(t)
≤ La

t (Y ) ≤ L
Fa(.)
u(t) (Z). (4.2)

Set: H(t) = √
2t log2 t . One has: H(u(t)) ∼t→∞

√
2
λ
e
λt
2
√

log t .

(i) According to the well-known Strassen law of iterated logarithm [9], one has for
B real Brownian motion

lim sup
t→∞

Bt

H(t)
= 1 a.s. (4.3)

Applying it to the two Brownian motions Z and (
∫ t

0 sgn(Zs + y0 −
a
√

1 + λs)dZs)t≥0, one obtains immediately from (4.1):

lim supt→∞
L
Fa(.)
u(t)

e
λt
2
√

log t
≤ 2

√
2
λ

, which with the right hand inequality of (4.2)

leads to (i).
From (4.3) one easily deduces the following law of iterated logarithm for

local time: lim supt→∞
L
−y0
t (Z)

H(t)
= 1 a.s. It leads to: lim supt→∞

L
−y0
u(t)

(Z)

e
λt
2
√

log(t)
=

√
2
λ
a.s. Using the right hand inequality of (4.2) for a = 0, one obtains:

lim supt→∞
L0
t (Y )

e
λt
2
√

log(t)
≤
√

2
λ
a.s.

(ii) Using the left hand inequality of (4.2) one has: La
t (Y )√

2
λ

√
log t

≥ L
Fa(.)
u(t)

(Z)√
2
λ e

λt
2
√

log t
.

Besides, denoting by B the Brownian motion (− ∫ t0 sgn(Zs + y0 −
a
√

1 + λs)dZs, t ≥ 0), one obtains with (4.1)

lim sup
t→∞

L
Fa(.)
u(t) (Z)√

2
λ
e
λt
2
√

log t
≥ lim sup

t→∞
Bu(t)

H(u(t))
+ |Zu(t)|
H(u(t))

≥ lim sup
t→∞

Bu(t)

H(u(t))
= 1 a.s.,

which leads to the result. ��
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Two Continua of Embedded Regenerative
Sets

Steven N. Evans and Mehdi Ouaki

Abstract Given a two-sided real-valued Lévy process (Xt )t∈R, define processes
(Lt )t∈R and (Mt )t∈R by Lt := sup{h ∈ R : h − α(t − s) ≤ Xs for all s ≤ t} =
inf{Xs + α(t − s) : s ≤ t}, t ∈ R, and Mt := sup{h ∈ R : h − α|t − s| ≤
Xs for all s ∈ R} = inf{Xs + α|t − s| : s ∈ R}, t ∈ R. The corresponding contact
sets are the random sets Hα := {t ∈ R : Xt ∧ Xt− = Lt } and Zα := {t ∈ R :
Xt ∧Xt− = Mt }. For a fixed α > E[X1] (resp. α > |E[X1]|) the set Hα (resp. Zα)
is non-empty, closed, unbounded above and below, stationary, and regenerative. The
collections (Hα)α>E[X1] and (Zα)α>|E[X1]| are increasing in α and the regeneration
property is compatible with these inclusions in that each family is a continuum of
embedded regenerative sets in the sense of Bertoin. We show that (sup{t < 0 :
t ∈ Hα})α>E[X1] is a càdlàg, nondecreasing, pure jump process with independent
increments and determine the intensity measure of the associated Poisson process
of jumps. We obtain a similar result for (sup{t < 0 : t ∈ Zα})α>|β| when (Xt)t∈R is
a (two-sided) Brownian motion with drift β.

Keywords Lévy process · Fluctuation theory · Subordinator · Lipschitz
minorant

1 Introduction

Let X = (Xt )t∈R be a two-sided, real-valued Lévy process on a complete
probability space (�,F ,P). That is, X has càdlàg paths and stationary, independent
increments. Assume that X0 = 0. Let (Ft )t∈R be the natural filtration of X
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augmented by the P-null sets. Suppose that E[X+
1 ] < ∞ so that E[X1] is well-

defined (but possibly −∞).
For α > E[X1] define a process (Lt )t∈R by

Lt := sup{h ∈ R : h−α(t−s) ≤ Xs for all s ≤ t} = inf{Xs+α(t−s) : s ≤ t}, t ∈ R,

and set

Hα := {t ∈ R : Xt ∧Xt− = Lt }.

Equivalently,

Hα :=
{
t ∈ R : Xt ∧Xt− − αt = inf

u≤t(Xu − αu)

}
.

By the strong law of large numbers for Lévy processes (see, for example, [10,
Example 7.2])

lim
t→+∞

Xt

t
= lim

t→−∞
Xt

t
= E[X1] a.s.

so that

lim
t→+∞Xt − αt = −∞ a.s.

and

lim
t→−∞Xt − αt = +∞ a.s.

It follows from Lemma 7.1 below that Hα is almost surely a non-empty, closed set
that is unbounded above and below.

We show in Theorem 2.5 that Hα is a regenerative set in the sense of [8].
Moreover, we observe in Lemma 5.1 that

Hα1 ⊆ Hα2 ⊆ · · · ⊆ Hαn

for

E[X1] < α1 < α2 < · · · < αn.

In Sect. 4 we recall from [4] the notion of regenerative embeddings and establish
in Proposition 5.2 that these embeddings are regenerative. As a consequence, we
derive the following result which we prove in Sect. 5.
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Theorem 1.1 For α > E[X1] set

Gα := sup{t < 0 : t ∈ Hα}.

Then (Gα)α>E[X1] is a nondecreasing, càdlàg, pure jump process with independent
increments. The point process

{(α,Gα −Gα−) : Gα −Gα− > 0}

is a Poisson point process on (E[X1],∞)× (0,∞) with intensity measure

γ (dx × dt) = t−1
P

{
Xt

t
∈ dx

}
dt 1{t>0, x>E[X1]}.

The set Hα is obviously closely related to the ladder time

Rα :=
{
t ∈ R : Xt − αt = inf

u≤t(Xu − αu)

}

of the Lévy process (Xt − αt)t∈R. We clarify the connection with the following
result which is proved in Sect. 3.

Proposition 1.2 The following hold almost surely.

(i) Rα ⊆ Hα .
(ii) Rα is closed from the right.

(iii) cl(Rα) = Hα .
(iv) Hα \ Rα consists of points in Hα that are isolated on the right and so, in

particular, this set is countable.

Remark 1.3 The embedded regenerative sets structure for the sets Hα = Rα when
X is Brownian motion with drift has already been noted in [5] in relation to the
additive coalescent of Aldous and Pitman (see also [6]). This is further related to the
Burgers turbulence (see [11] and the references therein).

Given α > 0, denote by (Mt )t∈R be the α-Lipschitz minorant of the two-
sided Lévy process (Xt )t∈R; that is, t �→ Mt is the greatest α-Lipschitz function
dominated by t �→ Xt (our notation suppresses the dependence of M on α). We
refer the reader to [1] and [7] for extensive investigations of the Lipschitz minorant
of a Lévy process. The α-Lipschitz minorant exists if

E[|X1|] < ∞ and α > |E[X1]|
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and we suppose that these conditions hold when discussing (Mt )t∈R. Then,

Mt = sup{h ∈ R : h−α|t−s| ≤ Xs for all s ∈ R} = inf{Xs+α|t−s| : s ∈ R}, t ∈ R.

Set

Zα := {t ∈ R : Xt ∧Xt− = Mt }.

It is shown in [1][Theorem 2.6] that this set is closed, unbounded above and below,
stationary, and regenerative. We establish in Proposition 6.1 that

Zα1 ⊆ · · · ⊆ Zαn

for |E[X1]| < α1 < · · · < αn and that these embeddings are regenerative. As a
consequence, we derive the following result which is proved in Sect. 6.

Theorem 1.4 Suppose that (Xt )t∈R is a two-sided standard Brownian motion with
drift β For α > |β| set

Yα := sup{t < 0 : t ∈ Zα}.

Then (Yα)α>|β| is a nondecreasing, càdlàg, pure jump process with independent
increments. The point process

{(α, Yα − Yα−) : Yα − Yα− > 0}

is a Poisson point process on (|β|,∞)× (0,∞) with intensity measure

γ (ds × dr) = φ(
√
r

s−β )+ φ(
√
r

s+β )√
r

ds dr 1{s>|β|,r>0},

where φ(x) := e
− x2

2√
2π

, for x > 0.

2 Regenerative Sets

We introduce the notion of a regenerative set in the sense of [8]. For simplicity,
we specialize the definition by only considering random sets defined on probability
spaces (rather than general σ -finite measure spaces).

Notation 2.1 Let �↔ denote the class of closed subsets of R. For t ∈ R and ω↔ ∈
�↔, define

dt (ω
↔) := inf{s > t : s ∈ ω↔}, rt (ω

↔) := dt (ω
↔)− t,
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and

τt (ω
↔) := cl{s − t : s ∈ ω↔ ∩ (t,∞)} = cl ((ω↔ − t) ∩ (0,∞)) .

Here cl denotes closure and we adopt the convention inf ∅ = +∞. Note that t ∈ ω↔
if and only if lims↑t rs (ω↔) = 0, and so ω↔ ∩ (−∞, t] can be reconstructed from
rs(ω

↔), s ≤ t , for any t ∈ R. Set G↔ := σ {rs : s ∈ R} and G↔
t := σ {rs : s ≤ t}.

Clearly, (dt )t∈R is an increasing càdlàg process adapted to the filtration (G↔
t )t∈R,

and dt ≥ t for all t ∈ R.
Let �→ denote the class of closed subsets of R+. Define a σ -field G→ on �→ in

the same manner that the σ -field G↔ was defined on �↔.

Definition 2.2 A random closed set is a measurable mapping S from a measurable
space (�,F) into (�↔,G↔).

Definition 2.3 A probability measure Q
↔ on (�↔,G↔) is regenerative with

regeneration law Q
→ a probability measure on (�→,G→) if

(i) Q
↔{dt = +∞} = 0, for all t ∈ R;

(ii) for all t ∈ R and for all G→-measurable nonnegative functions F ,

Q
↔ [

F(τdt ) |G↔
t+
] = Q

→[F ], (2.1)

where we write Q↔[·] and Q
→[·] for expectations with respect to Q

↔ and Q
→.

A random set S defined on a probability space (�,F ,P) is a regenerative set if
the push-forward of P by the map S (that is, the distribution of S) is a regenerative
probability measure.

Remark 2.4 Suppose that the probability measure Q
↔ on (�↔,G↔) is stationary;

that is, if S↔ is the identity map on�↔, then the random set S↔ on (�↔,G↔,Q↔)

has the same distribution as u+ S↔ for any u ∈ R or, equivalently, that the process
(rt )t∈R has the same distribution as (rt−u)t∈R for any u ∈ R. Then, in order to check
conditions (i) and (ii) of Definition 2.3, it suffices to check them for the case t = 0.

Theorem 2.5 The random set Hα is stationary and regenerative.

Proof We first show that Hα is stationary. Let a ∈ R. Define the process
(X

(a)
t )t∈R := (Xt−a − X−a)t∈R. This process is a Lèvy process that has the same

distribution as (Xt)t∈R, and we have

t ∈ HX
α + a ⇔ t − a ∈ HX

α

⇔ Xt−a ∧X(t−a)− − α(t − a) = inf
u≤t−a(Xu − αu)

⇔ Xt−a ∧X(t−a)− −X−a − α(t − a) = inf
u≤t (Xu−a −X−a − α(u− a))

⇔ X
(a)
t ∧X

(a)
t− − αt = inf

u≤t (X
(a)
u − αu)

⇔ t ∈ HX(a)

α .
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Hence, HX
α + a = HX(a)

α
d=HX

α for all a ∈ R, and the stationarity is proved.
Now, because of Remark 2.4, to prove the regeneration property it suffices to

check that conditions (i) and (ii) of Definition 2.3 hold for t = 0. As pointed out in
the Introduction, the random set Hα is almost surely unbounded from above, hence
condition (i) is verified.

For t ∈ R introduce the random times

Dt := inf{s > t : s ∈ Hα} = inf

{
s > t : Xs ∧Xs− − αs = inf

u≤s(Xu − αu)

}

and put

Rt := Dt − t .

It is clear from the début theorem that D := D0 is a stopping time with respect to
the filtration (Ft )t∈R. To prove condition (ii), it suffices to show that the random set

τD(Hα) = cl
{
t > 0 : Xt+D ∧X(t+D)− − α(t +D) = inf

u≤t+D(Xu − αu)

}

is independent of the σ -field
⋂

ε>0 σ {Rs : s ≤ ε}.
We shall prove first that

⋂
ε>0

σ {Rs : s ≤ ε} ⊆ FD. (2.2)

It is clear that

⋂
ε>0

σ {Rs : s ≤ ε} ⊆
⋂
n∈N

FD 1
n

. (2.3)

Moreover, for a sequence of nonincreasing stopping times Tn converging almost
surely to a stopping time T , we have

⋂
n∈N

FTn = FT . (2.4)

To see this, take ε > 0 and consider a random variable Z that is
⋂

n∈N FTn–
measurable. We have almost surely the convergence Z1{Tn≤T+ε} → Z. Note that
Z1{Tn≤T+ε} is FT+ε–measurable. Thus Z is FT+ε–measurable. It follows from the
strong Markov property and the Blumenthal zero–one law that

⋂
ε>0

FT+ε = FT

and so Z is FT –measurable.
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In order to establish (2.2), it follows from (2.3) and (2.4) that it is enough to
conclude that

D+ := lim
n→∞D 1

n
= D, a.s. (2.5)

To see this, suppose to the contrary that P{D < D+} > 0. We claim that D > 0 on
the event {D < D+}. This is so, because on the event {0 = D < D+} the point 0 is
a right accumulation point of Hα and then D 1

n
must converge to zero, which is not

possible. On the event {0 < D} we have that D+ ≤ D 1
N

≤ D as soon as N is large

enough so that 1
N
< D. Thus, P{D < D+} = 0 and (2.5) holds, implying that (2.2)

also holds.
With (2.2) in hand, it is enough to prove that the set τD(Hα) is independent of

FD . Observe that

τD(Hα) = cl
{
t > 0 : Xt+D ∧X(t+D)− −XD − αt

= (XD ∧XD− −XD) ∧ inf
0≤u≤t(Xu+D −XD − αu)

}
.

Because D is a stopping time, the process (Xt+D − XD)t≥0 is independent of FD .
It therefore suffices to prove that XD ≤ XD− a.s.

Suppose that the event {XD > XD−} has positive probability. Because X0 =
X0− almost surely, D > 0 on this event.

Introduce the nondecreasing sequence (D(n))n∈N of stopping times

D(n) := inf

{
t > 0 : Xt ∧Xt− − αt ≤ inf

u≤t(Xu − αu)+ 1

n

}

and put D(∞) := supn∈ND(n). By Lemma 7.1,

D = inf

{
t > 0 : Xt ∧Xt− − αt ≤ inf

u≤t(Xu − αu)

}
,

and so D(∞) ≤ D. Because X has càdlàg paths, for all n ∈ N we have that
XD(n) ∧XD(n)−−αD(n) ≤ infu≤D(n) (Xu−αu)+ 1

n
. Sending n to infinity and again

using the fact that X has càdlàg paths, we get that XD(∞) ∧ XD(∞)− − αD(∞) ≤
infu≤D(∞)(Xu − αu), and so D(∞) ∈ Hα . By definition of D, we conclude that
D(∞) = D.

Set N := inf{n ∈ N : D(n) = D} with the usual convention that inf∅ = ∞.
Suppose we are on the event {XD > XD−} ∩ {N < ∞}. Recall that D > 0 on this
event. For all 0 < s < D we have that Xs∧Xs−−αs > infu≤s(Xu−αu)+ 1

N
so by

sending s ↑ D we get that: XD− −αD ≥ infu≤D(Xu−αu)+ 1
N

, which contradicts
XD− < XD . Hence N = ∞ almost surely on the event {XD > XD−} and so
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D(n) < D for all n ∈ N on the event {XD > XD−}. By the quasi-left continuity of
X we thus have on the event {XD > XD−} that

XD− = lim
n→∞XD(n) = XD, a.s.

Therefore P{XD > XD−} = 0 as claimed. ��

3 Relationship with the Set of Ladder Times

Proof of Proposition 1.2 (i) If t ∈ Rα , then Xt − αt = infu≤t (Xu − αu) and so
Xt ∧Xt− − αt ≤ infu≤t (Xu − αu). It follows from Lemma 7.1 that t ∈ Hα .

(ii) Because the process (Xt )t∈R is right-continuous, it is clear that Rα is closed
from the right; that is, for every sequence tn ↓ t such that tn ∈ Rα we have
t ∈ Rα .

(iii) As the set Hα is closed and Rα ⊆ Hα we certainly have cl(Rα) ⊆ Hα . We
showed in the proof of Theorem 2.5 that XD ≤ XD− a.s. and so D ∈ Rα a.s.
By stationarity, Dt ∈ Rα a.s. for any t ∈ R. Therefore, almost surely for all
r ∈ Q we have Dr ∈ Rα . Suppose that t ∈ Hα. Take a sequence of rationals
{rn}n∈N such that rn ↑ t . Then, for all n ∈ N, we have rn ≤ Drn ≤ t and
Drn ∈ Rα . It follows that t ∈ cl(Rα) and so cl(Rα) = Hα.

(iv) Take t ∈ Hα that is not isolated on the right so that there exists a sequence
{tn}n∈N of point in Hα such that tn ↓ t and tn > t . Consider a sequence
(rn)n∈N of rational numbers such that for every n ∈ N we have t ≤ rn ≤ tn.
We then have t ≤ rn ≤ Drn ≤ tn. Thus, Drn ↓ t and, as we have already
observed, Drn ∈ Rα for all n ∈ N. Since Rα is closed from the right, we must
have t ∈ Rα . Finally, as the set of points isolated on the right is countable, the
set Hα \Rα consists of at most countably many points. ��

Remark 3.1 The ladder time set Rα has been thoroughly studied in the fluctuation
theory of Lévy processes. From Proposition VI.1 in [2], we know that the process
(Xt − αt − infu≤t {Xu − αu})t∈R is a strong Markov process with cádlág paths and
hence, by the strong Markov property, the closure of its zero set is a regenerative set
in the sense of the Definition 2.3. This result together with Proposition 1.2 proves
that Hα = cl(Rα) is a regenerative set.

4 Regenerative Embedding Generalities

We recall the notion of a regenerative embedding of a sequence of regenerative sets
from [4]. We modify it slightly to encompass the whole real line instead of the set
of nonnegative real numbers. For ease of notation we restrict our definition to the
case of two sets. The generalization to a greater number of sets is straightforward.
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Definition 4.1 Recall that �↔ is the set of closed subsets of R and that �→ is the
set of closed subsets of R+). Set

�̄ := {ω = (ω(1), ω(2)) ∈ �↔ ×�↔ : ω(1) ⊆ ω(2)}.

and

�̄→ := {ω = (ω(1), ω(2)) ∈ �→ ×�→ : ω(1) ⊆ ω(2)}.

Write M(1)(ω) = ω(1) and M(2)(ω) = ω(2) for the canonical projections on �̄,
M = (M(1),M(2)). For t ∈ R put

d
(1)
t (ω) = dt(ω

(1))

and, with a slight abuse of notation,

τt (ω) = (τt (ω
(1)), τt (ω

(2))).

Denote by Gt the sigma-field generated by d
(1)
t , M(1) ∩ (−∞, d

(1)
t ], and M(2) ∩

(−∞, d
(1)
t ]. It is easy to check that (Gt )t∈R is a filtration. A probability measure P

is called a regenerative embedding law with regeneration law P→ if for each t ∈ R

and each bounded measurable function f : �̄→ → R

P[f (M ◦ τ
d
(1)
t
) |Gt ] = P→[f (M)] on {d(1)t < ∞}. (4.1)

We denote such an embedding by the notation M(1) ≺ M(2).

Remark 4.2

(i) If under the probability measure P , the canonical pair (M1,M2) of random sets
is jointly stationary, in the sense that for all t ∈ R the pair (M1 + t,M2 + t)

has the same distribution as (M1,M2), then to check that there is a regenerative
embedding it suffices to verify (4.1) for t = 0.

(ii) A similar definition holds for subsets of R+ that contain zero almost surely,
which is the version present in [4].

The following theorem follows straightforwardly from the results in [4].

Theorem 4.3 Let:

S(1) ≺ S(2) ≺ . . .S(n)

be a jointly stationary sequence of subsets of R that are regeneratively embedded in
the sense of the Definition 4.1. Let �i be the Laplace exponent of the subordinator
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associated with each S(i). Introduce the measures μ1, . . . , μn on R+, defined by
their Laplace transforms

∫
R+

e−λx μi(dx) := �i(λ)

�i+1(λ)
, λ > 0, 1 ≤ i ≤ n,

where we adopt the convention �n+1(λ) := λ, λ > 0. Put

ci := 1

μi(R+)
= lim

λ↓0

�i+1(λ)

�i(λ)
, 1 ≤ i ≤ n.

Define the age processes Ai
t for each set S(i) by

Ai
t := inf{s ≥ 0 : t − s ∈ S(i)}.

Then, for any t ∈ R,

(A1
t − A2

t , . . . , A
n−1
t − An

t ,A
n
t )

d= c1μ1 ⊗ c2μ2 ⊗ · · · ⊗ cnμn.

Remark 4.4 We elaborate here on the relationship between subordinators and
regenerative sets. If (σt )t≥0 is a subordinator (i.e an increasing Lévy process) then
the closure of its range cl{σt : t ≥ 0} has the distribution of a regeneration law
on (�→,G→). Conversely, if S is a regenerative set and we define S→ := τd0(S).
There exists a continuous nondecreasing process (Ls)s≥0 which increases exactly
on S→. We call L the local time on S. Its right continuous inverse defined by
σt = inf{s ≥ 0 : Ls > t} is a subordinator, and S→ coincides almost surely
with the closed range of σ .

Remark 4.5 If S(1) and S(2) are regenerative sets in the sense of the Definition 2.3
such that almost surely S(1) ⊆ S(2), and �1 (resp �2) is the Laplace exponent
of the subordinator associated with S(1) (resp S(2)). Then from a result of Bertoin
(see Theorem 1 in [3]), we have that S(1) ≺ S(2) iff �1

�2
is a completely monotone

function. As any completely monotone function is a Laplace transform of a
nonnegative measure, that proves the existence of the measures μi in the statement
of Theorem 4.3.

5 A Continuous Family of Embedded Regenerative Sets

For this section, we suppose that X has a Brownian component or infinite Lévy
measure. That is, we suppose that X is not a compound Poisson process with
drift. The latter case is trivial to study.
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Lemma 5.1 For

E[X1] < α1 < α2 < · · · < αn.

we have

Hα1 ⊆ Hα2 ⊆ · · · ⊆ Hαn.

Proof By part (i) of Lemma 7.1,

Hα :=
{
t ∈ R : Xt ∧Xt− − αt ≤ inf

u≤t(Xu − αu)

}
.

Hence, if E[X1] < α′ < α′′, t ∈ Hα′ , and u ≤ t , then

Xt ∧Xt− − α′′t ≤ Xu − α′u− (α′′ − α′)t ≤ Xu − α′u− (α′′ − α′)u = Xu − α′′u,

so that t ∈ Hα′′ . Thus Hα′ ⊆ Hα′′ for E[X1] < α′ < α′′.

Proposition 5.2 For E[X1] < α1 < α2 < · · · < αn we have

Hα1 ≺ Hα2 ≺ · · · ≺ Hαn .

��
Proof For ease of notation, we restrict our proof to the case n = 2.

By Lemma 5.1 we have Hα1 ⊆ Hα2 when E[X1] < α1 < α2.
By stationarity, we only need to verify (4.1) for t = 0. It is clear that

D
(1)
0 := inf

{
s > 0 : Xs ∧Xs− − α1s = inf

u≤s(Xu − α1u)

}

is an (Ft )t∈R-stopping time. From the proof of Theorem 2.5, we have that almost
surely

X
D
(1)
0

≤ X
D
(1)
0 −.

Now D
(1)
0 ∈ Hα2 and hence

Hαi ◦ τD(1)
0

= cl
{
s > 0 :X

s+D(1)
0

∧X
s+D(1)

0 − −X
D
(1)
0

− αis

= inf
u≤s

(
X
u+D(1)

0
−X

D
(1)
0

− αiu
) }
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for i = 1, 2. Now each of D(1)
0 , Hα1 ∩(−∞,D

(1)
0 ], and Hα2 ∩(−∞,D

(1)
0 ] is F

D
(1)
0

–

measurable, so it remains to note that (X
s+D(1)

0
−X

D
(1)
0
)s≥0 is independent of F

D
(1)
0

.
��

Proof of Theorem 1.1 It is clear that G is nondecreasing.
As for the right-continuity, consider β > E[X1] and a sequence {βn}n∈N with

βn ↓ β and βn > β. Suppose that Gβ+ := limn→∞Gβn > Gβ . For any u ≤
Gβ+ ≤ Gβn we have

XGβn
∧XGβn− − βnGβn ≤ Xu − βnu.

Taking the limit as n goes to infinity gives

XGβ+ − βGβ+ ≤ Xu − βu

and hence

XGβ+ ∧XGβ+− − βGβ+ ≤ Xu − βu.

It follows from Lemma 7.1 that Gβ < Gβ+ ∈ Hβ , but this contradicts the definition
of Gβ .

Corollary VI.10 in [2] gives that the Laplace exponent of the subordinator
associated with the ladder time set of the process (αt − Xt)t≥0 (the subordinator
is the right-continuous inverse of the local time associated with this set) is

�α(λ) = exp

(∫ ∞

0
(e−t − e−λt)t−1

P{Xt ≥ αt}dt
)
.

Fix E[X1] < α1 < α2 < · · · < αn. Introduce the measures μ1, . . . , μn on R+,
defined by their Laplace transforms

∫
R+

e−λx μi(dx) := �αi (λ)

�αi+1(λ)
, λ > 0, 1 ≤ i ≤ n,

where we adopt the convention �αn+1(λ) := λ, λ > 0. Put

ci := 1

μi(R+)
= lim

λ↓0

�αi+1(λ)

�αi (λ)
, 1 ≤ i ≤ n.
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Set νi = ciμi , 1 ≤ i ≤ n, so that

∫
R+

e−λx νi(dx)

= exp

(
−
∫ ∞

0
(1 − e−λt)t−1

P{αit ≤ Xt ≤ αi+1t} dt
)
, 1 ≤ i ≤ n− 1,

(5.1)

and

∫
R+

e−λx νi(dx) = exp

(
−
∫ ∞

0
(1 − e−λt)t−1

P{Xt ≥ αnt} dt
)
. (5.2)

Then, by Theorem 4.3,

(Gα2 −Gα1, . . . ,Gαn −Gαn−1,−Gαn)
d= ν1 ⊗ ν2 ⊗ · · · ⊗ νn.

It follows that the processG has independent increments and that limα→∞Gα =
0 almost surely. That (Gα)α>E[X1] is a pure jump process (that is, the process is
a sum of its jumps and there is no deterministic drift component) along with the
Poisson description of {(α,Gα−Gα−) : Gα−Gα− > 0} follows from (5.1), (5.2),
and standard Lévy–Khinchin–Itô theory: for example, from [9, p 146], the process
(Gα)α>E[X1] can be written as:

Gα = −
∫ ∞

0
lp([α,∞)× dl)

where p is a Poisson random measure with intensity measure γ . ��
Remark 5.3 Taking the concatenation of the lines with slopes α between Gα and
Gα− for every jump time α constructs the graph of the convex minorant of the Lévy
process (−Xt−)t≥0. The conclusion of Theorem 1.1 thus agrees with the study of
the convex minorant of a Lévy process carried out in [12].

6 Another Continuous Family of Embedded Regenerative
Sets

Proposition 6.1 For |E[X1]| < α1 < · · · < αn, we have that

Zα1 ≺ · · · ≺ Zαn .

Proof We shall just prove the result for the case n = 2. It is very clear that Zα1 ⊆
Zα2 , as any α1-Lipschitz function is also an α2-Lipschitz function. Moreover, the
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sets (Zα1,Zα2) are obviously jointly stationary, and thus it suffices to check the
independence condition for t = 0. Note that Dα1 ∈ Zα2 . Using [7, Lemma 7.2]
gives that

(Zα1 ◦ τDα1
,Zα2 ◦ τDα1

)

is measurable with respect to σ {Xt+Dα1
−XDα1

: t ≥ 0}. The same argument yields

G0 = σ {Zα1 ∩ (−∞,Dα1],Zα2 ∩ (−∞,Dα1]} ⊆ σ {Xt : t ≤ Dα1}

An appeal to [7, Theorem 3.5] completes the proof. ��
Proof of Theorem 1.4 As in the proof of Theorem 1.1, it is clear that the process
(Yα)α>|β| is nondecreasing and has independent increments. We leave to the reader
the straightforward proof of that this process is càdlàg.

We compute the Laplace exponent �α of the subordinator associated with the
regenerative set Zα . From [1, Proposition 8.1] we have

�α(λ) = 4(α2 − β2)λ

(
√

2λ+ (α − β)2 + α − β)(
√

2λ+ (α + β)2 + α + β)
.

Thus, for |β| < α1 < α2, we have

E[e−λ(Yα2−Yα1 )] = c
�α1(λ)

�α2(λ)

= c
(
√

2λ+ (α2 − β)2 + α2 − β)(
√

2λ+ (α2 + β)2 + α2 + β)

(
√

2λ+ (α1 − β)2 + α1 − β)(
√

2λ+ (α1 + β)2 + α1 + β)
,

where

c = lim
λ↓0

(
√

2λ+ (α1 − β)2 + α1 − β)(
√

2λ+ (α1 + β)2 + α1 + β)

(
√

2λ+ (α2 − β)2 + α2 − β)(
√

2λ+ (α2 + β)2 + α2 + β)
;

that is,

c = α2
1 − β2

α2
2 − β2

.

Hence,

log
(
E

[
e−λ(Yα2−Yα1 )

])
= f (a3)+ f (a4)− f (a1)− f (a2),
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where a1 = (α1 + β)−1, a2 = (α1 − β)−1, a3 = (α2 + β)−1 and a4 = (α2 − β)−1,
and

f (x) = − log(1 +
√

2λx2 + 1).

It remains to observe that

f (x) = −
∫ ∞

0
(1 − e−λr)r−

1
2

∫ x

0
t−2φ(t

√
r) dt dr

and do a change of variables inside the integral to finish the proof. ��

7 Some Real Analysis

Lemma 7.1 Fix a càdlàg function f : R �→ R and consider the set

H := {t ∈ R : f (t) ∧ f (t−) = inf
u≤t f (u)}.

(i) The set H coincides with

{t ∈ R : f (t) ∧ f (t−) ≤ inf
u≤t f (u)}.

(ii) The set H is closed.
(iii) If limt→−∞ f (t) = +∞ and limt→+∞ f (t) = −∞, then the set H is

nonempty and unbounded from above and below.

Proof

(i) Note that {t ∈ R : f (t) ∧ f (t−) ≤ infu≤t f (u)} is the disjoint union {t ∈ R :
f (t)∧f (t−) = infu≤t f (u)}�{t ∈ R : f (t)∧f (t−) < infu≤t f (u)}. Clearly,
f (t) ∧ f (t−) ≥ infu≤t f (u) for all t ∈ R and so the second set on the right
hand side is empty.

(ii) We want to show that if {tn}n∈N is a sequence of elements of H converging to
some t∗ ∈ R, then t∗ ∈ H. The result is clear if tn = t∗ infinitely often, so we
may suppose that t∗ /∈ {tn}n∈N.
Suppose to begin with that there are only finitely many n ∈ N such that tn < t∗.
Then, for n large enough, we have that tn > t∗ and thus f (tn) ∧ f (tn−) ≤
f (u) for all u ≤ t∗. Now limn→∞ f (tn) = limn→∞ f (tn−) = f (t∗). Hence,
f (t∗) ∧ f (t∗−) ≤ f (t∗) ≤ f (u) for all u ≤ t∗ and so t∗ ∈ H by part (i).
Suppose on the other hand, that the set N of n ∈ N such that tn < t∗ is
infinite. For u < t∗ we have for large n ∈ N sufficiently large that u ≤ tn
and thus f (tn) ∧ f (tn−) ≤ f (u). Now the limit as n → ∞ with n ∈ N of
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f (tn)∧ f (tn−) is f (t∗−). Hence, f (t∗)∧ f (t∗−) ≤ f (t∗−) ≤ infu<t∗ f (u).
This implies that f (t∗) ∧ f (t∗−) ≤ infu≤t∗ f (u) and so t∗ ∈ H by part (i).

(iii) Fix M ∈ R, put I = inft≤M f (t), and let {tn}n∈N be a sequence of elements
of (−∞,M] such that limn→∞ f (tn) = I . Because f (t) goes to +∞ as
t → −∞, the sequence {tn}n∈N is bounded and thus admits a subsequence
{tnk }k∈N that converges to some t∗ ∈ (−∞,M]. By the argument in part
(ii), I ∈ {f (t∗), f (t∗−)}. Moreover, I ≤ f (t∗) and I ≤ f (t∗−). Thus,
f (t∗) ∧ f (t∗−) = I = infu≤M f (u) ≤ infu≤t f (u) and t ∈ H by part (i).
Since M ∈ R is arbitrary it follows that H is not only nonempty but also
unbounded below. ��

Because f (t) goes to +∞ as t → −∞ and f (t) goes to −∞ as t → +∞, for
each n ∈ N we have that the set {t ∈ R : f (t) ≤ −n} is nonempty and bounded
below and so sn := inf{t ∈ R : f (t) ≤ −n} ∈ R. The sequence {sn}n∈N is clearly
nondecreasing and unbounded above. Now f (sn) ∧ f (sn−) = f (sn) = inf{f (u) :
u ≤ sn} for all n ∈ N so that sn ∈ H for all n ∈ N and hence H is unbounded above.
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No-Tie Conditions for Large Values
of Extremal Processes

Yuguang Ipsen and Ross Maller

Abstract We give necessary and sufficient conditions for there to be no ties,
asymptotically, among large values of a space-time Poisson point process evolving
homogeneously in time. The convergence is at small times, in probability or almost
sure.

Keywords Extremal processes · Poisson point processes · No tie conditions ·
Extreme values · Lévy processes

1 Introduction

The possibility of tied (equal) large values among the increments of a random walk
(in discrete time) or a Lévy process (in continuous time) arises whenever we want
to place in order of magnitude the jumps of the process, occurring up to some time.
We may want to study them in their own right, as in extreme value theory, or as
components of the original random walk or Lévy process – perhaps with a view
to trimming extreme values from the process. In some studies the issue is dealt
with simply by assuming that tied values do not occur (occur with probability 0);
in others the possibility of ties is included as part of the formulation, usually with
some consequent complications in the analysis.

If the distribution function describing the increments in a random walk is
continuous, or the Lévy measure of a Lévy process has no atoms, then ties among
large increments occur with probability 0, at all times. Assumptions like this of
course would rule out the use of many common distributions and processes. But it
may also be that the probability of a tie becomes negligible asymptotically, for large
times (or, in the case of a continuous time process, alternatively, for small times),
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where the asymptotic may be in probability or almost sure. In this paper we give
some necessary and sufficient conditions for these possibilities, in the more general
setting of an extremal process associated with a Poisson point process, drawing on
the general methodology of Buchmann, Fan & Maller [4] for the relevant point
process-extremal process setup.

In the following, conditions for no ties in probability, asymptotically at small
times, are in Sect. 2, and almost sure results are in Sect. 3. A brief discussion of
sufficient conditions for no ties and an example are in Sect. 4. For the remainder of
this section we recap the necessary point process and extremal theory formulations.

1.1 Poisson Point Processes

In this subsection we establish the framework of Poisson point processes needed for
the results that follow. Our results were motivated by thinking of the jump process of
a subordinator, but apply more generally to a Poisson point process (PPP) evolving
homogeneously in time (an “evolutionary” or “space-time” process, [5], Ch.14, 15).
Let N be a point process on a probability space (�,F , P ) with intensity measure
dt ×�(dx), t ≥ 0, x > 0, where � is a Borel measure on (0,∞), locally finite at
infinity. So the numbers of points in disjoint Borel subsets of [0,∞) × (0,∞) are
independent, and, for A and B Borel subsets of [0,∞) and (0,∞) respectively, the
number of points, N(A,B), in A× B has distribution

P
(
N(A,B) = k

) = e−λλk

k! , k = 0, 1, 2 . . . , (1.1)

where λ = m(A) × �(B), with m(A) denoting the Lebesgue measure of A. The
measure � has finite-valued tail function � : (0,∞) → (0,∞), defined by

�(x) := �{(x,∞)}, x > 0,

a nonnegative, right-continuous, non-increasing function with�(+∞) = 0.� need
not be a Lévy measure but as a special case the points of the process evolving in time
could be the jump process (Xt −Xt−)t>0 of a subordinator X on (0,∞) with Lévy
canonical measure �.

The process is “simple” in the time parameter in the sense that, by (1.1),
N({t}, B) = 0 a.s. for any t > 0 and Borel B ⊆ (0,∞); and we denote the (a.s.
unique) value (magnitude) of a point of N at time t by 
t . We allow the possibility
of atoms in �, so there may be coincident points in the space component, with
positive probability. In general it is possible to write the spatial components of the
points of the process occurring in [0, t] in decreasing order of magnitude, possibly
with ties, as

∞ > 

(1)
t ≥ · · · ≥ 


(r)
t ≥ · · · ≥ 0, r ∈ N := {1, 2, . . .},
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for a fixed t > 0. For a fixed r ∈ N, the 

(r)
t are nondecreasing in t; whenever

0 ≤ s ≤ t , we have 0 ≤ 

(r)
s ≤ 


(r)
t .

We use this notation to set up the extremal processes in the next section.

1.2 Extremal Processes

The distribution of the points ordered by their magnitudes can be conveniently
written in terms of Gamma random variables (rvs). Let (Ei ) be an i.i.d. sequence
of exponentially distributed rvs with common parameter EEi = 1. Then 	j :=∑j

i=1 Ei is a Gamma(j, 1) random variable, j ∈ N. Let

�
←
(x) = inf{y > 0 : �(y) ≤ x}, x > 0,

be the right-continuous inverse of �. A basic property of this function is

�(�
←
(x)) ≤ x ≤ �(�

←
(x)−), x > 0. (1.2)

Buchmann, Fan, and Maller [4] use a randomisation procedure to define the
ordered points (
(r)

t ) at time t > 0, and give the representation

{


(r)
t

}
r≥1

D= {
�

←
(	r/t)

}
j≥1, t > 0, (1.3)

for their joint distribution at a fixed time t > 0. Considered as a process in
continuous time, the process (
(r)

t )t≥0 is the rth-order extremal process, r ∈ N.
We refer to [4] for background information on the properties of (
(r)

t )t≥0. (Some
other related literature is referenced at the end of Sect. 4.)

We observe a tied value for the r-th largest point at time t > 0, r ∈ N, if the
event {
(r)

t = 

(r+1)
t } occurs. More generally, we could have a number of points

tied for r-th largest at time t , that is, if 
(r)
t = 


(r+n)
t for some n ∈ N. We can

consider the probability that ties occur or not, asymptotically as t ↓ 0 (small time)
or as t → ∞ (large time). We will concentrate on the small time case t ↓ 0 herein.

2 No Ties in Probability

We assume throughout that �{(0,∞)} = �(0+) = ∞ and �(x) > 0 for all x > 0.
Then also �

←
is nonincreasing with �

←
(x) > 0 for all x > 0, �

←
(0+) = ∞

and �
←
(∞) = 0. The assumption �(0+) = ∞ means there are infinitely many

non-zero points of the process in any right neighbourhood of 0, a.s., so 
(r)
t > 0 a.s.
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for each t > 0 and r ∈ N. But we have limt↓0 

(r)
t = 0 a.s., because for any ε > 0,

r ∈ N,

P(

(r)
t > ε) ≤ P(


(1)
t > ε) = 1 − e−t�(ε) → 0, as t ↓ 0.

So 

(r)
t

P−→ 0 as t ↓ 0 and hence by monotonicity, limt↓0 

(r)
t = 0 a.s. for each

r ∈ N.
Let 
�(x) = �{x} = �(x−)−�(x), x > 0, be the mass attributed by � to x,

if any. Our first theorem characterises “no ties" in probability.

Theorem 2.1 For r, n ∈ N,

lim
t↓0

P
(


(r)
t = 


(r+n)
t

) = 0 (2.1)

if and only if

lim
x↓0

�(x−)
�(x)

= 1, or, equivalently, lim
x↓0


�(x)

�(x)
= 0. (2.2)

Proof of Theorem 2.1 Fix t, x > 0, r, n ∈ N, and write 	r+n = 	r + 	̃n, as
independent components. Calculate, using (1.3), the main identity

P
(


(r)
t = 


(r+n)
t < x

) = P
(
�

←
(	r/t) = �

←
((	r + 	̃n)/t) < x

)

=
∫
�

←
(y/t)<x

P
(
�

←
(y/t) = �

←
((y + 	n)/t)

)
P (	r ∈ dy)

=
∫
�

←
(y/t)<x

P
(
y + 	n ≤ t�

(
�

←
(y/t)−))P (	r ∈ dy) . (2.3)

Here we used that �
←
(a) = �

←
(a + b) iff �(�

←
(a)−) ≥ a + b for a, b > 0.

Taking x = ∞ in (2.3) gives

P
(


(r)
t = 


(r+n)
t

) =
∫
y>0

P
(
y + 	n ≤ t�

(
�

←
(y/t)−))P (	r ∈ dy) .

(2.4)

Clearly the two conditions in (2.2) are equivalent. Assume the first condition in
(2.2). Then, given δ > 0, we can choose x0 = x0(δ) small enough for �(x−) ≤
(1 + δ)�(x) whenever 0 < x ≤ x0. Fix η > 0 and keep y ≥ η. Since �

←
(∞) = 0,

we have �
←
(y/t) ≤ �

←
(η/t) ≤ x0(δ) if 0 < t ≤ some t0(δ, η). This implies (see
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(1.2) for the left and right hand inequalities)

y ≤ t�
(
�

←
(y/t)−) ≤ (1 + δ)t�

(
�

←
(y/t)

) ≤ (1 + δ)y.

Hence we deduce that t�(
(
�

←
(y/t)−) → y as t ↓ 0, for each y ≥ η, and so by

dominated convergence the component of the integral in (2.4) over y ≥ η tends to
0 as t ↓ 0. The component of the integral in (2.4) over 0 < y < η is no larger than
P(	r ≤ η) and hence can be made arbitrarily small with η. Thus (2.2) implies (2.1).

Conversely, we show that (2.1) implies (2.2). Assume (2.1). Define gt (y) :=
t�
(
�

←
(y/t)−), a nondecreasing function on (0,∞) for each t > 0. Then for any

sequence tk ↓ 0 as k → ∞, we have by (2.4)

lim
k→∞

∫
y>0

P
(
	n ≤ gtk (y)− y

)
P (	r ∈ dy) = 0. (2.5)

Suppose there is a y0 > 0 such that limk→∞ gtk (y0) = ∞. Then limk→∞ gtk (y) =
∞ for all y ≥ y0 and (2.5) with Fatou’s lemma gives the contradiction P(	r >

y0) = 0. So the sequence (gtk (y))k≥1 is bounded for each y > 0 and by
Helly’s selection theorem we can take a subsequence of tk if necessary so that
limk→∞ gtk (y) = g(y), a finite nondecreasing function on (0,∞). Another
application of Fatou’s lemma to (2.5) gives

∫
y>0

P
(
	n ≤ g(y)− y

)
P (	r ∈ dy) = 0.

Since	n and	r are continuous random variables this implies that the nondecreasing
function g(y) = y for almost all y > 0. We conclude that g(y) = y for all y > 0.
Thus the limit through the subsequence tk does not depend on the choice of tk .
Recalling the definition of g(y) this means that limt↓0 t�(�

←
(y/t)−) = y for all

y > 0. Fix a y0 > 0 so that limt↓0 t�(�
←
(y0/t)−) = y0 and take any sequence

(yk)k≥1 such that yk ↓ 0. We claim that

lim
k→∞

�(yk−)
�(yk)

= 1.

To prove this we can restrict consideration to points yk for which �(yk−) > �(yk).
Define tk = y0/�(yk). Then �(yk) = y0/tk and yk = �

←
(y0/tk); note that the

latter holds because yk is a discontinuity point of �. Finally

1 ≤ �(yk−)
�(yk)

= tk�(�
←
(y0/tk)−)
y0

→ 1,

as k → ∞, as required. So we have proved (2.2). ��
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3 No Ties Almost Surely

For almost sure convergence we need to strengthen (2.2) to an integral criterion.

Theorem 3.1 For n ∈ N,

P
(


(1)
t = 


(n+1)
t i.o., as t ↓ 0

) = 0 (3.1)

( “i.o" means “infinitely often") if and only if

∫ 1

0

(

�(x)

�(x)

)n
�(dx)

�(x)
< ∞. (3.2)

Either of (3.1) or (3.2) implies (2.1) and (2.2).

Remark 3.1 The complete a.s. analogue of Theorem 2.1 would have
(r)
t = 


(r+n)
t ,

r ∈ N, replacing 
(1)
t = 


(n+1)
t in Theorem 3.1. If there are n values of the 
t tied

for r-th largest as t ↓ 0 then there will be n values tied for largest as t ↓ 0, because
the lower ranked points will ultimately become the largest as t ↓ 0. Thus (3.1) and
(3.2) are sufficient for P

(


(r)
t = 


(n+r)
t i.o., as t ↓ 0

) = 0, for any r ∈ N. But
currently we do not have a necessary and sufficient condition for the general case.

Proof of Theorem 3.1: Let (3.2) hold for some fixed n ∈ N. First we prove, for
t ∈ (0, 1],

P
(


(n+1)
s− = 


(1)
s− for some s ≤ t

) ≤ P
(


(n+1)
s− = 


(1)
s− < 
s for some s ≤ t

)
.

(3.3)

To see this, let

Et = Et(n) :=
{


(n+1)
s− = 


(1)
s− < 
s for some s ≤ t

}
(3.4)

be the event on the RHS of (3.3). Suppose sample point ω is in the event on the LHS
of (3.3). Then ω is in Et or else ω is in the event

{


(1)
s− = 
s for all s ≤ t

}
. But this

event has probability 0 because limt↓0 

(1)
t = 0 a.s. Thus (3.3) holds, in fact with

equality.
We aim to show that limt↓0 P(Et ) = 0 under the assumption (3.2), and this will

establish (3.1) via (3.3). To this end, define

Nt = Nt(n) :=
∫
(0,t ]×(0,∞)

1
{


(n+1)
s− = 


(1)
s− < x

}
N(ds × dx), (3.5)
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the number of points (s,
s) which satisfy 

(n+1)
s− = 


(1)
s− < 
s with s ≤ t . Then,

for 0 < t < 1,

P(Et ) = P(Nt ≥ 1) ≤ E(Nt ) (by Markov’s inequality)

=
∫ t

0
ds
∫
x>0

E1
{


(n+1)
s− = 


(1)
s− < x

}
�(dx) (by the compensation formula)

=
∫ t

0
ds
∫
x>0

∫
�

←
(y/s)<x

P
(
y + 	n ≤ s�

(
�

←
(y/s)−))P (	1 ∈ dy)�(dx),

(3.6)

where the last equality holds by (2.3). Let a(y) = �
(
�

←
(y)−)− y ≥ 0 and write

the RHS of (3.6) as

∫ t

0
ds
∫
x>0

∫
�

←
(y/s)<x

P (	n ≤ sa(y/s)) P (	1 ∈ dy)�(dx). (3.7)

Consider first the component over x > 1 of the integral in (3.7). That component
is bounded above by

∫ t

0
ds
∫
x>1

�(dx) = t�(1). (3.8)

Next consider the component over 0 < x ≤ 1 of the integral in (3.7). That
component can be written as

∫
0<x≤1

∫
y>�(x)

∫ t

0
sP (	n ≤ sa(y)) e−syds dy �(dx). (3.9)

We can estimate, for any a > 0,

P(	n ≤ a) = P
( n∑
i=1

Ei ≤ a
) ≤ P

(
max

1≤i≤nEi ≤ a
)

= Pn
(
E1 ≤ a

) = (
1 − e−a

)n ≤ an. (3.10)

Applying this to (3.9) with a = sa(y) gives an upper bound of

∫
0<x≤1

∫
y>�(x)

an(y)

∫ t

0
sn+1e−syds dy �(dx)

=
∫

0<x≤1

∫
y>�(x)

an(y)

yn+2

∫ ty

0
sn+1e−sds dy �(dx). (3.11)
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The innermost integral here is bounded above by 	(n + 2) for all y, t > 0.
Interchanging the order of the remaining integrals, we have the following bound
for the RHS of (3.11) with the innermost integral removed:

∫
0<x≤1

∫
y>�(x)

an(y)

yn+2 dy �(dx) =
∫
y>�(1)

∫
�

←
(y)≤x≤1

an(y)

yn+2 dy �(dx)

≤
∫
y>�(1)

�(�
←
(y)−)a

n(y)

yn+2
dy. (3.12)

Recalling the definition of a(y), and that y ≥ �
(
�

←
(y)
)
, we have

a(y) = �
(
�

←
(y)− )− y ≤ �

(
�

←
(y)− )−�

(
�

←
(y)
) = 
�

(
�

←
(y)
)
,

so the function a(y) and hence the integrands in (3.12) are positive only when y ∈
D̃ := {y > �(1) : �(�←

(y)−) > �(�
←
(y))}. The points in D̃ are the points of

discontinuity of �, so D̃ = D := {0 < x ≤ 1 : �(x−) > �(x)} = {0 < x ≤ 1 :

�(x) > 0}. Thus the RHS of (3.12) can be bounded above by

∑
x∈D

∫
�(x)≤y≤�(x−)

�(�
←
(y)−)a

n(y)

yn+2 dy

≤
∑
x∈D

�(x−)
�(x)n+2

∫
�(x)≤y≤�(x−)

(
�(x−)− y

)ndy

= 1

n+ 1

∑
x∈D

�(x−)
�(x)n+2

(
�(x−)−�(x)

)n+1

= 1

n+ 1

∑
x∈D

�(x−)
�(x)n+2

(

�(x)

)n+1

= 1

n+ 1

∫
0<x≤1

�(x−)
�(x)n+2

(

�(x)

)n
�(dx). (3.13)

Now note that (3.2) implies

∑
x∈D

(

�(x)

�(x)

)n+1

< ∞,

hence that limx↓0 
�(x)/�(x) = 0, i.e., (2.2) holds. So �(x−) ∼ �(x) as x ↓ 0
and (3.2) implies that the last integral in (3.13) is finite.

It follows that the component over 0 < x ≤ 1 of the integral in (3.7) tends to 0 as
t ↓ 0, by dominated convergence applied to (3.11) (recall the bound of 	(n+ 2) for
the innermost integral). We also have the bound (3.8). Hence, overall, the integral in
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(3.7) tends to 0 as t ↓ 0. So we have shown that (3.2) implies limt↓0 P(Et (n)) = 0,
n ∈ N, which by (3.4) and (3.7) proves (3.1).

At this stage we note that (2.1) and (2.2) follow from (3.1) and (3.2), because

P
(


(1)
t = 


(n+1)
t i.o., as t ↓ 0

) = lim
t↓0

P
(

(1)
s = 
(n+1)

s for some s ≤ t
)

≥ lim
t↓0

P
(


(n+1)
t = 


(1)
t

)

shows that (3.1) implies (2.1). (2.2) then follows by Theorem 2.1, and we showed
already that (3.2) implies (2.2).

Now we prove the converse result, that (3.1) implies (3.2). Assume (3.1) holds
for some n ∈ N. We want to define a sequence of random times (τk)k≥0 in (0, 1] at
which the events Fs := {
(n+1)

s− = 

(1)
s− < 
s} occur. As in, e.g., Sato [17] p.131

we can enumerate the (
t )0<t≤1 (not in order) as (
tk )k≥1 for some random times
t1 > t2 > · · · > 0. Then we can define: τ0 = 1, and for k = 0, 1, 2, . . .

τk+1 := sup{0 < t < τk : 
(1)
t = 


(n+1)
t < 


(1)
τk−}

= sup{t� ∈ (0, τk) : 
(1)
t�

= 

(n+1)
t�

< 

(1)
τk−}. (3.14)

These are well defined as long as the event on the RHS of (3.14) is nonempty.
Because we assumed (3.1), Nt as defined in (3.5) is finite a.s., and as t approaches
0 there will be a last occurrence of Es in [0, t], a.s. We let τk+j = 0 for all j ≥ 1 if



(1)
t �= 


(n+1)
t for all 0 < t < τk .

With this setup let Ak := {τk > 0}. Then N1 =∑
k≥1 1Ak and

∑
k≥1

P(Ak) = E
∑
k≥1

1Ak = E#{t ∈ (0, 1) : 
(1)
t− = 


(n+1)
t− < 
t } = EN1.

By (3.1), P
(
Ak i.o. as k → ∞) = 0, and we want to deduce from this that∑

k≥1 P(Ak) < ∞. Take k > j ≥ 1, and calculate

P(Ak ∩ Aj) = P(τk > 0, τj > 0) =
∫
{t>0}

P
(
τk > 0

∣∣τj = t
)
P(τj ∈ dt)

≤
∫
{t>0}

P
(
there are k − j occurrences of Fs among (
s)τk<s≤t

∣∣

there are j occurrences of Fs among (
s)t<s≤1, and the j th occurs at t
)

×P(τj ∈ dt)

≤
∫
{t>0}

P
(
there are k − j occurrences of Fs among (
s)0<s≤t

)
P(τj ∈ dt)

≤ P(Ak−j )P (τj > 0) = P(Ak−j )P (Aj ). (3.15)
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With (3.15) we can apply Spitzer’s converse Borel-Cantelli lemma ([18], p.317) and
deduce that

∑
P(Ak) converges, and conclude that EN1 < ∞.

Thus the expression on the RHS of (3.7) is finite. Now we want to find a lower
bound for this expression. Complementary to (3.10), we can estimate

P(	n ≤ x) = P
( n∑
i=1

Ei ≤ x
) ≥ P

(
max

1≤i≤nEi ≤ x/n
)

= Pn
(
E1 ≤ x/n

) = (
1 − e−x/n

)n ≥ xne−x/nn. (3.16)

Interchanging the order of integration in (3.7) we can write

E(N1) =
∫ 1

0
ds
∫
y>0

�(�
←
(y)−)P (	n ≤ sa(y)) P (	1 ∈ sdy)

=
∫ 1

0
ds
∫
y>0

�(�
←
(y)−)P (	n ≤ sa(y)) se−sydy.

Now use (3.16) to get the lower bound

E(N1) ≥ 1

nn

∫
y>0

�(�
←
(y)−)

∫ 1

0
s(sa(y))ne−sa(y)e−syds dy

≥ 1

nn

∫
y>y0

�(�
←
(y)−) (a(y))

n

yn+2

∫ y

0
sn+1e−sa(y)/ye−sds dy. (3.17)

Given ε > 0, we can by (2.2) choose y0 = y0(ε) > 0 so large that y > y0 implies


�(�
←
(y))/�(�

←
(y)) ≤ ε.

Then we get for y > y0

a(y)

y
≤ 
�

(
�

←
(y)
)

�(�
←
(y))

≤ ε,

and a lower bound for the RHS of (3.17) is

cne
−εy0

nn

∫
y>y0

�(�
←
(y)−) (a(y))

n

yn+2 dy, (3.18)
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where cn := ∫ y0
0 sn+1e−sds. Convergence of the integral in (3.18) implies the con-

vergence of the integral on the RHS of (3.12), and the same sorts of manipulations
as in (3.13) give a lower bound for (3.18) of

cne
−εy0

nn+1

∫
0<x≤x0

(
�(x)
)n

�(x−)n+1
�(dx),

for some x0 > 0. Because of (2.2), we see from this that the integral in (3.2) is finite,
completing the proof of the converse part of Theorem 3.1. ��

4 Sufficient Conditions and an Example

In view of Theorem 2, we call (2.2) a “no-ties” condition (asymptotic as x ↓ 0).

Proposition 4.1 Recall we assume �(0+) = ∞ and �(x) > 0 for all x > 0. We
have that (2.2) holds when

lim
λ↑1

lim sup
x↓0

�(xλ)

�(x)
= 1. (4.1)

Proof of Proposition 4.1: For x > 0 and ε ∈ (0, 1) write

0 ≤ 
�(x)

�(x)
= �(x−)−�(x)

�(x)
= �(x−)

�(x)
− 1 ≤ �((1 − ε)x)

�(x)
− 1. (4.2)

Assuming (4.1), when x ↓ 0 the last term in (4.2) is bounded above by a quantity
which tends to 0 as ε → 0. Hence (2.2). ��

Equation (4.1) holds when �(x) is regularly varying with index −α, α ≥ 0
(including, when � is slowly varying), at 0. More generally, we could consider
subsequential convergence of a normed and centered Lévy process. Maller and
Mason [13] give conditions for the stochastic compactness at 0 or ∞ of a normed
and centered Lévy process. They take the form of a version of the dominated
variation (cf. Bingham, Goldie and Teugels [1], p.54) of a relevant function (the
truncated variance, or tail function) of the Lévy measure. Sufficient for stochastic
compactness is

lim sup
x↓0

�(xλ)

�(x)
≤ cλ−α (4.3)
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for some finite c > 0 and α in (0, 2), and the measure �Y of any subsequential limit
rv satisfies an analogous condition. A subclass of the corresponding limit processes
(but not all)1 will satisfy (4.1) in addition.

Here is an example where (2.2) holds but (3.2) does not. Take a sequence pj =
j−1/2e

√
j /2, j ∈ N. Then

∑j
1 pk ∼ e

√
j as j → ∞. Let � have masses pj at xj ,

j ∈ N, where 1 = x1 > x2 > · · · , and xj ↓ 0 as j → ∞. Then for xj+1 < x ≤ xj
we have


�(x)

�(x)
= 
�(xj )

�(xj )
= pj∑j

1 pk
∼ 1

2
√
j

→ 0, as j → ∞.

Thus (2.2) holds and there are no ties in probability, asymptotically, as t ↓ 0.
But we can check

∫
(0,1]

(

�(x)

�(x)

)n
�(dx)

�(x)
=
∑
j≥1

∫
xj+1<x≤xj

(

�(x)

�(x)

)n
�(dx)

�(x)

=
∑
j≥1

(
pj∑j
1 pk

)n (
pj∑j
1 pk

)

7
∑
j≥1

1

j (n+1)/2
.

The series diverges for n = 1, so infinitely often there will be ties for the largest,
a.s. as t → 0, but the series converges for n ≥ 2, so there will almost surely be no
more than one tie for largest at time t , as t ↓ 0.

Sufficient conditions for (3.2) would likely involve ideas connected with slow
variation with remainder; e.g., Goldie and Smith [6]. We do not pursue this further
here.

For other results on rth-order extremal processes and related results, especially at
small times, see Buchmann, Fan and Maller [2], Buchmann, Maller and Resnick [3],
Maller and Schmidli [12], Ipsen, Kevei and Maller [7], Ipsen, Maller and Resnick
[8], Ipsen, Maller and Resnick [9], Kevei and Mason [10], Kevei and Mason [11].
For other results on extremal processes see Resnick [14], Resnick [15]), Resnick
and Rubinovitch [16].

Acknowledgments We are grateful to a referee for helpful comments.

1The function e | log x|" satisfies (4.3) but not (4.1).
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Slowly Varying Asymptotics for Signed
Stochastic Difference Equations

Dmitry Korshunov

Abstract For a stochastic difference equationDn = AnDn−1+Bn which stabilises
upon time we study tail distribution asymptotics for Dn under the assumption that
the distribution of log(1 + |A1| + |B1|) is heavy-tailed, that is, all its positive
exponential moments are infinite. The aim of the present paper is three-fold. Firstly,
we identify the asymptotic behaviour not only of the stationary tail distribution but
also of Dn. Secondly, we solve the problem in the general setting when A takes
both positive and negative values. Thirdly, we get rid of auxiliary conditions like
finiteness of higher moments introduced in the literature before.

Keywords Stochastic difference equations · Heavy tails · Long-tailed and
subexponential distributions · Slowly varying tail asymptotics

1 Introduction

Let (A,B) be a random vector in R
2 such that E log |A| = −a < 0. Let (Ak, Bk),

k ∈ Z, be independent copies of (A,B). Consider the following stochastic
difference equation

Dn = AnDn−1 + Bn (1)

= �n
1D0 +

n∑
k=1

�n
k+1Bk, n ≥ 1,
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where D0 is independent of (Ak, Bk)’s, �n
k := Ak · . . . · An for k ≤ n and �n

n+1 =
1. The process Dn clearly constitutes a Markov chain and satisfies the following
equality in distribution

Dn =st �
−1−nD0 +

−1∑
k=−n

�−1
k+1Bk.

If a < ∞ then, by the strong law of large numbers applied to the logarithm of |�|,
with probability 1, e−2an ≤ �n

1 ≤ e−an/2 ultimately in n, hence the process Dn,
n ≥ 1, is stochastically bounded if and only if E log(1+|B|) < ∞. If P{A = 0} > 0
which implies a = ∞, then the process Dn is always stochastically bounded. In
both cases, the Markov chain Dn is stable, its stationary distribution is given by the
following random series

D∞ :=
−1∑

k=−∞
�−1
k+1Bk =st

∞∑
k=1

�k−1
1 Bk

and Dn weakly converges to the stationary distribution as n → ∞; in the context
of financial mathematics such random variables are called stochastic perpetuities.
Stability results for Dn are dealt with in [17], see also [2]; the case where E log |A|
is not necessarily finite is treated in [9].

Both perpetuities and stochastic difference equations have many important
applications, among them life insurance and finance, nuclear technology, sociology,
random walks and branching processes in random environments, extreme-value
analysis, one-dimensional ARCH processes, etc. For particularities, we refer the
reader to, for instance, Embrechts and Goldie [5], Rachev and Samorodnitsky [15]
and Vervaat [17] for a comprehensive survey of the literature.

If A ≥ 0 and P{A > 1} > 0, then EAγ → ∞ as γ → ∞, so EAβ > 1 for
some β < ∞. If in addition B ≥ 0, then it follows from the stationary version
of the recursion (1) that EDβ∞ ≥ ED

β∞EAβ which implies that EDβ∞ = ∞, in
other words, with necessity, not all moments of D∞ are finite; see [8] for a similar
conclusion for signed A and B. It was proven in the seminal paper by Kesten [11,
Theorem 5], see also [7], that if E|A|β = 1 for some β > 0, then a power tail
asymptotics for the stationary distribution holds, P{|D∞| > x} ∼ c/xβ as x → ∞,
for some c > 0.

The problem we address in this paper is about the tail asymptotic behaviour of
Dn and of its stationary version D∞ in the case where the distribution of log |A| is
heavy-tailed, that is, all positive exponential moments of log |A| are infinite, in other
words, E|A|γ = ∞ for all γ > 0. It can only happen if the random variable |A| has
right unbounded support.
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The only result in that direction we are aware of is that by Dyszewski [4] where
in the context of iterated random functions it is proven that the stationary tail
distribution is asymptotically equivalent to

1

a

∫ ∞

x

P{logC > y}dy as x → ∞,

where C := max(A,B), provided A, B ≥ 0, the integrated tail distribution of logC
is subexponential and under additional moment condition that E logγ C < ∞ for
some γ > 1. In the case of a signed B, only lower and upper asymptotic bounds
are derived in [4]. An alternative approach to lower and upper bounds for the tail
distribution of D∞ is developed in [3] in the case of positive A and B.

The aim of the present paper is three-fold. Firstly, we identify the asymptotic
behaviour not only of the stationary tail distribution but also for Dn in the heavy-
tailed case. Secondly, we solve the problem in the general setting when A takes
both positive and negative values. Thirdly, we get rid of auxiliary conditions like
finiteness of higher moments.

Our approach to the problem is based on reduction of Dn – roughly speaking
by taking the logarithm of it – to an asymptotically homogeneous in space Markov
chain with heavy-tailed jumps and on further analysis of such chains. Namely, we
define a Markov chain Xn on R as follows

Xn :=
{

log(1 +Dn) if Dn ≥ 0,
− log(1 + |Dn|) if Dn < 0,

(2)

hence the distribution tail of Dn may be computed as

P{Dn > x} = P{Xn > log(1 + x)} for x > 0. (3)

At any state x ≥ 0, the jump of the Markov chainXn is a random variable distributed
as

ξ(x) =
{

log(1 + A(ex−1)+ B)− x if A(ex−1)+ B ≥ 0,
− log(1 + |A(ex−1)+ B|)− x if A(ex−1)+ B < 0,

(4)

and at any state x ≤ 0,

ξ(x) =
{

log(1 + A(1−e−x)+ B)− x if A(1−e−x)+ B ≥ 0,
− log(1 + |A(1−e−x)+ B|)− x if A(1−e−x)+ B < 0.

(5)

Also define a sequence of independent random fields ξn(x), x ∈ R, which are
independent copies of ξ(x). Then the recursion (1) may be rewritten as

Xn+1 = Xn + ξn(Xn).
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The Markov chain Xn is asymptotically homogeneous in space, that is, the
distribution of its jump ξ(x) weakly converges to that of ξ := logA as x → ∞;
it is particularly emphasised in [7, Section 2]. Let us underline that, in general,
log(A+ (1−A+B)e−x) may not converge to ξ as x → ∞ in total variation norm.

Asymptotically homogeneous in space Markov chains are studied in detail in
[1, 13] from the point of view of their asymptotic tail behaviour in subexponential
case. However, that results for general asymptotically homogeneous in space
Markov chains are not directly applicable to stochastic difference equations as it
is formally assumed in [1, Theorem 3] that the distribution of a Markov chain Xn

converges to the invariant distribution in the total variation norm which is not always
true for stochastic difference equations. Secondly, stochastic difference equations
possess some specific properties that allow us to find tail asymptotics in a simpler
way than it is done in [1, Theorem 3] or in [4, Theorem 3.1]; we explore that below
however our approach still follows some ideas of the proof for Markov chains in [1].

Let us recall some relevant classes of distributions needed in our analysis of the
heavy-tailed case.

Definition 1 A distribution H with right unbounded support is called long-tailed,
H ∈ L, if, for each fixed y, H(x + y) ∼ H(x) as x → ∞; hereinafter H(x) =
H(x,∞) is the tail of H .

A random variable A has slowly varying at infinity distribution if and only if the
distribution of ξ := log(A+) is long-tailed.

Definition 2 A distribution H on R
+ with unbounded support is called subexpo-

nential, H ∈ S, if H ∗H(x) ∼ 2H(x) as x → ∞. Equivalently, P{ζ1 + ζ2 >

x} ∼ 2P{ζ1 > x}, where random variables ζ1 and ζ2 are independent with common
distribution H . A distribution H of a random variable ζ on R with right-unbounded
support is called subexponential if the distribution of ζ+ is so.

As well-known (see, e.g. [6, Lemma 3.2]) the subexponentiality of H on R
+

implies long-tailedness of H . In particular, if the distribution of a random variable
ζ ≥ 0 is subexponential then ζ is heavy-tailed.

For a distribution H with finite mean, we define the integrated tail distribution
HI generated by H as follows:

HI (x) := min
(

1,
∫ ∞

x

H(y)dy
)
.

Definition 3 A distribution H on R
+ with unbounded support and finite mean is

called strong subexponential, H ∈ S∗, if

∫ x

0
H(x − y)H(y)dy ∼ 2mH(x) as x → ∞,

where m is the mean value of H . It is known that if H ∈ S∗ then both H and HI

are subexponential distributions, see e.g. [6, Theorem 3.27].
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In what follows we use the following notation for distributions: we denote

(i) the distribution of log(1 + |A| + |B|) by H ;
(ii) the distribution of log(1 + |A|) by F ;

(iii) the distribution of log(1 + |B|) by G;
(iv) the distribution of log(1 + B+) by G+;
(v) the distribution of log(1 + B−) by G−.

The paper is organised as follows. In Sects. 2, 4 and 5 we assume that log |A| has
finite negative mean and successively investigate three different cases in the order of
increasing difficulty: (i) both A and B are positive, see Theorem 1; (ii) A is positive
and B is a signed random variable, see Theorem 6; (iii) both A and B are signed, see
Theorem 7. In the case (i) we also explain in Theorem 4 the most probable way by
which large deviations of Dn can occur – it is a version of the principle of a single
big jump playing the key role in the theory of subexponential distributions. The aim
of Sect. 3 is to explain what happens if the distribution of A has an atom at zero; in
that case the tail asymptotics of Dn is essentially different from what we observe if
A has no atom at zero.

2 Positive Stochastic Difference Equation

In this section we consider a positive Dn, so A > 0, B ≥ 0 – we exclude the
case where A has an atom at zero as then the tail asymptotics of Dn are essentially
different, see the next section. Then the Markov chain Xn := log(1+Dn) is positive
too. As above, we denote ξ := logA and the distribution of the random variable
log(1 + A+ B) by H .

Theorem 1 Suppose that A > 0, B ≥ 0, Eξ = −a ∈ (−∞, 0) and E log(1+B) <

∞, so that Dn is positive recurrent.
If the integrated tail distribution HI is long-tailed, then

P{D∞ > x} ≥ (a−1 + o(1))HI(log x) as x → ∞. (6)

If, in addition, the distribution H is long-tailed itself, then

P{Dn > x} ≥ 1+o(1)
a

∫ logx+na

logx
H(y)dy as x → ∞ uniformly for all n ≥ 1.

(7)

If the integrated tail distribution HI is subexponential then

P{D∞ > x} ∼ a−1HI (log x) as x → ∞. (8)
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If moreover the distribution H is strong subexponential then

P{Dn > x} ∼ 1

a

∫ logx+na

logx
H(y)dy as x → ∞ uniformly for all n ≥ 1.

(9)

The main contribution of Theorem 1 is (9) that states uniform asymptotic
behaviour for all n ≥ 1. It is much stronger than a rather simple conclusion that
(9) holds for a fixed n demonstrated by Dyszewski in [4, Theorem 3.3] by induction
argument that clearly does not work for the tail asymptotics for the entire range of
n ≥ 1.

In [4], a sufficient condition for the asymptotics (8) is formulated in terms of the
distribution of log max(A,B) instead of H . Let us show that these two approaches
are equivalent. Indeed, for any two positive random variables A and B, since

max(log(1 + A), log(1 + B)) ≤ log(1 + A+ B)

≤ log(1 + 2 max(A,B))

< log 2 + max(log(1 + A), log(1 + B)),

it follows that

(i) the distribution H is long-tailed/subexponential/strong subexponential if and
only if the distribution of max(log(1 + A), log(1 + B)) is long-tailed/sub-
exponential/strong subexponential respectively;

(ii) the distributionHI is subexponential if and only if the integrated tail distribution
of max(log(1 + A), log(1 + B)) is so.

Denote the distribution of log(1 + A) by F and that of log(1 + B) by G. In the
next result we discuss some sufficient conditions for subexponentiality and related
properties of H .

Lemma 2 Let A and B be any two positive random variables such that either of
the following two conditions holds:

(i) the distribution H of log(1 + A+ B) is long-tailed or
(ii) the random variables A and B are independent.

Then if the distribution (F +G)/2 is subexponential or strong subexponential, then
the distribution H is subexponential or strong subexponential respectively.

If the integrated tail distribution (FI + GI)/2 is subexponential, then HI is
subexponential too.
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Proof First assume that (i) holds. On the one hand,

H(x) = P{log(1 + A+ B) > x}
≥ P{log(1 + A) > x} + P{log(1 + B) > x}

2

= (
F(x)+G(x)

)
/2 (10)

and thus, for all sufficiently large x,

HI (x) ≥
(
FI (x)+GI (x)

)
/3. (11)

On the other hand,

H(x) ≤ P{log(1 + 2A) > x} + P{log(1 + 2B) > x}
≤ F(x − log 2)+G(x − log 2). (12)

If (F +G)/2 is subexponential then it is long-tailed and hence

H(x) ≤ (1 + o(1))
(
F(x)+G(x)

)
as x → ∞. (13)

If (FI +GI )/2 is subexponential then similarly

HI (x) ≤ (1 + o(1))
(
FI (x)+GI (x)

)
as x → ∞. (14)

The two bounds (13) and (10) in the case of long-tailedH allow us to apply Theorem
3.11 or 3.25 from [6] and to conclude subexponentiality or strong subexponentiality
of H respectively provided (F +G)/2 is so.

The two bounds (14) and (11) in the case of long-tailed HI allow us to apply
Theorem 3.11 from [6] and to conclude subexponentiality of HI provided (FI +
GI )/2 is so.

Now let us consider the case where A and B are independent which yields the
following improvement on the lower bound (10). For all x > 0,

H(x) ≥ P{log(1 + A) > x} + P{log(1 + A) ≤ x}P{log(1 + B) > x}
= F(x)+ F(x)G(x)

∼ F(x)+G(x) as x → ∞.

Therefore, H inherits the tail properties of the distribution (F +G)/2, and HI the
tail properties of (FI +GI )/2. ��
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Proof of Theorem 1 At any state x ≥ 0, the Markov chain Xn has jump

ξ(x) = log(1 + A(ex − 1)+ B)− x

= log(A+ e−x(1 − A+ B))

≥ log(A− e−xA),

asB ≥ 0. Fix an ε > 0. Choose x0 sufficiently large such that log(1−e−x0) ≥ −ε/2.
Then the family of jumps ξ(x), x ≥ x0, possesses an integrable minorant

ξ(x) ≥ ξ + log(1 − e−x0)

≥ ξ − ε/2 =: η. (15)

On the other hand, since A > 0 and B ≥ 0, the family of jumps ξ(x), x ≥ x0,
possesses an integrable majorant ζ(x0) := log(A+ e−x0(1 +B)). For a sufficiently
large x0,

E log(A+ e−x0(1 + B)) ≤ Eξ + ε, (16)

owing to the dominated convergence theorem which applies because firstly log(A+
e−x0(1 + B)) → logA = ξ a.s. as x0 → ∞ and secondly, by the concavity of the
function log(1 + z),

log(A+ e−x0(1 + B)) < log(1 + A+ e−x0(1 + B))

≤ log(1 + A)+ log(1 + e−x0(1 + B)),

which is integrable by the finiteness of Eξ and E log(1 + B).
Let us first prove the lower bound (6) following the single big jump technique

known from the theory of subexponential distributions. Since Dn is assumed
convergent, the associated Markov chain Xn is stable, so there exists a c > 2 such
that

P{Xn ∈ (1/c, c]} ≥ 1 − ε for all n ≥ 0.

Let us consider an event

�(k, n, c) := {ηk+1 + . . .+ ηk+j ≥ −c − n(a + ε) for all j ≤ n}, (17)

where ηk are independent copies of η defined in (15). By the strong law of large
numbers, there exists a sufficiently large c such that

P{�(k, n, c)} ≥ 1 − ε for all k and n. (18)
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It follows from (15) that any of the events

{Xk−1 ≤ c, Xk > x + c + (n− k)(a + ε), �(k, n− k, c)} (19)

implies Xn > x and they are pairwise disjoint. Therefore, by the Markov property
and (18),

P{Xn > x}

≥
n∑

k=1

P{Xk−1 ≤ c, Xk > x + c + (n− k)(a + ε)}P{�(k, n− k, c)}

≥ (1 − ε)

n∑
k=1

P{Xk−1 ∈ (1/c, c], Xk > x + c + (n− k)(a + ε)}.

The kth probability on the right hand side equals

∫ c

1/c
P{Xk−1 ∈ dy}P{y + ξ(y) > x + c + (n− k)(a + ε)}

=
∫ c

1/c
P{Xk−1 ∈ dy}P{log(1 + A(ey − 1)+ B) > x + c + (n− k)(a + ε)}.

For all y > 1/c,

log(1 + A(ey − 1)+ B) ≥ log(1 + A(e1/c − 1)+ B)

≥ log(1 + A+ B)+ log(e1/c − 1),

because e1/c − 1 <
√
e − 1 < 1. Therefore, the value of the last integral is not less

than

P{Xk−1 ∈ (1/c, c]}P{log(1 + A+ B) > x + c1 + (n− k)(a + ε)},

where c1 := c − log(e1/c − 1). Hence, due to the choice of c,

P{Xn > x} ≥ (1 − ε)2
n∑

k=1

H(x + c1 + (n− k)(a + ε)).

Since the tail is a decreasing function, the last sum is not less than

1

a + ε

∫ n(a+ε)

0
H(x + c1 + y)dy. (20)
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Letting n → ∞ we obtain that the tail at point x of the stationary distribution of the
Markov chain X is not less than

(1 − ε)2

a + ε

∫ ∞

0
H(x + c1 + y)dy = (1 − ε)2

a + ε
HI (x + c1)

∼ (1 − ε)2

a + ε
HI (x) as x → ∞,

due to the long-tailedness of the integrated tail distribution HI . Summarising
altogether we deduce that, for every fixed ε > 0,

lim inf
x→∞

P{D∞ > x}
HI (log x)

≥ (1 − ε)2

a + ε
,

which implies the lower bound (6) due to the arbitrary choice of ε > 0.
If the distribution H is long-tailed itself, then the integral in (20) is asymptoti-

cally equivalent to the integral

∫ x+n(a+ε)

x

H(y)dy as x → ∞ uniformly for all n ≥ 1,

which implies the second lower bound (7).
Now let us turn to the asymptotic upper bound under the assumption that the

integrated tail distributionHI is subexponential. Fix an ε ∈ (0, a). Let x0 be defined
as in (16), so Eζ(x0) ≤ −a + ε. Let J be the distribution of ζ(x0). Since

log(1 + A+ B)− x0 ≤ ζ(x0) ≤ log(1 + A+ B),

we have H(x + x0) ≤ J(x) ≤ H(x). Then subexponentiality of HI yields
subexponentiality of the integrated tail distribution JI and J I (x) ∼ HI (x) as
x → ∞.

By the construction of ζ(x0),

x + ξ(x) ≤ y + ζ(x0) for all y ≥ x ≥ x0. (21)

Also, by the positivity of A,

x + ξ(x) = log(1 + A(ex − 1)+ B)

≤ log(1 + A(ex0 − 1)+ B)

= x0 + ξ(x0) ≤ x0 + ζ(x0) for all x ≤ x0. (22)
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Consider a random walk Zn delayed at the origin with jumps ζ(x0):

Z0 := 0, Zn := (Zn−1 + ζn(x0))
+,

where ζn(x0) are independent copies of ζ(x0). The upper bounds (21) and (22) yield
that the two chains Xn and Zn can be constructed on a common probability space
in such a way that, with probability 1,

Xn ≤ x0 + Zn for all n, (23)

so Xn is dominated by a random walk on [x0,∞) delayed at point x0. Since the
integrated tail distribution JI is subexponential, the tail of the invariant measure of
the chain Zn is asymptotically equivalent to J I (x)/(a − ε) ∼ HI (x)/(a − ε) as
x → ∞, see, for example, [6, Theorem 5.2]. Thus, the tail of the invariant measure
of Xn is asymptotically not greater than HI (x − x0)/(a − ε) which is equivalent to
HI (x)/(a − ε), since HI is long-tailed by subexponentiality. Hence,

lim sup
x→∞

P{D∞ > x}
HI (log x)

≤ 1

a − ε
.

Due to arbitrary choice of ε > 0 and the lower bound proven above this completes
the proof of the first asymptotics (8).

The same arguments with the same majorant (23) allow us to conclude the finite
time horizon asymptotics for D∞ if we apply Theorem 5.3 from [6] instead of
Theorem 5.2. ��

Theorem 1 makes it possible to identify a moment of time after which the
tail distribution of Dn is equivalent to that of D∞, in some particular strong
subexponential cases.

Corollary 3 Suppose that E logA = −a < 0, B > 0 and E log(1 + B) < ∞.
If the distribution H of log(1 +A+B) is regularly varying at infinity with index

α < −1, then P{Dn > x} ∼ P{D∞ > x} as n, x → ∞ if and only if n/ log x → ∞.
If H(x) ∼ e−xβ for some β ∈ (0, 1), then P{Dn > x} ∼ P{D∞ > x} as n,

x → ∞ if and only if n/ log1−β x → ∞.

We conclude this section by a version of the principle of a single big jump for
Dn. For any c > 1 and ε > 0 consider events

�k := {1/c < Xk−1 ≤ c, Xk > log x + c + (n− k)(a + ε),

|Xk+j −Xk + aj | ≤ c + jε for all j ≤ n− k
}

or, in terms of Dn,

�D
k := {1/c < Dk−1 ≤ c, Ak/c + Bk > xec+(n−k)(a+ε),

e−c−j (a+ε) ≤ Dk+j /Dk ≤ ec−j (a−ε) for all j ≤ n− k
}
.
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Roughly speaking, it describes a trajectory such that, for large x, the Dk−1 is neither
too far away from zero nor too close, then a single big jump occurs, both Ak and
Bk may contribute to that big jump, and then the logarithm of Dk+j , j ≤ n − k,
moves down according to the strong law of large numbers with drift −a. As stated
in the next theorem, the union of all these events describes more precisely than the
lower bound of Theorem 1 the most probable way by which large deviations of Dn

do occur.

Theorem 4 Let the distribution H of log(1 + A + B) be strong subexponential.
Then, for any fixed ε > 0,

lim
c→∞ lim

x→∞ inf
n≥1

P{∪n−1
k=0�k | Dn > x} = 1.

Proof The events�(k), k ≤ n, are pairwise disjoint and any of them implies {Xn >

log x}. Then similar arguments as in the proof of lower bound in Theorem 1 apply.
��

3 Impact of Atom at Zero

In this section we demonstrate what happens if the distribution of A has an atom
at zero. It turns out that then the tail asymptotics of Dn are essentially different –
they are proportional to the tail of H which is lighter than given by the integrated
tail distribution HI in the case where A > 0 – because the chain satisfies Doeblin’s
condition, see e.g. [14, Ch. 16]. As above, we denote by H the distribution of the
random variable log(1 + A+ B). For simplicity, we assume that B > 0.

Theorem 5 Suppose that A ≥ 0, B > 0 and p0 := P{A = 0} ∈ (0, 1). If the
distribution H is long-tailed and D0 > 0, then

P{Dn > x} ≥
(1 − (1 − p0)

n

p0
+ o(1)

)
H(log x) (24)

as x → ∞ uniformly for all n ≥ 1. In particular,

P{D∞ > x} ≥ (p−1
0 + o(1))H(log x) as x → ∞. (25)

If the distribution H is subexponential, D0 > 0 and {D0 > x} = o(H(x)) then

P{Dn > x} ∼ 1 − (1 − p0)
n

p0
H(log x) (26)

as x → ∞ uniformly for all n ≥ 1. In particular,

P{D∞ > x} ∼ p−1
0 H(log x) as x → ∞. (27)
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Proof Let H0 be the distribution of log(1+A+B) conditioned onA > 0 andG0 be
the distribution of log(1+B) conditioned on A = 0, then H = p0G0 + (1−p0)H0.

Let us decompose the eventXn > x according to the last zero value ofAk , which
gives equality

P{Xn > x} = P{A1, . . . , An > 0,Xn > x}

+
n∑

k=1

P{Ak = 0, Ak+1 > 0, . . . , An > 0,Xn > x}

= (1 − p0)
n
P{Xn > x | A1, . . . , An > 0}

+p0

n∑
k=1

(1 − p0)
n−k

P{Xn > x | Ak = 0, Ak+1, . . . , An > 0}

= (1 − p0)
n
P{Xn > x | A1, . . . , An > 0}

+p0

n−1∑
k=0

(1 − p0)
k
P{Xk+1 > x | A1 = 0, A2, . . . , Ak+1 > 0},

(28)

by the Markov property. In particular, the sum from 0 to n − 1 on the right hand
side is increasing as n grows as all terms are positive. For that reason, for the lower
bounds for P{Dn > x} it suffices to prove by induction that, for any fixed k ≥ 0 and
γ > 0, there exists a c < ∞ such that

P{Xk+1 > x | A1 = 0, A2, . . . , Ak+1 > 0}
≥ (1 − γ )

(
G0(x + c)+ kH0(x + c)

)
, (29)

P{Xk+1 > x | A1, . . . , Ak+1 > 0} ≥ (1 − γ )(k + 1)H0(x + c) (30)

for all sufficiently large x, because then

P{Xn > x} ≥ (1 − γ )

(
(1 − p0)

nnH0(x + c)

+p0

n−1∑
k=0

(1 − p0)
k
(
G0(x + c)+ kH0(x + c)

))

= (1 − γ )(
(
1 − (1 − p0)

n
)(
G0(x + c)+ 1 − p0

p0
H0(x + c)

)

= (1 − γ )
1 − (1 − p0)

n

p0
H(x + c),

with further application of long-tailedness of H .
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To prove (29), first let us note that the induction basis k = 0 is immediate, since
the distribution of X1 conditioned on A1 = 0 is G0. Now let us assume that (29) is
true for some k. Denote

Gk(dy) := P{Xk+1 ∈ dy | A1 = 0, A2, . . . , Ak+1 > 0}, k ≥ 0,

which is a distribution on (0,∞). Then

Gk+1(x) =
∫ ∞

0
P{log(1 + A(ey − 1)+ B) > x | A > 0}Gk(dy)

≥
∫ 1/ε

ε

P{log(1 + Aδ + B) > x | A > 0}Gk(dy)

+
∫ ∞

x+1/ε
P{log(A(ey − 1)) > x | A > 0}Gk(dy)

=: I1 + I2,

for any ε ∈ (0, 1/2] where δ = eε − 1 <
√
e − 1 < 1. Let us observe that then

P{log(1 + Aδ + B) > x | A > 0} = P{log(1/δ + A+ B/δ) > x − log δ | A > 0}
≥ H 0(x − log δ).

Therefore,

I1 ≥ H 0(x − log δ)Gk(ε, 1/ε].
The second integral may be bounded below as follows:

I2 ≥ P{log(A(ex+1/ε − 1)) > x | A > 0}Gk(x + 1/ε)

≥ P{log(Aex+1/2ε) > x | A > 0}Gk(x + 1/ε)

= P{A > e−1/2ε | A > 0}Gk(x + 1/ε),

for all sufficiently large x. Letting ε → 0 we obtain that, for any fixed γ > 0, there
exists a c < ∞ such that the following lower bound holds

Gk+1(x) ≥ (1 − γ )
(
H0(x + c)+Gk(x + c)

)

for all sufficiently large x, which implies the induction step.
The second lower bound, (30), follows by similar arguments provided D0 > 0.
Let us now proceed with a matching upper bound under the assumption that H

is a subexponential distribution. Since A, B ≥ 0,

ξ(x) = log(A+ e−x(1 − A+ B)) (31)

≤ log(1 + A+ B) for all x > 0. (32)
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Let η and ζ be random variables with the following tail distributions

P{η > x} = min

(
1,

P{log(1 + A+ B) > x}
P{A = 0}

)
,

P{ζ > x} = min

(
1,

P{log(1 + A+ B) > x}
P{A > 0}

)
, x > 0.

Both are subexponential random variables provided log(1 + A + B) is so, see e.g.
[6, Corollary 3.13]. It follows from (31) that, for all x > 0,

P{ξ(x) > y | A = 0} ≤ P{η > y},
P{ξ(x) > y | A > 0} ≤ P{ζ > y},

which implies that

P{Xk+1 > x | A1 = 0, A2, . . . , Ak+1 > 0} ≤ P{η + ζ1 + . . .+ ζk > x},

where ζi’s are independent copies of ζ independent of η. Then standard technique
based on Kesten’s bound for convolutions of subexponential distributions, see e.g.
Theorem 3.39 in [6], allows us to deduce from (28) that, for any fixed γ > 0,

P{Xn > x}

≤ (1 + γ )
(
(1 − p0)

nnG0(x)+ p0

n−1∑
k=0

(1 − p0)
k(G0(x)+ kH 0(x)

)

for all n ≥ 1 and sufficiently large x. Therefore,

P{Xn > x} ≤ (1 + γ )
1 − (1 − p0)

n

p0
H(x),

which together with the lower bound proves (26). ��

4 The Case of Positive A and Signed B

In this section we consider the case whereDn takes both positive and negative values
because of singed B, while A is still assumed positive in this section, A > 0. The
Markov chain Xn is defined as in (2).

As B is no longer assumed positive, it makes the tail behaviour of D quite
different if no further assumptions are made on dependency between A and B.
For example, in the extreme case where B = −cA for some c > 0, so Dn+1 =
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An+1(Dn− c), we have that Dn is eventually negative if stable, hence D∞ < 0 with
probability 1.

More generally, if B = Aη where η is independent of A and takes values of both
signs, then we conclude similar to (6) that, as x → ∞,

P{D∞ > x} ≥
(

1

a

∫
R

P{η > −c}P{D∞ ∈ dc} + o(1)

)
FI (log x),

provided the distribution FI is long-tailed. However, the technique used in Sect. 2
for proving the matching upper bound does not work in such cases as the Lindley
majorant returns the coefficient a−1 which is greater than that in the lower bound
above. For that reason we restrict further considerations to the case where A and B
are independent.

Theorem 6 Suppose that A > 0, A and B are independent, Eξ = −a ∈ (−∞, 0)
and E log(1 + |B|) < ∞.

If the integrated tail distributions FI and G+
I are long-tailed, then

P{D∞ > x} ≥ (a−1+o(1))
(
P{D∞ > 0}FI (log x)+G+

I (log x)
)

as x → ∞.

(33)

If, in addition, the distributions Fand G+ are long-tailed itself, then, as x, n → ∞,

P{Dn > x}

≥ 1+o(1)
a

(
P{D∞ > 0}

∫ log x+na

logx
F (y)dy +

∫ logx+na

logx
G+(y)dy

)
. (34)

If P{D∞ = 0} = 0, the integrated tail distributions FI , G+
I and G−

I are long-

tailed, G−
I (z) = O(FI (z)+G+

I (z)) and HI is subexponential then

P{D∞ > x} ∼ a−1
(
P{D∞ > 0}FI (log x)+G+

I (log x)
)

as x → ∞. (35)

If moreover the distributions F , G+ and G− are long-tailed, G−(z) = O(F(z) +
G+(z)) and H is strong subexponential then, as x, n → ∞,

P{Dn > x} ∼ 1

a

(
P{D∞ > 0}

∫ logx+na

logx
F (y)dy +

∫ logx+na

logx
G+(y)dy

)
.

(36)
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Proof Fix an ε > 0. As follows from (4), for x ≥ 0,

ξ(x) ≥
{

log(A(1 − e−x)− e−xB−) if A(ex − 1)+ B ≥ 0,
− log(1 + A+ |B|) if A(ex − 1)+ B < 0,

where the second line follows due to A > 0. The minorant on the right hand side
is stochastically increasing as x grows, therefore, there exists a sufficiently large x0
and a random variable η such that

ξ(x) ≥ η for all x ≥ x0 and Eη > −a − ε/2. (37)

As in the last proof, we start with the lower bound (33) following the single big
jump technique. Since Dn is assumed to be convergent, the associated Markov chain
Xn is stable, so there exist n0 and c > 2 such that

P{Xn ∈ (1/c, c]} ≥ (1 − ε)P{D∞ > 0} for all n ≥ n0,

P{|Xn| ≤ c} ≥ 1 − ε for all n,

and also P{A ≤ c} ≥ 1 − ε, P{|B| ≤ c} ≥ 1 − ε. For all k, n and c, let us consider
the events �(k, n, c) defined in (17) and satisfying (18). It follows from (37) that
any of the events (19) implies Xn > x and they are pairwise disjoint. Therefore, by
the Markov property and (18),

P{Xn > x}

≥
n∑

k=1

P{Xk−1 ≤ c, Xk > x + c + (n− k)(a + ε)}P{�(k, n− k, c)}

≥ (1 − ε)

n∑
k=1

P{Xk−1 ≤ c, Xk > x + c+ (n− k)(a + ε)}, (38)

The kth term of the sum is not less than

(∫ 0

−c
+
∫ c

0

)
P{Xk−1 ∈ dy}P{y + ξ(y) > zn−k}

=
∫ 0

−c
P{Xk−1 ∈ dy}P{log(1 + A(1 − e−y)+ B) > zn−k}

+
∫ c

0
P{Xk−1 ∈ dy}P{log(1 + A(ey − 1)+ B) > zn−k}

=: I1 + I2,
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where zk = x + c+ k(a+ ε). For all y ∈ [−c, 0] and z > 0, owing to the condition
A > 0 and independence of A and B

P{log(1 + A(1 − e−y)+ B) > z} ≥ P{log(1 − Aec + B) > z}
≥ P{A ≤ c}P{log(1 − cec + B) > z}
≥ P{A ≤ c}G+(z + 1)

for all sufficiently large z which yields that

I1 ≥ P{A ≤ c}P{Xk−1 ∈ [−c, 0]}G+(zn−k + 1)

≥ (1 − ε)P{Xk−1 ∈ [−c, 0]}G+(zn−k + 1), (39)

due to the choice of c. For all y > 0,

P{log(1 + A(ey − 1)+ B) > z}
≥ P{|B| ≤ c}P{log(1 + A(ey − 1)− c) > z} + P{log(1 + B) > z},

which yields that

I2 ≥ P{|B| ≤ c}
∫ c

1/c
P{log(1 + A(ey − 1)− c) > zn−k}P{Xk−1 ∈ dy}

+G+(zn−k)P{Xk−1 ∈ (0, c]}
≥ (1 − ε)P{log(1 + A(e1/c − 1)− c) > zn−k}P{Xk−1 ∈ (1/c, c]}

+G+(zn−k)P{Xk−1 ∈ (0, c]}.

Therefore, by the choice of c, for all sufficiently large x and k > n0,

I2 ≥ (1 − ε)2P{D∞ > 0}F(zn−k + 1)+G+(zn−k)P{Xk−1 ∈ (0, c]}.
(40)

Substituting (39) and (40) into (38) we deduce that

P{Xn > x} ≥ (1 − ε)2
n∑

k=n0+1

(
P{D∞ > 0}F(x + c + 1 + (n− k)(a + ε))

+G+(x + c + 1 + (n− k)(a + ε))
)
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Since the tail is a non-increasing function, the last sum is not less than

1

a + ε

∫ (n−n0−1)(a+ε)

0

(
P{D∞ > 0}F(x + c + 1 + y)+G+(x + c + 1 + y)

)
dy.

(41)

Letting n → ∞ we obtain that the tail at point x of the stationary distribution of the
Markov chain X is not less than

(1 − ε)2

a + ε

∫ ∞

0

(
P{D∞ > 0}F (x + c + 1 + y)+G+(x + c + 1 + y)

)
dy

= (1 − ε)2

a + ε

(
P{D∞ > 0}FI (x + c + 1) +G+

I (x + c + 1)
)

(42)

∼ (1 − ε)2

a + ε

(
P{D∞ > 0}FI (x) +G+

I (x)
)

as x → ∞,

due to the long-tailedness of the integrated tail distributions FI and G+
I . Summaris-

ing altogether we deduce that, for every fixed ε > 0,

lim inf
x→∞

P{D∞ > x}
P{D∞ > 0}FI (log x)+G+

I (log x)
≥ (1 − ε)2

a + ε
,

which implies the lower bound (33) due to the arbitrary choice of ε > 0.
If the distributions F and G+ are long-tailed itself, then the integral in (41) is

asymptotically equivalent to the integral

∫ x+n(a+ε)

x

(
P{D∞ > 0}F(y)+G+(y)

)
dy as x, n → ∞,

and the second lower bound (34) follows too.
To prove matching upper bounds let us first observe that

|Dn+1| ≤ An|Dn| + |Bn| for all n, (43)

where the right hand side is increasing in Dn. Hence, |Dn| ≤ D̃n, where D̃n is a
positive stochastic difference recursion,

D̃n+1 = AnD̃n + |Bn|.

Since HI is subexponential, Theorem 1 applies to D̃n, so

P{D̃∞ > x} ∼ a−1HI (log x) as x → ∞,
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and hence

P{|D∞| > x} ≤ (a−1 + o(1))HI(log x) as x → ∞,

It follows from (12) that

H(x) ≤ P{log(1 + A) > x − 1} + P{log(1 + |B|) > x − 1}.

Integrating the last inequality we get an upper bound

HI(x) ≤ FI (x − 1)+G−
I (x − 1)+G+

I (x − 1) (44)

∼ FI (x)+G−
I (x)+G+

I (x) as x → ∞,

because all three distributions, FI , G−
I and G+

I are assumed long-tailed. Hence the
following upper bound holds for the tail of |D∞|, as x → ∞:

P{|D∞| > x} ≤ (a−1+o(1))(FI (log x)+G−
I (log x)+G+

I (log x)
)
. (45)

The long-tailedness of FI and G−
I similarly to (33) implies that

P{D∞ < −x} ≥ (a−1 + o(1))
(
P{D∞ < 0}FI (log x)+G−

I (log x)
)
,

and the two lower bounds together imply that, as x → ∞,

P{|D∞| > x} ≥ (a−1 + o(1))
(
FI (log x)+G+

I (log x)+G−
I (log x)

)
,

because P{D∞ = 0} = 0. Together with the upper bound (45) it yields that

P{D∞ > x} = a−1(
P{D∞ > 0}FI (log x)+G+

I (log x)
)+ o(HI(log x)),

and the first asymptotics (35) follows by the conditionG−
I (z) = O(FI (z)+G+

I (z)).
The second asymptotics (36) follows along similar arguments. ��

5 Balance of Negative and Positive Tails in the Case of
Signed A

In this section we turn to the general case where Dn takes both positive and negative
values, with A taking values of both signs. Denote ξ := log |A| and the distribution
of log(1 + |A|) by F . Recall that the distribution of log(1 + |B|) is denoted by G

and the distribution of log(1 + |A| + |B|) by H .
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The Markov chain Xn is defined as above in (2).

Theorem 7 Suppose that P{D∞ = 0} = 0,

0 < P{A > 0} < 1, (46)

A and B are independent, Eξ = −a ∈ (−∞, 0) and E log(1 + |B|) < ∞.
If the integrated tail distribution HI is long-tailed, then

P{D∞ > x} ≥ (1/2a + o(1))HI(log x) as x → ∞. (47)

If, in addition, the distribution H is long-tailed itself, then

P{Dn > x} ≥ 1 + o(1)

2a

∫ logx+na

logx
H(y)dy as n, x → ∞. (48)

If the integrated tail distribution HI is subexponential then

P{D∞ > x} ∼ 1

2a
HI (log x) as x → ∞. (49)

If moreover the distribution H is strong subexponential then

P{Dn > x} ∼ 1

2a

∫ logx+na

logx
H(y)dy as n, x → ∞. (50)

Proof The same arguments based on the single big jump technique used in the last
section for proving (42) show that, for any fixed ε > 0, there exists a c < ∞ such
that

P{|X∞| > x} ≥ 1 − ε

a

(
P{D∞ �= 0}FI (x + c + 1)+GI (x + c + 1)

)

for all sufficiently large x. Similar to (44),

HI(x) ≤ FI (x − 1)+GI (x − 1)

for all sufficiently large x, which together with the condition P{D∞ = 0} = 0
implies that

P{|X∞| > x} ≥ 1 − ε

a
HI (x + c + 2)

∼ 1 − ε

a
HI (x) as x → ∞,
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due to the long-taileness of the distribution HI . Therefore,

P{|X∞| > x} ≥ (a−1 + o(1))HI(x) as x → ∞. (51)

At any time epoch n large absolute value of Xn changes its sign with asymptotic (as
x → ∞) probability p− = P{A < 0} and keeps its sign with asymptotic probability
p+ = P{A > 0}, so sign change may be asymptotically described as a Markov chain
with transition probability matrix

(
p+ p−
p− p+

)
,

whose asymptotic distribution is (1/2, 1/2), owing to the condition (46). For that
reason, the probability of a large positive value of Xn is approximately at least one
half of the right hand side of (51), and the proof of (47) is complete. The proof of
(48) follows the same lines.

To prove the upper bound (49), similar to (43) we first note that

|Dn+1| ≤ |An||Dn| + |Bn| for all n,

which allows to conclude the proof as it was done in the last section. ��
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The Doob–McKean Identity for Stable
Lévy Processes

Andreas E. Kyprianou and Neil O’Connell

Abstract We re-examine the celebrated Doob–McKean identity that identifies a
conditioned one-dimensional Brownian motion as the radial part of a 3-dimensional
Brownian motion or, equivalently, a Bessel-3 process, albeit now in the analogous
setting of isotropic α-stable processes. We find a natural analogue that matches the
Brownian setting, with the role of the Brownian motion replaced by that of the
isotropic α-stable process, providing one interprets the components of the original
identity in the right way.

Keywords Cauchy Processes · Doob h-transform · Radial process

1 Introduction

A now-classical result in the theory of Markov processes due to Doob [8] and
McKean [19] equates the law of a Brownian motion conditioned to stay positive
with that of a Bessel-3 process; see also [21, 24, 25]. A precise statement of this
identity can be made in a number of different ways as each of the two processes
that are equal in law have several different representations. For the purpose of this
exposition, it is worth reminding ourselves of them.
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Denote by D(R) the space of càdlàg paths ω : [0,∞) → R ∪ 
 with lifetime
ζ = inf{t > 0 : ωt = 
}, where 
 is a cemetery state. The space D(R) will be
equipped with the Skorokhod topology and its natural Borel σ -algebra into which
is embedded the natural filtration (Fs, s ≥ 0). On this space, we will denote by
B = (Bt , t ≥ 0) the coordinate process whose probabilities P = (Px, x ∈ R) are
those of a standard one dimensional Brownian motion. For each t ≥ 0, x > 0, the
limit

P
↑
x (A, t < ζ ) := lim

ε→0
Px(A, t < e/ε | τ−0 (B) > e/ε), (1)

where e is an independent exponentially distributed random variable with unit mean,
τ−0 (B) = inf{t > 0 : Bt < 0}, defines a new family of probabilities on D(R≥0) :=
{ω ∈ D(R) : ω ∈ (0,∞) ∪ 
}. It turns out that P↑ = (P

↑
x , x > 0) defines a

conservative (i.e. ζ = ∞) Markov process on [0,∞). As such, (B,P↑) is the sense
in which we can understand Brownian motion conditioned to stay positive.

Thanks to the well known fact that the probability Px(τ
−
0 (B) > t) ∼ x/

√
2πt ,

as t → ∞, it is easy to verify by taking its Laplace transform followed by an
integration by parts, then an application of the classical Tauberian Theorem, that, up
to an constant c > 0, Px(τ

−
0 (B) > e/ε) ∼ cx

√
ε. One thus easily verifies from (1),

with the help of an easy dominated convergence argument, that (B,P↑) satisfies

dP↑
x

dPx

∣∣∣∣∣
Ft

= Bt

x
1{t<τ−0 (B)}, x, t > 0. (2)

The change of measure (2) presents a second definition of the Brownian motion
conditioned to stay positive via a Doob h-transform with respect to Brownian
motion killed on exiting [0,∞), using the harmonic function h(x) = x. Suppose we
write pt(x, y) and p†

t (x, y), t ≥ 0, x, y > 0, for the transition density of Brownian
motion and of Brownian motion killed on exiting [0,∞), respectively. Then another
way of expressing (2) is via the harmonic transformation

p↑(x, y) := y

x
p

†
t (x, dy) = y

x
(pt (x, y)− pt (x,−y)), x, y > 0. (3)

As alluded to above, the so-called Doob–McKean identity states that the process
(B,P↑) is equal in law to a Bessel-3 process. There are also several ways that one
may define the latter processes. Among the many, there are three that we mention
here.
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As a parametric family indexed by ν ≥ 0, Bessel-ν processes are defined as non-
negative valued, conservative, one-dimensional diffusions which can be identified
via the action of their generator Lν , which satisfies

Lν = 1

2

(
d2

dx2 + ν − 1

x

d

dx

)
, x > 0, (4)

such that the point 0 is treated as an absorbing boundary if ν = 0, as a reflecting
boundary if ν ∈ (0, 2) and as an entrance boundary if ν ≥ 2. As such, the associated
transition density can be identified as a non-zero solution to the backward equation
given by Lν . In general, the transition density can be identified explicitly with the
help of Bessel functions (hence the name of the family of processes). In the special
case that ν = 3, it turns out that the transition density can be more simply identified
by the right-hand side of (3).

In the setting that ν is a natural number, in particular, in the case that ν = 3, the
generator (4) is also the radial component of the ν-dimensional Laplacian. Noting
that the latter is the generator of a ν-dimensional Brownian motion, we also see that,
for positive integer values of ν, the Bessel-ν process is also the radial distance from
the origin of a ν-dimensional Brownian motion; cf. [12]. This also illuminates the
need for the point 0 to be either reflecting or an entrance point when ν > 0, at least
for ν ∈ N.

The Doob–McKean identity is present-day nested in a much bigger dialogue
concerning the representation of conditioned, path-segment-sampled and time-
reversed stochastic processes, including general diffusions, random walks and Lévy
processes; see e.g. [1, 2, 5–8, 19, 21, 22, 24, 25] and others. In this article we add
to the list of extensions to the Doob–McKean identity by looking at the setting in
which the role of the Brownian motion is replaced by an isotropic α-stable process.

2 Doob-McKean for Isotropic α-Stable Processes

We recall that an isotropic α-stable process (henceforth sometimes referred to as a
stable process or a symmetric stable process in one dimension) in dimension d ∈ N,
with coordinate process say X = (Xt , t ≥ 0) and probabilities Pα,d = (Pα,dx , x ∈
R
d), is a Lévy process which is also a self-similar Markov process, which has self-

similarity index α. More precisely, as a Lévy process, its transitions are uniquely
described by its characteristic exponent given by the identity

Eα,d0 [exp(iθXt)] = exp(−|θ |αt), t ≥ 0,
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where we interpret θXt as an inner product in the setting that d ≥ 2. For the pure
jump case that we are interested in, it is necessary that α ∈ (0, 2). As a self-similar
Markov process with index α, it satisfies the scaling property that, for all c > 0,

(cXc−αt , t ≥ 0) under Pα,dx is equal in law to (X,Pα,dcx ). (5)

In any dimension, (X,Pα,d) has a transition density and, for example, in the setting
d = 1, if we denote it by q

(α)
t (x, y), x, y ∈ R, then the scaling property (5)

manifests in the form

cq
(α)
t (cx, cy) = q

(α)

c−αt (x, y), x, y ≥ 0, t > 0. (6)

We note that the Cauchy process has a symmetric distribution in one dimension
and is isotropic in higher dimensions. As a Lévy process, its jump measure is given
by

�(dz) = 2απ−d/2	((d + α)/2)∣∣	(−α/2)
∣∣

1

|z|α+d dz, z ∈ R
d (7)

where B is a Borel set in R
d . A special case of interest will be when α = 1 and

when d = 1, in which case, (7) takes the form

�(dx) = 1

π

1

x2
dx, x ∈ R.

Moreover, the transition density, more conveniently written as (qt , t ≥ 0) rather
than (q(1)t , t ≥ 0), is given by

qt (x, y) = 1

π

t

(y − x)2 + t2
, x, y ∈ R, t > 0, (8)

from which we can verify the scaling property (5) directly.
Given the summary of the Doob–McKean identity for the Brownian setting

above, the stable-process analogue we present as our main result below matches
perfectly the Brownian setting providing one interprets the components in the
identity in the right way.

Theorem 1 The kernel

q
(α),∗
t (x, y) = y

x

(
q
(α)
t (x, y)− q

(α)
t (x,−y)

)
x, y ≥ 0, t > 0 (9)

defines a conservative Feller semigroup, say Y = (Yt , t ≥ 0), on [0,∞) which is
self-similar with index α. Moreover, Y is equal in law to the radial part of a three-
dimensional isotropic α-stable process.
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An easy corollary of the above result is the following.

Corollary 1 The transition density of the radial part of a 3-dimensional Cauchy
process is given by

q
(1),∗
t (x, y) = 1

π

4y2t

(y2 − x2)2 + 2t2(y2 + x2)+ t4
, x, y ≥ 0, t > 0. (10)

Proof of Theorem 1 The proof is a relatively elementary consequence of the classi-
cal Doob–McKean identity once one takes account of the following basic fact; cf.
e.g. Chapter 3 of [17].

Lemma 1 If (B(d)
t , t ≥ 0) is a standard d-dimensional Brownian motion (d ≥ 1)

and � = (�t , t ≥ 0) is an independent stable subordinator with index α/2, where
α ∈ (0, 2), then (

√
2B(d)

�t
, t ≥ 0) is an isotropic d-dimensional stable process with

index α.

An immediate consequence of Lemma 1 is that, e.g. in one dimension, we can
identify the semigroup of a symmetric stable process with index α via

q
(α)
t (x, y) =

∫ ∞

0
γ
(α/2)
t (s)

1

2d/2p
(d)
s (x, y/

√
2)ds

where p(d)t (x, y), x, y ∈ R
d is the transition density of a standard Brownian motion

in R
d (and for consistency we have p(1)t = pt , t ≥ 0.)

γ
(α/2)
t (s) = 1

π

∑
n≥1

(−1)n−1	(1 + αn
2 )

n! sin
(nπα

2

)
tns−

nα
2 −1, x > 0,

is the transition density of the stable subordinator with index α/2.
Replacing y by y/

√
2 in (3) and dividing through by

√
2, by integrating against

the kernel γ (α/2) we see with the help of Lemma 1 that

1√
2

∫ ∞
0

γ
(α/2)
t (s)p

↑
s (x, y/

√
2)ds = y

x

(
q
(α)
t (x, y) − q

(α)
t (x,−y)

)
, x, y ≥ 0, t ≥ 0.

Writing P
(3) for the law of 3-dimensional Brownian motion with coordinate process

(B
(3)
t , t ≥ 0) as a coordinate process on D(R). Since (p↑

t , t ≥ 0) is the transition
density of a Bessel-3 process, which is also the transition density of the radius of a
3-dimensional standard Brownian motion, we know that

1√
2
p↑
s (x, y/

√
2)dy = P

(3)
(x,0,0)(|

√
2B(3)

t | ∈ dy), y, t ≥ 0.
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As such, it follows that

1√
2

∫ ∞

0
γ
(α/2)
t (s)p↑

s (x, y/
√

2)ds = P
(3)
(x,0,0)(|

√
2B(3)

�t
| ∈ dy),

where� is an independent stable subordinator with index α/2. Lemma 1 now allows
us to conclude that (9) agrees with the transition semigroup of the radial component
of a 3-dimensional stable process. On account of the fact that the radial component
of an isotropic stable process is a conservative self-similar Markov process (and in
particular a Feller process), we see that the semigroup in (9) must also offer the
same properties. This also includes the existence of an entrance law at zero which
is affirmed by the representation given in Lemma 1. ��

3 The Special Case of Cauchy Processes

The special case of the Doob–McKean identity for α = 1, i.e. the Cauchy process,
reveals a few more details that we can explore further. In the subsections below, we
look at the Doob–McKean identity in terms of the Lamperti representation of self-
similar Markov processes, its relation with the Cauchy process conditioned to stay
positive and in terms of a pathwise interpretation.

3.1 Lamperti Representation of the Doob-McKean Identity

As a self-similar Markov process with index 1, the process Y in Theorem 1 when
α = 1 enjoys a Lamperti representation. Specifically,

Yt = eξϕ(t) , t ≤
∫ ∞

0
eξudu, (11)

where ϕ(t) = inf{s > 0 : ∫ s0 exp(ξu)du > t} and (ξt , t ≥ 0) is a Lévy process,
which is possibly killed at an independent and exp

Another way of understanding the statement in the second part of Theorem 1
is that the Lévy process ξ agrees with the one that underlies the Lamperti
representation of the radial part of a three-dimensional Cauchy process. The reason
why the latter is a positive self-similar Markov process was examined in [4];
see also Chapter 5 of [17]. Indeed, there it was shown that the radial part of
a 3-dimensional Cauchy process has underlying Lévy process, say (ηt , t ≥ 0),
with probabilities (Pηx, x ∈ R), which is identified via its characteristic exponent
�(z) = − log

∫
R

eizx
P
η

0(η1 ∈ dx), where

�(z) = 2
	( 1

2 (−iz+ 1))

	(− 1
2 iz)

	( 1
2 (iz+ 3))

	( 1
2 (iz+ 2))

= (z− i) tanh(πz/2), z ∈ R. (12)
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An equivalent way of identifying η is as a pure jump process, with no killing (note
that �(0) = 0) and with Lévy measure having density taking the form

μ(x) = 4

π

e3x

(e2x − 1)2
, x ∈ R. (13)

Note that for small |x| the density above behaves like O(|x|−2), for large positive
x, it behaves like O(e−x) and for large negative x, it behaves like O(e−3|x|). As
such, the process η has paths of unbounded variation and its law enjoys exponential
moments; in particular η has a finite first moment.

The long term linear growth of η (in the sense of the Strong Law of Large
Numbers) is given by the mean E

η
0[η1] = π/2 which can also be computed

from the value of i� ′(0); see also Proposition 1 of [15]. Not surprisingly this
implies that limt→∞ ηt = ∞ almost surely. This is consistent with the fact that
a three-dimensional Cauchy process is transient and hence, its radial component
drifts to +∞, which implies its underlying Lévy process must too. Note, in the
latter observation, we are also using the fact that positive self-similar Markov
processes are either: Transient to infinity, corresponding to the underlying Lévy
process drifting to +∞; Interval recurrent, corresponding to the underlying Lévy
process oscillating; Continuously absorbed at the origin, corresponding to the
case that the underlying Lévy process drifts to −∞; Absorbed at the origin by a
jump; corresponding to the case that the underlying Lévy process is killed at an
independent and exponentially distributed time. See [16–18] for further details.

Because η has a finite first moment, we can relate (13) to (12) via the particular
arrangement of the Lévy–Khintchine formula

�(z) = −π

2
iz+

∫
R

(
1 − eizx + izx

)
μ(x)dx, z ∈ R. (14)

This arrangement will prove to be convenient in the following Corollary.

Corollary 2 Suppose that C2(R≥0) is the space of twice continuously integrable
functions on R≥0. On C2(R≥0), the action of the generator L associated to the
process Y in Theorem 1 is given by

Lf (x) = π

2
f ′(x)+ 4

πx

∫ ∞
0

(
f (xu) − f (x)− xf ′(x) log u

) u2

(u2 − 1)2
du, x > 0

(15)

which agrees with the representation

Lf (x) = 4

πx
(PV )

∫ ∞

0
(f (xu)− f (x))

u2

(u2 − 1)2
du, x > 0, (16)

where (PV )
∫

is understood as a principal value integral.
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Proof Because of the arrangement of the characteristic exponent in (14), from [3],
we know that its generator can be accordingly arranged to have action on f ∈
C2(R≥0) given by

Lf (x) = π

2
f ′(x)+ 4

πx

∫ ∞
0

(
f (xu) − f (x)− xf ′(x) log u

) u2

(u2 − 1)2
du, x > 0.

(17)

For the second statement of the corollary, we need to show that

I := (PV )

∫ ∞

0

u2 logu

(u2 − 1)2
du = π2

8
(18)

and that

(PV )

∫ ∞

0
(f (xu)− f (x))

u2

(u2 − 1)2
du

is well defined. The latter is easily done on account of the fact that, near the
singularity u = 1, f (ux)− f (x) ≈ (u− 1)xf ′(x)+O((u− 1)2), x, u > 0, so that
we can estimate the principal value of the integral there using partial fractions.

To see why the equality in (18) holds, note that after a change of variable u = ex

we see

I = (PV )

∫ ∞

−∞
xex

(ex − e−x)2
dx = −(PV )

∫ ∞

−∞
xe−x

(ex − e−x)2
dx, (19)

where in the second equality we have noted the simple change of variables x �→ −x.
It thus follows by adding the two integrals in (19) together that

I = 1

2

∫ ∞

−∞
x

(ex − e−x)
dx = 1

2

∫ ∞

0

x

sinh x
dx = π2

8
.

where the final equality follows from equation 3.521.1 of [11].
Note, another way to approach the second part of the corollary is to use the

standard definition of a Feller generator on C∞
c (R≥0), the space of compactly

supported smooth functions; cf [13]. We have

Lf (x) = lim
t→0

1

t

(∫ ∞

0
f (y)q

(1),∗
t (x, y)− f (x)

)
, x > 0.
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Making use of (9) and monotone convergence, again taking note that the singularity
in the integral can be dealt with in a similar manner, we see that

Lf (x) = lim
t→0

4

π
(PV )

∫ ∞

0
(f (y)− f (x))

y2

(y2 − x2)2 + 2t2(y2 + x2)+ t4
dy

= 4

π
(PV )

∫ ∞

0
(f (y)− f (x))

y2

(y2 − x2)2
dy, x > 0, (20)

which agrees with (16) after a simple change of variables. ��

3.2 Connection to Cauchy Process Conditioned to Stay Positive

It is also worthy of note in the general case α ∈ (0, 2) that the process Y does not
agree with the law of a one-dimensional symmetric stable process conditioned to
stay positive. The latter can be understood via the exact same limiting process in
(1), again replacing the role of Brownian motion by that of the one-dimensional
stable process, inducing a new family of probabilities (P1,1,↑

x , x > 0) on D(R≥0).
Rather than corresponding to the change of measure (2), the law of the Cauchy
process conditioned to stay positive is related to that of the Cauchy process via

dP1,1,↑
x

dP1,1
x

∣∣∣∣∣
Ft

=
(
Xt

x

)1/2

1{t<τ−0 (X)}, x > 0, t ≥ 0, (21)

where τ−0 (X) = inf{t > 0 : Xt < 0}.
There is nonetheless a close relationship between (Px, x > 0) and (P1,1,↑

x , x >

0), which is best seen through the Lamperti representation (11). Suppose we write
�↑ for the characteristic exponent of the Lévy process that underlies the Cauchy
process conditioned to stay positive. It is known from [3] (see also Chapter 5 of
[17]) that

�↑(z) = �(2z), z ∈ R. (22)

If we write μ↑ for the Lévy measure associated to �↑. This is equivalent to
saying that 2μ↑(x) = μ(x/2), or indeed that the Lévy process underlying the
Cauchy process conditioned to stay positive is equal in law to 2η. This is a
curious relationship which is clearly related to the fact that the Doob h-transform
in the definition (9) uses h(x) = x, whereas the Doob h-transform in (21) uses
h(x) = √

x. It is less clear if or how this relationship extends to other values of α.
From Lemma 2.2 in [20] we can now identify the following simple relationship.
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Corollary 3 Denote by Y ↑ = (Y
↑
t , t ≥ 0) is the co-ordinate process of a one-

dimensional Cauchy process conditioned to stay positive. Then with Y denoting the
process in Theorem 1, we have space-time path transformation relating Y to Y ↑,

(Y
↑
t , t ≥ 0) law=

(
(Yχ(t))

2, t ≥ 0
)
, where χ(t) = inf{s > 0 :

∫ t

0
Y−1
u du > t}, t ≥ 0.

3.3 Pathwise Representation

One way to understand the Doob-McKean in the Cauchy setting is to consider it
via a path transformation which mirrors the proof of Theorem 1. Think of a two-
dimensional Brownian motion P

(2) on the x-y plane which is stopped when hits
the line x = t , that is at the time 	t = inf{s > 0 : πx(

√
2B(2)

s ) = t}, where πx
is the projection of

√
2B(2) onto the x-axis. It is well known that 	t is a 1/2-stable

subordinator and that (πy(
√

2B(2)
	t
), t ≥ 0) is a Cauchy process where πy is the

projection on to the y-axis.
Suppose now we replace B(2) by the x-y planar process (B,R), where B is

a one-dimensional Brownian motion and R is an independent Bessel-3 process.
Noting that R is a Doob h-transform of πy(

√
2B(2)) killed on hitting the x-axis,

the independence of B and R, and hence the independence of (	t , t ≥ 0) and R

means that the process (
√

2R	t , t ≥ 0) agrees precisely with the transformation on
the right-hand side of (9) with α = 1.

3.4 Generators

We know that the generator of the process Y in Theorem 1 is given by (16). The
pathwise representation in the previous section, captured e.g. in Fig. 1 also gives us
some insight into the structure of the generator (16).

As alluded to above, if B is a one-dimensional Brownian motion, then
(
√

2B	t , t ≥ 0) is a Cauchy process. Its generator C is written

Cf (x) = 1

π
(PV )

∫ ∞

−∞
f (y)− f (x)

(y − x)2
dy, f ∈ C∞

c (R≥0). (23)

We want to connect the generator C with the processes Y we see in the path
decomposition, in particular with the process (R	t , t ≥ 0).

We know from (3) that a Bessel-3 process is the result of Doob h-transforming
the law of a Brownian motion killed on entry to (−∞, 0). We have also seen e.g.
in the proof of Theorem 1 that subordination with the 1/2-stable process (	t , t ≥ 0)
preserves the effect of the Doob h-transform. What we would like to understand
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Fig. 1 A pathwise representation of the Doob-McKean transformation for Cauchy processes. The
red path depicts a sample path from the process (B,R), where B is a Brownian motion in the
direction of the x axis and R is a Bessel-3 process in the direction of the y axis, until it hits
the vertical line x = t . The green and purple paths are sample paths from the two dimensional
Brownian motion B(2) until first hitting of the vertical line x = t

is how the 1/2-stable subordination of killed Brownian motion, i.e. (q(1/2)
t (x, y) −

q
(1/2)
t (x,−y)), plays out in (23).

To this end, we can think of jump rate from x ≥ 0 to y ≥ 0 of the sub-Markov
process with semigroup (q

(1/2)
t (x, y) − q

(1/2)
t (x,−y)), as being derived from a

principal of ‘path counting’ using jump rates of the Cauchy process. The generator
of a Cauchy process killed on exiting the upper half line is given by

C+f (x)− 1

πx
where C+f (x) := 1

π

∫ ∞

0

f (y) − f (x)

(y − x)2
dy, f ∈ C∞

c (R≥0).

Indeed, the aforesaid process jumps from x ≥ 0 to y ≥ 0 at rate 1/π(y − x)2dy,
however, we must subtract from this rate, the rate at which killing occurs by jumping
from x into the negative half line. The latter is

1

π

∫ 0

−∞
1

(y − x)2
dy = 1

π

∫ ∞

x

1

z2 dz = 1

πx
.

The combined effect of reflection principal and 1/2-stable subordination, suggests
we must also subtract the rate at which jumps from x ≥ 0 to y ≥ 0 occur as the
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reflection of jumps from x to −y, with the additional effect of killing on the lower
half line, i.e.

C−f (x)− 1

πx
where C−f (x) = 1

π

∫ ∞

0

f (y)− f (x)

(x + y)2
dy, f ∈ C∞

c (R≥0).

We can thus identify the generator of Y , L, as the following Doob h-transform.

Lemma 2 We have

Lf (x) = 1

x
D(xf (x)), f ∈ C∞

c (R≥0), x > 0,

where

D = C+ − C− − 2

πx
.

Proof We compute (all integrals are Cauchy principal value integrals):

1

x
D(xf (x)) = 1

πx

∫ ∞

0

yf (y) − xf (x)

(y − x)2
dy − 1

πx

∫ ∞

0

yf (y) − xf (x)

(y + x)2
dy − 2

πx
f (x)

= 1

πx

∫ ∞

0

4xy(yf (y) − xf (x))

(y2 − x2)2
dy − 2

πx
f (x)

= 4

π

∫ ∞

0

y2(f (y) − f (x))

(y2 − x2)2
dy + 4

π

∫ ∞

0

(y2 − xy)f (x)

(y2 − x2)2
dy − 2

πx
f (x)

= Lf (x),

where the last identity follows from the definition of L and the fact that

(PV )

∫ ∞

0

2xy

(y − x)(y + x)2
dy = 1.

��
Note that the ‘reflected’ Cauchy process has generator CR = C+ + C−, and we

earlier identified the Cauchy process killed on going negative as having generator
CA = C+ − 1/(πx). These are related to the generator D via CA = (D + CR)/2.
The spectral problem associated with the Cauchy process on the half-line with
‘reflecting’ boundary is equivalent to the so-called ‘sloshing problem’ in the
theory of linear water waves, and this has been extensively studied [10]. The
spectral problem associated with the Cauchy process on the half-line with absorbing
boundary conditions has been completely solved in [14].
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4 Concluding Remarks

Elliot and Feller [9] consider various examples of Cauchy processes constrained to
stay in a compact interval [0, a]. One of the examples they consider (Example (d)
in their paper), has transition density

pt (x, y) =
∞∑

n=−∞
[qt (x, 2an+ y)− qt (x, 2an− y)], (24)

where qt (x, y) is the transition density of the one-dimensional Cauchy process.
They remark that (24) defines ‘a transition semi-group and determines a Markovian
process, but it is not the absorbing barrier process. [ · · · ] It is not clear whether and
how the process is related to the Cauchy process.’ In fact, the process considered
in [9] is a Brownian motion in [0, a] with Dirichlet boundary conditions, time-
changed by an independent stable subordinator of index 1/2. Moreover, it may be
interpreted in terms of the Cauchy process via a similar pathwise interpretation to
the one outlined above for the half-line.

It is also natural to consider multi-dimensional versions. For example, Dyson
Brownian motion is a Brownian motion in R

n conditioned never to exit the Weyl
chamber C = {x ∈ R

n : x1 > · · · > xn}. Its transition density is given by

dt (x, y) = h(x)−1h(y)
∑
σ∈Sn

sgn(σ )pt (x, σy),

where the sum is over permutations, σy is the vector y with components permuted
by σ , h(x) = ∏

i<j (xi − xj ) is the Vandermonde determinant, and pt (x, y) is
the standard Gaussian heat kernel in R

n. If we time-change this process by an
independent stable subordinator of index α/2, and multiply by a factor of

√
2, then

the resulting process in C has transition density

Dt(x, y) = h(x)−1h(y)
∑
σ∈Sn

sgn(σ )P (α)
t (x, σy),

where P
(α)
t (x, y) is the transition density of the isotropic n-dimensional stable

process with index α. We note that, in the case α = 1, this time-changed process
may be interpreted as the ‘radial part’ of a Cauchy process in R

n, as discussed in
Section 5 of the paper [23].
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Abstract Suppose that S is a closed set of the unit sphere Sd−1 = {x ∈ R
d : |x| =

1} in dimension d ≥ 2, which has positive surface measure. We construct the law
of absorption of an isotropic stable Lévy process in dimension d ≥ 2 conditioned
to approach S continuously, allowing for the interior and exterior of S

d−1 to be
visited infinitely often. Additionally, we show that this process is in duality with
the unconditioned stable Lévy process. We can replicate the aforementioned results
by similar ones in the setting that S is replaced by D, a closed bounded subset of
the hyperplane {x ∈ R

d : (x, v) = 0} with positive surface measure, where v is
the unit orthogonal vector and where (·, ·) is the usual Euclidean inner product. Our
results complement similar results of the authors [17] in which the stable process
was further constrained to attract to and repel from S from either the exterior or the
interior of the unit sphere.
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1 Introduction

Let X = (Xt , t ≥ 0) be a d-dimensional stable Lévy process (d ≥ 2) with
probabilities (Px, x ∈ R

d). This means that X has càdlàg paths with stationary
and independent increments, and there exists an α > 0 such that, for c > 0, and
x ∈ R

d,

under Px the law of (cXc−αt , t ≥ 0) is equal to Pcx .

The latter is the property of so-called self-similarity. It turns out that stable Lévy
processes necessarily have α ∈ (0, 2]. The case α = 2 is that of standard d-
dimensional Brownian motion, thus has a continuous path. All other α ∈ (0, 2)
have no Gaussian component and are pure jump processes. In this article we are
specifically interested in phenomena that can only occur when jumps are present.
We thus restrict ourselves henceforth to the setting α ∈ (0, 2).

Although Brownian motion is isotropic, this need not be the case in the stable
case when α ∈ (0, 2). Nonetheless, we will restrict to the isotropic setting. To be
more precise, this means, for all orthogonal transformations U : R

d �→ R
d and

x ∈ R
d,

the law of (UXt , t ≥ 0) under Px is equal to (Xt , t ≥ 0) under PUx.

For convenience, we will henceforth refer to X as a stable process.
As a Lévy process, our stable process of index (0, 2) has a characteristic triplet

(0, 0,�), where the jump measure � satisfies

�(B) = 2α	((d + α)/2)

πd/2|	(−α/2)|
∫
B

1

|y|α+d �d(dy), B ⊆ B(Rd), (1)

where �d is d-dimensional Lebesgue measure.1 This is equivalent to identifying its
characteristic exponent as

�(θ) = −1

t
logE(eiθ ·Xt ) = |θ |α, θ ∈ R

d,

where we write P in preference to P0.
In this article, we characterise the law of a stable process conditioned to

continuously approach a closed subdomain of the surface of a unit sphere, say
S ⊆ S

d−1 = {x ∈ R
d : |x| = 1}, which has non-zero surface measure. Moreover,

1We will distinguish integrals with respect to one-dimensional Lebesgue measure as taking the
form

∫ · dx, where as higher dimensional integrals will always indicate the dimension, for example∫ · �d(dx).
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our conditioning will allow the stable process to approach S by visiting the exterior
and interior of Sd−1 infinitely often. We note that when α ∈ (1, 2), stable processes
will hit the unit sphere with positive probability and otherwise, when α ∈ (0, 1]
it hits the unit sphere with probability zero; see e.g. [25] or [16]. The aforesaid
conditioning is thus only of interest when α ∈ (0, 1].

In addition to constructing the conditioned process, we develop an expression
for the law of the limiting point of contact on S. Moreover, we show that, when
time reversed from the strike point on S, the resulting process can be described as
nothing more than the stable process itself.

It turns out that the methodology we use here is robust enough to cover a similar
suite of results for the case of an isotropic stable process conditioned to a closed
subdomain of an arbitrary hyperplane in R

d that is orthogonal to an arbitrary unit-
length vector v ∈ R

d .
Our results naturally complement those of the recent paper [17], which considers

a similar type of conditioning, albeit requiring the stable process to additionally
remain either inside or outside of the unit ball. Other related works include [9] and
[14], who considered a real valued stable process conditioned to hit 0 continuously
and a real valued stable process conditioned to continuously approach the boundary
of the interval [−1, 1] from the outside, respectively. In order to make our results
pertinent, we restrict ourselves to the case that d ≥ 2.

2 Oscillatory Attraction Towards S

Let D(Rd) denote the space of càdlàg paths ω : [0,∞) → R
d ∪ ∂ with lifetime

ζ(ω) = inf{s > 0 : ω(s) = ∂}, where ∂ is a cemetery point. The space D(Rd )

will be equipped with the Skorokhod topology, with its closed σ -algebra F and
natural filtration (Ft , t ≥ 0). The reader will note that we will also use a similar
notion for D(E) later on in this text in the obvious way for an E-valued Markov
process. We will always work with X = (Xt , t ≥ 0) to mean the coordinate process
defined on the space D(Rd). Hence, the notation of the introduction indicates that
P = (Px, x ∈ R

d) is such that (X,P) is our stable process.
We want to construct the law of the stable process conditioned to continuously

limit to S ∈ S
d−1 whilst visiting both Bd := {x ∈ R

d : |x| < 1} and B̄
c
d := R

d \ B̄d

infinitely often at arbitrarily small times prior to striking S. We shall denote the
associated probabilities by P

S = (PS
x , x ∈ R

d \S). For a more precise definition of
what is meant by this form of conditioning, let us introduce the stopping times,

τβ = inf{t > 0 : β−1 < |Xt | < β}, for β > 1. (2)
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Whenever it is well defined, we will write, for t ≥ 0, � ∈ Ft and x �∈ S,

P
S
x (�, t < ζ ) = lim

β→1
lim
ε→0

Px

(
�, t < τβ

∣∣ τSε < ∞)
, (3)

where

τSε = inf{t > 0 : Xt ∈ Sε} and Sε := {x ∈ R
d : 1−ε ≤ |x| ≤ 1+ε and arg(x) ∈ S}.

Our first main result clarifies that the process (X,PS) is well defined. In the theorem
below, and thereafter, we will understand σ1 to mean the Lebesgue surface measure
on S

d−1 normalised to have unit mass, i.e. σ1(S
d−1) = 1.

Theorem 1 Suppose that α ∈ (0, 1] and the closed set S ⊆ S
d−1 is such that

σ1(S) > 0. For α ∈ (0, 1], the limit (3) makes sense. Therefore, the process (X,PS)

is well defined such that

dPS
x

dPx

∣∣∣∣∣
Ft

= HS(Xt)

HS(x)
, t ≥ 0, x �∈ S, (4)

where

HS(x) =
∫
S
|x − θ |α−dσ1(dθ), x �∈ S.

Although excluded from the conclusion of Theorem 1, it is worth dwelling for
a moment on the extreme case S = {θ}, for θ ∈ S

d−1. It has been shown in [20]
that, when α ∈ (0, 1), conditioning a stable process to continuously limit to a point
(which, by stationary and independent increments, can always be arranged to be
θ ∈ S

d−1) results in a family of probability measures (P{θ}
x , x �= θ) which can be

identified via a Doob h-transform with hθ (x) = |x − θ |α−d . Although the sense in
which the conditioning is performed cannot be contextualised via (3), we see that
the resulting h-transformation is consistent with the use of the harmonic function
HS.

The way in which we will prove Theorem 1 will be to prove the following subtle
result which establishes the leading order behaviour of the probability of hitting the
set Sε .

Theorem 2 Let S ⊆ S
d−1 be a closed subset such that σ1(S) > 0.

(i) Suppose α ∈ (0, 1). For x �∈ S,

lim
ε→0

εα−1
Px(τSε < ∞) = 21−2α 	((d + α − 2)/2)

πd/2	(1 − α)

	((2 − α)/2)

	(2 − α)
HS(x).

(5)
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(ii) When α = 1, we have that, for x �∈ S,

lim
ε→0

| log ε| Px(τSε < ∞) = 	((d − 1)/2)

π(d−1)/2
HS(x). (6)

Theorem 2 also gives us the opportunity to understand the strike position of the
conditioned stable process. Indeed, let S′ be a closed subset of S. Define S′

ε = {x ∈
R
d : 1 − ε ≤ |x| ≤ 1 + ε and arg(x) ∈ S′} and τS′

ε
:= inf{t > 0 : Xt ∈ S′

ε}. Then,
{τS′

ε
< ∞} ⊆ {τSε < ∞} and thanks to Theorem 2, when α ∈ (0, 1), we have

lim
ε→0

Px(τS′
ε
< ∞|τSε < ∞) = lim

ε→0

εα−1
Px(τS′

ε
< ∞)

εα−1Px(τSε < ∞)
= HS′(x)

HS(x)
, x �∈ S.

A similar statement also holds when α = 1 by changing the scaling in ε to | log ε|.
This gives us the following result.

Corollary 1 For a closed S ⊆ S
d−1 such that σ1(S) > 0 and α ∈ (0, 1], we have

that for all closed S′ ⊆ S,

P
S
x (Xζ− ∈ S′) = HS′(x)

HS(x)
, x �∈ S. (7)

In light of the above Corollary, it is worth remarking that we can also see the
probabilities PS as the result of first conditioning to continuously hit Sd−1 and then
conditioning the strike point to be in S. Indeed, we note that, for A ∈ Ft and t ≥ 0,

P
S
d−1

x (A|Xζ− ∈ S) = E
S
d−1

x

[
1A

P
S
d−1

Xt
(Xζ− ∈ S)

PSd−1
x (Xζ− ∈ S)

]

= Ex

[
1A

HSd−1(Xt)

HSd−1(x)

HS(Xt)

HSd−1(Xt )

HSd−1(x)

HS(x)

]

= Ex

[
1A

HS(Xt )

HS(x)

]

= P
S
x (A).

Moreover, by shrinking S′ ⊆ S ⊆ S
d−1 to a singleton θ ∈ S

d−1, one can similarly
show that

P
S
x (A|Xζ− = θ) = P

{θ}
x (A).

This has the flavour of a Williams’ type decomposition that was shown for general
Lévy processes conditioned to stay positive and subordinators conditioned to remain
in an interval; see e.g [11] and [19].
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3 Oscillatory Repulsion from S and Duality

Roughly speaking, we want to describe what we see when we time reverse the
process (X,PS) from its strike point on S, i.e. its so-called dual process. Such a
process will necessarily avoid visiting S. Recalling that, for α ∈ (0, 1], the stable
process hits spherical surfaces with probability zero (cf. [16, 25]), a heuristic guess
for the aforesaid dual process is the stable process itself (see Fig. 1). This turns out
to be precisely the case. In order to make this rigorous, we will use the language of
Hunt-Nagasawa duality for Markov processes.

Suppose that Y = (Yt , t ≤ ζ ) with probabilities Px , x ∈ E, is a regular Markov
process on an open domainE ⊆ R

d (or more generally, a locally compact Hausdorff
space with countable base), with cemetery state 
 and killing time ζ = inf{t > 0 :
Yt = 
}. Let us additionally write Pν = ∫

E ν(da)Pa, for any probability measure ν
on the state space of Y .

Suppose that G is the σ -algebra generated by Y and write G(Pν) for its
completion by the null sets of Pν . Moreover, write G = ⋂

ν G(Pν), where the
intersection is taken over all probability measures on the state space of Y , excluding
the cemetery state. A finite random time k is called an L-time (generalized last exit
time) if, given a coordinate process ω = (ωt , t ≥ 0) on D(E),

(i) k is measurable in G, and k ≤ ζ almost surely with respect to Pν , for all ν,
(ii) {s < k(ω)− t} = {s < θt ◦ k} for all t, s ≥ 0,

Fig. 1 The process (X,PS) when time reversed is stochastically equal in law to (X,P)
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where θt is the Markov shift of ω to time t . The most important examples of L-times
are killing times and last exit times from closed sets.

Theorem 3 Suppose that α ∈ (0, 1]. For a given closed set S ⊂ S
d−1 with σ1(S) >

0, write

ν(da) := σ1(da)

σ1(S)
, a ∈ S. (8)

For every L-time k of (X,P), the process (X(k−t )−, t < k) under Pν is a time-
homogeneous Markov process whose transition probabilities agree with those of
(X,PS).

4 The Setting of a Subset in an R
d−1 Hyperplane

As alluded to in the introduction, the methods used in Sects. 2 and 3 are robust
enough to deal with the setting of an arbitrary (d−1)-dimensional hyperplane in R

d .
Without loss of generality, we can describe such a hyperplane with unit orthogonal
vector v ∈ S

d−1 via

H
d−1 = {x ∈ R

d : (x, v) = 0},

where (·, ·) is the usual Euclidean inner product. Henceforth, we will assume that
v ∈ S

d−1 is given, as it otherwise plays no role in the forthcoming. We are interested
in defining the law of the stable process conditioned to hit D ⊆ H

d−1 in a similar
spirit to the discussion in Sect. 2.

To this end, let us define

κβ = inf{t > 0 : −β < (v,Xt ) < β}, for β > 0.

Whenever it is well defined, we will write, for t ≥ 0, � ∈ Ft and x �∈ D,

P
D
x (�, t < ζ ) = lim

β→0
lim
ε→0

Px

(
�, t < κβ

∣∣ τDε
< ∞)

, (9)

where

τDε
= inf{t > 0 : Xt ∈ Dε} and Dε := {x ∈ R

d : −ε ≤ (v, x) ≤ ε and x̂ ∈ D}.

Here x̂ denotes the orthogonal projection of x onto H
d−1; in other words. x̂ =

x − v(v, x). We can gather the analogous conclusions of Theorems 1, 2, 3 and
Corollary 1 into one theorem.
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Theorem 4 Suppose that α ∈ (0, 1] and the closed and bounded set D ⊆ H
d−1

is such that 0 < �d−1(D) < ∞, where we recall that �d−1 is (d − 1)-dimensional
Lebesgue measure.

(i) Suppose α ∈ (0, 1). For x �∈ D,

lim
ε→0

εα−1
Px(τDε

< ∞) = 21−απ−(d−2)/2 	(
d−2

2 )	(d−α2 )	( 2−α
2 )2

	( 1−α
2 )	(d−1

2 )	(2 − α)
MD(x),

(10)

where

MD(x) =
∫
D
|x − y|α−d�d−1(dy), x �∈ D.

(ii) Suppose α = 1. For x �∈ D,

lim
ε→0

| log ε| Px(τDε
< ∞) = 	(d−2

2 )

π(d−2)/2
MD(x). (11)

(iii) The limit (9) makes sense, therefore the process (X,PD) is well defined and

dPD
x

dPx

∣∣∣∣∣
Ft

= MD(Xt )

MD(x)
, t ≥ 0, x �∈ D. (12)

(iv) We have for all closed D′ ⊆ D,

P
D
x (Xζ− ∈ D′) = MD′(x)

MD(x)
, x �∈ D. (13)

(v) Write ν(da) := �d−1(da)/�d−1(D), a ∈ D. For every L-time k of (X,P), the
process (X(k−t )−, t < k) under Pν is a time-homogeneous Markov process
whose transition probabilities agree with those of (X,PD).

Roughly speaking, Theorem 4 are to be expected as, following the ideas of
[22] one may map S

d−1 onto H
d−1 via a standard sphere inversion transformation,

which, thanks to the Riesz–Bogdan–Żak transform, also transforms the paths of the
stable processes into that of a h-transformed stable processes; see [8]. The proofs we
have given below, however, are direct nonetheless, following similar steps to those
of Theorems 1, 2 and 3, as well as Corollary 1.
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5 Heuristic for the Proof of Theorem 2

Let us begin with a sketch of the proof of Theorem 2. We start by recalling an
identity that is known in quite a general setting from the potential analysis literature;
see for example Section 13.11 of [13] and Section VI.2 of [7]. Suppose that A is a
bounded closed set and let τA = inf{t > 0 : Xt ∈ A}. Let μA be a finite measure
supported on A, which is absolutely continuous with respect to Lebesgue measure
and define its potential by

UμA(x) :=
∫
A

|x − y|α−dμA(dy), x ∈ R
d .

On account of the fact that μA is absolutely continuous, recalling that |x|α−d is the
potential of the stable process issued from the origin, stationary and independent
increments allows us to identify

UμA(x) =
∫
A

|x − y|α−dmA(y)�d(dy) = Ex

[∫ ∞

0
mA(Xt )dt

]
, x /∈ A,

wheremA is the density of μA with respect to Lebesgue measure, �d . As the support
of μA is precisely A, we must have mA(y) = 0 for all y /∈ A. As such, the Strong
Markov Property tells us that

UμA(x) = Ex

[
1{τA<∞}

∫ ∞

τA

mA(Xt )dt

]
= Ex

[
UμA(XτA)1{τA<∞}

]
, x /∈ A.

(14)

Note, the above equality is also true when x ∈ A as, in that case, τA = 0.
Replacing τA by a general stopping time τ in the above calculation changes the

first equality in (14) to an inequality, thus giving the excessive property

UμA(x) ≥ Ex

[
UμA(Xτ )1{τ<∞}

]
, x ∈ R

d . (15)

This family of inequalities together with the Strong Markov Property easily gives
us the classical result that (UμA(Xt ), t ≥ 0) is a supermartingale.

Let us now suppose that μ can be constructed in such a way that it is supported
on A such that, for all x ∈ A, Uμ(x) = 1. We then recover from identity (14)
the corollary to Theorem 1 in Chapter 5 of [13], see also equation (21) in the same
chapter, which states that

Px(τA < ∞) = Uμ(x), x �∈ A.

Returning to the problem at hand, we can use the principals above to develop a
‘guess and verify’ approach to the proof, in particular, since we are not chasing an
exact formula for Px(τSε < ∞), but rather the asymptotic leading order behaviour.
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Indeed, suppose we can ‘guess’ a measure, say μS
ε , supported on Sε, such that

UμS
ε (x) = 1 + o(1), x ∈ Sε as ε → 0, (16)

so that

(1 + o(1))Px(τSε < ∞) = UμS
ε (x), x �∈ Sε. (17)

Then, this would be a good basis from which to draw out the leading order decay in
ε, especially if our guess of με is such that Uμε is tractable.

In one dimension, we know from Lemma 1 of [26], that for a one-dimensional
symmetric stable process, the unique measure that satisfies (16) has density (1 −
y)−α/2(1 + y)−α/2, i.e.

∫ 1

−1
|x − y|α−1(1 − y)−α/2(1 + y)−α/2dy = 1, x ∈ [−1, 1]. (18)

We can use this to build a reasonable choice of μS
ε . Indeed, writing X =

|X| arg(X), when X begins in the neighbourhood of S, then |X| begins in the
neighbourhood of 1 and arg(X), essentially, from within S. On short-time scales
and short-range, the time change |X| behaves similarly to a one-dimensional stable
process. Moreover, arg(X) is an isotropic process. A reasonable guess for μS

ε would
be to base it on the measure

με(dy) = cα,d(|y| − (1 − ε))−α/2(1 + ε − |y|)−α/2�d(dy), (19)

restricted to Sε , where we recall cα,d is a constant to be determined so that (16)
holds. As we will shortly see, when α ∈ (0, 1), the constant cα,d does not depend
on ε, however, when α = 1, in order to respect (16) we need to make it depend on
ε.

6 Proof of Theorem 2 (i)

As alluded to in the previous section, we will work with the guess μS
ε given by

the measure με defined in (19) restricted to Sε. In order to show (16), we will take
advantage of some of the symmetric features of με , when seen as a measure over
S
d−1
ε = {x ∈ R

d : 1 − ε ≤ |x| ≤ 1 + ε}. For a subset A ⊂ S
d−1
ε we define μA

ε the

restriction of με to A. In particular, writing μ(1)
ε as με restricted to S

d−1
ε and μ(2)

ε as

με restricted to Ŝε := S
d−1
ε \Sε, we have the obvious difference

UμS
ε (x) = Uμ(1)

ε (x)− Uμ(2)
ε (x), x ∈ Sε. (20)
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Moreover, we would like to introduce

μ
(2)
ε,δ := με|Ŝδε

where Ŝ
δ

ε = S
d−1
ε \Sδ

ε and

Sδ
ε := {x ∈ R

d : 1−ε < |x| < 1+ε and arg(x) ∈ Sδ}, where Sδ = {x ∈ S
d−1 : dist(arg(x),S) < δ},

for some small δ > 0, which, in due course, will depend on ε. Note that, since S is
closed, Sδ (resp. Sδ

ε) shrinks to S (resp. Sε) when δ → 0. Then, we also have that

UμSδ
ε (x) = Uμ(1)

ε (x)− Uμ
(2)
ε,δ(x), x ∈ Sε. (21)

The estimate (21) will be useful for a certain lower bound that will give us what
we need to prove Theorem 2. We need to prove two technical lemmas first. The first
one deals with the term Uμ

(1)
ε .

Lemma 1 Suppose that we choose

cα,d = 	((d + α − 2)/2)

2απd/2	(1 − α)	((2 − α)/2)
.

Then,

lim
ε→0

sup
x∈Sd−1

ε

|Uμ(1)
ε (x)− 1| = 0.

Proof Appealing to (77), we have, for x ∈ S
d−1
ε ,

Uμ(1)
ε (x)

= cα,d

∫
S
d−1
ε

|x − y|α−d (|y| − (1 − ε))−α/2(1 + ε − |y|)−α/2�d(dy)

= 2cα,dπ(d−1)/2

	((d − 1)/2)

∫ 1+ε

1−ε
rd−1

(r − (1 − ε))α/2(1 + ε − r)α/2
dr
∫ π

0

sind−2 θdθ

(|x|2 − 2|x|r cos θ + r2)(d−α)/2

= 2cα,dπd/2

	(d/2)
|x|α−d

∫ |x|

1−ε

2F1

(
d−α

2 , 1 − α
2 ; d

2 ; (r/|x|)2
)
rd−1

(r − (1 − ε))α/2(1 + ε − r)α/2
dr

+ 2cα,dπd/2

	(d/2)

∫ 1+ε

|x|

2F1

(
d−α

2 , 1 − α
2 ; d

2 ; (|x|/r)2
)
rα−1

(r − (1 − ε))α/2(1 + ε − r)α/2
dr.

(22)
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With a simple change of variables we can reduce this more simply to

Uμ(1)
ε (x) = 2cα,dπd/2

	(d/2)

∫ 1

1−ε
|x|

2F1

(
d−α

2 , 1 − α
2 ; d

2 ; r2
)
rd−1

(
r − 1−ε

|x|
)α/2(

1+ε
|x| − r

)α/2
dr

+ 2cα,dπd/2

	(d/2)

∫ 1+ε
|x|

1

2F1

(
d−α

2 , 1 − α
2 ; d

2 ; r−2
)
rα−1

(
r − 1−ε

|x|
)α/2(

1+ε
|x| − r

)α/2
dr.

(23)

For the first term on the right-hand side of (23), we can appeal to (71) and (72) to
deduce that

lim
ε→0

sup
x∈Sd−1

ε

∣∣∣∣ 2cα,dπd/2

	(d/2)

∫ 1

1−ε
|x|

2F1

(
d−α

2 , 1 − α
2 ; d

2 ; r2
)
rd−1

(
r − 1−ε

|x|
)α/2(

1+ε
|x| − r

)α/2
dr

− 2cα,dπd/2	(1 − α)

	((d − α)/2)	((2 − α)/2)

∫ 1

1−ε
|x|

(1 − r2)α−1rd−1

(
r − 1−ε

|x|
)α/2(

1+ε
|x| − r

)α/2
dr

− 2cα,dπd/2	(1 − α)

	(α/2)	((d + α − 2)/2)

∫ 1

1−ε
|x|

rd−1

(
r − 1−ε

|x|
)α/2(

1+ε
|x| − r

)α/2 dr

∣∣∣∣ = 0.

(24)

Note that, by using the transformation r = (1 − ε + 2εu)/|x|,
∫ 1

1−ε
|x|

rd−1
(
r − 1 − ε

|x|
)−α/2(1 + ε

|x| − r
)−α/2

dr

= |x|α−d(2ε)1−α
∫ (|x|−1+ε)/2ε

0
(2εu+ 1 − ε)d−1u−α/2(1 − u)−α/2du

≤ |x|α−d(2ε)1−α 	((2 − α)/2)2

	(2 − α)
, (25)

which tends to zero uniformly in x ∈ S
d−1
ε as ε → 0.

The asymptotic (25) also tells us that the approximating term of interest in (24)
is the middle term. For that, we can use (78) to observe

lim
ε→0

sup
x∈Sd−1

ε

∣∣∣∣
∫ 1

1−ε
|x|
(1 − r2)α−1rd−1

(
r − 1 − ε

|x|
)−α/2( 1 + ε

|x| − r
)−α/2

dr

− 2α−1
∫ 1

1−ε
|x|
(1 − r)α−1

(
r − 1 − ε

|x|
)−α/2( 1 + ε

|x| − r
)−α/2

dr

∣∣∣∣ = 0

(26)



Oscillatory Attraction and Repulsion from a Subset of the Unit Sphere or. . . 295

and

2αcα,dπ
d/2	(1 − α)

	(α/2)	((d + α − 2)/2)

∫ 1

1−ε
|x|

(1 − r)α−1
(
r − 1 − ε

|x|
)−α/2(1 + ε

|x| − r
)−α/2

dr

= 2αcα,dπ
d/2	(1 − α)

	(α/2)	((d + α − 2)/2)

∫ 1− 1−ε
|x|

0
uα−1

(
1 − 1 − ε

|x| − u
)−α/2(1 + ε

|x| − 1 + u
)−α/2

dr

= 2αcα,dπ
d/2	(1 − α)	((2 − α)/2)	(α)

	(α/2)	((d + α − 2)/2)	((2 + α)/2)

( |x| − 1 + ε

1 + ε − |x|
)α/2

2F1

(
α/2, α; 1 + α/2; − |x| − 1 + ε

1 + ε − |x|
)
.

(27)

The second term on the right-hand side of (23) can be dealt with similarly. Indeed,
using (72) we can produce an analogous statement to (24), from which, the leading
order approximating term is the integral

2cα,dπd/2	(1 − α)

	(α/2)	((d + α − 2)/2)

∫ 1+ε
|x|

1
(1 − r−2)α−1rd−1

(
r − 1 − ε

|x|
)−α/2(1 + ε

|x| − r
)−α/2

dr

∼ 2αcα,dπd/2	(1 − α)

	(α/2)	((d + α − 2)/2)

∫ 1+ε
|x|

1
(r − 1)α−1

(
r − 1 − ε

|x|
)−α/2(1 + ε

|x| − r
)−α/2

dr

= 2αcα,dπd/2	(1 − α)

	(α/2)	((d + α − 2)/2)

∫ 1+ε
|x| −1

0
uα−1

(
u+ 1 − 1 − ε

|x|
)−α/2(1 + ε

|x| − 1 − u
)−α/2

du

= 2αcα,dπd/2	(1 − α)	((2 − α)/2)	(α)

	(α/2)	((d + α − 2)/2)	((2 + α)/2)

(
1 + ε − |x|
|x| − 1 + ε

)α/2

2F1

(
α/2, α; 1 + α/2;−1 + ε − |x|

|x| − 1 + ε

)
,

(28)

uniformly for x ∈ S
d−1
ε as ε → 0, where we have again used (78) to develop the

right-hand side.
Somewhat remarkably, if we add together the right-hand side of (27) and (28),

using the identity in (76), we see that the sum is equal to

2αcα,dπd/2	(1 − α)	((2 − α)/2)

	((d + α − 2)/2)
= 1, (29)

where the equality with unity follows from the choice of cα,d in the statement of the
lemma. ��

Piecing together then uniform estimates above as well as the simplification of
the two integrals (27) and (28) as well as the decay of the term (25) in (24) and the
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analogous term when dealing with the second term on the right-hand side of (23),
the statement of the lemma follows.

Next we deal with the term Uμ
(2)
ε,δ .

Lemma 2 Recalling that cα,d is the constant given in Lemma 1, take δ(ε) =
ε(1−α)/2(d−α), then

lim sup
ε→0

sup
x∈Sε

ε(α−1)/2Uμ
(2)
ε,δ(ε)(x) ≤ Cα,d ,

where

Cα,d = cα,d
22−απ(d−1)/2	((2 − α)/2)2

	(2 − α)	((d − 1)/2)
.

In particular,

lim
ε→0

sup
x∈Sε

Uμ
(2)
ε,δ(ε)(x) = 0.

Proof Since x ∈ Sε and y ∈ Ŝ
δ

ε, i.e. |x − y| > δ, we have,

sup
x∈Sε

Uμ
(2)
ε,δ(x) =

∫
Ŝ
δ

ε

1

|x − y|d−α με(dy)

≤ 1

δd−α

∫
Ŝ
δ

ε

με(dy)

≤ 1

δd−α
2π(d−1)/2

	((d − 1)/2)

∫ 1+ε

1−ε
rd−1mε(r)dr, (30)

where mε(r) = cα,d(r − (1 − ε))−α/2(1 + ε − r)−α/2. It is easy to see that

∫ 1+ε

1−ε
mε(r)dr = cα,d

∫ 1+ε

1−ε
(r − (1 − ε))−α/2(1 + ε − r)−α/2dr

= cα,dε
1−α21−α 	((2 − α)/2)2

	(2 − α)
. (31)

Putting (30) and (31) together we have

sup
x∈Sε

Uμ
(2)
ε,δ(x) ≤ cα,d

22−απ(d−1)/2	((2 − α)/2)2

	(2 − α)	((d − 1)/2)
× ε1−α

δd−α
(1 + ε)d−1. (32)

By choosing δ = δ(ε), the result follows. ��
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Let us now return to the proof of Theorem 2. We show that we can make careful
sense of (16) and (17). Using (20) in (14) we see that for x �∈ S,

UμS
ε (x) = Ex

[
(Uμ(1)

ε (XτSε
)− 1); τSε < ∞

]
+ Px(τSε < ∞) − Ex

[
Uμ(2)

ε (XτSε
); τSε < ∞

]

≤ Ex

[
(Uμ(1)

ε (XτSε
)− 1); τSε < ∞

]
+ Px(τSε < ∞). (33)

Then, due to Lemma 1, for each x �∈ S and υ > 0, we can choose ε sufficiently
small such that

UμS
ε (x) ≤ (1 + υ)Px(τSε < ∞). (34)

Since we can take υ arbitrarily small, we have the lower bound on a liminf version
of the statement of Theorem 2 given by

lim inf
ε→0

εα−1UμS
ε (x) ≤ lim inf

ε→0
εα−1

Px(τSε < ∞), x �∈ S. (35)

On the other hand, suppose instead of S, we replace its role by Sδ(ε), where δ(ε)
was given in the statement of Lemma 2, we have from the excessive property (15)

associated to UμSδ(ε)
ε that

UμSδ(ε)
ε (x) ≥ Ex

[
UμSδ(ε)

ε (XτSε
); τSε < ∞

]
, x �∈ S. (36)

Now appealing to (21), we get

UμSδ(ε)
ε (x) ≥ Ex

[
Uμ(1)

ε (XτSε
)− 1; τSε < ∞

]
+ Px(τSε < ∞)− Ex

[
Uμ

(2)
ε,δ(ε)(XτSε

); τSε < ∞
]
.

Appealing to Lemmas 1 and 2, for each υ > 0, we can choose ε small enough such
that, for each x �∈ S,

UμSδ(ε)
ε (x) ≥ (1 − υ)Px(τSε < ∞). (37)

Hence, since we can choose υ as small as we like, we have

lim sup
ε→0

εα−1UμSδ(ε)
ε (x) ≥ lim sup

ε→0
εα−1

Px(τSε < ∞), x �∈ S. (38)

It follows from (35) and (38) that, as soon as

lim sup
ε→0

εα−1UμSδ(ε)
ε (x) = lim inf

ε→0
εα−1UμS

ε (x), x �∈ S, (39)
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and noting that UμS
ε ≤ UμSδ(ε)

ε , we have

lim
ε→0

εα−1UμS
ε (x) = lim

ε→0
εα−1

Px(τSε < ∞), x �∈ S.

Let us thus complete the proof by verifying the limit on the equality (39) holds and
by finding the left-hand side limit in the previous equation.

To this end, using that |x − y|α−d is continuous on Sε and, when x �∈ S, without
loss of generality, we can take ε small enough so that x /∈ Sε. For each x /∈ S, using
the Mean Valued Theorem, there exists a r∗ε ∈ (1 − ε, 1 + ε) such that

UμS
ε (x) =

∫
Sε

|x − y|α−dmε(|y|)�d(dy)

= (r∗ε )d−1
∫
S
|x − r∗ε θ |α−dσ1(dθ)

∫ 1+ε

1−ε
mε(r)dr, (40)

where we recall that mε(r) = cα,d(r − (1 − ε))−α/2(1 + ε − r)−α/2. By using (31)
we get

εα−1UμS
ε (x) = (r∗ε )d−121−αcα,d

	((2 − α)/2)2

	(2 − α)

∫
S
|x − r∗ε θ |α−dσ1(dθ), x /∈ S.

(41)

Taking limits in (41) as ε → 0 and recalling the value of cα,d from the statement
of Lemma 1, we have, for x �∈ S

lim
ε→0

εα−1UμS
ε (x) = 21−2α 	((d + α − 2)/2)

πd/2	(1 − α)

	((2 − α)/2)

	(2 − α)

∫
S
|x − θ |α−dσ1(dθ).

(42)

An application of the recursion formula for gamma functions allows us to identify
the right-hand side as equal to that of the right-hand side of (5). Very little changes
in the above calculation if we replaceS by Sδ(ε). As such, (42) allows us to conclude
(39), and thus gives the statement of the Theorem 2. �

7 Proof of Theorem 2 (ii)

The proof needs some adaptation when we deal with the case α = 1. Principally, we
need to focus on Lemmas 1 and 2. What is different in these two lemmas is that the
normalisation constant cα,d must now depend on ε. The replacement for Lemma 1
and Lemma 2 (combined into one result) now takes the following form.



Oscillatory Attraction and Repulsion from a Subset of the Unit Sphere or. . . 299

Lemma 3 Suppose that we define, for 0 < ε < 1,

με(dy) = c1,d

| log ε| (|y| − (1 − ε))−α/2(1 + ε − |y|)−α/2�d(dy), (43)

and

c1,d = 	((d − 1)/2)

π(d+1)/2
.

(i) We have

lim
ε→0

sup
x∈Sd−1

ε

|Uμ(1)
ε (x)− 1| = 0.

(ii) take δ(ε) = | log ε|−1/2(d−1), then

lim sup
ε→0

sup
x∈Sε

√| log ε|Uμ(2)
ε,δ(ε)(x) < ∞,

so that

lim
ε→0

sup
x∈Sε

Uμ
(2)
ε,δ(ε)(x) = 0.

Proof We give only a sketch proof of both parts for the interested reader to use as a
guide to reproduce the finer details.

(i) The essence of the proof is an adaptation of the proof of Lemma 1. We pick up
the proof of the latter at the analogue of (23), albeit α = 1 and cα,d is replaced
by c1,d/| log ε|, i.e.

Uμ(1)
ε (x) = 2c1,dπ

d/2

| log ε|	(d/2)

∫ 1

1−ε
|x|

2F1

(
d−1

2 , 1
2 ; d

2 ; r2
)
rd−1

(
r − 1−ε

|x|
)1/2(

1+ε
|x| − r

)1/2
dr

+ 2c1,dπ
d/2

| log ε|	(d/2)

∫ 1+ε
|x|

1

2F1

(
d−1

2 , 1
2 ; d

2 ; r−2
)
r1−1

(
r − 1−ε

|x|
)1/2(

1+ε
|x| − r

)1/2 dr.

(44)



300 M. Kwaśnicki et al.

Appealing to (74), noting that log(1 − r2) ∼ log(1 − r)+ log 2, as r → 1, we
can deduce that there is an unimportant constant, say χ , such that

lim
ε→0

sup
x∈Sd−1

ε

∣∣∣∣ 2c1,dπ
d/2

| log ε|	(d/2)

∫ 1

1−ε
|x|

2F1

(
d−1

2 , 1
2 ; d

2 ; r2
)
rd−1

(
r − 1−ε

|x|
)1/2(

1+ε
|x| − r

)1/2 dr

+ 2c1,dπ
d/2

| log ε|	((d − 1)/2)	(1/2)

∫ 1

1−ε
|x|

rd−1 log(1 − r)(
r − 1−ε

|x|
)1/2(

1+ε
|x| − r

)1/2 dr

− c1,dχ

| log ε|
∫ 1

1−ε
|x|

rd−1

(
r − 1−ε

|x|
)1/2(

1+ε
|x| − r

)1/2 dr

∣∣∣∣ = 0.

(45)

A similar uniform limiting control can be undertaken by subtracting off
analogous terms from the second integral in (44), i.e. the integral

2c1,dπ
d/2

| log ε|	(d/2)

∫ 1+ε
|x|

1

2F1

(
d−1

2 , 1
2 ; d

2 ; r−2
)

(
r − 1−ε

|x|
)1/2(

1+ε
|x| − r

)1/2 dr.

Using (25), again noting α = 1, we can uniformly control the last term in (45)
and note that it is O(1/| log ε|). Similarly to (26), the second term in (45) has
the same behaviour as

− 2c1,dπ
d/2

| log ε|	((d − 1)/2)	(1/2)

∫ 1− 1−ε
|x|

0

logu

(
1+ε−|x|

|x| + u)1/2(
|x|−(1−ε)

|x| − u)1/2
du.

(46)

To evaluate (46), using the change of variable u = a − (a + b)/(t2 + 1)

∫ a

0

log u√
(b + u)(a − u)

du = 2
∫ ∞√

b
a

log
(
a − a + b

t2 + 1

) dt

t2 + 1

=
∫ arctan

√
a
b

0
log(a − (a + b) sin2 w)dw

=
∫ arctan

√
a
b

0
log a + log

(
1 − sin2 w

a
a+b

)
dw

= arctan

√
a

b
log(a + b) − L

(π
2

− 2 arctan

√
a

b

)
− π

2
log 2,

(47)
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where we have used formula 4.226(5) of [15], which tells us that

∫ u

0
log

(
1 − sin2 w

sin2 v

)
dw = −u log sin2 v − L(

π

2
− v + u)− L(

π

2
− v − u),

(48)

for any −π
2 ≤ u ≤ π

2 and | sin u| ≤ | sin v| where L(x) is the Lobachevsky
function. Note that, Lobachevsky’s function is defined and represented as

L(x) = −
∫ x

0
log cos θ dθ = x log 2 − 1

2

∞∑
k=1

(−1)k−1 sin 2kx

k2 . (49)

Using (47) to evaluate (46) as well to evaluate the partner integral to (46), which
comes from the analogous control of the second integral in (44), we get a nice
cancellation of terms (as happened at this stage of the argument for α ∈ (0, 1)),
to give us the controlled feature that

lim
ε→0

sup
x∈Sd−1

ε

∣∣∣∣Uμ(1)
ε (x)+ 2c1,dπ

d/2

| log ε|	((d − 1)/2)	(1/2)

π

2
log ε

∣∣∣∣ = 0.

Noting that with the indicated choice of c1,d , we have

2c1,dπ
d/2

	((d − 1)/2)	(1/2)

π

2
= 1,

which concludes the proof of part (i).
(ii) For the second part, the proof is almost identical to the proof of Lemma 2.

Indeed, following the calculations through to (32), recalling that we have
replaced cα,d by c1,d/| log ε|, we get, up to an unimportant constant χ ′,

sup
x∈Sε

Uμ
(2)
ε,δ(x) ≤ χ ′ 1

| log ε|δd−1
. (50)

Hence, by taking δ = δ(ε) = | log ε|−1/2(d−1) the statement of part (ii) follows.
��

With Lemma 3 in hand, we can now complete the proof of Theorem 2 (ii).
Inequalities (34) and (37) are still at our disposal for the same reasons as before.
The proof thus boils down to the asymptotic treatment of the term UμS

ε (x) as in
(40) for x �∈ S. Recalling that we have replaced cα,d by c1,d/| log ε| we get from
(31) and the constant c1,d given in the statement of Lemma 3,

lim
ε→0

| log ε| Px(τSε < ∞) = 	((d − 1)/2)

π(d+1)/2
	(1/2)2HS(x) = 	((d − 1)/2)

π(d−1)/2
HS(x),

where we have used that 	(1/2) = √
π . ��
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8 Proof of Theorem 1

Recall the definition τβ := inf{t > 0 : 1/β < |Xt | < β} for β > 1 and fix ε0 > 0
such that, for all 0 < ε < ε0, (1 − ε, 1 + ε) ⊂ (1/β, β). Then, by applying the
Markov property at time t , we have, for any � ∈ Ft ,

Px(�, t < τβ |τSε < ∞) = Ex

[
1{�,t<τβ}

PXt (τSε < ∞)

Px(τSε < ∞)

]
. (51)

The event {t < τβ } implies that either |Xt | > β > 1 or |Xt | < 1/β < 1. Hence, for
all 0 < ε < ε0 and y ∈ S

d−1
ε , on {t < τβ},

|Xt − y|α−d < max{((1 − ε0)− 1/β)α−d, (β − (1 + ε0))
α−d}.

Hence, on {t < τβ}, we have from (37) and (41) that we can choose ε sufficiently
small such that

εα−1
PXt (τSε < ∞) < K1,

for some constant K1 ∈ (0,∞). In a similar spirit, using (34) and (41), since x �∈ S
and S is closed, it follows similarly that there is another constant K2 ∈ (0,∞) such
that, for x given in (51), we can choose ε sufficiently small such that

εα−1
Px(τSε < ∞) > K2.

Theorem 2, dominated convergence and monotone convergence gives us, for all
� ∈ Ft , t ≥ 0,

lim
β→1

lim
ε→0

Px (�, t < τβ |τSε < ∞) = lim
β→1

Ex

[
1{�,t<τβ } lim

ε→0

εα−1
PXt (τSε < ∞)

εα−1Px(τSε < ∞)

]
= Ex

[
1�

HS(Xt )

HS(x)

]
,

as required. �

9 Proof of Theorem 3

Recall the notation for a general Markov process (Y,P) on E preceding the
statement of Theorem 3. We will additionally write P := (Pt , t ≥ 0) for the
semigroup associated to (Y,P).

Theorem 3.5 of Nagasawa [23], shows that, under suitable assumptions on the
Markov process, L-times form a natural family of random times at which the
pathwise time-reversal

←
Yt := Y(k−t )−, t ∈ [0,k],
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is again a Markov process. Let us state Nagasawa’s principle assumptions.

(A) The potential measure UY (a, ·) associated to P , defined by the relation

∫
E

f (x)UY (a, dx) =
∫ ∞

0
Pt [f ](a)dt = Ea

[∫ ∞

0
f (Xt ) dt

]
, a ∈ E,

(52)

for bounded and measurable f on E, is σ -finite. Assume that there exists a
probability measure, ν, such that, if we put

μ(A) =
∫

UY (a,A) ν(da) for A ∈ B(E), (53)

then, there exists a Markov transition semigroup, say P̂ := (P̂t , t ≥ 0) such
that

∫
E

Pt [f ](x)g(x) μ(dx) =
∫
E

f (x)P̂t [g](x) μ(dx), t ≥ 0, (54)

for bounded, measurable and compactly supported test-functions f, g on E.
(B) For any continuous test-function f ∈ C0(E), the space of continuous and

compactly supported functions, and a ∈ E, assume that Pt [f ](a) is right-
continuous in t for all a ∈ E and, for q > 0, U(q)

Ŷ
[f ](←Yt ) is right-continuous in

t , where, for bounded and measurable f on E,

U
(q)

Ŷ
[f ](a) =

∫ ∞

0
e−qt P̂t [f ](a)dt, a ∈ E,

is the q-potential associated to P̂ .

Nagasawa’s duality theorem, Theorem 3.5. of [23], now reads as follows.

Theorem 5 (Nagasawa’s duality theorem) Suppose that assumptions (A) and (B)
hold. For the given starting probability distribution ν in (A) and any L-time k,
the time-reversed process

←
Y under Pν is a time-homogeneous Markov process with

transition probabilities

Pν(
←
Y t∈ A | ←

Y r , 0 < r < s) = Pν(
←
Y t∈ A | ←

Y s) = p
Ŷ
(t − s,

←
Y s,A), Pν -almost surely,

(55)

for all 0 < s < t and closed A in E, where p
Ŷ
(u, x,A), u ≥ 0, x ∈ E, is the

transition measure associated to the semigroup P̂ .
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9.1 Completing the Proof of Theorem 3

We will make a direct application of Theorem 5, with Y taken to be the process
(X,Pν) where ν satisfies (8). Recall that its potential is writtenU and we will denote
its transition semigroup by (Pt , t ≥ 0). Moreover, the dual process, formerly Ŷ , is
taken to be (X,PS) and we will, in the obvious way, work with the notation US in
place ofU

Ŷ
, PS in place of P̂ and so on. We need only to verify the two assumptions

(A) and (B).
In order to verify (A), writing

U(x, dy) =
∫ ∞

0
Px(Xt ∈ dy)dt = 	((d − α)/2)

2απd/2	(α/2)
|x − y|α−d�d(dy), x, y ∈ R

d,

we have, up to a multiplicative constant,

η(dx) =
∫
Rd

U(a, dx)ν(da) = 1

σ1(S)

∫
S
|x − a|α−dσ1(da) ∝ HS(x)dx. (56)

Now, we need to verify that (54) holds. Hunt’s switching identity (cf. Chapter II.1
of [4]) for (X,P), states that

Pt (y, dx)dy = Pt (x, dy)dx, x, y ∈ R
d .

Using Hunt’s switching identity together with (56), we have for x, y ∈ R
d \ S

Pt (y, dx)η(dy) = Pt (y, dx)HS(y)dy = Pt (x, dy)
HS(y)

HS(x)
HS(x)dx = PS

t (x, dy)η(dx).

Let us now turn to the verification of assumption (B). This assumption is immedi-
ately satisfied on account of the fact that PS is a right-continuous semigroup by
virtue of its definition as a Doob h-transform with respect to the Feller semigroup
P of the stable process.

With both (A) and (B) in hand, we are ready to apply Theorem 5 and the desired
result thus follows. �

10 Proof of Theorem 4

For the proof of Theorem 4, we focus on just part (i) and (ii) as the proof of parts
(iii)–(v) are essentially verbatim the same as for the case of S ∈ S

d−1. Moreover, for
both parts (i) and (ii) we will provide only a sketch proof as the reader will quickly
see that the proof is not hugely different form that of Theorem 2, albeit for a few
technical details.
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(i) The substance of the proof of part (i) is thus to follow a similar strategy as
with Theorem 2 and build a measure ρDε such that the analogue of (16) holds, i.e.
UρDε (x) = 1+ o(1), for x ∈ D so that (1+ o(1))Px(τDε < ∞) = UρDε (x), x �∈ Dε.
More precisely, we develop analogues of Lemmas 1 and 2 to help make this precise.

Following what we have learned for μS
ε , our choice of ρDε is built from the base

measure

ρε(dy) = kα,d((v, y)+ ε)−α/2(ε − (v, y))−α/2�d(dy). (57)

for an appropriate choice of kα,d . As in (20) we can work with the decomposition,

UρDε (x) = Uρ(1)ε (x)− Uρ(2)ε (x), x ∈ Dε, (58)

where ρ
(1)
ε (resp. ρ(2)ε ) is the restriction of ρε to H

d−1
ε := {x ∈ R

d : −ε <

(v, x) < ε} (resp. to D̂ε := H
d−1
ε \ Dε). This helps with lower bounding

lim infε→0 ε
α−1

Px(τDε
< ∞) by following steps of (33)–(35) together with the

last paragraph of the Proof of Theorem 2, for which an analogue of Lemma 1 is
needed.

For each |u| < ε, define the following sets: Dδ = {x ∈ H
d−1 : dist(x,D) < δ},

Dδ
ε = {y ∈ H

d−1
ε : ŷ ∈ Dδ} (recalling ŷ is the orthogonal projection of y on to

H
d−1) and D̂

δ

ε = H
d−1
ε \ Dδ

ε . Moreover, for any u ∈ R, we define H
d−1(u) = {x ∈

R
d : (v, x) = u}, D(u) := {y ∈ H

d−1(u) : ŷ ∈ D}, Dδ(u) := {y ∈ H
d−1(u) : ŷ ∈

Dδ}, and D̂
δ
(u) = H

d−1(u) \ Dδ(u). Similarly, in the spirit of (21) we can use the
decomposition

UρD
δ

ε (x) = Uρ(1)ε (x)− Uρ
(2)
ε,δ (x), x ∈ Dε, (59)

where ρ(2)ε,δ is the restriction of ρε to D̂
δ

ε. which helps with lim supε→0 ε
α−1

Px(τDε
<

∞) by following steps (36)–(39) together with the last paragraph of the Proof of
Theorem 2, for which an analogue of Lemma 2 is needed.

Let us address the technical detail that differs from the proof of Theorem 2 that
we alluded to above. For x ∈ Dε,

Uρ(1)ε (x)

= kα,d

∫
H
d−1
ε

|x − y|α−d ((v, y)+ ε)−α/2(ε − (v, y))−α/2�d(dy)

= kα,d

∫ ε

−ε
(u+ ε)−α/2(ε − u)−α/2du

∫
Hd−1(u)

|x − y|α−d�d−1(dy)

= kα,d

∫ ε

−ε
(u+ ε)−α/2(ε − u)−α/2du

∫
Hd−1((v,x))

(|x − ẑ|2 + |(v, x)− u|2) α−d2 �d−1(dẑ),



306 M. Kwaśnicki et al.

where ẑ is the orthogonal projection of y ∈ H
d−1(u) onto H

d−1((v, x)), which
satisfies |ẑ−y| = |(v, x)− u| and �d−1(dẑ) = �d−1(dy). Note also that (v, x−ẑ) =
0, for ẑ ∈ H

d−1((v, x)), and hence x − H
d−1((v, x)) is equal to H

d−1(0), which,
in turn, can otherwise be identified as Rd−1. Therefore, if we used generalised polar
coordinates to integrate over Hd−1((v, x)) identified as x − R

d−1, we have

Uρ(1)ε (x)

= kα,d

∫ ε

−ε
(u+ ε)−α/2(ε − u)−α/2du

∫
Hd−1((v,x))

(
|x − ẑ|2 + |(v, x)− u|2

) α−d
2
�d−1(dẑ)

= 2kα,dπ(d−2)/2

	((d − 2)/2)

∫ ε

−ε
(u + ε)−α/2(ε − u)−α/2du

∫ ∞

0

∫
Sd−2

(
r2 + |(v, x)− u|2

) α−d
2
rd−2drσ1(dθ)

= 2kα,dπ(d−2)/2

	((d − 2)/2)

∫ ε

−ε
(u + ε)−α/2(ε − u)−α/2du

∫ ∞

0

(
r2 + |(v, x)− u|2

) α−d
2
rd−2dr

= kα,dπ
(d−2)/2

	((d − 2)/2)

∫ ε

−ε
(u + ε)−α/2(ε − u)−α/2du

∫ ∞

0

(
w + |(v, x)− u|2

) α−d
2
w

d−3
2 dw (60)

= kα,dπ
(d−2)/2	( 1−α

2 )	( d−1
2 )

	( d−2
2 )	( d−α2 )

∫ ε

−ε
(u + ε)−α/2(ε − u)−α/2|(v, x)− u|α−1du

= kα,dπ
(d−2)/2	( 1−α

2 )	( d−1
2 )

	( d−2
2 )	( d−α2 )

∫ 1

−1
(1 + w)−α/2(1 − w)−α/2|ε−1(v, x)− w|α−1dw, (61)

where, in the penultimate equality, we used a classical representation of the Beta
function (see formula 3.191.2 in [15]), which tells us that, for any Re(ν) > Re(γ ) >
0 and z > 0,

∫ ∞

0
(y + z)−νyγ−1dy = zγ−ν

	(ν − γ )	(γ )

	(ν)
,

and in the final equality, we have changed variables using w = εu. Next, we observe
that |ε−1(v, x)| ≤ 1 on account of the fact that x ∈ Dε ⊆ H

d−1
ε . Now choose kα,d ,

so that

kα,dπ
(d−2)/2	( 1−α

2 )	(d−1
2 )

	(d−2
2 )	(d−α2 )

= 1. (62)

We can now appeal directly to (18) to deduce that, for x ∈ Dε

Uρ(1)ε (x) = 1. (63)

In the spirit of (33)–(35), it now follows that, for x �∈ D and ε sufficiently small,

UρDε (x) ≤ Px(τDε
< ∞).
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So that

lim inf
ε→0

UρDε (x) ≤ lim inf
ε→0

Px(τDε
< ∞), x �∈ D. (64)

Now we turn our attention to (59). Noting that when x ∈ Dε, |x − y| > δ for

y ∈ D̂
δ

ε, we have, for all x ∈ Dε,

Uρ
(2)
ε,δ (x) = kα,d

∫
D̂
δ

ε

|x − y|α−d((v, y)+ ε)−α/2(ε − (v, y))−α/2�d(dy)

≤ kα,dδ
α−d

∫ ε

−ε
(u+ ε)−α/2(ε − u)−α/2du

∫
Dδ((v,x))

�d−1(dŷ)

≤ δα−dkα,d�d−1(Dδ)

∫ ε

−ε
(u+ ε)−α/2(ε − u)−α/2du

= δα−dε1−αkα,d�d−1(Dδ)21−α 	((2 − α)/2)2

	(2 − α)
,

where we have used the calculation in (31) in the final equality. Choosing δ =
δ(ε) = ε(1−α)/2(d−α), and noting that �d−1(Dδ) is uniformly bounded from above by
an unimportant constant for e.g. all δ < 1 (thanks to the assumption that �d−1(D) <
∞), we see that

lim
ε→0

sup
x∈Dε

Uρ
(2)
ε,δ(ε)(x) = 0.

In a similar spirit to (36)–(38), we now have that

lim sup
ε→0

εα−1UρD
δ(ε)

ε (x) ≥ lim sup
ε→0

εα−1
Px(τDε

< ∞), x �∈ D. (65)

Matching up the left-hand side of (64) with that of (65), we can proceed in a similar
fashion to (41)–(42), leading to the statement of Theorem 4(i) as promised. The
calculation is based around the fact that

lim
ε→0

εα−1UρDε (x) = lim
ε→0

kα,dε
α−1

∫
Dε

|x − y|α−d ((v, y) + ε)−α/2(ε − (v, y))−α/2�d(dy)

= lim
ε→0

kα,dε
α−1

∫ ε

−ε
(u + ε)−α/2(ε − u)−α/2du

∫
D(u)

|x − ŷ|α−d�d−1(dŷ)

= kα,d21−α 	((2 − α)/2)2

	(2 − α)

∫
D
|x − y|α−d�d−1(dy)

= 21−απ−(d−2)/2 	(
d−2

2 )	( d−α2 )	( 2−α
2 )2

	( 1−α
2 )	( d−1

2 )	(2 − α)

∫
D
|x − y|α−d�d−1(dy), (66)

where we have used the calculation in (31) and (62) in the third equality.
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(ii) The setting α = 1 requires yet another delicate handling of the associated
potentials. Given that all the main ideas are now present in the paper, we simply lay
out the key points of the proof, leaving the remaining detail for the reader.

Our calculations begin in the same way as in part (i), in particular, we work
with the core measure ρε as in (57), albeit (as with Theorem 2(ii)) replacing
k1,d by k1,d/| log ε|, to be used in the constructions (58) and (59). An immediate
complication we have is in evaluating Uρ(1)ε (x), for x ∈ Dε, can be seen when we
pick up the computations for part (i) at (60). Indeed, at that point, we are confronted
with the integral

∫ ∞

0

(
w + |(v, x)− u|2

) 1−d
2
w

d−3
2 dw = ∞.

The solution to this is to adjust the core measure ρε as follows. Since D is bounded,
we can choose an R > 0 sufficiently large that, D ⊂ S

d−2(0, R) := {y ∈ H
d−1 :

|y| ≤ R} strictly contains D. Denote S
d−2
ε (0, R) = {x ∈ H

d−1
ε : x̂ ∈ S

d−2(0, R)},
where x̂ is the orthogonal projection of x on to H

d−1. Suppose we now make a slight
adjustment and replace ρε by

ρε(dy) = k1,d,R

| log ε| ((v, y)+ ε)−α/2(ε − (v, y))−α/21
(y∈Sd−2

ε (0,R))�d(dy),

for an appropriate choice of k1,d,R. We may now continue the argument from (60)
with the calculation

| log ε|Uρ(1)ε (x) = k1,d,Rπ
(d−2)/2

	((d − 2)/2)

∫ ε

−ε
(u+ ε)−1/2(ε − u)−1/2du

∫ R

0

(
w + |(v, x)− u|2

) 1−d
2
w

d−3
2 dw.

(67)

Denote by I (R, ε, x) the right-hand side of 67, ensuring that ε is small enough that
ε � R.

Appealing to (78),

I (R, ε, x) = k1,d,Rπ
(d−2)/2

	((d − 2)/2)

∫ ε

−ε
(u+ ε)−1/2(ε − u)−1/2du

∫ R

0

(
w + |(v, x)− u|2

) 1−d
2
w

d−3
2 dw

= k1,d,Rπ
(d−2)/2

	((d − 2)/2)

∫ ε

−ε
(ε2 − u2)−1/2|(v, x)− u|1−ddu

∫ R

0

( w

|(v, x)− u|2 + 1
) 1−d

2
w

d−3
2 dw

= k1,d,Rπ
(d−2)/2

	((d − 2)/2)

∫ ε

−ε
(ε2 − u2)−1/2|(v, x)− u|1−d

R(d−1)/2

(d − 1)/2
2F1

(
d − 1

2
,
d − 1

2
; d + 1

2
; − R

|(v, x)− u|2
)

du,
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where we have used the identity in (79). One of the many identities for hypergeo-
metric functions, see [2], offers us the growth condition, for c−a ∈ N, as |z| → ∞,

2F1(a, a; c; z) ∼ 	(c)(log(−z)− ψ(c − a) − ψ(a)− 2γ )(−z)−a
	(a)(c − a − 1)! + 	(c)2(−z)−c

	(a)2((c − a)!)2 ,
(68)

where γ is an unimportant constant and ψ(z) = 	′(z)/	(z) is the di-gamma
function. In the spirit of previous calculations, we can thus find to leading order,
uniformly over x ∈ Dε ,

Uρ(1)ε (x) ∼ 2
πd/2k1,d,R

	((d − 2)/2)
, (69)

which remarkably does not depend on R. This means we should choose the constant

k1,d,R = 	((d − 2)/2)

2πd/2

for this asymptotic to serve our purpose.
At this point in the proof, recalling the fundamental decomposition (58), it is

worth bringing in the term Uμ
(2)
ε and noting that one can compute with relatively

coarse estimates that

sup
x∈Dε

∣∣∣Uρ(2)ε (x)

∣∣∣ ≤ C

| log ε| ,

for some unimportant constantC > 0. Together with (69), in a calculation similar to
(66) we can put the pieces together to get the asymptotic, for x �∈ D and ε sufficiently
small,

lim
ε→0

| log ε| Px(τDε
< ∞) = lim

ε→0
| log ε| UρDε (x)

= lim
ε→0

	((d − 2)/2)

2πd/2

∫
Dε

|x − y|1−d (ε2 − (v, y)2)−1/2�d(dy)

= lim
ε→0

	((d − 2)/2)

πd/2

∫ ε

−ε
(ε2 − u2)−1/2du

∫
D(u)

|x − ŷ|1−d�d−1(dŷ)

= 	((d − 2)/2)

π(d−2)/2
MD(x). (70)

The proof is complete. ��
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Appendix: Hypergeometric Identities

We work with the standard definition for the hypergeometric function,

2F1(a, b, c; z) =
∞∑
n=0

(a)n(b)n

(c)n

zn

n! , |z| < 1.

Of the many identities for hypergeometric functions, we need the following:

2F1(a, b, c; z) = 	(c)	(a + b − c)

	(a)	(b)
(1 − z)c−a−b2F1(c − a, c − b, 1 + c − a − b; 1 − z)

+ 	(c)	(c − a − b)

	(c − a)	(c − b)
2F1(a, b, a + b − c + 1; 1 − z),

(71)

for c − a − b /∈ Z. Hence, thanks to continuity,

lim
ε→0

sup
r∈[1−ε,1]

∣∣∣∣2F1

(d − α

2
, 1 − α

2
; d

2
; r2

)

− 	(d/2)	(1 − α)

	((d − α)/2)	((2 − α)/2)
(1 − r2)α−1 − 	(d/2)	(α − 1)

	(α/2)	((d + α − 2)/2)

∣∣∣∣ = 0.

(72)

We will need to apply a similar identity to (71) but for the setting that c−a−b =
0, which violates the assumption behind (71). In that case, we need to appeal to the
formula

2F1(a, b, a + b, z) = 	(a + b)

	(a)	(b)

( ∞∑
k=0

(a)k(b)k

(k!)2 (2ψ(k + 1)− ψ(a + k)− ψ(b+ k))(1 − z)k

− log(1 − z) 2F1(a, b, 1, 1 − z)
)
, (73)

for |1 − z| < 1 where the di-gamma function ψ(z) = 	′(z)/	(z) is defined for all
z �= −n, n ∈ N.

Again, thanks to continuity, we can write

lim
ε→0

sup
r∈[1−ε,1]

∣∣∣∣2F1

(d − 1

2
,

1

2
; d

2
; r2

)
+ 	(d/2)

	((d − 1)/2)	(1/2)
log(1 − r2)

− 2	(d/2)(ψ(1)− ψ((d − 1)/2)− ψ(1/2))

	((d − 1)/2)	(1/2)

∣∣∣∣ = 0.

(74)
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A second identity that is needed is the following combination formula, which
states that for any |z| < 1, we have

2F1(a, b; c; z) = 	(b − a)	(c)

	(c − a)	(b)
(−z)−a2F1

(
a, a − c + 1; a − b + 1; 1

z

)

+ 	(a − b)	(c)

	(c − b)	(a)
(−z)−b2F1

(
b − c + 1, b;−a + b + 1; 1

z

)
.

(75)

Its proof can be found, for example at [1]. In the main body of the text, we use this
identity for the setting that a = α/2, b = α and c = 1 + α/2. This gives us the
identity

2F1

(α
2
, α; 1 + α

2
; z
)
= 	(α/2)	((2 + α)/2)

	(α)
(−z)−α/2

2F1

(
α/2, 0; 1 − α/2; 1

z

)

+ 	(−α/2)	((2 + α)/2)

	((2 − α)/2)	(α/2)
(−z)−α2F1

(
α/2, α; 1 + α/2; 1

z

)

= 	(α/2)	((2 + α)/2)

	(α)
(−z)−α/2

− (−z)−α2F1

(
α/2, α; 1 + α/2; 1

z

)
,

where we have used the recursion formula for gamma functions twice in the final
equality. This allows us to come to rest at the following useful identity

(−z)−α/2
2F1

(
α/2, α; 1 + α/2; 1

z

)
+ (−z)α/2

2F1

(α
2
, α; 1 + α

2
; z
)
= 	(α/2)	((2 + α)/2)

	(α)
.

(76)

We are also interested in integral formulae, for which the hypergeometric
function is used to evaluate an integral. The first is aversion of formula 3.665(2)
in [15] which states that, for any 0 < |a| < r and ν > 0, as

∫ π

0

sind−2 φ

(a2 + 2ar cosφ + r2)ν
dφ = 1

r2ν B
(d − 1

2
,

1

2

)
2F1

(
ν, ν − d

2
+ 1; d

2
; a

2

r2

)
,

(77)

where B(a, b) = 	(a)	(b)/	(a + b) is the Beta function. The second is formula
3.197.8 in [15], which states that, for Re(μ) > 0, Re(ν) > 0 and | arg(u/β)| < π ,

∫ u

0
xν−1(u− x)μ−1(x + β)λdx = βλuμ+ν−1B(μ, ν)2F1

(
−λ, ν;μ+ ν; −u

β

)
.

(78)
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The third is 3.194.1 of [15] and states that, for | arg(1 + βu)| > π and Re(μ) > 0,
Re(ν) > 0,

∫ u

0
xμ−1(1 + βx)−νdx = uμ

μ
2F1(ν, ν − μ; 1 + μ; −βu), (79)

where 2F1 in the above identity is understood as its analytic extension in the event
that |βu| > 1.
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Angular Asymptotics for Random Walks

Alejandro López Hernández and Andrew R. Wade

Abstract We study the set of directions asymptotically explored by a spatially
homogeneous random walk in d-dimensional Euclidean space. We survey some
pertinent results of Kesten and Erickson, make some further observations, and
present some examples. We also explore links to the asymptotics of one-dimensional
projections, and to the growth of the convex hull of the random walk.

Keywords Random walk · Recurrent set · Spherical asymptotics · Asymptotic
direction · Convex hull · Exceptional projections

1 Introduction

In this paper we examine some aspects of the way in which a random walk in d

dimensions explores space, specifically through the limit points of the trajectory
projected onto the sphere, and related questions concerning the growth of the convex
hull of the walk. We ask, roughly speaking, in which directions does the walk grow
without bound?

Let d ∈ N := {1, 2, 3, . . .}. Let X,X1,X2, . . . be i.i.d. random variables in R
d ,

and define the associated random walk (Sn; n ∈ Z+) by S0 := 0 and Sn =∑n
k=1 Xk

for n ≥ 1; here and subsequently 0 is the origin in R
d and Z+ := {0, 1, 2, . . .}. We

suppose throughout that Sn is genuinely d-dimensional, i.e., suppX is not contained
in a (d − 1)-dimensional subspace of Rd .

Denote by x · y the Euclidean inner product of vectors x, y ∈ R
d , and by ‖ · ‖

the Euclidean norm on R
d . Set Sd−1 := {x ∈ R

d : ‖x‖ = 1}. For x ∈ R
d \ {0}

define x̂ := x/‖x‖; we also set 0̂ := 0. We view vectors in R
d as column vectors

where necessary. Whenever the appropriate expectation exists, we write μ := EX,
so μ ∈ R

d is the mean drift vector of the random walk.
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In Sect. 2 we look at the limit points in S
d−1 of the sequence Ŝ0, Ŝ1, . . .,

drawing on closely related work of Kesten and Erickson [9–11, 19]. In particular,
an adaptation of an idea of Kesten shows that the limit set is a.s. equal to a
deterministic closed D ⊆ S

d−1 (see Theorem 2.1). In Sect. 3 we make more explicit
the connection to the work of Kesten and Erickson [9–11, 19] on limit sets graded
by particular speeds of growth. Section 4 considers the special case where D has a
single element, in which the walk is transient with a limiting direction. In Sect. 5 we
make some observations about the case where the walk has increments with mean
zero (zero drift). Section 6 presents an argument due to Erickson which shows that
an arbitrary closed D ⊆ S

d−1 can be achieved as the limit set by constructing
a random walk with suitable heavy-tailed increments (Theorem 6.1). In Sect. 7
we introduce some relevant convexity ideas. Section 8 turns to considering the
asymptotics of the one-dimensional projections Sn · u, u ∈ S

d−1. Section 9 studies
the convex hull of the trajectory, and draws some connections to the preceding
sections. In Sect. 10 we present some examples. These illustrate, for instance,
that while walks whose increments are symmetric and have zero mean must have
D = S

d−1 when d = 2 (Proposition 5.2), for d ≥ 4 the set D can have measure
zero in S

d−1 (Example 10.3).
We make a few historical comments. As observed by Blackwell, and Chung and

Derman (see [15, p. 493] and [2, p. 658]), it is a consequence of the Hewitt–Savage
zero–one law that P(Sn ∈ A i.o.) ∈ {0, 1} for any Borel set A ⊆ R

d . Those
authors raised the question of classifying sets A accordingly for a given random
walk (see e.g. [5, p. 447]). For bounded sets A containing the origin in their interior,
the question is that of recurrence vs. transience, and is answered by Chung and
Fuchs [6].

Attention focused on determining infinite sets A visited infinitely often by
(transient) random walks on Z

d , d ≥ 3, most notably for the case where the random
walk converges to Brownian motion, where a classification of recurrent sets A is
available in the form of ‘Wiener’s test’: for the case of simple symmetric random
walk, see [3, 4, 17], for bounded and symmetric increments, see [23, §6.5], and for
increments with zero mean and finite second moments, see [18, 30, 31]. Wiener’s test
and its generalizations [4, 22, 27] give analytic criteria in terms of the capacity of A
or Green’s functions of the walk. An early paper of Doney [7] showed that Wiener’s
test can yield very useful information, but, according to Spitzer, “in general the
computations are prohibitively difficult” [30, p. 320]. The present paper addresses
questions related to the transience or recurrence of sets A that are cones or half-
spaces.

2 Recurrent Directions

We say u ∈ S
d−1 is a recurrent direction for Sn if the sequence Ŝn has an

accumulation point at u, i.e., if Ŝn has u as a subsequential limit. Let L be the
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(random) set of all recurrent directions for Sn; equivalently,

L := {u ∈ S
d−1 : lim inf

n→∞ ‖Ŝn − u‖ = 0}.

Note that in L the possible accumulation point at 0 is excluded. Also define

D := {u ∈ S
d−1 : lim inf

n→∞ ‖Ŝn − u‖ = 0, a.s.},

i.e., the set of all a.s. recurrent directions for Sn.
For d = 1, ruling out the degenerate case where P(X = 0) = 1, the well known

trichotomy (see e.g. [8, Theorem 4.1.2]) states that either (i) Sn → +∞, a.s., (ii)
Sn → −∞, a.s., or (iii) lim infn→∞ Sn = −∞ and lim supn→∞ Sn = +∞, a.s.,
corresponding to (i) D = {+1}, (ii) D = {−1}, and (iii) D = {−1,+1} (this latter
case includes the case where Sn is recurrent). Our primary interest here is the case
d ≥ 2.

The following result is a consequence of a more general statement of Erickson [9]
(see also §3 below), who pointed out that it can be obtained by adapting an
argument of Kesten [19] (see also Lemma 1 of [21] for a generalization attributed
to Neidhardt). An alternative proof of the fact that L is deterministic could be
obtained by appealing to a general zero–one result for random closed sets such as
Proposition 1.1.30 of [26], having first established that L is closed.

Theorem 2.1 The set D is a non-empty, closed subset of Sd−1, and P(L = D) = 1.

We work towards the proof of Theorem 2.1. For u ∈ S
d−1 and r > 0, define the

set

C(u; r) := {x ∈ R
d \ {0} : ‖x̂ − u‖ < r}

and the event

A(u; r) := {Sn ∈ C(u; r) i.o.}.

By the Hewitt–Savage zero–one law (see e.g. [8, Theorem 4.1.1]), P(A(u; r)) ∈
{0, 1}.

Let B(x; r) := {y ∈ R
d : ‖x − y‖ < r} denote the open Euclidean ball centred

at x ∈ R
d with radius r > 0, and for u ∈ S

d−1 let Bs(u; r) := S
d−1 ∩ B(u; r). For

A ⊆ R
d , we write clA for the closure of A in R

d in the usual topology.

Lemma 2.2 For any u ∈ S
d−1 and any r > 0, we have

{L ∩ Bs(u; r) �= ∅} ⊆ A(u; r) ⊆ {L ∩ clBs(u; r) �= ∅}.

Proof First note that

A(u; r) = {Ŝn ∈ Bs(u; r) i.o.}.
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Hence A(u; r) implies that Ŝn ∈ clBs(u; r) i.o., and since clBs(u; r) is compact,
Ŝn must have an accumulation point in clBs(u; r). On the other hand, if Ŝn has
an accumulation point in Bs(u; r), then since Bs(u; r) is open in S

d−1 we have
Ŝn ∈ Bs(u; r) i.o. ��

The following continuity property is a key ingredient in the proof of Theorem 2.1.

Lemma 2.3 Given any sequence x1, x2, . . . ∈ S
d−1, and any u, v ∈ R

d ,

∣∣∣∣lim sup
n→∞

(xn · u)− lim sup
n→∞

(xn · v)

∣∣∣∣ ≤ ‖u − v‖.

Proof Suppose that u, v ∈ R
d . Then

lim sup
n→∞

(xn · v) ≤ lim sup
n→∞

(xn · u)+ lim sup
n→∞

(xn · (v − u))

≤ lim sup
n→∞

(xn · u)+ ‖v − u‖,

since ‖xn‖ = 1. With a similar argument in the other direction, we get the result. ��
Lemma 2.4 The set D is closed in S

d−1.

Proof Note that for any u ∈ S
d−1,

‖Ŝn − u‖2 = (Ŝn − u) · (Ŝn − u) = 1 + 1{Sn �= 0} − 2Ŝn · u,

so that

lim inf
n→∞ ‖Ŝn − u‖ = 0 if and only if lim sup

n→∞
(Ŝn · u) = 1.

Thus

S
d−1 \D = {

u ∈ S
d−1 : lim sup

n→∞
(Ŝn · u) < 1 a.s.

}
.

Consider u ∈ S
d−1 \ D. By the Hewitt–Savage theorem, lim supn→∞(Ŝn · u) = c

a.s. for a constant c < 1. Lemma 2.3 shows that for any v ∈ S
d−1 with ‖u − v‖ ≤

1−c
2 , a.s.,

lim sup
n→∞

(Ŝn · v) ≤ c + 1 − c

2
= 1 + c

2
< 1,

so that v ∈ S
d−1 \D. Thus Sd−1 \D is open in S

d−1. ��
Now we can complete the proof of Theorem 2.1.
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Proof of Theorem 2.1 We adapt, in part, an argument from the proof of Theorem 1
of [19]. We call a ball Bs(u; r) rational if u ∈ S

d−1 ∩Q
d and r ∈ Q∩ (0,∞). Note

that Sd−1∩Qd is dense in S
d−1, as follows from an argument based on stereographic

projection (see e.g. [29]). Let R denote the (countable) set of all rational balls, and
set

C := {B ∈ R : P(Ŝn ∈ B i.o.) = 1}.

Then since R is countable, and, by the Hewitt–Savage theorem, P(Ŝn ∈ B i.o.) ∈
{0, 1} for any B ∈ R, we have

P(Ŝn ∈ B i.o. for all B ∈ C but for no B ∈ R \ C) = 1. (2.1)

Observe that

u ∈ L if and only if Ŝn ∈ B i.o. for every B ∈ R with u ∈ B, (2.2)

and so u ∈ D if and only if

P(Ŝn ∈ B i.o. for every B ∈ R with u ∈ B) = 1. (2.3)

In particular, if B ∈ R contains some u ∈ D, then B ∈ C. With (2.1), this means
that

P(for all u ∈ D, Ŝn ∈ B i.o. for every B ∈ R with u ∈ B) = 1.

Together with (2.2), it follows that P(D ⊆ L) = 1.
Let Ck be the set of B ∈ C with diamB < 1/k. Let Wk := ∪Ck and W :=

∩k∈NWk . Then it follows from (2.3) that u ∈ D if and only if for every k ∈ N there
exists some B ∈ Ck with u ∈ B. That is, u ∈ D if and only if u ∈ W , i.e., D = W .

Let Rk be the set of B ∈ R with diamB < 1/k. Now let Mk := ∪{B ∈ Rk :
L ∩ B �= ∅}. Let B ∈ R. Since B is open in S

d−1, we have that B ∩ L �= ∅ implies
that Ŝn ∈ B i.o. So Mk ⊆ ∪{B ∈ Rk : Ŝn ∈ B i.o.}. Hence by (2.1) we have that
P(Mk ⊆ ∪Ck) = 1, i.e., P(Mk ⊆ Wk) = 1. It follows that P(∩k∈NMk ⊆ D) = 1.
Note that if u ∈ L, then for all k ∈ N we have B ∩ L �= ∅ for some B ∈ Rk , so
u ∈ Mk for all k; hence L ⊆ ∩k∈NMk a.s. Hence we conclude that P(L ⊆ D) = 1.

To prove that D is non-empty, taking r = 2 in Lemma 2.2 shows that Ŝn has
at least one accumulation point in L, since C(u; 2) = R

d \ {0} and, since Sn is
genuinely d-dimensional, Sn �= 0 i.o., a.s. ��

Here is an alternative characterization of the set D.

Proposition 2.5 We have that

D = {u ∈ S
d−1 : P(A(u; r)) = 1 for all r > 0}.
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Proof Define the set D′ = {u ∈ S
d−1 : P(A(u; r)) = 1 for all r > 0}. If

u ∈ D′, then P(A(u; 1/m)) = 1 for all m ∈ N, and so P(∩∞
m=1A(u; 1/m)) = 1.

In particular, P(Ŝn ∈ Bs(u; 1/m) i.o. for all m ∈ N) = 1. In other words, a.s.,
lim infn→∞ ‖Ŝn − u‖ < 1/m for all m ∈ N, and hence lim infn→∞ ‖Ŝn − u‖ = 0,
a.s., so u ∈ D. Thus D′ ⊆ D.

On the other hand, suppose that u ∈ S
d−1 \ D′. Then there exists r > 0 such

that P(A(u; r)) < 1, and, by the Hewitt–Savage theorem, in fact P(A(u; r)) = 0.
Lemma 2.2 shows that A(u; r)c ⊆ {L∩Bs(u; r) = ∅} and hence P(L∩Bs(u; r) =
∅) = 1. In particular, this means that P(u ∈ L) = 0 and so u /∈ D. This shows that
D ⊆ D′. ��

We next show that the recurrent directions are determined solely by the behaviour
of the walk at increasingly large distances from the origin. Define

L∞ :=
{

u ∈ S
d−1 : lim inf

n→∞

(
1

1 + ‖Sn‖ + ‖Ŝn − u‖
)

= 0

}
, (2.4)

and

D∞ :=
{

u ∈ S
d−1 : lim inf

n→∞

(
1

1 + ‖Sn‖ + ‖Ŝn − u‖
)

= 0, a.s.

}
.

In other words, u ∈ L∞ if and only if there exists a (random) subsequence nk of Z+
such that both limk→∞ ‖Snk‖ = ∞ and limk→∞ Ŝnk = u. If u ∈ L∞ we say that u
is an asymptotic direction for the random walk. Clearly an asymptotic direction is a
recurrent direction, so P(L∞ ⊆ L) = 1 and D∞ ⊆ D.

Proposition 2.6 If Sn is recurrent, then D = D∞ = S
d−1 and P(L = L∞ =

S
d−1) = 1.

Proof Suppose that Sn is recurrent. Since D∞ ⊆ D and L∞ ⊆ L, it suffices to
show that D∞ = S

d−1 and P(L∞ = S
d−1) = 1. Proposition A.1 shows that there

is some h ∈ (0,∞) such that, a.s., for every x ∈ R
d , Sn ∈ B(x; h) i.o. But for

every u ∈ S
d−1, every r > 0, and every R ∈ (h,∞), C(u; r) contains some

B(x; h) with ‖x‖ > 2R, so that, a.s., for every u ∈ S
d−1, every r > 0, and every

R ∈ (h,∞), there is a subsequence nk along which ‖Ŝnk − u‖ < r and ‖Snk‖ > R.
This shows that P(L∞ = S

d−1) = 1, and essentially the same argument implies
that D∞ = S

d−1. ��
Corollary 2.7 If D �= S

d−1, then Sn is transient.

The next result says that, a.s., the sets of recurrent and asymptotic directions
coincide.

Theorem 2.8 We have D∞ = D, and P(L∞ = D) = 1.
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Proof The recurrent case is contained in Proposition 2.6; thus suppose that Sn is
transient. Then since ‖Sn‖ → ∞ a.s., we have that P(L = L∞) = 1 and D = D∞.
Combined with Theorem 2.1, this gives the result. ��

Next we show how a distributional limit gives rise to recurrent directions. Here

and elsewhere, ‘
d−→’ denotes convergence in distribution and ‘supp’ denotes the

support of an R
d -valued random variable.

Proposition 2.9

(i) Suppose that there is a random vector ζ ∈ S
d−1 such that Ŝn

d−→ ζ as n → ∞.
Then supp ζ ⊆ D.

(ii) Suppose there is a sequence an of positive real numbers and a random vector

ξ ∈ R
d with P(ξ = 0) = 0 such that Sn/an

d−→ ξ as n → ∞. Then supp ξ̂ ⊆
D.

Proof For part (i), suppose that Ŝn
d−→ ζ . Then, for a given u ∈ S

d−1, for all but
countably many ε > 0,

P(‖Ŝn − u‖ < ε i.o.) = P

( ∞⋂
n=1

∞⋃
m=n

{‖Ŝm − u‖ < ε}
)

= lim
n→∞P

( ∞⋃
m=n

{‖Ŝm − u‖ < ε}
)

≥ lim
n→∞P(‖Ŝn − u‖ < ε)

= P(‖ζ − u‖ < ε),

which is strictly positive provided u ∈ supp ζ . It follows by the Hewitt–Savage
theorem that if u ∈ supp ζ , then P(‖Ŝn − u‖ < ε i.o.) = 1 for all ε > 0, and hence
u ∈ D.

For part (ii), we have that since P(ξ = 0) = 0, and the function x �→ x̂ is

continuous on R
d \ {0}, the continuous mapping theorem implies that Ŝn

d−→ ξ̂ ,
and then we may apply part (i). ��

Here is a sufficient condition for D = S
d−1; if d = 2 the walk is recurrent and

the result also follows from Proposition 2.6, while if d ≥ 3 the walk is transient.

Corollary 2.10 Suppose that E(‖X‖2) < ∞ and μ = 0. Then D = S
d−1.

Proof By assumption and the central limit theorem, n−1/2Sn converges in distri-
bution to a non-degenerate normal distribution. Proposition 2.9 then shows that
S
d−1 ⊆ D. ��
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3 Compactification and Growth Rates

Let Rd denote the compactification of Rd obtained by adjoining the “sphere at ∞”.
More formally, Rd is the compact metric space obtained by the completion of Rd

with respect to the metric

ρ(x, y) =
∥∥∥∥ x

1 + ‖x‖ − y
1 + ‖y‖

∥∥∥∥ .

Then we can represent Rd as Rd = R
d ∪R

d∞ where Rd∞ is in bijection to S
d−1. We

write elements of Rd∞ as ∞ · u for u ∈ S
d−1. The metric ρ on R

d is equivalent to

the Euclidean metric, and extended to Rd it is such that xn ∈ R
d has xn → ∞ · u

for u ∈ S
d−1 if ‖xn‖ → ∞ and x̂n → u.

The set of accumulation points of S0, S1, S2, . . ., taken in Rd , thus consists of any
accumulation points in R

d (a.s. there are none if Sn is transient) and accumulation
points in R

d∞ represented by the set L∞ of asymptotic directions, as defined at (2.4).
Erickson [9], generalizing one-dimensional work of Kesten and himself [11, 19],

considers a finer graduation of asymptotic directions. For α ∈ R+, set

L>α∞ :=
{

u ∈ S
d−1 : lim inf

n→∞

(
nα

1 + ‖Sn‖ + ‖Ŝn − u‖
)

= 0

}
.

Then L>0∞ = L∞, while L>α2∞ ⊆ L>α1∞ for any 0 ≤ α1 ≤ α2 < ∞. Similarly, set

D>α∞ :=
{

u ∈ S
d−1 : lim inf

n→∞

(
nα

1 + ‖Sn‖ + ‖Ŝn − u‖
)

= 0, a.s.

}
.

Roughly speaking, the set L>α∞ consists of those directions in which the walk grows
at rate faster than nα . Also for α > 0 set

Aα =
{

x ∈ R
d : lim inf

n→∞
∥∥n−αSn − x

∥∥ = 0
}
, (3.1)

and Lα∞ = {x̂ : x ∈ Aα \ {0}}. Then Lα∞ ⊆ L∞ are those asymptotic directions in
which the walk grows at rate precisely nα .

Erickson [9, 10] studies in detail Aα and L>α∞ , with particular focus on the
case α = 1, which has some peculiar features. The version of Theorem 2.1 stated
by Erickson [9, p. 802] is that P(L>α∞ = D>α∞ ) = 1, and D>α∞ is a closed subset
of Sd−1.

For d ≥ 3, the value α = 1/2 is special, since a remarkable paper of Kesten [20]
shows that n−α‖Sn‖ → ∞ for any α < 1/2 and any genuinely d-dimensional
random walk Sn in R

d , d ≥ 3. Thus for d ≥ 3 we have D>α∞ = D∞ for any
0 ≤ α < 1/2.
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4 Limiting Direction

By the Hewitt–Savage theorem, P(limn→∞ Ŝn exists) ∈ {0, 1}, and if the limit
exists, then it is a.s. constant. If limn→∞ ‖Sn‖ = ∞ a.s. and limn→∞ Ŝn = u a.s. for
some u ∈ S

d−1, we say that Sn is transient with limiting direction u.

Lemma 4.1 Let u ∈ S
d−1. The following are equivalent.

(i) D = {u}.
(ii) limn→∞ Ŝn = u, a.s.

(iii) Sn is transient with limiting direction u.

Proof The result will follow from the sequence of implications (iii) ⇒ (ii) ⇒ (i)
⇒ (iii). That (iii) implies (ii) is trivial. If (ii) holds, then clearly u ∈ D, and for any
r > 0 we have Ŝn ∈ Bs(u; r) for all but finitely many n. For any v ∈ S

d−1 \ {u}, we
may choose r > 0 sufficiently small so that Bs(u; r) and Bs(v; r) are disjoint, so
that P(Ŝn ∈ Bs(v; r) i.o.) = 0, and hence Proposition 2.5 shows that v /∈ D. Thus
(i) holds.

Finally, suppose that (i) holds. Then Corollary 2.7 shows that Sn is transient,
and in particular Sn = 0 only finitely often. By the Hewitt–Savage theorem,
lim supn→∞ ‖Ŝn − u‖ is a.s. constant. If u is not a limiting direction for the walk,
then this constant is strictly positive, so that, for some ε > 0, ‖Ŝn − u‖ ≥ ε i.o.,
a.s. Since the set {v ∈ S

d−1 : ‖v − u‖ ≥ ε} is compact, it follows that Ŝn has an
accumulation point v �= u, and hence v ∈ D, which gives a contradiction. Hence (i)
implies (iii). ��

The following result is contained in Theorem 1.6.1(i) of [25].

Proposition 4.2 Suppose that E‖X‖ < ∞. If μ �= 0, then D = {μ̂}.
Remark 4.3 If μ = 0 there is no limiting direction: see Proposition 5.1 below.

Proof of Proposition 4.2 The strong law of large numbers (SLLN) shows that
n−1Sn → μ, a.s., and n−1‖Sn‖ → ‖μ‖, a.s. If μ �= 0, then ‖Sn‖ → ∞, so
Sn �= 0 for all but finitely many n, and then

lim
n→∞ Ŝn = lim

n→∞
n−1Sn

n−1‖Sn‖ = μ̂, a.s.

��

5 The Zero-Drift Case

In this section we turn to the case where the walk has zero drift, i.e., μ = 0. If
d = 1, then zero drift implies recurrence, and hence D = {−1,+1} (see e.g. [8,
Theorem 4.2.7]). If E(‖X‖2) < ∞, then Corollary 2.10 shows that D = S

d−1.
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Thus the most interesting cases are when d ≥ 2 and E(‖X‖2) = ∞. The following
result contrasts with Proposition 4.2, and improves on Theorem 1.6.1(ii) of [25].

Proposition 5.1 Suppose that d ≥ 2, E‖X‖ < ∞, and μ = 0. Then D is
uncountable.

In the case where d = 2, we can say more. For measurable A ⊆ S
d−1 we write

|A| for the Haar measure of A. Write ‘
d=’ for equality in distribution; X

d= −X
means that random variable X ∈ R

d has a centrally symmetric distribution.

Proposition 5.2 Suppose that d = 2, E‖X‖ < ∞, and μ = 0.

(i) We have |D| ≥ 1
2 |S1|.

(ii) If X
d= −X, then D = S

1.

Remarks 5.3

(a) Example 10.2 below gives a walk with d = 2, X
d= −X, and E‖X‖ = ∞, for

which D has only two elements, so the condition E‖X‖ < ∞ in Proposition 5.2
cannot be removed.

(b) Example 10.3 below gives a family of random walks in R
d , d ≥ 4, for which

μ = 0 and X
d= −X, but D is a set of measure zero, so in higher dimensions

the hypotheses of Proposition 5.2 do not guarantee that D occupies a positive
fraction of the sphere.

For further results in the zero-drift case, see Corollary 9.4 below. In the rest of
this section we prove Propositions 5.1 and 5.2.

Lemma 5.4 Suppose that d ≥ 2,E‖X‖ < ∞, andμ = 0. Then for every u ∈ S
d−1,

there exists v ∈ D with u · v = 0.

Proof If Sn is recurrent, then the result follows from Proposition 2.6. So suppose
that Sn is transient. Fix u ∈ S

d−1. For ε > 0, let Oε(u) = {v ∈ S
d−1 : |v · u| ≤ ε}.

Since E(X ·u) = μ ·u = 0, the random walk Sn ·u is recurrent, and lim infn→∞ |Sn ·
u| < ∞. Since Sn is transient we have ‖Sn‖ → ∞, so that lim infn→∞ |Ŝn · u| = 0.
In other words, for every ε > 0 we have that for infinitely many n ∈ N, Ŝn is in
the compact set Oε(u). Hence Oε(u) must contain an element of D. Thus there is a
sequence v1, v2, . . . ∈ D with |vj · u| → 0, and (since D is compact) this sequence
has a subsequence which converges to v ∈ D with v · u = 0. ��
Proof of Proposition 5.1 Suppose, for the purpose of deriving a contradiction, that
D is countable. Set O(u) = {v ∈ S

d−1 : v · u = 0}. Then O = ∪u∈DO(u) is a
countable union of subsets of Sd−1 of measure zero (since each O(u) is a copy of
S
d−2). ThusO is measure zero, and so there exists v ∈ S

d−1\O . This v has v·u �= 0
for all u ∈ D, which contradicts Lemma 5.4. Hence D cannot be countable. ��
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To prove Proposition 5.2, we need some additional notation. Let

D1 := {u ∈ S
d−1 : u ∈ D, − u /∈ D},

D2 := {u ∈ S
d−1 : u ∈ D, − u ∈ D},

C1 := {u ∈ S
d−1 : u /∈ D, − u ∈ D} = −D1,

C2 := {u ∈ S
d−1 : u /∈ D, − u /∈ D}.

Then D = D1 ∪D2 and S
d−1 \D = C1 ∪ C2.

Lemma 5.5 Suppose that d = 2, E‖X‖ < ∞, and μ = 0. Then C2 = ∅.

Proof Lemma 5.4 shows that for every u ∈ S
1, there exists v ∈ S

1 such that u·v = 0
and v ∈ D. As u runs over S1, the set of ±v such that u · v = 0 runs over the whole
of S1, and so in this case we conclude that for every u ∈ S

d−1, at least one of ±u is
in D. Hence C2 = ∅. ��
Proof of Proposition 5.2 Note that |D| = |D1| + |D2|. If Lemma 5.5 applies, then
we have |S1 \ D| = |C1| = |D1|. Hence |S1| = 2|D1| + |D2|, and part (i) follows.

If X
d= −X, then D = −D, so D1 = C1 = ∅. Thus Sd−1 = D2 ∪ C2. If Lemma 5.5

applies, then D = D2 = S
1, giving part (ii). ��

6 An Arbitrary Set of Recurrent Directions

We know from Theorem 2.1 that the set D is closed. The aim of this section is to
show that there are, in general, no other restrictions on D: it can be an arbitrary
closed subset of the sphere. This result is essentially due to Erickson [10, pp. 508–
510]; we reproduce the argument here.

Theorem 6.1 Let A be a non-empty closed subset of S
d−1. Suppose that the

increment distribution of the random walk is given by X = Qξ where Q ∈ S
d−1

and ξ ∈ R+ are independent, P(ξ > 0) > 0, and suppQ = A. Let ξ1, ξ2, . . . be
independent copies of ξ , and suppose that

lim
n→∞

max1≤i≤n ξi∑n
i=1 ξi

= 1, a.s. (6.1)

Then the recurrent directions of the random walk Sn =∑n
i=1 Xi are D = A.

Remarks 6.2

(a) Pruitt, in Theorem 2 of [28], shows that (6.1) holds if and only if
∑

k≥1 u
2
k < ∞,

where uk = P(2k < ξ ≤ 2k+1)/P(2k < ξ). Examples that work have very
heavy tails, and include P(ξ > r) = 1/ log r for r ≥ e (see [10, pp. 509–510])
and P(ξ > r) = exp(−(log r)β) for r ≥ 1 with β ∈ (0, 1/2) (see [28, p. 895]).
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(b) The intuition behind Theorem 6.1 is as follows. The condition (6.1) means
that the biggest jump so far is a.s. on a bigger scale than all the other
jumps combined, and so the projection on the sphere is determined by the
Q corresponding to the current biggest jump. As times goes on, one sees an
i.i.d. subsequence of the Qs associated with the biggest jumps, and so the walk
explores the sphere over the set A.

(c) Theorem 6.1 can be compared to the construction of random walks with desired
limit properties of [9–11, 19].

Proof of Theorem 6.1 Write Xi = Qiξi where the Qi are i.i.d. copies of Q and the
ξi are i.i.d. copies of ξ . Let Tn =∑n

i=1 ξi , Mn = max1≤i≤n ξi , and Bn = Tn −Mn;
then (6.1) is equivalent to Bn/Mn → 0, a.s. Also set k(1) := 1 and, for n ∈ N,

k(n+ 1) :=
{
k(n) if ξn+1 ≤ Mn,

n+ 1 if ξn+1 > Mn.

Then Mn = ξk(n). Define Rn := Sn − MnQk(n). Since ‖Qk(n)‖ = 1, repeated
application of the triangle inequality yields

‖Ŝn −Qk(n)‖ =
∥∥∥∥MnQk(n) + Rn − ‖Sn‖Qk(n)

‖Sn‖
∥∥∥∥

≤ |Mn − ‖Sn‖|
‖Sn‖ + ‖Rn‖

‖Sn‖
≤ 2‖Rn‖

Mn − ‖Rn‖ .

But ‖Rn‖ = ‖∑i∈{1,...,n}\{k(n)}Xi‖ ≤ Bn where Bn = Tn −Mn, so

‖Ŝn −Qk(n)‖ ≤ 2(Bn/Mn)

1 − (Bn/Mn)
→ 0, a.s.,

by (6.1).
Since Mn is a non-decreasing sequence in R+ with Mn → ∞ a.s. (as easily

follows from (6.1) and the fact that P(ξ > 0) > 0) the sequence k(1), k(2), . . . is
a non-decreasing subsequence of Z+ with k(n) → ∞ a.s., and since the Qi are
independent of the ξi , the sequence k(1), k(2), . . . is independent of the sequence
Q1,Q2, . . .. Let �1 = 1 and for n ∈ N define �n+1 = min{m > �n : k(m) > k(�n)},
so that 1 = k(�1) < k(�2) < k(�3) < · · · . Then the sequence Qk(�1),Qk(�2), . . .

has the same law as a sequence of i.i.d. copies of Q. Hence if u ∈ A we have

lim inf
n→∞ ‖Ŝn − u‖ ≤ lim

n→∞‖Ŝn −Qk(�n)‖ + lim inf
n→∞ ‖Qk(�n) − u‖ = 0, a.s.

Thus u ∈ D. This shows that A ⊆ D.
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On the other hand, if u /∈ A we have that since Sd−1 \ A is open in S
d−1 there is

some r > 0 such that P(Q ∈ Bs(u; r)) = 0, and

lim inf
n→∞ ‖Ŝn − u‖ ≥ lim inf

n→∞ ‖Qk(�n) − u‖ − lim
n→∞‖Ŝn −Qk(�n)‖ ≥ r, a.s.,

so that u /∈ D. Thus D ⊆ A and the proof is complete. ��

7 Convexity and an Upper Bound

We start this section with a straightforward result (Theorem 7.1) that is sometimes
useful for giving an upper bound on D in terms of the support of Ŝn. We then
present (in Proposition 7.3 below) a simpler description of the upper bound in terms
of the distribution of X alone, rather than its convolutions. To do so, we need an
appropriate notion of convexity, which will also be useful in Sects. 8 and 9 below
when we look at one-dimensional projections and the convex hull of the walk.

Let Xn = (supp Ŝn) \ {0}, and let X 0 = cl (∪n≥1Xn). Here is the upper bound.

Theorem 7.1 We have that D ⊆ X 0.

Proof Suppose that u ∈ S
d−1 \ X 0. Since X 0 is closed, there exists r > 0 such

that Bs(u; r) ∩ Xn = ∅ for all n ∈ N, and so P(Ŝn ∈ Bs(u; r)) = 0 for all n ∈ N.
Then the Borel–Cantelli lemma shows that P(A(u; r)) = P(Ŝn ∈ Bs(u; r) i.o.) = 0.
Hence, by Proposition 2.5, we have u /∈ D. Hence D ⊆ X 0. ��

For u, v ∈ S
d−1 and α ∈ [0, 1], let

Iα(u, v) := αu + (1 − α)v
‖αu + (1 − α)v‖ ,

unless u = −v and α = 1/2, in which case we set I1/2(u,−u) := 0. If u �= −v,
set I (u, v) := {Iα(u, v) : α ∈ [0, 1]}, and set I (u,−u) := {u,−u} (i.e., ignore
α = 1/2).

Definition 7.2 Say that A ⊆ S
d−1 is s-convex if for every u, v ∈ A, one has

I (u, v) ⊆ A.

Note that we only need to check the condition in Definition 7.2 for v �= −u. In
words, A ⊆ S

d−1 is s-convex if for any u, v ∈ A, the radial projection onto S
d−1 of

the straight line segment from u to v in R
d lies in A. See also Lemma 7.5 below.

Denote by hullA the convex hull of A ⊆ R
d . For A ⊆ S

d−1, define

s-hullA := {x̂ : x ∈ hullA, x �= 0}.

We will show (see Lemma 7.7) that s-hullA is s-convex. Let X := (supp X̂) \ {0}.
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Proposition 7.3 We have that X 0 = cl s-hullX , and X 0 is s-convex.

We work towards a proof of Proposition 7.3. Let X ′ := {x̂ : x ∈ suppX}.
Lemma 7.4 For X ∈ R

d any random variable, we have that X = (clX ′) \ {0}.
Proof Recall that suppX is the smallest closed A ⊆ R

d such that P(X ∈ A) = 1,
or, equivalently, suppX = {x ∈ R

d : P(X ∈ B(x; r)) > 0 for all r > 0}. Since
supp X̂ is a closed subset of Sd−1 ∪ {0}, it follows that X is a closed subset of Sd−1.

Suppose that u ∈ X ′ with u �= 0. Then ur ∈ suppX for some r > 0. This means
that P(X ∈ B(ur; s)) > 0 for all s ∈ (0, r/2), say; but, for any x ∈ B(ur; s),

‖x̂ − u‖ = ‖x‖−1 (‖x − ‖x‖u‖)
≤ ‖x‖−1 (‖x − ru‖ + |r − ‖x‖|) ≤ 4s/r,

so P(X̂ ∈ B(u; 4s/r)) ≥ P(X ∈ B(ur; s)) > 0 for all s ∈ (0, r/2). Hence u ∈
supp X̂. Thus X ′ ⊆ X ∪ {0}, and since X ∪ {0} is closed we get clX ′ ⊆ X ∪ {0}.

On the other hand suppose that u ∈ X . Let rn > 0 be such that rn → 0. Then
P(X ∈ C(u; rn)) = P(X̂ ∈ B(u; rn)) > 0 for all n, which means that C(u; rn) ∩
suppX �= ∅, i.e., for every n there exists xn ∈ suppX with ‖x̂n − u‖ ≤ rn. Hence
x̂n ∈ X ′ with x̂n → u, so u ∈ clX ′, and we get X ⊆ clX ′. ��

The next result characterizes a set as s-convex if and only if all normalized
conical combinations are contained within the set.

Lemma 7.5 The set A ⊆ S
d−1 is s-convex if and only if for all n ∈ N, all

u1, . . . ,un ∈ A, and all β1, . . . , βn ∈ (0,∞),

∑n
i=1 βiui∥∥∑n
i=1 βiui

∥∥ ∈ A, whenever
n∑
i=1

βiui �= 0. (7.1)

Proof The ‘if’ half follows immediately (take n = 2 and β1 + β2 = 1). Suppose
that A is s-convex. We proceed by an induction on n. Then (7.1) holds for n = 2,
since

β1u1 + β2u2

‖β1u1 + β2u2‖ =
β1

β1+β2
u1 + β2

β1+β2
u2∥∥∥ β1

β1+β2
u1 + β2

β1+β2
u2

∥∥∥ .

Suppose that (7.1) holds for all n ∈ {1, . . . ,m} with m ≥ 2, and consider
u1, . . . ,um+1 ∈ A and β1, . . . , βm+1 ∈ (0,∞) with

∑m+1
i=1 βiui �= 0. We may

also suppose that βmum + βm+1um+1 �= 0, or else the inductive hypothesis would
apply directly. Set u′

i = ui for 1 ≤ i ≤ m− 1 and

u′
m =

βm
βm+βm+1

um + βm+1
βm+βm+1

um+1∥∥∥ βm
βm+βm+1

um + βm+1
βm+βm+1

um+1

∥∥∥ .
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Then since A is s-convex, u′
m ∈ A, and

∑m+1
i=1 βiui∥∥∥∑m+1
i=1 βiui

∥∥∥ =
∑m

i=1 β
′
iu

′
i∥∥∑m

i=1 β
′
iu

′
i

∥∥ ,

where β ′
i = βi for 1 ≤ i ≤ m − 1 and β ′

m = ‖βmum + βm+1um+1‖. By
inductive hypothesis, the expression in the last display is thus in A. This completes
the inductive step. ��
Corollary 7.6 Suppose that A ⊆ S

d−1 is s-convex. Then A = S
d−1 ∩ hullA.

Proof It is clear that A ⊆ S
d−1 ∩ hullA. So suppose that u ∈ S

d−1 ∩ hullA.
Then (see e.g. Lemma 3.1 of [14, p. 42]) there exist n ∈ N, v1, . . . , vn ∈ A, and
λ1, . . . , λn ∈ [0, 1] with

∑n
i=1 λi = 1, for which u =∑n

i=1 λivi . But, since A is s-
convex and ‖u‖ = 1, Lemma 7.5 shows that

∑n
i=1 λivi ∈ A. So S

d−1 ∩hullA ⊆ A.
��

The next result shows that s-hullA has a similar characterization to the usual
hullA.

Lemma 7.7 For A ⊆ S
d−1, s-hullA is the smallest s-convex B ⊆ S

d−1 with A ⊆
B.

Proof Let u, v ∈ s-hullA with v �= −u, and α ∈ (0, 1). Then u = x̂ and v = ŷ for
some x, y ∈ hullA with x, y �= 0. Choose β ∈ (0, 1) given by

β = α‖y‖
α‖y‖ + (1 − α)‖x‖ .

Consider w = βx + (1 − β)y. Then, since hullA is convex, w ∈ hullA, and w �= 0
since x̂ �= −ŷ, so ŵ ∈ s-hullA. But

w
‖w‖ = αx̂ + (1 − α)ŷ∥∥αx̂ + (1 − α)ŷ

∥∥
is thus in s-hullA for all α ∈ (0, 1), verifying that s-hullA is s-convex.

Next we claim that if A ⊆ S
d−1 is s-convex, then s-hullA = A. Clearly A ⊆

s-hullA. So suppose that A is s-convex, and consider u ∈ s-hullA. Then u = x̂
for some x ∈ hullA, x �= 0, and thus (see e.g. Lemma 3.1 of [14, p. 42]) there
exist n ∈ N, v1, . . . , vn ∈ A, and λ1, . . . , λn ∈ [0, 1] with

∑n
i=1 λi = 1, for which

x = ∑n
i=1 λivi . Then Lemma 7.5 shows that x̂ ∈ A. In other words, s-hullA ⊆ A,

as required.
Suppose B is s-convex with A ⊆ B; then the preceding paragraph shows that

s-hullA ⊆ s-hullB = B, which completes the proof of the lemma. ��
Lemma 7.8 Let A ⊆ S

d−1 be s-convex. Then clA is also s-convex.
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Proof It suffices to suppose u, v ∈ clA with u �= −v. Then there exist u1,u2, . . . ∈
A and v1, v2, . . . ∈ A with un → u and vn → v, and there exists n0 ∈ N such
that un �= −vn for all n ≥ n0. Since A is s-convex, Iα(un, vn) ∈ A for all n ≥ n0
and all α ∈ [0, 1]. By continuity of the function x �→ x̂ on R

d \ {0}, it follows that
Iα(u, v) = limn→∞ Iα(un, vn) ∈ clA for all α ∈ [0, 1]. Hence clA is s-convex. ��
Proof of Proposition 7.3 First we use induction to show that Xn ⊆ cl s-hullX for
all n ∈ N. Clearly this is true for n = 1. So suppose, for the inductive hypothesis,
that Xm ⊆ cl s-hullX for all m ∈ {1, . . . , n}. Now, provided that Sn+1 �= 0, we have

Ŝn+1 = αnŜn + (1 − αn)X̂n+1

‖αnŜn + (1 − αn)X̂n+1‖
, where αn = ‖Sn‖

‖Sn‖ + ‖Xn+1‖ .

In particular, since P(Ŝn ∈ Xn ∪ {0}) = 1 and P(X̂n+1 ∈ X ∪ {0}) = 1, we have

P

(
Ŝn+1 ∈ (∪{I (u, v) : u, v ∈ cl s-hullX }) ∪ {0}

)
= 1,

by the inductive hypothesis. But cl s-hullX is s-convex, by Lemmas 7.7 and 7.8,
so P(Ŝn+1 ∈ (cl s-hullX ) ∪ {0}) = 1, which means that Xn+1 ⊆ cl s-hullX ,
completing the induction. Thus we conclude that X 0 ⊆ cl s-hullX .

Next we show that X 0 is s-convex. It suffices to suppose that u, v ∈ X 0 with
u �= −v. Then there exist sequences unk ∈ Xnk and vmk ∈ Xmk with unk →
u and vmk → v. Lemma 7.4 shows that, correspondingly, there exist sequences
xnk,1 , xnk,2 , . . . ∈ supp Snk and ymk,1 , ymk,2 , . . . ∈ supp Smk with limi→∞ x̂nk,i = unk
and limj→∞ ŷmk,j = vmk , and, for all k sufficiently large and all i, j sufficiently
large, x̂nk,i �= −ŷmk,j . Now for s, t ∈ Z+, sxnk,i + tymk,j ∈ suppSsnk+tmk . Applying
Lemma 7.4 with X = Ssnk+tmk we see that w ∈ Xsnk+tmk ⊆ X 0, where

w = sxnk,i + tymk,j

‖sxnk,i + tymk,j ‖
= Iαs,t,i,j (x̂nk,i , ŷmk,j ),

with

αs,t,i,j = s‖xnk,i‖
s‖xnk,i ‖ + t‖ymk,j ‖

.

For fixed k, i, j and α ∈ [0, 1], we may choose s, t → ∞ such that αs,t,i,j → α,
and since for u �= −v, α �→ Iα(u, v) is continuous over α ∈ [0, 1], and X 0 is closed,
we get

Iα(x̂nk,i , ŷmk,j ) = lim
s,t→∞ Iαs,t,i,j (x̂nk,i , ŷmk,j ) ∈ X 0, for all α ∈ [0, 1].
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Then by continuity of (u, v) �→ Iα(u, v) away from u = −v we get

Iα(u, v) = lim
k→∞ Iα(unk , vmk) = lim

k→∞ lim
i,j→∞ Iα(x̂nk,i , ŷmk,j ) ∈ X 0,

for all α ∈ [0, 1]. Hence X 0 is s-convex, and X ⊆ X 0, so, by Lemma 7.7, we have
s-hullX ⊆ X 0, and since X 0 is closed, we get cl s-hullX ⊆ X 0.

Thus we conclude that X 0 = cl s-hullX , and the latter is s-convex by
Lemmas 7.7 and 7.8. ��

We finish this section with a result on the boundary of an s-convex set, which
will be useful in Sect. 8 below. For A ⊆ S

d−1, denote by s-intA the interior of A
relative to S

d−1, i.e., u ∈ s-intA if and only if Bs(u; δ) ⊆ A for some δ > 0.
Also, for A ⊆ S

d−1, we write ∂sA for the boundary of A relative to S
d−1, i.e.,

∂sA := (clA) \ (s-intA).

Lemma 7.9 If A ⊆ S
d−1 is s-convex, then (i) s-intA = s-int clA; and (ii) ∂sA =

∂sclA.

Proof Suppose that u ∈ s-int clA. Then there exist m ∈ N and u1, . . . ,um ∈ clA
such that u ∈ s-intPs(u1, . . . ,um), where Ps(u1, . . . ,um) := s-hull {u1, . . . ,um}.
Let

Rs(v1, . . . , vm; u) = inf{‖v − u‖ : v ∈ S
d−1 \ Ps(v1, . . . , vm)},

which is zero unless u lies in the interior of Ps(v1, . . . , vm), when it is equal to the
shortest distance from u to the boundary of Ps(v1, . . . , vm). In particular, note that
Rs(u1, . . . ,um; u) = δ0 > 0. For v1, . . . , vm ∈ S

d−1, the map (v1, . . . , vm) �→
Ps(v1, . . . , vm), as a function from (Sd−1)m to compact subsets of R

d with the
Hausdorff metric, is continuous. So the map from (v1, . . . , vm) toRs(v1, . . . , vm; u)
is also continuous. Hence for any δ ∈ (0, δ0), we can find ε > 0 sufficiently
small such that Bs(u; δ) is contained in Ps(v1, . . . , vm) for all vi ∈ S

d−1 with
‖vi−ui‖ < ε. Since ui ∈ clA, we can find vi ∈ A with ‖vi−ui‖ < ε, which means
that Bs(u; δ) ⊆ Ps(v1, . . . , vm) ⊆ A, since A is s-convex. Hence u ∈ s-intA. This
establishes (i). Then (ii) follows since ∂sclA = clA \ s-int clA = clA \ s-intA =
∂sA. ��

8 Projection Asymptotics

In Sect. 9 we study the way in which the random walk fills space via the convex hull
of the trajectory. Pertinent for this is the behaviour of one-dimensional projections
of the walk, so we turn to this first. For fixed u ∈ S

d−1, the projection Sn · u defines
a random walk on R, with increment distributionX ·u, which either tends to +∞, to
−∞, or oscillates (see Lemma 8.1 below). However, this, by itself, does not exclude
that there might exist (random) u ∈ S

d−1 for which Sn · u does something out of
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the ordinary, such as having a finite lim sup. While not central for what follows, we
show that such exceptional projections do not exist, at least for d ≤ 2.

Define the random sets

P+ := {
u ∈ S

d−1 : lim
n→∞(Sn · u) = +∞}

, P− := {
u ∈ S

d−1 : lim
n→∞(Sn · u) = −∞}

,

P± := {
u ∈ S

d−1 : −∞ = lim inf
n→∞ (Sn · u) < lim sup

n→∞
(Sn · u) = +∞}

,

and their non-random counterparts

D+ := {
u ∈ S

d−1 : lim
n→∞(Sn · u) = +∞, a.s.

}
,

D− := {
u ∈ S

d−1 : lim
n→∞(Sn · u) = −∞, a.s.

}
,

D± := {
u ∈ S

d−1 : −∞ = lim inf
n→∞ (Sn · u) < lim sup

n→∞
(Sn · u) = +∞, a.s.

}
,

Then P+ = −P−, P± = −P±, and similarly for the non-random versions.

Lemma 8.1 The sets D+,D−,D± partition S
d−1.

Proof Let u ∈ S
d−1. Then (see e.g. [8, Theorem 4.1.2]) exactly one of the following

holds: (i) u ∈ D+, (ii) u ∈ D−, (iii) u ∈ D±, or (iv) P(X · u = 0) = 1. Case (iv) is
ruled out by our assumption that the walk is genuinely d-dimensional. ��

It is not immediately obvious that P+,P−,P± also partition S
d−1. We define

E+ := {
u ∈ S

d−1 : lim sup
n→∞

(Sn · u) ∈ R
}
, E− := {

u ∈ S
d−1 : lim inf

n→∞ (Sn · u) ∈ R
}
.

We call u ∈ E := E+ ∪ E− an exceptional projection of the walk. Since E− = −E+,
we have E = −E . Lemma 8.1 means that P(u ∈ E) = 0 for all fixed u ∈ S

d−1.
Recall the definition of s-convexity from Definition 7.2.

Lemma 8.2 The sets P+, P−, P+ ∪ E−, P− ∪ E+, D+, and D− are s-convex.

Proof Suppose that u, v ∈ P+ with v �= −u. Then

Sn · (αu + (1 − α)v) = αSn · u + (1 − α)Sn · v,

and both Sn · u and Sn · v tend to infinity, so Iα(u, v) ∈ P+ for all α ∈ [0, 1].
Hence P+ is s-convex, and so is P− = −P+ as well. The argument for D+, D− is
essentially the same. Note that u ∈ P+∪E− if and only if lim infn→∞(Sn·u) > −∞.
Hence if u, v ∈ P+ ∪ E−,

lim inf
n→∞ (Sn · (αu + (1 − α)v)) ≥ α lim inf

n→∞ (Sn · u)+ (1 − α) lim inf
n→∞ (Sn · v) > −∞,

so P+ ∪ E− is s-convex; similarly for P− ∪ E+. ��
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The following result shows that random set P+ can differ from the non-random
set D+ in a rather limited way. In particular, since P+ and D+ are s-convex (by
Lemma 8.2), Proposition 8.3(i) with Lemma 7.9 shows that P(∂sP+ = ∂sD+) = 1.
Similarly for P− and D−.

Proposition 8.3

(i) We have

P(clP+ = clP+ ∪ cl E− = clD+) = 1, and P(clP− = clP− ∪ cl E+ = clD−) = 1.

(ii) Moreover, P(clE+ ⊆ ∂sD−) = P(clE− ⊆ ∂sD+) = 1.

Proof For part (i), it suffices to prove the first statement. For ease of notation,
write P = P+ ∪ E−. Since, by Lemma 8.2, P is s-convex, so is clP , by
Lemma 7.8. Thus, by Corollary 7.6, clP = S

d−1 ∩hull clP . Since clP is bounded,
A = hull clP = cl hullP [14, p. 45]. The set A is convex and compact, and
so it is uniquely determined by its support function hA : R

d → R given by
hA(x) = sup{x · y : y ∈ A}, which is continuous [14, p. 56]. Since Q

d is dense
in R

d , hA is determined by {hA(x) : x ∈ Q
d}. By the Hewitt–Savage theorem, each

member of this countable collection of random variables is a.s. constant, so hA is
a.s. constant. Thus the set A is non-random, and then P(clP = S) = 1 for the
non-random closed, s-convex set S = S

d−1 ∩ A. Note that

P(u ∈ clP) =
{

1 if u ∈ S,

0 if u /∈ S.

Since every u ∈ D+ has P(u ∈ P+ ⊆ P) = 1, we have D+ ⊆ S, and since S is
closed, clD+ ⊆ S. On the other hand, if S \ clD+ �= ∅, there is some u ∈ S \ clD+
and some ε > 0 such that S ∩ Bs(u; ε) does not intersect clD+. The compact set S
contains a countable dense subset, Q, say, and every v ∈ Q ∩Bs(u; ε) has v /∈ D+,
so P(v ∈ P+) = 0. Also, P(v ∈ E−) = 0. Thus no member of Q ∩ Bs(u; ε) is in
P . Since P is s-convex with closure S, this implies that there is a neighbourhood
of u in S that does not intersect P . Hence u ∈ S \ clP . But P(S \ clP = ∅) = 1.
Thus P(clP+ ∪ clE− = clD+) = 1. Repeating the preceding argument, but taking
P = P+ throughout, gives P(clP+ = clD+) = 1 too.

For part (ii), we have from (i) that P(cl E− ⊆ clP+) = 1. Moreover, we must
have P(cl E− ∩ s-intP+ = ∅) = 1, or else we would have E− ∩ P+ �= ∅. Thus
P(clE− ⊆ ∂sP+) = 1. But since P+ and D+ are s-convex and a.s. have the same
closure, Lemma 7.9 shows that P(∂sP+ = ∂sD+) = 1. This gives (ii). ��
Corollary 8.4 If D± = S

d−1, then P(P± = S
d−1) = 1.

Proof If D± = S
d−1, then D+ = D− = ∅, by Lemma 8.1, and Proposition 8.3

shows that P(clP+ ∪ clP− ∪ clE = ∅) = 1. ��
We turn briefly to the question of whether E is in fact empty.
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Lemma 8.5 With probability 1, cl E is a perfect set.

Proof For a measurable B ⊆ S
d−1 let N(B) = #(B ∩ cl E), the number of points

of cl E in B. We claim that, for any B that is open in S
d−1,

P(N(B) = 0) = 1 or P(N(B) = ∞) = 1. (8.1)

Indeed, the Z+ ∪{∞}-valued random variable N(B) is a.s. constant, by the Hewitt–
Savage theorem: P(N(B) = K) = 1 for some (non-random)K . If 1 ≤ K < ∞, we
may label the elements of B ∩ cl E = B ∩E in an arbitrary order as u1, . . . ,uK , and
each is a.s. constant, by the Hewitt–Savage theorem again, so there exist constant
u1, . . . ,uK ∈ B with P(uj ∈ E) = 1 for each j . But P(u ∈ E) = 0 for all u. Hence
K ∈ {0,∞}. This establishes (8.1).

Recall that R denotes the (countable) set of all Bs(u; r) with u ∈ Q
d ∩S

d−1 and
r ∈ Q ∩ (0,∞). From (8.1) we have that P(N(B) ∈ {0,∞} for all B ∈ R) = 1,
which means that clE contains no isolated points. ��
Corollary 8.6 Suppose that d ∈ {1, 2}. Then P(cl E = ∅) = 1.

Proof For d = 1 this is evident, so suppose that d = 2. By Proposition 8.3,
P(clE− ⊆ ∂sD+) = 1, while Lemma 8.2 shows that D+ is s-convex, so ∂sD+
contains at most two points. Similarly for cl E+. Thus clE has at most four points.
Lemma 8.5 then shows that P(clE = ∅) = 1. ��

9 The Convex Hull

For n ∈ Z+ let Hn := hull {S0, S1, . . . , Sn} (a convex polytope). Set H∞ :=
∪n≥0Hn. If x, y ∈ H∞ then x, y ∈ Hn for some n, and since Hn is convex,
θx + (1 − θ)y ∈ Hn ⊆ H∞ for all θ ∈ [0, 1]. Thus H∞ is convex, and hence
so is clH∞ [14, p. 44]. Define

S∞ := {S0, S1, . . .}. (9.1)

If Sn is transient, then S∞ has no finite limit points. Since Hn ⊆ hullS∞, we
have H∞ ⊆ hullS∞, while H∞ is a convex set containing S∞, so hullS∞ ⊆ H∞.
That is,

H∞ = hullS∞ = hull {S0, S1, S2, . . .}.

Also define

rn := inf{‖x‖ : x ∈ R
d \Hn}.
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Note that rn is non-decreasing, so r∞ := limn→∞ rn exists in [0,∞]. In [24] it is
shown that if P(r∞ = ∞) = 1, then there is a zero–one law for random variables
that are tail-measurable for the sequence H0,H1,H2, . . .: see [24, §3].

Lemma 9.1 We have P(r∞ = ∞) = P(H∞ = R
d ) ∈ {0, 1}.

Proof By definition of rn, we have B(0; rn) ⊆ Hn ⊆ H∞. Thus if r∞ = ∞, we
have H∞ = R

d . On the other hand, if H∞ = R
d , then for any r ∈ (0,∞) there

exists some n ∈ N for which B(0; r) ⊆ Hn. (If not, there is some r and x ∈ B(0; r)
with x /∈ H∞.) Then rn ≥ r , so r∞ ≥ r . Since r was arbitrary, we get r∞ = ∞.
Thus P(r∞ = ∞) = P(H∞ = R

d ), and the proof is completed by the Hewitt–
Savage theorem. ��

A consequence of a theorem of Carathéodory is that if A ⊆ R
d is compact,

then hullA is also compact (see e.g. Corollary 3.1 of [14, p. 44]). Thus hullD is
compact, by Theorem 2.1. The following result relates several concepts from earlier
to the question of whether the convex hull eventually fills all of space. Here ‘int’
denotes interior.

Theorem 9.2 Consider the following statements.

(i) 0 ∈ int hullD.
(ii) P(r∞ = ∞) = 1.

(iii) P(H∞ = R
d ) = 1.

(iv) D± = S
d−1.

(v) 0 ∈ hullD.

Then the following logical relationships apply: (i) ⇒ (ii) ⇔ (iii) ⇔ (iv) ⇒ (v).

Remarks 9.3

(a) If the random walk is recurrent, then D = S
d−1 (Proposition 2.6) and so (i) and

hence (iv) hold, so that D+ = ∅. In other words, if D+ �= ∅, then D �= S
d−1,

and the random walk is transient.
(b) Examples 10.1 and 10.2 below show that (i) is not necessary for (iii), and (v) is

not sufficient for (iii).

In [24], it was shown that sufficient for P(H∞ = R
d ) = 1 is that the random

walk is recurrent; this follows from Theorem 9.2 and the fact that recurrence implies
that D = S

d−1 (Proposition 2.6). Here are some further sufficient conditions.

Corollary 9.4 Suppose that either (i) X
d= −X, or (ii) E‖X‖ < ∞ and μ = 0.

Then P(H∞ = R
d) = 1.

Proof By Theorem 9.2, it suffices to show that D± = S
d−1. But under either

hypotheses (i) or (ii), the non-degenerate one-dimensional random walk with
increment distribution X · u oscillates. ��
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Proof of Theorem 9.2 First suppose that (i) holds. If 0 ∈ int hullD then there exist
m ∈ N and u1, . . . ,um ∈ D such that 0 is also in the interior of the convex polytope
P(u1, . . . ,um) := hull {u1, . . . ,um}. Let

R(v1, . . . , vm) = inf{‖x‖ : x ∈ R
d \ P(v1, . . . , vm)},

which is zero unless 0 lies in the interior of P(v1, . . . , vm), when it is equal to the
shortest distance from 0 to the boundary of P(v1, . . . , vm). In particular, note that
R(u1, . . . ,um) = δ0 > 0.

For v1, . . . , vm ∈ R
d , the map (v1, . . . , vm) �→ P(v1, . . . , vm), as a function

from R
md to convex, compact subsets of Rd with the Hausdorff metric, is continu-

ous. So the map from (v1, . . . , vm) to R(v1, . . . , vm) is also continuous. Hence for
any δ ∈ (0, δ0), we can find ε > 0 sufficiently small such that B(0; δ) is contained
in P(v1, . . . , vm) for all vi with ‖vi − ui‖ < ε. For such an ε > 0, let

Ci(r, ε) = {x ∈ R
d : ‖x̂ − ui‖ < ε, ‖x‖ ≥ r}.

Then for any x1, . . . , xm with xi ∈ Ci(r, ε), we have that hull {x̂1, . . . , x̂m} contains
the ball B(0; δ). Thus, since ‖xi‖ ≥ r ,

B(0; rδ) ⊆ hull {r x̂1, . . . , r x̂m} ⊆ hull {x1, . . . , xm}.

Since ui ∈ D = D∞ (by Theorem 2.8), we have Sn ∈ Ci(r, ε) i.o., a.s. Thus
B(0; rδ) ⊆ Hn for all but finitely many n. That is lim infn→∞ rn ≥ rδ, a.s. Since
r > 0 was arbitrary, we get r∞ = ∞, a.s. Thus (i) implies (ii), and (ii) is equivalent
to (iii) by Lemma 9.1.

Suppose that u ∈ D+, so that P(u ∈ L+) = 1. Then Sn · u → ∞, so that
infn≥0(Sn · u) = c for some c > −∞. It follows that S0, S1, S2, . . . are contained
in the half-space H+(u) = {x ∈ R

d : x · u ≥ c}. Thus Hn ⊆ H+(u) for all n,
and hence H∞ ⊆ H+(u). Thus H∞ = R

d implies D+ = D− = ∅, and so, by
Lemma 8.1, (iii) implies (iv).

To show that (iv) implies (iii), we prove the contrapositive. By Lemma 9.1, it
suffices to suppose that P(H∞ = R

d) = 0. Since clH∞ is closed and convex,
it can be written as an intersection of hyperplanes (see e.g. Corollary 4.1 of [14,
p. 55]); in particular, if clH∞ is not the whole of R

d , it is contained in a half-
space H−(u) = {x ∈ R

d : x · u ≤ c} for some u ∈ S
d−1 and c ∈ R. Thus

supn≥0(Sn · u) < ∞. In particular, P± is not the whole of Sd−1. By Corollary 8.4,
this implies that D± �= S

d−1.
Finally, we show that (iv) implies (v). Suppose that 0 /∈ hullD. Since hullD is

closed, this means that there is a hyperplane that separates 0 from hullD, so there
is a u ∈ S

d−1 and c < 0 such that S(u) = {x ∈ S
d−1 : x · u ≥ c} contains no point

of D. Since S(u) is compact, it must thus contain only finitely many of Ŝ0, Ŝ1, . . ..
That is lim supn→∞(Ŝn · u) ≤ c, and hence lim supn→∞(Sn · u) ≤ 0. In particular,
P± is not the whole of Sd−1, and Corollary 8.4 shows that D± �= S

d−1. ��
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10 Some Examples

Let e1, . . . , ed denote the standard orthonormal basis vectors ofRd . For convenience
we locate all our random walks on the integer lattice Z

d , but this is not essential.
We write ξ ∼ Rad to mean that P(ξ = +1) = P(ξ = −1) = 1/2 (a Rademacher
distribution), and, for α > 0, write ζ ∼ S(α) to mean that ζ ∈ Z has P(ζ ≥
r) = P(ζ ≤ −r) = 1

2r
−α for r ∈ N. Our examples are constructed mostly from

components that are copies of ξ ∼ Rad or ζ ∼ S(α).
If ξ1, ξ2, . . . are independent copies of ξ ∼ Rad, then we write Wn = ∑n

i=1 ξi
for the associated simple symmetric random walk (SSRW) on Z. If ζ1, ζ2, . . . are
independent copies of ζ ∼ S(α), then we write Yn =∑n

i=1 ζi .
We recall some well-known facts about Wn and Yn. The local limit theorem for

SSRW on Z (see e.g. [8, pp. 141–143]) says that, with φ the standard Gaussian
density function,

lim
n→∞ sup

x∈Z

∣∣∣∣n
1/2

2
P (Wn = 2x − n)− φ

(
2x − n√

n

)∣∣∣∣ = 0. (10.1)

If α ∈ (0, 1), then Yn is transient and oscillates: |Yn| → ∞ and Yn takes both signs
i.o., and, moreover (see e.g. Theorem 3.5 of [13])

if α ∈ (0, 1), then lim inf
n→∞ n−1|Yn| = ∞, a.s. (10.2)

If α ∈ (0, 2), α �= 1, then n−1/αYn converges in distribution to (a constant multiple
of) a symmetric α-stable random variable, since ζ is in the corresponding domain
of normal attraction, with no centering (see e.g. Theorem 2.6.7 of [16] and [12,
p. 580]). If g is the density of this limiting random variable, then Gnedenko’s local
limit theorem (see Theorem 4.2.1 of [16]) says that

lim
n→∞ sup

x∈Z

∣∣∣n1/α
P (Yn = x)− g(n−1/αx)

∣∣∣ = 0. (10.3)

Note that g is uniformly bounded: this follows from the inversion formula for
densities and the fact that the characteristic function of a symmetric stable random
variable is of the form e−c|t |α , for some c > 0 (see e.g. [12, p. 570]).

Example 10.1 Suppose that d = 2. Let X = e1 + e2ζ where ζ ∼ S(α) for α > 0.
If α > 1 then E‖X‖ < ∞ and EX = e1, so the SLLN implies that Sn is transient

with limiting direction e1, and Proposition 4.1 shows that D = {e1}.
If α ∈ (0, 1), then ‖Sn‖ ≥ |Sn · e1| = n so the walk is again transient. Write

Xi = e1 + e2ζi where the ζi are independent copies of ζ . Let Yn = ∑n
i=1 ζi . For

j = ±1,

‖Ŝn − je2‖ ≤ n

‖Sn‖ +
∣∣∣∣ Yn

‖Sn‖ − j

∣∣∣∣ .
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By (10.2) we have that n/‖Sn‖ ≤ n/|Yn| → 0, a.s., and so ‖Sn‖/|Yn| → 1, a.s.,
and hence

∣∣∣∣ Yn

‖Sn‖ − sgn(Yn)

∣∣∣∣ ≤
∣∣∣∣ |Yn|‖Sn‖ − 1

∣∣∣∣→ 0, a.s.

It follows that, for j = ±1,

lim inf
n→∞ ‖Ŝn − je2‖ = lim inf

n→∞ | sgn(Yn)− j | = 0, a.s.

Hence {±e2} ⊆ D. On the other hand, if u ∈ S
1 \ {±e2}, we have u1 := u · e1 �= 0,

and

lim inf
n→∞ ‖Ŝn − u‖ ≥ lim inf

n→∞

∣∣∣∣ n

‖Sn‖ − u1

∣∣∣∣ = |u1| > 0,

so u /∈ D. Thus D = {±e2}.
Finally, note that this example obviously has H∞ �= R

2 (since Sn ≥ 0 for all n)
while 0 ∈ hullD, but 0 /∈ int hullD. This shows that (iii) and (v) of Theorem 9.2
are not equivalent. >
Example 10.2 Suppose that d = 2. Let X = e1ξ + e2ζ where ξ and ζ are
independent, ξ ∼ Rad, and ζ ∼ S(α) for α > 0.

First suppose that α > 2. Here E(‖X‖2) < ∞ and EX = 0, so the central limit
theorem applies, and Corollary 2.10 shows that D = S

1. Alternatively, note that the
walk in this case is recurrent (see e.g. [8, Theorem 4.2.8]) and apply Proposition 2.6.

Next suppose that α ∈ (1, 2). In this case EX = 0 but E(‖X‖2) = ∞. Here
the walk is transient, as follows from the Borel–Cantelli lemma and the local limit
theorems (10.1) and (10.3), which together show that P(Sn = 0) = P(Wn =
0)P(Yn = 0) = O(n−(1/2)−(1/α)). By construction, X

d= −X, so Proposition 5.2
shows that D = S

1.
Finally, suppose that α ∈ (0, 1). Since |Sn · e1| ≤ n, a similar argument to

that in Example 10.1 shows that D = {±e2}. Note that this walk is transient,
by Corollary 2.7, and, by Corollary 9.4, P(H∞ = R

d ) = 1. This example has
0 ∈ hullD, 0 /∈ int hullD, and P(H∞ = R

d) = 1, showing that (i) and (iii) of
Theorem 9.2 are not equivalent. >
Example 10.3 Suppose that d ≥ 4. Let X = ∑d−1

k=1 ekζ (k) + edξ where
ξ, ζ (1), . . . , ζ (d−1) are independent, ξ ∼ Rad, and ζ (k) ∼ S(α) for α ∈ (1, 2).

This random walk has X
d= −X, μ = 0, and is transient. Let Ed := {u ∈ S

d−1 :
u · ed = 0}, a copy of Sd−2.

Recall that C(u; r) = {x ∈ R
d \ {0} : ‖x̂ − u‖ < r}. Fix ε > 0, and set

Bn := {(x1, x2, . . . , xd) ∈ Z
d : |xd | ≤ n(1/2)+ε}.
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Then we have the estimate

P(Sn ∈ C(u; r)) ≤ P(|Sn · ed | > n(1/2)+ε)+
∑

x∈Bn∩C(u;r)
P(Sn = x).

Here we have from the local limit theorems (10.1) and (10.3) that, for some C < ∞,

P(Sn = x) = P(Wn = xd)

d−1∏
i=1

P(Yn = xi) ≤ Cn−(d−1)/α · n−1/2,

for all x ∈ Z
d . Standard binomial tail bounds show that for SSRW P(|Wn| >

n(1/2)+ε) ≤ C exp(−cn2ε) for constants c > 0 and C < ∞. Thus we get

P(Sn ∈ C(u; r)) ≤ C exp(−cn2ε)+ C
∑

x∈Bn∩C(u;r)
n−(d−1)/α · n−1/2. (10.4)

Fix u /∈ Ed , and take 0 < r < |u · ed |. Then any x = (x1, x2, . . . , xd) ∈ C(u; r) has

∣∣xd − ‖x‖u · ed
∣∣ ≤ ∥∥x − ‖x‖u

∥∥ < r‖x‖.

Thus (|u · ed | − r)‖x‖ < |xd | < (|u · ed | + r)‖x‖. It follows that there is a constant
C < ∞ such that |xi | < C|xd | for all 1 ≤ i ≤ d − 1 and all x ∈ C(u; r). Hence the
number of x ∈ Bn ∩ C(u; r) is at most O(n(d/2)+dε). Thus we obtain from (10.4)
that

P(Sn ∈ C(u; r)) ≤ C exp(−cn2ε)+ Cndεn−(d−1)(2−α)/(2α),

where C < ∞ depends on u and r , but not ε. Thus for any α satisfying

1 < α <
2(d − 1)

1 + d
(10.5)

we can choose ε > 0 small enough to ensure that
∑

n≥1 P(Sn ∈ C(u; r)) < ∞. We
can find α satisfying (10.5) provided d > 3.

Thus if we have d ≥ 4 and α satisfying (10.5), the Borel–Cantelli lemma shows
that u /∈ D for any u /∈ Ed , i.e., D ⊆ Ed . On the other hand, we have n−1/αSn
converges in distribution to Z = (Z1, . . . , Zd−1, 0), where the Zi are independent
α-stable random variables with suppZi = R. It follows that supp Ẑ = Ed , and so,
by Proposition 2.9, we conclude that D = Ed . >

We write ζ ∼ S+(α) to mean that ζ ∈ Z+ has P(ζ ≥ r) = r−α for r ∈ N.

Example 10.4 Let d ∈ N and α ∈ (0, 1). Let X = ∑k
j=1 uj ζ (j) where k ∈ N,

the ζ (j) ∼ S+(α) are independent, and u1, . . . ,uk are fixed vectors in R
d . For

z = (z1, . . . , zk) ∈ R
k , set �(z) :=∑k

j=1 zjuj .
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Write Xi = ∑k
j=1 uj ζ

(j)

i , where the ζ
(j)

i are independent copies of ζ (j),

and let Y (j)
n = ∑n

i=1 ζ
(j)
i . Then n−1/α(Y

(1)
n , . . . , Y

(k)
n ) converges in distribution

to (Z1, . . . , Zk), where Z1, . . . , Zk are independent, positive α-stable random
variables supported onR+. By the continuous mapping theorem, n−1/αSn converges
in distribution to

∑k
j=1 ujZj =: V . Since V is continuous, P(V = 0) = 0, and so

P(V̂ ∈ S
d−1) = 1. Thus

supp V̂ = C := C(u1, . . . ,uk) := cl
{

�(z)
‖�(z)‖ : z ∈ R

k, z1, . . . , zk > 0, ‖�(z)‖ > 0
}
.

Hence by Proposition 2.9(ii) we have that C ⊆ D.
To get an inclusion in the other direction, we use the notation of Sect. 7. We have

suppX = cl {�(z) : z ∈ N
k}, and for any x ∈ suppX, either x̂ = 0 (if x = 0) or

else x̂ = limn→∞ x̂n ∈ S
d−1 with xn = �(zn) and zn ∈ N

k . It follows that

{
�(z)

‖�(z)‖ : z ∈ N
k, ‖�(z)‖ > 0

}
⊆ X ′ ⊆ {0} ∪ cl

{
�(z)

‖�(z)‖ : z ∈ N
k, ‖�(z)‖ > 0

}
.

Lemma 7.4 then shows that

X = cl

{
�(z)

‖�(z)‖ : z ∈ N
k, ‖�(z)‖ > 0

}
=cl

{
�(z)

‖�(z)‖ : z ∈ λNk, ‖�(z)‖ > 0

}
,

for any λ > 0, by scale invariance. It follows that

X = cl

{
�(z)

‖�(z)‖ : z ∈ Q
k, z1, . . . , zk > 0, ‖�(z)‖ > 0

}
.

Since Q
k is dense in R

k , we get X = C. Moreover, C is the closure of an s-convex
set, and hence itself s-convex, by Lemma 7.8, and hence cl s-hullX = s-hullX =
C, by Lemma 7.7. Then Theorem 7.1 confirms that D = C. >

11 Concluding Remarks

The Borel–Cantelli lemma shows that if for some ε > 0,
∑∞

n=1 P(‖Ŝn − u‖ <

ε) < ∞, then P(Sn ∈ C(u; ε) i.o.) = 0, and so u /∈ D, by Proposition 2.5. This is
not sharp, however, as is already shown by the case of d = 1, when, for example,
+1 ∈ D if and only if

∑∞
n=1 n

−1
P(Sn > 0) = ∞ [12, p. 415].

Problem 11.1 Is there a criterion for u ∈ D in terms of P(Sn ∈ · )?
We do not necessarily expect a simple answer to Problem 11.1: in d = 1,

Kesten (Corollary 1 of [19, p. 1177]) gives a criterion for x ∈ Aα where Aα is
as defined at (3.1).
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Proposition 5.2 leaves the following question.

Problem 11.2 Suppose that d = 2, E‖X‖ < ∞, and μ = 0. Is D always equal to
S

1?

A The Recurrent Case

For most of the questions in the present paper, the main interest is the transient
case, because, loosely speaking, any recurrent random walk explores all of space
and hence all directions at all distances. Proposition A.1 is a precise version of this
statement. Recall [8, p. 190] that Sn is recurrent if there is a non-empty set R of
points x ∈ R

d (the recurrent values) such that, for any ε > 0, ‖Sn − x‖ < ε i.o., a.s.

Proposition A.1 If Sn is recurrent, then there exists h > 0 such that a.s., for any
x ∈ R

d , Sn ∈ B(x; h) i.o.

Proof Since Sn is recurrent, the set R of recurrent values is a closed subgroup of Rd

and coincides with the set of possible values for the walk: see [8, p. 190]. Since Sn
is genuinely d-dimensional, it follows from e.g. Theorem 21.2 of [1, p. 225] that R
contains a further closed subgroup R′ of the form HZ

d where H is a non-singular
d by d matrix. Hence there exists h > 0 such that for every x ∈ R

d there exists
y ∈ R′ with ‖x − y‖ < h/2, and since R′ is a countable set of recurrent values for
the walk, we have that, a.s., for any x ∈ R

d , Sn ∈ B(x; h) i.o. ��
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First Passage Times of Subordinators
and Urns

Philippe Marchal

Abstract It is well-known that the first time a stable subordinator reaches [1,+∞).
is Mittag-Leffler distributed. These distributions also appear as limiting distributions
in triangular Polya urns. We give a direct link between these two results, using a
previous construction of the range of stable subordinators. Beyond the stable case,
we show that for a subclass of complete subordinators in the domain of attraction of
stable subordinators, the law of the first passage time is given by the limit of an urn
with the same replacement rule but with a random initial composition.

Keywords Stable subordinator · First passage time · Polya urn

1 Introduction

Let (St )t≥0 be a stable subordinator of index α ∈ (0, 1), started at 0, and let T be
the first passage time in [1,+∞).

T = inf{t > 0, St > 1}

Then it is well-known that the law of T is the Mittag-Leffler distribution with
parameter α, which is characterized by its moments:

ET n = 	(1/α + n)

	(1/α)	(1 + nα)

See for instance [10], p.10. This same distribution also appears as the asymptotic
number of white balls in a classical Polya urn scheme. Let us introduce some
standard notation.
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Definition We call an urn scheme with replacement matrix

(
a b

c d

)

and initial condition (B0,W0) the following process. We initially have a black and
a white ball with respective weights (B0,W0). Then sequentially, a ball is drawn at
random with probability proportional to its weight. If this ball is black, it is replaced
into the urn together with a black ball of weight a and a white ball of weight b. If
the ball is white, it is put back into the urn together with a black ball with weight c
and a black ball with weight d .

Consider the case with the replacement matrix

(
1 0

1 − α α

)
(1)

and initial condition (B0,W0). Let Wn be the total weight of white balls after n
steps. Then n−αWn converges in law to a Mittag-Leffler random variable X which
can be characterized by its moments, namely

EXn = 	(B0 +W0)	(W0/α + n)

	(W0/α)	(B0 +W0 + nα)
(2)

See e.g. [6]. In particular, X has the same law as the first passage time T defined
above with the choice of parameters (B0,W0) = (1−α, α). Note that (2) still holds
when α = 1.

We argue that these two results are directly related via a construction of stable
subordinators that first appeared in [7] and that was then extended to complete
subordinators in [8]. Complete subordinators can be indexed by all possible
measurable functions β : [0, 1] → [0, 1] and have Lévy-Khintchine exponent given
by

φ(β)(λ) = − logE[exp(−λS(β)1 )] = exp
∫ 1

0

(λ− 1)β(x)

1 + (λ− 1)x
dx (3)

For general references on subordinators, see e.g. [2] and [11]. Our result is that for
a subclass of complete subordinators, the first passage time is also related to an urn
process:

Theorem 1 Let β : [0, 1] → [0, 1] be a measurable function which is constant,
equal to α ∈ (0, 1] on an interval [0, h] for some h ∈ (0, 1]. Let (S(β)t ) be the
subordinator with exponent given by (3) and let

T (β) = inf{t > 0, S(β)t > 1}
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be its first passage time to [1,+∞). Then, up to a multiplicative constant, T (β) has
the same law as the limit of n−αWn where Wn is the total weight of white balls in an
urn scheme with replacement matrix (1) and random initial conditions as follows.
Put θ = (1/h)− 1. Then for all integers l,m ≥ 0,

P((B0,W0) = (l+(m+1)(1−α), (m+1)α) = θle−θ

l!
1

2iπ

∫
C

dt

t
ψ(t)m(1−ψ(t))1 − (1/t)l+1

1 − (1/t)

where C is the unit circle of the complex plane and the function ψ is given by

ψ(t) = 1 − exp

(∫ 1

0

tγ (x)

1 − tx
dt

)

with

γ (x) = β

(
1

θ + 1 − θx

)

The presence of a multiplicative constant in Theorem 1 is not a real issue since
this corresponds to replacing (S

(β)
t ) with (S

(β)
ct ) for some positive constant c. We

stated our result for the entrance to [1,+∞) but of course, similar results hold with
a staightforward adaptation for the entrance to [a,+∞) for any a > 0.

When h = 1, the subordinator is stable. When h < 1, the process is in the
domain of attraction of an α-stable subordinator in small time: as t → 0, t−1/αS

(β)
t

converges in law to the (unique) positive stable distribution with index α.
Conversely however, a complete subordinator (S(β)t ) may belong to the domain

of attraction of an α-stable subordinator in small time without the function β being
constant near 0. Take for instance β(x) = α + (1 − α)x, then (S

(β)
t ) belongs to

this domain of attraction but Theorem 1 does not apply. It would be interesting to
know how far Theorem 1 could be generalized for subordinators of this kind, that
is, whether the first passage time can be related to an urn process.

Note that if the hypothesis of Theorem 1 on β is satisfied with α = 1, the
subordinator has positive drift whereas if it is satisfied with α = 0, the subordinator
is a compound Poisson process, see [8]. In the case α = 1, Theorem 1 still holds.
On the other hand, in the case α = 0, the first passage time problem reduces to a
problem on random walks which can be handled using the same tools as in Sect. 3.3.
This last case is in fact very classical and we shall not review the corresponding
literature here.

Using Theorem 1 and (2), one can compute the moments of the first passage time.
Let us make these computations in two simple cases. First, suppose that

β(x) = α1{x∈[0,h]
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Then almost surely, W0 = α and the moments of T are given by (with c a positive
constant and θ as in Theorem 1):

ET n = cn
∑
l≥0

θ le−θ

l!
	(1 + n)

	(1 + l + nα)

Next, suppose that

β(x) = α1{x∈[0,h)} + 1{x∈[h,1]}

Then almost surely, B0 = 1 − α and the moments of T are given by:

ET n = cn
∑
m≥0

θme−θ

m!
	(1 +m+ n)

	(1 +m+ nα)

In all other cases however, the computations are more intricate and there are no
obvious simplifications.

Apart from exact computations, for which little is known, other results on first
passage times for subordinators, regarding in particular the existence of a density or
asymptotic estimates, can be found in [5] and references therein.

The remainder of this paper is organized as follows. We first recall the con-
struction of regenerative sets from [8], both in the discrete and continuous case,
in Sect. 2. We explain in Sect. 3 how urns are embedded in this construction and
how the distributions described in Theorem 1 occur in that context. Finally, we
show in Sect. 4 that the embedded urns described in Sect. 3 indeed correspond to
first passage times for subordinators.

2 A Construction of Regenerative Sets

In the first two subsections, we recall the construction of regenerative sets given in
[8], both in the discrete and in the continuous case. The proof of Theorems 2 and 3
can be found there. The class of regenerative sets obtained in Sect. 2.2 is exactly the
class of ranges of complete subordinators, as noted in [1] and [4].

2.1 The Lattice Case

We begin by the construction of regenerative sets in N.
Construction 1.
Fix a measurable function γ : [0, 1] → [0, 1]. Let (Xn, n ≥ 1) be iid random

variables, uniformly distributed on [0, 1]2. We denote Xn = (hn,Un). One should
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Fig. 1 Construction 1

view h as a height and U as a parameter. Say that Xn is green if Un ≤ γ (hn),
and red otherwise. Say that an integer k ∈ [1, n] is n-visible if hk ≥ hm for all
integers m ∈ [k, n]. Finally, say that n percolates for γ if, for every k ≤ n such that
k is n-visible, Xk is green. Let R(γ ) be the set of integers that percolate for γ (by
convention, 0 percolates for γ ).

See Fig. 1. Green points are represented by black circles, red points by white
circles and the black squares stand for the integers that percolate. The horizontal
lines express the fact that the red point at 4 prevents 5, 6 and 7 from percolating.

Remark that if γ is a constant, then the Xn are green or red with probability γ

(resp. 1 − γ ), independently of the height.

Theorem 2 The set R(γ ) defined by Construction 1 is a lattice regenerative set.
It can be viewed as the image of a random walk (S

(γ )
n , n ≥ 0), where S

(γ )
n =

Y
(γ )

1 + . . . + Y
(γ )
n , the Y (γ )

i being iid random variables taking values in N ∪ {∞},
with generating function

ψ(γ )(t) = E(tY
(γ )
1 ) = 1 − exp

(
−
∫ 1

0

tγ (x)

1 − tx
dx

)

2.2 The Continuous Case

Consider a Poisson Point process N on R+ × [0, 1] × [0, 1] with intensity
dx ⊗ y−2dy ⊗ dz. Given a measurable function β : [0, 1] → [0, 1], we can
define an analogue of Construction 1 as follows.

Construction 2.
Say that a point X = (t, h,U) of N is green if U ≤ β(h), and red otherwise.

Say that another point X′ = (t ′, h′, U ′) of N is visible for X if t ′ ≤ t and if, for
all points of N of the form X′′ = (t ′′, h′′, u′′) with t ′ ≤ t ′′ ≤ t , we have h′ ≥ h′′.
Finally, say that X percolates for β if, for every X′ such that X′ is visible for X,



348 P. Marchal

X′ is green. By convention, 0 percolates for β. We denote by R(β)

1 the set of first
coordinates of percolating points, and we set

R(β) = R(β)
1

For every point X = (t, h,U) of N , let U(X) be the set of points of N of
the form X′ = (t ′, h′, u′) with t ′ ≤ t and h′ ≥ h. Then almost surely, U(X)
is finite, since almost surely, every strip of the form [0, t] × [h,∞] × [0, 1] with
h > 0 contains a finite number of points of N . Moreover, determining whether X
percolates only depends on U(X), and therefore Construction 2 is well-defined.

Theorem 3 The set R(β) defined by Construction 2 is a regenerative set. It can be
viewed as the image of a subordinator (S(β)t )t≥0 with Laplace exponent

φ(β)(λ) = − logE[exp(−λS(β)1 )] = exp
∫ 1

0

(λ− 1)β(x)

1 + (λ− 1)x
dx

for λ ≥ 0.

2.3 Relating the Discrete and the Continuous Case

Let h > 0. As noted above, if we only look at the points of N with y-coordinate
≥ h in Construction 2, we have a discrete set and we can determine whether these
points percolate or not without taking into account the points whose y-coordinate is
< h. Denote the points with y-coordinate ≥ h by

(x1, y1, U1), (x2, y2, U2), . . .

with x1 < x2 < . . .. From this discrete set, we can recover Construction 1 as
follows.

Let θ = (1/h)− 1 and consider the function F : [h, 1] → [0, 1] defined by

F(x) = 1 + 1

θ
− 1

θx

Its inverse is the function F−1 : [0, 1] → [h, 1] given by

F−1(x) = 1

θ + 1 − θx
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Put hn = F(yn) for every n ≥ 1. Then it is easily seen that the sequence
(hn, n ≥ 1) is a sequence of iid random variables, uniformly distributed on [0, 1]
and independent of the sequence (xn, n ≥ 1). Therefore the sequence

((hn,Un), n ≥ 1)

has the same law as in Sect. 2.1 and is independent of (xn, n ≥ 1).
Consider the function

γ (x) = β(F−1(x)) = β

(
1

θ + 1 − θx

)

so that β(x) = γ (F (x)). Then from the sequence (hn,Un) and the function γ , we
can define a regenerative set R by Construction 1 and we check that k ∈ R if and
only if (xk, yk, Uk) percolates by Construction 2. Moreover, Theorem 2 tells us that
R is the range of a random walk (Sn) with generating function

ψ(t) = 1 − exp

(∫ 1

0

tγ (x)

1 − tx

)

which is the same as in Theorem 1.

3 Embedded Urns

In this section, we use the construction of regenerative sets from Sect. 2.2. We shall
always restrict ourselves to the subset of points of N with x-coordinate ≤ 1.

3.1 An Alternative Description of the Urn

Consider an urn scheme with replacement matrix

(
1 0

1 − α α

)

and initial condition (B0,W0). This urn can be described by the following mecha-
nism:

• At time 0, add a black ball with weight B0 and a white ball with weight W0.
• Recursively at time N ≥ 1,
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– choose, independently of the past, a random time tN ∈ {0, . . . N − 1} with
probability

P(tN = k) = 1

N − 1 + B0 +W0

if k ≥ 1 and

P(tN = 0) = B0 +W0

N − 1 + B0 +W0

– If tN = 0, then at timeN , with probabilityB0/(B0+W0), add a black ball with
weight 1 and with probability W0/(B0 + W0), add a black ball with weight
1 − α and a white ball with weight α.

– If, at time tN ≥ 1, a black ball with weight 1 had been added, then add at time
N a black ball with weight 1.

– If, at time tN ≥ 1, a black ball with weight 1− α and a white ball with weight
α had been added, then at time N , with probability 1 − α, add a black ball
with weight 1 and with probability α, add a black ball with weight 1 − α and
a white ball with weight α.

3.2 The Stable Case

We deal here with the case when β is constant and equal to α ∈ (0, 1). Let us denote
the set of points of N , re-arranged by decreasing y-coordinate, as

{(x1, y1, U1), (x2, y2, U2), . . .}

with y1 > y2 . . .. By convention, set (x0, y0) = (0,∞).
For two integers N ≥ 0 and k ∈ [0, N], put

z
(N)
k = min({x ∈ {1, x0, . . . , xN }, x > xk})

and

I
(N)
k = (xk, z

(N)
k ]

In words, x0, . . . , xN cut the interval [0, 1] into N + 1 subintervals and I
(N)
k is the

subinterval with left extremity xk. Denote the lengths of these subintervals

l
(N)
k = z

(N)
k − xk
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Let QN+1 be the index of the interval where xN+1 lies, that is, put QN+1 = k if k is
the (unique) integer ∈ [0, N] such that xN+1 ∈ I

(N)
k . From the properties of Poisson

point processes, the random variable (l(N)0 , . . . , l
(N)
N ) is uniformly distributed on the

N-dimensional simplex and is independent of the random variables Qi, 1 ≤ i ≤ N .
Therefore, for every k ∈ [0, N],

P(QN+1 = k|Q1, . . .QN) = 1/(N + 1) (4)

Say that I (N)k percolates if the point (xk, yk, Uk) percolates. From Construction 2,

we see that the point (xN+1, yN+1, UN+1) percolates if and only if I (N)QN
percolates

and (xN+1, yN+1, UN+1) is green.
To put it formally, for every k ∈ [1, N] let Vk be the indicator function that

(xk, yk) is green and Wk be the indicator function that (xk, yk) percolates. Put also
W0 = 1. Then we have

WN+1 = VN+1WQN (5)

Since the random variables Vn are independent of the random variables Qn, we can
extend (4) by further conditioning on the random variables Vn,Wn:

P(QN+1 = k|Q1, . . .QN, V1, . . . VN ,W0, . . .WN, ) = 1/(N + 1) (6)

Using (6) together with (5), we can describe the law of the family of random
variables (Wn) as follows.

• First, W0 = 1.
• Recursively at time N ≥ 1,

– choose QN uniformly at random on [0, N], independently of the past.
– If WQN = 0, then WN = 0.
– IfWQN = 1, then independently of the past, choose eitherWN = 1 orWN = 0

with respective probabilities α, 1 − α.

Comparing with Sect. 3.1, we check that it is exactly the same mechanism as the
urn scheme with initial condition B0 = 1 − α, W0 = α. So we can state

Proposition 1 Let An be the number of percolating points in the set

{(x1, y1, U1), (x2, y2, U2), . . . (xn, yn,Un)}

Then the sequence (An) has the same law as (Wn), where Wn is the total weight of
white balls in an urn scheme with replacement matrix

(
1 0

1 − α α

)

and initial condition (1 − α, α).
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3.3 The General Case

We use here the same assumptions on the function β as in Theorem 1 and we keep
the notation from Sect. 3.2.

Let M be the number of points of the process N with y-coordinate greater that
h. Then conditionally on M , the interval [0, 1] is cut into M + 1 subintervals. We
define percolating and non-percolating subintervals as in the previous subsection
and denote by W the number subintervals that percolate. Note that even if M = 0,
W = 1 since by convention, we say that (x0, y0) percolates.

Using the same arguments as in Sect. 3.2, we see that the family of lengths of
these subintervals, which we can denote by (l1, . . . lM+1), is uniformly distributed
on the simplex and that (xM+1, yM+1, UM+1) percolates if and only if it is green
and xM+1 lies in a subinterval which percolates.

Then adding xM+1, we cut [0, 1] into M + 2 subintervals and then we can see
in which subintervals xM+2 and whether the point (xM+2, yM+2) percolates or not.
Reasoning this way by induction, as in Sect. 3.2, we see that conditionally on M and
W , we get an urn scheme with the same replacement matrix (1) but now the initial
condition is (M + 1 −Wα,Wα).

Proposition 2 Let An be the number of percolating points in the set

{(x1, y1), (x2, y2), . . . (xM+n, yM+n)}

Then the sequence (An) has the same law as (Wn), where Wn is the total weight of
white balls in an urn scheme with replacement matrix

(
1 0

1 − α α

)

and random initial condition (M + 1 −Wα,Wα).

It remains to study the joint law of (M,W). First, the law of M is Poisson with
mean θ = (1/h)− 1. Next, conditionally on M , using Sect. 2.3, we get that W has
the same law as the number of points in [0,M] in the regenerative set R obtained
from Construction 1 in Sect. 2.3.

This regenerative set R is the trace of a random walk (Sn) and the generating
function of S1 is the function ψ given in Theorem 1. Conditionally on M , we have

P(W = n+1|M) = P(Yn ≤ M,Yn+1 > M) = P(Yn ≤ M)−P(Yn+1 ≤ M) (7)

For each k, we have

P(Yn = k) = [tk]E(tYn ) = [tk]ψ(t)n
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where [tk]f (t) stands for the coefficient of the momomial tk in the function f (t)

viewed as a power series. By the theorem of residues,

[tk]ψ(t)n = 1

2iπ

∫
C

ψ(t)n

tk+1

Summing over k in (7) yields

P(W = n+ 1|M) = 1

2iπ

∫
C

dt

t
ψ(t)n(1 − ψ(t))

1 − (1/t)M+1

1 − (1/t)

and so finally,

P(M = m,W = n+1) = θme−θ

m!
1

2iπ

∫
C

dt

t
ψ(t)n(1−ψ(t))

1 − (1/t)m+1

1 − (1/t)
(8)

Comparing (8) with Theorem 1 and using Proposition 1, we can state:

Proposition 3 The sequence (An) from Proposition 1 has the same law as the
number of white balls in the urn process described in Theorem 1.

4 Proof of Theorem 1

We assume in this section that the conditions of Theorem 1 are satisfied. We shall
use the following property, see for instance [3] or [9] for a recent use of it:

Proposition 4 Suppose that a sequence of subordinators S(n) which are not
compound Poisson converges in law to S. Then the law of the first passage time
for S(n) converges in distribution to the law of the first passage time for S.

Let us go back to the construction of Sect. 2.2. If we only consider the points that
percolate and that have a y-coordinate more than 1/n, this yields a regenerative set
R(n) associated with the function αn(x) = α(x)1{x≥1/n}. According to Theorem 2,
R(n)is the range of a subordinator S(n) with exponent

φ(n)(λ) = exp
∫ 1

0

(λ− 1)α(x)

1 + (λ− 1)x
1{x≥1/n}dx

Thus S(n) converge to the subordinator S with exponent given in Theorem 1. Using
Proposition 4, we get the convergence

T (β)
n

law→ T (β)

where T (β)
n stands for the first passage time for S(n)
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Since S(n) has a finite number of jumps inside a finite interval, it is a compound
Poisson process. This means that the times between two consecutive jumps are iid,
exponentially distributed random variables whose mean is given by

mn = 1

φ(n)(∞)
= exp

(
−
∫ 1

1/n

α(x)

x
dx

)
∼ cn−α

for some constant c > 0. Now let K(n) denote the number of jumps of S(n) before
exiting from [0, 1]. Then conditionally on K(n) = k, the first passage time T (β)

n has
the same law as the sum of k iid, exponentially distributed random variables with
mean mn and variance m2

n. Using the Chebyshev inequality, we get

P(|T (β)
n −K(n)mn| > A|K(n)) ≤ K(n)m2

n

A2 = K(n)c2n−2α

A2 (9)

Next, remark that K(n) is the cardinal of the set R(n) ∩ [0, 1], that is, the number
of percolating points with y-coordinate greater than 1/n. Using Proposition 3, we
get that K(n) has the same law as the total weight of white balls in the urn scheme
described in Theorem 1:

αK(n) law= WL(n)

where L(n) is the number of points of N with y-coordinate greater than 1/n. Note
that L(n) is Poisson distributed with mean n− 1 and therefore

P(|L(n) − n| ≥ n2/3) → 0 (10)

as n → ∞. It follows from (10) that n−αWL(n) and n−αWn have the same limit law,
which is also the limit law of n−ααK(n).

Taking δ > 0 and A = n−α/4 in (9) yields

P(|T (β)
n −K(n)mn| > n−α/4) ≤ P(K(n) > δnα)+ δ

nα/2
(11)

This is true for every δ > 0 and we have seen that

P(K(n) > δnα)

has the same limit as

P(Wn > δαnα)

Since we know that the sequence (n−αWn) converges, it is tight and therefore, the
upper bound in (11) goes to 0 as n goes to infinity. So T

(β)
n has the same limit law

as K(n)mn, that is, the limit law described in Theorem 1. This concludes the proof.
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