Self-similar Markov processes Part I: One dimension

Andreas Kyprianou
University of Warwick

Based on the contents of this book:

Related material if you don't want to read the book:

$$
\begin{aligned}
& \text { https://arxiv.org/abs/1707.04343 } \\
& \text { https://arxiv.org/abs/1511.06356 } \\
& \text { https://arxiv.org/abs/1706.09924 }
\end{aligned}
$$

Contents

PART I: ONE DIMENSION

- §1. Quick review of Lévy processes
- §2. Self-similar Markov processes
- §3. Lamperti Transform
- §4. Positive self-similar Markov processes
- §5. Entrance Laws
- §6. Real valued self-similar Markov processes

PART II: HIGHER DIMENSIONS

- §7. Isotropic stable processes in dimension $d \geq 2$ seen as Lévy processes
- §8. Isotropic stable processes in dimension $d \geq 2$ seen as a self-similar Markov process
- §9. Riesz-Bogdan-Żak transform
- §10. Hitting spheres
- §11. Spherical hitting distribution
- §12. Spherical entrance/exit distribution
§1. Quick review of Lévy processes

(Killed) Lévy process

- $\left(\xi_{t}, t \geq 0\right)$ is a (killed) Lévy process if it has stationary and independents with RCLL paths (and is sent to a cemetery state after and independent and exponentially distributed time).

(Killed) Lévy process

- $\left(\xi_{t}, t \geq 0\right)$ is a (killed) Lévy process if it has stationary and independents with RCLL paths (and is sent to a cemetery state after and independent and exponentially distributed time).
- Process is entirely characterised by its one-dimensional transitions, which are coded by the Lévy-Khinchine formula

$$
\mathrm{E}\left[\mathrm{e}^{\mathrm{i} \theta \cdot \xi_{t}}\right]=\mathrm{e}^{-\Psi(\theta) t}, \quad \theta \in \mathbb{R}^{d}
$$

where,

$$
\Psi(\theta)=q+\mathrm{ia} \cdot \theta+\frac{1}{2} \theta \cdot \mathbf{A} \theta+\int_{\mathbb{R}^{d}}\left(1-\mathrm{e}^{\mathrm{i} \theta \cdot x}+\mathrm{i}(\theta \cdot x) \mathbf{1}_{(|x|<1)}\right) \Pi(\mathrm{d} x)
$$

where $\mathrm{a} \in \mathbb{R}, \mathbf{A}$ is a $d \times d$ Gaussian covariance matrix and Π is a measure satisfying $\int_{\mathbb{R}^{d}}\left(1 \wedge|x|^{2}\right) \Pi(\mathrm{d} x)<\infty$. Think of Π as the intensity of jumps in the sense of
$\mathbf{P}(X$ has jump at time t of size $\mathrm{d} x)=\Pi(\mathrm{d} x) \mathrm{d} t+o(\mathrm{~d} t)$.

(Killed) Lévy process

- $\left(\xi_{t}, t \geq 0\right)$ is a (killed) Lévy process if it has stationary and independents with RCLL paths (and is sent to a cemetery state after and independent and exponentially distributed time).
- Process is entirely characterised by its one-dimensional transitions, which are coded by the Lévy-Khinchine formula

$$
\mathrm{E}\left[\mathrm{e}^{\mathrm{i} \theta \cdot \xi_{t}}\right]=\mathrm{e}^{-\Psi(\theta) t}, \quad \theta \in \mathbb{R}^{d}
$$

where,

$$
\Psi(\theta)=q+\mathrm{ia} \cdot \theta+\frac{1}{2} \theta \cdot \mathbf{A} \theta+\int_{\mathbb{R}^{d}}\left(1-\mathrm{e}^{\mathrm{i} \theta \cdot x}+\mathrm{i}(\theta \cdot x) \mathbf{1}_{(|x|<1)}\right) \Pi(\mathrm{d} x)
$$

where $\mathrm{a} \in \mathbb{R}, \mathbf{A}$ is a $d \times d$ Gaussian covariance matrix and Π is a measure satisfying $\int_{\mathbb{R}^{d}}\left(1 \wedge|x|^{2}\right) \Pi(\mathrm{d} x)<\infty$. Think of Π as the intensity of jumps in the sense of

$$
\mathbf{P}(X \text { has jump at time } t \text { of size } \mathrm{d} x)=\Pi(\mathrm{d} x) \mathrm{d} t+o(\mathrm{~d} t) .
$$

- In one dimension the path of a Lévy process can be monotone, in which case it is called a subordinator and we work with the Laplace exponent

$$
\mathbf{E}\left[\mathrm{e}^{-\lambda \xi_{t}}\right]=\mathrm{e}^{-\Phi(\lambda) t}, \quad t \geq 0
$$

where

$$
\Phi(\lambda)=q+\delta \lambda+\int_{(0, \infty)}\left(1-\mathrm{e}^{-\lambda x}\right) \Upsilon(\mathrm{d} x), \quad \lambda \geq 0
$$

Stolen pictures from the internet ${ }^{1}$

[^0]
Lévy process: One dimension

Two examples in one dimension:

- Stable subordinator $\left(\xi_{t}, t \geq 0\right)$ is a subordinator which satisfies the additional scaling property: For $c>0$
under \mathbb{P}, the law of $\left(c \xi_{c}-\alpha_{t}, t \geq 0\right)$ is equal to \mathbb{P},
where $\alpha \in(0,1)$. We have

$$
\Phi(\lambda)=\lambda^{\alpha}, \quad \lambda \geq 0, \quad \text { and } \quad \Pi(\mathrm{d} x)=\frac{\alpha}{\Gamma(1-\alpha)} \frac{1}{x^{1+\alpha}} \mathrm{d} x, \quad x>0 .
$$

LÉVY PROCESS: ONE DIMENSION

Two examples in one dimension:

- Stable subordinator $\left(\xi_{t}, t \geq 0\right)$ is a subordinator which satisfies the additional scaling property: For $c>0$
under \mathbb{P}, the law of $\left(c \xi_{c}-\alpha_{t}, t \geq 0\right)$ is equal to \mathbb{P},
where $\alpha \in(0,1)$. We have

$$
\Phi(\lambda)=\lambda^{\alpha}, \quad \lambda \geq 0, \quad \text { and } \quad \Pi(\mathrm{d} x)=\frac{\alpha}{\Gamma(1-\alpha)} \frac{1}{x^{1+\alpha}} \mathrm{d} x, \quad x>0 .
$$

- Hypgergeometric Lévy process: For $\beta \leq 1, \gamma \in(0,1), \hat{\beta} \geq 0, \hat{\gamma} \in(0,1)$

$$
\Psi(\theta)=\frac{\Gamma(1-\beta+\gamma-\mathrm{i} \theta)}{\Gamma(1-\beta-\mathrm{i} \theta)} \frac{\Gamma(\hat{\beta}+\hat{\gamma}+\mathrm{i} \theta)}{\Gamma(\hat{\beta}+\mathrm{i} \theta)} \quad \theta \in \mathbb{R}
$$

The Lévy measure has a density with respect to Lebesgue measure which is given by

$$
\pi(x)= \begin{cases}-\frac{\Gamma(\eta)}{\Gamma(\eta-\hat{\gamma}) \Gamma(-\gamma)} \mathrm{e}^{-(1-\beta+\gamma) x}{ }_{2} F_{1}\left(1+\gamma, \eta ; \eta-\hat{\gamma} ; \mathrm{e}^{-x}\right), & \text { if } x>0 \\ -\frac{\Gamma(\eta)}{\Gamma(\eta-\gamma) \Gamma(-\hat{\gamma})} \mathrm{e}^{(\hat{\beta}+\hat{\gamma}) x}{ }_{2} F_{1}\left(1+\hat{\gamma}, \eta ; \eta-\gamma ; \mathrm{e}^{x}\right), & \text { if } x<0\end{cases}
$$

where $\eta:=1-\beta+\gamma+\hat{\beta}+\hat{\gamma}$.

Lévy process: One dimension

- If ξ has a characteristic exponent Ψ then necessarily

$$
\Psi(\theta)=\kappa(-\mathrm{i} \theta) \hat{\kappa}(\mathrm{i} \theta), \quad \theta \in \mathbb{R}
$$

where κ and $\hat{\kappa}$ are Bernstein functions, e.g.

$$
\kappa(\lambda)=q+\delta \lambda+\int_{(0, \infty)}\left(1-\mathrm{e}^{-\lambda x}\right) \Upsilon(\mathrm{d} x), \quad \lambda \geq 0
$$

LÉvY PROCESS: ONE DIMENSION

- If ξ has a characteristic exponent Ψ then necessarily

$$
\Psi(\theta)=\kappa(-\mathrm{i} \theta) \hat{\kappa}(\mathrm{i} \theta), \quad \theta \in \mathbb{R}
$$

where κ and $\hat{\kappa}$ are Bernstein functions, e.g.

$$
\kappa(\lambda)=q+\delta \lambda+\int_{(0, \infty)}\left(1-\mathrm{e}^{-\lambda x}\right) \Upsilon(\mathrm{d} x), \quad \lambda \geq 0
$$

- The factorisation has a physical interpretation:
- range of the κ-subordinator agrees with the range of $\sup _{s \leq t} \xi_{s, t} \geq 0$
- range $\hat{\kappa}$-subordinator agrees with the range of $-\inf _{s \leq t} \xi_{s}, t \geq 0$.

LÉvY PROCESS: ONE DIMENSION

- If ξ has a characteristic exponent Ψ then necessarily

$$
\Psi(\theta)=\kappa(-\mathrm{i} \theta) \hat{\kappa}(\mathrm{i} \theta), \quad \theta \in \mathbb{R}
$$

where κ and $\hat{\kappa}$ are Bernstein functions, e.g.

$$
\kappa(\lambda)=q+\delta \lambda+\int_{(0, \infty)}\left(1-\mathrm{e}^{-\lambda x}\right) \Upsilon(\mathrm{d} x), \quad \lambda \geq 0
$$

- The factorisation has a physical interpretation:
range of the κ-subordinator agrees with the range of $\sup _{s \leq t} \xi_{s, t} \geq 0$
- range $\hat{\kappa}$-subordinator agrees with the range of $-\inf _{s \leq t} \xi_{s}, t \geq 0$.
- Note if $\delta>0$, then $\mathbf{P}\left(\xi_{\tau_{x}^{+}}=x\right)>0$, where $\tau_{x}^{+}=\inf \left\{t>0: \xi_{t}>x\right\}, x>0$.

Lévy process: One dimension

- If ξ has a characteristic exponent Ψ then necessarily

$$
\Psi(\theta)=\kappa(-\mathrm{i} \theta) \hat{\kappa}(\mathrm{i} \theta), \quad \theta \in \mathbb{R}
$$

where κ and $\hat{\kappa}$ are Bernstein functions, e.g.

$$
\kappa(\lambda)=q+\delta \lambda+\int_{(0, \infty)}\left(1-\mathrm{e}^{-\lambda x}\right) \Upsilon(\mathrm{d} x), \quad \lambda \geq 0
$$

- The factorisation has a physical interpretation:
range of the κ-subordinator agrees with the range of $\sup _{s \leq t} \xi_{s, t} \geq 0$
$>$ range $\hat{\kappa}$-subordinator agrees with the range of $-\inf _{s \leq t} \xi_{s}, t \geq 0$.
$>$ Note if $\delta>0$, then $\mathbf{P}\left(\xi_{\tau_{x}^{+}}=x\right)>0$, where $\tau_{x}^{+}=\inf \left\{t>0: \xi_{t}>x\right\}, x>0$.
- We have already seen the hypergeometric example

$$
\Psi(\theta)=\frac{\Gamma(1-\beta+\gamma-\mathrm{i} \theta)}{\Gamma(1-\beta-\mathrm{i} \theta)} \quad \times \quad \frac{\Gamma(\hat{\beta}+\hat{\gamma}+\mathrm{i} \theta)}{\Gamma(\hat{\beta}+\mathrm{i} \theta)} \quad \theta \in \mathbb{R}
$$

First entry TO (x, ∞)

- Recall Wiener-Hopf factorisation $\Psi(\theta)=\kappa(-\mathrm{i} \theta) \hat{\kappa}(\mathrm{i} \theta), \quad \theta \in \mathbb{R}$., where κ and $\hat{\kappa}$ are Laplace exponents of subordinators.
- Associated to κ and $\hat{\kappa}$ are their potentials

$$
\int_{[0, \infty)} \mathrm{e}^{-\beta x} U(\mathrm{~d} x)=\frac{1}{\kappa(\beta)} \quad \text { and } \quad \int_{[0, \infty)} \mathrm{e}^{-\beta x} \hat{U}(\mathrm{~d} x)=\frac{1}{\hat{\kappa}(\beta)}, \quad \beta \geq 0
$$

Theorem (Triple law at first entry to (x, ∞))
Recall $\tau_{x}^{+}=\inf \left\{t>0: \xi_{t}>x\right\}$. For $u>0, v \geq y, y \in[0, x]$,

$$
\mathbb{P}\left(\xi_{\tau_{x}^{+}}-x \in \mathrm{~d} u, x-\xi_{\tau_{x}^{+}} \in \mathrm{d} v, x-\bar{\xi}_{\tau_{x}^{+}} \in \mathrm{d} y\right)=U(x-\mathrm{d} y) \hat{U}(\mathrm{~d} v-y) \Pi(\mathrm{d} u+v)
$$

Hitting Points

\Rightarrow We say that ξ can hit a point $x \in \mathbb{R}$ if

$$
\mathbf{P}\left(\xi_{t}=x \text { for at least one } t>0\right)>0
$$

Hitting Points

\rightarrow We say that ξ can hit a point $x \in \mathbb{R}$ if

$$
\mathbf{P}\left(\xi_{t}=x \text { for at least one } t>0\right)>0
$$

- Creeping is one way to hit a point, but not the only way

Hitting POINTS

- We say that ξ can hit a point $x \in \mathbb{R}$ if

$$
\mathbf{P}\left(\xi_{t}=x \text { for at least one } t>0\right)>0
$$

- Creeping is one way to hit a point, but not the only way

Theorem (Kesten (1969) /Bretagnolle (1971))

Suppose that ξ is not a compound Poisson process. Then ξ can hit points if and only if

$$
\int_{\mathbb{R}} \operatorname{Re}\left(\frac{1}{1+\Psi(z)}\right) \mathrm{d} z<\infty
$$

If the Kesten-Bretagnolle integral test is satisfied, then

$$
\mathbb{P}\left(\tau^{\{x\}}<\infty\right)=\frac{u(x)}{u(0)}
$$

where $\tau^{\{x\}}=\inf \left\{t>0: \xi_{t}=x\right\}$, providing we can compute the inversion

$$
u(x)=\int_{c+\mathrm{i} \mathbb{R}} \frac{\mathrm{e}^{-z x}}{\Psi(-\mathrm{i} z)} \mathrm{d} z
$$

for some $c \in \mathbb{R}$.

§2. Self-similar Markov processes

Self-Similar Markov processes (SSMp)

Definition

A regular strong Markov process $\left(Z_{t}: t \geq 0\right)$ on \mathbb{R}^{d}, with probabilities $\mathbb{P}_{x}, x \in \mathbb{R}^{d}$, is a rssMp if there exists an index $\alpha \in(0, \infty)$ such that for all $c>0$ and $x \in \mathbb{R}^{d}$,

$$
\left(c Z_{t c}-\alpha: t \geq 0\right) \text { under } \mathbb{P}_{x} \text { is equal in law to }\left(Z_{t}: t \geq 0\right) \text { under } \mathbb{P}_{c x} .
$$

Some of your best friends are ssmp

- Write $\mathcal{N}_{d}(\mathbf{0}, \boldsymbol{\Sigma})$ for the Normal distribution with mean $\mathbf{0} \in \mathbb{R}^{d}$ and correlation (matrix) $\boldsymbol{\Sigma}$. The moment generating function of $X_{t} \sim \mathcal{N}_{d}(\mathbf{0}, \boldsymbol{\Sigma} t)$ satisfies, for $\theta \in \mathbb{R}^{d}$,

$$
\mathbf{E}\left[\mathrm{e}^{\theta \cdot X_{t}}\right]=\mathrm{e}^{t \theta^{\mathrm{T}} \boldsymbol{\Sigma} \theta / 2}=\mathrm{e}^{\left(c^{-2} t\right)(c \theta)^{\mathrm{T}} \boldsymbol{\Sigma}(c \theta) / 2}=E\left[\mathrm{e}^{\theta \cdot c X_{c}-2_{t}}\right] .
$$

SOME OF YOUR BEST FRIENDS ARE SSMP

- Write $\mathcal{N}_{d}(\mathbf{0}, \boldsymbol{\Sigma})$ for the Normal distribution with mean $\mathbf{0} \in \mathbb{R}^{d}$ and correlation (matrix) $\boldsymbol{\Sigma}$. The moment generating function of $X_{t} \sim \mathcal{N}_{d}(\mathbf{0}, \boldsymbol{\Sigma} t)$ satisfies, for $\theta \in \mathbb{R}^{d}$,

$$
\mathbf{E}\left[\mathrm{e}^{\theta \cdot X_{t}}\right]=\mathrm{e}^{t \theta^{\mathrm{T}} \boldsymbol{\Sigma} \theta / 2}=\mathrm{e}^{\left(c^{-2} t\right)(c \theta)^{\mathrm{T}} \boldsymbol{\Sigma}(c \theta) / 2}=E\left[\mathrm{e}^{\left.\theta \cdot c X_{c}^{-2_{t}}\right]} .\right.
$$

- Thinking about the stationary and independent increments of Brownian motion, this can be used to show that \mathbb{R}^{d}-Brownian motion: is a ssMp with $\alpha=2$.

Some of your best friends are ssmp

Suppose that $\left(X_{t}: t \geq 0\right)$ is an \mathbb{R}-Brownian motion:
$>$ Write $\underline{X}_{t}:=\inf _{s \leq t} X_{s}$. Then $\left(X_{t}, \underline{X}_{t}\right), t \geq 0$ is a Markov process.

Some of your best friends are ssmp

Suppose that $\left(X_{t}: t \geq 0\right)$ is an \mathbb{R}-Brownian motion:
$>$ Write $\underline{X}_{t}:=\inf _{s \leq t} X_{s}$. Then $\left(X_{t}, \underline{X}_{t}\right), t \geq 0$ is a Markov process.

- For $c>0$ and $\alpha=2$,

$$
\binom{c \underline{X}_{c-\alpha_{t}}}{c X_{c-\alpha_{t}}}=\binom{c \inf _{s \leq c-\alpha_{t}} X_{s}}{c X_{c-\alpha_{t}}}=\binom{\inf _{u \leq t} c X_{c-\alpha_{u}}}{c X_{c-\alpha_{t}}}, \quad t \geq 0
$$

and the latter is equal in law to (X, \underline{X}), because of the scaling property of X.

Some of your best friends are ssmp

Suppose that $\left(X_{t}: t \geq 0\right)$ is an \mathbb{R}-Brownian motion:
\triangleright Write $\underline{X}_{t}:=\inf _{s \leq t} X_{s}$. Then $\left(X_{t}, \underline{X}_{t}\right), t \geq 0$ is a Markov process.

- For $c>0$ and $\alpha=2$,

$$
\binom{c \underline{X}_{c-\alpha_{t}}}{c X_{c-\alpha_{t}}}=\binom{c \inf _{s \leq c-\alpha_{t}} X_{s}}{c X_{c-\alpha_{t}}}=\binom{\inf _{u \leq t} c X_{c-\alpha_{u}}}{c X_{c-\alpha_{t}}}, \quad t \geq 0
$$

and the latter is equal in law to (X, \underline{X}), because of the scaling property of X.

- Markov process $Z_{t}:=X_{t}-\left(-x \wedge \underline{X}_{t}\right), t \geq 0$ is also a ssMp on $[0, \infty)$ issued from $x>0$ with index 2 .

Some of your best friends are ssmp

Suppose that $\left(X_{t}: t \geq 0\right)$ is an \mathbb{R}-Brownian motion:
\triangleright Write $\underline{X}_{t}:=\inf _{s \leq t} X_{s}$. Then $\left(X_{t}, \underline{X}_{t}\right), t \geq 0$ is a Markov process.

- For $c>0$ and $\alpha=2$,

$$
\binom{c \underline{X}_{c-\alpha_{t}}}{c X_{c-\alpha_{t}}}=\binom{c \inf _{s \leq c-\alpha_{t}} X_{s}}{c X_{c-\alpha_{t}}}=\binom{\inf _{u \leq t} c X_{c-\alpha_{u}}}{c X_{c-\alpha_{t}}}, \quad t \geq 0
$$

and the latter is equal in law to (X, \underline{X}), because of the scaling property of X.

- Markov process $Z_{t}:=X_{t}-\left(-x \wedge \underline{X}_{t}\right), t \geq 0$ is also a ssMp on $[0, \infty)$ issued from $x>0$ with index 2 .
$Z_{t}:=X_{t} \mathbf{1}_{\left(\underline{X}_{t}>0\right)}, t \geq 0$ is also a ssMp, again on $[0, \infty)$.

Some of your best friends are ssmp

Suppose that $\left(X_{t}: t \geq 0\right)$ is an \mathbb{R}^{d}-Brownian motion:
\downarrow Consider $Z_{t}:=\left|X_{t}\right|, t \geq 0$. Because of rotational invariance, it is a Markov process.

- Again the self-similarity (index 2) of Brownian motion, transfers to the case of $|X|$. Note again, this is a ssMp on $[0, \infty)$.

SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that $\left(X_{t}: t \geq 0\right)$ is an \mathbb{R}^{d}-Brownian motion:
∇ Consider $Z_{t}:=\left|X_{t}\right|, t \geq 0$. Because of rotational invariance, it is a Markov process.

- Again the self-similarity (index 2) of Brownian motion, transfers to the case of $|X|$. Note again, this is a ssMp on $[0, \infty)$.
- Note that $\left|X_{t}\right|, t \geq 0$ is a Bessel- d process. It turns out that all Bessel processes, and all squared Bessel processes are self-similar on $[0, \infty)$. Once can check this by e.g. considering scaling properties of their transition semi-groups.

SOME OF YOUR BEST FRIENDS ARE SSMP

Suppose that $\left(X_{t}: t \geq 0\right)$ is an \mathbb{R}^{d}-Brownian motion:

- Note when $d=3,\left|X_{t}\right|, t \geq 0$ is also equal in law to a Brownian motion conditioned to stay positive: i.e if we define, for a 1-d Brownian motion ($B_{t}: t \geq 0$),

$$
\mathbb{P}_{x}^{\uparrow}(A)=\lim _{s \rightarrow \infty} \mathbb{P}_{x}\left(A \mid \underline{B}_{t+s}>0\right)=\mathbb{E}_{x}\left[\frac{B_{t}}{x} \mathbf{1}_{\left(\underline{B}_{t}>0\right)} \mathbf{1}_{(A)}\right]
$$

where $A \in \sigma\left\{B_{t}: u \leq t\right\}$, then

$$
\left(\left|X_{t}\right|, t \geq 0\right) \text { with }\left|X_{0}\right|=x \text { is equal in law to }\left(B, \mathbb{P}_{x}^{\uparrow}\right)
$$

SOME OF THE BEST FRIENDS OF YOUR BEST FRIENDS ARE SSMP

- All of the previous examples have in common that their paths are continuous. Is this a necessary condition?

Some of the best friends of your best friends are ssmp

- All of the previous examples have in common that their paths are continuous. Is this a necessary condition?
- We want to find more exotic examples as most of the previous examples have been extensively studied through existing theories (of Brownian motion and continuous semi-martingales).

SOME OF THE BEST FRIENDS OF YOUR BEST FRIENDS ARE SSMP

- All of the previous examples have in common that their paths are continuous. Is this a necessary condition?
- We want to find more exotic examples as most of the previous examples have been extensively studied through existing theories (of Brownian motion and continuous semi-martingales).
- All of the previous examples are functional transforms of Brownian motion and have made use of the scaling and Markov properties and (in some cases) isotropic distributional invariance.

Some of the best friends of your best friends are ssmp

- All of the previous examples have in common that their paths are continuous. Is this a necessary condition?
- We want to find more exotic examples as most of the previous examples have been extensively studied through existing theories (of Brownian motion and continuous semi-martingales).
- All of the previous examples are functional transforms of Brownian motion and have made use of the scaling and Markov properties and (in some cases) isotropic distributional invariance.
- If we replace Brownain motion by an α-stable process, a Lévy process that has scale invariance, then all of the functional transforms still produce new examples of self-similar Markov processes.

α-STABLE PROCESS

Definition

A Lévy process X is called (strictly) α-stable if it is also a self-similar Markov process.

α-STABLE PROCESS

Definition

A Lévy process X is called (strictly) α-stable if it is also a self-similar Markov process.

- Necessarily $\alpha \in(0,2]$. [$\alpha=2 \rightarrow$ BM, exclude this.]

α-STABLE PROCESS

Definition

A Lévy process X is called (strictly) α-stable if it is also a self-similar Markov process.
\Rightarrow Necessarily $\alpha \in(0,2]$. [$\alpha=2 \rightarrow$ BM, exclude this.]

- The characteristic exponent $\Psi(\theta):=-t^{-1} \log \mathbb{E}\left(\mathrm{e}^{\mathrm{i} \theta X_{t}}\right)$ satisfies

$$
\Psi(\theta)=|\theta|^{\alpha}\left(\mathrm{e}^{\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{(\theta>0)}+\mathrm{e}^{-\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{(\theta<0)}\right), \quad \theta \in \mathbb{R}
$$

where $\rho=\mathrm{P}_{0}\left(X_{t} \geq 0\right)$ will frequently appear as will $\hat{\rho}=1-\rho$

α-STABLE PROCESS

Definition

A Lévy process X is called (strictly) α-stable if it is also a self-similar Markov process.
\Rightarrow Necessarily $\alpha \in(0,2]$. [$\alpha=2 \rightarrow \mathrm{BM}$, exclude this.]

- The characteristic exponent $\Psi(\theta):=-t^{-1} \log \mathbb{E}\left(\mathrm{e}^{\mathrm{i} \theta \mathrm{X}_{t}}\right)$ satisfies

$$
\Psi(\theta)=|\theta|^{\alpha}\left(\mathrm{e}^{\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{(\theta>0)}+\mathrm{e}^{-\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{(\theta<0)}\right), \quad \theta \in \mathbb{R}
$$

where $\rho=\mathrm{P}_{0}\left(X_{t} \geq 0\right)$ will frequently appear as will $\hat{\rho}=1-\rho$

- Assume jumps in both directions $(0<\alpha \rho, \alpha \hat{\rho}<1)$, so that the Lévy density takes the form

$$
\frac{\Gamma(1+\alpha)}{\pi} \frac{1}{|x|^{1+\alpha}}\left(\sin (\pi \alpha \rho) \mathbf{1}_{\{x>0\}}+\sin (\pi \alpha \hat{\rho}) \mathbf{1}_{\{x<0\}}\right)
$$

α-STABLE PROCESS

$$
\Psi(\theta)=|\theta|^{\alpha}\left(\mathrm{e}^{\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{(\theta>0)}+\mathrm{e}^{-\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{(\theta<0)}\right), \quad \theta \in \mathbb{R}
$$

- Note that, for $c>0, c^{-\alpha} \Psi(c \theta)=\Psi(\theta)$,

α-STABLE PROCESS

$$
\Psi(\theta)=|\theta|^{\alpha}\left(\mathrm{e}^{\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{(\theta>0)}+\mathrm{e}^{-\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{(\theta<0)}\right), \quad \theta \in \mathbb{R}
$$

$>$ Note that, for $c>0, c^{-\alpha} \Psi(c \theta)=\Psi(\theta)$,
$>$ which is equivalent to saying that $c X_{c-\alpha_{t}}=^{d} X_{t}$,

α-STABLE PROCESS

$$
\Psi(\theta)=|\theta|^{\alpha}\left(\mathrm{e}^{\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{(\theta>0)}+\mathrm{e}^{-\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{(\theta<0)}\right), \quad \theta \in \mathbb{R}
$$

$>$ Note that, for $c>0, c^{-\alpha} \Psi(c \theta)=\Psi(\theta)$,
$>$ which is equivalent to saying that $c X_{c-\alpha_{t}}=^{d} X_{t}$,
$>$ which by stationary and independent increments is equivalent to saying $\left(c X_{c-\alpha_{t}}, t \geq 0\right)=^{d}\left(X_{t}, t \geq 0\right)$ when $X_{0}=0$,

α-STABLE PROCESS

$$
\Psi(\theta)=|\theta|^{\alpha}\left(\mathrm{e}^{\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{(\theta>0)}+\mathrm{e}^{-\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{(\theta<0)}\right), \quad \theta \in \mathbb{R}
$$

$>$ Note that, for $c>0, c^{-\alpha} \Psi(c \theta)=\Psi(\theta)$,
$>$ which is equivalent to saying that $c X_{c-\alpha_{t}}=^{d} X_{t}$,
$>$ which by stationary and independent increments is equivalent to saying $\left(c X_{c^{-\alpha}}, t \geq 0\right)=^{d}\left(X_{t}, t \geq 0\right)$ when $X_{0}=0$,
$>$ or equivalently is equivalent to saying $\left(c X_{c-\alpha}^{(x)}, t \geq 0\right)=^{d}\left(X_{t}^{(c x)}, t \geq 0\right)$, where we have indicated the point of issue as an additional index.

STABLE PROCESS PATH PROPERTIES

index	jumps	path	recurrence/transience
$\alpha \in(0,1)$			transient
$\rho=0$	+	monotone decreasing	$\lim _{t \rightarrow \infty} X_{t}=-\infty$
$\rho=1$,+-	bounded variation	$\lim _{t \rightarrow \infty} X_{t}=\infty$
$\rho \in(0,1)$			$\lim _{t \rightarrow \infty}\left\|X_{t}\right\|=\infty$

YOUR NEW FRIENDS

Suppose $X=\left(X_{t}: t \geq 0\right)$ is within the assumed class of α-stable processes in one-dimension and let $\underline{X}_{t}=\inf _{s \leq t} X_{s}$.
Your new friends are:

- $Z=X$
- $Z=X-(-x \wedge \underline{X}), x>0$.
- $Z=X 1_{(\underline{X}>0)}$
- $Z=|X|$ providing $\rho=1 / 2$

YOUR NEW FRIENDS

Suppose $X=\left(X_{t}: t \geq 0\right)$ is within the assumed class of α-stable processes in one-dimension and let $\underline{X}_{t}=\inf _{s \leq t} X_{s}$.
Your new friends are:

- $Z=X$
- $Z=X-(-x \wedge \underline{X}), x>0$.
- $Z=X 1_{(\underline{X}>0)}$
> $Z=|X|$ providing $\rho=1 / 2$
\triangleright What about $Z=" X$ conditioned to stay positive"?

CONDITIONED α-STABLE PROCESSES

- Recall that each Lévy processes, $\xi=\left\{\xi_{t}: t \geq 0\right\}$, enjoys the Wiener-Hopf factorisation i.e. up to a multiplicative constant, $\Psi_{\xi}(\theta):=t^{-1} \log \mathrm{E}\left[\mathrm{e}^{\mathrm{i} \theta \xi_{t}}\right]$ respects the factorisation

$$
\Psi_{\xi}(\theta)=\kappa(-\mathrm{i} \theta) \hat{\kappa}(\mathrm{i} \theta), \quad \theta \in \mathbb{R}
$$

where κ and $\hat{\kappa}$ are Bernstein functions. That is e.g. κ takes the form

$$
\kappa(\lambda)=q+\mathrm{a} \lambda+\int_{(0, \infty)}\left(1-\mathrm{e}^{-\lambda x}\right) \nu(\mathrm{d} x), \quad \lambda \geq 0
$$

where ν is a measure satisfying $\int_{(0, \infty)}(1 \wedge x) \nu(\mathrm{d} x)<\infty$.

CONDITIONED α-STABLE PROCESSES

- Recall that each Lévy processes, $\xi=\left\{\xi_{t}: t \geq 0\right\}$, enjoys the Wiener-Hopf factorisation i.e. up to a multiplicative constant, $\Psi_{\xi}(\theta):=t^{-1} \log \mathrm{E}\left[\mathrm{e}^{\mathrm{i} \theta \xi_{t}}\right]$ respects the factorisation

$$
\Psi_{\xi}(\theta)=\kappa(-\mathrm{i} \theta) \hat{\kappa}(\mathrm{i} \theta), \quad \theta \in \mathbb{R}
$$

where κ and $\hat{\kappa}$ are Bernstein functions. That is e.g. κ takes the form

$$
\kappa(\lambda)=q+\mathrm{a} \lambda+\int_{(0, \infty)}\left(1-\mathrm{e}^{-\lambda x}\right) \nu(\mathrm{d} x), \quad \lambda \geq 0
$$

where ν is a measure satisfying $\int_{(0, \infty)}(1 \wedge x) \nu(\mathrm{d} x)<\infty$.

- The probabilistic significance of these subordinators, is that their range corresponds precisely to the range of the running maximum of ξ and of $-\xi$ respectively.

CONDITIONED α-STABLE PROCESSES

- Recall that each Lévy processes, $\xi=\left\{\xi_{t}: t \geq 0\right\}$, enjoys the Wiener-Hopf factorisation i.e. up to a multiplicative constant, $\Psi_{\xi}(\theta):=t^{-1} \log \mathrm{E}\left[\mathrm{e}^{\mathrm{i} \theta \xi_{t}}\right]$ respects the factorisation

$$
\Psi_{\xi}(\theta)=\kappa(-\mathrm{i} \theta) \hat{\kappa}(\mathrm{i} \theta), \quad \theta \in \mathbb{R}
$$

where κ and $\hat{\kappa}$ are Bernstein functions. That is e.g. κ takes the form

$$
\kappa(\lambda)=q+\mathrm{a} \lambda+\int_{(0, \infty)}\left(1-\mathrm{e}^{-\lambda x}\right) \nu(\mathrm{d} x), \quad \lambda \geq 0
$$

where ν is a measure satisfying $\int_{(0, \infty)}(1 \wedge x) \nu(\mathrm{d} x)<\infty$.
\Rightarrow The probabilistic significance of these subordinators, is that their range corresponds precisely to the range of the running maximum of ξ and of $-\xi$ respectively.

- In the case of α-stable processes, up to a multiplicative constant,

$$
\kappa(\lambda)=\lambda^{\alpha \rho} \text { and } \hat{\kappa}(\lambda)=\lambda^{\alpha \hat{\rho}}, \quad \lambda \geq 0 .
$$

CONDITIONED α-STABLE PROCESSES

- Associated to the descending ladder subordinator $\hat{\kappa}$ is its potential measure \hat{U}, which satisfies

$$
\int_{[0, \infty)} \mathrm{e}^{-\lambda x} \hat{U}(\mathrm{~d} x)=\frac{1}{\hat{\kappa}(\lambda)}, \quad \lambda \geq 0
$$

CONDITIONED α-STABLE PROCESSES

- Associated to the descending ladder subordinator $\hat{\kappa}$ is its potential measure \hat{U}, which satisfies

$$
\int_{[0, \infty)} \mathrm{e}^{-\lambda x} \hat{U}(\mathrm{~d} x)=\frac{1}{\hat{\kappa}(\lambda)}, \quad \lambda \geq 0
$$

- It can be shown that for a Lévy process which satisfies $\limsup _{t \rightarrow \infty} \xi_{t}=\infty$, for $A \in \sigma\left(\xi_{u}: u \leq t\right)$,

$$
\mathbb{P}_{x}^{\uparrow}(A)=\lim _{s \rightarrow \infty} \mathbb{P}_{x}\left(A \mid \underline{X}_{t+s}>0\right)=\mathbb{E}_{x}\left[\frac{\hat{U}\left(X_{t}\right)}{\hat{U}(x)} \mathbf{1}_{\left(\underline{X}_{t}>0\right)} \mathbf{1}_{(A)}\right]
$$

CONDITIONED α-STABLE PROCESSES

- Associated to the descending ladder subordinator $\hat{\kappa}$ is its potential measure \hat{U}, which satisfies

$$
\int_{[0, \infty)} \mathrm{e}^{-\lambda x} \hat{U}(\mathrm{~d} x)=\frac{1}{\hat{\kappa}(\lambda)}, \quad \lambda \geq 0
$$

- It can be shown that for a Lévy process which satisfies $\limsup _{t \rightarrow \infty} \xi_{t}=\infty$, for $A \in \sigma\left(\xi_{u}: u \leq t\right)$,

$$
\mathbb{P}_{x}^{\uparrow}(A)=\lim _{s \rightarrow \infty} \mathbb{P}_{x}\left(A \mid \underline{X}_{t+s}>0\right)=\mathbb{E}_{x}\left[\frac{\hat{U}\left(X_{t}\right)}{\hat{U}(x)} \mathbf{1}_{\left(\underline{X}_{t}>0\right)} \mathbf{1}_{(A)}\right]
$$

- In the α-stable case $\hat{U}(x) \propto x^{\alpha \hat{\rho}}$
[Note in the excluded case that $\alpha=2$ and $\rho=1 / 2$, i.e. Brownian motion, $\hat{U}(x)=x$.]

CONDITIONED α-STABLE PROCESSES

\Rightarrow For $c, x>0, t \geq 0$ and appropriately bounded, measurable and non-negative f, we can write,

$$
\begin{aligned}
& \mathbb{E}_{x}^{\uparrow} f f\left.\left(\left\{c X_{c}-\alpha_{s}: s \leq t\right\}\right)\right] \\
&=\mathbb{E}\left[f\left(\left\{c X_{c^{-\alpha}}^{(x)}: s \leq t\right\}\right) \frac{\left(X_{c}^{(x)}\right.}{x^{-\alpha \hat{\rho}}}\right)^{\alpha \hat{\rho}} \\
&\left.\mathbf{1}_{\left(\underline{X}_{c}^{-\alpha t}\right.}^{(x)} \geq 0\right) \\
&=\mathbb{E}\left[f\left(\left\{X_{s}^{(c x)}: s \leq t\right\} \frac{\left(X_{t}^{(c x)}\right)^{\alpha \hat{\rho}}}{(c x)^{\alpha \hat{\rho}}} \mathbf{1}_{\left(\underline{X}_{t}^{(c x)} \geq 0\right)}\right]\right. \\
&=\mathbb{E}_{c x}^{\uparrow}\left[f\left(\left\{X_{s}: s \leq t\right\}\right)\right] .
\end{aligned}
$$

CONDITIONED α-STABLE PROCESSES

- For $c, x>0, t \geq 0$ and appropriately bounded, measurable and non-negative f, we can write,

$$
\begin{aligned}
\mathbb{E}_{x}^{\uparrow}[f & \left.\left(\left\{c X_{c}-\alpha_{s}: s \leq t\right\}\right)\right] \\
& =\mathbb{E}\left[f\left(\left\{c X_{c-\alpha_{s}}^{(x)}: s \leq t\right\}\right) \frac{\left.\left(X_{c}^{(x)}\right)^{\alpha \hat{\rho}}\right)^{\alpha \hat{\rho}}}{x^{\alpha \hat{\rho}}} \mathbf{1}_{\left(\underline{X}_{c}-\alpha_{t} \geq 0\right)}\right] \\
& =\mathbb{E}\left[f\left(\left\{X_{s}^{(c x)}: s \leq t\right\} \frac{\left(X_{t}^{(c x)}\right)^{\alpha \hat{\rho}}}{(c x)^{\alpha \hat{\rho}}} \mathbf{1}_{\left(\underline{X}_{t}^{(c x)} \geq 0\right)}\right]\right. \\
& =\mathbb{E}_{c x}^{\uparrow}\left[f\left(\left\{X_{s}: s \leq t\right\}\right)\right] .
\end{aligned}
$$

- This also makes the process $\left(X, \mathbb{P}_{x}^{\uparrow}\right), x>0$, a self-similar Markov process on $[0, \infty)$.

CONDITIONED α-STABLE PROCESSES

- For $c, x>0, t \geq 0$ and appropriately bounded, measurable and non-negative f, we can write,

$$
\begin{aligned}
& \mathbb{E}_{x}^{\uparrow} f f\left.\left(\left\{c X_{c}-\alpha_{s}: s \leq t\right\}\right)\right] \\
&=\mathbb{E}\left[f\left(\left\{c X_{c^{-\alpha}}^{(x)}: s \leq t\right\}\right) \frac{\left(X_{c^{-\alpha}}^{(x)}\right)^{\alpha \hat{\rho}}}{x^{\alpha \hat{\rho}}}\right. \\
&\left.\mathbf{1}_{\left(\underline{X}_{c}^{-\alpha t}\right.}^{(x)} \geq 0\right) \\
&=\mathbb{E}\left[f\left(\left\{X_{s}^{(c x)}: s \leq t\right\} \frac{\left(X_{t}^{(c x)}\right)^{\alpha \hat{\rho}}}{(c x)^{\alpha \hat{\rho}}} \mathbf{1}_{\left(\underline{X}_{t}^{(c x)} \geq 0\right)}\right]\right. \\
&=\mathbb{E}_{c x}^{\uparrow}\left[f\left(\left\{X_{s}: s \leq t\right\}\right)\right] .
\end{aligned}
$$

- This also makes the process $\left(X, \mathbb{P}_{x}^{\uparrow}\right), x>0$, a self-similar Markov process on $[0, \infty)$.
- Unlike the case of Brownian motion, the conditioned stable process does not have the law of the radial part of a 3-dimensional stable process (the analogue to the Brownian case).

§3. Lamperti Transform

Notation

- Use $\xi:=\left\{\xi_{t}: t \geq 0\right\}$ to denote a Lévy process which is killed and sent to the cemetery state $-\infty$ at an independent and exponentially distributed random time, \mathbf{e}_{q}, with rate in $q \in[0, \infty)$. The characteristic exponent of ξ is thus written

$$
-\log \mathbf{E}\left(\mathrm{e}^{\mathrm{i} \theta \xi_{1}}\right)=\Psi(\theta)=q+\text { Lévy-Khintchine }
$$

Notation

- Use $\xi:=\left\{\xi_{t}: t \geq 0\right\}$ to denote a Lévy process which is killed and sent to the cemetery state $-\infty$ at an independent and exponentially distributed random time, \mathbf{e}_{q}, with rate in $q \in[0, \infty)$. The characteristic exponent of ξ is thus written

$$
-\log \mathrm{E}\left(\mathrm{e}^{\mathrm{i} \theta \xi_{1}}\right)=\Psi(\theta)=q+\text { Lévy-Khintchine }
$$

- Define the associated integrated exponential Lévy process

$$
\begin{equation*}
I_{t}=\int_{0}^{t} \mathrm{e}^{\alpha \xi_{s}} \mathrm{~d} s, \quad t \geq 0 \tag{1}
\end{equation*}
$$

and its limit, $I_{\infty}:=\lim _{t \uparrow \infty} I_{t}$.

Notation

- Use $\xi:=\left\{\xi_{t}: t \geq 0\right\}$ to denote a Lévy process which is killed and sent to the cemetery state $-\infty$ at an independent and exponentially distributed random time, \mathbf{e}_{q}, with rate in $q \in[0, \infty)$. The characteristic exponent of ξ is thus written

$$
-\log \mathbf{E}\left(\mathrm{e}^{\mathrm{i} \theta \xi_{1}}\right)=\Psi(\theta)=q+\text { Lévy-Khintchine }
$$

- Define the associated integrated exponential Lévy process

$$
\begin{equation*}
I_{t}=\int_{0}^{t} \mathrm{e}^{\alpha \xi_{s}} \mathrm{~d} s, \quad t \geq 0 \tag{1}
\end{equation*}
$$

and its limit, $I_{\infty}:=\lim _{t \uparrow \infty} I_{t}$.

- Also interested in the inverse process of I:

$$
\begin{equation*}
\varphi(t)=\inf \left\{s>0: I_{s}>t\right\}, \quad t \geq 0 \tag{2}
\end{equation*}
$$

As usual, we work with the convention $\inf \emptyset=\infty$.

LAMPERTI TRANSFORM FOR POSITIVE SSMP

Theorem (Part (i))

Fix $\alpha>0$. If Z, is a positive self-similar Markov process issued from $x>0$ with index of self-similarity α, then up to absorption at the origin, it can be represented as follows:

$$
Z_{t}=\exp \left\{\xi_{\varphi(t)}\right\}, \quad 0 \leq t \leq \zeta:=\inf \left\{t>0: Z_{t}=0\right\}
$$

where either
(1) $\zeta=\infty$ almost surely for all $x>0$, in which case ξ is a Lévy process issued from $\log x$ satisfying $\lim \sup _{t \uparrow \infty} \xi_{t}=\infty$,
(2) $\zeta<\infty$ and $Z_{\zeta-}=0$ almost surely for all $x>0$, in which case ξ is a Lévy process issued from $\log x$ satisfying $\lim _{t \uparrow \infty} \xi_{t}=-\infty$, or
(3) $\zeta<\infty$ and $Z_{\zeta-}>0$ almost surely for all $x>0$, in which case ξ is a Lévy process issued from $\log x$ killed at an independent and exponentially distributed random time.
In all cases, we may identify $\zeta=I_{\infty}$.

LAMPERTI TRANSFORM FOR POSITIVE sSMP

Theorem (Part (ii))

Conversely, suppose that ξ is a given (killed) Lévy process issued from $\log x$, where $x>0$. Define

$$
Z_{t}=\exp \left\{\xi_{\varphi(t)}\right\} \mathbf{1}_{\left(t<I_{\infty}\right)}, \quad t \geq 0
$$

Then Z defines a positive self-similar Markov process issued from $x>0$, up to its absorption time $\zeta=I_{\infty}$, with index α.

LAMPERTI TRANSFORM FOR POSITIVE SSMP

$$
\begin{aligned}
& \left(Z, \mathbb{P}_{x}\right)_{x>0} \operatorname{pssMp} \\
& Z_{t}=\exp \left(\xi_{S(t)}\right)
\end{aligned}
$$

S a random time-change
$\left(\xi, \mathbf{P}_{y}\right)_{y \in \mathbb{R}}$ killed Lévy
$\xi_{s}=\log \left(Z_{T(s)}\right)$,
T a random time-change

LAMPERTI TRANSFORM FOR POSITIVE SSMP

$$
\begin{gathered}
\left(Z, \mathbb{P}_{x}\right)_{x>0} \mathrm{pssMp} \\
Z_{t}=\exp \left(\xi_{S(t)}\right)
\end{gathered}
$$

S a random time-change
$\left(\xi, \mathbf{P}_{y}\right)_{y \in \mathbb{R}}$ killed Lévy
$\xi_{s}=\log \left(Z_{T(s)}\right)$,
T a random time-change
$\leftrightarrow \quad\left\{\begin{array}{c}\xi \rightarrow \infty \text { or } \xi \text { oscillates } \\ \xi \rightarrow-\infty \\ \xi \text { is killed }\end{array}\right.$
§4. Positive self-similar Markov processes

Stable process killed on entry TO $(-\infty, 0)$

- The stable process cannot 'creep' downwards across the threshold 0 and so must do so with a jump.

Stable process killed on entry To $(-\infty, 0)$

- The stable process cannot 'creep' downwards across the threshold 0 and so must do so with a jump.
- This puts $Z_{t}^{*}:=X_{t} \mathbf{1}_{\left(\underline{x}_{t}>0\right)}, t \geq 0$, in the class of pssMp for which the underlying Lévy process experiences exponential killing.

Stable process Killed on entry TO $(-\infty, 0)$

- The stable process cannot 'creep' downwards across the threshold 0 and so must do so with a jump.
- This puts $Z_{t}^{*}:=X_{t} \mathbf{1}_{\left(\underline{x}_{t}>0\right)}, t \geq 0$, in the class of pssMp for which the underlying Lévy process experiences exponential killing.
\Rightarrow Write $\xi^{*}=\left\{\xi_{t}^{*}: t \geq 0\right\}$ for the underlying Lévy process and denote its killing rate by q^{*}.

Stable process Killed on entry TO $(-\infty, 0)$

- The stable process cannot 'creep' downwards across the threshold 0 and so must do so with a jump.
∇ This puts $Z_{t}^{*}:=X_{t} \mathbf{1}_{\left(\underline{X}_{t}>0\right)}, t \geq 0$, in the class of pssMp for which the underlying Lévy process experiences exponential killing.
- Write $\xi^{*}=\left\{\xi_{t}^{*}: t \geq 0\right\}$ for the underlying Lévy process and denote its killing rate by q^{*}.
- Let's try and decode the characteristics of ξ^{*}.

STABLE PROCESS KILLED ON ENTRY TO $(-\infty, 0)$

- We know that the α-stable process experiences downward jumps at rate

$$
\frac{\Gamma(1+\alpha)}{\pi} \sin (\pi \alpha \hat{\rho}) \frac{1}{|x|^{1+\alpha}} \mathrm{d} x, \quad x<0
$$

STABLE PROCESS KILLED ON ENTRY TO $(-\infty, 0)$

- We know that the α-stable process experiences downward jumps at rate

$$
\frac{\Gamma(1+\alpha)}{\pi} \sin (\pi \alpha \hat{\rho}) \frac{1}{|x|^{1+\alpha}} \mathrm{d} x, \quad x<0
$$

- Given that we know the value of Z_{t-}^{*}, on $\left\{\underline{X}_{t}>0\right\}$, the stable process will pass over the origin at rate

$$
\frac{\Gamma(1+\alpha)}{\pi} \sin (\pi \alpha \hat{\rho})\left(\int_{Z_{t-}^{*}}^{\infty} \frac{1}{|x|^{1+\alpha}} \mathrm{d} x\right)=\frac{\Gamma(1+\alpha)}{\alpha \pi} \sin (\pi \alpha \hat{\rho})\left(Z_{t-}^{*}\right)^{-\alpha}
$$

STABLE PROCESS KILLED ON ENTRY TO $(-\infty, 0)$

- We know that the α-stable process experiences downward jumps at rate

$$
\frac{\Gamma(1+\alpha)}{\pi} \sin (\pi \alpha \hat{\rho}) \frac{1}{|x|^{1+\alpha}} \mathrm{d} x, \quad x<0
$$

- Given that we know the value of Z_{t-}^{*}, on $\left\{\underline{X}_{t}>0\right\}$, the stable process will pass over the origin at rate

$$
\frac{\Gamma(1+\alpha)}{\pi} \sin (\pi \alpha \hat{\rho})\left(\int_{Z_{t-}^{*}}^{\infty} \frac{1}{|x|^{1+\alpha}} \mathrm{d} x\right)=\frac{\Gamma(1+\alpha)}{\alpha \pi} \sin (\pi \alpha \hat{\rho})\left(Z_{t-}^{*}\right)^{-\alpha}
$$

- On the other hand, the Lamperti transform says that on $\{t<\zeta\}$, as a pssMp, Z is sent to the origin at rate

$$
q^{*} \frac{\mathrm{~d}}{\mathrm{~d} t} \varphi(t)=q^{*} \mathrm{e}^{-\alpha \xi_{\varphi(t)}^{*}}=q^{*}\left(\mathrm{Z}_{t}^{*}\right)^{-\alpha} .
$$

Stable process killed on entry TO $(-\infty, 0)$

- We know that the α-stable process experiences downward jumps at rate

$$
\frac{\Gamma(1+\alpha)}{\pi} \sin (\pi \alpha \hat{\rho}) \frac{1}{|x|^{1+\alpha}} \mathrm{d} x, \quad x<0 .
$$

- Given that we know the value of Z_{t-}^{*}, on $\left\{\underline{X}_{t}>0\right\}$, the stable process will pass over the origin at rate

$$
\frac{\Gamma(1+\alpha)}{\pi} \sin (\pi \alpha \hat{\rho})\left(\int_{Z_{t-}^{*}}^{\infty} \frac{1}{|x|^{1+\alpha}} \mathrm{d} x\right)=\frac{\Gamma(1+\alpha)}{\alpha \pi} \sin (\pi \alpha \hat{\rho})\left(Z_{t-}^{*}\right)^{-\alpha}
$$

- On the other hand, the Lamperti transform says that on $\{t<\zeta\}$, as a pssMp, Z is sent to the origin at rate

$$
q^{*} \frac{\mathrm{~d}}{\mathrm{~d} t} \varphi(t)=q^{*} \mathrm{e}^{-\alpha \xi_{\varphi}^{*}(t)}=q^{*}\left(\mathrm{Z}_{t}^{*}\right)^{-\alpha}
$$

- Comparing gives us

$$
q^{*}=\Gamma(\alpha) \sin (\pi \alpha \hat{\rho}) / \pi=\frac{\Gamma(\alpha)}{\Gamma(\alpha \hat{\rho}) \Gamma(1-\alpha \hat{\rho})}
$$

Stable process Killed on entry TO $(-\infty, 0)$

- Referring again to the Lamperti transform, we know that, under \mathbb{P}_{1} (so that $\xi_{0}^{*}=0$ almost surely),

$$
Z_{\zeta-}^{*}=X_{\tau_{0}^{-}}=\mathrm{e}^{\xi_{\mathrm{e}^{*}}^{*}}
$$

where $\mathbf{e}_{q^{*}}$ is an exponentially distributed random variable with rate q^{*}.

Stable process Killed on entry TO $(-\infty, 0)$

- Referring again to the Lamperti transform, we know that, under \mathbb{P}_{1} (so that $\xi_{0}^{*}=0$ almost surely),

$$
Z_{\zeta-}^{*}=X_{\tau_{0}^{-}}=\mathrm{e}^{\xi_{\mathrm{e}^{*}}^{*}},
$$

where $\mathbf{e}_{q^{*}}$ is an exponentially distributed random variable with rate q^{*}.

- This motivates the computation

$$
\mathbb{E}_{1}\left[\left(Z_{\zeta-}^{*}\right)^{\mathrm{i} \theta}\right]=\mathrm{E}_{0}\left[\mathrm{e}^{\mathrm{i} \theta \xi_{q_{q^{*}}}^{*}}\right]=\frac{q^{*}}{\left(\Psi^{*}(z)-q^{*}\right)+q^{*}}, \quad \theta \in \mathbb{R}
$$

where Ψ^{*} is the characteristic exponent of ξ^{*}.

Stable process killed on entry TO $(-\infty, 0)$

Remembering the "triple law" distributional law at first passage, we deduce that, for all $v \in[0,1]$,

$$
\begin{aligned}
& \mathbb{P}_{1}\left(X_{\tau_{0}^{-}-} \in \mathrm{d} v\right) \\
&=\hat{\mathbb{P}}_{0}\left(1-X_{\tau_{1}^{+}-} \in \mathrm{d} v\right) \\
&=\frac{\sin (\alpha \hat{\rho} \pi)}{\pi} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha \rho) \Gamma(\alpha \hat{\rho})}\left(\int_{0}^{\infty} \int_{0}^{\infty} \mathbf{1}_{(y \leq 1 \wedge v)} \frac{(1-y)^{\alpha \hat{\rho}-1}(v-y)^{\alpha \rho-1}}{(v+u)^{1+\alpha}} \mathrm{d} u \mathrm{~d} y\right) \mathrm{d} v \\
&=\frac{\sin (\alpha \hat{\rho} \pi)}{\pi} \frac{\Gamma(\alpha)}{\Gamma(\alpha \rho) \Gamma(\alpha \hat{\rho})}\left(\int_{0}^{1} \mathbf{1}_{(y \leq v)} v^{-\alpha}(1-y)^{\alpha \hat{\rho}-1}(v-y)^{\alpha \rho-1} \mathrm{~d} y\right) \mathrm{d} v,
\end{aligned}
$$

where $\hat{\mathbb{P}}_{0}$ is the law of $-X$ issued from 0 .

Stable process killed on entry TO $(-\infty, 0)$

Remembering the "triple law" distributional law at first passage, we deduce that, for all $v \in[0,1]$,

$$
\begin{aligned}
& \mathbb{P}_{1}\left(X_{\tau_{0}^{-}-} \in \mathrm{d} v\right) \\
&=\hat{\mathbb{P}}_{0}\left(1-X_{\tau_{1}^{+}-} \in \mathrm{d} v\right) \\
&=\frac{\sin (\alpha \hat{\rho} \pi)}{\pi} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha \rho) \Gamma(\alpha \hat{\rho})}\left(\int_{0}^{\infty} \int_{0}^{\infty} \mathbf{1}_{(y \leq 1 \wedge v)} \frac{(1-y)^{\alpha \hat{\rho}-1}(v-y)^{\alpha \rho-1}}{(v+u)^{1+\alpha}} \mathrm{d} u \mathrm{~d} y\right) \mathrm{d} v \\
&=\frac{\sin (\alpha \hat{\rho} \pi)}{\pi} \frac{\Gamma(\alpha)}{\Gamma(\alpha \rho) \Gamma(\alpha \hat{\rho})}\left(\int_{0}^{1} \mathbf{1}_{(y \leq v)} v^{-\alpha}(1-y)^{\alpha \hat{\rho}-1}(v-y)^{\alpha \rho-1} \mathrm{~d} y\right) \mathrm{d} v,
\end{aligned}
$$

where $\hat{\mathbb{P}}_{0}$ is the law of $-X$ issued from 0 .
Note: more generally (which you will need for an exercise later):

$$
\begin{aligned}
& \mathbb{P}_{1}\left(-X_{\tau_{0}^{-}} \in \mathrm{d} u, X_{\tau_{0}^{-}} \in \mathrm{d} v\right) \\
& \quad=\frac{\sin (\alpha \hat{\rho} \pi)}{\pi} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha \rho) \Gamma(\alpha \hat{\rho})}\left(\int_{0}^{\infty} \mathbf{1}_{(y \leq 1 \wedge v)} \frac{(1-y)^{\alpha \hat{\rho}-1}(v-y)^{\alpha \rho-1}}{(v+u)^{1+\alpha}} \mathrm{d} y\right) \mathrm{d} v \mathrm{~d} u
\end{aligned}
$$

STABLE PROCESS KILLED ON ENTRY TO $(-\infty, 0)$

We are led to the conclusion that

$$
\begin{aligned}
& \frac{q^{*}}{\Psi^{*}(\theta)} \\
& =\frac{\sin (\alpha \hat{\rho} \pi)}{\pi} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha \rho) \Gamma(\alpha \hat{\rho})} \int_{0}^{1}(1-y)^{\alpha \hat{\rho}-1} \int_{0}^{\infty} \mathbf{1}_{(y \leq v)} v^{\mathrm{i} \theta-\alpha \hat{\rho}-1}\left(1-\frac{y}{v}\right)^{\alpha \rho-1} \mathrm{~d} v \mathrm{~d} y \\
& =\frac{\sin (\alpha \hat{\rho} \pi)}{\pi} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha \rho) \Gamma(\alpha \hat{\rho})} \int_{0}^{1}(1-y)^{\alpha \hat{\rho}-1} y^{\mathrm{i} \theta-\alpha \hat{\rho}} \mathrm{d} y \frac{\Gamma(\alpha \hat{\rho}-\mathrm{i} \theta) \Gamma(\alpha \rho)}{\Gamma(\alpha-\mathrm{i} \theta)} \\
& =\frac{\Gamma(\alpha \hat{\rho}-\mathrm{i} \theta) \Gamma(\alpha \rho) \Gamma(1-\alpha \hat{\rho}+\mathrm{i} \theta) \Gamma(\alpha \hat{\rho}) \Gamma(\alpha)}{\Gamma(\alpha \rho) \Gamma(\alpha \hat{\rho}) \Gamma(1-\alpha \hat{\rho}) \Gamma(\alpha \hat{\rho}) \Gamma(1+\mathrm{i} \theta) \Gamma(\alpha-\mathrm{i} \theta)},
\end{aligned}
$$

where in the first equality Fubini's Theorem has been used, in the second equality a straightforward substitution $w=y / v$ has been used for the inner integral on the preceding line together with the classical beta integral and, finally, in the third equality, the Beta integral has been used for a second time. Inserting the respective values for the constants q^{*} and K, we come to rest at the following result:

Stable process killed on entry To $(-\infty, 0)$

Theorem

For the pssMp constructed by killing a stable process on first entry to $(-\infty, 0)$, the underlying killed Lévy process, ξ^{*}, that appears through the Lamperti transform has characteristic exponent given by

$$
\Psi^{*}(z)=\frac{\Gamma(\alpha-\mathrm{i} z)}{\Gamma(\alpha \hat{\rho}-\mathrm{i} z)} \frac{\Gamma(1+\mathrm{i} z)}{\Gamma(1-\alpha \hat{\rho}+\mathrm{i} z)}, \quad z \in \mathbb{R}
$$

Stable processes conditioned to stay positive

$>$ Use the Lamperti representation of the α-stable process X to write, for $A \in \sigma\left(X_{u}: u \leq t\right)$,

$$
\mathbb{P}_{x}^{\uparrow}(A)=\mathbb{E}_{x}\left[\frac{X_{t}^{\alpha \hat{\rho}}}{x^{\alpha \hat{\rho}}} \mathbf{1}_{\left(\underline{X}_{t}>0\right)} \mathbf{1}_{(A)}\right]=\mathbf{E}_{0}\left[\mathrm{e}^{\alpha \hat{\rho} \xi_{\tau}^{*}} \mathbf{1}_{\left(\tau<\mathbf{e}_{q^{*}}\right)} \mathbf{1}_{(A)}\right]
$$

where $\tau=\varphi\left(x^{-\alpha} t\right)$ is a stopping time in the natural filtration of ξ^{*}.

Stable processes conditioned to stay positive

- Use the Lamperti representation of the α-stable process X to write, for $A \in \sigma\left(X_{u}: u \leq t\right)$,

$$
\mathbb{P}_{x}^{\uparrow}(A)=\mathbb{E}_{x}\left[\frac{X_{t}^{\alpha \hat{\rho}}}{x^{\alpha \hat{\rho}}} \mathbf{1}_{\left(\underline{X}_{t}>0\right)} \mathbf{1}_{(A)}\right]=\mathbf{E}_{0}\left[\mathrm{e}^{\alpha \hat{\rho} \xi_{\tau}^{*}} \mathbf{1}_{\left(\tau<\mathbf{e}_{q^{*}}\right)} \mathbf{1}_{(A)}\right],
$$

where $\tau=\varphi\left(x^{-\alpha} t\right)$ is a stopping time in the natural filtration of ξ^{*}.

- Noting that $\Psi^{*}(-\mathrm{i} \alpha \hat{\rho})=0$, the change of measure constitutes an Esscher transform at the level of ξ^{*}.

STABLE PROCESSES CONDITIONED TO STAY POSITIVE

- Use the Lamperti representation of the α-stable process X to write, for $A \in \sigma\left(X_{u}: u \leq t\right)$,

$$
\mathbb{P}_{x}^{\uparrow}(A)=\mathbb{E}_{x}\left[\frac{X_{t}^{\alpha \hat{\rho}}}{x^{\alpha \hat{\rho}}} \mathbf{1}_{\left(\underline{X}_{t}>0\right)} \mathbf{1}_{(A)}\right]=\mathbf{E}_{0}\left[\mathrm{e}^{\alpha \hat{\rho} \xi_{\tau}^{*}} \mathbf{1}_{\left(\tau<\mathbf{e}_{q^{*}}\right)} \mathbf{1}_{(A)}\right],
$$

where $\tau=\varphi\left(x^{-\alpha} t\right)$ is a stopping time in the natural filtration of ξ^{*}.

- Noting that $\Psi^{*}(-\mathrm{i} \alpha \hat{\rho})=0$, the change of measure constitutes an Esscher transform at the level of ξ^{*}.

Theorem

The underlying Lévy process, ξ^{\uparrow}, that appears through the Lamperti transform applied to $\left(X, \mathbb{P}_{x}^{\uparrow}\right), x>0$,has characteristic exponent given by

$$
\Psi^{\uparrow}(z)=\frac{\Gamma(\alpha \rho-\mathrm{i} z)}{\Gamma(-\mathrm{i} z)} \frac{\Gamma(1+\alpha \hat{\rho}+\mathrm{i} z)}{\Gamma(1+\mathrm{i} z)}, \quad z \in \mathbb{R}
$$

- In particular $\Psi^{\uparrow}(z)=\Psi^{*}(z-\mathrm{i} \alpha \hat{\rho}), z \in \mathbb{R}$ so that $\Psi^{\uparrow}(0)=0$ (i.e. no killing!)
- One can also check by hand that $\Psi^{\uparrow \prime}(0+)=\mathbf{E}_{0}\left[\xi_{1}^{\uparrow}\right]>0$ so that $\lim _{t \rightarrow \infty} \xi_{t}^{\uparrow}=\infty$.

DID YOU SPOT THE OTHER ROOT?

- In essence, the case of the stable process conditioned to stay positive boils down to an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
- It was important that we identified a root of $\Psi^{*}(z)=0$ in order to avoid involving a 'time component' of the Esscher transform.

DID YOU SPOT THE OTHER ROOT?

- In essence, the case of the stable process conditioned to stay positive boils down to an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
- It was important that we identified a root of $\Psi^{*}(z)=0$ in order to avoid involving a 'time component' of the Esscher transform.
- However, there is another root of the equation

$$
\Psi^{*}(z)=\frac{\Gamma(\alpha-\mathrm{iz})}{\Gamma(\alpha \hat{\rho}-\mathrm{i} z)} \frac{\Gamma(1+\mathrm{i} z)}{\Gamma(1-\alpha \hat{\rho}+\mathrm{i} z)}=0
$$

namely $z=-i(1-\alpha \hat{\rho})$.

DID YOU SPOT THE OTHER ROOT?

- In essence, the case of the stable process conditioned to stay positive boils down to an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
- It was important that we identified a root of $\Psi^{*}(z)=0$ in order to avoid involving a 'time component' of the Esscher transform.
- However, there is another root of the equation

$$
\Psi^{*}(z)=\frac{\Gamma(\alpha-\mathrm{iz})}{\Gamma(\alpha \hat{\rho}-\mathrm{i} z)} \frac{\Gamma(1+\mathrm{i} z)}{\Gamma(1-\alpha \hat{\rho}+\mathrm{i} z)}=0
$$

namely $z=-\mathrm{i}(1-\alpha \hat{\rho})$.

- And this means that

$$
\mathrm{e}^{(1-\alpha \hat{\rho}) \xi^{*}}, \quad t \geq 0
$$

is a unit-mean Martingale, which can also be used to construct an Esscher transform:

$$
\Psi^{\downarrow}(z)=\Psi^{*}(z-\mathrm{i}(1-\alpha \hat{\rho}))=\Psi^{\downarrow}(z)=\frac{\Gamma(1+\alpha \rho-\mathrm{i} z)}{\Gamma(1-\mathrm{i} z)} \frac{\Gamma(\mathrm{i} z+\alpha \hat{\rho})}{\Gamma(\mathrm{i} z)} .
$$

DID YOU SPOT THE OTHER ROOT?

- In essence, the case of the stable process conditioned to stay positive boils down to an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
- It was important that we identified a root of $\Psi^{*}(z)=0$ in order to avoid involving a 'time component' of the Esscher transform.
- However, there is another root of the equation

$$
\Psi^{*}(z)=\frac{\Gamma(\alpha-\mathrm{iz})}{\Gamma(\alpha \hat{\rho}-\mathrm{i} z)} \frac{\Gamma(1+\mathrm{i} z)}{\Gamma(1-\alpha \hat{\rho}+\mathrm{i} z)}=0
$$

namely $z=-\mathrm{i}(1-\alpha \hat{\rho})$.

- And this means that

$$
\mathrm{e}^{(1-\alpha \hat{\rho}) \xi^{*}}, \quad t \geq 0
$$

is a unit-mean Martingale, which can also be used to construct an Esscher transform:

$$
\Psi^{\downarrow}(z)=\Psi^{*}(z-\mathrm{i}(1-\alpha \hat{\rho}))=\Psi^{\downarrow}(z)=\frac{\Gamma(1+\alpha \rho-\mathrm{i} z)}{\Gamma(1-\mathrm{i} z)} \frac{\Gamma(\mathrm{i} z+\alpha \hat{\rho})}{\Gamma(\mathrm{i} z)} .
$$

- The choice of notation is pre-emptive since we can also check that $\Psi^{\downarrow}(0)=0$ and $\Psi^{\downarrow^{\prime}}(0)<0$ so that if ξ^{\downarrow} is a Lévy process with characteristic exponent Ψ^{\downarrow}, then $\lim _{t \rightarrow \infty} \xi_{t}^{\downarrow}=-\infty$.

REVERSE ENGINEERING

- What now happens if we define for $A \in \sigma\left(X_{u}: u \leq t\right)$,

$$
\mathbb{P}_{x}^{\downarrow}(A)=\mathbf{E}_{0}\left[\mathrm{e}^{(1-\alpha \hat{\rho}) \xi_{\tau}^{*}} \mathbf{1}_{\left(\tau<\mathbf{e}_{q^{*}}\right)} \mathbf{1}_{(A)}\right]=\mathbb{E}_{x}\left[\frac{X_{t}^{(1-\alpha \hat{\rho})}}{x^{(1-\alpha \hat{\rho})}} \mathbf{1}_{\left(\underline{X}_{t}>0\right)} \mathbf{1}_{(A)}\right]
$$

where $\tau=\varphi\left(x^{-\alpha} t\right)$ is a stopping time in the natural filtration of ξ^{*}.

Reverse engineering

- What now happens if we define for $A \in \sigma\left(X_{u}: u \leq t\right)$,

$$
\mathbb{P}_{x}^{\downarrow}(A)=\mathbf{E}_{0}\left[\mathrm{e}^{(1-\alpha \hat{\rho}) \xi_{\tau}^{*}} \mathbf{1}_{\left(\tau<\mathbf{e}_{q^{*}}\right)} \mathbf{1}_{(A)}\right]=\mathbb{E}_{x}\left[\frac{X_{t}^{(1-\alpha \hat{\rho})}}{x^{(1-\alpha \hat{\rho})}} \mathbf{1}_{\left(\underline{X}_{t}>0\right)} \mathbf{1}_{(A)}\right]
$$

where $\tau=\varphi\left(x^{-\alpha} t\right)$ is a stopping time in the natural filtration of ξ^{*}.

- In the same way we checked that $\left(X, \mathbb{P}_{x}^{\uparrow}\right), x>0$, is a pssMp, we can also check that $\left(X, \mathbb{P}_{x}^{\downarrow}\right), x>0$ is a pssMp.

REVERSE ENGINEERING

- What now happens if we define for $A \in \sigma\left(X_{u}: u \leq t\right)$,

$$
\mathbb{P}_{x}^{\downarrow}(A)=\mathbf{E}_{0}\left[\mathrm{e}^{(1-\alpha \hat{\rho}) \xi_{\tau}^{*}} \mathbf{1}_{\left(\tau<\mathbf{e}_{q^{*}}\right)} \mathbf{1}_{(A)}\right]=\mathbb{E}_{x}\left[\frac{X_{t}^{(1-\alpha \hat{\rho})}}{x^{(1-\alpha \hat{\rho})}} \mathbf{1}_{\left(X_{t}>0\right)} \mathbf{1}_{(A)}\right]
$$

where $\tau=\varphi\left(x^{-\alpha} t\right)$ is a stopping time in the natural filtration of ξ^{*}.

- In the same way we checked that $\left(X, \mathbb{P}_{x}^{\uparrow}\right), x>0$, is a pssMp, we can also check that $\left(X, \mathbb{P}_{x}^{\downarrow}\right), x>0$ is a pssMp.
- In an appropriate sense, it turns out that $\left(X, \mathbb{P}_{x}^{\downarrow}\right), x>0$ is the law of a stable process conditioned to continuously approach the origin from above.

ξ^{*}, ξ^{\uparrow} AND ξ^{\downarrow}

- The three examples of pssMp offer quite striking underlying Lévy processes
- Is this exceptional?

CENSORED STABLE PROCESSES

- Start with X, the stable process.
\Rightarrow Let $A_{t}=\int_{0}^{t} \mathbf{1}_{\left(X_{t}>0\right)} \mathrm{d} t$.
\Rightarrow Let γ be the right-inverse of A, and put $\check{Z}_{t}:=X_{\gamma(t)}$.
- Finally, make zero an absorbing state: $Z_{t}=\check{Z}_{t} \mathbf{1}_{\left(t<T_{0}\right)}$ where

$$
T_{0}=\inf \left\{t>0: X_{t}=0\right\} .
$$

Note $T_{0}<\infty$ a.s. if and only if $\alpha \in(1,2)$ and otherwise $T_{0}=\infty$ a.s.

- This is the censored stable process.

Censored stable processes

Theorem

Suppose that the underlying Lévy process for the censored stable process is denoted by $\widetilde{\xi}$. Then $\widetilde{\xi}$ is equal in law to $\xi^{* *} \oplus \xi^{\mathrm{C}}$, with

- $\xi^{* *}$ equal in law to ξ^{*} with the killing removed,
- ξ^{C} a compound Poisson process with jump rate $q^{*}=\Gamma(\alpha) \sin (\pi \alpha \hat{\rho}) / \pi$.

Moreover, the characteristic exponent of $\stackrel{\dddot{\xi}}{ }$ is given by

$$
\dddot{\Psi}(z)=\frac{\Gamma(\alpha \rho-\mathrm{i} z)}{\Gamma(-\mathrm{i} z)} \frac{\Gamma(1-\alpha \rho+\mathrm{i} z)}{\Gamma(1-\alpha+\mathrm{i} z)}, \quad z \in \mathbb{R}
$$

THE RADIAL PART OF A STABLE PROCESS

- Suppose that X is a symmetric stable process, i.e $\rho=1 / 2$.
- We know that $|X|$ is a pssMp.

Theorem

Suppose that the underlying Lévy process for $|X|$ is written ξ, then it characteristic exponent is given by

$$
\Psi(z)=2^{\alpha} \frac{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+\alpha)\right)}{\Gamma\left(-\frac{1}{2} \mathrm{i} z\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+1)\right)}{\Gamma\left(\frac{1}{2}(\mathrm{i} z+1-\alpha)\right)}, \quad z \in \mathbb{R} .
$$

Hypergeometric Lévy processes (REminder)

Definition (and Theorem)

For $(\beta, \gamma, \hat{\beta}, \hat{\gamma})$ in

$$
\{\beta \leq 2, \gamma, \hat{\gamma} \in(0,1) \hat{\beta} \geq-1, \text { and } 1-\beta+\hat{\beta}+\gamma \wedge \hat{\gamma} \geq 0\}
$$

there exists a (killed) Lévy process, henceforth refered to as a hypergeometric Lévy process, having the characteristic function

$$
\Psi(z)=\frac{\Gamma(1-\beta+\gamma-\mathrm{i} z)}{\Gamma(1-\beta-\mathrm{i} z)} \frac{\Gamma(\hat{\beta}+\hat{\gamma}+\mathrm{i} z)}{\Gamma(\hat{\beta}+\mathrm{i} z)} \quad z \in \mathbb{R}
$$

The Lévy measure of Y has a density with respect to Lebesgue measure is given by

$$
\pi(x)= \begin{cases}-\frac{\Gamma(\eta)}{\Gamma(\eta-\hat{\gamma}) \Gamma(-\gamma)} \mathrm{e}^{-(1-\beta+\gamma){ }_{2} F_{1}\left(1+\gamma, \eta ; \eta-\hat{\gamma} ; \mathrm{e}^{-x}\right),} & \text { if } x>0 \\ -\frac{\Gamma(\eta)}{\Gamma(\eta-\gamma) \Gamma(-\hat{\gamma})} \mathrm{e}^{(\hat{\beta}+\hat{\gamma}) x_{2} F_{1}\left(1+\hat{\gamma}, \eta ; \eta-\gamma ; \mathrm{e}^{x}\right),} & \text { if } x<0\end{cases}
$$

where $\eta:=1-\beta+\gamma+\hat{\beta}+\hat{\gamma}$, for $|z|<1,{ }_{2} F_{1}(a, b ; c ; z):=\sum_{k \geq 0} \frac{(a)_{k}(b)_{k}}{(c)_{k} k!} z^{k}$.

§5. Entrance Laws

Starting from zero

- We have carefully avoided the issue of talking about pssMp issued from the origin.

Starting from zero

- We have carefully avoided the issue of talking about pssMp issued from the origin.
- This should ring alarm bells when we look at the Lamperti transform

$$
\mathrm{Z}_{t}^{(x)} \mathbf{1}_{\left(t<\zeta^{(x)}\right)}=x \exp \left\{\xi_{\varphi\left(x^{-\alpha}\right)}\right\}=\exp \left\{\xi_{\varphi\left(x^{-\alpha} t\right)}+\log x\right\}, \quad t \geq 0
$$

- On the one hand $\log x \downarrow-\infty$, which is the point of issue of ξ, but

$$
\varphi\left(x^{-\alpha} t\right)=\inf \left\{s>0: \int_{0}^{s} \mathrm{e}^{\alpha\left(\xi_{u}+\log x\right)} \mathrm{d} u>t\right\}
$$

meaning that we are sampling the Lévy process over a longer and longer time horizon.

Starting from zero

- We have carefully avoided the issue of talking about pssMp issued from the origin.
- This should ring alarm bells when we look at the Lamperti transform

$$
Z_{t}^{(x)} \mathbf{1}_{\left(t<\zeta^{(x)}\right)}=x \exp \left\{\xi_{\varphi(x-\alpha)}\right\}=\exp \left\{\xi_{\varphi\left(x-\alpha_{t}\right)}+\log x\right\}, \quad t \geq 0
$$

- On the one hand $\log x \downarrow-\infty$, which is the point of issue of ξ, but

$$
\varphi\left(x^{-\alpha} t\right)=\inf \left\{s>0: \int_{0}^{s} \mathrm{e}^{\alpha\left(\xi_{u}+\log x\right)} \mathrm{d} u>t\right\}
$$

meaning that we are sampling the Lévy process over a longer and longer time horizon.

- We know that 0 is an absorbing point, but it might also be an entrance point (can it be both?).

Starting from zero

- We have carefully avoided the issue of talking about pssMp issued from the origin.
- This should ring alarm bells when we look at the Lamperti transform

$$
Z_{t}^{(x)} \mathbf{1}_{\left(t<\zeta^{(x)}\right)}=x \exp \left\{\xi_{\varphi(x-\alpha)}\right\}=\exp \left\{\xi_{\varphi\left(x-\alpha_{t}\right)}+\log x\right\}, \quad t \geq 0
$$

- On the one hand $\log x \downarrow-\infty$, which is the point of issue of ξ, but

$$
\varphi\left(x^{-\alpha} t\right)=\inf \left\{s>0: \int_{0}^{s} \mathrm{e}^{\alpha\left(\xi_{u}+\log x\right)} \mathrm{d} u>t\right\}
$$

meaning that we are sampling the Lévy process over a longer and longer time horizon.

- We know that 0 is an absorbing point, but it might also be an entrance point (can it be both?).
- We know that some of our new friends have no problem using the origin as an entrance point, e.g. $|X|$, where X is an α-stable process (or Brownian motion).

Starting from zero

- We have carefully avoided the issue of talking about pssMp issued from the origin.
- This should ring alarm bells when we look at the Lamperti transform

$$
Z_{t}^{(x)} \mathbf{1}_{\left(t<\zeta^{(x)}\right)}=x \exp \left\{\xi_{\varphi(x-\alpha)}\right\}=\exp \left\{\xi_{\varphi\left(x-\alpha_{t}\right)}+\log x\right\}, \quad t \geq 0
$$

- On the one hand $\log x \downarrow-\infty$, which is the point of issue of ξ, but

$$
\varphi\left(x^{-\alpha} t\right)=\inf \left\{s>0: \int_{0}^{s} \mathrm{e}^{\alpha\left(\xi_{u}+\log x\right)} \mathrm{d} u>t\right\}
$$

meaning that we are sampling the Lévy process over a longer and longer time horizon.

- We know that 0 is an absorbing point, but it might also be an entrance point (can it be both?).
- We know that some of our new friends have no problem using the origin as an entrance point, e.g. $|X|$, where X is an α-stable process (or Brownian motion).
- We know that some of our new friends have no problem using the origin as an entrance point, but also a point of recurrence, e.g. $X-\underline{X}$, where X is an α-stable process (or Brownian motion).

Starting from zero

$>$ We want to find a way to give a meaning to " $\mathbb{P}_{0}:=\lim _{x \downarrow 0} \mathbb{P}_{x}$ ".

Starting from zero

- We want to find a way to give a meaning to " $\mathbb{P}_{0}:=\lim _{x \downarrow 0} \mathbb{P}_{x}$ ".
- Could look at behaviour of the transition semigroup of Z as its initial value tends to zero. That is to say, to consider whether the weak limit below is well defined:

$$
\mathbb{P}_{0}\left(Z_{t} \in \mathrm{~d} y\right):=\lim _{x \downarrow 0} \mathbb{P}_{x}\left(Z_{t} \in \mathrm{~d} y\right), \quad t, y>0 .
$$

Starting from zero

D We want to find a way to give a meaning to " $\mathbb{P}_{0}:=\lim _{x \downarrow 0} \mathbb{P}_{x}$ ".

- Could look at behaviour of the transition semigroup of Z as its initial value tends to zero. That is to say, to consider whether the weak limit below is well defined:

$$
\mathbb{P}_{0}\left(Z_{t} \in \mathrm{~d} y\right):=\lim _{x \downarrow 0} \mathbb{P}_{x}\left(Z_{t} \in \mathrm{~d} y\right), \quad t, y>0 .
$$

- In that case, for any sequence of times $0<t_{1} \leq t_{2} \leq \cdots \leq t_{n}<\infty$ and $y_{1}, \cdots, y_{n} \in(0, \infty), n \in \mathbb{N}$, the Markov property gives us

$$
\begin{aligned}
\mathbb{P}_{0}\left(Z_{t_{1}}\right. & \left.\in \mathrm{d} y_{1}, \cdots, Z_{t_{n}} \in \mathrm{~d} y_{n}\right) \\
& :=\lim _{x \downarrow 0} \mathbb{P}_{x}\left(Z_{t_{1}} \in \mathrm{~d} y_{1}, \cdots, Z_{t_{n}} \in \mathrm{~d} y_{n}\right) \\
& =\lim _{x \downarrow 0} \mathbb{P}_{x}\left(Z_{t_{1}} \in \mathrm{~d} y_{1}\right) \mathbb{P}_{y_{1}}\left(Z_{t_{2}-t_{1}} \in \mathrm{~d} y_{2}, \cdots, Z_{t_{n}-t_{2}} \in \mathrm{~d} y_{n}\right) \\
& =\mathbb{P}_{0}\left(Z_{t_{1}} \in \mathrm{~d} y_{1}\right) \mathbb{P}_{y_{1}}\left(Z_{t_{2}-t_{1}} \in \mathrm{~d} y_{2}, \cdots, Z_{t_{n}-t_{2}} \in \mathrm{~d} y_{n}\right) .
\end{aligned}
$$

When the limit exists, it implies the existence of \mathbb{P}_{0} as limit of \mathbb{P}_{x} as $x \downarrow 0$, in the sense of convergence of finite-dimensional distributions.

Starting from zero

$>$ We would like a stronger sense of convergence e.g. we would like

$$
\mathbb{E}_{0}\left[f\left(Z_{s}: s \leq t\right)\right]:=\lim _{x \rightarrow 0} \mathbb{E}_{x}\left[f\left(Z_{s}: s \leq t\right)\right]
$$

for an appropriate measurable function on cadlag paths of length t.

Starting from zero

- We would like a stronger sense of convergence e.g. we would like

$$
\mathbb{E}_{0}\left[f\left(Z_{s}: s \leq t\right)\right]:=\lim _{x \rightarrow 0} \mathbb{E}_{x}\left[f\left(Z_{s}: s \leq t\right)\right]
$$

for an appropriate measurable function on cadlag paths of length t.

- The right setting to discuss distributional convergence is with respect to so-called Skorokhod topology.

Starting from zero

- We would like a stronger sense of convergence e.g. we would like

$$
\mathbb{E}_{0}\left[f\left(Z_{s}: s \leq t\right)\right]:=\lim _{x \rightarrow 0} \mathbb{E}_{x}\left[f\left(Z_{s}: s \leq t\right)\right]
$$

for an appropriate measurable function on cadlag paths of length t.

- The right setting to discuss distributional convergence is with respect to so-called Skorokhod topology.
- ROUGHLY: There is a metric on cadlag path space which does a better job of measuring how "close" two paths are than e.g. the uniform functional metric.
- This metric induces a topology (the Skorokhod topology). From this topology, we build a measurable space around the space of cadlag paths.
- Think of $\mathbb{P}_{x}, x>0$ as a family of measures on this space and we want weak convergence " $\mathbb{P}_{0}:=\lim _{x \rightarrow 0} \mathbb{P}_{x}$ " on this space.

Starting from zero

Theorem

Suppose that $\left(\xi, \mathbf{P}_{x}\right), x \in \mathbb{R}$ is the Lévy process (not a compound Poisson process) underlying the $\operatorname{pssMp}\left(Z, \mathbb{P}_{x}\right), x>0$. The limit $\mathbb{P}_{0}:=\lim _{x \rightarrow 0} \mathbb{P}_{x}$ exists in the sense of convergence with respect to the Skorokhod topology if and only if $\mathbf{E}_{0}\left(H_{1}^{+}\right)<\infty\left(H^{+}\right.$is the ascending ladder process of ξ). Under the assumption that $\mathbb{E}\left(\xi_{1}\right)>0$, for any positive measurable function f and $t>0$,

$$
\mathbb{E}_{0}\left(f\left(Z_{t}\right)\right)=\frac{1}{-\alpha \hat{\mathbf{E}}_{0}\left(\xi_{1}\right)} \hat{\mathbf{E}}_{0}\left(\frac{1}{I_{\infty}} f\left(\left(\frac{t}{I_{\infty}}\right)^{1 / \alpha}\right)\right)
$$

where $I_{\infty}=\int_{0}^{\infty} \mathrm{e}^{\alpha \xi_{t}} \mathrm{~d} t$ and $\left(\xi, \hat{\mathbf{P}}_{0}\right)$ is equal in law to $\left(-\xi, \mathbf{P}_{0}\right)$.

RECURRENT EXTENSION

- The previous construction has insisted that Z is a pssMp with $\zeta=\infty$ a.s. But what about the case that $\zeta<\infty$ a.s.

RECURRENT EXTENSION

- The previous construction has insisted that Z is a $p s s M p$ with $\zeta=\infty$ a.s. But what about the case that $\zeta<\infty$ a.s.
- We can say something about the case that $\zeta<\infty$ a.s. and $X_{\zeta-}=0$.

RECURRENT EXTENSION

- The previous construction has insisted that Z is a $p s s M p$ with $\zeta=\infty$ a.s. But what about the case that $\zeta<\infty$ a.s.
- We can say something about the case that $\zeta<\infty$ a.s. and $X_{\zeta-}=0$.
- A cadlag strong Markov process, $\vec{Z}:=\left\{\vec{Z}_{t}: t \geq 0\right\}$ with probabilities $\left\{\vec{P}_{x}, x \geq 0\right\}$, is a recurrent extension of Z if, for each $x>0$, the origin is not an absorbing state \vec{P}_{x}-almost surely and $\left\{\vec{Z}_{t \wedge \zeta}: t \geq 0\right\}$ under \vec{P}_{x} has the same law as $\left(Z, P_{x}\right)$, where

$$
\vec{\zeta}=\inf \left\{t>0: \vec{Z}_{t}=0\right\}
$$

RECURRENT EXTENSION

- The previous construction has insisted that Z is a $p s s M p$ with $\zeta=\infty$ a.s. But what about the case that $\zeta<\infty$ a.s.
- We can say something about the case that $\zeta<\infty$ a.s. and $X_{\zeta-}=0$.
- A cadlag strong Markov process, $\vec{Z}:=\left\{\vec{Z}_{t}: t \geq 0\right\}$ with probabilities $\left\{\vec{P}_{x}, x \geq 0\right\}$, is a recurrent extension of Z if, for each $x>0$, the origin is not an absorbing state \vec{P}_{x}-almost surely and $\left\{\vec{Z}_{t \wedge} \vec{\zeta}: t \geq 0\right\}$ under \vec{P}_{x} has the same law as $\left(Z, P_{x}\right)$, where

$$
\vec{\zeta}=\inf \left\{t>0: \vec{Z}_{t}=0\right\}
$$

Theorem

If $\zeta<\infty$ a.s. and $X_{\zeta-}=0$, then there exists a unique recurrent extension of Z which leaves 0 continuously if and only if there exists a $\beta \in(0, \alpha)$ such

$$
\mathbf{E}_{0}\left(\mathrm{e}^{\beta \xi_{1}}\right)=1
$$

Here, as usual, α is the index of self-similarity.

§6. Real valued self-similar Markov processes

- So far we only spoke about $[0, \infty)$.
- This necessitated an incursion into the theory of Lévy processes
- So far we only spoke about $[0, \infty)$.
- This necessitated an incursion into the theory of Lévy processes
- What can we say about \mathbb{R}-valued self-similar Markov processes.
- This requires an incursion into the theory of Markov Additive (Lévy) Processes

Markov additive processes (MAPs)

- E is a finite state space
- $(J(t))_{t \geq 0}$ is a continuous-time, irreducible Markov chain on E
- process (ξ, J) in $\mathbb{R} \times E$ is called a Markov additive process (MAP) with probabilities $\mathbf{P}_{x, i}, x \in \mathbb{R}, i \in E$, if, for any $i \in E, s, t \geq 0$: Given $\{J(t)=i\}$, $(\xi(t+s)-\xi(t), J(t+s)) \stackrel{d}{=}(\xi(s), J(s))$ with law $\mathbf{P}_{0, i}$.

Pathwise description of a MAP

The pair (ξ, J) is a Markov additive process if and only if, for each $i, j \in E$,

- there exist a sequence of iid Lévy processes $\left(\xi_{i}^{n}\right)_{n \geq 0}$
- and a sequence of iid random variables $\left(U_{i j}^{n}\right)_{n \geq 0}$, independent of the chain J,
such that if $T_{0}=0$ and $\left(T_{n}\right)_{n \geq 1}$ are the jump times of J, the process ξ has the representation

$$
\xi(t)=\mathbf{1}_{(n>0)}\left(\xi\left(T_{n}-\right)+U_{J\left(T_{n}-\right), J\left(T_{n}\right)}^{n}\right)+\xi_{J\left(T_{n}\right)}^{n}\left(t-T_{n}\right),
$$

for $t \in\left[T_{n}, T_{n+1}\right), n \geq 0$.

CHARACTERISTICS OF A MAP

- Denote the transition rate matrix of the chain J by $\mathbf{Q}=\left(q_{i j}\right)_{i, j \in E}$.
\Rightarrow For each $i \in E$, the Laplace exponent of the Lévy process ξ_{i} will be written ψ_{i} (when it exists).
- For each pair of $i, j \in E$ with $i \neq j$, define the Laplace transform $G_{i j}(z)=\mathbb{E}\left(e^{z u_{i j}}\right)$ of the jump distribution $U_{i j}$ (when it exists).
- Otherwise define $U_{i, i} \equiv 0$, for each $i \in E$.
- Write $G(z)$ for the $N \times N$ matrix whose (i, j) th element is $G_{i j}(z)$.
- Let

$$
\Psi(z)=\operatorname{diag}\left(\psi_{1}(z), \ldots, \psi_{N}(z)\right)+\mathbf{Q} \circ G(z)
$$

(when it exists), where \circ indicates elementwise multiplication.

- The matrix exponent of the $\operatorname{MAP}(\xi, J)$ is given by

$$
\mathbf{E}_{0, i}\left(e^{z \xi(t)} ; J(t)=j\right)=\left(e^{\Psi(z) t}\right)_{i, j}, \quad i, j \in E
$$

(when it exists).

DUAL MAP

- Thanks to irreducibility, the Markov chain J necessarily has a stationary distribution. We denote it by the vector $\boldsymbol{\pi}=\left(\pi_{1}, \cdots, \pi_{N}\right)$.
- Each MAP has a dual process, also a MAP, with probabilities $\hat{\mathbf{P}}_{x, i}, x \in \mathbb{R}, i \in E$, determined by the dual characteristic matrix exponent (when it exists),

$$
\hat{\Psi}(z):=\operatorname{diag}\left(-\Psi_{1}(-z), \cdots,-\Psi_{N}(-z)\right)+\hat{\boldsymbol{Q}} \circ \boldsymbol{G}(-z)^{\mathrm{T}},
$$

where \hat{Q} is the time-reversed Markov chain J,

$$
\hat{q}_{i, j}=\frac{\pi_{j}}{\pi_{i}} q_{j, i}, \quad i, j \in E .
$$

Note that the latter can also be written $\hat{Q}=\boldsymbol{\Delta}_{\pi}^{-1} \boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\Delta}_{\boldsymbol{\pi}}$, where $\boldsymbol{\Delta}_{\boldsymbol{\pi}}=\operatorname{diag}(\boldsymbol{\pi})$.

- When it exists,

$$
\hat{\boldsymbol{\Psi}}(z)=\boldsymbol{\Delta}_{\pi}^{-1} \boldsymbol{\Psi}(-z)^{\mathrm{T}} \boldsymbol{\Delta}_{\pi}
$$

showing that

$$
\pi_{i} \hat{\mathbf{E}}_{0, i}\left[\mathrm{e}^{\mathrm{i} z \xi_{t}}, J_{t}=j\right]=\pi_{j} \mathbf{E}_{0, j}\left[\mathrm{e}^{-\mathrm{i} z \xi_{t}}, J_{t}=i\right] .
$$

Lemma

The time-reversed process $\left(\left(\xi_{(t-s)-}-\xi_{t}, J_{(t-s)-}\right), s \leq t\right)$ under $\mathbf{P}_{0, \boldsymbol{\pi}}$ is equal in law to $\left(\left(\xi_{s}, J_{s}\right), s \leq t\right)$ under $\hat{\mathbf{P}}_{0, \boldsymbol{\pi}}$.

LAMPERTI-KIU TRANSFORM

- Take J to be irreducible on $E=\{1,-1\}$.
\Rightarrow For each $x \in \mathbb{R}$, let $\xi_{0}=\log |x|$ and $J_{0}=\operatorname{sign}(x)$.

LAMPERTI-KIU TRANSFORM

- Take J to be irreducible on $E=\{1,-1\}$.
\Rightarrow For each $x \in \mathbb{R}$, let $\xi_{0}=\log |x|$ and $J_{0}=\operatorname{sign}(x)$.
- Let

$$
Z_{t}=\mathrm{e}^{\xi_{\tau(t)}} J_{\tau(t)} \quad 0 \leq t<T_{0}
$$

where

$$
\tau(t)=\inf \left\{s>0: \int_{0}^{s} \exp (\alpha \xi(u)) \mathrm{d} u>t\right\}
$$

and

$$
T_{0}=\int_{0}^{\infty} \mathrm{e}^{\alpha \xi(u)} \mathrm{d} u
$$

- Then Z_{t} is a real-valued self-similar Markov process issued from $x \in \mathbb{R}$, in the sense that the law of $\left(c Z_{t c}-\alpha: t \geq 0\right)$ under \mathbb{P}_{x} is $\mathbb{P}_{c x}$.

LAMPERTI-KIU TRANSFORM

- Take J to be irreducible on $E=\{1,-1\}$.
\Rightarrow For each $x \in \mathbb{R}$, let $\xi_{0}=\log |x|$ and $J_{0}=\operatorname{sign}(x)$.
- Let

$$
Z_{t}=\mathrm{e}^{\xi_{\tau(t)}} J_{\tau(t)} \quad 0 \leq t<T_{0}
$$

where

$$
\tau(t)=\inf \left\{s>0: \int_{0}^{s} \exp (\alpha \xi(u)) \mathrm{d} u>t\right\}
$$

and

$$
T_{0}=\int_{0}^{\infty} \mathrm{e}^{\alpha \xi(u)} \mathrm{d} u
$$

- Then Z_{t} is a real-valued self-similar Markov process issued from $x \in \mathbb{R}$, in the sense that the law of $\left(c Z_{t c}-\alpha: t \geq 0\right)$ under \mathbb{P}_{x} is $\mathbb{P}_{c x}$.
\triangleright The converse (within a special class of rssMps) is also true.

Entrance at zero

- Given the Lamperti-Kiu representation

$$
\mathrm{Z}_{t}=\mathrm{e}^{\xi\left(\tau\left(|x|^{-\alpha} t\right)\right)+\log |x|} J\left(\tau\left(|x|^{-\alpha} t\right)\right) \quad 0 \leq t<T_{0}
$$

it is clear that we can think of a similar construction from zero to the case of pssMp.

Entrance at zero

- Given the Lamperti-Kiu representation

$$
Z_{t}=\mathrm{e}^{\xi\left(\tau\left(|x|^{-\alpha} t\right)\right)+\log |x|} J\left(\tau\left(|x|^{-\alpha} t\right)\right) \quad 0 \leq t<T_{0}
$$

it is clear that we can think of a similar construction from zero to the case of pssMp.

- We need to construct a stationary version of the pair (ξ, J) which is indexed by \mathbb{R} and pinned at space-time point $(-\infty, \infty)$.

Entrance at zero

- Given the Lamperti-Kiu representation

$$
Z_{t}=\mathrm{e}^{\xi\left(\tau\left(|x|^{-\alpha} t\right)\right)+\log |x|} J\left(\tau\left(|x|^{-\alpha} t\right)\right) \quad 0 \leq t<T_{0}
$$

it is clear that we can think of a similar construction from zero to the case of pssMp.

- We need to construct a stationary version of the pair (ξ, J) which is indexed by \mathbb{R} and pinned at space-time point $(-\infty, \infty)$.
- Just like the theory of Lévy processes, by observing the range of the process $\left(\xi_{t}, J_{t}\right)$ $t \geq 0$, only at the points of its new suprema, we see a process $\left(H_{t}^{+}, J_{t}^{+}\right), t \geq 0$, which is also a MAP, where H^{+}is has increasing paths.

Entrance at zero

Theorem

Assume that Z is a conservative real self-similar Markov process. Moreover, suppose that the MAP $((\xi, \Theta), \mathbf{P})$, associated with Z through the Lamperti-Kiu transform, is such that ξ is not concentrated on a lattice and its ascending ladder height process H which satisfies $\mathbf{E}_{0, \boldsymbol{\pi}}\left(H_{1}\right)<\infty$. Then $\mathbb{P}_{0}:=\lim _{x \downarrow 0} \mathbb{P}_{x}$ exists, in the sense of convergence of on the Skorokhod space, under which Z leaves the origin continuously. Conversely, if $\mathbf{E}_{0, \boldsymbol{\pi}}\left(H_{1}\right)=\infty$, then this limit does not exist. Under the additional assumption that $\mathbf{E}_{0, \boldsymbol{\pi}}\left(\xi_{1}\right)>0$, for any positive measurable function f and $t>0$,

$$
\begin{equation*}
\mathbb{E}_{0}\left(f\left(Z_{t}\right)\right)=\frac{1}{-\alpha \hat{\mathbf{E}}_{0, \boldsymbol{\pi}}\left(\xi_{1}\right)} \sum_{i= \pm 1} \pi_{i} \hat{\mathbf{E}}_{0, i}\left(\frac{1}{I_{\infty}} f\left(i\left(\frac{t}{I_{\infty}}\right)^{1 / \alpha}\right)\right) \tag{3}
\end{equation*}
$$

where $I_{\infty}=\int_{0}^{\infty} \exp \left\{\alpha \xi_{s}\right\} \mathrm{d} s$, and $\hat{\mathbf{E}}_{x, i}, x \in \mathbb{R}, i= \pm 1$.

An α-STABLE PROCESS IS A RSSMP

- An α-stable process up to absorption in the origin is a rssMp.
\Rightarrow When $\alpha \in(0,1]$, the process never hits the origin a.s.

An α-STABLE PROCESS IS A RSSMP

- An α-stable process up to absorption in the origin is a rssMp.
- When $\alpha \in(0,1]$, the process never hits the origin a.s.
- When $\alpha \in(1,2)$, the process is absorbs at the origin a.s.

AN α-STABLE PROCESS IS A RSSMP

- An α-stable process up to absorption in the origin is a rssMp.
\Rightarrow When $\alpha \in(0,1]$, the process never hits the origin a.s.
\checkmark When $\alpha \in(1,2)$, the process is absorbs at the origin a.s.
\rightarrow The matrix exponent of the underlying MAP is given by:

$$
\left[\begin{array}{cc}
-\frac{\Gamma(\alpha-z) \Gamma(1+z)}{\Gamma(\alpha \hat{\rho}-z) \Gamma(1-\alpha \hat{\rho}+z)} & \frac{\Gamma(\alpha-z) \Gamma(1+z)}{\Gamma(\alpha \hat{\rho}) \Gamma(1-\alpha \hat{\rho})} \\
\frac{\Gamma(\alpha-z) \Gamma(1+z)}{\Gamma(\alpha \rho) \Gamma(1-\alpha \rho)} & -\frac{\Gamma(\alpha-z) \Gamma(1+z)}{\Gamma(\alpha \rho-z) \Gamma(1-\alpha \rho+z)}
\end{array}\right]
$$

for $\operatorname{Re}(z) \in(-1, \alpha)$. Note a matrix A in this context is arranged with the ordering

$$
\left(\begin{array}{cc}
A_{1,1} & A_{1,-1} \\
A_{-1,1} & A_{-1,-1}
\end{array}\right)
$$

ESSCHER TRANSFORM FOR MAPS

- If $\Psi(z)$ is well defined then it has a real simple eigenvalue $\chi(z)$, which is larger than the real part of all its other eigenvalues.
\Rightarrow Furthermore, the corresponding right-eigenvector $\mathbf{v}(z)=\left(v_{1}(z), \cdots, v_{N}(z)\right)$ has strictly positive entries and may be normalised such that $\pi \cdot \mathbf{v}(z)=1$.

Theorem

Let $\mathcal{G}_{t}=\sigma\{(\xi(s), J(s)): s \leq t\}, t \geq 0$, and

$$
M_{t}:=\mathrm{e}^{\gamma \xi(t)-\chi(\gamma) t} \frac{v_{J(t)}(\gamma)}{v_{i}(\gamma)}, \quad t \geq 0
$$

for some $\gamma \in \mathbb{R}$ such that $\chi(\gamma)$ is defined. Then, $M_{t}, t \geq 0$, is a unit-mean martingale. Moreover, under the change of measure

$$
\left.\mathrm{d} \mathbf{P}_{0, i}^{\gamma}\right|_{\mathcal{G}_{t}}=\left.M_{t} \mathrm{~d} \mathbf{P}_{0, i}\right|_{\mathcal{G}_{t}}, \quad t \geq 0
$$

the process (ξ, J) remains in the class of MAPs with new exponent given by

$$
\boldsymbol{\Psi}_{\gamma}(z)=\boldsymbol{\Delta}_{v}(\gamma)^{-1} \boldsymbol{\Psi}(z+\gamma) \boldsymbol{\Delta}_{v}(\gamma)-\chi(\gamma) \mathbf{I}
$$

Here, \mathbf{I} is the identity matrix and $\boldsymbol{\Delta}_{v}(\gamma)=\operatorname{diag}(\boldsymbol{v}(\gamma))$.

EsSCHER AND DRIFT

\rightarrow Suppose that χ is defined in some open interval D of \mathbb{R}, then, it is smooth and convex on D.

EsSCHER AND DRIFT

- Suppose that χ is defined in some open interval D of \mathbb{R}, then, it is smooth and convex on D.
- Since $\Psi(0)=-\mathbf{Q}$, if, moreover, J is irreducible, we always have $\chi(0)=0$ and $\mathbf{v}(0)=(1, \cdots, 1)$. So $0 \in D$ and $\chi^{\prime}(0)$ is well defined and finite.

EsSCHER AND DRIFT

- Suppose that χ is defined in some open interval D of \mathbb{R}, then, it is smooth and convex on D.
- Since $\Psi(0)=-\mathbf{Q}$, if, moreover, J is irreducible, we always have $\chi(0)=0$ and $\mathbf{v}(0)=(1, \cdots, 1)$. So $0 \in D$ and $\chi^{\prime}(0)$ is well defined and finite.
- With all of the above

$$
\lim _{t \rightarrow \infty} \frac{\xi_{t}}{t}=\chi^{\prime}(0) \quad \text { a.s. }
$$

Esscher and the stable-MAP

- For the MAP that underlies the stable process $D=(-1, \alpha)$, it can be checked that $\operatorname{det} \Psi(\alpha-1)=0$ i.e. $\chi(\alpha-1)=0$, which makes

$$
\begin{aligned}
\boldsymbol{\Psi}^{\circ}(z) & =\boldsymbol{\Delta}^{-1} \boldsymbol{\Psi}(z+\alpha-1) \boldsymbol{\Delta} \\
& =\left[\begin{array}{cc}
-\frac{\Gamma(1-z) \Gamma(\alpha+z)}{\Gamma(1-\alpha \rho-z) \Gamma(\alpha \rho+z)} & \frac{\Gamma(1-z) \Gamma(\alpha+z)}{\Gamma(\alpha \rho) \Gamma(1-\alpha \rho)} \\
\frac{\Gamma(1-z) \Gamma(\alpha+z)}{\Gamma(\alpha \hat{\rho}) \Gamma(1-\alpha \hat{\rho})} & -\frac{\Gamma(1-z) \Gamma(\alpha+z)}{\Gamma(1-\alpha \hat{\rho}-z) \Gamma(\alpha \hat{\rho}+z)}
\end{array}\right]
\end{aligned}
$$

where $\boldsymbol{\Delta}=\operatorname{diag}(\sin (\pi \alpha \hat{\rho}), \sin (\pi \alpha \rho))$.

Esscher and the stable-MAP

\Rightarrow For the MAP that underlies the stable process $D=(-1, \alpha)$, it can be checked that $\operatorname{det} \Psi(\alpha-1)=0$ i.e. $\chi(\alpha-1)=0$, which makes

$$
\begin{aligned}
\boldsymbol{\Psi}^{\circ}(z) & =\boldsymbol{\Delta}^{-1} \boldsymbol{\Psi}(z+\alpha-1) \boldsymbol{\Delta} \\
& =\left[\begin{array}{cc}
-\frac{\Gamma(1-z) \Gamma(\alpha+z)}{\Gamma(1-\alpha \rho-z) \Gamma(\alpha \rho+z)} & \frac{\Gamma(1-z) \Gamma(\alpha+z)}{\Gamma(\alpha \rho) \Gamma(1-\alpha \rho)} \\
\frac{\Gamma(1-z) \Gamma(\alpha+z)}{\Gamma(\alpha \hat{\rho}) \Gamma(1-\alpha \hat{\rho})} & -\frac{\Gamma(1-z) \Gamma(\alpha+z)}{\Gamma(1-\alpha \hat{\rho}-z) \Gamma(\alpha \hat{\rho}+z)}
\end{array}\right]
\end{aligned}
$$

where $\boldsymbol{\Delta}=\operatorname{diag}(\sin (\pi \alpha \hat{\rho}), \sin (\pi \alpha \rho))$.

- When $\alpha \in(0,1), \chi^{\prime}(0)>0$ (because the stable process never touches the origin a.s.) and $\Psi^{\circ}(z)$-MAP drifts to $-\infty$

EsSCHER AND THE STABLE-MAP

\Rightarrow For the MAP that underlies the stable process $D=(-1, \alpha)$, it can be checked that $\operatorname{det} \Psi(\alpha-1)=0$ i.e. $\chi(\alpha-1)=0$, which makes

$$
\begin{aligned}
\boldsymbol{\Psi}^{\circ}(z) & =\boldsymbol{\Delta}^{-1} \boldsymbol{\Psi}(z+\alpha-1) \boldsymbol{\Delta} \\
& =\left[\begin{array}{cc}
-\frac{\Gamma(1-z) \Gamma(\alpha+z)}{\Gamma(1-\alpha \rho-z) \Gamma(\alpha \rho+z)} & \frac{\Gamma(1-z) \Gamma(\alpha+z)}{\Gamma(\alpha \rho) \Gamma(1-\alpha \rho)} \\
\frac{\Gamma(1-z) \Gamma(\alpha+z)}{\Gamma(\alpha \hat{\rho}) \Gamma(1-\alpha \hat{\rho})} & -\frac{\Gamma(1-z) \Gamma(\alpha+z)}{\Gamma(1-\alpha \hat{\rho}-z) \Gamma(\alpha \hat{\rho}+z)}
\end{array}\right]
\end{aligned}
$$

where $\boldsymbol{\Delta}=\operatorname{diag}(\sin (\pi \alpha \hat{\rho}), \sin (\pi \alpha \rho))$.

- When $\alpha \in(0,1), \chi^{\prime}(0)>0$ (because the stable process never touches the origin a.s.) and $\Psi^{\circ}(z)$-MAP drifts to $-\infty$
- When $\alpha \in(1,2), \chi^{\prime}(0)<0$ (because the stable process touches the origin a.s.) and $\Psi^{\circ}(z)$-MAP drifts to $+\infty$.

RIESZ-BOGDAN-ZAK TRANSFORM

Theorem (Riesz-Bogdan-Zak transform)

Suppose that X is an α-stable process as outlined in the introduction. Define

$$
\eta(t)=\inf \left\{s>0: \int_{0}^{s}\left|X_{u}\right|^{-2 \alpha} \mathrm{~d} u>t\right\}, \quad t \geq 0
$$

Then, for all $x \in \mathbb{R} \backslash\{0\},\left(-1 / X_{\eta(t)}\right)_{t \geq 0}$ under \mathbb{P}_{x} is equal in law to $\left(X, \mathbb{P}_{-1 / x}^{\circ}\right)$, where

$$
\left.\left.\frac{\mathrm{d} \mathbb{P}_{x}^{\circ}}{\mathrm{d} \mathbb{P}_{x}}\right|_{\mathcal{F}_{t}}=\left(\frac{\sin (\pi \alpha \rho)+\sin (\pi \alpha \hat{\rho})-(\sin (\pi \alpha \rho)-\sin (\pi \alpha \hat{\rho})) \operatorname{sgn}\left(X_{t}\right)}{\sin (\pi \alpha \rho)+\sin (\pi \alpha \hat{\rho})-(\sin (\pi \alpha \rho)-\sin (\pi \alpha \hat{\rho})) \operatorname{sgn}(x)}\right)\left|\frac{X_{t}}{x}\right|^{\alpha-1} \mathbf{1}_{(t<\tau}{ }^{20\}}\right)
$$

and $\mathcal{F}_{t}:=\sigma\left(X_{s}: s \leq t\right), t \geq 0$. Moreover, the process $\left(X, \mathbb{P}_{x}^{\circ}\right), x \in \mathbb{R} \backslash\{0\}$ is a self-similar Markov process with underlying MAP via the Lamperti-Kiu transform given by $\Psi^{\circ}(z)$.

What is the Ψ°-MAP?

Thinking of the affect on the long term behaviour of the underlying MAP of the Esscher transform

- When $\alpha \in(0,1),\left(X, \mathbb{P}_{x}^{\circ}\right), x \neq 0$ has the law of the the stable process conditioned to absorb continuously at the origin in the sense,

$$
\mathbb{P}_{y}^{\circ}(A)=\lim _{a \rightarrow 0} \mathbb{P}_{y}\left(A, t<T_{0} \mid \tau_{(-a, a)}<\infty\right)
$$

for $A \in \mathcal{F}_{t}=\sigma\left(X_{s}, s \leq t\right)$,
$\tau_{(-a, a)}=\inf \left\{t>0:\left|X_{t}\right|<a\right\}$ and $T_{0}=\inf \left\{t>0: X_{t}=0\right\}$.

- When $\alpha \in(1,2),\left(X, \mathbb{P}_{x}^{\circ}\right), x \neq 0$ has the law of the stable process conditioned to avoid the origin in the sense

$$
\mathbb{P}_{y}^{\circ}(A)=\lim _{s \rightarrow \infty} \mathbb{P}_{y}\left(A \mid T_{0}>t+s\right),
$$

for $A \in \mathcal{F}_{t}=\sigma\left(X_{s}, s \leq t\right)$ and $T_{0}=\inf \left\{t>0: X_{t}=0\right\}$.

§Exercise Set 1

ExERCISES

1. Suppose that X is a stable process in any dimension (including the case of a Brownian motion). Show that $|X|$ is a positive self-similar Markov process.
2. Suppose that B is a one-dimensional Brownian motion. Prove that

$$
\frac{B_{t}}{x} \mathbf{1}_{\left(\underline{B}_{t}>0\right)}, \quad t \geq 0,
$$

is a martingale, where $\underline{B}_{t}=\inf _{s \leq t} B_{s}$.
3. Suppose that X is a stable process with two-sided jumps

- Show that the range of the ascending ladder process H, say range (H) has the property that it is equal in law to $c \times$ range (H).
- Hence show that, up to a multiplicative constant, the Laplace exponent of H satisfies $k(\lambda)=\lambda^{\alpha_{1}}$ for $\alpha_{1} \in(0,1)$ (and hence the ascending ladder height process is a stable subordinator).
- Use the fact that, up to a multiplicative constant

$$
\Psi(z)=|\theta|^{\alpha}\left(\mathrm{e}^{\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{(\theta>0)}+\mathrm{e}^{-\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{(\theta<0)}\right)=\hat{\kappa}(\mathrm{i} z) \kappa(-\mathrm{i} z)
$$

to deduce that

$$
\kappa(\theta)=\theta^{\alpha \rho} \text { and } \hat{\kappa}(\theta)=\theta^{\alpha \hat{\rho}} .
$$

and that $0<\alpha \rho, \alpha \hat{\rho}<1$

- What kind of process corresponds to the case that $\alpha \rho=1$?

ExERCISES

4. Suppose that $\left(X, \mathrm{P}_{x}\right), x>0$ is a positive self-similar Markov process and let $\zeta=\inf \left\{t>0: X_{t}=0\right\}$ be the lifetime of X. Show that $\mathrm{P}_{x}(\zeta<\infty)$ does not depend on x and is either 0 for all $x>0$ or 1 for all $x>0$.
5. Suppose that X is a symmetric stable process in dimension one (in particular $\rho=1 / 2)$ and that the underlying Lévy process for $\left|X_{t}\right| \mathbf{1}_{(t<\tau\{0\})}$, where $\tau^{\{0\}}=\inf \left\{t>0: X_{t}=0\right\}$, is written ξ. (Note the indicator is only needed when $\alpha \in(1,2)$ as otherwise X does not hit the origin.) Show that (up to a multiplicative constant) its characteristic exponent is given by

$$
\Psi(z)=2^{\alpha} \frac{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+\alpha)\right)}{\Gamma\left(-\frac{1}{2} \mathrm{i} z\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+1)\right)}{\Gamma\left(\frac{1}{2}(\mathrm{i} z+1-\alpha)\right)}, \quad z \in \mathbb{R} .
$$

[Hint!] Think about what happens after X first crosses the origin and apply the Markov property as well as symmetry. You will need to use the law of the overshoot of X below the origin given a few slides back.

EXERCISES

6. Use the previous exercise to deduce that the MAP exponent underlying a stable process with two sided jumps is given by

$$
\left[\begin{array}{cc}
-\frac{\Gamma(\alpha-z) \Gamma(1+z)}{\Gamma(\alpha \hat{\rho}-z) \Gamma(1-\alpha \hat{\rho}+z)} & \frac{\Gamma(\alpha-z) \Gamma(1+z)}{\Gamma(\alpha \hat{\rho}) \Gamma(1-\alpha \hat{\rho})} \\
\frac{\Gamma(\alpha-z) \Gamma(1+z)}{\Gamma(\alpha \rho) \Gamma(1-\alpha \rho)} & -\frac{\Gamma(\alpha-z) \Gamma(1+z)}{\Gamma(\alpha \rho-z) \Gamma(1-\alpha \rho+z)}
\end{array}\right]
$$

for $\operatorname{Re}(z) \in(-1, \alpha)$.

[^0]: ${ }^{1}$ https://www.nuffield.ox.ac.uk/economics/papers/2012/introlevy120608.pdf

