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(KILLED) LÉVY PROCESS
I (ξt, t ≥ 0) is a (killed) Lévy process if it has stationary and independents with

RCLL paths (and is sent to a cemetery state after and independent and
exponentially distributed time).

I Process is entirely characterised by its one-dimensional transitions, which are
coded by the Lévy–Khinchine formula

E[eiθ·ξt ] = e−Ψ(θ)t, θ ∈ Rd,

where,

Ψ(θ) = q + ia · θ +
1
2
θ · Aθ +

∫
Rd

(1− eiθ·x + i(θ · x)1(|x|<1))Π(dx),

where a ∈ R, A is a d× d Gaussian covariance matrix and Π is a measure
satisfying

∫
Rd (1 ∧ |x|2)Π(dx) <∞. Think of Π as the intensity of jumps in the

sense of
P(X has jump at time t of size dx) = Π(dx)dt + o(dt).

I In one dimension the path of a Lévy process can be monotone, in which case it is
called a subordinator and we work with the Laplace exponent

E[e−λξt ] = e−Φ(λ)t, t ≥ 0

where
Φ(λ) = q + δλ+

∫
(0,∞)

(1− e−λx)Υ(dx), λ ≥ 0.
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STOLEN PICTURES FROM THE INTERNET1

The implication of this is that marginally Yt ∼ N(0, t), while the increments are independent as

usual with

Yt+s − Yt ∼ N(0, s).

A standard Brownian motion, written W , can be generalised to allow for the increments to have

a non-zero mean and a different scale than one. A drift µ and a volatility term σ can be introduced

to deliver the Lévy process
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Figure 3: (a) Sample path of
√

0.02 times standard Brownian motion. (b) Sample path of a
NIG(0 .2 , 0 , 0 , 10 ) Lévy process. Thus the increments of the processes have a common variance.
Code: levy graphs.ox.

Yt = µt + σWt,

with increments

Yt+s − Yt ∼ N(µs,σ2s).

The associated kumulant function for Y1 is µθ + 1
2θ

2σ2.

A graph of a sample path from standard Brownian motion is displayed in Figure 3(a). It

illustrates that the path is continuous. In a moment we will see that, except for the pure linear

drift case Yt = µt, Brownian motion is the only Lévy process with this property — all other Lévy

processes have jumps.
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Figure 6: (a) Sample path of a NΓ(4,200,0,0) Lévy process. Such processes are often called vari-
ance gamma processes in the literature. (b) Sample path of a La(0.2,0,0) Lévy process. Code:
levy graphs.ox.

The special case of β = 0 (symmetry) has been used extensively in the finance literature where it

is often called the variance gamma (V G) process. It was introduced by Madan and Seneta (1990),

while the β != 0 case was developed by Madan, Carr, and Chang (1998). Later we will mention

a generalisation of the normal gamma process, the extended Koponen (or KoBol) class, which is

often referred to in the finance literature as the CMGY Lévy process.

Figure 6(a) graphs a simulated path from a NΓ(4, 200, 0, 0) process. As we would expect, the

sample path has some of the features of the NIG process we drew in Figure 3(b). In particular

both of these infinite activity processes are very jagged. More detailed mathematical analysis of

the corresponding Lévy measures shows that the NIG process has more very small jumps than the

NΓ process. In particular near zero the Lévy density u(y) of the NIG process behaves like y−3/2,

while the corresponding result for the NΓ process is y−1.

An interesting feature of the normal gamma process is that it can be written in the form Y+−Y−

where Y+ and Y− are independent Γ subordinators (see Exercise 8).

For comparison with the NIG log-density (see Figure 5), note that NΓ log-density either has a

cusp at zero, when ν ∈ (0, 1], or is concave.
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Figure 2: Simulated Γ and IG Lévy processes, using intervals of length 1/2000. Code
levy graphs.ox.

This implies

K {θ ‡ Y1} = δ
{
γ −

(
γ2 + 2θ

)1/2
}

.

Like the gamma process, the IG process has an infinite number of jumps in any small interval of

time. The form of the cumulant function implies Yt ∼ IG(tδ, γ).

A sample path of an IG Lévy process is drawn in Figure 2(b). The parameters were selected to

have the same mean and variance of Y1 as that used to draw the path of the gamma process given

in Figure 2(a). Again the process is a rough upward trend with occasional large shifts.

Some other non-negative processes A reciprocal (or inverse) gamma (RΓ) Lévy process Y

requires the process at time one to be a reciprocal gamma variable Y1 ∼ RΓ(ν,α), α, ν > 0, so that

Y −1
1 ∼ Γ(ν,α), with density

fY1(y) =
αν

Γ(ν)
y−ν−1 exp

(
−αy−1

)
, y ∈ R>0.

Only the moments of order less than ν exist for this distribution.

Sums of independent reciprocal gamma variables are not distributed as reciprocal gamma.

However, the reciprocal gamma is infinitely divisible (and so yields a Lévy process), although we

do not know the distribution of Yt in closed form. This makes simulation of this process non-trivial.

A lognormal (LN) Lévy process Y requires the process at time one to be a lognormal variable

12

1https://www.nuffield.ox.ac.uk/economics/papers/2012/introlevy120608.pdf
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LÉVY PROCESS: ONE DIMENSION
Two examples in one dimension:
I Stable subordinator (ξt, t ≥ 0) is a subordinator which satisfies the additional

scaling property: For c > 0

under P, the law of (cξc−αt, t ≥ 0) is equal to P,

where α ∈ (0, 1). We have

Φ(λ) = λα, λ ≥ 0, and Π(dx) =
α

Γ(1− α)

1
x1+α

dx, x > 0.

I Hypgergeometric Lévy process: For β ≤ 1, γ ∈ (0, 1), β̂ ≥ 0, γ̂ ∈ (0, 1)

Ψ(θ) =
Γ(1− β + γ − iθ)

Γ(1− β − iθ)
Γ(β̂ + γ̂ + iθ)

Γ(β̂ + iθ)
θ ∈ R.

The Lévy measure has a density with respect to Lebesgue measure which is given
by

π(x) =


− Γ(η)

Γ(η − γ̂)Γ(−γ)
e−(1−β+γ)x

2F1
(
1 + γ, η; η − γ̂; e−x) , if x > 0,

− Γ(η)

Γ(η − γ)Γ(−γ̂)
e(β̂+γ̂)x

2F1 (1 + γ̂, η; η − γ; ex) , if x < 0,

where η := 1− β + γ + β̂ + γ̂.
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LÉVY PROCESS: ONE DIMENSION

I If ξ has a characteristic exponent Ψ then necessarily

Ψ(θ) = κ(−iθ)κ̂(iθ), θ ∈ R.

where κ and κ̂ are Bernstein functions, e.g.

κ(λ) = q + δλ+

∫
(0,∞)

(1− e−λx)Υ(dx), λ ≥ 0.

I The factorisation has a physical interpretation:
I range of the κ-subordinator agrees with the range of sups≤t ξs, t ≥ 0
I range κ̂-subordinator agrees with the range of− infs≤t ξs, t ≥ 0.

I Note if δ > 0, then P(ξ
τ+x

= x) > 0, where τ+
x = inf{t > 0 : ξt > x}, x > 0.

I We have already seen the hypergeometric example

Ψ(θ) =
Γ(1− β + γ − iθ)

Γ(1− β − iθ)
× Γ(β̂ + γ̂ + iθ)

Γ(β̂ + iθ)
θ ∈ R.
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FIRST ENTRY TO (x,∞)
I Recall Wiener–Hopf factorisation Ψ(θ) = κ(−iθ)κ̂(iθ), θ ∈ R., where κ and κ̂

are Laplace exponents of subordinators.
I Associated to κ and κ̂ are their potentials∫

[0,∞)
e−βxU(dx) =

1
κ(β)

and
∫

[0,∞)
e−βxÛ(dx) =

1
κ̂(β)

, β ≥ 0.

Theorem (Triple law at first entry to (x,∞))
Recall τ+

x = inf{t > 0 : ξt > x}. For u > 0, v ≥ y, y ∈ [0, x],

P(ξ
τ+x
− x ∈ du, x− ξ

τ+x −
∈ dv, x− ξ̄

τ+x −
∈ dy) = U(x− dy)Û(dv− y)Π(du + v).

s t

y

u

v

x
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HITTING POINTS
I We say that ξ can hit a point x ∈ R if

P(ξt = x for at least one t > 0) > 0.

I Creeping is one way to hit a point, but not the only way

Theorem (Kesten (1969)/Bretagnolle (1971))
Suppose that ξ is not a compound Poisson process. Then ξ can hit points if and only if∫

R
Re
(

1
1 + Ψ(z)

)
dz <∞.

If the Kesten-Bretagnolle integral test is satisfied, then

P(τ{x} <∞) =
u(x)

u(0)
,

where τ{x} = inf{t > 0 : ξt = x}, providing we can compute the inversion

u(x) =

∫
c+iR

e−zx

Ψ(−iz)
dz

for some c ∈ R.
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§2. Self-similar Markov processes
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SELF-SIMILAR MARKOV PROCESSES (SSMP)

Definition
A regular strong Markov process (Zt : t ≥ 0) on Rd, with probabilities Px, x ∈ Rd, is a
rssMp if there exists an index α ∈ (0,∞) such that for all c > 0 and x ∈ Rd,

(cZtc−α : t ≥ 0) under Px is equal in law to (Zt : t ≥ 0) under Pcx.
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SOME OF YOUR BEST FRIENDS ARE SSMP

I WriteNd(0,Σ) for the Normal distribution with mean 0 ∈ Rd and correlation
(matrix) Σ. The moment generating function of Xt ∼ Nd(0,Σt) satisfies, for
θ ∈ Rd,

E[eθ·Xt ] = etθTΣθ/2 = e(c−2t)(cθ)TΣ(cθ)/2 = E[eθ·cXc−2 t ].

I Thinking about the stationary and independent increments of Brownian motion,
this can be used to show that Rd-Brownian motion: is a ssMp with α = 2.
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (Xt : t ≥ 0) is an R-Brownian motion:
I Write Xt := infs≤t Xs. Then (Xt,Xt), t ≥ 0 is a Markov process.

I For c > 0 and α = 2,(cXc−αt
cXc−αt

)
=
(c infs≤c−αt Xs

cXc−αt

)
=
(infu≤t cXc−αu

cXc−αt

)
, t ≥ 0,

and the latter is equal in law to (X,X), because of the scaling property of X.
I Markov process Zt := Xt − (−x ∧ Xt), t ≥ 0 is also a ssMp on [0,∞) issued from

x > 0 with index 2.
I Zt := Xt1(Xt>0), t ≥ 0 is also a ssMp, again on [0,∞).
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=
(infu≤t cXc−αu

cXc−αt

)
, t ≥ 0,

and the latter is equal in law to (X,X), because of the scaling property of X.
I Markov process Zt := Xt − (−x ∧ Xt), t ≥ 0 is also a ssMp on [0,∞) issued from

x > 0 with index 2.
I Zt := Xt1(Xt>0), t ≥ 0 is also a ssMp, again on [0,∞).
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (Xt : t ≥ 0) is an Rd-Brownian motion:
I Consider Zt := |Xt|, t ≥ 0. Because of rotational invariance, it is a Markov process.
I Again the self-similarity (index 2) of Brownian motion, transfers to the case of |X|.

Note again, this is a ssMp on [0,∞).

I Note that |Xt|, t ≥ 0 is a Bessel-d process. It turns out that all Bessel processes, and
all squared Bessel processes are self-similar on [0,∞). Once can check this by e.g.
considering scaling properties of their transition semi-groups.
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SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that (Xt : t ≥ 0) is an Rd-Brownian motion:
I Note when d = 3, |Xt|, t ≥ 0 is also equal in law to a Brownian motion conditioned

to stay positive: i.e if we define, for a 1-d Brownian motion (Bt : t ≥ 0),

P↑x (A) = lim
s→∞

Px(A|Bt+s > 0) = Ex

[
Bt

x
1(Bt>0)1(A)

]
where A ∈ σ{Bt : u ≤ t}, then

(|Xt|, t ≥ 0) with |X0| = x is equal in law to (B,P↑x ).



17/ 69

§1. §2. §3. §4. §5. §6. Exercises.

SOME OF THE BEST FRIENDS OF YOUR BEST FRIENDS ARE SSMP

I All of the previous examples have in common that their paths are continuous. Is
this a necessary condition?

I We want to find more exotic examples as most of the previous examples have
been extensively studied through existing theories (of Brownian motion and
continuous semi-martingales).

I All of the previous examples are functional transforms of Brownian motion and
have made use of the scaling and Markov properties and (in some cases) isotropic
distributional invariance.

I If we replace Brownain motion by an α-stable process, a Lévy process that has
scale invariance, then all of the functional transforms still produce new examples
of self-similar Markov processes.
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α-STABLE PROCESS

Definition
A Lévy process X is called (strictly) α-stable if it is also a self-similar Markov process.

I Necessarily α ∈ (0, 2]. [α = 2→ BM, exclude this.]
I The characteristic exponent Ψ(θ) := −t−1 logE(eiθXt ) satisfies

Ψ(θ) = |θ|α(eπiα( 1
2−ρ)1(θ>0) + e−πiα( 1

2−ρ)1(θ<0)), θ ∈ R.

where ρ = P0(Xt ≥ 0) will frequently appear as will ρ̂ = 1− ρ
I Assume jumps in both directions (0 < αρ, αρ̂ < 1), so that the Lévy density takes

the form
Γ(1 + α)

π

1
|x|1+α

(
sin(παρ)1{x>0} + sin(παρ̂)1{x<0}

)
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α-STABLE PROCESS

Ψ(θ) = |θ|α(eπiα( 1
2−ρ)1(θ>0) + e−πiα( 1

2−ρ)1(θ<0)), θ ∈ R.

I Note that, for c > 0, c−αΨ(cθ) = Ψ(θ),

I which is equivalent to saying that cXc−αt =d Xt,
I which by stationary and independent increments is equivalent to saying

(cXc−αt, t ≥ 0) =d (Xt, t ≥ 0) when X0 = 0,

I or equivalently is equivalent to saying (cX(x)
c−αt

, t ≥ 0) =d (X(cx)
t , t ≥ 0), where we

have indicated the point of issue as an additional index.
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STABLE PROCESS PATH PROPERTIES

index jumps path recurrence/transience
α ∈ (0, 1) transient
ρ = 0 − monotone decreasing limt→∞ Xt = −∞

ρ = 1 + monotone increasing limt→∞ Xt =∞

ρ ∈ (0, 1) +,− bounded variation limt→∞ |Xt| =∞
α = 1 recurrent

ρ = 1
2 +,− unbounded variation lim supt→∞ |Xt| =∞,

lim inf t→∞ |Xt| = 0
α ∈ (1, 2) recurrent

αρ = 1 − unbounded variation Px(τ
{0} <∞) = 1, x ∈ R,

− lim inf t→∞ Xt = lim supt→∞ Xt =∞

αρ = α− 1 + unbounded variation Px(τ
{0} <∞) = 1, x ∈ R,

− lim inf t→∞ Xt = lim supt→∞ Xt =∞

αρ ∈ (α− 1, 1) +,− unbounded variation Px(τ
{0} <∞) = 1, x ∈ R,

− lim inf t→∞ Xt = lim supt→∞ Xt =∞
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YOUR NEW FRIENDS

Suppose X = (Xt : t ≥ 0) is within the assumed class of α-stable processes in
one-dimension and let Xt = infs≤t Xs.

Your new friends are:
I Z = X
I Z = X − (−x ∧ X), x > 0.
I Z = X1(X>0)

I Z = |X| providing ρ = 1/2

I What about Z =“X conditioned to stay positive"?
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CONDITIONED α-STABLE PROCESSES

I Recall that each Lévy processes, ξ = {ξt : t ≥ 0}, enjoys the Wiener-Hopf
factorisation i.e. up to a multiplicative constant, Ψξ(θ) := t−1 log E[eiθξt ] respects
the factorisation

Ψξ(θ) = κ(−iθ)κ̂(iθ), θ ∈ R,

where κ and κ̂ are Bernstein functions. That is e.g. κ takes the form

κ(λ) = q + aλ+

∫
(0,∞)

(1− e−λx)ν(dx), λ ≥ 0

where ν is a measure satisfying
∫
(0,∞)(1 ∧ x)ν(dx) <∞.

I The probabilistic significance of these subordinators, is that their range
corresponds precisely to the range of the running maximum of ξ and of −ξ
respectively.

I In the case of α-stable processes, up to a multiplicative constant,

κ(λ) = λαρ and κ̂(λ) = λαρ̂, λ ≥ 0.
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CONDITIONED α-STABLE PROCESSES

I Associated to the descending ladder subordinator κ̂ is its potential measure Û,
which satisfies ∫

[0,∞)
e−λxÛ(dx) =

1
κ̂(λ)

, λ ≥ 0.

I It can be shown that for a Lévy process which satisfies lim supt→∞ ξt =∞, for
A ∈ σ(ξu : u ≤ t),

P↑x (A) = lim
s→∞

Px(A|Xt+s > 0) = Ex

[
Û(Xt)

Û(x)
1(Xt>0)1(A)

]
I In the α-stable case Û(x) ∝ xαρ̂

[Note in the excluded case that α = 2 and ρ = 1/2, i.e. Brownian motion,
Û(x) = x.]
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e−λxÛ(dx) =

1
κ̂(λ)

, λ ≥ 0.

I It can be shown that for a Lévy process which satisfies lim supt→∞ ξt =∞, for
A ∈ σ(ξu : u ≤ t),

P↑x (A) = lim
s→∞

Px(A|Xt+s > 0) = Ex

[
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CONDITIONED α-STABLE PROCESSES

I For c, x > 0, t ≥ 0 and appropriately bounded, measurable and non-negative f , we
can write,

E↑x [f ({cXc−αs : s ≤ t})]

= E

f ({cX(x)
c−αs

: s ≤ t})
(X(x)

c−αt
)αρ̂

xαρ̂
1
(X(x)

c−αt
≥0)


= E

[
f ({X(cx)

s : s ≤ t} (X(cx)
t )αρ̂

(cx)αρ̂
1
(X(cx)

t ≥0)

]
= E↑cx[f ({Xs : s ≤ t})].

I This also makes the process (X,P↑x ), x > 0, a self-similar Markov process on
[0,∞).

I Unlike the case of Brownian motion, the conditioned stable process does not have
the law of the radial part of a 3-dimensional stable process (the analogue to the
Brownian case).
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§3. Lamperti Transform
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NOTATION

I Use ξ := {ξt : t ≥ 0} to denote a Lévy process which is killed and sent to the
cemetery state −∞ at an independent and exponentially distributed random
time, eq, with rate in q ∈ [0,∞). The characteristic exponent of ξ is thus written

− log E(eiθξ1 ) = Ψ(θ) = q + Lévy–Khintchine

I Define the associated integrated exponential Lévy process

It =

∫ t

0
eαξs ds, t ≥ 0. (1)

and its limit, I∞ := limt↑∞ It.
I Also interested in the inverse process of I:

ϕ(t) = inf{s > 0 : Is > t}, t ≥ 0. (2)

As usual, we work with the convention inf ∅ =∞.
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LAMPERTI TRANSFORM FOR POSITIVE SSMP

Theorem (Part (i))
Fix α > 0. If Z, is a positive self-similar Markov process issued from x > 0 with index of
self-similarity α, then up to absorption at the origin, it can be represented as follows:

Zt = exp{ξϕ(t)}, 0 ≤ t ≤ ζ := inf{t > 0 : Zt = 0},

where either

(1) ζ =∞ almost surely for all x > 0, in which case ξ is a Lévy process issued
from log x satisfying lim supt↑∞ ξt =∞,

(2) ζ <∞ and Zζ− = 0 almost surely for all x > 0, in which case ξ is a Lévy
process issued from log x satisfying limt↑∞ ξt = −∞, or

(3) ζ <∞ and Zζ− > 0 almost surely for all x > 0, in which case ξ is a Lévy
process issued from log x killed at an independent and exponentially
distributed random time.

In all cases, we may identify ζ = I∞.
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LAMPERTI TRANSFORM FOR POSITIVE SSMP

Theorem (Part (ii))
Conversely, suppose that ξ is a given (killed) Lévy process issued from log x, where x > 0.
Define

Zt = exp{ξϕ(t)}1(t<I∞), t ≥ 0.

Then Z defines a positive self-similar Markov process issued from x > 0, up to its absorption
time ζ = I∞, with index α.



29/ 69

§1. §2. §3. §4. §5. §6. Exercises.

LAMPERTI TRANSFORM FOR POSITIVE SSMP

(Z,Px)x>0 pssMp

Zt = exp(ξS(t)),

S a random time-change

↔
(ξ,Py)y∈R killed Lévy

ξs = log(ZT(s)),

T a random time-change

Z never hits zero
Z hits zero continuously

Z hits zero by a jump

 ↔

 ξ →∞ or ξ oscillates
ξ → −∞
ξ is killed
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§4. Positive self-similar Markov processes
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§1. §2. §3. §4. §5. §6. Exercises.

STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)

I The stable process cannot ‘creep’ downwards across the threshold 0 and so must
do so with a jump.

I This puts Z∗t := Xt1(Xt>0), t ≥ 0, in the class of pssMp for which the underlying
Lévy process experiences exponential killing.

I Write ξ∗ = {ξ∗t : t ≥ 0} for the underlying Lévy process and denote its killing rate
by q∗.

I Let’s try and decode the characteristics of ξ∗.
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)
I We know that the α-stable process experiences downward jumps at rate

Γ(1 + α)

π
sin(παρ̂)

1
|x|1+α dx, x < 0.

I Given that we know the value of Z∗t−, on {Xt > 0}, the stable process will pass
over the origin at rate

Γ(1 + α)

π
sin(παρ̂)

(∫ ∞
Z∗t−

1
|x|1+α dx

)
=

Γ(1 + α)

απ
sin(παρ̂)(Z∗t−)−α.

I On the other hand, the Lamperti transform says that on {t < ζ}, as a pssMp, Z is
sent to the origin at rate

q∗
d
dt
ϕ(t) = q∗e−αξ

∗
ϕ(t) = q∗(Z∗t )−α.

I Comparing gives us

q∗ = Γ(α)sin(παρ̂)/π =
Γ(α)

Γ(αρ̂)Γ(1− αρ̂)
.
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)

I Referring again to the Lamperti transform, we know that, under P1 (so that ξ∗0 = 0
almost surely),

Z∗ζ− = X
τ−0 −

= e
ξ∗eq∗ ,

where eq∗ is an exponentially distributed random variable with rate q∗.

I This motivates the computation

E1[(Z∗ζ−)iθ] = E0[e
iθξ∗eq∗− ] =

q∗

(Ψ∗(z)− q∗) + q∗
, θ ∈ R,

where Ψ∗ is the characteristic exponent of ξ∗.
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)

Remembering the “triple law" distributional law at first passage, we deduce that, for
all v ∈ [0, 1],

P1(X
τ−0 −

∈ dv)

= P̂0(1− X
τ+1 −

∈ dv)

=
sin(αρ̂π)

π

Γ(α+ 1)

Γ(αρ)Γ(αρ̂)

(∫ ∞
0

∫ ∞
0

1(y≤1∧v)
(1− y)αρ̂−1(v− y)αρ−1

(v + u)1+α
dudy

)
dv

=
sin(αρ̂π)

π

Γ(α)

Γ(αρ)Γ(αρ̂)

(∫ 1

0
1(y≤v)v−α(1− y)αρ̂−1(v− y)αρ−1dy

)
dv,

where P̂0 is the law of −X issued from 0.

Note: more generally (which you will need for an exercise later):

P1(−X
τ−0
∈ du, X

τ−0 −
∈ dv)

=
sin(αρ̂π)

π

Γ(α+ 1)

Γ(αρ)Γ(αρ̂)

(∫ ∞
0

1(y≤1∧v)
(1− y)αρ̂−1(v− y)αρ−1

(v + u)1+α
dy
)

dvdu
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)

We are led to the conclusion that

q∗
Ψ∗(θ)

=
sin(αρ̂π)

π

Γ(α+ 1)

Γ(αρ)Γ(αρ̂)

∫ 1

0
(1− y)αρ̂−1

∫ ∞
0

1(y≤v)viθ−αρ̂−1
(

1− y
v

)αρ−1
dvdy

=
sin(αρ̂π)

π

Γ(α+ 1)

Γ(αρ)Γ(αρ̂)

∫ 1

0
(1− y)αρ̂−1yiθ−αρ̂dy

Γ(αρ̂− iθ)Γ(αρ)

Γ(α− iθ)

=
Γ(αρ̂− iθ)Γ(αρ)Γ(1− αρ̂+ iθ)Γ(αρ̂)Γ(α)

Γ(αρ)Γ(αρ̂)Γ(1− αρ̂)Γ(αρ̂)Γ(1 + iθ)Γ(α− iθ)
,

where in the first equality Fubini’s Theorem has been used, in the second equality a
straightforward substitution w = y/v has been used for the inner integral on the
preceding line together with the classical beta integral and, finally, in the third equality,
the Beta integral has been used for a second time. Inserting the respective values for
the constants q∗ and K, we come to rest at the following result:
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STABLE PROCESS KILLED ON ENTRY TO (−∞, 0)

Theorem
For the pssMp constructed by killing a stable process on first entry to (−∞, 0), the underlying
killed Lévy process, ξ∗, that appears through the Lamperti transform has characteristic
exponent given by

Ψ∗(z) =
Γ(α− iz)

Γ(αρ̂− iz)

Γ(1 + iz)

Γ(1− αρ̂+ iz)
, z ∈ R.
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STABLE PROCESSES CONDITIONED TO STAY POSITIVE

I Use the Lamperti representation of the α-stable process X to write, for
A ∈ σ(Xu : u ≤ t),

P↑x (A) = Ex

[
Xαρ̂t
xαρ̂

1(Xt>0)1(A)

]
= E0

[
eαρ̂ξ

∗
τ 1(τ<eq∗ )1(A)

]
,

where τ = ϕ(x−αt) is a stopping time in the natural filtration of ξ∗.

I Noting that Ψ∗(−iαρ̂) = 0, the change of measure constitutes an Esscher
transform at the level of ξ∗.

Theorem
The underlying Lévy process, ξ↑, that appears through the Lamperti transform applied to
(X,P↑x ), x > 0,has characteristic exponent given by

Ψ↑(z) =
Γ(αρ− iz)

Γ(−iz)

Γ(1 + αρ̂+ iz)

Γ(1 + iz)
, z ∈ R.

I In particular Ψ↑(z) = Ψ∗(z− iαρ̂), z ∈ R so that Ψ↑(0) = 0 (i.e. no killing!)

I One can also check by hand that Ψ↑′(0+) = E0[ξ↑1 ] > 0 so that limt→∞ ξ↑t =∞.
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DID YOU SPOT THE OTHER ROOT?
I In essence, the case of the stable process conditioned to stay positive boils down to

an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
I It was important that we identified a root of Ψ∗(z) = 0 in order to avoid involving

a ‘time component’ of the Esscher transform.

I However, there is another root of the equation

Ψ∗(z) =
Γ(α− iz)

Γ(αρ̂− iz)

Γ(1 + iz)

Γ(1− αρ̂+ iz)
= 0,

namely z = −i(1− αρ̂).
I And this means that

e(1−αρ̂)ξ∗ , t ≥ 0,

is a unit-mean Martingale, which can also be used to construct an Esscher
transform:

Ψ↓(z) = Ψ∗(z− i(1− αρ̂)) = Ψ↓(z) =
Γ(1 + αρ− iz)

Γ(1− iz)

Γ(iz + αρ̂)

Γ(iz)
.

I The choice of notation is pre-emptive since we can also check that Ψ↓(0) = 0 and
Ψ↓′(0) < 0 so that if ξ↓ is a Lévy process with characteristic exponent Ψ↓, then
limt→∞ ξ↓t = −∞.
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REVERSE ENGINEERING

I What now happens if we define for A ∈ σ(Xu : u ≤ t),

P↓x (A) = E0

[
e(1−αρ̂)ξ∗τ 1(τ<eq∗ )1(A)

]
= Ex

[
X(1−αρ̂)

t

x(1−αρ̂) 1(Xt>0)1(A)

]
,

where τ = ϕ(x−αt) is a stopping time in the natural filtration of ξ∗.

I In the same way we checked that (X,P↑x ), x > 0, is a pssMp, we can also check
that (X,P↓x ), x > 0 is a pssMp.

I In an appropriate sense, it turns out that (X,P↓x ), x > 0 is the law of a stable
process conditioned to continuously approach the origin from above.
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e(1−αρ̂)ξ∗τ 1(τ<eq∗ )1(A)

]
= Ex

[
X(1−αρ̂)

t

x(1−αρ̂) 1(Xt>0)1(A)

]
,

where τ = ϕ(x−αt) is a stopping time in the natural filtration of ξ∗.

I In the same way we checked that (X,P↑x ), x > 0, is a pssMp, we can also check
that (X,P↓x ), x > 0 is a pssMp.

I In an appropriate sense, it turns out that (X,P↓x ), x > 0 is the law of a stable
process conditioned to continuously approach the origin from above.
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ξ∗, ξ↑ AND ξ↓

I The three examples of pssMp offer quite striking underlying Lévy processes
I Is this exceptional?
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CENSORED STABLE PROCESSES

I Start with X, the stable process.

I Let At =
∫ t

0 1(Xt>0) dt.

I Let γ be the right-inverse of A, and put Žt := Xγ(t).

I Finally, make zero an absorbing state: Zt = Žt1(t<T0) where

T0 = inf{t > 0 : Xt = 0}.

Note T0 <∞ a.s. if and only if α ∈ (1, 2) and otherwise T0 =∞ a.s.
I This is the censored stable process.
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CENSORED STABLE PROCESSES

Theorem
Suppose that the underlying Lévy process for the censored stable process is denoted by

 
ξ . Then

 
ξ is equal in law to ξ∗∗ ⊕ ξC, with
I ξ∗∗ equal in law to ξ∗ with the killing removed,
I ξC a compound Poisson process with jump rate q∗ = Γ(α)sin(παρ̂)/π.

Moreover, the characteristic exponent of
 
ξ is given by

 
Ψ (z) =

Γ(αρ− iz)

Γ(−iz)

Γ(1− αρ+ iz)

Γ(1− α+ iz)
, z ∈ R.
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THE RADIAL PART OF A STABLE PROCESS

I Suppose that X is a symmetric stable process, i.e ρ = 1/2.
I We know that |X| is a pssMp.

Theorem
Suppose that the underlying Lévy process for |X| is written ξ, then it characteristic exponent is
given by

Ψ(z) = 2α
Γ( 1

2 (−iz + α))

Γ(− 1
2 iz)

Γ( 1
2 (iz + 1))

Γ( 1
2 (iz + 1− α))

, z ∈ R.
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HYPERGEOMETRIC LÉVY PROCESSES (REMINDER)

Definition (and Theorem)
For (β, γ, β̂, γ̂) in{

β ≤ 2, γ, γ̂ ∈ (0, 1) β̂ ≥ −1, and 1− β + β̂ + γ ∧ γ̂ ≥ 0
}

there exists a (killed) Lévy process, henceforth refered to as a hypergeometric Lévy
process, having the characteristic function

Ψ(z) =
Γ(1− β + γ − iz)

Γ(1− β − iz)

Γ(β̂ + γ̂ + iz)

Γ(β̂ + iz)
z ∈ R.

The Lévy measure of Y has a density with respect to Lebesgue measure is given by

π(x) =


− Γ(η)

Γ(η − γ̂)Γ(−γ)
e−(1−β+γ)x

2F1
(
1 + γ, η; η − γ̂; e−x) , if x > 0,

− Γ(η)

Γ(η − γ)Γ(−γ̂)
e(β̂+γ̂)x

2F1 (1 + γ̂, η; η − γ; ex) , if x < 0,

where η := 1− β + γ + β̂ + γ̂, for |z| < 1, 2F1(a, b; c; z) :=
∑

k≥0
(a)k(b)k
(c)kk! zk.
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§5. Entrance Laws
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STARTING FROM ZERO

I We have carefully avoided the issue of talking about pssMp issued from the
origin.

I This should ring alarm bells when we look at the Lamperti transform

Z(x)
t 1(t<ζ(x)) = x exp{ξϕ(x−αt)} = exp{ξϕ(x−αt) + log x}, t ≥ 0,

I On the one hand log x ↓ −∞, which is the point of issue of ξ, but

ϕ(x−αt) = inf{s > 0 :

∫ s

0
eα(ξu+log x)du > t},

meaning that we are sampling the Lévy process over a longer and longer time
horizon.

I We know that 0 is an absorbing point, but it might also be an entrance point (can
it be both?).

I We know that some of our new friends have no problem using the origin as an
entrance point, e.g. |X|, where X is an α-stable process (or Brownian motion).

I We know that some of our new friends have no problem using the origin as an
entrance point, but also a point of recurrence, e.g. X − X, where X is an α-stable
process (or Brownian motion).
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STARTING FROM ZERO

I We want to find a way to give a meaning to “P0 := limx↓0 Px”.

I Could look at behaviour of the transition semigroup of Z as its initial value tends
to zero. That is to say, to consider whether the weak limit below is well defined:

P0(Zt ∈ dy) := lim
x↓0

Px(Zt ∈ dy), t, y > 0.

I In that case, for any sequence of times 0 < t1 ≤ t2 ≤ · · · ≤ tn <∞ and
y1, · · · , yn ∈ (0,∞), n ∈ N, the Markov property gives us

P0(Zt1 ∈ dy1, · · · ,Ztn ∈ dyn)

:= lim
x↓0

Px(Zt1 ∈ dy1, · · · ,Ztn ∈ dyn)

= lim
x↓0

Px(Zt1 ∈ dy1)Py1 (Zt2−t1 ∈ dy2, · · · ,Ztn−t2 ∈ dyn)

= P0(Zt1 ∈ dy1)Py1 (Zt2−t1 ∈ dy2, · · · ,Ztn−t2 ∈ dyn).

When the limit exists, it implies the existence of P0 as limit of Px as x ↓ 0, in the
sense of convergence of finite-dimensional distributions.
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STARTING FROM ZERO

I We would like a stronger sense of convergence e.g. we would like

E0[f (Zs : s ≤ t)] := lim
x→0

Ex[f (Zs : s ≤ t)]

for an appropriate measurable function on cadlag paths of length t.

I The right setting to discuss distributional convergence is with respect to so-called
Skorokhod topology.

I ROUGHLY: There is a metric on cadlag path space which does a better job of
measuring how “close" two paths are than e.g. the uniform functional metric.

I This metric induces a topology (the Skorokhod topology). From this topology, we
build a measurable space around the space of cadlag paths.

I Think of Px, x > 0 as a family of measures on this space and we want weak
convergence “P0 := limx→0 Px” on this space.
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STARTING FROM ZERO

Theorem
Suppose that (ξ,Px), x ∈ R is the Lévy process (not a compound Poisson process) underlying
the pssMp (Z,Px), x > 0. The limit P0 := limx→0 Px exists in the sense of convergence with
respect to the Skorokhod topology if and only if E0(H+

1 ) <∞ (H+ is the ascending ladder
process of ξ). Under the assumption that E(ξ1) > 0, for any positive measurable function f and
t > 0,

E0(f (Zt)) =
1

−αÊ0(ξ1)
Ê0

(
1

I∞
f

((
t

I∞

)1/α
))

,

where I∞ =
∫∞

0 eαξt dt and (ξ, P̂0) is equal in law to (−ξ,P0).
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RECURRENT EXTENSION

I The previous construction has insisted that Z is a pssMp with ζ =∞ a.s. But what
about the case that ζ <∞ a.s.

I We can say something about the case that ζ <∞ a.s. and Xζ− = 0.

I A cadlag strong Markov process,
→
Z := {→Z t: t ≥ 0}with probabilities {

→
Px, x ≥ 0},

is a recurrent extension of Z if, for each x > 0, the origin is not an absorbing state
→
P x-almost surely and {→Z

t∧
→
ζ

: t ≥ 0} under
→
P x has the same law as (Z,Px), where

→
ζ = inf{t > 0 :

→
Zt= 0}.

Theorem
If ζ <∞ a.s. and Xζ− = 0, then there exists a unique recurrent extension of Z which leaves 0
continuously if and only if there exists a β ∈ (0, α) such

E0(eβξ1 ) = 1.

Here, as usual, α is the index of self-similarity.



50/ 69

§1. §2. §3. §4. §5. §6. Exercises.

RECURRENT EXTENSION

I The previous construction has insisted that Z is a pssMp with ζ =∞ a.s. But what
about the case that ζ <∞ a.s.

I We can say something about the case that ζ <∞ a.s. and Xζ− = 0.

I A cadlag strong Markov process,
→
Z := {→Z t: t ≥ 0}with probabilities {

→
Px, x ≥ 0},

is a recurrent extension of Z if, for each x > 0, the origin is not an absorbing state
→
P x-almost surely and {→Z

t∧
→
ζ

: t ≥ 0} under
→
P x has the same law as (Z,Px), where

→
ζ = inf{t > 0 :

→
Zt= 0}.

Theorem
If ζ <∞ a.s. and Xζ− = 0, then there exists a unique recurrent extension of Z which leaves 0
continuously if and only if there exists a β ∈ (0, α) such

E0(eβξ1 ) = 1.

Here, as usual, α is the index of self-similarity.



50/ 69

§1. §2. §3. §4. §5. §6. Exercises.

RECURRENT EXTENSION

I The previous construction has insisted that Z is a pssMp with ζ =∞ a.s. But what
about the case that ζ <∞ a.s.

I We can say something about the case that ζ <∞ a.s. and Xζ− = 0.

I A cadlag strong Markov process,
→
Z := {→Z t: t ≥ 0}with probabilities {

→
Px, x ≥ 0},

is a recurrent extension of Z if, for each x > 0, the origin is not an absorbing state
→
P x-almost surely and {→Z

t∧
→
ζ

: t ≥ 0} under
→
P x has the same law as (Z,Px), where

→
ζ = inf{t > 0 :

→
Zt= 0}.

Theorem
If ζ <∞ a.s. and Xζ− = 0, then there exists a unique recurrent extension of Z which leaves 0
continuously if and only if there exists a β ∈ (0, α) such

E0(eβξ1 ) = 1.

Here, as usual, α is the index of self-similarity.



50/ 69

§1. §2. §3. §4. §5. §6. Exercises.

RECURRENT EXTENSION

I The previous construction has insisted that Z is a pssMp with ζ =∞ a.s. But what
about the case that ζ <∞ a.s.

I We can say something about the case that ζ <∞ a.s. and Xζ− = 0.

I A cadlag strong Markov process,
→
Z := {→Z t: t ≥ 0}with probabilities {

→
Px, x ≥ 0},

is a recurrent extension of Z if, for each x > 0, the origin is not an absorbing state
→
P x-almost surely and {→Z

t∧
→
ζ

: t ≥ 0} under
→
P x has the same law as (Z,Px), where

→
ζ = inf{t > 0 :

→
Zt= 0}.

Theorem
If ζ <∞ a.s. and Xζ− = 0, then there exists a unique recurrent extension of Z which leaves 0
continuously if and only if there exists a β ∈ (0, α) such

E0(eβξ1 ) = 1.

Here, as usual, α is the index of self-similarity.



51/ 69

§1. §2. §3. §4. §5. §6. Exercises.

§6. Real valued self-similar Markov processes
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I So far we only spoke about [0,∞).

I This necessitated an incursion into the theory of Lévy processes

I What can we say about R-valued self-similar Markov processes.

I This requires an incursion into the theory of Markov Additive (Lévy) Processes
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MARKOV ADDITIVE PROCESSES (MAPS)

I E is a finite state space

I (J(t))t≥0 is a continuous-time, irreducible Markov chain on E

I process (ξ, J) in R× E is called a Markov additive process (MAP) with probabilities
Px,i, x ∈ R, i ∈ E, if, for any i ∈ E, s, t ≥ 0: Given {J(t) = i},
(ξ(t + s)− ξ(t), J(t + s)) d

= (ξ(s), J(s)) with law P0,i.
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PATHWISE DESCRIPTION OF A MAP

The pair (ξ, J) is a Markov additive process if and only if, for each i, j ∈ E,
I there exist a sequence of iid Lévy processes (ξn

i )n≥0

I and a sequence of iid random variables (Un
ij)n≥0, independent of the chain J,

I such that if T0 = 0 and (Tn)n≥1 are the jump times of J, the process ξ has the
representation

ξ(t) = 1(n>0)(ξ(Tn−) + Un
J(Tn−),J(Tn)) + ξn

J(Tn)(t− Tn),

for t ∈ [Tn,Tn+1), n ≥ 0.
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CHARACTERISTICS OF A MAP

I Denote the transition rate matrix of the chain J by Q = (qij)i,j∈E.
I For each i ∈ E, the Laplace exponent of the Lévy process ξi will be written ψi

(when it exists).

I For each pair of i, j ∈ E with i 6= j, define the Laplace transform Gij(z) = E(ezUij ) of
the jump distribution Uij (when it exists).

I Otherwise define Ui,i ≡ 0, for each i ∈ E.
I Write G(z) for the N × N matrix whose (i, j)th element is Gij(z).
I Let

Ψ(z) = diag(ψ1(z), . . . , ψN(z)) + Q ◦ G(z),

(when it exists), where ◦ indicates elementwise multiplication.
I The matrix exponent of the MAP (ξ, J) is given by

E0,i(ezξ(t); J(t) = j) =
(
eΨ(z)t)

i,j, i, j ∈ E,

(when it exists).
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DUAL MAP
I Thanks to irreducibility, the Markov chain J necessarily has a stationary

distribution. We denote it by the vector π = (π1, · · · , πN).

I Each MAP has a dual process, also a MAP, with probabilities P̂x,i, x ∈ R, i ∈ E,
determined by the dual characteristic matrix exponent (when it exists),

Ψ̂(z) := diag
(
−Ψ1(−z), · · · ,−ΨN(−z)

)
+ Q̂ ◦ G(−z)T,

where Q̂ is the time-reversed Markov chain J,

q̂i,j =
πj

πi
qj,i, i, j ∈ E.

Note that the latter can also be written Q̂ = ∆−1
π QT∆π , where ∆π = diag(π).

I When it exists,
Ψ̂(z) = ∆−1

π Ψ(−z)T∆π ,

showing that

πiÊ0,i

[
eizξt , Jt = j

]
= πjE0,j

[
e−izξt , Jt = i

]
.

Lemma
The time-reversed process (

(
ξ(t−s)− − ξt, J(t−s)−

)
, s ≤ t) under P0,π is equal in law to

((ξs, Js), s ≤ t) under P̂0,π .
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LAMPERTI-KIU TRANSFORM

I Take J to be irreducible on E = {1,−1}.
I For each x ∈ R, let ξ0 = log |x| and J0 = sign(x).

I Let
Zt = eξτ(t) Jτ(t) 0 ≤ t < T0,

where

τ(t) = inf

{
s > 0 :

∫ s

0
exp(αξ(u))du > t

}
and

T0 =

∫ ∞
0

eαξ(u)du.

I Then Zt is a real-valued self-similar Markov process issued from x ∈ R, in the
sense that the law of (cZtc−α : t ≥ 0) under Px is Pcx.

I The converse (within a special class of rssMps) is also true.
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LAMPERTI-KIU TRANSFORM

I Take J to be irreducible on E = {1,−1}.
I For each x ∈ R, let ξ0 = log |x| and J0 = sign(x).
I Let
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ENTRANCE AT ZERO

I Given the Lamperti-Kiu representation

Zt = eξ(τ(|x|−αt))+log |x|J(τ(|x|−αt)) 0 ≤ t < T0,

it is clear that we can think of a similar construction from zero to the case of
pssMp.

I We need to construct a stationary version of the pair (ξ, J) which is indexed by R
and pinned at space-time point (−∞,∞).

I Just like the theory of Lévy processes, by observing the range of the process (ξt, Jt)

t ≥ 0, only at the points of its new suprema, we see a process (H+
t , J

+
t ), t ≥ 0,

which is also a MAP, where H+ is has increasing paths.



58/ 69

§1. §2. §3. §4. §5. §6. Exercises.

ENTRANCE AT ZERO

I Given the Lamperti-Kiu representation

Zt = eξ(τ(|x|−αt))+log |x|J(τ(|x|−αt)) 0 ≤ t < T0,

it is clear that we can think of a similar construction from zero to the case of
pssMp.

I We need to construct a stationary version of the pair (ξ, J) which is indexed by R
and pinned at space-time point (−∞,∞).

I Just like the theory of Lévy processes, by observing the range of the process (ξt, Jt)

t ≥ 0, only at the points of its new suprema, we see a process (H+
t , J

+
t ), t ≥ 0,

which is also a MAP, where H+ is has increasing paths.



58/ 69

§1. §2. §3. §4. §5. §6. Exercises.

ENTRANCE AT ZERO

I Given the Lamperti-Kiu representation

Zt = eξ(τ(|x|−αt))+log |x|J(τ(|x|−αt)) 0 ≤ t < T0,

it is clear that we can think of a similar construction from zero to the case of
pssMp.

I We need to construct a stationary version of the pair (ξ, J) which is indexed by R
and pinned at space-time point (−∞,∞).

I Just like the theory of Lévy processes, by observing the range of the process (ξt, Jt)

t ≥ 0, only at the points of its new suprema, we see a process (H+
t , J

+
t ), t ≥ 0,

which is also a MAP, where H+ is has increasing paths.



59/ 69

§1. §2. §3. §4. §5. §6. Exercises.

ENTRANCE AT ZERO

Theorem
Assume that Z is a conservative real self-similar Markov process. Moreover, suppose that the
MAP ((ξ,Θ),P), associated with Z through the Lamperti-Kiu transform, is such that ξ is not
concentrated on a lattice and its ascending ladder height process H which satisfies
E0,π(H1) <∞. Then P0 := limx↓0 Px exists, in the sense of convergence of on the Skorokhod
space, under which Z leaves the origin continuously. Conversely, if E0,π(H1) =∞, then this
limit does not exist. Under the additional assumption that E0,π(ξ1) > 0, for any positive
measurable function f and t > 0,

E0(f (Zt)) =
1

−αÊ0,π(ξ1)

∑
i=±1

πiÊ0,i

(
1

I∞
f

(
i
(

t
I∞

)1/α
))

, (3)

where I∞ =
∫∞

0 exp{αξs}ds, and Êx,i, x ∈ R, i = ±1.
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AN α-STABLE PROCESS IS A RSSMP

I An α-stable process up to absorption in the origin is a rssMp.
I When α ∈ (0, 1], the process never hits the origin a.s.

I When α ∈ (1, 2), the process is absorbs at the origin a.s.
I The matrix exponent of the underlying MAP is given by:

− Γ(α− z)Γ(1 + z)

Γ(αρ̂− z)Γ(1− αρ̂+ z)

Γ(α− z)Γ(1 + z)

Γ(αρ̂)Γ(1− αρ̂)

Γ(α− z)Γ(1 + z)

Γ(αρ)Γ(1− αρ)
− Γ(α− z)Γ(1 + z)

Γ(αρ− z)Γ(1− αρ+ z)

 ,
for Re(z) ∈ (−1, α). Note a matrix A in this context is arranged with the ordering(

A1,1 A1,−1
A−1,1 A−1,−1

)
.
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ESSCHER TRANSFORM FOR MAPS

I If Ψ(z) is well defined then it has a real simple eigenvalue χ(z), which is larger
than the real part of all its other eigenvalues.

I Furthermore, the corresponding right-eigenvector v(z) = (v1(z), · · · , vN(z)) has
strictly positive entries and may be normalised such that π · v(z) = 1.

Theorem
Let Gt = σ{(ξ(s), J(s)) : s ≤ t}, t ≥ 0, and

Mt := eγξ(t)−χ(γ)t vJ(t)(γ)

vi(γ)
, t ≥ 0,

for some γ ∈ R such that χ(γ) is defined. Then, Mt, t ≥ 0, is a unit-mean martingale.
Moreover, under the change of measure

dPγ0,i
∣∣∣
Gt

= Mt dP0,i
∣∣
Gt
, t ≥ 0,

the process (ξ, J) remains in the class of MAPs with new exponent given by

Ψγ(z) = ∆v(γ)−1Ψ(z + γ)∆v(γ)− χ(γ)I.

Here, I is the identity matrix and ∆v(γ) = diag(v(γ)).
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ESSCHER AND DRIFT

I Suppose that χ is defined in some open interval D of R, then, it is smooth and
convex on D.

I Since Ψ(0) = −Q, if, moreover, J is irreducible, we always have χ(0) = 0 and
v(0) = (1, · · · , 1). So 0 ∈ D and χ′(0) is well defined and finite.

I With all of the above

lim
t→∞

ξt

t
= χ′(0) a.s.
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ESSCHER AND THE STABLE-MAP

I For the MAP that underlies the stable process D = (−1, α), it can be checked that
detΨ(α− 1) = 0 i.e. χ(α− 1) = 0, which makes

Ψ◦(z) = ∆−1Ψ(z + α− 1)∆

=


− Γ(1− z)Γ(α+ z)

Γ(1− αρ− z)Γ(αρ+ z)

Γ(1− z)Γ(α+ z)

Γ(αρ)Γ(1− αρ)

Γ(1− z)Γ(α+ z)

Γ(αρ̂)Γ(1− αρ̂)
− Γ(1− z)Γ(α+ z)

Γ(1− αρ̂− z)Γ(αρ̂+ z)

 ,

where ∆ = diag(sin(παρ̂), sin(παρ)).

I When α ∈ (0, 1), χ′(0) > 0 (because the stable process never touches the origin
a.s.) and Ψ◦(z)-MAP drifts to −∞

I When α ∈ (1, 2), χ′(0) < 0 (because the stable process touches the origin a.s.) and
Ψ◦(z)-MAP drifts to +∞.
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RIESZ-BOGDAN-ZAK TRANSFORM

Theorem (Riesz–Bogdan–Zak transform)
Suppose that X is an α-stable process as outlined in the introduction. Define

η(t) = inf{s > 0 :

∫ s

0
|Xu|−2αdu > t}, t ≥ 0.

Then, for all x ∈ R\{0}, (−1/Xη(t))t≥0 under Px is equal in law to (X,P◦−1/x), where

dP◦x
dPx

∣∣∣∣
Ft

=

(
sin(παρ) + sin(παρ̂)− (sin(παρ)− sin(παρ̂))sgn(Xt)

sin(παρ) + sin(παρ̂)− (sin(παρ)− sin(παρ̂))sgn(x)

) ∣∣∣∣Xt

x

∣∣∣∣α−1
1(t<τ{0})

and Ft := σ(Xs : s ≤ t), t ≥ 0. Moreover, the process (X,P◦x ), x ∈ R\{0} is a self-similar
Markov process with underlying MAP via the Lamperti-Kiu transform given by Ψ◦(z).



65/ 69

§1. §2. §3. §4. §5. §6. Exercises.

WHAT IS THE Ψ◦-MAP?

Thinking of the affect on the long term behaviour of the underlying MAP of the
Esscher transform
I When α ∈ (0, 1), (X,P◦x ), x 6= 0 has the law of the the stable process conditioned

to absorb continuously at the origin in the sense,

P◦y (A) = lim
a→0

Py(A, t < T0 | τ(−a,a) <∞),

for A ∈ Ft = σ(Xs, s ≤ t),
τ(−a,a) = inf{t > 0 : |Xt| < a} and T0 = inf{t > 0 : Xt = 0}.

I When α ∈ (1, 2), (X,P◦x ), x 6= 0 has the law of the stable process conditioned to
avoid the origin in the sense

P◦y (A) = lim
s→∞

Py(A |T0 > t + s),

for A ∈ Ft = σ(Xs, s ≤ t) and T0 = inf{t > 0 : Xt = 0}.
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§Exercise Set 1
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EXERCISES

1. Suppose that X is a stable process in any dimension (including the case of a
Brownian motion). Show that |X| is a positive self-similar Markov process.

2. Suppose that B is a one-dimensional Brownian motion. Prove that

Bt

x
1(Bt>0), t ≥ 0,

is a martingale, where Bt = infs≤t Bs.

3. Suppose that X is a stable process with two-sided jumps
I Show that the range of the ascending ladder process H, say range(H) has the property

that it is equal in law to c× range(H).
I Hence show that, up to a multiplicative constant, the Laplace exponent of H satisfies

k(λ) = λα1 for α1 ∈ (0, 1) (and hence the ascending ladder height process is a stable
subordinator).

I Use the fact that, up to a multiplicative constant

Ψ(z) = |θ|α(eπiα( 1
2−ρ)1(θ>0) + e−πiα( 1

2−ρ)1(θ<0)) = κ̂(iz)κ(−iz)

to deduce that
κ(θ) = θ

αρ and κ̂(θ) = θ
αρ̂
.

and that 0 < αρ, αρ̂ < 1
I What kind of process corresponds to the case that αρ = 1?
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EXERCISES

4. Suppose that (X,Px), x > 0 is a positive self-similar Markov process and let
ζ = inf{t > 0 : Xt = 0} be the lifetime of X. Show that Px(ζ <∞) does not
depend on x and is either 0 for all x > 0 or 1 for all x > 0.

5. Suppose that X is a symmetric stable process in dimension one (in particular
ρ = 1/2) and that the underlying Lévy process for |Xt|1(t<τ{0}), where

τ{0} = inf{t > 0 : Xt = 0}, is written ξ. (Note the indicator is only needed when
α ∈ (1, 2) as otherwise X does not hit the origin.) Show that (up to a
multiplicative constant) its characteristic exponent is given by

Ψ(z) = 2α
Γ( 1

2 (−iz + α))

Γ(− 1
2 iz)

Γ( 1
2 (iz + 1))

Γ( 1
2 (iz + 1− α))

, z ∈ R.

[Hint!] Think about what happens after X first crosses the origin and apply the
Markov property as well as symmetry. You will need to use the law of the
overshoot of X below the origin given a few slides back.
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EXERCISES

6. Use the previous exercise to deduce that the MAP exponent underlying a stable
process with two sided jumps is given by

− Γ(α− z)Γ(1 + z)

Γ(αρ̂− z)Γ(1− αρ̂+ z)

Γ(α− z)Γ(1 + z)

Γ(αρ̂)Γ(1− αρ̂)

Γ(α− z)Γ(1 + z)

Γ(αρ)Γ(1− αρ)
− Γ(α− z)Γ(1 + z)

Γ(αρ− z)Γ(1− αρ+ z)

 ,
for Re(z) ∈ (−1, α).
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