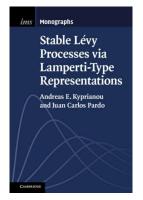
§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

Self-similar Markov processes Part I: One dimension

Andreas Kyprianou University of Warwick

000000 0000000000 0000 0000000000 0000 0000	§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
	000000	0000000000000	0000	00000000000000	00000	00000000000000	000

Based on the contents of this book:



Related material if you don't want to read the book:

https://arxiv.org/abs/1707.04343 https://arxiv.org/abs/1511.06356 https://arxiv.org/abs/1706.09924

2/69

000000 00000000000000000000000000000000	0000	00000000000000	00000	00000000000000	000

CONTENTS

PART I: ONE DIMENSION

- §1. Quick review of Lévy processes
- ▶ §2. Self-similar Markov processes
- §3. Lamperti Transform
- ▶ §4. Positive self-similar Markov processes
- ▶ §5. Entrance Laws
- §6. Real valued self-similar Markov processes

PART II: HIGHER DIMENSIONS

- ▶ §7. Isotropic stable processes in dimension $d \ge 2$ seen as Lévy processes
- ▶ §8. Isotropic stable processes in dimension $d \ge 2$ seen as a self-similar Markov process

3/69

・ロト・日本・日本・日本・日本・今日や

- §9. Riesz–Bogdan–Żak transform
- ▶ §10. Hitting spheres
- §11. Spherical hitting distribution
- ▶ §12. Spherical entrance/exit distribution

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

§1. Quick review of Lévy processes

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
00000	0000000000000	0000	00000000000000	00000	00000000000000	000

(KILLED) LÉVY PROCESS

• (ξ_t, t ≥ 0) is a (killed) Lévy process if it has stationary and independents with RCLL paths (and is sent to a cemetery state after and independent and exponentially distributed time).

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
●00000	0000000000000	0000	00000000000000	00000	00000000000000	000

(KILLED) LÉVY PROCESS

- (ξ_t, t ≥ 0) is a (killed) Lévy process if it has stationary and independents with RCLL paths (and is sent to a cemetery state after and independent and exponentially distributed time).
- Process is entirely characterised by its one-dimensional transitions, which are coded by the Lévy–Khinchine formula

$$\mathbf{E}[\mathbf{e}^{\mathbf{i}\boldsymbol{\theta}\cdot\boldsymbol{\xi}_t}] = \mathbf{e}^{-\Psi(\boldsymbol{\theta})t}, \qquad \boldsymbol{\theta} \in \mathbb{R}^d,$$

where,

$$\Psi(\theta) = q + \mathrm{i} \mathbf{a} \cdot \theta + \frac{1}{2} \theta \cdot \mathbf{A} \theta + \int_{\mathbb{R}^d} (1 - \mathrm{e}^{\mathrm{i} \theta \cdot x} + \mathrm{i} (\theta \cdot x) \mathbf{1}_{(|x| < 1)}) \Pi(\mathrm{d} x),$$

where $a \in \mathbb{R}$, **A** is a $d \times d$ Gaussian covariance matrix and Π is a measure satisfying $\int_{\mathbb{R}^d} (1 \wedge |x|^2) \Pi(dx) < \infty$. Think of Π as the intensity of jumps in the sense of

P(X has jump at time *t* of size dx) = $\Pi(dx)dt + o(dt)$.

5/69

・ロト・日本・モート モー うへの

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
●00000	0000000000000	0000	00000000000000	00000	00000000000000	000

(KILLED) LÉVY PROCESS

- (ξ_t, t ≥ 0) is a (killed) Lévy process if it has stationary and independents with RCLL paths (and is sent to a cemetery state after and independent and exponentially distributed time).
- Process is entirely characterised by its one-dimensional transitions, which are coded by the Lévy–Khinchine formula

$$\mathbf{E}[\mathbf{e}^{\mathbf{i}\boldsymbol{\theta}\cdot\boldsymbol{\xi}_t}] = \mathbf{e}^{-\Psi(\boldsymbol{\theta})t}, \qquad \boldsymbol{\theta} \in \mathbb{R}^d,$$

where,

$$\Psi(\theta) = q + \mathrm{i} \mathbf{a} \cdot \theta + \frac{1}{2} \theta \cdot \mathbf{A} \theta + \int_{\mathbb{R}^d} (1 - \mathrm{e}^{\mathrm{i} \theta \cdot x} + \mathrm{i} (\theta \cdot x) \mathbf{1}_{(|x| < 1)}) \Pi(\mathrm{d} x),$$

where $a \in \mathbb{R}$, **A** is a $d \times d$ Gaussian covariance matrix and Π is a measure satisfying $\int_{\mathbb{R}^d} (1 \wedge |x|^2) \Pi(dx) < \infty$. Think of Π as the intensity of jumps in the sense of

 $\mathbf{P}(X \text{ has jump at time } t \text{ of size } dx) = \Pi(dx)dt + o(dt).$

In one dimension the path of a Lévy process can be monotone, in which case it is called a *subordinator* and we work with the Laplace exponent

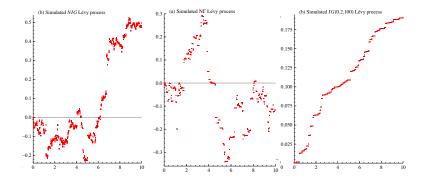
$$\mathbf{E}[\mathrm{e}^{-\lambda\xi_t}] = \mathrm{e}^{-\Phi(\lambda)t}, \qquad t \ge 0$$

where

$$\Phi(\lambda) = q + \delta \lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(\mathrm{d}x), \qquad \lambda \ge 0.$$

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
00000	0000000000000	0000	00000000000000	00000	00000000000000	000

STOLEN PICTURES FROM THE INTERNET¹



§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

Two examples in one dimension:

Stable subordinator $(\xi_t, t \ge 0)$ is a subordinator which satisfies the additional scaling property: For c > 0

under \mathbb{P} , the law of $(c\xi_{c^{-\alpha}t}, t \ge 0)$ is equal to \mathbb{P} ,

where $\alpha \in (0, 1)$. We have

$$\Phi(\lambda) = \lambda^{\alpha}, \qquad \lambda \ge 0, \qquad \text{and} \qquad \Pi(dx) = \frac{\alpha}{\Gamma(1-\alpha)} \frac{1}{x^{1+\alpha}} dx, \qquad x > 0.$$

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

Two examples in one dimension:

Stable subordinator $(\xi_t, t \ge 0)$ is a subordinator which satisfies the additional scaling property: For c > 0

under \mathbb{P} , the law of $(c\xi_{c^{-\alpha}t}, t \ge 0)$ is equal to \mathbb{P} ,

where $\alpha \in (0, 1)$. We have

$$\Phi(\lambda) = \lambda^{\alpha}, \qquad \lambda \ge 0, \qquad \text{and} \qquad \Pi(dx) = \frac{\alpha}{\Gamma(1-\alpha)} \frac{1}{x^{1+\alpha}} dx, \qquad x > 0.$$

▶ Hypgergeometric Lévy process: For $\beta \leq 1, \gamma \in (0,1), \hat{\beta} \geq 0, \hat{\gamma} \in (0,1)$

$$\Psi(\theta) = \frac{\Gamma(1 - \beta + \gamma - i\theta)}{\Gamma(1 - \beta - i\theta)} \frac{\Gamma(\hat{\beta} + \hat{\gamma} + i\theta)}{\Gamma(\hat{\beta} + i\theta)} \qquad \theta \in \mathbb{R}.$$

The Lévy measure has a density with respect to Lebesgue measure which is given by

$$\pi(x) = \begin{cases} -\frac{\Gamma(\eta)}{\Gamma(\eta - \hat{\gamma})\Gamma(-\gamma)} e^{-(1-\beta+\gamma)x} {}_2F_1\left(1 + \gamma, \eta; \eta - \hat{\gamma}; e^{-x}\right), & \text{if } x > 0, \\ -\frac{\Gamma(\eta)}{\Gamma(\eta - \gamma)\Gamma(-\hat{\gamma})} e^{(\hat{\beta} + \hat{\gamma})x} {}_2F_1\left(1 + \hat{\gamma}, \eta; \eta - \gamma; e^x\right), & \text{if } x < 0, \end{cases}$$

where $\eta := 1 - \beta + \gamma + \hat{\beta} + \hat{\gamma}$.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

• If ξ has a characteristic exponent Ψ then necessarily

$$\Psi(\theta) = \kappa(-i\theta)\hat{\kappa}(i\theta), \qquad \theta \in \mathbb{R}.$$

where κ and $\hat{\kappa}$ are Bernstein functions, e.g.

$$\kappa(\lambda) = q + \delta \lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(dx), \qquad \lambda \ge 0.$$

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

• If ξ has a characteristic exponent Ψ then necessarily

$$\Psi(\theta) = \kappa(-i\theta)\hat{\kappa}(i\theta), \qquad \theta \in \mathbb{R}.$$

where κ and $\hat{\kappa}$ are Bernstein functions, e.g.

$$\kappa(\lambda) = q + \delta \lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(\mathrm{d} x), \qquad \lambda \ge 0.$$

8/69

・ロト ・ 語 ト ・ ヨ ト ・ ヨ ・ つ へ ()

The factorisation has a physical interpretation:

- ▶ range of the κ -subordinator agrees with the range of $\sup_{s < t} \xi_s$, $t \ge 0$
- range $\hat{\kappa}$ -subordinator agrees with the range of $-\inf_{s \leq t} \xi_{s,t} \ge 0$.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

• If ξ has a characteristic exponent Ψ then necessarily

$$\Psi(\theta) = \kappa(-i\theta)\hat{\kappa}(i\theta), \qquad \theta \in \mathbb{R}.$$

where κ and $\hat{\kappa}$ are Bernstein functions, e.g.

$$\kappa(\lambda) = q + \delta \lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(\mathrm{d} x), \qquad \lambda \ge 0.$$

The factorisation has a physical interpretation:

- ▶ range of the κ -subordinator agrees with the range of $\sup_{s < t} \xi_s$, $t \ge 0$
- range $\hat{\kappa}$ -subordinator agrees with the range of $-\inf_{s \leq t} \xi_{s,t} \ge 0$.

• Note if
$$\delta > 0$$
, then $\mathbf{P}(\xi_{\tau_x^+} = x) > 0$, where $\tau_x^+ = \inf\{t > 0 : \xi_t > x\}, x > 0$.

8/69 《 ㅁ › < 큔 › < 흔 › < 흔 · < 흔 · < 이 오 ·

• If ξ has a characteristic exponent Ψ then necessarily

$$\Psi(\theta) = \kappa(-i\theta)\hat{\kappa}(i\theta), \qquad \theta \in \mathbb{R}.$$

where κ and $\hat{\kappa}$ are Bernstein functions, e.g.

$$\kappa(\lambda) = q + \delta \lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(\mathrm{d} x), \qquad \lambda \ge 0.$$

The factorisation has a physical interpretation:

- ▶ range of the κ -subordinator agrees with the range of $\sup_{s \le t} \xi_s$, $t \ge 0$
- range $\hat{\kappa}$ -subordinator agrees with the range of $-\inf_{s \leq t} \xi_{s,t} \ge 0$.
- ▶ Note if $\delta > 0$, then $\mathbf{P}(\xi_{\tau_x^+} = x) > 0$, where $\tau_x^+ = \inf\{t > 0 : \xi_t > x\}, x > 0$.
- We have already seen the hypergeometric example

$$\Psi(\theta) = \frac{\Gamma(1 - \beta + \gamma - i\theta)}{\Gamma(1 - \beta - i\theta)} \qquad \times \qquad \frac{\Gamma(\hat{\beta} + \hat{\gamma} + i\theta)}{\Gamma(\hat{\beta} + i\theta)} \qquad \theta \in \mathbb{R}$$

8/69 シーマ・山下・山下・山下・山下・山下・山下・山下・山下・山下・山下・山

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

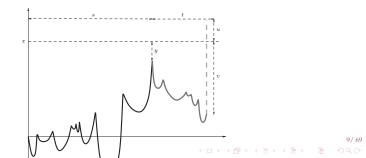
FIRST ENTRY TO (x, ∞)

- ► Recall Wiener–Hopf factorisation $\Psi(\theta) = \kappa(-i\theta)\hat{\kappa}(i\theta), \quad \theta \in \mathbb{R}$., where κ and $\hat{\kappa}$ are Laplace exponents of subordinators.
- Associated to $\hat{\kappa}$ and $\hat{\kappa}$ are their potentials

$$\int_{[0,\infty)} e^{-\beta x} U(dx) = \frac{1}{\kappa(\beta)} \quad \text{and} \quad \int_{[0,\infty)} e^{-\beta x} \hat{U}(dx) = \frac{1}{\hat{\kappa}(\beta)}, \qquad \beta \ge 0.$$

Theorem (Triple law at first entry to (x, ∞)) Recall $\tau_x^+ = \inf\{t > 0 : \xi_t > x\}$. For $u > 0, v \ge y, y \in [0, x]$,

$$\mathbb{P}(\xi_{\tau_x^+} - x \in \mathrm{d} u, \, x - \xi_{\tau_x^+} \in \mathrm{d} v, \, x - \bar{\xi}_{\tau_x^+} \in \mathrm{d} y) = U(x - \mathrm{d} y)\hat{U}(\mathrm{d} v - y)\Pi(\mathrm{d} u + v).$$



§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

HITTING POINTS

• We say that ξ *can hit a point* $x \in \mathbb{R}$ if

 $\mathbf{P}(\xi_t = x \text{ for at least one } t > 0) > 0.$

§1. 00000●	§2. 000000000000000	§3. 0000	§4. 0000000000000000	§5. 00000	§6. 0000000000000000	Exercises. 000
०००००	000000000000000000000000000000000000000	0000	000000000000000000000000000000000000000	00000	000000000000000	000

HITTING POINTS

• We say that ξ *can hit a point* $x \in \mathbb{R}$ if

 $\mathbf{P}(\xi_t = x \text{ for at least one } t > 0) > 0.$

Creeping is one way to hit a point, but not the only way

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

HITTING POINTS

• We say that ξ *can hit a point* $x \in \mathbb{R}$ if

 $\mathbf{P}(\xi_t = x \text{ for at least one } t > 0) > 0.$

Creeping is one way to hit a point, but not the only way

Theorem (Kesten (1969)/Bretagnolle (1971))

Suppose that ξ is not a compound Poisson process. Then ξ can hit points if and only if

$$\int_{\mathbb{R}} \operatorname{Re}\left(\frac{1}{1+\Psi(z)}\right) \mathrm{d} z < \infty.$$

If the Kesten-Bretagnolle integral test is satisfied, then

$$\mathbb{P}(\tau^{\{x\}} < \infty) = \frac{u(x)}{u(0)},$$

where $\tau^{\{x\}} = \inf\{t > 0 : \xi_t = x\}$, providing we can compute the inversion

$$u(x) = \int_{c+i\mathbb{R}} \frac{e^{-zx}}{\Psi(-iz)} dz$$

for some $c \in \mathbb{R}$.

10/69 《 ㅁ › 《 쿱 › 《 壴 › 《 壴 › 《 壴 · · 즷 익 ♡

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

§2. Self-similar Markov processes

Self-Similar Markov processes (SSMP)

Definition

A regular strong Markov process $(Z_t : t \ge 0)$ on \mathbb{R}^d , with probabilities $\mathbb{P}_x, x \in \mathbb{R}^d$, is a rssMp if there exists an index $\alpha \in (0, \infty)$ such that for all c > 0 and $x \in \mathbb{R}^d$,

 $(cZ_{tc^{-\alpha}}: t \ge 0)$ under \mathbb{P}_x is equal in law to $(Z_t: t \ge 0)$ under \mathbb{P}_{cx} .

§1. §2.	§3.	§4.	§5.	§6.	Exercises.
000000 000000	00000 00000	00000000000000	00000	00000000000000	000

▶ Write $\mathcal{N}_d(\mathbf{0}, \Sigma)$ for the Normal distribution with mean $\mathbf{0} \in \mathbb{R}^d$ and correlation (matrix) Σ . The moment generating function of $X_t \sim \mathcal{N}_d(\mathbf{0}, \Sigma t)$ satisfies, for $\theta \in \mathbb{R}^d$,

$$\mathbf{E}[\mathbf{e}^{\theta \cdot X_t}] = \mathbf{e}^{t\theta^{\mathrm{T}}\boldsymbol{\Sigma}\theta/2} = \mathbf{e}^{(c^{-2}t)(c\theta)^{\mathrm{T}}\boldsymbol{\Sigma}(c\theta)/2} = E[\mathbf{e}^{\theta \cdot cX_{c^{-2}t}}].$$

13/69

- コン・4日ン・4日ン・4日ン・4日ン

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	000000000000	0000	00000000000000	00000	00000000000000	000

• Write $\mathcal{N}_d(\mathbf{0}, \boldsymbol{\Sigma})$ for the Normal distribution with mean $\mathbf{0} \in \mathbb{R}^d$ and correlation (matrix) $\boldsymbol{\Sigma}$. The moment generating function of $X_t \sim \mathcal{N}_d(\mathbf{0}, \boldsymbol{\Sigma}t)$ satisfies, for $\theta \in \mathbb{R}^d$,

$$\mathbf{E}[\mathbf{e}^{\theta \cdot X_t}] = \mathbf{e}^{t\theta^{\mathrm{T}} \boldsymbol{\Sigma} \theta/2} = \mathbf{e}^{(c^{-2}t)(c\theta)^{\mathrm{T}} \boldsymbol{\Sigma}(c\theta)/2} = E[\mathbf{e}^{\theta \cdot cX_c - 2_t}].$$

Thinking about the stationary and independent increments of Brownian motion, this can be used to show that \mathbb{R}^d -Brownian motion: is a ssMp with $\alpha = 2$.

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R} -Brownian motion:

▶ Write $\underline{X}_t := \inf_{s < t} X_s$. Then (X_t, \underline{X}_t) , $t \ge 0$ is a Markov process.

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R} -Brownian motion:

- ▶ Write $\underline{X}_t := \inf_{s \leq t} X_s$. Then (X_t, \underline{X}_t) , $t \geq 0$ is a Markov process.
- For *c* > 0 and *α* = 2,

$$\binom{c\underline{X}_{c}-\alpha_{t}}{cX_{c}-\alpha_{t}} = \binom{c\inf_{s\leq c-\alpha_{t}}X_{s}}{cX_{c}-\alpha_{t}} = \binom{\inf_{u\leq t}cX_{c}-\alpha_{u}}{cX_{c}-\alpha_{t}}, \quad t\geq 0,$$

and the latter is equal in law to (X, \underline{X}) , because of the scaling property of X.

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R} -Brownian motion:

- ▶ Write $\underline{X}_t := \inf_{s \leq t} X_s$. Then (X_t, \underline{X}_t) , $t \geq 0$ is a Markov process.
- For *c* > 0 and *α* = 2,

$$\binom{c\underline{X}_{c-\alpha_{t}}}{cX_{c-\alpha_{t}}} = \binom{c\inf_{s \leq c-\alpha_{t}} X_{s}}{cX_{c-\alpha_{t}}} = \binom{\inf_{u \leq t} cX_{c-\alpha_{u}}}{cX_{c-\alpha_{t}}}, \quad t \geq 0,$$

and the latter is equal in law to (X, \underline{X}) , because of the scaling property of X.

▶ Markov process $Z_t := X_t - (-x \land \underline{X}_t), t \ge 0$ is also a ssMp on $[0, \infty)$ issued from x > 0 with index 2.

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R} -Brownian motion:

- ▶ Write $\underline{X}_t := \inf_{s \le t} X_s$. Then (X_t, \underline{X}_t) , $t \ge 0$ is a Markov process.
- For *c* > 0 and *α* = 2,

$$\binom{c\underline{X}_{c^{-\alpha}t}}{cX_{c^{-\alpha}t}} = \binom{c\inf_{s \le c^{-\alpha}t} X_s}{cX_{c^{-\alpha}t}} = \binom{\inf_{u \le t} cX_{c^{-\alpha}u}}{cX_{c^{-\alpha}t}}, \quad t \ge 0,$$

and the latter is equal in law to (X, \underline{X}) , because of the scaling property of X.

▶ Markov process $Z_t := X_t - (-x \land X_t), t \ge 0$ is also a ssMp on $[0, \infty)$ issued from x > 0 with index 2.

14/69

► $Z_t := X_t \mathbf{1}_{(\underline{X}_t > 0)}, t \ge 0$ is also a ssMp, again on $[0, \infty)$.

Some of your best friends are $\ensuremath{\mathsf{ssMp}}$

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R}^d -Brownian motion:

- Consider $Z_t := |X_t|$, $t \ge 0$. Because of rotational invariance, it is a Markov process.
- Again the self-similarity (index 2) of Brownian motion, transfers to the case of |X|. Note again, this is a ssMp on [0,∞).

15/69

・ロト・日本・モト・モト・モー のへぐ

Some of your best friends are $\ensuremath{\mathsf{ssMp}}$

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R}^d -Brownian motion:

- Consider $Z_t := |X_t|$, $t \ge 0$. Because of rotational invariance, it is a Markov process.
- Again the self-similarity (index 2) of Brownian motion, transfers to the case of |X|. Note again, this is a ssMp on [0,∞).
- ▶ Note that $|X_t|$, $t \ge 0$ is a Bessel-*d* process. It turns out that all Bessel processes, *and* all squared Bessel processes are self-similar on $[0, \infty)$. Once can check this by e.g. considering scaling properties of their transition semi-groups.

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R}^d -Brownian motion:

Note when d = 3, $|X_t|$, $t \ge 0$ is also equal in law to a Brownian motion conditioned to stay positive: i.e if we define, for a 1-*d* Brownian motion ($B_t : t \ge 0$),

$$\mathbb{P}_{x}^{\uparrow}(A) = \lim_{s \to \infty} \mathbb{P}_{x}(A | \underline{B}_{t+s} > 0) = \mathbb{E}_{x} \left[\frac{B_{t}}{x} \mathbf{1}_{(\underline{B}_{t} > 0)} \mathbf{1}_{(A)} \right]$$

where $A \in \sigma\{B_t : u \leq t\}$, then

 $(|X_t|, t \ge 0)$ with $|X_0| = x$ is equal in law to $(B, \mathbb{P}^{\uparrow}_x)$.

16/69 ▶ < 륜 > < 토 > < 토 > 토 - ∽ < ⊙

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

Some of the best friends of your best friends are ssMp

All of the previous examples have in common that their paths are continuous. Is this a necessary condition?

§1. §2.	§3.	§4.	§5.	§6.	Exercises.
000000 000	000000000 0000	000000000	00000 00000	0000000000000	000

Some of the best friends of your best friends are ssMp

- All of the previous examples have in common that their paths are continuous. Is this a necessary condition?
- We want to find more exotic examples as most of the previous examples have been extensively studied through existing theories (of Brownian motion and continuous semi-martingales).

§1. §2.	§3.	§4.	§5.	§6.	Exercises.
00000 0000	00000000 0000	000000000000000000000000000000000000000	00000	00000000000000	000

Some of the best friends of your best friends are ssMp

- All of the previous examples have in common that their paths are continuous. Is this a necessary condition?
- We want to find more exotic examples as most of the previous examples have been extensively studied through existing theories (of Brownian motion and continuous semi-martingales).
- All of the previous examples are functional transforms of Brownian motion and have made use of the scaling and Markov properties and (in some cases) isotropic distributional invariance.

§1. §2.	§3.	§4.	§5.	§6.	Exercises.
00000 0000	00000000 0000	000000000000000000000000000000000000000	00000	00000000000000	000

Some of the best friends of your best friends are ssMp

- All of the previous examples have in common that their paths are continuous. Is this a necessary condition?
- We want to find more exotic examples as most of the previous examples have been extensively studied through existing theories (of Brownian motion and continuous semi-martingales).
- All of the previous examples are functional transforms of Brownian motion and have made use of the scaling and Markov properties and (in some cases) isotropic distributional invariance.
- If we replace Brownain motion by an α-stable process, a Lévy process that has scale invariance, then all of the functional transforms still produce new examples of self-similar Markov processes.

000000 00000000000 0000 00000000000 00000 000000	§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
	000000	0000000000000	0000	00000000000000	00000	00000000000000	000

$\alpha\text{-}\mathsf{STABLE}\ \mathsf{PROCESS}$

Definition

A Lévy process X is called (strictly) α -stable if it is also a self-similar Markov process.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

$\alpha\textsc{-stable process}$

Definition

A Lévy process X is called (strictly) α -stable if it is also a self-similar Markov process.

▶ Necessarily $\alpha \in (0, 2]$. [$\alpha = 2 \rightarrow BM$, exclude this.]

§1. 000000	§2. 000000●000000	§3. 0000	§4. 00000000000000000	§5. 00000	§6. 000000000000000000000000000000000000	Exercises. 000
000000	000000000000000000000000000000000000000	0000	000000000000000000000000000000000000000	00000	000000000000000000000000000000000000000	000

$\alpha\textsc{-stable process}$

Definition

A Lévy process X is called (strictly) α -stable if it is also a self-similar Markov process.

- ▶ Necessarily $\alpha \in (0, 2]$. [$\alpha = 2 \rightarrow BM$, exclude this.]
- ▶ The characteristic exponent $\Psi(\theta) := -t^{-1} \log \mathbb{E}(e^{i\theta X_t})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}.$$

where $\rho = P_0(X_t \ge 0)$ will frequently appear as will $\hat{\rho} = 1 - \rho$

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

$\alpha\textsc{-stable process}$

Definition

A Lévy process X is called (strictly) α -stable if it is also a self-similar Markov process.

- ▶ Necessarily $\alpha \in (0, 2]$. [$\alpha = 2 \rightarrow BM$, exclude this.]
- The characteristic exponent $\Psi(\theta) := -t^{-1} \log \mathbb{E}(e^{i\theta X_t})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}.$$

where $\rho = P_0(X_t \ge 0)$ will frequently appear as will $\hat{\rho} = 1 - \rho$

Assume jumps in both directions ($0 < \alpha \rho, \alpha \hat{\rho} < 1$), so that the Lévy **density** takes the form

$$\frac{\Gamma(1+\alpha)}{\pi} \frac{1}{|x|^{1+\alpha}} \left(\sin(\pi\alpha\rho) \mathbf{1}_{\{x>0\}} + \sin(\pi\alpha\hat{\rho}) \mathbf{1}_{\{x<0\}} \right)$$

18/69 《 다 > 《 쿱 > 《 클 > 《 클 > 《 클 > ① 익 ♡

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

$\alpha\textsc{-stable process}$

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}.$$

Note that, for
$$c > 0$$
, $c^{-\alpha}\Psi(c\theta) = \Psi(\theta)$,

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

α -STABLE PROCESS

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i}\alpha(\frac{1}{2}-\rho)} \mathbf{1}_{(\theta>0)} + \mathrm{e}^{-\pi \mathrm{i}\alpha(\frac{1}{2}-\rho)} \mathbf{1}_{(\theta<0)}), \qquad \theta \in \mathbb{R}.$$

19/69

・ロト・日本・モナ・モト ヨー うらぐ

Note that, for
$$c > 0$$
, $c^{-\alpha}\Psi(c\theta) = \Psi(\theta)$,

• which is equivalent to saying that $cX_{c-\alpha_t} =^d X_t$,

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

$\alpha\textsc{-stable process}$

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i}\alpha(\frac{1}{2}-\rho)} \mathbf{1}_{(\theta>0)} + \mathrm{e}^{-\pi \mathrm{i}\alpha(\frac{1}{2}-\rho)} \mathbf{1}_{(\theta<0)}), \qquad \theta \in \mathbb{R}.$$

19/69

Note that, for
$$c > 0$$
, $c^{-\alpha}\Psi(c\theta) = \Psi(\theta)$,

- which is equivalent to saying that $cX_{c-\alpha_t} = {}^d X_t$,
- ▶ which by stationary and independent increments is equivalent to saying $(cX_{c-\alpha_t}, t \ge 0) =^d (X_t, t \ge 0)$ when $X_0 = 0$,

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

α -STABLE PROCESS

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i}\alpha(\frac{1}{2}-\rho)} \mathbf{1}_{(\theta>0)} + \mathrm{e}^{-\pi \mathrm{i}\alpha(\frac{1}{2}-\rho)} \mathbf{1}_{(\theta<0)}), \qquad \theta \in \mathbb{R}.$$

Note that, for
$$c > 0$$
, $c^{-\alpha}\Psi(c\theta) = \Psi(\theta)$,

- which is equivalent to saying that $cX_{c-\alpha_t} =^d X_t$,
- ▶ which by stationary and independent increments is equivalent to saying $(cX_{c-\alpha_t}, t \ge 0) =^d (X_t, t \ge 0)$ when $X_0 = 0$,
- or equivalently is equivalent to saying $(cX_{c-\alpha_t}^{(x)}, t \ge 0) =^d (X_t^{(cx)}, t \ge 0)$, where we have indicated the point of issue as an additional index.

§1. §2.	§3.	§4.	§5.	§6.	Exercises.
0000000 0000000	• 0000 0000	00000000000000	00000	00000000000000	000

STABLE PROCESS PATH PROPERTIES

index	jumps	path	recurrence/transience
$\alpha \in (0,1)$			transient
$\rho = 0$	-	monotone decreasing	$\lim_{t\to\infty} X_t = -\infty$
$\rho = 1$	+	monotone increasing	$\lim_{t\to\infty} X_t = \infty$
$\rho \in (0,1)$	+, -	bounded variation	$\lim_{t\to\infty} X_t =\infty$
$\alpha = 1$			recurrent
$\rho = \frac{1}{2}$	+, -	unbounded variation	$\limsup_{t \to \infty} X_t = \infty,$ $\liminf_{t \to \infty} X_t = 0$
$\alpha \in (1,2)$			recurrent
$\alpha \rho = 1$	_	unbounded variation	$\mathbb{P}_{x}(\tau^{\{0\}} < \infty) = 1, x \in \mathbb{R}, \\ -\lim \inf_{t \to \infty} X_{t} = \limsup_{t \to \infty} X_{t} = \infty$
$\alpha \rho = \alpha - 1$	+	unbounded variation	$\mathbb{P}_{x}(\tau^{\{0\}} < \infty) = 1, x \in \mathbb{R}, \\ -\lim \inf_{t \to \infty} X_{t} = \limsup_{t \to \infty} X_{t} = \infty$
$\alpha \rho \in (\alpha - 1, 1)$	+, -	unbounded variation	$\mathbb{P}_{x}(\tau^{\{0\}} < \infty) = 1, x \in \mathbb{R}, \\ -\liminf_{t \to \infty} X_{t} = \limsup_{t \to \infty} X_{t} = \infty$

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	000000000000000	0000	00000000000000	00000	00000000000000	000

YOUR NEW FRIENDS

Suppose $X = (X_t : t \ge 0)$ is within the assumed class of α -stable processes in one-dimension and let $\underline{X}_t = \inf_{s \le t} X_s$.

21/69

- コン・4回シュ ヨシュ ヨン・9 くの

Your new friends are:

- \blacktriangleright Z = X
- $\triangleright \ Z = X (-x \wedge \underline{X}), x > 0.$
- \blacktriangleright $Z = X \mathbf{1}_{(X>0)}$
- ► Z = |X| providing $\rho = 1/2$

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	000000000000000	0000	00000000000000	00000	00000000000000	000

YOUR NEW FRIENDS

Suppose $X = (X_t : t \ge 0)$ is within the assumed class of α -stable processes in one-dimension and let $\underline{X}_t = \inf_{s \le t} X_s$.

21/69

- コン・4回シュ ヨシュ ヨン・9 くの

Your new friends are:

- $\blacktriangleright Z = X$
- $\triangleright \ Z = X (-x \wedge \underline{X}), x > 0.$
- \blacktriangleright $Z = X \mathbf{1}_{(X>0)}$
- ► Z = |X| providing $\rho = 1/2$
- ▶ What about *Z* = "*X* conditioned to stay positive"?

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	000000000000000	0000	00000000000000	00000	00000000000000	000

► Recall that each Lévy processes, $\xi = \{\xi_t : t \ge 0\}$, enjoys the Wiener-Hopf factorisation i.e. up to a multiplicative constant, $\Psi_{\xi}(\theta) := t^{-1} \log \mathbb{E}[e^{i\theta\xi_t}]$ respects the factorisation

$$\Psi_{\xi}(\theta) = \kappa(-\mathrm{i}\theta)\hat{\kappa}(\mathrm{i}\theta), \qquad \theta \in \mathbb{R},$$

where κ and $\hat{\kappa}$ are Bernstein functions. That is e.g. κ takes the form

$$\kappa(\lambda) = q + a\lambda + \int_{(0,\infty)} (1 - e^{-\lambda x})\nu(dx), \qquad \lambda \ge 0$$

where ν is a measure satisfying $\int_{(0,\infty)} (1 \wedge x) \nu(dx) < \infty$.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	000000000000000	0000	00000000000000	00000	00000000000000	000

► Recall that each Lévy processes, $\xi = \{\xi_t : t \ge 0\}$, enjoys the Wiener-Hopf factorisation i.e. up to a multiplicative constant, $\Psi_{\xi}(\theta) := t^{-1} \log \mathbb{E}[e^{i\theta\xi_t}]$ respects the factorisation

$$\Psi_{\xi}(\theta) = \kappa(-\mathrm{i}\theta)\hat{\kappa}(\mathrm{i}\theta), \qquad \theta \in \mathbb{R},$$

where κ and $\hat{\kappa}$ are Bernstein functions. That is e.g. κ takes the form

$$\kappa(\lambda) = q + a\lambda + \int_{(0,\infty)} (1 - e^{-\lambda x})\nu(dx), \qquad \lambda \ge 0$$

where ν is a measure satisfying $\int_{(0,\infty)} (1 \wedge x) \nu(dx) < \infty$.

The probabilistic significance of these subordinators, is that their range corresponds precisely to the range of the running maximum of *ξ* and of -*ξ* respectively.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	000000000000000	0000	00000000000000	00000	00000000000000	000

► Recall that each Lévy processes, $\xi = \{\xi_t : t \ge 0\}$, enjoys the Wiener-Hopf factorisation i.e. up to a multiplicative constant, $\Psi_{\xi}(\theta) := t^{-1} \log \mathbb{E}[e^{i\theta\xi_t}]$ respects the factorisation

$$\Psi_{\xi}(\theta) = \kappa(-\mathrm{i}\theta)\hat{\kappa}(\mathrm{i}\theta), \qquad \theta \in \mathbb{R},$$

where κ and $\hat{\kappa}$ are Bernstein functions. That is e.g. κ takes the form

$$\kappa(\lambda) = q + a\lambda + \int_{(0,\infty)} (1 - e^{-\lambda x})\nu(dx), \qquad \lambda \ge 0$$

where ν is a measure satisfying $\int_{(0,\infty)} (1 \wedge x) \nu(dx) < \infty$.

- The probabilistic significance of these subordinators, is that their range corresponds precisely to the range of the running maximum of ξ and of $-\xi$ respectively.
- In the case of α -stable processes, up to a multiplicative constant,

$$\kappa(\lambda) = \lambda^{\alpha \rho} \text{ and } \hat{\kappa}(\lambda) = \lambda^{\alpha \hat{\rho}}, \qquad \lambda \ge 0.$$

Associated to the descending ladder subordinator $\hat{\kappa}$ is its potential measure \hat{U} , which satisfies

$$\int_{[0,\infty)} e^{-\lambda x} \hat{U}(dx) = \frac{1}{\hat{\kappa}(\lambda)}, \qquad \lambda \ge 0$$

Associated to the descending ladder subordinator $\hat{\kappa}$ is its potential measure \hat{U} , which satisfies

$$\int_{[0,\infty)} e^{-\lambda x} \hat{U}(dx) = \frac{1}{\hat{\kappa}(\lambda)}, \qquad \lambda \ge 0.$$

► It can be shown that for a Lévy process which satisfies $\limsup_{t\to\infty} \xi_t = \infty$, for $A \in \sigma(\xi_u : u \le t)$,

$$\mathbb{P}_{x}^{\uparrow}(A) = \lim_{s \to \infty} \mathbb{P}_{x}(A | \underline{X}_{t+s} > 0) = \mathbb{E}_{x} \left[\frac{\hat{U}(X_{t})}{\hat{U}(x)} \mathbf{1}_{(\underline{X}_{t} > 0)} \mathbf{1}_{(A)} \right]$$

Associated to the descending ladder subordinator $\hat{\kappa}$ is its potential measure \hat{U} , which satisfies

$$\int_{[0,\infty)} e^{-\lambda x} \hat{U}(\mathrm{d}x) = \frac{1}{\hat{\kappa}(\lambda)}, \qquad \lambda \ge 0.$$

► It can be shown that for a Lévy process which satisfies $\limsup_{t\to\infty} \xi_t = \infty$, for $A \in \sigma(\xi_u : u \le t)$,

$$\mathbb{P}_{x}^{\uparrow}(A) = \lim_{s \to \infty} \mathbb{P}_{x}(A | \underline{X}_{t+s} > 0) = \mathbb{E}_{x} \left[\frac{\hat{U}(X_{t})}{\hat{U}(x)} \mathbf{1}_{(\underline{X}_{t} > 0)} \mathbf{1}_{(A)} \right]$$

► In the α -stable case $\hat{U}(x) \propto x^{\alpha \hat{\rho}}$ [Note in the excluded case that $\alpha = 2$ and $\rho = 1/2$, i.e. Brownian motion, $\hat{U}(x) = x$.]

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	000000000000	0000	00000000000000	00000	00000000000000	000

For $c, x > 0, t \ge 0$ and appropriately bounded, measurable and non-negative f, we can write,

$$\begin{split} \mathbb{E}_{x}^{\uparrow}[f(\{cX_{c-\alpha_{S}}:s\leq t\})] \\ &= \mathbb{E}\left[f(\{cX_{c-\alpha_{S}}^{(x)}:s\leq t\})\frac{(X_{c-\alpha_{t}}^{(x)})^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{c-\alpha_{t}}^{(x)}\geq 0)}\right] \\ &= \mathbb{E}\left[f(\{X_{s}^{(cx)}:s\leq t\}\frac{(X_{t}^{(cx)})^{\alpha\hat{\rho}}}{(cx)^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}^{(cx)}\geq 0)}\right] \\ &= \mathbb{E}_{cx}^{\uparrow}[f(\{X_{s}:s\leq t\})]. \end{split}$$

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	000000000000	0000	00000000000000	00000	00000000000000	000

For $c, x > 0, t \ge 0$ and appropriately bounded, measurable and non-negative f, we can write,

$$\begin{split} &\mathbb{E}_{x}^{\uparrow}[f(\{cX_{c-\alpha_{S}}:s\leq t\})]\\ &=\mathbb{E}\left[f(\{cX_{c-\alpha_{S}}^{(x)}:s\leq t\})\frac{(X_{c-\alpha_{t}}^{(x)})^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{c-\alpha_{t}}^{(x)}\geq 0)}\right]\\ &=\mathbb{E}\left[f(\{X_{s}^{(cx)}:s\leq t\}\frac{(X_{t}^{(cx)})^{\alpha\hat{\rho}}}{(cx)^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}^{(cx)}\geq 0)}\right]\\ &=\mathbb{E}_{\alpha x}^{\uparrow}[f(\{X_{s}:s\leq t\})]. \end{split}$$

▶ This also makes the process $(X, \mathbb{P}_x^{\uparrow}), x > 0$, a self-similar Markov process on $[0, \infty)$.

24/69 《 다 ▷ 《 큔 ▷ 《 흔 ▷ 《 흔 ▷ 《 은

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	000000000000	0000	00000000000000	00000	00000000000000	000

For $c, x > 0, t \ge 0$ and appropriately bounded, measurable and non-negative f, we can write,

$$\mathbb{E}_{x}^{\uparrow}[f(\{cX_{c-\alpha_{S}}:s\leq t\})]$$

$$=\mathbb{E}\left[f(\{cX_{c-\alpha_{S}}^{(x)}:s\leq t\})\frac{(X_{c-\alpha_{t}}^{(x)})^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{c-\alpha_{t}}^{(x)}\geq 0)}\right]$$

$$=\mathbb{E}\left[f(\{X_{s}^{(cx)}:s\leq t\}\frac{(X_{t}^{(cx)})^{\alpha\hat{\rho}}}{(cx)^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}^{(cx)}\geq 0)}\right]$$

$$=\mathbb{E}_{cx}^{\uparrow}[f(\{X_{s}:s\leq t\})].$$

- ▶ This also makes the process $(X, \mathbb{P}_x^{\uparrow})$, x > 0, a self-similar Markov process on $[0, \infty)$.
- Unlike the case of Brownian motion, the conditioned stable process does not have the law of the radial part of a 3-dimensional stable process (the analogue to the Brownian case).

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

§3. Lamperti Transform

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	000000000000000	●000	00000000000000000	00000	0000000000000000	000
Νοτάτ	ION					

▶ Use $\xi := \{\xi_t : t \ge 0\}$ to denote a Lévy process which is killed and sent to the cemetery state $-\infty$ at an independent and exponentially distributed random time, \mathbf{e}_q , with rate in $q \in [0, \infty)$. The characteristic exponent of ξ is thus written

 $-\log \mathbf{E}(e^{i\theta\xi_1}) = \Psi(\theta) = q + L$ évy–Khintchine

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	000000000000000	●000	0000000000000000	00000	0000000000000000	000
Maria						

NOTATION

▶ Use $\xi := \{\xi_t : t \ge 0\}$ to denote a Lévy process which is killed and sent to the cemetery state $-\infty$ at an independent and exponentially distributed random time, \mathbf{e}_q , with rate in $q \in [0, \infty)$. The characteristic exponent of ξ is thus written

$$-\log \mathbf{E}(e^{i\theta\xi_1}) = \Psi(\theta) = q + L$$
évy–Khintchine

Define the associated integrated exponential Lévy process

$$I_t = \int_0^t e^{\alpha \xi_s} ds, \qquad t \ge 0.$$
(1)

and its limit, $I_{\infty} := \lim_{t \uparrow \infty} I_t$.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	00000000000000	●000	0000000000000000	00000	0000000000000000	000

NOTATION

▶ Use $\xi := \{\xi_t : t \ge 0\}$ to denote a Lévy process which is killed and sent to the cemetery state $-\infty$ at an independent and exponentially distributed random time, \mathbf{e}_q , with rate in $q \in [0, \infty)$. The characteristic exponent of ξ is thus written

$$-\log \mathbf{E}(e^{i\theta\xi_1}) = \Psi(\theta) = q + L$$
évy–Khintchine

Define the associated integrated exponential Lévy process

$$I_t = \int_0^t e^{\alpha \xi_s} ds, \qquad t \ge 0.$$
⁽¹⁾

and its limit, $I_{\infty} := \lim_{t \uparrow \infty} I_t$.

Also interested in the inverse process of I:

$$\varphi(t) = \inf\{s > 0 : I_s > t\}, \quad t \ge 0.$$
 (2)

26/69

・ロト・日本・モート モー うへの

As usual, we work with the convention $\inf \emptyset = \infty$.

LAMPERTI TRANSFORM FOR POSITIVE ssMp

Theorem (Part (i))

Fix $\alpha > 0$. If Z, is a positive self-similar Markov process issued from x > 0 with index of self-similarity α , then up to absorption at the origin, it can be represented as follows:

$$Z_t = \exp\{\xi_{\varphi(t)}\}, \qquad 0 \le t \le \zeta := \inf\{t > 0 : Z_t = 0\},$$

where either

- (1) $\zeta = \infty$ almost surely for all x > 0, in which case ξ is a Lévy process issued from log x satisfying $\limsup_{t \uparrow \infty} \xi_t = \infty$,
- (2) $\zeta < \infty$ and $Z_{\zeta-} = 0$ almost surely for all x > 0, in which case ξ is a Lévy process issued from $\log x$ satisfying $\lim_{t\uparrow\infty} \xi_t = -\infty$, or
- (3) ζ < ∞ and Z_{ζ−} > 0 almost surely for all x > 0, in which case ξ is a Lévy process issued from log x killed at an independent and exponentially distributed random time.

27/69

In all cases, we may identify $\zeta = I_{\infty}$.

LAMPERTI TRANSFORM FOR POSITIVE ssMp

Theorem (Part (ii))

Conversely, suppose that ξ is a given (killed) Lévy process issued from $\log x$, where x > 0. Define

$$Z_t = \exp\{\xi_{\varphi(t)}\}\mathbf{1}_{(t < I_\infty)}, \qquad t \ge 0.$$

Then Z defines a positive self-similar Markov process issued from x > 0, up to its absorption time $\zeta = I_{\infty}$, with index α .

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

 \leftrightarrow

LAMPERTI TRANSFORM FOR POSITIVE ssMp

 $(Z, \mathbb{P}_x)_{x>0} \text{ pssMp}$ $Z_t = \exp(\xi_{S(t)}),$

S a random time-change

 $(\xi, \mathbf{P}_y)_{y \in \mathbb{R}}$ killed Lévy $\xi_s = \log(Z_{T(s)}),$ *T* a random time-change

> 29/69 □▶◀@▶◀필▶◀필▶ 필 ∽੧<은

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

LAMPERTI TRANSFORM FOR POSITIVE ssMp

$$(Z, \mathbb{P}_x)_{x>0} \operatorname{pssMp}$$

 $Z_t = \exp(\xi_{S(t)}),$

S a random time-change

 $(\xi, \mathbf{P}_y)_{y \in \mathbb{R}}$ killed Lévy $\xi_s = \log(Z_{T(s)}),$ *T* a random time-change

Z never hits zero *Z* hits zero continuously *Z* hits zero by a jump

 \leftrightarrow

 \leftrightarrow

 $\left\{ \begin{array}{l} \xi \to \infty \text{ or } \xi \text{ oscillates} \\ \xi \to -\infty \\ \xi \text{ is killed} \end{array} \right.$

29/69

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

§4. Positive self-similar Markov processes

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	•000000000000	00000	00000000000000	000

The stable process cannot 'creep' downwards across the threshold 0 and so must do so with a jump.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	●0000000000000	00000	00000000000000	000

- The stable process cannot 'creep' downwards across the threshold 0 and so must do so with a jump.
- ► This puts $Z_t^* := X_t \mathbf{1}_{(\underline{X}_t > 0)}, t \ge 0$, in the class of pssMp for which the underlying Lévy process experiences exponential killing.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	●0000000000000	00000	00000000000000	000

- The stable process cannot 'creep' downwards across the threshold 0 and so must do so with a jump.
- ► This puts $Z_t^* := X_t \mathbf{1}_{(\underline{X}_t > 0)}, t \ge 0$, in the class of pssMp for which the underlying Lévy process experiences exponential killing.
- ▶ Write $\xi^* = \{\xi_t^* : t \ge 0\}$ for the underlying Lévy process and denote its killing rate by q^* .

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	●0000000000000	00000	00000000000000	000

- The stable process cannot 'creep' downwards across the threshold 0 and so must do so with a jump.
- ► This puts $Z_t^* := X_t \mathbf{1}_{(\underline{X}_t > 0)}, t \ge 0$, in the class of pssMp for which the underlying Lévy process experiences exponential killing.
- ▶ Write $\xi^* = \{\xi_t^* : t \ge 0\}$ for the underlying Lévy process and denote its killing rate by q^* .

31/69

- コン・4回シュ ヨシュ ヨン・9 くの

• Let's try and decode the characteristics of ξ^* .

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	0000000000000	00000	00000000000000	000

STABLE PROCESS KILLED ON ENTRY TO $(-\infty, 0)$ • We know that the α -stable process experiences downward jumps at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\frac{1}{|x|^{1+\alpha}}\mathrm{d}x,\qquad x<0.$$

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	0000000000000	00000	00000000000000	000

STABLE PROCESS KILLED ON ENTRY TO $(-\infty, 0)$ \blacktriangleright We know that the α -stable process experiences downward jumps at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\frac{1}{|x|^{1+\alpha}}\mathrm{d}x,\qquad x<0.$$

• Given that we know the value of Z_{t-}^* , on $\{X_t > 0\}$, the stable process will pass over the origin at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\left(\int_{Z_{t-}^*}^\infty \frac{1}{|x|^{1+\alpha}}\mathrm{d}x\right) = \frac{\Gamma(1+\alpha)}{\alpha\pi}\sin(\pi\alpha\hat{\rho})(Z_{t-}^*)^{-\alpha}$$

32/69

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	0000000000000	00000	00000000000000	000

• We know that the α -stable process experiences downward jumps at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\frac{1}{|x|^{1+\alpha}}\mathrm{d}x,\qquad x<0.$$

▶ Given that we know the value of Z^{*}_{t−}, on {<u>X</u>_t > 0}, the stable process will pass over the origin at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\left(\int_{Z_{t-}^*}^\infty \frac{1}{|x|^{1+\alpha}}\mathrm{d}x\right) = \frac{\Gamma(1+\alpha)}{\alpha\pi}\sin(\pi\alpha\hat{\rho})(Z_{t-}^*)^{-\alpha}.$$

• On the other hand, the Lamperti transform says that on $\{t < \zeta\}$, as a pssMp, *Z* is sent to the origin at rate

$$q^* \frac{\mathrm{d}}{\mathrm{d}t} \varphi(t) = q^* \mathrm{e}^{-\alpha \xi^*_{\varphi(t)}} = q^* (Z^*_t)^{-\alpha}$$

32/69 <□▶<률▶<≧▶<≧▶ <> ○<</p>

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	0000000000000	00000	00000000000000	000

• We know that the α -stable process experiences downward jumps at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\frac{1}{|x|^{1+\alpha}}\mathrm{d}x,\qquad x<0.$$

▶ Given that we know the value of Z^{*}_{t−}, on {<u>X</u>_t > 0}, the stable process will pass over the origin at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\left(\int_{Z_{t-}^*}^\infty \frac{1}{|x|^{1+\alpha}}\mathrm{d}x\right) = \frac{\Gamma(1+\alpha)}{\alpha\pi}\sin(\pi\alpha\hat{\rho})(Z_{t-}^*)^{-\alpha}.$$

• On the other hand, the Lamperti transform says that on $\{t < \zeta\}$, as a pssMp, *Z* is sent to the origin at rate

$$q^* \frac{\mathrm{d}}{\mathrm{d}t} \varphi(t) = q^* \mathrm{e}^{-\alpha \xi_{\varphi(t)}^*} = q^* (Z_t^*)^{-\alpha}.$$

Comparing gives us

$$q^* = \Gamma(\alpha) \sin(\pi \alpha \hat{\rho}) / \pi = \frac{\Gamma(\alpha)}{\Gamma(\alpha \hat{\rho}) \Gamma(1 - \alpha \hat{\rho})}$$

32/69

▶ Referring again to the Lamperti transform, we know that, under \mathbb{P}_1 (so that $\xi_0^* = 0$ almost surely),

$$Z_{\zeta-}^* = X_{\tau_0^-} = e^{\xi_{e_q^*}^*},$$

where \mathbf{e}_{q^*} is an exponentially distributed random variable with rate q^* .

▶ Referring again to the Lamperti transform, we know that, under \mathbb{P}_1 (so that $\xi_0^* = 0$ almost surely),

$$Z_{\zeta-}^* = X_{\tau_0^-} = \mathrm{e}^{\xi_{\mathbf{e}_{q^*}}^*},$$

where \mathbf{e}_{q^*} is an exponentially distributed random variable with rate q^* . This motivates the computation

$$\mathbb{E}_{1}[(Z_{\zeta-}^{*})^{\mathrm{i}\theta}] = \mathbf{E}_{0}[\mathrm{e}^{\mathrm{i}\theta\xi_{\mathbf{e}_{q^{*}}}^{*}-}] = \frac{q^{*}}{(\Psi^{*}(z) - q^{*}) + q^{*}}, \qquad \theta \in \mathbb{R},$$

33/69

イロン 不聞と 不良と 不良とう 良い

where Ψ^* is the characteristic exponent of ξ^* .

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

Stable process killed on entry to $(-\infty,0)$

Remembering the "triple law" distributional law at first passage, we deduce that, for all $v \in [0, 1]$,

$$\begin{split} \mathbb{P}_{1}(X_{\tau_{0}^{-}-} \in \mathrm{d}v) \\ &= \hat{\mathbb{P}}_{0}(1 - X_{\tau_{1}^{+}-} \in \mathrm{d}v) \\ &= \frac{\sin(\alpha\hat{\rho}\pi)}{\pi} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha\rho)\Gamma(\alpha\hat{\rho})} \left(\int_{0}^{\infty} \int_{0}^{\infty} \mathbf{1}_{(y \leq 1 \wedge v)} \frac{(1-y)^{\alpha\hat{\rho}-1}(v-y)^{\alpha\rho-1}}{(v+u)^{1+\alpha}} \mathrm{d}u \mathrm{d}y\right) \mathrm{d}v \\ &= \frac{\sin(\alpha\hat{\rho}\pi)}{\pi} \frac{\Gamma(\alpha)}{\Gamma(\alpha\rho)\Gamma(\alpha\hat{\rho})} \left(\int_{0}^{1} \mathbf{1}_{(y \leq v)} v^{-\alpha} (1-y)^{\alpha\hat{\rho}-1} (v-y)^{\alpha\rho-1} \mathrm{d}y\right) \mathrm{d}v, \end{split}$$

34/69

イロト 不得 トイヨト イヨト 三日

where $\hat{\mathbb{P}}_0$ is the law of -X issued from 0.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

Stable process killed on entry to $(-\infty,0)$

Remembering the "triple law" distributional law at first passage, we deduce that, for all $v \in [0, 1]$,

$$\begin{split} \mathbb{P}_{1}(X_{\tau_{0}^{-}-} \in \mathrm{d}v) \\ &= \hat{\mathbb{P}}_{0}(1 - X_{\tau_{1}^{+}-} \in \mathrm{d}v) \\ &= \frac{\sin(\alpha\hat{\rho}\pi)}{\pi} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha\rho)\Gamma(\alpha\hat{\rho})} \left(\int_{0}^{\infty} \int_{0}^{\infty} \mathbf{1}_{(y\leq 1\wedge v)} \frac{(1-y)^{\alpha\hat{\rho}-1}(v-y)^{\alpha\rho-1}}{(v+u)^{1+\alpha}} \mathrm{d}u \mathrm{d}y\right) \mathrm{d}v \\ &= \frac{\sin(\alpha\hat{\rho}\pi)}{\pi} \frac{\Gamma(\alpha)}{\Gamma(\alpha\rho)\Gamma(\alpha\hat{\rho})} \left(\int_{0}^{1} \mathbf{1}_{(y\leq v)}v^{-\alpha}(1-y)^{\alpha\hat{\rho}-1}(v-y)^{\alpha\rho-1} \mathrm{d}y\right) \mathrm{d}v, \end{split}$$

where $\hat{\mathbb{P}}_0$ is the law of -X issued from 0. Note: more generally (which you will need for an exercise later):

$$\begin{split} \mathbb{P}_1(-X_{\tau_0^-} \in \mathrm{d} u, \, X_{\tau_0^--} \in \mathrm{d} v) \\ &= \frac{\sin(\alpha \hat{\rho} \pi)}{\pi} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha \rho) \Gamma(\alpha \hat{\rho})} \left(\int_0^\infty \mathbf{1}_{(y \leq 1 \wedge v)} \frac{(1-y)^{\alpha \hat{\rho}-1} (v-y)^{\alpha \rho-1}}{(v+u)^{1+\alpha}} \mathrm{d} y \right) \mathrm{d} v \mathrm{d} u \end{split}$$

34/69

イロト 不得 トイヨト イヨト 三日

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	000000000000000000000000000000000000000	00000	00000000000000	000

Stable process killed on entry to $(-\infty, 0)$

We are led to the conclusion that

$$\begin{split} &\frac{q^*}{\Psi^*(\theta)} \\ &= \frac{\sin(\alpha\hat{\rho}\pi)}{\pi} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha\rho)\Gamma(\alpha\hat{\rho})} \int_0^1 (1-y)^{\alpha\hat{\rho}-1} \int_0^\infty \mathbf{1}_{(y\leq v)} v^{\mathbf{i}\theta-\alpha\hat{\rho}-1} \left(1-\frac{y}{v}\right)^{\alpha\rho-1} \mathrm{d}v \mathrm{d}y \\ &= \frac{\sin(\alpha\hat{\rho}\pi)}{\pi} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha\rho)\Gamma(\alpha\hat{\rho})} \int_0^1 (1-y)^{\alpha\hat{\rho}-1} y^{\mathbf{i}\theta-\alpha\hat{\rho}} \mathrm{d}y \frac{\Gamma(\alpha\hat{\rho}-\mathbf{i}\theta)\Gamma(\alpha\rho)}{\Gamma(\alpha-\mathbf{i}\theta)} \\ &= \frac{\Gamma(\alpha\hat{\rho}-\mathbf{i}\theta)\Gamma(\alpha\rho)\Gamma(1-\alpha\hat{\rho}+\mathbf{i}\theta)\Gamma(\alpha\hat{\rho})\Gamma(\alpha)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\hat{\rho})\Gamma(1+\mathbf{i}\theta)\Gamma(\alpha-\mathbf{i}\theta)}, \end{split}$$

where in the first equality Fubini's Theorem has been used, in the second equality a straightforward substitution w = y/v has been used for the inner integral on the preceding line together with the classical beta integral and, finally, in the third equality, the Beta integral has been used for a second time. Inserting the respective values for the constants q^* and K, we come to rest at the following result:

Stable process killed on entry to $(-\infty,0)$

Theorem

For the pssMp constructed by killing a stable process on first entry to $(-\infty, 0)$, the underlying killed Lévy process, ξ^* , that appears through the Lamperti transform has characteristic exponent given by

$$\Psi^*(z) = \frac{\Gamma(\alpha - iz)}{\Gamma(\alpha \hat{\rho} - iz)} \frac{\Gamma(1 + iz)}{\Gamma(1 - \alpha \hat{\rho} + iz)}, \qquad z \in \mathbb{R}.$$

36/69

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

STABLE PROCESSES CONDITIONED TO STAY POSITIVE

• Use the Lamperti representation of the α -stable process *X* to write, for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\uparrow}(A) = \mathbb{E}_{x}\left[\frac{X_{t}^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right] = \mathbf{E}_{0}\left[e^{\alpha\hat{\rho}\xi_{\tau}^{*}}\mathbf{1}_{(\tau<\mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right],$$

37/69

・ロト ・ 語 ト ・ ヨ ト ・ ヨ ・ つへぐ

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

STABLE PROCESSES CONDITIONED TO STAY POSITIVE

• Use the Lamperti representation of the α -stable process *X* to write, for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\uparrow}(A) = \mathbb{E}_{x}\left[\frac{X_{t}^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right] = \mathbb{E}_{0}\left[e^{\alpha\hat{\rho}\xi_{\tau}^{*}}\mathbf{1}_{(\tau<\mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right],$$

37/69

- コン・4回シュ ヨシュ ヨン・9 くの

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

Noting that $\Psi^*(-i\alpha\hat{\rho}) = 0$, the change of measure constitutes an Esscher transform at the level of ξ^* .

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

STABLE PROCESSES CONDITIONED TO STAY POSITIVE

• Use the Lamperti representation of the α -stable process *X* to write, for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\uparrow}(A) = \mathbb{E}_{x}\left[\frac{X_{t}^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right] = \mathbb{E}_{0}\left[e^{\alpha\hat{\rho}\xi_{\tau}^{*}}\mathbf{1}_{(\tau<\mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right],$$

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

Noting that $\Psi^*(-i\alpha\hat{\rho}) = 0$, the change of measure constitutes an Esscher transform at the level of ξ^* .

Theorem

The underlying Lévy process, ξ^{\uparrow} , that appears through the Lamperti transform applied to $(X, \mathbb{P}_x^{\uparrow}), x > 0$, has characteristic exponent given by

$$\Psi^{\uparrow}(z) = \frac{\Gamma(\alpha \rho - \mathrm{i}z)}{\Gamma(-\mathrm{i}z)} \frac{\Gamma(1 + \alpha \hat{\rho} + \mathrm{i}z)}{\Gamma(1 + \mathrm{i}z)}, \qquad z \in \mathbb{R}.$$

► In particular $\Psi^{\uparrow}(z) = \Psi^*(z - i\alpha\hat{\rho}), z \in \mathbb{R}$ so that $\Psi^{\uparrow}(0) = 0$ (i.e. no killing!)

• One can also check by hand that $\Psi^{\uparrow\prime}(0+) = \mathbf{E}_0[\xi_1^{\uparrow}] > 0$ so that $\lim_{t\to\infty} \xi_t^{\uparrow} = \infty$.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

- In essence, the case of the stable process conditioned to stay positive boils down to an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
- It was important that we identified a root of $\Psi^*(z) = 0$ in order to avoid involving a 'time component' of the Esscher transform.

38/69

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

- In essence, the case of the stable process conditioned to stay positive boils down to an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
- It was important that we identified a root of $\Psi^*(z) = 0$ in order to avoid involving a 'time component' of the Esscher transform.
- However, there is another root of the equation

$$\Psi^*(z) = \frac{\Gamma(\alpha - iz)}{\Gamma(\alpha \hat{\rho} - iz)} \frac{\Gamma(1 + iz)}{\Gamma(1 - \alpha \hat{\rho} + iz)} = 0,$$

namely $z = -i(1 - \alpha \hat{\rho})$.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

- In essence, the case of the stable process conditioned to stay positive boils down to an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
- It was important that we identified a root of $\Psi^*(z) = 0$ in order to avoid involving a 'time component' of the Esscher transform.
- However, there is another root of the equation

$$\Psi^*(z) = \frac{\Gamma(\alpha - iz)}{\Gamma(\alpha \hat{\rho} - iz)} \frac{\Gamma(1 + iz)}{\Gamma(1 - \alpha \hat{\rho} + iz)} = 0,$$

namely $z = -i(1 - \alpha \hat{\rho})$.

And this means that

$$\mathrm{e}^{(1-\alpha\hat{\rho})\xi^*}, \qquad t \ge 0,$$

is a unit-mean Martingale, which can also be used to construct an Esscher transform:

$$\Psi^{\downarrow}(z) = \Psi^*(z - \mathrm{i}(1 - \alpha\hat{\rho})) = \Psi^{\downarrow}(z) = \frac{\Gamma(1 + \alpha\rho - \mathrm{i}z)}{\Gamma(1 - \mathrm{i}z)} \frac{\Gamma(\mathrm{i}z + \alpha\hat{\rho})}{\Gamma(\mathrm{i}z)}.$$

38/69 ▲□▶ ▲쿱▶ ▲콜▶ ▲콜▶ 콜 - ∽੧.♡

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

- In essence, the case of the stable process conditioned to stay positive boils down to an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
- It was important that we identified a root of $\Psi^*(z) = 0$ in order to avoid involving a 'time component' of the Esscher transform.
- However, there is another root of the equation

$$\Psi^*(z) = \frac{\Gamma(\alpha - iz)}{\Gamma(\alpha\hat{\rho} - iz)} \frac{\Gamma(1 + iz)}{\Gamma(1 - \alpha\hat{\rho} + iz)} = 0,$$

namely $z = -i(1 - \alpha \hat{\rho})$.

And this means that

$$\mathrm{e}^{(1-\alpha\hat{\rho})\xi^*}, \qquad t \ge 0,$$

is a unit-mean Martingale, which can also be used to construct an Esscher transform:

$$\Psi^{\downarrow}(z) = \Psi^*(z - i(1 - \alpha\hat{\rho})) = \Psi^{\downarrow}(z) = \frac{\Gamma(1 + \alpha\rho - iz)}{\Gamma(1 - iz)} \frac{\Gamma(iz + \alpha\hat{\rho})}{\Gamma(iz)}.$$

► The choice of notation is pre-emptive since we can also check that $\Psi^{\downarrow}(0) = 0$ and $\Psi^{\downarrow\prime}(0) < 0$ so that if ξ^{\downarrow} is a Lévy process with characteristic exponent Ψ^{\downarrow} , then $\lim_{t\to\infty} \xi_t^{\downarrow} = -\infty$.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	000000000000000	00000	00000000000000	000

Reverse engineering

▶ What now happens if we define for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\downarrow}(A) = \mathbf{E}_{0}\left[\mathbf{e}^{(1-\alpha\hat{\rho})\xi_{\tau}^{*}}\mathbf{1}_{(\tau < \mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right] = \mathbb{E}_{x}\left[\frac{\mathbf{X}_{t}^{(1-\alpha\hat{\rho})}}{x^{(1-\alpha\hat{\rho})}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right],$$

39/69

(ロト・日本・日本・日本・日本・日本・1000)

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	000000000000000	00000	00000000000000	000

Reverse engineering

▶ What now happens if we define for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\downarrow}(A) = \mathbf{E}_{0}\left[\mathbf{e}^{(1-\alpha\hat{\rho})\xi_{\tau}^{*}}\mathbf{1}_{(\tau < \mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right] = \mathbb{E}_{x}\left[\frac{X_{t}^{(1-\alpha\hat{\rho})}}{x^{(1-\alpha\hat{\rho})}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right],$$

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

▶ In the same way we checked that $(X, \mathbb{P}_x^{\uparrow})$, x > 0, is a pssMp, we can also check that $(X, \mathbb{P}_x^{\downarrow})$, x > 0 is a pssMp.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	000000000000000	00000	00000000000000	000

Reverse engineering

▶ What now happens if we define for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\downarrow}(A) = \mathbf{E}_{0}\left[\mathrm{e}^{(1-\alpha\hat{\rho})\xi_{\tau}^{*}}\mathbf{1}_{(\tau < \mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right] = \mathbb{E}_{x}\left[\frac{X_{t}^{(1-\alpha\hat{\rho})}}{x^{(1-\alpha\hat{\rho})}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right],$$

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > の Q (O)

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

- ▶ In the same way we checked that $(X, \mathbb{P}_x^{\uparrow})$, x > 0, is a pssMp, we can also check that $(X, \mathbb{P}_x^{\downarrow})$, x > 0 is a pssMp.
- In an appropriate sense, it turns out that (X, P[↓]_x), x > 0 is the law of a stable process conditioned to continuously approach the origin from above.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	00000000000000	0000	000000000●00000	00000	0000000000000000	000

 ξ^*,ξ^{\uparrow} and ξ^{\downarrow}

_

▶ The three examples of pssMp offer quite striking underlying Lévy processes

40/69

(ロト・日本・日本・日本・日本・日本・1000)

Is this exceptional?

CENSORED STABLE PROCESSES

- Start with *X*, the stable process.
- Let $A_t = \int_0^t \mathbf{1}_{(X_t > 0)} dt$.
- Let γ be the right-inverse of A, and put $\check{Z}_t := X_{\gamma(t)}$.
- Finally, make zero an absorbing state: $Z_t = \check{Z}_t \mathbf{1}_{(t < T_0)}$ where

$$T_0 = \inf\{t > 0 : X_t = 0\}.$$

41/69

・ロト・日本・モト・モト・モー のへぐ

Note $T_0 < \infty$ a.s. if and only if $\alpha \in (1, 2)$ and otherwise $T_0 = \infty$ a.s. This is the censored stable process.

CENSORED STABLE PROCESSES

Theorem

Suppose that the underlying Lévy process for the censored stable process is denoted by $\tilde{\xi}$. Then $\tilde{\xi}$ is equal in law to $\xi^{**} \oplus \xi^{C}$, with

- \triangleright ξ^{**} equal in law to ξ^* with the killing removed,
- ► ξ^{C} a compound Poisson process with jump rate $q^{*} = \Gamma(\alpha) \sin(\pi \alpha \hat{\rho})/\pi$.

Moreover, the characteristic exponent of $\widetilde{\xi}$ is given by

$$\widetilde{\Psi}(z) = \frac{\Gamma(\alpha \rho - \mathrm{i}z)}{\Gamma(-\mathrm{i}z)} \frac{\Gamma(1 - \alpha \rho + \mathrm{i}z)}{\Gamma(1 - \alpha + \mathrm{i}z)}, \qquad z \in \mathbb{R}$$

42/69

THE RADIAL PART OF A STABLE PROCESS

- Suppose that X is a symmetric stable process, i.e $\rho = 1/2$.
- We know that |X| is a pssMp.

Theorem

Suppose that the underlying Lévy process for |X| is written ξ , then it characteristic exponent is given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-iz+\alpha))}{\Gamma(-\frac{1}{2}iz)} \frac{\Gamma(\frac{1}{2}(iz+1))}{\Gamma(\frac{1}{2}(iz+1-\alpha))}, \qquad z \in \mathbb{R}$$

43/69

・ロト・日本・モト・モト・モー のへぐ

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	0000000000000	00000	00000000000000	000

HYPERGEOMETRIC LÉVY PROCESSES (REMINDER)

Definition (and Theorem) For $(\beta, \gamma, \hat{\beta}, \hat{\gamma})$ in

$$\left\{ \begin{array}{l} \beta \leq 2, \ \gamma, \hat{\gamma} \in (0,1) \ \hat{\beta} \geq -1, \ \text{and} \ 1 - \beta + \hat{\beta} + \gamma \wedge \hat{\gamma} \geq 0 \end{array} \right\}$$

there exists a (killed) Lévy process, henceforth refered to as a hypergeometric Lévy process, having the characteristic function

$$\Psi(z) = \frac{\Gamma(1 - \beta + \gamma - \mathrm{i}z)}{\Gamma(1 - \beta - \mathrm{i}z)} \frac{\Gamma(\hat{\beta} + \hat{\gamma} + \mathrm{i}z)}{\Gamma(\hat{\beta} + \mathrm{i}z)} \qquad z \in \mathbb{R}$$

The Lévy measure of Y has a density with respect to Lebesgue measure is given by

$$\pi(x) = \begin{cases} -\frac{\Gamma(\eta)}{\Gamma(\eta - \hat{\gamma})\Gamma(-\gamma)} e^{-(1-\beta+\gamma)x} {}_2F_1\left(1 + \gamma, \eta; \eta - \hat{\gamma}; e^{-x}\right), & \text{if } x > 0, \\ \\ -\frac{\Gamma(\eta)}{\Gamma(\eta - \gamma)\Gamma(-\hat{\gamma})} e^{(\hat{\beta} + \hat{\gamma})x} {}_2F_1\left(1 + \hat{\gamma}, \eta; \eta - \gamma; e^x\right), & \text{if } x < 0, \end{cases}$$

where $\eta := 1 - \beta + \gamma + \hat{\beta} + \hat{\gamma}$, for |z| < 1, ${}_2F_1(a, b; c; z) := \sum_{k \ge 0} \frac{(a)_k(b)_k}{(c)_k k!} z^k$.

44/69

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

§5. Entrance Laws

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	•0000	00000000000000	000

We have carefully avoided the issue of talking about pssMp issued from the origin.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	0000	00000000000000	000

We have carefully avoided the issue of talking about pssMp issued from the origin.

This should ring alarm bells when we look at the Lamperti transform

$$Z_t^{(x)} \mathbf{1}_{\{t < \zeta^{(x)}\}} = x \exp\{\xi_{\varphi(x^{-\alpha}t)}\} = \exp\{\xi_{\varphi(x^{-\alpha}t)} + \log x\}, \qquad t \ge 0,$$

• On the one hand $\log x \downarrow -\infty$, which is the point of issue of ξ , but

$$\varphi(x^{-\alpha}t) = \inf\{s > 0: \int_0^s e^{\alpha(\xi_u + \log x)} du > t\},$$

meaning that we are sampling the Lévy process over a longer and longer time horizon.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

- We have carefully avoided the issue of talking about pssMp issued from the origin.
- This should ring alarm bells when we look at the Lamperti transform

$$Z_t^{(x)} \mathbf{1}_{\{t < \zeta^{(x)}\}} = x \exp\{\xi_{\varphi(x^{-\alpha}t)}\} = \exp\{\xi_{\varphi(x^{-\alpha}t)} + \log x\}, \qquad t \ge 0,$$

• On the one hand $\log x \downarrow -\infty$, which is the point of issue of ξ , but

$$\varphi(x^{-\alpha}t) = \inf\{s > 0 : \int_0^s e^{\alpha(\xi_u + \log x)} du > t\},$$

meaning that we are sampling the Lévy process over a longer and longer time horizon.

We know that 0 is an **absorbing point**, but it might also be an **entrance point** (can it be both?).

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	0000	00000000000000	000

- We have carefully avoided the issue of talking about pssMp issued from the origin.
- This should ring alarm bells when we look at the Lamperti transform

$$Z_t^{(x)} \mathbf{1}_{\{t < \zeta^{(x)}\}} = x \exp\{\xi_{\varphi(x^{-\alpha}t)}\} = \exp\{\xi_{\varphi(x^{-\alpha}t)} + \log x\}, \qquad t \ge 0,$$

• On the one hand $\log x \downarrow -\infty$, which is the point of issue of ξ , but

$$\varphi(x^{-\alpha}t) = \inf\{s > 0 : \int_0^s e^{\alpha(\xi_u + \log x)} du > t\},$$

meaning that we are sampling the Lévy process over a longer and longer time horizon.

- We know that 0 is an **absorbing point**, but it might also be an **entrance point** (can it be both?).
- We know that some of our new friends have no problem using the origin as an entrance point, e.g. |X|, where X is an α -stable process (or Brownian motion).

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	0000	00000000000000	000

- We have carefully avoided the issue of talking about pssMp issued from the origin.
- ▶ This should ring alarm bells when we look at the Lamperti transform

$$Z_t^{(x)} \mathbf{1}_{\{t < \zeta^{(x)}\}} = x \exp\{\xi_{\varphi(x^{-\alpha}t)}\} = \exp\{\xi_{\varphi(x^{-\alpha}t)} + \log x\}, \qquad t \ge 0,$$

• On the one hand $\log x \downarrow -\infty$, which is the point of issue of ξ , but

$$\varphi(x^{-\alpha}t) = \inf\{s > 0 : \int_0^s e^{\alpha(\xi_u + \log x)} du > t\},$$

meaning that we are sampling the Lévy process over a longer and longer time horizon.

- We know that 0 is an **absorbing point**, but it might also be an **entrance point** (can it be both?).
- We know that some of our new friends have no problem using the origin as an entrance point, e.g. |X|, where X is an α -stable process (or Brownian motion).
- ▶ We know that some of our new friends have no problem using the origin as an entrance point, but also a point of recurrence, e.g. X X, where X is an α -stable process (or Brownian motion).

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	00000000000000	0000	0000000000000000	○●○○○	0000000000000000	000

_

• We want to find a way to give a meaning to " $\mathbb{P}_0 := \lim_{x \downarrow 0} \mathbb{P}_x$ ".

§1. 000000	§2. 000000000000000	§3. 0000	§4. 0000000000000000	§5. 0●000	§6. 0000000000000000	Exercises. 000

- We want to find a way to give a meaning to " $\mathbb{P}_0 := \lim_{x \downarrow 0} \mathbb{P}_x$ ".
- Could look at behaviour of the transition semigroup of Z as its initial value tends to zero. That is to say, to consider whether the weak limit below is well defined:

$$\mathbb{P}_0(Z_t \in \mathrm{d} y) := \lim_{x \to 0} \mathbb{P}_x(Z_t \in \mathrm{d} y), \qquad t, y > 0.$$

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	000000000000000	0000	0000000000000000	○●○○○	0000000000000000	000

- We want to find a way to give a meaning to " $\mathbb{P}_0 := \lim_{x \downarrow 0} \mathbb{P}_x$ ".
- Could look at behaviour of the transition semigroup of Z as its initial value tends to zero. That is to say, to consider whether the weak limit below is well defined:

$$\mathbb{P}_0(Z_t \in \mathrm{d} y) := \lim_{x \downarrow 0} \mathbb{P}_x(Z_t \in \mathrm{d} y), \qquad t, y > 0.$$

▶ In that case, for any sequence of times $0 < t_1 \le t_2 \le \cdots \le t_n < \infty$ and $y_1, \cdots, y_n \in (0, \infty), n \in \mathbb{N}$, the Markov property gives us

$$\begin{split} \mathbb{P}_{0}(Z_{t_{1}} \in dy_{1}, \cdots, Z_{t_{n}} \in dy_{n}) \\ &:= \lim_{x \downarrow 0} \mathbb{P}_{x}(Z_{t_{1}} \in dy_{1}, \cdots, Z_{t_{n}} \in dy_{n}) \\ &= \lim_{x \downarrow 0} \mathbb{P}_{x}(Z_{t_{1}} \in dy_{1}) \mathbb{P}_{y_{1}}(Z_{t_{2}-t_{1}} \in dy_{2}, \cdots, Z_{t_{n}-t_{2}} \in dy_{n}) \\ &= \mathbb{P}_{0}(Z_{t_{1}} \in dy_{1}) \mathbb{P}_{y_{1}}(Z_{t_{2}-t_{1}} \in dy_{2}, \cdots, Z_{t_{n}-t_{2}} \in dy_{n}). \end{split}$$

When the limit exists, it implies the existence of \mathbb{P}_0 as limit of \mathbb{P}_x as $x \downarrow 0$, in the sense of convergence of finite-dimensional distributions.

47/69

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

▶ We would like a stronger sense of convergence e.g. we would like

$$\mathbb{E}_0[f(Z_s:s\leq t)] := \lim_{x\to 0} \mathbb{E}_x[f(Z_s:s\leq t)]$$

48/69

・ロ・・ 日・・ ヨ・・ ヨ・・ シック

for an appropriate measurable function on cadlag paths of length *t*.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	000000000000000	0000	0000000000000000	00●00	0000000000000000	000

▶ We would like a stronger sense of convergence e.g. we would like

$$\mathbb{E}_0[f(Z_s:s\leq t)] := \lim_{x\to 0} \mathbb{E}_x[f(Z_s:s\leq t)]$$

for an appropriate measurable function on cadlag paths of length *t*.

The right setting to discuss *distributional convergence* is with respect to so-called *Skorokhod topology*.

▶ We would like a stronger sense of convergence e.g. we would like

$$\mathbb{E}_0[f(Z_s:s\leq t)] := \lim_{x\to 0} \mathbb{E}_x[f(Z_s:s\leq t)]$$

for an appropriate measurable function on cadlag paths of length *t*.

- The right setting to discuss *distributional convergence* is with respect to so-called *Skorokhod topology*.
- ROUGHLY: There is a metric on cadlag path space which does a better job of measuring how "close" two paths are than e.g. the uniform functional metric.
- This metric induces a topology (the Skorokhod topology). From this topology, we build a measurable space around the space of cadlag paths.

48/69

▶ Think of \mathbb{P}_x , x > 0 as a family of measures on this space and we want weak convergence " $\mathbb{P}_0 := \lim_{x \to 0} \mathbb{P}_x$ " on this space.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

Theorem

Suppose that $(\xi, \mathbf{P}_x), x \in \mathbb{R}$ is the Lévy process (not a compound Poisson process) underlying the pssMp $(Z, \mathbb{P}_x), x > 0$. The limit $\mathbb{P}_0 := \lim_{x \to 0} \mathbb{P}_x$ exists in the sense of convergence with respect to the Skorokhod topology if and only if $\mathbf{E}_0(H_1^+) < \infty$ (H^+ is the ascending ladder process of ξ). Under the assumption that $\mathbb{E}(\xi_1) > 0$, for any positive measurable function f and t > 0,

$$\mathbb{E}_0(f(Z_t)) = \frac{1}{-\alpha \hat{\mathbf{E}}_0(\xi_1)} \hat{\mathbf{E}}_0\left(\frac{1}{I_\infty} f\left(\left(\frac{t}{I_\infty}\right)^{1/\alpha}\right)\right),$$

where $I_{\infty} = \int_0^{\infty} e^{\alpha \xi_t} dt$ and $(\xi, \hat{\mathbf{P}}_0)$ is equal in law to $(-\xi, \mathbf{P}_0)$.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

The previous construction has insisted that *Z* is a *pssMp* with $\zeta = \infty$ a.s. But what about the case that $\zeta < \infty$ a.s.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000	000 000000	000000 0000	000000000	00000	000000000000000000000000000000000000	

- The previous construction has insisted that *Z* is a *pssMp* with $\zeta = \infty$ a.s. But what about the case that $\zeta < \infty$ a.s.
- We can say something about the case that $\zeta < \infty$ a.s. and $X_{\zeta-} = 0$.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

- The previous construction has insisted that *Z* is a *pssMp* with $\zeta = \infty$ a.s. But what about the case that $\zeta < \infty$ a.s.
- ▶ We can say something about the case that $\zeta < \infty$ a.s. and $X_{\zeta-} = 0$.
- A cadlag strong Markov process, $\vec{Z} := \{\vec{Z}_t: t \ge 0\}$ with probabilities $\{\vec{P}_x, x \ge 0\}$, is a *recurrent extension* of *Z* if, for each x > 0, the origin is not an absorbing state \vec{P}_x -almost surely and $\{\vec{Z}_{t \land \vec{\zeta}}: t \ge 0\}$ under \vec{P}_x has the same law as (Z, P_x) , where

$$\overrightarrow{\zeta} = \inf\{t > 0 : \overrightarrow{Z_t} = 0\}.$$

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

- The previous construction has insisted that *Z* is a *pssMp* with $\zeta = \infty$ a.s. But what about the case that $\zeta < \infty$ a.s.
- ▶ We can say something about the case that $\zeta < \infty$ a.s. and $X_{\zeta-} = 0$.
- ► A cadlag strong Markov process, $\vec{Z} := \{\vec{Z}_t: t \ge 0\}$ with probabilities $\{\vec{P}_x, x \ge 0\}$, is a *recurrent extension* of *Z* if, for each x > 0, the origin is not an absorbing state \vec{P}_x -almost surely and $\{\vec{Z}_{t, \land \zeta}: t \ge 0\}$ under \vec{P}_x has the same law as (Z, P_x) , where

$$\vec{\zeta} = \inf\{t > 0 : \vec{Z}_t = 0\}.$$

Theorem

If $\zeta < \infty$ a.s. and $X_{\zeta-} = 0$, then there exists a unique recurrent extension of Z which leaves 0 continuously if and only if there exists a $\beta \in (0, \alpha)$ such

$$\mathbf{E}_0(\mathbf{e}^{\beta\xi_1}) = 1.$$

50/69

(日)(四)(日)(日)(日)(日)

Here, as usual, α *is the index of self-similarity.*

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

§6. Real valued self-similar Markov processes

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	•0000000000000	000

- So far we only spoke about $[0, \infty)$.
- This necessitated an incursion into the theory of Lévy processes

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	●0000000000000	000

- So far we only spoke about $[0, \infty)$.
- This necessitated an incursion into the theory of Lévy processes
- ▶ What can we say about ℝ-valued self-similar Markov processes.
- ▶ This requires an incursion into the theory of Markov Additive (Lévy) Processes

MARKOV ADDITIVE PROCESSES (MAPS)

- *E* is a finite state space
- ▶ $(J(t))_{t>0}$ is a continuous-time, irreducible Markov chain on *E*
- ▶ process (ξ , J) in $\mathbb{R} \times E$ is called a *Markov additive process* (*MAP*) with probabilities $\mathbf{P}_{x,i}, x \in \mathbb{R}, i \in E$, if, for any $i \in E, s, t \ge 0$: Given {J(t) = i}, $(\xi(t+s) \xi(t), J(t+s)) \stackrel{d}{=} (\xi(s), J(s))$ with law $\mathbf{P}_{0,i}$.

53/69

PATHWISE DESCRIPTION OF A MAP

The pair (ξ, J) is a Markov additive process if and only if, for each $i, j \in E$,

- ▶ there exist a sequence of iid Lévy processes $(\xi_i^n)_{n>0}$
- ▶ and a sequence of iid random variables $(U_{ii}^n)_{n\geq 0}$, independent of the chain *J*,
- such that if $T_0 = 0$ and $(T_n)_{n \ge 1}$ are the jump times of *J*, the process ξ has the representation

$$\xi(t) = \mathbf{1}_{(n>0)}(\xi(T_n) + U_{J(T_n-),J(T_n)}^n) + \xi_{J(T_n)}^n(t-T_n),$$

54/69

イロト 不得 トイヨト イヨト 三日

for $t \in [T_n, T_{n+1}), n \ge 0$.

CHARACTERISTICS OF A MAP

- ▶ Denote the transition rate matrix of the chain *J* by $\mathbf{Q} = (q_{ij})_{i,j \in E}$.
- For each *i* ∈ *E*, the Laplace exponent of the Lévy process ξ_i will be written ψ_i (when it exists).
- ▶ For each pair of $i, j \in E$ with $i \neq j$, define the Laplace transform $G_{ij}(z) = \mathbb{E}(e^{zU_{ij}})$ of the jump distribution U_{ij} (when it exists).
- Otherwise define $U_{i,i} \equiv 0$, for each $i \in E$.
- Write G(z) for the $N \times N$ matrix whose (i, j)th element is $G_{ij}(z)$.
- Let

 $\Psi(z) = \operatorname{diag}(\psi_1(z), \ldots, \psi_N(z)) + \mathbf{Q} \circ G(z),$

(when it exists), where o indicates elementwise multiplication.

• The matrix exponent of the MAP (ξ, J) is given by

$$\mathbf{E}_{0,i}(e^{z\xi(t)}; J(t) = j) = \left(e^{\Psi(z)t}\right)_{i,j}, \qquad i, j \in E,$$

(when it exists).

55/69

000000 0000000000 0000 00000000000 0000 0000	§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
	000000	0000000000000	0000	00000000000000	00000	000000000000000	000

DUAL MAP

- Thanks to irreducibility, the Markov chain *J* necessarily has a stationary distribution. We denote it by the vector $\boldsymbol{\pi} = (\pi_1, \dots, \pi_N)$.
- Each MAP has a dual process, also a MAP, with probabilities $\hat{\mathbf{P}}_{x,i}$, $x \in \mathbb{R}$, $i \in E$, determined by the dual characteristic matrix exponent (when it exists),

$$\hat{\boldsymbol{\Psi}}(z) := ext{diag}ig(-\Psi_1(-z),\cdots,-\Psi_N(-z)ig) + \hat{\boldsymbol{Q}}\circ \boldsymbol{G}(-z)^{\mathrm{T}},$$

where \hat{Q} is the time-reversed Markov chain *J*,

$$\hat{q}_{i,j} = \frac{\pi_j}{\pi_i} q_{j,i}, \qquad i,j \in E.$$

Note that the latter can also be written $\hat{Q} = \Delta_{\pi}^{-1} Q^{T} \Delta_{\pi}$, where $\Delta_{\pi} = \text{diag}(\pi)$. \blacktriangleright When it exists,

$$\hat{\boldsymbol{\Psi}}(z) = \boldsymbol{\Delta}_{\pi}^{-1} \boldsymbol{\Psi}(-z)^{\mathrm{T}} \boldsymbol{\Delta}_{\pi},$$

showing that

$$\pi_i \hat{\mathbf{E}}_{0,i} \left[e^{i z \xi_t}, J_t = j \right] = \pi_j \mathbf{E}_{0,j} \left[e^{-i z \xi_t}, J_t = i \right].$$

Lemma

The time-reversed process $((\xi_{(t-s)-} - \xi_t, J_{(t-s)-}), s \leq t)$ under $\mathbf{P}_{0,\pi}$ is equal in law to $((\xi_s, J_s), s \leq t)$ under $\hat{\mathbf{P}}_{0,\pi}$.

56/69

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	000000000000000000000000000000000000000	000

LAMPERTI-KIU TRANSFORM

- Take *J* to be irreducible on $E = \{1, -1\}$.
- For each $x \in \mathbb{R}$, let $\xi_0 = \log |x|$ and $J_0 = \operatorname{sign}(x)$.

00000000000000000000000000000000000000	§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
	000000	0000000000000	0000	00000000000000	00000	000000000000000000000000000000000000000	000

LAMPERTI-KIU TRANSFORM

- Take *J* to be irreducible on $E = \{1, -1\}$.
- For each $x \in \mathbb{R}$, let $\xi_0 = \log |x|$ and $J_0 = \operatorname{sign}(x)$.

Let

$$Z_t = \mathrm{e}^{\xi_{\tau(t)}} J_{\tau(t)} \qquad 0 \le t < T_0,$$

where

$$\tau(t) = \inf\left\{s > 0 : \int_0^s \exp(\alpha\xi(u)) du > t\right\}$$

and

$$T_0 = \int_0^\infty \mathrm{e}^{\alpha\xi(u)} \mathrm{d}u.$$

57/69

- コン・4回シュ ヨシュ ヨン・9 くの

▶ Then Z_t is a real-valued self-similar Markov process issued from $x \in \mathbb{R}$, in the sense that the law of $(cZ_{tc-\alpha} : t \ge 0)$ under \mathbb{P}_x is \mathbb{P}_{cx} .

00000000000000000000000000000000000000	§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
	000000	0000000000000	0000	00000000000000	00000	000000000000000000000000000000000000000	000

LAMPERTI-KIU TRANSFORM

- Take *J* to be irreducible on $E = \{1, -1\}$.
- For each $x \in \mathbb{R}$, let $\xi_0 = \log |x|$ and $J_0 = \operatorname{sign}(x)$.

Let

$$Z_t = \mathrm{e}^{\xi_{\tau(t)}} J_{\tau(t)} \qquad 0 \le t < T_0,$$

where

$$\tau(t) = \inf\left\{s > 0 : \int_0^s \exp(\alpha\xi(u)) du > t\right\}$$

and

$$T_0 = \int_0^\infty \mathrm{e}^{\alpha\xi(u)} \mathrm{d}u.$$

57/69

- コン・4回シュ ヨシュ ヨン・9 くの

- ▶ Then Z_t is a real-valued self-similar Markov process issued from $x \in \mathbb{R}$, in the sense that the law of $(cZ_{tc-\alpha} : t \ge 0)$ under \mathbb{P}_x is \mathbb{P}_{cx} .
- The converse (within a special class of rssMps) is also true.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

Given the Lamperti-Kiu representation

$$Z_t = e^{\xi(\tau(|x|^{-\alpha}t)) + \log|x|} J(\tau(|x|^{-\alpha}t)) \qquad 0 \le t < T_0,$$

it is clear that we can think of a similar construction from zero to the case of $\ensuremath{\text{pss}\text{Mp}}$.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	000000000000000000000000000000000000000	00000	00000000000000	000

Given the Lamperti-Kiu representation

$$Z_t = e^{\xi(\tau(|x|^{-\alpha}t)) + \log |x|} J(\tau(|x|^{-\alpha}t)) \qquad 0 \le t < T_0,$$

it is clear that we can think of a similar construction from zero to the case of $\ensuremath{\mathsf{ps}}\xspace{\mathsf{sm}}\xspace{\mathsf{sm}}$

▶ We need to construct a stationary version of the pair (ξ, J) which is indexed by \mathbb{R} and pinned at space-time point $(-\infty, \infty)$.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

Given the Lamperti-Kiu representation

 $Z_t = e^{\xi(\tau(|x|^{-\alpha}t)) + \log |x|} J(\tau(|x|^{-\alpha}t)) \qquad 0 \le t < T_0,$

it is clear that we can think of a similar construction from zero to the case of $\ensuremath{\mathsf{ps}}\xspace{\mathsf{sm}}\xspace{\mathsf{sm}}$

- ▶ We need to construct a stationary version of the pair (ξ, J) which is indexed by \mathbb{R} and pinned at space-time point $(-\infty, \infty)$.
- ▶ Just like the theory of Lévy processes, by observing the range of the process (ξ_t, J_t) $t \ge 0$, **only** at the points of its new suprema, we see a process (H_t^+, J_t^+) , $t \ge 0$, which is also a MAP, where H^+ is has increasing paths.

58/69

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

Theorem

Assume that Z is a conservative real self-similar Markov process. Moreover, suppose that the MAP $((\xi, \Theta), \mathbf{P})$, associated with Z through the Lamperti-Kiu transform, is such that ξ is not concentrated on a lattice and its ascending ladder height process H which satisfies $\mathbf{E}_{0,\pi}(H_1) < \infty$. Then $\mathbb{P}_0 := \lim_{x\downarrow 0} \mathbb{P}_x$ exists, in the sense of convergence of on the Skorokhod space, under which Z leaves the origin continuously. Conversely, if $\mathbf{E}_{0,\pi}(H_1) = \infty$, then this limit does not exist. Under the additional assumption that $\mathbf{E}_{0,\pi}(\xi_1) > 0$, for any positive measurable function f and t > 0,

$$\mathbb{E}_{0}(f(Z_{t})) = \frac{1}{-\alpha \hat{\mathbf{E}}_{0,\pi}(\xi_{1})} \sum_{i=\pm 1} \pi_{i} \hat{\mathbf{E}}_{0,i} \left(\frac{1}{I_{\infty}} f\left(i \left(\frac{t}{I_{\infty}} \right)^{1/\alpha} \right) \right), \tag{3}$$

where $I_{\infty} = \int_0^{\infty} \exp\{\alpha \xi_s\} ds$, and $\hat{\mathbf{E}}_{x,i}$, $x \in \mathbb{R}$, $i = \pm 1$.

59/69 코▶∢토▶ 토 ∽੧<♡

An α -stable process is a rssMp

- An α -stable process up to absorption in the origin is a rssMp.
- When $\alpha \in (0, 1]$, the process never hits the origin a.s.

An α -stable process is a rssMp

- An α -stable process up to absorption in the origin is a rssMp.
- When $\alpha \in (0, 1]$, the process never hits the origin a.s.
- When $\alpha \in (1, 2)$, the process is absorbs at the origin a.s.

An α -stable process is a rssMp

- An α -stable process up to absorption in the origin is a rssMp.
- When $\alpha \in (0, 1]$, the process never hits the origin a.s.
- When $\alpha \in (1, 2)$, the process is absorbs at the origin a.s.
- The matrix exponent of the underlying MAP is given by:

$$\begin{bmatrix} -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho}-z)\Gamma(1-\alpha\hat{\rho}+z)} & \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} \\ \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} & -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho-z)\Gamma(1-\alpha\rho+z)} \end{bmatrix},$$

for $\operatorname{Re}(z) \in (-1, \alpha)$. Note a matrix *A* in this context is arranged with the ordering

$$\left(\begin{array}{cc} A_{1,1} & A_{1,-1} \\ A_{-1,1} & A_{-1,-1} \end{array}\right)$$

60/69

イロン 不聞と 不良と 不良とう 良い

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	000000000000000	000

ESSCHER TRANSFORM FOR MAPS

- If $\Psi(z)$ is well defined then it has a real simple eigenvalue $\chi(z)$, which is larger than the real part of all its other eigenvalues.
- Furthermore, the corresponding right-eigenvector $\mathbf{v}(z) = (v_1(z), \dots, v_N(z))$ has strictly positive entries and may be normalised such that $\pi \cdot \mathbf{v}(z) = 1$.

Theorem

Let $\mathcal{G}_t = \sigma\{(\xi(s), J(s)) : s \le t\}, t \ge 0$, and

$$M_t := \mathrm{e}^{\gamma \xi(t) - \chi(\gamma)t} \frac{v_{J(t)}(\gamma)}{v_i(\gamma)}, \qquad t \ge 0,$$

for some $\gamma \in \mathbb{R}$ such that $\chi(\gamma)$ is defined. Then, M_t , $t \ge 0$, is a unit-mean martingale. Moreover, under the change of measure

$$\left. \mathrm{d} \mathbf{P}_{0,i}^{\gamma} \right|_{\mathcal{G}_t} = M_t \left. \mathrm{d} \mathbf{P}_{0,i} \right|_{\mathcal{G}_t}, \qquad t \ge 0,$$

the process (ξ, J) remains in the class of MAPs with new exponent given by

$$\Psi_{\gamma}(z) = \Delta_{v}(\gamma)^{-1}\Psi(z+\gamma)\Delta_{v}(\gamma) - \chi(\gamma)\mathbf{I}.$$

Here, **I** *is the identity matrix and* $\Delta_{v}(\gamma) = \text{diag}(v(\gamma))$ *.*

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	000000000000000000000000000000000000000	000

ESSCHER AND DRIFT

Suppose that χ is defined in some open interval *D* of \mathbb{R} , then, it is smooth and convex on *D*.

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	000000000000000	0000	0000000000000000	00000	0000000000●000	000

ESSCHER AND DRIFT

- Suppose that χ is defined in some open interval *D* of \mathbb{R} , then, it is smooth and convex on *D*.
- Since $\Psi(0) = -\mathbf{Q}$, if, moreover, *J* is irreducible, we always have $\chi(0) = 0$ and $\mathbf{v}(0) = (1, \dots, 1)$. So $0 \in D$ and $\chi'(0)$ is well defined and finite.

62/69

- コン・4日ン・4日ン・4日ン・4日ン

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	000000000000000	0000	0000000000000000	00000	0000000000●000	000

ESSCHER AND DRIFT

- Suppose that χ is defined in some open interval *D* of \mathbb{R} , then, it is smooth and convex on *D*.
- Since $\Psi(0) = -\mathbf{Q}$, if, moreover, *J* is irreducible, we always have $\chi(0) = 0$ and $\mathbf{v}(0) = (1, \dots, 1)$. So $0 \in D$ and $\chi'(0)$ is well defined and finite.
- ▶ With all of the above

$$\lim_{t \to \infty} \frac{\xi_t}{t} = \chi'(0) \qquad \text{a.s.}$$

62/69

- コン・4回シュ ヨシュ ヨン・9 くの

§1. 000000	§2. 000000000000000	§3. 0000	§4. 0000000000000000	§5. 00000	§6. 000000000000●00	Exercises. 000

ESSCHER AND THE STABLE-MAP

For the MAP that underlies the stable process $D = (-1, \alpha)$, it can be checked that $\det \Psi(\alpha - 1) = 0$ i.e. $\chi(\alpha - 1) = 0$, which makes

$$\begin{split} \Psi^{\circ}(z) &= \mathbf{\Delta}^{-1} \Psi(z+\alpha-1) \mathbf{\Delta} \\ &= \begin{bmatrix} -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\rho-z)\Gamma(\alpha\rho+z)} & \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} \\ \\ \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} & -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\hat{\rho}-z)\Gamma(\alpha\hat{\rho}+z)} \end{bmatrix}, \end{split}$$

63/69

- コン・4日ン・4日ン・4日ン・4日ン

where $\Delta = \text{diag}(\sin(\pi \alpha \hat{\rho}), \sin(\pi \alpha \rho)).$

ESSCHER AND THE STABLE-MAP

For the MAP that underlies the stable process $D = (-1, \alpha)$, it can be checked that $\det \Psi(\alpha - 1) = 0$ i.e. $\chi(\alpha - 1) = 0$, which makes

$$\begin{split} \Psi^{\circ}(z) &= \mathbf{\Delta}^{-1} \Psi(z+\alpha-1) \mathbf{\Delta} \\ &= \begin{bmatrix} -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\rho-z)\Gamma(\alpha\rho+z)} & \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} \\ & \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} & -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\hat{\rho}-z)\Gamma(\alpha\hat{\rho}+z)} \end{bmatrix}, \end{split}$$

where $\Delta = \text{diag}(\sin(\pi \alpha \hat{\rho}), \sin(\pi \alpha \rho)).$

▶ When $\alpha \in (0, 1)$, $\chi'(0) > 0$ (because the stable process never touches the origin a.s.) and $\Psi^{\circ}(z)$ -MAP drifts to $-\infty$

§1. §2. §3. §4. §5. §6. Exercises. 000000 000000000000 00000 00000 00000 0000 0000

ESSCHER AND THE STABLE-MAP

For the MAP that underlies the stable process $D = (-1, \alpha)$, it can be checked that $\det \Psi(\alpha - 1) = 0$ i.e. $\chi(\alpha - 1) = 0$, which makes

$$\begin{split} \Psi^{\circ}(z) &= \mathbf{\Delta}^{-1} \Psi(z+\alpha-1) \mathbf{\Delta} \\ &= \begin{bmatrix} -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\rho-z)\Gamma(\alpha\rho+z)} & \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} \\ & \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} & -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\hat{\rho}-z)\Gamma(\alpha\hat{\rho}+z)} \end{bmatrix}, \end{split}$$

where $\Delta = \text{diag}(\sin(\pi\alpha\hat{\rho}), \sin(\pi\alpha\rho)).$

- ▶ When $\alpha \in (0, 1)$, $\chi'(0) > 0$ (because the stable process never touches the origin a.s.) and $\Psi^{\circ}(z)$ -MAP drifts to $-\infty$
- When $\alpha \in (1, 2)$, $\chi'(0) < 0$ (because the stable process touches the origin a.s.) and $\Psi^{\circ}(z)$ -MAP drifts to $+\infty$.

63/69

・ロト・日本・モト・モト・モー のへぐ

Riesz-Bogdan-Zak transform

Theorem (Riesz–Bogdan–Zak transform)

Suppose that X is an α -stable process as outlined in the introduction. Define

$$\eta(t) = \inf\{s > 0 : \int_0^s |X_u|^{-2\alpha} du > t\}, \quad t \ge 0.$$

Then, for all $x \in \mathbb{R} \setminus \{0\}$, $(-1/X_{\eta(t)})_{t \ge 0}$ under \mathbb{P}_x is equal in law to $(X, \mathbb{P}^{\circ}_{-1/x})$, where

$$\frac{\mathrm{d}\mathbb{P}_{x}^{\circ}}{\mathrm{d}\mathbb{P}_{x}}\Big|_{\mathcal{F}_{t}} = \left(\frac{\sin(\pi\alpha\rho) + \sin(\pi\alpha\hat{\rho}) - (\sin(\pi\alpha\rho) - \sin(\pi\alpha\hat{\rho}))\mathrm{sgn}(X_{t})}{\sin(\pi\alpha\rho) + \sin(\pi\alpha\hat{\rho}) - (\sin(\pi\alpha\rho) - \sin(\pi\alpha\hat{\rho}))\mathrm{sgn}(x)}\right) \left|\frac{X_{t}}{x}\right|^{\alpha-1} \mathbf{1}_{\{t < \tau^{\{0\}}\}}$$

and $\mathcal{F}_t := \sigma(X_s : s \le t), t \ge 0$. Moreover, the process $(X, \mathbb{P}_x^\circ), x \in \mathbb{R} \setminus \{0\}$ is a self-similar Markov process with underlying MAP via the Lamperti-Kiu transform given by $\Psi^\circ(z)$.

64/69 (ア・・ミト・ミト ミークへぐ

WHAT IS THE Ψ° -MAP?

Thinking of the affect on the long term behaviour of the underlying MAP of the Esscher transform

▶ When $\alpha \in (0,1)$, (X, \mathbb{P}_x°) , $x \neq 0$ has the law of the the stable process conditioned to absorb continuously at the origin in the sense,

$$\mathbb{P}_y^{\circ}(A) = \lim_{a \to 0} \mathbb{P}_y(A, t < T_0 \mid \tau_{(-a,a)} < \infty),$$

for
$$A \in \mathcal{F}_t = \sigma(X_s, s \le t)$$
,
 $\tau_{(-a,a)} = \inf\{t > 0 : |X_t| < a\}$ and $T_0 = \inf\{t > 0 : X_t = 0\}$.

▶ When $\alpha \in (1,2)$, $(X, \mathbb{P}^{\circ}_{x})$, $x \neq 0$ has the law of the stable process conditioned to avoid the origin in the sense

$$\mathbb{P}_{y}^{\circ}(A) = \lim_{s \to \infty} \mathbb{P}_{y}(A \mid T_{0} > t + s),$$

for $A \in \mathcal{F}_t = \sigma(X_s, s \leq t)$ and $T_0 = \inf\{t > 0 : X_t = 0\}.$

65/69 《 디 ▷ 《 클 ▷ 《 클 ▷ 《 클 ▷ 의 약 약

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000	0000	00000000000000	00000	00000000000000	000

§Exercise Set 1

§1. 000000	§2. 000000000000000	§3. 0000	§4. 0000000000000000	§5. 00000	§6. 0000000000000000	Exercises.

EXERCISES

- 1. Suppose that *X* is a stable process in any dimension (including the case of a Brownian motion). Show that |*X*| is a positive self-similar Markov process.
- 2. Suppose that *B* is a one-dimensional Brownian motion. Prove that

$$\frac{B_t}{x} \mathbf{1}_{(\underline{B}_t > 0)}, \qquad t \ge 0,$$

is a martingale, where $\underline{B}_t = \inf_{s \le t} B_s$.

- 3. Suppose that *X* is a stable process with two-sided jumps
 - Show that the range of the ascending ladder process H, say range(H) has the property that it is equal in law to c × range(H).
 - Hence show that, up to a multiplicative constant, the Laplace exponent of *H* satisfies $k(\lambda) = \lambda^{\alpha_1}$ for $\alpha_1 \in (0, 1)$ (and hence the ascending ladder height process is a stable subordinator).
 - Use the fact that, up to a multiplicative constant

$$\Psi(z) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}) = \hat{\kappa}(\mathrm{i} z) \kappa(-\mathrm{i} z)$$

to deduce that

$$\kappa(\theta) = \theta^{\alpha \rho} \text{ and } \hat{\kappa}(\theta) = \theta^{\alpha \hat{\rho}}.$$

and that $0 < \alpha \rho, \alpha \hat{\rho} < 1$

What kind of process corresponds to the case that $\alpha \rho = 1$?

§1.	§2.	§3.	§4.	§5.	§6.	Exercises.
000000	0000000000000000	0000	0000000000000000	00000	0000000000000000	O●O

EXERCISES

- 4. Suppose that (X, P_x) , x > 0 is a positive self-similar Markov process and let $\zeta = \inf\{t > 0 : X_t = 0\}$ be the lifetime of *X*. Show that $P_x(\zeta < \infty)$ does not depend on *x* and is either 0 for all x > 0 or 1 for all x > 0.
- 5. Suppose that *X* is a symmetric stable process in dimension one (in particular $\rho = 1/2$) and that the underlying Lévy process for $|X_t| \mathbf{1}_{\{t < \tau^{\{0\}}\}}$, where $\tau^{\{0\}} = \inf\{t > 0 : X_t = 0\}$, is written ξ . (Note the indicator is only needed when $\alpha \in (1, 2)$ as otherwise *X* does not hit the origin.) Show that (up to a multiplicative constant) its characteristic exponent is given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-iz+\alpha))}{\Gamma(-\frac{1}{2}iz)} \frac{\Gamma(\frac{1}{2}(iz+1))}{\Gamma(\frac{1}{2}(iz+1-\alpha))}, \qquad z \in \mathbb{R}.$$

[Hint!] Think about what happens after X first crosses the origin and apply the Markov property as well as symmetry. You will need to use the law of the overshoot of X below the origin given a few slides back.

68/69

§1. 000000	§2. 000000000000000	§3. 0000	§4. 0000000000000000	§5. 00000	§6. 0000000000000000	Exercises. 00●

EXERCISES

6. Use the previous exercise to deduce that the MAP exponent underlying a stable process with two sided jumps is given by

$$\left[\begin{array}{cc} -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho}-z)\Gamma(1-\alpha\hat{\rho}+z)} & \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} \\ \\ \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} & -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho-z)\Gamma(1-\alpha\rho+z)} \end{array} \right],$$
for Re(z) $\in (-1, \alpha).$

69/69

- コン・4日ン・4日ン・4日ン・4日ン