Self-similar Markov processes Part II: higher dimensions

Andreas Kyprianou

University of Warwick

Contents

PART I: ONE DIMENSION

- §1. Quick review of Lévy processes
- §2. Self-similar Markov processes
- §3. Lamperti Transform
- §4. Positive self-similar Markov processes
- §5. Entrance Laws
- §6. Real valued self-similar Markov processes

PART II: HIGHER DIMENSIONS

- 7. Isotropic stable processes in dimension $d \geq 2$ seen as Lévy processes
§8. Isotropic stable processes in dimension $d \geq 2$ seen as a self-similar Markov process
- §9. Riesz-Bogdan-Żak transform
- §10. Hitting spheres
- §11. Spherical hitting distribution
- §12. Spherical entrance/exit distribution
§7. Isotropic stable processes in dimension $d \geq 2$ seen as Lévy processes

IsOTROPIC α-STAbLE PROCESS IN DIMENSION $d \geq 2$

For $d \geq 2$, let $X:=\left(X_{t}: t \geq 0\right)$ be a d-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)

ISOTROPIC α-STAbLE PROCESS IN DIMENSION $d \geq 2$

For $d \geq 2$, let $X:=\left(X_{t}: t \geq 0\right)$ be a d-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent $\Psi(\theta)=-\log \mathbb{E}_{0}\left(\mathrm{e}^{\mathrm{i} \theta \cdot X_{1}}\right)$ satisfies

$$
\Psi(\theta)=|\theta|^{\alpha}, \quad \theta \in \mathbb{R} .
$$

ISOTROPIC α-STAbLE PROCESS IN DIMENSION $d \geq 2$

For $d \geq 2$, let $X:=\left(X_{t}: t \geq 0\right)$ be a d-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent $\Psi(\theta)=-\log \mathbb{E}_{0}\left(\mathrm{e}^{\mathrm{i} \theta \cdot X_{1}}\right)$ satisfies

$$
\Psi(\theta)=|\theta|^{\alpha}, \quad \theta \in \mathbb{R}
$$

- Necessarily, $\alpha \in(0,2]$, we exclude 2 as it pertains to the setting of a Brownian motion.

ISOTROPIC α-STAbLE PROCESS IN DIMENSION $d \geq 2$

For $d \geq 2$, let $X:=\left(X_{t}: t \geq 0\right)$ be a d-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent $\Psi(\theta)=-\log \mathbb{E}_{0}\left(\mathrm{e}^{\mathrm{i} \theta \cdot X_{1}}\right)$ satisfies

$$
\Psi(\theta)=|\theta|^{\alpha}, \quad \theta \in \mathbb{R}
$$

- Necessarily, $\alpha \in(0,2]$, we exclude 2 as it pertains to the setting of a Brownian motion.
- Associated Lévy measure satisfies, for $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
\Pi(B) & =\frac{2^{\alpha} \Gamma((d+\alpha) / 2)}{\pi^{d / 2}|\Gamma(-\alpha / 2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} \mathrm{~d} y \\
& =\frac{2^{\alpha-1} \Gamma((d+\alpha) / 2) \Gamma(d / 2)}{\pi^{d}|\Gamma(-\alpha / 2)|} \int_{\mathbb{S}_{d-1}} r^{d-1} \sigma_{1}(\mathrm{~d} \theta) \int_{0}^{\infty} \mathbf{1}_{B}(r \theta) \frac{1}{r^{\alpha+d}} \mathrm{~d} r,
\end{aligned}
$$

where $\sigma_{1}(\mathrm{~d} \theta)$ is the surface measure on \mathbb{S}_{d-1} normalised to have unit mass.

- X is Markovian with probabilities denoted by $\mathbb{P}_{x}, x \in \mathbb{R}^{d}$

ISOTROPIC α-STAbLE PROCESS IN DIMENSION $d \geq 2$

For $d \geq 2$, let $X:=\left(X_{t}: t \geq 0\right)$ be a d-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent $\Psi(\theta)=-\log \mathbb{E}_{0}\left(\mathrm{e}^{\mathrm{i} \theta \cdot X_{1}}\right)$ satisfies

$$
\Psi(\theta)=|\theta|^{\alpha}, \quad \theta \in \mathbb{R}
$$

- Necessarily, $\alpha \in(0,2]$, we exclude 2 as it pertains to the setting of a Brownian motion.
- Associated Lévy measure satisfies, for $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
\Pi(B) & =\frac{2^{\alpha} \Gamma((d+\alpha) / 2)}{\pi^{d / 2}|\Gamma(-\alpha / 2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} \mathrm{~d} y \\
& =\frac{2^{\alpha-1} \Gamma((d+\alpha) / 2) \Gamma(d / 2)}{\pi^{d}|\Gamma(-\alpha / 2)|} \int_{\mathbb{S}_{d-1}} r^{d-1} \sigma_{1}(\mathrm{~d} \theta) \int_{0}^{\infty} \mathbf{1}_{B}(r \theta) \frac{1}{r^{\alpha+d}} \mathrm{~d} r
\end{aligned}
$$

where $\sigma_{1}(\mathrm{~d} \theta)$ is the surface measure on \mathbb{S}_{d-1} normalised to have unit mass.

ISOTROPIC α-STAbLE PROCESS IN DIMENSION $d \geq 2$

For $d \geq 2$, let $X:=\left(X_{t}: t \geq 0\right)$ be a d-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent $\Psi(\theta)=-\log \mathbb{E}_{0}\left(\mathrm{e}^{\mathrm{i} \theta \cdot X_{1}}\right)$ satisfies

$$
\Psi(\theta)=|\theta|^{\alpha}, \quad \theta \in \mathbb{R}
$$

- Necessarily, $\alpha \in(0,2]$, we exclude 2 as it pertains to the setting of a Brownian motion.
- Associated Lévy measure satisfies, for $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
\Pi(B) & =\frac{2^{\alpha} \Gamma((d+\alpha) / 2)}{\pi^{d / 2}|\Gamma(-\alpha / 2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} \mathrm{~d} y \\
& =\frac{2^{\alpha-1} \Gamma((d+\alpha) / 2) \Gamma(d / 2)}{\pi^{d}|\Gamma(-\alpha / 2)|} \int_{\mathbb{S}_{d-1}} r^{d-1} \sigma_{1}(\mathrm{~d} \theta) \int_{0}^{\infty} \mathbf{1}_{B}(r \theta) \frac{1}{r^{\alpha+d}} \mathrm{~d} r,
\end{aligned}
$$

where $\sigma_{1}(\mathrm{~d} \theta)$ is the surface measure on \mathbb{S}_{d-1} normalised to have unit mass.

- X is Markovian with probabilities denoted by $\mathbb{P}_{x}, x \in \mathbb{R}^{d}$

ISOTROPIC α-STAbLE PROCESS IN DIMENSION $d \geq 2$

- Stable processes are also self-similar. For $c>0$ and $x \in \mathbb{R}^{d} \backslash\{0\}$, under \mathbb{P}_{x}, the law of $\left(c X_{c-\alpha_{t}}, t \geq 0\right)$ is equal to $\mathbb{P}_{c x}$.

ISOTROPIC α-STAbLE PROCESS IN DIMENSION $d \geq 2$

- Stable processes are also self-similar. For $c>0$ and $x \in \mathbb{R}^{d} \backslash\{0\}$,

$$
\text { under } \mathbb{P}_{x} \text {, the law of }\left(c X_{c}-\alpha_{t}, t \geq 0\right) \text { is equal to } \mathbb{P}_{c x}
$$

- Isotropy means, for all orthogonal transformations (e.g. rotations) $U: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$ and $x \in \mathbb{R}^{d}$,
under \mathbb{P}_{x}, the law of $\left(U X_{t}, t \geq 0\right)$ is equal to $\mathbb{P}_{U x}$.

ISOTROPIC α-STAbLE PROCESS IN DIMENSION $d \geq 2$

- Stable processes are also self-similar. For $c>0$ and $x \in \mathbb{R}^{d} \backslash\{0\}$,

$$
\text { under } \mathbb{P}_{x} \text {, the law of }\left(c X_{c-\alpha_{t}}, t \geq 0\right) \text { is equal to } \mathbb{P}_{c x}
$$

- Isotropy means, for all orthogonal transformations (e.g. rotations) $U: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$ and $x \in \mathbb{R}^{d}$,

$$
\text { under } \mathbb{P}_{x} \text {, the law of }\left(U X_{t}, t \geq 0\right) \text { is equal to } \mathbb{P}_{U x}
$$

- If $\left(S_{t}, t \geq 0\right)$ is a stable subordinator with index $\alpha / 2$ (a Lévy process with Laplace exponent $\left.-t^{-1} \log \mathbb{E}\left[\mathrm{e}^{-\lambda S_{t}}\right]=\lambda^{\alpha}\right)$ and $\left(B_{t}, t \geq 0\right)$ for a standard (isotropic) d-dimensional Brownian motion, then it is known that $X_{t}:=\sqrt{2} B_{S_{t}}, t \geq 0$, is a stable process with index α.

$$
\mathbb{E}\left[\mathrm{e}^{\mathrm{i} \theta X_{t}}\right]=\mathbb{E}\left[\mathrm{e}^{-\theta^{2} S_{t}}\right]=\mathrm{e}^{-|\theta|^{\alpha} t}, \quad \theta \in \mathbb{R}
$$

SAMPLE PATH, $\alpha=1.9$

SAMPLE PATH, $\alpha=1.7$

SAMPLE PATH, $\alpha=1.5$

SAMPLE PATH, $\alpha=1.2$

SAMPLE PATH, $\alpha=0.9$

SOME CLASSICAL PROPERTIES: TRANSIENCE

We are interested in the potential measure

$$
U(x, \mathrm{~d} y)=\int_{0}^{\infty} \mathbb{P}_{x}\left(X_{t} \in \mathrm{~d} y\right) \mathrm{d} t=\left(\int_{0}^{\infty} \mathrm{p}_{t}(y-x) \mathrm{d} t\right) \mathrm{d} y, \quad x, y \in \mathbb{R}
$$

Note: stationary and independent increments means that it suffices to consider $U(0, \mathrm{~d} y)$.

SOME CLASSICAL PROPERTIES: TRANSIENCE

We are interested in the potential measure

$$
U(x, \mathrm{~d} y)=\int_{0}^{\infty} \mathbb{P}_{x}\left(X_{t} \in \mathrm{~d} y\right) \mathrm{d} t=\left(\int_{0}^{\infty} \mathrm{p}_{t}(y-x) \mathrm{d} t\right) \mathrm{d} y, \quad x, y \in \mathbb{R}
$$

Note: stationary and independent increments means that it suffices to consider $U(0, \mathrm{~d} y)$.

Theorem

The potential of X is absolutely continuous with respect to Lebesgue measure, in which case, its density in collaboration with spatial homogeneity satisfies $U(x, \mathrm{~d} y)=u(y-x) \mathrm{d} y, x, y \in \mathbb{R}^{d}$, where

$$
u(z)=2^{-\alpha} \pi^{-d / 2} \frac{\Gamma((d-\alpha) / 2)}{\Gamma(\alpha / 2)}|z|^{\alpha-d}, \quad z \in \mathbb{R}^{d}
$$

SOME CLASSICAL PROPERTIES: TRANSIENCE

We are interested in the potential measure

$$
U(x, \mathrm{~d} y)=\int_{0}^{\infty} \mathbb{P}_{x}\left(X_{t} \in \mathrm{~d} y\right) \mathrm{d} t=\left(\int_{0}^{\infty} \mathrm{p}_{t}(y-x) \mathrm{d} t\right) \mathrm{d} y, \quad x, y \in \mathbb{R}
$$

Note: stationary and independent increments means that it suffices to consider $U(0, \mathrm{~d} y)$.

Theorem

The potential of X is absolutely continuous with respect to Lebesgue measure, in which case, its density in collaboration with spatial homogeneity satisfies $U(x, \mathrm{~d} y)=u(y-x) \mathrm{d} y, x, y \in \mathbb{R}^{d}$, where

$$
u(z)=2^{-\alpha} \pi^{-d / 2} \frac{\Gamma((d-\alpha) / 2)}{\Gamma(\alpha / 2)}|z|^{\alpha-d}, \quad z \in \mathbb{R}^{d}
$$

In this respect X is transient. It can be shown moreover that

$$
\lim _{t \rightarrow \infty}\left|X_{t}\right|=\infty
$$

almost surely

Proof of Theorem

Now note that, for bounded and measurable $f: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$,

$$
\begin{aligned}
\mathbb{E}\left[\int_{0}^{\infty} f\left(X_{t}\right) \mathrm{d} t\right] & =\mathbb{E}\left[\int_{0}^{\infty} f\left(\sqrt{2} B_{S_{t}}\right) \mathrm{d} t\right] \\
& =\int_{0}^{\infty} \mathrm{d} s \int_{0}^{\infty} \mathrm{d} t \mathbb{P}\left(S_{t} \in \mathrm{~d} s\right) \int_{\mathbb{R}} \mathbb{P}\left(B_{s} \in \mathrm{~d} x\right) f(\sqrt{2} x) \\
& =\frac{1}{\Gamma(\alpha / 2) \pi^{d / 2} 2^{d}} \int_{\mathbb{R}} \mathrm{d} y \int_{0}^{\infty} \mathrm{d} s \mathrm{e}^{-|y|^{2} / 4 s} \mathrm{~s}^{-1+(\alpha-d) / 2} f(y) \\
& =\frac{1}{2^{\alpha} \Gamma(\alpha / 2) \pi^{d / 2}} \int_{\mathbb{R}} \mathrm{d} y|y|^{(\alpha-d)} \int_{0}^{\infty} \mathrm{d} u e^{-u} u^{-1+(d-\alpha / 2)} f(y) \\
& =\frac{\Gamma((d-\alpha) / 2)}{2^{\alpha} \Gamma(\alpha / 2) \pi^{d / 2}} \int_{\mathbb{R}} \mathrm{d} y|y|^{(\alpha-d)} f(y)
\end{aligned}
$$

SOME CLASSICAL PROPERTIES: POLARITY

- Kesten-Bretagnolle integral test, in dimension $d \geq 2$,

$$
\int_{\mathbb{R}} \operatorname{Re}\left(\frac{1}{1+\Psi(z)}\right) \mathrm{d} z=\int_{\mathbb{R}} \frac{1}{1+|z|^{\alpha}} \mathrm{d} z \propto \int_{\mathbb{R}} \frac{1}{1+r^{\alpha}} r^{d-1} \mathrm{~d} r \sigma_{1}(\mathrm{~d} \theta)=\infty .
$$

$>\mathbb{P}_{x}\left(\tau^{\{y\}}<\infty\right)=0$, for $x, y \in \mathbb{R}^{d}$.

- i.e. the stable process cannot hit individual points almost surely.
§8. Isotropic stable processes in dimension $d \geq 2$ seen as a self-similar Markov process

LAMPERTI-TRANSFORM OF $|X|$

Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process, the underlying Lévy process, ξ that appears through the Lamperti has characteristic exponent given by

$$
\Psi(z)=2^{\alpha} \frac{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+\alpha)\right)}{\Gamma\left(-\frac{1}{2} \mathrm{i} z\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d)\right)}{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d-\alpha)\right)}, \quad z \in \mathbb{R}
$$

LAMPERTI-TRANSFORM OF $|X|$

Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process, the underlying Lévy process, ξ that appears through the Lamperti has characteristic exponent given by

$$
\Psi(z)=2^{\alpha} \frac{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+\alpha)\right)}{\Gamma\left(-\frac{1}{2} \mathrm{i} z\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d)\right)}{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d-\alpha)\right)}, \quad z \in \mathbb{R}
$$

Here are some facts that can be deduced from the above Theorem that are exercises in the tutorial:

LAMPERTI-TRANSFORM OF $|X|$

Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process, the underlying Lévy process, ξ that appears through the Lamperti has characteristic exponent given by

$$
\Psi(z)=2^{\alpha} \frac{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+\alpha)\right)}{\Gamma\left(-\frac{1}{2} \mathrm{i} z\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d)\right)}{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d-\alpha)\right)}, \quad z \in \mathbb{R}
$$

Here are some facts that can be deduced from the above Theorem that are exercises in the tutorial:
$>$ The fact that $\lim _{t \rightarrow \infty}\left|X_{t}\right|=\infty$

LAMPERTI-TRANSFORM OF $|X|$

Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process, the underlying Lévy process, ξ that appears through the Lamperti has characteristic exponent given by

$$
\Psi(z)=2^{\alpha} \frac{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+\alpha)\right)}{\Gamma\left(-\frac{1}{2} \mathrm{i} z\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d)\right)}{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d-\alpha)\right)}, \quad z \in \mathbb{R}
$$

Here are some facts that can be deduced from the above Theorem that are exercises in the tutorial:
$>$ The fact that $\lim _{t \rightarrow \infty}\left|X_{t}\right|=\infty$
\Rightarrow The fact that

$$
\left|X_{t}\right|^{\alpha-d}, \quad t \geq 0
$$

is a martingale.

CONDITIONED STABLE PROCESS

- We can define the change of measure

$$
\left.\frac{\mathrm{d} \mathbb{P}_{x}^{\circ}}{\mathrm{d} \mathbb{P}_{x}}\right|_{\mathcal{F}_{t}}=\frac{\left|X_{t}\right|^{\alpha-d}}{|x|^{\alpha-d}}, \quad t \geq 0, x \neq 0
$$

CONDITIONED STABLE PROCESS

- We can define the change of measure

$$
\left.\frac{\mathrm{d} \mathbb{P}_{x}^{\circ}}{\mathrm{d} \mathbb{P}_{x}}\right|_{\mathcal{F}_{t}}=\frac{\left|X_{t}\right|^{\alpha-d}}{|x|^{\alpha-d}}, \quad t \geq 0, x \neq 0
$$

- Suppose that f is a bounded measurable function then, for all $c>0$,

$$
\begin{aligned}
\mathbb{E}_{x}^{o}\left[f\left(c X_{c-\alpha_{s}}, s \leq t\right)\right] & =\mathbb{E}_{x}\left[\frac{\left|c X_{c}-\alpha_{t}\right|^{\alpha-d}}{|c x|^{d-\alpha}} f\left(c X_{c-\alpha_{S}}, s \leq t\right)\right] \\
& =\mathbb{E}_{c x}\left[\frac{\left|X_{t}\right|^{\alpha-d}}{|c x|^{d-\alpha}} f\left(X_{s}, s \leq t\right)\right]=\mathbb{E}_{c x}^{\circ}\left[f\left(X_{s},, s \leq t\right)\right]
\end{aligned}
$$

CONDITIONED STABLE PROCESS

- We can define the change of measure

$$
\left.\frac{\mathrm{d} \mathbb{P}_{x}^{\circ}}{\mathrm{d} \mathbb{P}_{x}}\right|_{\mathcal{F}_{t}}=\frac{\left|X_{t}\right|^{\alpha-d}}{|x|^{\alpha-d}}, \quad t \geq 0, x \neq 0
$$

- Suppose that f is a bounded measurable function then, for all $c>0$,

$$
\begin{aligned}
\mathbb{E}_{x}^{o}\left[f\left(c X_{c-\alpha_{s}}, s \leq t\right)\right] & =\mathbb{E}_{x}\left[\frac{\left|c X_{c}-\alpha_{t}\right|^{\alpha-d}}{|c x|^{d-\alpha}} f\left(c X_{c-\alpha_{s}}, s \leq t\right)\right] \\
& =\mathbb{E}_{c x}\left[\frac{\left|X_{t}\right|^{\alpha-d}}{|c x|^{d-\alpha}} f\left(X_{s}, s \leq t\right)\right]=\mathbb{E}_{c x}^{\circ}\left[f\left(X_{s},, s \leq t\right)\right]
\end{aligned}
$$

- Markovian, isotropy and self-similarity properties pass through to $\left(X, \mathbb{P}_{x}^{\circ}\right), x \neq 0$.

CONDITIONED STABLE PROCESS

- We can define the change of measure

$$
\left.\frac{\mathrm{d} \mathbb{P}_{x}^{\circ}}{\mathrm{d} \mathbb{P}_{x}}\right|_{\mathcal{F}_{t}}=\frac{\left|X_{t}\right|^{\alpha-d}}{|x|^{\alpha-d}}, \quad t \geq 0, x \neq 0
$$

- Suppose that f is a bounded measurable function then, for all $c>0$,

$$
\begin{aligned}
\mathbb{E}_{x}^{\circ}\left[f\left(c X_{c-\alpha_{s}}, s \leq t\right)\right] & =\mathbb{E}_{x}\left[\frac{\left|c X_{c}-\alpha_{t}\right|^{\alpha-d}}{|c x|^{d-\alpha}} f\left(c X_{c-\alpha_{s}}, s \leq t\right)\right] \\
& =\mathbb{E}_{c x}\left[\frac{\left|X_{t}\right|^{\alpha-d}}{|c x|^{d-\alpha}} f\left(X_{s}, s \leq t\right)\right]=\mathbb{E}_{c x}^{0}\left[f\left(X_{s},, s \leq t\right)\right]
\end{aligned}
$$

- Markovian, isotropy and self-similarity properties pass through to $\left(X, \mathbb{P}_{x}^{\circ}\right), x \neq 0$.
- Similarly $\left(|X|, \mathbb{P}_{x}^{\circ}\right), x \neq 0$ is a positive self-similar Markov process.

CONDITIONED STABLE PROCESS

$>$ It turns out that $\left(X, \mathbb{P}_{x}^{0}\right), x \neq 0$, corresponds to the stable process conditioned to be continuously absorbed at the origin.

CONDITIONED STABLE PROCESS

- It turns out that $\left(X, \mathbb{P}_{x}^{\circ}\right), x \neq 0$, corresponds to the stable process conditioned to be continuously absorbed at the origin.
- More precisely, for $A \in \sigma\left(X_{s}, s \leq t\right)$, if we set $\{0\}$ to be 'cemetery' state and $\mathrm{k}=\inf \left\{t>0: X_{t}=0\right\}$, then

$$
\mathbb{P}_{x}^{\circ}(A, t<\mathrm{k})=\lim _{a \downarrow 0} \mathbb{P}_{x}\left(A, t<\mathrm{k} \mid \tau_{a}^{\oplus}<\infty\right),
$$

where $\tau_{a}^{\oplus}=\inf \left\{t>0:\left|X_{t}\right|<a\right\}$.

CONDITIONED STABLE PROCESS

- It turns out that $\left(X, \mathbb{P}_{x}^{\circ}\right), x \neq 0$, corresponds to the stable process conditioned to be continuously absorbed at the origin.
- More precisely, for $A \in \sigma\left(X_{s}, s \leq t\right)$, if we set $\{0\}$ to be 'cemetery' state and $\mathrm{k}=\inf \left\{t>0: X_{t}=0\right\}$, then

$$
\mathbb{P}_{x}^{\circ}(A, t<\mathrm{k})=\lim _{a \downarrow 0} \mathbb{P}_{x}\left(A, t<\mathrm{k} \mid \tau_{a}^{\oplus}<\infty\right),
$$

where $\tau_{a}^{\oplus}=\inf \left\{t>0:\left|X_{t}\right|<a\right\}$.

- In light of the associated Esscher transform on ξ, we note that the Lamperti transform of $\left(|X|, \mathbb{P}_{x}^{0}\right), x \neq 0$, corresponds to the Lévy process with characteristic exponent

$$
\Psi^{\circ}(z)=2^{\alpha} \frac{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+d)\right)}{\Gamma\left(-\frac{1}{2}(\mathrm{i} z+\alpha-d)\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+\alpha)\right)}{\Gamma\left(\frac{1}{2} \mathrm{i} z\right)}, \quad z \in \mathbb{R}
$$

CONDITIONED STABLE PROCESS

- It turns out that $\left(X, \mathbb{P}_{x}^{\circ}\right), x \neq 0$, corresponds to the stable process conditioned to be continuously absorbed at the origin.
- More precisely, for $A \in \sigma\left(X_{s}, s \leq t\right)$, if we set $\{0\}$ to be 'cemetery' state and $\mathrm{k}=\inf \left\{t>0: X_{t}=0\right\}$, then

$$
\mathbb{P}_{x}^{\circ}(A, t<\mathrm{k})=\lim _{a \downarrow 0} \mathbb{P}_{x}\left(A, t<\mathrm{k} \mid \tau_{a}^{\oplus}<\infty\right),
$$

where $\tau_{a}^{\oplus}=\inf \left\{t>0:\left|X_{t}\right|<a\right\}$.

- In light of the associated Esscher transform on ξ, we note that the Lamperti transform of $\left(|X|, \mathbb{P}_{x}^{0}\right), x \neq 0$, corresponds to the Lévy process with characteristic exponent

$$
\Psi^{\circ}(z)=2^{\alpha} \frac{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+d)\right)}{\Gamma\left(-\frac{1}{2}(\mathrm{i} z+\alpha-d)\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+\alpha)\right)}{\Gamma\left(\frac{1}{2} \mathrm{i} z\right)}, \quad z \in \mathbb{R}
$$

- Given the pathwise interpretation of $\left(X, \mathbb{P}_{x}^{\circ}\right), x \neq 0$, it follows immediately that $\lim _{t \rightarrow \infty} \xi_{t}=-\infty, \mathbb{P}_{x}^{\infty}$ almost surely, for any $x \neq 0$.

\mathbb{R}^{d}-SELF-SIMILAR MARKOV PROCESSES

Definition

A \mathbb{R}^{d}-valued regular Feller process $Z=\left(Z_{t}, t \geq 0\right)$ is called a \mathbb{R}^{d}-valued self-similar Markov process if there exists a constant $\alpha>0$ such that, for any $x>0$ and $c>0$,
the law of $\left(c Z_{c-\alpha_{t}}, t \geq 0\right)$ under P_{x} is $P_{c x}$,
where P_{x} is the law of Z when issued from x.

\mathbb{R}^{d}-SELF-SIMILAR MARKOV PROCESSES

Definition

A \mathbb{R}^{d}-valued regular Feller process $Z=\left(Z_{t}, t \geq 0\right)$ is called a \mathbb{R}^{d}-valued self-similar Markov process if there exists a constant $\alpha>0$ such that, for any $x>0$ and $c>0$, the law of $\left(c Z_{c-\alpha_{t}}, t \geq 0\right)$ under P_{x} is $P_{c x}$, where P_{x} is the law of Z when issued from x.

- Same definition as before except process now lives on \mathbb{R}^{d}.

\mathbb{R}^{d}-SELF-SIMILAR MARKOV PROCESSES

Definition

A \mathbb{R}^{d}-valued regular Feller process $Z=\left(Z_{t}, t \geq 0\right)$ is called a \mathbb{R}^{d}-valued self-similar Markov process if there exists a constant $\alpha>0$ such that, for any $x>0$ and $c>0$, the law of $\left(c Z_{c-\alpha_{t}}, t \geq 0\right)$ under P_{x} is $P_{c x}$, where P_{x} is the law of Z when issued from x.

- Same definition as before except process now lives on \mathbb{R}^{d}.
- Is there an analogue of the Lamperti representation?

LAMPERTI-KIU TRANSFORM

In order to introduce the analogue of the Lamperti transform in d-dimensions, we need to remind ourselves of what we mean by a Markov additive process in this context.

Definition

An $\mathbb{R} \times E$ valued regular Feller process $(\xi, \Theta)=\left(\left(\xi_{t}, \Theta_{t}\right): t \geq 0\right)$ with probabilities $\mathbf{P}_{x, \theta}, x \in \mathbb{R}, \theta \in E$, and cemetery state $(-\infty, \dagger)$ is called a Markov additive process (MAP) if Θ is a regular Feller process on E with cemetery state \dagger such that, for every bounded measurable function $f:(\mathbb{R} \cup\{-\infty\}) \times(E \cup\{\dagger\}) \rightarrow \mathbb{R}, t, s \geq 0$ and $(x, \theta) \in \mathbb{R} \times E$, on $\{t<\varsigma\}$,

$$
\mathbf{E}_{x, \theta}\left[f\left(\xi_{t+s}-\xi_{t}, \Theta_{t+s}\right) \mid \sigma\left(\left(\xi_{u}, \Theta_{u}\right), u \leq t\right)\right]=\mathbf{E}_{0, \Theta_{t}}\left[f\left(\xi_{s}, \Theta_{s}\right)\right],
$$

where $\varsigma=\inf \left\{t>0: \Theta_{t}=\dagger\right\}$.

LAMPERTI-KIU TRANSFORM

In order to introduce the analogue of the Lamperti transform in d-dimensions, we need to remind ourselves of what we mean by a Markov additive process in this context.

Definition

An $\mathbb{R} \times E$ valued regular Feller process $(\xi, \Theta)=\left(\left(\xi_{t}, \Theta_{t}\right): t \geq 0\right)$ with probabilities $\mathbf{P}_{x, \theta}, x \in \mathbb{R}, \theta \in E$, and cemetery state $(-\infty, \dagger)$ is called a Markov additive process (MAP) if Θ is a regular Feller process on E with cemetery state \dagger such that, for every bounded measurable function $f:(\mathbb{R} \cup\{-\infty\}) \times(E \cup\{\dagger\}) \rightarrow \mathbb{R}, t, s \geq 0$ and $(x, \theta) \in \mathbb{R} \times E$, on $\{t<\varsigma\}$,

$$
\mathbf{E}_{x, \theta}\left[f\left(\xi_{t+s}-\xi_{t}, \Theta_{t+s}\right) \mid \sigma\left(\left(\xi_{u}, \Theta_{u}\right), u \leq t\right)\right]=\mathbf{E}_{0, \Theta_{t}}\left[f\left(\xi_{s}, \Theta_{s}\right)\right],
$$

where $\varsigma=\inf \left\{t>0: \Theta_{t}=\dagger\right\}$.

- Roughly speaking, one thinks of a MAP as a 'Markov modulated' Lévy process

LAMPERTI-KIU TRANSFORM

In order to introduce the analogue of the Lamperti transform in d-dimensions, we need to remind ourselves of what we mean by a Markov additive process in this context.

Definition

An $\mathbb{R} \times E$ valued regular Feller process $(\xi, \Theta)=\left(\left(\xi_{t}, \Theta_{t}\right): t \geq 0\right)$ with probabilities $\mathbf{P}_{x, \theta}, x \in \mathbb{R}, \theta \in E$, and cemetery state $(-\infty, \dagger)$ is called a Markov additive process (MAP) if Θ is a regular Feller process on E with cemetery state \dagger such that, for every bounded measurable function $f:(\mathbb{R} \cup\{-\infty\}) \times(E \cup\{\dagger\}) \rightarrow \mathbb{R}, t, s \geq 0$ and $(x, \theta) \in \mathbb{R} \times E$, on $\{t<\varsigma\}$,

$$
\mathbf{E}_{x, \theta}\left[f\left(\xi_{t+s}-\xi_{t}, \Theta_{t+s}\right) \mid \sigma\left(\left(\xi_{u}, \Theta_{u}\right), u \leq t\right)\right]=\mathbf{E}_{0, \Theta_{t}}\left[f\left(\xi_{s}, \Theta_{s}\right)\right],
$$

where $\varsigma=\inf \left\{t>0: \Theta_{t}=\dagger\right\}$.

- Roughly speaking, one thinks of a MAP as a 'Markov modulated' Lévy process
- It has 'conditional stationary and independent increments'

LAMPERTI-KIU TRANSFORM

In order to introduce the analogue of the Lamperti transform in d-dimensions, we need to remind ourselves of what we mean by a Markov additive process in this context.

Definition

An $\mathbb{R} \times E$ valued regular Feller process $(\xi, \Theta)=\left(\left(\xi_{t}, \Theta_{t}\right): t \geq 0\right)$ with probabilities $\mathbf{P}_{x, \theta}, x \in \mathbb{R}, \theta \in E$, and cemetery state $(-\infty, \dagger)$ is called a Markov additive process (MAP) if Θ is a regular Feller process on E with cemetery state \dagger such that, for every bounded measurable function $f:(\mathbb{R} \cup\{-\infty\}) \times(E \cup\{\dagger\}) \rightarrow \mathbb{R}, t, s \geq 0$ and $(x, \theta) \in \mathbb{R} \times E$, on $\{t<\varsigma\}$,

$$
\mathbf{E}_{x, \theta}\left[f\left(\xi_{t+s}-\xi_{t}, \Theta_{t+s}\right) \mid \sigma\left(\left(\xi_{u}, \Theta_{u}\right), u \leq t\right)\right]=\mathbf{E}_{0, \Theta_{t}}\left[f\left(\xi_{s}, \Theta_{s}\right)\right],
$$

where $\varsigma=\inf \left\{t>0: \Theta_{t}=\dagger\right\}$.

- Roughly speaking, one thinks of a MAP as a 'Markov modulated' Lévy process
- It has 'conditional stationary and independent increments'
- Think of the E-valued Markov process Θ as modulating the characteristics of ξ (which would otherwise be a Lévy processes).

LAMPERTI-KIU TRANSFORM

Theorem

Fix $\alpha>0$. The process Z is a ssMp with index α if and only if there exists a (killed) MAP, (ξ, Θ) on $\mathbb{R} \times \mathbb{S}_{d-1}$ such that

$$
\mathrm{Z}_{t}:=\mathrm{e}^{\xi_{\varphi(t)}} \Theta_{\varphi(t)} \quad, \quad t \leq I_{\varsigma}
$$

where

$$
\varphi(t)=\inf \left\{s>0: \int_{0}^{s} \mathrm{e}^{\alpha \xi_{u}} \mathrm{~d} u>t\right\}, \quad t \leq I_{\varsigma}
$$

and $I_{\varsigma}=\int_{0}^{\varsigma} \mathrm{e}^{\alpha \xi_{s}} \mathrm{~d}$ s is the lifetime of Z until absorption at the origin. Here, we interpret $\exp \{-\infty\} \times \dagger:=0$ and $\inf \emptyset:=\infty$.

- In the above representation, the time to absorption in the origin,

$$
\zeta=\inf \left\{t>0: Z_{t}=0\right\}
$$

satisfies $\zeta=I_{\zeta}$.
\Rightarrow Note $x \in \mathbb{R}^{d}$ if and only if

$$
x=(|x|, \operatorname{Arg}(x))
$$

where $\operatorname{Arg}(x)=x /|x| \in \mathbb{S}_{d-1}$. The Lamperti-Kiu decomposition therefore gives us a d-dimensional skew product decomposition of self-similar Markov processes.

LAMPERTI-STABLE MAP

- The stable process X is an \mathbb{R}^{d}-valued self-similar Markov process and therefore fits the description above

LAMPERTI-STABLE MAP

- The stable process X is an \mathbb{R}^{d}-valued self-similar Markov process and therefore fits the description above
- How do we characterise its underlying MAP (ξ, Θ) ?

Lamperti-stable MAP

- The stable process X is an \mathbb{R}^{d}-valued self-similar Markov process and therefore fits the description above
- How do we characterise its underlying MAP (ξ, Θ) ?
- We already know that $|X|$ is a positive similar Markov process and hence ξ is a Lévy process, albeit corollated to Θ

Lamperti-stable MAP

- The stable process X is an \mathbb{R}^{d}-valued self-similar Markov process and therefore fits the description above
- How do we characterise its underlying MAP (ξ, Θ) ?
- We already know that $|X|$ is a positive similar Markov process and hence ξ is a Lévy process, albeit corollated to Θ
- What properties does Θ and what properties to the pair (ξ, Θ) have?

MAP ISOTROPY

Theorem

Suppose (ξ, Θ) is the MAP underlying the stable process. Then $\left(\left(\xi, U^{-1} \Theta\right), \mathbf{P}_{x, \theta}\right)$ is equal in law to $\left((\xi, \Theta), \mathbf{P}_{x, U^{-1} \theta}\right)$, for every orthogonal d-dimensional matrix U and $x \in \mathbb{R}^{d}, \theta \in \mathbb{S}_{d-1}$.

MAP ISOTROPY

Theorem

Suppose (ξ, Θ) is the MAP underlying the stable process. Then $\left(\left(\xi, U^{-1} \Theta\right), \mathbf{P}_{x, \theta}\right)$ is equal in law to $\left((\xi, \Theta), \mathbf{P}_{x, U^{-1} \theta}\right)$, for every orthogonal d-dimensional matrix U and $x \in \mathbb{R}^{d}, \theta \in \mathbb{S}_{d-1}$.

Proof.
First note that $\varphi(t)=\int_{0}^{t}\left|X_{u}\right|^{-\alpha} \mathrm{d} u$. It follows that

$$
\left(\xi_{t}, \Theta_{t}\right)=\left(\log \left|X_{A(t)}\right|, \operatorname{Arg}\left(X_{A(t)}\right)\right), \quad t \geq 0
$$

where the random times $A(t)=\inf \left\{s>0: \int_{0}^{s}\left|X_{u}\right|^{-\alpha} \mathrm{d} u>t\right\}$ are stopping times in the natural filtration of X.

MAP ISOTROPY

Theorem

Suppose (ξ, Θ) is the MAP underlying the stable process. Then $\left(\left(\xi, U^{-1} \Theta\right), \mathbf{P}_{x, \theta}\right)$ is equal in law to $\left((\xi, \Theta), \mathbf{P}_{x, U^{-1} \theta}\right)$, for every orthogonal d-dimensional matrix U and $x \in \mathbb{R}^{d}, \theta \in \mathbb{S}_{d-1}$.

Proof.

First note that $\varphi(t)=\int_{0}^{t}\left|X_{u}\right|^{-\alpha} \mathrm{d} u$. It follows that

$$
\left(\xi_{t}, \Theta_{t}\right)=\left(\log \left|X_{A(t)}\right|, \operatorname{Arg}\left(X_{A(t)}\right)\right), \quad t \geq 0
$$

where the random times $A(t)=\inf \left\{s>0: \int_{0}^{s}\left|X_{u}\right|^{-\alpha} \mathrm{d} u>t\right\}$ are stopping times in the natural filtration of X.

Now suppose that U is any orthogonal d-dimensional matrix and let $X^{\prime}=U^{-1} X$. Since X is isotropic and since $\left|X^{\prime}\right|=|X|$, and $\operatorname{Arg}\left(X^{\prime}\right)=U^{-1} \operatorname{Arg}(X)$, we see that, for $x \in \mathbb{R}$ and $\theta \in \mathbb{S}_{d-1}$

$$
\begin{aligned}
\left(\left(\xi, U^{-1} \Theta\right), \mathbf{P}_{\log |x|, \theta}\right) & =\left(\left(\log \left|X_{A(\cdot)}\right|, U^{-1} \operatorname{Arg}\left(X_{A(\cdot)}\right)\right), \mathbb{P}_{x}\right) \\
& \stackrel{d}{=}\left(\left(\log \left|X_{A(\cdot)}\right|, \operatorname{Arg}\left(X_{A(\cdot)}\right)\right), \mathbb{P}_{U^{-1} x}\right) \\
& =\left((\xi, \Theta), \mathbf{P}_{\log }|x|, U^{-1} \theta\right)
\end{aligned}
$$

as required.

MAP CORROLATION

- We will work with the increments $\Delta \xi_{t}=\xi_{t}-\xi_{t-} \in \mathbb{R}, t \geq 0$,

MAP CORROLATION

- We will work with the increments $\Delta \xi_{t}=\xi_{t}-\xi_{t-} \in \mathbb{R}, t \geq 0$,

Theorem (Bo Li, Victor Rivero, Bertoin-Werner (1996))

Suppose that f is a bounded measurable function on $[0, \infty) \times \mathbb{R} \times \mathbb{R} \times \mathbb{S}_{d-1} \times \mathbb{S}_{d-1}$ such that $f(\cdot, \cdot, 0, \cdot, \cdot)=0$, then, for all $\theta \in \mathbb{S}_{d-1}$,

$$
\begin{aligned}
& \mathbf{E}_{0, \theta}\left(\sum_{s>0} f\left(s, \xi_{s-}, \Delta \xi_{s}, \Theta_{s-}, \Theta_{s}\right)\right) \\
& =\int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{S}_{d-1}} \int_{\mathbb{S}_{d-1}} \int_{\mathbb{R}} V_{\theta}(\mathrm{d} s, \mathrm{~d} x, \mathrm{~d} \vartheta) \sigma_{1}(\mathrm{~d} \phi) \mathrm{d} y \frac{c(\alpha) \mathrm{e}^{y d}}{\left|\mathrm{e}^{y} \phi-\vartheta\right|^{\alpha+d}} f(s, x, y, \vartheta, \phi),
\end{aligned}
$$

where

$$
V_{\theta}(\mathrm{d} s, d x, \mathrm{~d} \vartheta)=\mathbf{P}_{0, \theta}\left(\xi_{s} \in \mathrm{~d} x, \Theta_{s} \in \mathrm{~d} \vartheta\right) \mathrm{d} s, \quad x \in \mathbb{R}, \vartheta \in \mathbb{S}_{d-1}, s \geq 0
$$

is the space-time potential of (ξ, Θ) under $\mathbf{P}_{0, \theta}, \sigma_{1}(\phi)$ is the surface measure on \mathbb{S}_{d-1} normalised to have unit mass and

$$
c(\alpha)=2^{\alpha-1} \pi^{-d} \Gamma((d+\alpha) / 2) \Gamma(d / 2) /|\Gamma(-\alpha / 2)| .
$$

MAP OF $\left(X, \mathbb{P}^{\circ}\right)$

- Recall that $\left(\left|X_{t}\right|^{\alpha-d}, t \geq 0\right)$, is a martingale.
- Informally, we should expect $\mathcal{L} h=0$, where $h(x)=|x|^{\alpha-d}$ and \mathcal{L} is the infinitesimal generator of the stable process, which has action

$$
\mathcal{L} f(x)=\mathrm{a} \cdot \nabla f(x)+\int_{\mathbb{R}^{d}}\left[f(x+y)-f(x)-\mathbf{1}_{(|y| \leq 1)} y \cdot \nabla f(x)\right] \Pi(\mathrm{d} y), \quad|x|>0
$$

for appropriately smooth functions.

MAP OF (X, \mathbb{P}°)

- Recall that $\left(\left|X_{t}\right|^{\alpha-d}, t \geq 0\right)$, is a martingale.
- Informally, we should expect $\mathcal{L} h=0$, where $h(x)=|x|^{\alpha-d}$ and \mathcal{L} is the infinitesimal generator of the stable process, which has action

$$
\mathcal{L} f(x)=\mathrm{a} \cdot \nabla f(x)+\int_{\mathbb{R}^{d}}\left[f(x+y)-f(x)-\mathbf{1}_{(|y| \leq 1)} y \cdot \nabla f(x)\right] \Pi(\mathrm{d} y), \quad|x|>0
$$

for appropriately smooth functions.

- Associated to $\left(X, \mathbb{P}_{x}\right), x \neq 0$ is the generator

$$
\mathcal{L}^{\circ} f(x)=\lim _{t \downarrow 0} \frac{\mathbb{E}_{x}^{0}\left[f\left(X_{t}\right)\right]-f(x)}{t}=\lim _{t \downarrow 0} \frac{\mathbb{E}_{x}\left[\left|X_{t}\right|^{\alpha-d} f\left(X_{t}\right)\right]-|x|^{\alpha-d} f(x)}{|x|^{\alpha-d} t},
$$

MAP OF (X, \mathbb{P}°)

- Recall that $\left(\left|X_{t}\right|^{\alpha-d}, t \geq 0\right)$, is a martingale.
- Informally, we should expect $\mathcal{L} h=0$, where $h(x)=|x|^{\alpha-d}$ and \mathcal{L} is the infinitesimal generator of the stable process, which has action

$$
\mathcal{L} f(x)=\mathrm{a} \cdot \nabla f(x)+\int_{\mathbb{R}^{d}}\left[f(x+y)-f(x)-\mathbf{1}_{(|y| \leq 1)} y \cdot \nabla f(x)\right] \Pi(\mathrm{d} y), \quad|x|>0
$$

for appropriately smooth functions.

- Associated to $\left(X, \mathbb{P}_{x}\right), x \neq 0$ is the generator

$$
\mathcal{L}^{\circ} f(x)=\lim _{t \downarrow 0} \frac{\mathbb{E}_{x}^{\circ}\left[f\left(X_{t}\right)\right]-f(x)}{t}=\lim _{t \downarrow 0} \frac{\mathbb{E}_{x}\left[\left|X_{t}\right|^{\alpha-d} f\left(X_{t}\right)\right]-|x|^{\alpha-d} f(x)}{|x|^{\alpha-d} t},
$$

- That is to say

$$
\mathcal{L}^{\circ} f(x)=\frac{1}{h(x)} \mathcal{L}(h f)(x),
$$

MAP of $\left(X, \mathbb{P}^{\circ}\right)$

- Recall that $\left(\left|X_{t}\right|^{\alpha-d}, t \geq 0\right)$, is a martingale.
- Informally, we should expect $\mathcal{L} h=0$, where $h(x)=|x|^{\alpha-d}$ and \mathcal{L} is the infinitesimal generator of the stable process, which has action

$$
\mathcal{L} f(x)=\mathrm{a} \cdot \nabla f(x)+\int_{\mathbb{R}^{d}}\left[f(x+y)-f(x)-\mathbf{1}_{(|y| \leq 1)} y \cdot \nabla f(x)\right] \Pi(\mathrm{d} y), \quad|x|>0
$$

for appropriately smooth functions.

- Associated to $\left(X, \mathbb{P}_{x}\right), x \neq 0$ is the generator

$$
\mathcal{L}^{\circ} f(x)=\lim _{t \downarrow 0} \frac{\mathbb{E}_{x}^{\circ}\left[f\left(X_{t}\right)\right]-f(x)}{t}=\lim _{t \downarrow 0} \frac{\mathbb{E}_{x}\left[\left|X_{t}\right|^{\alpha-d} f\left(X_{t}\right)\right]-|x|^{\alpha-d} f(x)}{|x|^{\alpha-d} t},
$$

- That is to say

$$
\mathcal{L}^{\circ} f(x)=\frac{1}{h(x)} \mathcal{L}(h f)(x),
$$

- Straightforward algebra using $\mathcal{L} h=0$ gives us

$$
\mathcal{L}^{\circ} f(x)=\mathrm{a} \cdot \nabla f(x)+\int_{\mathbb{R}^{d}}\left[f(x+y)-f(x)-\mathbf{1}_{(|y| \leq 1)} y \cdot \nabla f(x)\right] \frac{h(x+y)}{h(x)} \Pi(\mathrm{d} y), \quad|x|>0
$$

$\operatorname{MAP~OF~}\left(X, \mathbb{P}^{\circ}\right)$

- Recall that $\left(\left|X_{t}\right|^{\alpha-d}, t \geq 0\right)$, is a martingale.
- Informally, we should expect $\mathcal{L} h=0$, where $h(x)=|x|^{\alpha-d}$ and \mathcal{L} is the infinitesimal generator of the stable process, which has action

$$
\mathcal{L} f(x)=\mathrm{a} \cdot \nabla f(x)+\int_{\mathbb{R}^{d}}\left[f(x+y)-f(x)-\mathbf{1}_{(|y| \leq 1)} y \cdot \nabla f(x)\right] \Pi(\mathrm{d} y), \quad|x|>0
$$

for appropriately smooth functions.

- Associated to $\left(X, \mathbb{P}_{x}\right), x \neq 0$ is the generator

$$
\mathcal{L}^{\circ} f(x)=\lim _{t \downarrow 0} \frac{\mathbb{E}_{x}^{\circ}\left[f\left(X_{t}\right)\right]-f(x)}{t}=\lim _{t \downarrow 0} \frac{\mathbb{E}_{x}\left[\left|X_{t}\right|^{\alpha-d} f\left(X_{t}\right)\right]-|x|^{\alpha-d} f(x)}{|x|^{\alpha-d} t},
$$

- That is to say

$$
\mathcal{L}^{\circ} f(x)=\frac{1}{h(x)} \mathcal{L}(h f)(x),
$$

- Straightforward algebra using $\mathcal{L h}=0$ gives us

$$
\mathcal{L}^{\circ} f(x)=\mathrm{a} \cdot \nabla f(x)+\int_{\mathbb{R}^{d}}\left[f(x+y)-f(x)-\mathbf{1}_{(|y| \leq 1)} y \cdot \nabla f(x)\right] \frac{h(x+y)}{h(x)} \Pi(\mathrm{d} y), \quad|x|>0
$$

- Equivalently, the rate at which $\left(X, \mathbb{P}_{x}^{\circ}\right), x \neq 0$ jumps given by

$$
\Pi^{\circ}(x, B):=\frac{2^{\alpha-1} \Gamma((d+\alpha) / 2) \Gamma(d / 2)}{\pi^{d}|\Gamma(-\alpha / 2)|} \int_{\mathbb{S}_{d-1}} \mathrm{~d} \sigma_{1}(\phi) \int_{(0, \infty)} \mathbf{1}_{B}(r \phi) \frac{\mathrm{d} r}{r^{\alpha+1}} \frac{|x+r \phi|^{\alpha-d}}{|x|^{\alpha-d}}
$$

for $|x|>0$ and $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$.

MAP OF (X, \mathbb{P}°.

Theorem

Suppose that f is a bounded measurable function on $[0, \infty) \times \mathbb{R} \times \mathbb{R} \times \mathbb{S}_{d-1} \times \mathbb{S}_{d-1}$ such that $f(\cdot, \cdot, 0, \cdot, \cdot)=0$, then, for all $\theta \in \mathbb{S}_{d-1}$,

$$
\begin{aligned}
& \mathbf{E}_{0, \theta}^{\circ}\left(\sum_{s>0} f\left(s, \xi_{s-}, \Delta \xi_{s}, \Theta_{s-}, \Theta_{s}\right)\right) \\
& =\int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{S}_{d-1}} \int_{\mathbb{S}_{d-1}} \int_{\mathbb{R}} V_{\theta}^{\circ}(\mathrm{d} s, \mathrm{~d} x, \mathrm{~d} \vartheta) \sigma_{1}(\mathrm{~d} \phi) \mathrm{d} y \frac{c(\alpha) \mathrm{e}^{y d}}{\left|\mathrm{e}^{y} \phi-\vartheta\right|^{\alpha+d}} f(s, x,-y, \vartheta, \phi),
\end{aligned}
$$

where

$$
V_{\theta}^{\circ}(\mathrm{d} s, d x, \mathrm{~d} \vartheta)=\mathbf{P}_{0, \theta}^{\circ}\left(\xi_{s} \in \mathrm{~d} x, \Theta_{s} \in \mathrm{~d} \vartheta\right) \mathrm{d} s, \quad x \in \mathbb{R}, \vartheta \in \mathbb{S}_{d-1}, s \geq 0
$$

is the space-time potential of (ξ, Θ) under $\mathbf{P}_{0, \theta}^{\circ}$.

Comparing the right-hand side above with that of the previous Theorem, it now becomes immediately clear that the the jump structure of (ξ, Θ) under $\mathbf{P}_{x, \theta}^{\circ}, x \in \mathbb{R}$, $\theta \in \mathbb{S}_{d-1}$, is precisely that of $(-\xi, \Theta)$ under $\mathbf{P}_{x, \theta}, x \in \mathbb{R}, \theta \in \mathbb{S}_{d-1}$.

MAP OF (X, \mathbb{P}.)

Theorem

Suppose that f is a bounded measurable function on $[0, \infty) \times \mathbb{R} \times \mathbb{R} \times \mathbb{S}_{d-1} \times \mathbb{S}_{d-1}$ such that $f(\cdot, \cdot, 0, \cdot, \cdot)=0$, then, for all $\theta \in \mathbb{S}_{d-1}$,

$$
\begin{aligned}
& \mathbf{E}_{0, \theta}\left(\sum_{s>0} f\left(s, \xi_{s-}, \Delta \xi_{s}, \Theta_{s-}, \Theta_{s}\right)\right) \\
& =\int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{S}_{d-1}} \int_{\mathbb{S}_{d-1}} \int_{\mathbb{R}} V_{\theta}(\mathrm{d} s, \mathrm{~d} x, \mathrm{~d} \vartheta) \sigma_{1}(\mathrm{~d} \phi) \mathrm{d} y \frac{c(\alpha) \mathrm{e}^{y d}}{\left|\mathrm{e}^{y} \phi-\vartheta\right|^{\alpha+d}} f(s, x, y, \vartheta, \phi),
\end{aligned}
$$

where

$$
V_{\theta}(\mathrm{d} s, d x, \mathrm{~d} \vartheta)=\mathbf{P}_{0, \theta}\left(\xi_{s} \in \mathrm{~d} x, \Theta_{s} \in \mathrm{~d} \vartheta\right) \mathrm{d} s, \quad x \in \mathbb{R}, \vartheta \in \mathbb{S}_{d-1}, s \geq 0
$$

is the space-time potential of (ξ, Θ) under $\mathbf{P}_{0, \theta}^{\circ}$.

Comparing the right-hand side above with that of the previous Theorem, it now becomes immediately clear that the the jump structure of (ξ, Θ) under $\mathbf{P}_{x, \theta}^{\circ}, x \in \mathbb{R}$, $\theta \in \mathbb{S}_{d-1}$, is precisely that of $(-\xi, \Theta)$ under $\mathbf{P}_{x, \theta}, x \in \mathbb{R}, \theta \in \mathbb{S}_{d-1}$.
§9. Riesz-Bogdan-Żak transform

RIESZ-BOGDAN-ŻAK TRANSFORM

- Define the transformation $K: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$, by

$$
K x=\frac{x}{|x|^{2}}, \quad x \in \mathbb{R}^{d} \backslash\{0\} .
$$

RIESZ-BOGDAN-ŻAK TRANSFORM

- Define the transformation $K: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$, by

$$
K x=\frac{x}{|x|^{2}}, \quad x \in \mathbb{R}^{d} \backslash\{0\}
$$

- This transformation inverts space through the unit sphere $\left\{x \in \mathbb{R}^{d}:|x|=1\right\}$.

RIESZ-BOGDAN-ŻAK TRANSFORM

- Define the transformation $K: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$, by

$$
K x=\frac{x}{|x|^{2}}, \quad x \in \mathbb{R}^{d} \backslash\{0\} .
$$

- This transformation inverts space through the unit sphere $\left\{x \in \mathbb{R}^{d}:|x|=1\right\}$.
$>$ Write $x \in \mathbb{R}^{d}$ in skew product form $x=(|x|, \operatorname{Arg}(x))$, and note that

$$
K x=\left(|x|^{-1}, \operatorname{Arg}(x)\right), \quad x \in \mathbb{R}^{d} \backslash\{0\},
$$

showing that the K-transform 'radially inverts' elements of \mathbb{R}^{d} through \mathbb{S}_{d-1}.

RIESZ-BOGDAN-ŻAK TRANSFORM

- Define the transformation $K: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$, by

$$
K x=\frac{x}{|x|^{2}}, \quad x \in \mathbb{R}^{d} \backslash\{0\} .
$$

- This transformation inverts space through the unit sphere $\left\{x \in \mathbb{R}^{d}:|x|=1\right\}$.
$>$ Write $x \in \mathbb{R}^{d}$ in skew product form $x=(|x|, \operatorname{Arg}(x))$, and note that

$$
K x=\left(|x|^{-1}, \operatorname{Arg}(x)\right), \quad x \in \mathbb{R}^{d} \backslash\{0\},
$$

showing that the K-transform 'radially inverts' elements of \mathbb{R}^{d} through \mathbb{S}_{d-1}.

- In particular $K(K x)=x$

RIESZ-BOGDAN-ŻAK TRANSFORM

- Define the transformation $K: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$, by

$$
K x=\frac{x}{|x|^{2}}, \quad x \in \mathbb{R}^{d} \backslash\{0\} .
$$

- This transformation inverts space through the unit sphere $\left\{x \in \mathbb{R}^{d}:|x|=1\right\}$.
$>$ Write $x \in \mathbb{R}^{d}$ in skew product form $x=(|x|, \operatorname{Arg}(x))$, and note that

$$
K x=\left(|x|^{-1}, \operatorname{Arg}(x)\right), \quad x \in \mathbb{R}^{d} \backslash\{0\},
$$

showing that the K-transform 'radially inverts' elements of \mathbb{R}^{d} through \mathbb{S}_{d-1}.

- In particular $K(K x)=x$

Theorem (d-dimensional Riesz-Bogdan-Żak Transform, $d \geq 2$)

Suppose that X is a d-dimensional isotropic stable process with $d \geq 2$. Define

$$
\begin{equation*}
\eta(t)=\inf \left\{s>0: \int_{0}^{s}\left|X_{u}\right|^{-2 \alpha} \mathrm{~d} u>t\right\}, \quad t \geq 0 \tag{1}
\end{equation*}
$$

Then, for all $x \in \mathbb{R}^{d} \backslash\{0\},\left(K X_{\eta(t)}, t \geq 0\right)$ under \mathbb{P}_{x} is equal in law to $\left(X, \mathbb{P}_{K x}^{\circ}\right)$.

Proof of Riesz-Bogdan-ŻAK transform

We give a proof, different to the original proof of Bogdan and Żak (2010).

- Recall that $X_{t}=\mathrm{e}^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}$, where

$$
\int_{0}^{\varphi(t)} \mathrm{e}^{\alpha \xi_{u}} \mathrm{~d} u=t, \quad t \geq 0
$$

Proof of Riesz-Bogdan-Żak transform

We give a proof, different to the original proof of Bogdan and Żak (2010).

- Recall that $X_{t}=\mathrm{e}^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}$, where

$$
\int_{0}^{\varphi(t)} \mathrm{e}^{\alpha \xi_{u}} \mathrm{~d} u=t, \quad t \geq 0
$$

- Note also that, as an inverse,

$$
\int_{0}^{\eta(t)}\left|X_{u}\right|^{-2 \alpha} \mathrm{~d} u=t, \quad t \geq 0
$$

Proof of Riesz-Bogdan-ŻAK transform

We give a proof, different to the original proof of Bogdan and Żak (2010).

- Recall that $X_{t}=\mathrm{e}^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}$, where

$$
\int_{0}^{\varphi(t)} \mathrm{e}^{\alpha \xi_{u}} \mathrm{~d} u=t, \quad t \geq 0
$$

- Note also that, as an inverse,

$$
\int_{0}^{\eta(t)}\left|X_{u}\right|^{-2 \alpha} \mathrm{~d} u=t, \quad t \geq 0
$$

- Differentiating,

$$
\frac{\mathrm{d} \varphi(t)}{\mathrm{d} t}=\mathrm{e}^{-\alpha \xi_{\varphi(t)}} \text { and } \frac{\mathrm{d} \eta(t)}{\mathrm{d} t}=\mathrm{e}^{2 \alpha \xi_{\varphi \circ \eta(t)}}, \quad \eta(t)<\tau^{\{0\}} .
$$

and chain rule now tells us that

$$
\frac{\mathrm{d}(\varphi \circ \eta)(t)}{\mathrm{d} t}=\left.\frac{\mathrm{d} \varphi(s)}{\mathrm{d} s}\right|_{s=\eta(t)} \frac{\mathrm{d} \eta(t)}{\mathrm{d} t}=\mathrm{e}^{\alpha \xi_{\varphi} \circ \eta(t)} .
$$

Proof of Riesz-Bogdan-ŻAK transform

We give a proof, different to the original proof of Bogdan and Żak (2010).

- Recall that $X_{t}=\mathrm{e}^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}$, where

$$
\int_{0}^{\varphi(t)} \mathrm{e}^{\alpha \xi_{u}} \mathrm{~d} u=t, \quad t \geq 0
$$

- Note also that, as an inverse,

$$
\int_{0}^{\eta(t)}\left|X_{u}\right|^{-2 \alpha} \mathrm{~d} u=t, \quad t \geq 0
$$

- Differentiating,

$$
\frac{\mathrm{d} \varphi(t)}{\mathrm{d} t}=\mathrm{e}^{-\alpha \xi_{\varphi(t)}} \text { and } \frac{\mathrm{d} \eta(t)}{\mathrm{d} t}=\mathrm{e}^{2 \alpha \xi_{\varphi \circ \eta(t)}}, \quad \eta(t)<\tau^{\{0\}} .
$$

and chain rule now tells us that

$$
\frac{\mathrm{d}(\varphi \circ \eta)(t)}{\mathrm{d} t}=\left.\frac{\mathrm{d} \varphi(s)}{\mathrm{d} s}\right|_{s=\eta(t)} \frac{\mathrm{d} \eta(t)}{\mathrm{d} t}=\mathrm{e}^{\alpha \xi_{\varphi} \circ \eta(t)} .
$$

- Said another way,

$$
\int_{0}^{\varphi \circ \eta(t)} \mathrm{e}^{-\alpha \xi_{u}} \mathrm{~d} u=t, \quad t \geq 0
$$

or

$$
\varphi \circ \eta(t)=\inf \left\{s>0: \int_{0}^{s} \mathrm{e}^{-\alpha \xi_{u}} \mathrm{~d} u>t\right\}
$$

Proof of Riesz-Bogdan-Żak transform

- Next note that

$$
K X_{\eta(t)}=\mathrm{e}^{-\xi_{\varphi \circ \eta(t)}} \Theta_{\varphi \circ \eta(t)}, \quad t \geq 0
$$

and we have just shown that

$$
\varphi \circ \eta(t)=\inf \left\{s>0: \int_{0}^{s} \mathrm{e}^{-\alpha \xi_{u}} \mathrm{~d} u>t\right\} .
$$

Proof of Riesz-Bogdan-ŻAK transform

- Next note that

$$
K X_{\eta(t)}=\mathrm{e}^{-\xi_{\varphi \circ \eta(t)}} \Theta_{\varphi \circ \eta(t)}, \quad t \geq 0
$$

and we have just shown that

$$
\varphi \circ \eta(t)=\inf \left\{s>0: \int_{0}^{s} \mathrm{e}^{-\alpha \xi_{u}} \mathrm{~d} u>t\right\} .
$$

It follows that $\left(K X_{\eta(t)}, t \geq 0\right)$ is a self-similar Markov process with underlying $\operatorname{MAP}(-\xi, \Theta)$

Proof of Riesz-Bogdan-Żak transform

- Next note that

$$
K X_{\eta(t)}=\mathrm{e}^{-\xi_{\varphi \circ \eta(t)}} \Theta_{\varphi \circ \eta(t)}, \quad t \geq 0
$$

and we have just shown that

$$
\varphi \circ \eta(t)=\inf \left\{s>0: \int_{0}^{s} \mathrm{e}^{-\alpha \xi_{u}} \mathrm{~d} u>t\right\}
$$

- It follows that $\left(K X_{\eta(t)}, t \geq 0\right)$ is a self-similar Markov process with underlying $\operatorname{MAP}(-\xi, \Theta)$
- We have also seen that $\left(X, \mathbb{P}_{x}^{\circ}\right), x \neq 0$, is also a self-similar Markov process with underlying MAP given by $(-\xi, \Theta)$.

Proof of Riesz-Bogdan-Żak transform

- Next note that

$$
K X_{\eta(t)}=\mathrm{e}^{-\xi_{\varphi \circ \eta(t)}} \Theta_{\varphi \circ \eta(t)}, \quad t \geq 0
$$

and we have just shown that

$$
\varphi \circ \eta(t)=\inf \left\{s>0: \int_{0}^{s} \mathrm{e}^{-\alpha \xi_{u}} \mathrm{~d} u>t\right\}
$$

- It follows that $\left(K X_{\eta(t)}, t \geq 0\right)$ is a self-similar Markov process with underlying $\operatorname{MAP}(-\xi, \Theta)$
∇ We have also seen that $\left(X, \mathbb{P}_{x}^{\circ}\right), x \neq 0$, is also a self-similar Markov process with underlying MAP given by $(-\xi, \Theta)$.
- The statement of the theorem follows.

§10. Hitting spheres

Port's Sphere hitting probability

- Recall that a stable process cannot hit points

Port's Sphere hitting probability

- Recall that a stable process cannot hit points
- We are ultimately interested in the distribution of the position of X on first hitting of the sphere $\mathbb{S}_{d-1}=\left\{x \in \mathbb{R}^{d}:|x|=1\right\}$.

Port's Sphere hitting probability

- Recall that a stable process cannot hit points
- We are ultimately interested in the distribution of the position of X on first hitting of the sphere $\mathbb{S}_{d-1}=\left\{x \in \mathbb{R}^{d}:|x|=1\right\}$.
- Define

$$
\tau^{\odot}=\inf \left\{t>0:\left|X_{t}\right|=1\right\} .
$$

PORT'S SPHERE HITTING PROBABILITY

- Recall that a stable process cannot hit points
- We are ultimately interested in the distribution of the position of X on first hitting of the sphere $\mathbb{S}_{d-1}=\left\{x \in \mathbb{R}^{d}:|x|=1\right\}$.
- Define

$$
\tau^{\odot}=\inf \left\{t>0:\left|X_{t}\right|=1\right\} .
$$

- We start with an easier result

Port's Sphere hitting probability

- Recall that a stable process cannot hit points
- We are ultimately interested in the distribution of the position of X on first hitting of the sphere $\mathbb{S}_{d-1}=\left\{x \in \mathbb{R}^{d}:|x|=1\right\}$.
- Define

$$
\tau^{\odot}=\inf \left\{t>0:\left|X_{t}\right|=1\right\} .
$$

- We start with an easier result

Theorem (Port (1969))

If $\alpha \in(1,2)$, then

$$
\begin{aligned}
& \mathbb{P}_{x}\left(\tau^{\odot}<\infty\right) \\
& =\frac{\Gamma\left(\frac{\alpha+d}{2}-1\right) \Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right) \Gamma(\alpha-1)}\left\{\begin{aligned}
{ }_{2} F_{1}\left((d-\alpha) / 2,1-\alpha / 2, d / 2 ;|x|^{2}\right) & 1>|x| \\
|x|^{\alpha-d}{ }_{2} F_{1}\left((d-\alpha) / 2,1-\alpha / 2, d / 2 ; 1 /|x|^{2}\right) & 1 \leq|x| .
\end{aligned}\right.
\end{aligned}
$$

Otherwise, if $\alpha \in(0,1]$, then $\mathbb{P}_{x}\left(\tau^{\odot}=\infty\right)=1$ for all $x \in \mathbb{R}^{d}$.

Proof of Port's hitting probability

- If (ξ, Θ) is the underlying MAP then

$$
\mathbb{P}_{x}\left(\tau^{\odot}<\infty\right)=\mathbf{P}_{\log |x|}\left(\tau^{\{0\}}<\infty\right)=\mathbf{P}_{0}\left(\tau^{\{\log (1 /|x|)\}}<\infty\right),
$$

where $\tau^{\{z\}}=\inf \left\{t>0: \xi_{t}=z\right\}, z \in \mathbb{R}$. (Note, the time change in the Lamperti-Kiu representation does not level out.)

Proof of Port's hitting probability

- If (ξ, Θ) is the underlying MAP then

$$
\mathbb{P}_{x}\left(\tau^{\odot}<\infty\right)=\mathbf{P}_{\log |x|}\left(\tau^{\{0\}}<\infty\right)=\mathbf{P}_{0}\left(\tau^{\{\log (1 /|x|)\}}<\infty\right),
$$

where $\tau^{\{z\}}=\inf \left\{t>0: \xi_{t}=z\right\}, z \in \mathbb{R}$. (Note, the time change in the Lamperti-Kiu representation does not level out.)

- Using Sterling's formula, we have, $|\Gamma(x+\mathrm{i} y)|=\sqrt{2 \pi} e^{-\frac{\pi}{2}|y|}|y|^{x-\frac{1}{2}}(1+o(1))$, for $x, y \in \mathbb{R}$, as $y \rightarrow \infty$, uniformly in any finite interval $-\infty<a \leq x \leq b<\infty$. Hence,

$$
\frac{1}{\Psi(z)}=\frac{\Gamma\left(-\frac{1}{2} \mathrm{i} z\right)}{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+\alpha)\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d-\alpha)\right)}{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d)\right)} \sim|z|^{-\alpha}
$$

uniformly on \mathbb{R} as $|z| \rightarrow \infty$.

Proof of Port's hitting probability

- If (ξ, Θ) is the underlying MAP then

$$
\mathbb{P}_{x}\left(\tau^{\odot}<\infty\right)=\mathbf{P}_{\log |x|}\left(\tau^{\{0\}}<\infty\right)=\mathbf{P}_{0}\left(\tau^{\{\log (1 /|x|)\}}<\infty\right),
$$

where $\tau\{z\}=\inf \left\{t>0: \xi_{t}=z\right\}, z \in \mathbb{R}$. (Note, the time change in the Lamperti-Kiu representation does not level out.)

- Using Sterling's formula, we have, $|\Gamma(x+\mathrm{i} y)|=\sqrt{2 \pi} e^{-\frac{\pi}{2}|y|}|y|^{x-\frac{1}{2}}(1+o(1))$, for $x, y \in \mathbb{R}$, as $y \rightarrow \infty$, uniformly in any finite interval $-\infty<a \leq x \leq b<\infty$. Hence,

$$
\frac{1}{\Psi(z)}=\frac{\Gamma\left(-\frac{1}{2} \mathrm{i} z\right)}{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+\alpha)\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d-\alpha)\right)}{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d)\right)} \sim|z|^{-\alpha}
$$

uniformly on \mathbb{R} as $|z| \rightarrow \infty$.

- From Kesten-Brestagnolle integral test we conclude that $(1+\Psi(z))^{-1}$ is integrable and each sphere \mathbb{S}_{d-1} can be reached with positive probability from any x with $|x| \neq 1$ if and only if $\alpha \in(1,2)$.

Proof of Port's hitting probability

- Note that

$$
\frac{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+\alpha)\right)}{\Gamma\left(-\frac{1}{2} \mathrm{i} z\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d)\right)}{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d-\alpha)\right)}
$$

so that $\Psi(-i z)$, is well defined for $\operatorname{Re}(z) \in(-d, \alpha)$ with roots at 0 and $\alpha-d$.

Proof of Port's hitting probability

- Note that

$$
\frac{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+\alpha)\right)}{\Gamma\left(-\frac{1}{2} \mathrm{i} z\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d)\right)}{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d-\alpha)\right)}
$$

so that $\Psi(-\mathrm{i} z)$, is well defined for $\operatorname{Re}(z) \in(-d, \alpha)$ with roots at 0 and $\alpha-d$.

- We can use the identity

$$
\mathbb{P}_{x}\left(\tau^{\odot}<\infty\right)=\frac{u_{\xi}(\log (1 /|x|))}{u_{\xi}(0)}
$$

providing

$$
u_{\xi}(x)=\frac{1}{2 \pi \mathrm{i}} \int_{c+\mathrm{i} \mathbb{R}} \frac{\mathrm{e}^{-z x}}{\Psi(-\mathrm{i} z)} \mathrm{d} z, \quad x \in \mathbb{R}
$$

for $c \in(\alpha-d, 0)$.

Proof of Port's hitting probability

- Note that

$$
\frac{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+\alpha)\right)}{\Gamma\left(-\frac{1}{2} \mathrm{i} z\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d)\right)}{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d-\alpha)\right)}
$$

so that $\Psi(-i z)$, is well defined for $\operatorname{Re}(z) \in(-d, \alpha)$ with roots at 0 and $\alpha-d$.
\rightarrow We can use the identity

$$
\mathbb{P}_{x}\left(\tau^{\odot}<\infty\right)=\frac{u_{\xi}(\log (1 /|x|))}{u_{\xi}(0)}
$$

providing

$$
u_{\xi}(x)=\frac{1}{2 \pi \mathrm{i}} \int_{c+\mathrm{i} \mathbb{R}} \frac{\mathrm{e}^{-z x}}{\Psi(-\mathrm{i} z)} \mathrm{d} z, \quad x \in \mathbb{R}
$$

for $c \in(\alpha-d, 0)$.
Build the contour integral around simple poles at $\{-2 n-(d-\alpha): n \geq 0\}$.

$$
\begin{aligned}
& \frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} R}^{c+\mathrm{i} R} \frac{\mathrm{e}^{-z x}}{\Psi(-\mathrm{i} z)} \mathrm{d} z \\
& =-\frac{1}{2 \pi \mathrm{i}} \int_{c+R \mathrm{e}^{\mathrm{i} \theta}: \theta \in(\pi / 2,3 \pi / 2)} \frac{\mathrm{e}^{-z x}}{\Psi(-\mathrm{i} z)} \mathrm{d} z \\
& +\sum_{1 \leq n \leq\lfloor R\rfloor} \operatorname{Res}\left(\frac{\mathrm{e}^{-z x}}{\Psi(-\mathrm{i} z)} ; z=-2 n-(d-\alpha)\right)
\end{aligned}
$$

PROOF OF PORT'S HITTING PROBABILITY

- Now fix $x \leq 0$ and recall estimate $|1 / \Psi(-i z)| \lesssim|z|^{-\alpha}$. The assumption $x \leq 0$ and the fact that the arc length of $\left\{c+\operatorname{Re}^{\mathrm{i} \theta}: \theta \in(\pi / 2,3 \pi / 2)\right\}$ is πR, gives us

$$
\left|\int_{c+\mathrm{Re}^{\mathrm{i} \theta}: \theta \in(\pi / 2,3 \pi / 2)} \frac{\mathrm{e}^{-x z}}{\Psi(-\mathrm{i} z)} \mathrm{d} z\right| \leq C R^{-(\alpha-1)} \rightarrow 0
$$

as $R \rightarrow \infty$ for some constant $C>0$.

Proof of Port's hitting probability

- Now fix $x \leq 0$ and recall estimate $|1 / \Psi(-i z)| \lesssim|z|^{-\alpha}$. The assumption $x \leq 0$ and the fact that the arc length of $\left\{c+\operatorname{Re}^{\mathrm{i} \theta}: \theta \in(\pi / 2,3 \pi / 2)\right\}$ is πR, gives us

$$
\left|\int_{c+\mathrm{Re}^{\mathrm{i} \theta: \theta \in(\pi / 2,3 \pi / 2)}} \frac{\mathrm{e}^{-x z}}{\Psi(-\mathrm{i} z)} \mathrm{d} z\right| \leq C R^{-(\alpha-1)} \rightarrow 0
$$

as $R \rightarrow \infty$ for some constant $C>0$.

- Moreover,

$$
\begin{aligned}
u_{\xi}(x) & =\sum_{n \geq 1} \operatorname{Res}\left(\frac{\mathrm{e}^{-z x}}{\Psi(-\mathrm{i} z)} ; z=-2 n-(d-\alpha)\right) \\
& =\sum_{0}^{\infty}(-1)^{n+1} \frac{\Gamma(n+(d-\alpha) / 2)}{\Gamma(-n+\alpha / 2) \Gamma(n+d / 2)} \frac{\mathrm{e}^{2 n x}}{n!} \\
& =\mathrm{e}^{x(d-\alpha)} \frac{\Gamma((d-\alpha) / 2)}{\Gamma(\alpha / 2) \Gamma(d / 2)} 2 F_{1}\left((d-\alpha) / 2,1-\alpha / 2, d / 2 ; \mathrm{e}^{2 x}\right),
\end{aligned}
$$

Which also gives a value for $u_{\xi}(0)$.

Proof of Port's hitting probability

- Now fix $x \leq 0$ and recall estimate $|1 / \Psi(-i z)| \lesssim|z|^{-\alpha}$. The assumption $x \leq 0$ and the fact that the arc length of $\left\{c+\operatorname{Re}^{\mathrm{i} \theta}: \theta \in(\pi / 2,3 \pi / 2)\right\}$ is πR, gives us

$$
\left|\int_{c+\mathrm{Re}^{\mathrm{i} \theta: \theta \in(\pi / 2,3 \pi / 2)}} \frac{\mathrm{e}^{-x z}}{\Psi(-\mathrm{i} z)} \mathrm{d} z\right| \leq C R^{-(\alpha-1)} \rightarrow 0
$$

as $R \rightarrow \infty$ for some constant $C>0$.

- Moreover,

$$
\begin{aligned}
u_{\xi}(x) & =\sum_{n \geq 1} \operatorname{Res}\left(\frac{\mathrm{e}^{-z x}}{\Psi(-\mathrm{i} z)} ; z=-2 n-(d-\alpha)\right) \\
& =\sum_{0}^{\infty}(-1)^{n+1} \frac{\Gamma(n+(d-\alpha) / 2)}{\Gamma(-n+\alpha / 2) \Gamma(n+d / 2)} \frac{\mathrm{e}^{2 n x}}{n!} \\
& =\mathrm{e}^{x(d-\alpha)} \frac{\Gamma((d-\alpha) / 2)}{\Gamma(\alpha / 2) \Gamma(d / 2)} 2 F_{1}\left((d-\alpha) / 2,1-\alpha / 2, d / 2 ; \mathrm{e}^{2 x}\right),
\end{aligned}
$$

Which also gives a value for $u_{\xi}(0)$.

- Hence, for $1 \leq|x|$,

$$
\begin{aligned}
\mathbb{P}_{x}\left(\tau^{\odot}<\infty\right) & =\frac{u_{\xi}(\log (1 /|x|))}{u_{\xi}(0)} \\
& =\frac{\Gamma\left(\frac{\alpha+d}{2}-1\right) \Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right) \Gamma(\alpha-1)}|x|^{\alpha-d}{ }_{2} F_{1}\left((d-\alpha) / 2,1-\alpha / 2, d / 2 ;|x|^{-2}\right) .
\end{aligned}
$$

Proof of Port's hitting probability

- To deal with the case $|x|<1$, we can appeal to the Riesz-Bogdan-Żak transform to help us.

Proof of Port's hitting probability

- To deal with the case $|x|<1$, we can appeal to the Riesz-Bogdan-Żak transform to help us.
- To this end we note that, for $|x|<1,|K x|>1$

$$
\mathbb{P}_{K x}\left(\tau^{\odot}<\infty\right)=\mathbb{P}_{x}^{\circ}\left(\tau^{\odot}<\infty\right)=\mathbb{E}_{x}\left[\frac{\left|X_{\tau \odot}\right|^{\alpha-d}}{|x|^{\alpha-d}} \mathbf{1}_{(\tau \odot<\infty)}\right]=\frac{1}{|x|^{\alpha-d}} \mathbb{P}_{x}\left(\tau^{\odot}<\infty\right)
$$

Proof of Port's hitting probability

- To deal with the case $|x|<1$, we can appeal to the Riesz-Bogdan-Żak transform to help us.
- To this end we note that, for $|x|<1,|K x|>1$

$$
\mathbb{P}_{K x}\left(\tau^{\odot}<\infty\right)=\mathbb{P}_{x}^{\circ}\left(\tau^{\odot}<\infty\right)=\mathbb{E}_{x}\left[\frac{\left|X_{\tau \odot}\right|^{\alpha-d}}{|x|^{\alpha-d}} \mathbf{1}_{(\tau \odot<\infty)}\right]=\frac{1}{|x|^{\alpha-d}} \mathbb{P}_{x}\left(\tau^{\odot}<\infty\right)
$$

- Hence plugging in the expression for $|x|<1$,

$$
\mathbb{P}_{x}\left(\tau^{\odot}<\infty\right)=\frac{\Gamma\left(\frac{\alpha+d}{2}-1\right) \Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right) \Gamma(\alpha-1)}{ }_{2} F_{1}\left((d-\alpha) / 2,1-\alpha / 2, d / 2 ;|x|^{2}\right)
$$

thus completing the proof.

- To deal with the case $x=0$, take limits in the established identity as $|x| \rightarrow 0$.

Riesz representation of Port's hitting probability

Theorem

Suppose $\alpha \in(1,2)$. For all $x \in \mathbb{R}^{d}$,

$$
\mathbb{P}_{x}\left(\tau^{\odot}<\infty\right)=\frac{\Gamma\left(\frac{\alpha+d}{2}-1\right) \Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right) \Gamma(\alpha-1)} \int_{\mathbb{S}_{d-1}}|z-x|^{\alpha-d} \sigma_{1}(\mathrm{~d} z)
$$

where $\sigma_{1}(\mathrm{~d} z)$ is the uniform measure on \mathbb{S}_{d-1}, normalised to have unit mass. In particular, for $y \in \mathbb{S}_{d-1}$,

$$
\int_{\mathbb{S}_{d-1}}|z-y|^{\alpha-d} \sigma_{1}(\mathrm{~d} z)=\frac{\Gamma\left(\frac{d}{2}\right) \Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right) \Gamma\left(\frac{\alpha}{2}\right)} .
$$

Proof of Riesz representation of Port's hitting probability

\Rightarrow We know that $\left|X_{t}-z\right|^{\alpha-d}, t \geq 0$ is a martingale.

Proof of Riesz representation of Port's hitting probability

- We know that $\left|X_{t}-z\right|^{\alpha-d}, t \geq 0$ is a martingale.
$>$ Hence we know that

$$
M_{t}:=\int_{\mathbb{S}_{d-1}}\left|z-X_{t \wedge \tau \odot}\right|^{\alpha-d} \sigma_{1}(\mathrm{~d} z), \quad t \geq 0
$$

is a martingale.

Proof of Riesz representation of Port's hitting probability

- We know that $\left|X_{t}-z\right|^{\alpha-d}, t \geq 0$ is a martingale.
- Hence we know that

$$
M_{t}:=\int_{\mathbb{S}_{d-1}}\left|z-X_{t \wedge \tau \odot}\right|^{\alpha-d} \sigma_{1}(\mathrm{~d} z), \quad t \geq 0
$$

is a martingale.

- Recall that $\lim _{t \rightarrow \infty}\left|X_{t}\right|=0$ and $\alpha<d$ and hence

$$
M_{\infty}:=\lim _{t \rightarrow \infty} M_{t}=\int_{\mathbb{S}_{d-1}}\left|z-X_{\tau \odot}\right|^{\alpha-d} \sigma_{1}(\mathrm{~d} z) \mathbf{1}_{(\tau \odot<\infty)} \stackrel{d}{=} C \mathbf{1}_{(\tau \odot<\infty)}
$$

where, despite the randomness in $X_{\tau} \odot$, by rotational symmetry,

$$
C=\int_{\mathbb{S}_{d-1}}|z-1|^{\alpha-d} \sigma_{1}(\mathrm{~d} z)
$$

and $1=(1,0, \cdots, 0) \in \mathbb{R}^{d}$ is the 'North Pole' on \mathbb{S}_{d-1}.

Proof of Riesz representation of Port's hitting probability

- We know that $\left|X_{t}-z\right|^{\alpha-d}, t \geq 0$ is a martingale.
- Hence we know that

$$
M_{t}:=\int_{\mathbb{S}_{d-1}}\left|z-X_{t \wedge \tau \odot}\right|^{\alpha-d} \sigma_{1}(\mathrm{~d} z), \quad t \geq 0
$$

is a martingale.

- Recall that $\lim _{t \rightarrow \infty}\left|X_{t}\right|=0$ and $\alpha<d$ and hence

$$
M_{\infty}:=\lim _{t \rightarrow \infty} M_{t}=\int_{\mathbb{S}_{d-1}}\left|z-X_{\tau \odot}\right|^{\alpha-d} \sigma_{1}(\mathrm{~d} z) \mathbf{1}_{(\tau \odot<\infty)} \stackrel{d}{=} \mathrm{C} \mathbf{1}_{(\tau \odot<\infty)}
$$

where, despite the randomness in $X_{\tau \odot}$, by rotational symmetry,

$$
C=\int_{\mathbb{S}_{d-1}}|z-1|^{\alpha-d} \sigma_{1}(\mathrm{~d} z)
$$

and $1=(1,0, \cdots, 0) \in \mathbb{R}^{d}$ is the 'North Pole' on \mathbb{S}_{d-1}.

- Since M is a UI martingale, taking expectations of M_{∞}

$$
\int_{\mathbb{S}_{d-1}}|z-x|^{\alpha-d} \sigma_{1}(\mathrm{~d} z)=\mathbb{E}_{x}\left[M_{0}\right]=\mathbb{E}_{x}\left[M_{\infty}\right]=C \mathbb{P}_{x}\left(\tau^{\odot}<\infty\right)
$$

Proof of Riesz representation of Port's hitting probability

- We know that $\left|X_{t}-z\right|^{\alpha-d}, t \geq 0$ is a martingale.
- Hence we know that

$$
M_{t}:=\int_{\mathbb{S}_{d-1}}\left|z-X_{t \wedge \tau \odot}\right|^{\alpha-d} \sigma_{1}(\mathrm{~d} z), \quad t \geq 0
$$

is a martingale.

- Recall that $\lim _{t \rightarrow \infty}\left|X_{t}\right|=0$ and $\alpha<d$ and hence

$$
M_{\infty}:=\lim _{t \rightarrow \infty} M_{t}=\int_{\mathbb{S}_{d-1}}\left|z-X_{\tau \odot}\right|^{\alpha-d} \sigma_{1}(\mathrm{~d} z) \mathbf{1}_{(\tau \odot<\infty)} \stackrel{d}{=} \mathrm{C} \mathbf{1}_{(\tau \odot<\infty)} .
$$

where, despite the randomness in $X_{\tau} \odot$, by rotational symmetry,

$$
C=\int_{\mathbb{S}_{d-1}}|z-1|^{\alpha-d} \sigma_{1}(\mathrm{~d} z)
$$

and $1=(1,0, \cdots, 0) \in \mathbb{R}^{d}$ is the 'North Pole' on \mathbb{S}_{d-1}.

- Since M is a UI martingale, taking expectations of M_{∞}

$$
\int_{\mathbb{S}_{d-1}}|z-x|^{\alpha-d} \sigma_{1}(\mathrm{~d} z)=\mathbb{E}_{x}\left[M_{0}\right]=\mathbb{E}_{x}\left[M_{\infty}\right]=C \mathbb{P}_{x}\left(\tau^{\odot}<\infty\right)
$$

- Taking limits as $|x| \rightarrow 0$,

$$
C=1 / \mathbb{P}\left(\tau^{\odot}<\infty\right)=\Gamma\left(\frac{d}{2}\right) \Gamma(\alpha-1) / \Gamma\left(\frac{\alpha+d}{2}-1\right) \Gamma\left(\frac{\alpha}{2}\right) .
$$

Sphere inversions

SpHERE INVERSIONS

- Fix a point $b \in \mathbb{R}^{d}$ and a value $r>0$.
- The spatial transformation $x^{*}: \mathbb{R}^{d} \backslash\{b\} \mapsto \mathbb{R}^{d} \backslash\{b\}$

$$
x^{*}=b+\frac{r^{2}}{|x-b|^{2}}(x-b)
$$

is called an inversion through the sphere $\mathbb{S}_{d-1}(b, r):=\left\{x \in \mathbb{R}^{d}:|x-b|=r\right\}$.

Figure: Inversion relative to the sphere $\mathbb{S}_{d-1}(b, r)$.

INVERSION THROUGH $\mathbb{S}_{d-1}(b, r)$: KEY PROPERTIES

Inversion through $\mathbb{S}_{d-1}(b, r)$

$$
x^{*}=b+\frac{r^{2}}{|x-b|^{2}}(x-b),
$$

The following can be deduced by straightforward algebra

- Self inverse

$$
x=b+r^{2} \frac{\left(x^{*}-b\right)}{\left|x^{*}-b\right|^{2}}
$$

- Symmetry

$$
r^{2}=\left|x^{*}-b\right||x-b|
$$

- Difference

$$
\left|x^{*}-y^{*}\right|=\frac{r^{2}|x-y|}{|x-b||y-b|}
$$

- Differential

$$
\mathrm{d} x^{*}=\frac{r^{2 d}}{|x-b|^{2 d}} \mathrm{~d} x
$$

INVERSION THROUGH $\mathbb{S}_{d-1}(b, r)$: KEY PROPERTIES

\Rightarrow The sphere $\mathbb{S}_{d-1}(c, R)$ maps to itself under inversion through $\mathbb{S}_{d-1}(b, r)$ provided the former is orthogonal to the latter, which is equivalent to $r^{2}+R^{2}=|c-b|^{2}$.

- In particular, the area contained in the blue segment is mapped to the area in the red segment and vice versa.

SpHERE INVERSION WITH REFLECTION

A variant of the sphere inversion transform takes the form

$$
x^{\diamond}=b-\frac{r^{2}}{|x-b|^{2}}(x-b),
$$

and has properties

- Self inverse

$$
x=b-\frac{r^{2}}{\left|x^{\diamond}-b\right|^{2}}\left(x^{\diamond}-b\right),
$$

- Symmetry

$$
r^{2}=\left|x^{\diamond}-b\right||x-b|,
$$

- Difference

$$
\left|x^{\diamond}-y^{\diamond}\right|=\frac{r^{2}|x-y|}{|x-b||y-b|}
$$

- Differential

$$
\mathrm{d} x^{\diamond}=\frac{r^{2 d}}{|x-b|^{2 d}} \mathrm{~d} x
$$

Sphere inversion with reflection

- Fix $b \in \mathbb{R}^{d}$ and $r>0$. The sphere $\mathbb{S}_{d-1}(c, R)$ maps to itself through $\mathbb{S}_{d-1}(b, r)$ providing $|c-b|^{2}+r^{2}=R^{2}$.

\Rightarrow However, this time, the exterior of the sphere $\mathbb{S}_{d-1}(c, R)$ maps to the interior of the sphere $\mathbb{S}_{d-1}(c, R)$ and vice versa. For example, the region in the exterior of $\mathbb{S}_{d-1}(c, R)$ contained by blue boundary maps to the portion of the interior of $\mathbb{S}_{d-1}(c, R)$ contained by the red boundary.

§11. Spherical hitting distribution

PORT's SpHERE HITTING DISTRIBUTION

A richer version of the previous theorem:

Theorem (Port (1969))

Define the function

$$
h^{\odot}(x, y)=\frac{\Gamma\left(\frac{\alpha+d}{2}-1\right) \Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right) \Gamma(\alpha-1)} \frac{\|\left. x\right|^{2}-\left.1\right|^{\alpha-1}}{|x-y|^{\alpha+d-2}}
$$

for $|x| \neq 1,|y|=1$. Then, if $\alpha \in(1,2)$,

$$
\mathbb{P}_{x}\left(X_{\tau \odot} \in \mathrm{d} y\right)=h^{\odot}(x, y) \sigma_{1}(\mathrm{~d} y) \mathbf{1}_{(|x| \neq 1)}+\delta_{x}(\mathrm{~d} y) \mathbf{1}_{(|x|=1)}, \quad|y|=1
$$

where $\sigma_{1}(\mathrm{~d} y)$ is the surface measure on \mathbb{S}_{d-1}, normalised to have unit total mass.
Otherwise, if $\alpha \in(0,1], \mathbb{P}_{x}\left(\tau^{\odot}=\infty\right)=1$, for all $|x| \neq 1$.

Proof of Port's sphere hitting distribution

\Rightarrow Write $\mu_{x}^{\odot}(\mathrm{d} z)=\mathbb{P}_{x}\left(X_{\tau \odot} \in \mathrm{d} z\right)$ on \mathbb{S}_{d-1} where $x \in \mathbb{R}^{d} \backslash \mathbb{S}_{d-1}$.

Proof of Port's sphere hitting distribution

\Rightarrow Write $\mu_{x}^{\odot}(\mathrm{d} z)=\mathbb{P}_{x}\left(X_{\tau} \odot \in \mathrm{d} z\right)$ on \mathbb{S}_{d-1} where $x \in \mathbb{R}^{d} \backslash \mathbb{S}_{d-1}$.

- Recall the expression for the resolvent of the stable process in Theorem 1 which states that, due to transience,

$$
\int_{0}^{\infty} \mathbb{P}_{x}\left(X_{t} \in \mathrm{~d} y\right) \mathrm{d} t=C(\alpha)|x-y|^{\alpha-d} \mathrm{~d} y, \quad x, y \in \mathbb{R}^{d}
$$

where $C(\alpha)$ is an unimportant constant in the following discussion.

Proof of Port's sphere hitting distribution

- Write $\mu_{x}^{\odot}(\mathrm{d} z)=\mathbb{P}_{x}\left(X_{\tau} \odot \in \mathrm{d} z\right)$ on \mathbb{S}_{d-1} where $x \in \mathbb{R}^{d} \backslash \mathbb{S}_{d-1}$.
- Recall the expression for the resolvent of the stable process in Theorem 1 which states that, due to transience,

$$
\int_{0}^{\infty} \mathbb{P}_{x}\left(X_{t} \in \mathrm{~d} y\right) \mathrm{d} t=C(\alpha)|x-y|^{\alpha-d} \mathrm{~d} y, \quad x, y \in \mathbb{R}^{d}
$$

where $C(\alpha)$ is an unimportant constant in the following discussion.

- The measure μ_{x}^{\odot} is the solution to the 'functional fixed point equation'

$$
|x-y|^{\alpha-d}=\int_{\mathbb{S}_{d-1}}|z-y|^{\alpha-d} \mu(\mathrm{~d} z), \quad y \in \mathbb{S}_{d-1}
$$

Note that $y \in \mathbb{S}_{d-1}$, so the occupation of y from x, will at least see the the process pass through the sphere \mathbb{S}_{d-1} somewhere first (if not y).

- With a little work, we can show it is the unique solution in the class of probability measures.

Proof of Port's sphere hitting distribution

Recall, for $y^{*} \in \mathbb{S}_{d-1}$, from the Riesz representation of the sphere hitting probability,

$$
\frac{\Gamma\left(\frac{d}{2}\right) \Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right) \Gamma\left(\frac{\alpha}{2}\right)}=\int_{\mathbb{S}_{d-1}}\left|z^{*}-y^{*}\right|^{\alpha-d} \sigma_{1}\left(\mathrm{~d} z^{*}\right) .
$$

we are going to manipulate this identity using sphere inversion to solve the fixed point equation first assuming that $|x|>1$

Proof of Port's sphere hitting distribution

Recall, for $y^{*} \in \mathbb{S}_{d-1}$, from the Riesz representation of the sphere hitting probability,

$$
\frac{\Gamma\left(\frac{d}{2}\right) \Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right) \Gamma\left(\frac{\alpha}{2}\right)}=\int_{\mathbb{S}_{d-1}}\left|z^{*}-y^{*}\right|^{\alpha-d} \sigma_{1}\left(\mathrm{~d} z^{*}\right)
$$

we are going to manipulate this identity using sphere inversion to solve the fixed point equation first assuming that $|x|>1$

- Apply the sphere inversion with respect to the sphere $\mathbb{S}_{d-1}\left(x,\left(|x|^{2}-1\right)^{1 / 2}\right)$ remembering that this transformation maps \mathbb{S}_{d-1} to itself and using

$$
\begin{gathered}
\frac{1}{\left|z^{*}-x\right|^{d-1}} \sigma_{1}\left(\mathrm{~d} z^{*}\right)=\frac{1}{|z-x|^{d-1}} \sigma_{1}(\mathrm{~d} z) \\
\left(|x|^{2}-1\right)=\left|z^{*}-x\right||z-x| \quad \text { and } \quad\left|z^{*}-y^{*}\right|=\frac{\left(|x|^{2}-1\right)|z-y|}{|z-x||y-x|}
\end{gathered}
$$

Proof of Port's sphere hitting distribution

Recall, for $y^{*} \in \mathbb{S}_{d-1}$, from the Riesz representation of the sphere hitting probability,

$$
\frac{\Gamma\left(\frac{d}{2}\right) \Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right) \Gamma\left(\frac{\alpha}{2}\right)}=\int_{\mathbb{S}_{d-1}}\left|z^{*}-y^{*}\right|^{\alpha-d} \sigma_{1}\left(\mathrm{~d} z^{*}\right)
$$

we are going to manipulate this identity using sphere inversion to solve the fixed point equation first assuming that $|x|>1$
\Rightarrow Apply the sphere inversion with respect to the sphere $\mathbb{S}_{d-1}\left(x,\left(|x|^{2}-1\right)^{1 / 2}\right)$ remembering that this transformation maps \mathbb{S}_{d-1} to itself and using

$$
\begin{gathered}
\frac{1}{\left|z^{*}-x\right|^{d-1}} \sigma_{1}\left(\mathrm{~d} z^{*}\right)=\frac{1}{|z-x|^{d-1}} \sigma_{1}(\mathrm{~d} z) \\
\left(|x|^{2}-1\right)=\left|z^{*}-x\right||z-x| \quad \text { and } \quad\left|z^{*}-y^{*}\right|=\frac{\left(|x|^{2}-1\right)|z-y|}{|z-x||y-x|}
\end{gathered}
$$

- We have

$$
\begin{aligned}
\frac{\Gamma\left(\frac{d}{2}\right) \Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right) \Gamma\left(\frac{\alpha}{2}\right)} & =\int_{\mathbb{S}_{d-1}}\left|z^{*}-x\right|^{d-1}\left|z^{*}-y^{*}\right|^{\alpha-d} \frac{\sigma_{1}\left(\mathrm{~d} z^{*}\right)}{\left|z^{*}-x\right|^{d-1}} \\
& =\frac{\left(|x|^{2}-1\right)^{\alpha-1}}{|y-x|^{\alpha-d}} \int_{\mathbb{S}_{d-1}} \frac{|z-y|^{\alpha-d}}{|z-x|^{\alpha+d-2}} \sigma_{1}(\mathrm{~d} z)
\end{aligned}
$$

\Rightarrow For the case $|x|<1$, use Riesz-Bogdan-Żak theorem again! (See exercises).

§12. Spherical entrance/exit distribution

BLUMENTHAL-GETOOR-RAY EXIT / ENTRANCE DISTRIBUTION

Theorem

Define the function

$$
g(x, y)=\pi^{-(d / 2+1)} \Gamma(d / 2) \sin (\pi \alpha / 2) \frac{\left|1-|x|^{2}\right|^{\alpha / 2}}{\left|1-|y|^{2}\right|^{\alpha / 2}}|x-y|^{-d}
$$

for $x, y \in \mathbb{R}^{d} \backslash \mathbb{S}_{d-1}$. Let

$$
\tau^{\oplus}:=\inf \left\{t>0:\left|X_{t}\right|<1\right\} \text { and } \tau_{a}^{\ominus}:=\inf \left\{t>0:\left|X_{t}\right|>1\right\}
$$

(i) Suppose that $|x|<1$, then

$$
\mathbb{P}_{x}\left(X_{\tau \ominus} \in \mathrm{d} y\right)=g(x, y) \mathrm{d} y, \quad|y| \geq 1
$$

(ii) Suppose that $|x|>1$, then

$$
\mathbb{P}_{x}\left(X_{\tau} \oplus \in \mathrm{d} y, \tau^{\oplus}<\infty\right)=g(x, y) \mathrm{d} y, \quad|y| \leq 1
$$

Proof of B-G-R entrance/exit distribution (i)

- Appealing again to the potential density and the strong Markov property, it suffices to find a solution to

$$
|x-y|^{\alpha-d}=\int_{|z| \geq 1}|z-y|^{\alpha-d} \mu(\mathrm{~d} z), \quad|y|>1>|x|,
$$

with a straightforward argument providing uniqueness.

Proof of B-G-R entrance/exit distribution (i)

- Appealing again to the potential density and the strong Markov property, it suffices to find a solution to

$$
|x-y|^{\alpha-d}=\int_{|z| \geq 1}|z-y|^{\alpha-d} \mu(\mathrm{~d} z), \quad|y|>1>|x|
$$

with a straightforward argument providing uniqueness.

- The proof is complete as soon as we can verify that

$$
|x-y|^{\alpha-d}=c_{\alpha, d} \int_{|z| \geq 1}|z-y|^{\alpha-d} \frac{\left|1-|x|^{2}\right|^{\alpha / 2}}{\left|1-|z|^{2}\right|^{\alpha / 2}}|x-z|^{-d} \mathrm{~d} z
$$

for $|y|>1>|x|$, where

$$
c_{\alpha, d}=\pi^{-(1+d / 2)} \Gamma(d / 2) \sin (\pi \alpha / 2)
$$

Proof of B-G-R entrance/exit distribution (i)

- Transform $z \mapsto z^{\diamond}$ (sphere inversion with reflection) through the sphere $\mathbb{S}_{d-1}\left(x,\left(1-|x|^{2}\right)^{1 / 2}\right)$, noting in particular that

$$
\left|z^{\diamond}-y^{\diamond}\right|=\left(1-|x|^{2}\right) \frac{|z-y|}{|z-x||y-x|} \text { and }|z|^{2}-1=\frac{|z-x|^{2}}{1-|x|^{2}}\left(1-\left|z^{\diamond}\right|^{2}\right)
$$

and

$$
\mathrm{d} z^{\diamond}=\left(1-|x|^{2}\right)^{d}|z-x|^{-2 d} \mathrm{~d} z, \quad z \in \mathbb{R}^{d} .
$$

Proof of B-G-R entrance/exit distribution (i)

- Transform $z \mapsto z^{\diamond}$ (sphere inversion with reflection) through the sphere $\mathbb{S}_{d-1}\left(x,\left(1-|x|^{2}\right)^{1 / 2}\right)$, noting in particular that

$$
\left|z^{\diamond}-y^{\diamond}\right|=\left(1-|x|^{2}\right) \frac{|z-y|}{|z-x||y-x|} \text { and }|z|^{2}-1=\frac{|z-x|^{2}}{1-|x|^{2}}\left(1-\left|z^{\diamond}\right|^{2}\right)
$$

and

$$
\mathrm{d} z^{\diamond}=\left(1-|x|^{2}\right)^{d}|z-x|^{-2 d} \mathrm{~d} z, \quad z \in \mathbb{R}^{d} .
$$

\Rightarrow For $|x|<1<|y|$,

$$
\int_{|z| \geq 1}|z-y|^{\alpha-d} \frac{\left|1-|x|^{2}\right|^{\alpha / 2}}{\left|1-|z|^{2}\right|^{\alpha / 2}}|x-z|^{-d} \mathrm{~d} z=|y-x|^{\alpha-d} \int_{\left|z^{\diamond}\right| \leq 1} \frac{\left|z^{\diamond}-y^{\diamond}\right|^{\alpha-d}}{\left|1-\left|z^{\diamond}\right|^{2}\right|^{\alpha / 2}} \mathrm{~d} z^{\diamond}
$$

Proof of B-G-R Entrance / exit distribution (i)

- Transform $z \mapsto z^{\diamond}$ (sphere inversion with reflection) through the sphere $\mathbb{S}_{d-1}\left(x,\left(1-|x|^{2}\right)^{1 / 2}\right)$, noting in particular that

$$
\left|z^{\diamond}-y^{\diamond}\right|=\left(1-|x|^{2}\right) \frac{|z-y|}{|z-x||y-x|} \text { and }|z|^{2}-1=\frac{|z-x|^{2}}{1-|x|^{2}}\left(1-\left|z^{\diamond}\right|^{2}\right)
$$

and

$$
\mathrm{d} z^{\diamond}=\left(1-|x|^{2}\right)^{d}|z-x|^{-2 d} \mathrm{~d} z, \quad z \in \mathbb{R}^{d} .
$$

\Rightarrow For $|x|<1<|y|$,

$$
\int_{|z| \geq 1}|z-y|^{\alpha-d} \frac{\left|1-|x|^{2}\right|^{\alpha / 2}}{\left|1-|z|^{2}\right|^{\alpha / 2}}|x-z|^{-d} \mathrm{~d} z=|y-x|^{\alpha-d} \int_{\left|z^{\diamond}\right| \leq 1} \frac{\left|z^{\diamond}-y^{\diamond}\right|^{\alpha-d}}{\left|1-\left|z^{\diamond}\right|^{2}\right|^{\alpha / 2}} \mathrm{~d} z^{\diamond} .
$$

- Now perform similar transformation $z^{\diamond} \mapsto w$ (inversion with reflection), albeit through the sphere $\mathbb{S}_{d-1}\left(y^{\diamond},\left(1-\left|y^{\diamond}\right|^{2}\right)^{1 / 2}\right)$.

$$
|y-x|^{\alpha-d} \int_{\left|z^{\diamond}\right| \leq 1} \frac{\left|z^{\diamond}-y^{\diamond}\right|^{\alpha-d}}{\left|1-\left|z^{\diamond}\right|^{2}\right|^{\alpha / 2}} \mathrm{~d} z^{\diamond}=|y-x|^{\alpha-d} \int_{|w| \geq 1} \frac{\left|1-\left|y^{\diamond}\right|^{2}\right|^{\alpha / 2}}{\left|1-|w|^{2}\right|^{\alpha / 2}}\left|w-y^{\diamond}\right|^{-d} \mathrm{~d} w .
$$

Proof of B-G-R entrance/exit distribution (i)

Thus far:

$$
\int_{|z| \geq 1}|z-y|^{\alpha-d} \frac{\left|1-|x|^{2}\right|^{\alpha / 2}}{\left|1-|z|^{2}\right|^{\alpha / 2}}|x-z|^{-d} \mathrm{~d} z=|y-x|^{\alpha-d} \int_{|w| \geq 1} \frac{\left|1-\left|y^{\diamond}\right|^{2}\right|^{\alpha / 2}}{\left|1-|w|^{2}\right|^{\alpha / 2}}\left|w-y^{\diamond}\right|^{-d} \mathrm{~d} w .
$$

- Taking the integral in red and decomposition into generalised spherical polar coordinates

$$
\int_{|v| \geq 1} \frac{1}{\left|1-|w|^{2}\right|^{\alpha / 2}}\left|w-y^{\diamond}\right|^{-d} \mathrm{~d} w=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)} \int_{1}^{\infty} \frac{r^{d-1} \mathrm{~d} r}{\left|1-r^{2}\right|^{\alpha / 2}} \int_{\mathbb{S}_{d-1}(0, r)}\left|z-y^{\diamond}\right|^{-d} \sigma_{r}(\mathrm{~d} z)
$$

PROOF OF B-G-R ENTRANCE / EXIT DISTRIBUTION (I)

Thus far:
$\int_{|z| \geq 1}|z-y|^{\alpha-d} \frac{\left|1-|x|^{2}\right|^{\alpha / 2}}{\left|1-|z|^{2}\right|^{\alpha / 2}}|x-z|^{-d} \mathrm{~d} z=|y-x|^{\alpha-d} \int_{|w| \geq 1} \frac{\left|1-\left|y^{\diamond}\right|^{2}\right|^{\alpha / 2}}{\left|1-|w|^{2}\right|^{\alpha / 2}}\left|w-y^{\diamond}\right|^{-d} \mathrm{~d} w$.

- Taking the integral in red and decomposition into generalised spherical polar coordinates

$$
\int_{|v| \geq 1} \frac{1}{\left|1-|w|^{2}\right|^{\alpha / 2}}\left|w-y^{\diamond}\right|^{-d} \mathrm{~d} w=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)} \int_{1}^{\infty} \frac{r^{d-1} \mathrm{~d} r}{\left|1-r^{2}\right|^{\alpha / 2}} \int_{\mathbb{S}_{d-1}(0, r)}\left|z-y^{\diamond}\right|^{-d} \sigma_{r}(\mathrm{~d} z)
$$

P Poisson's formula (the probability that a Brownian motion hits a sphere of radius $r>0$) states that

$$
\int_{\mathbb{S}_{d-1}(0, r)} \frac{r^{d-2}\left(r^{2}-\left|y^{\diamond}\right|^{2}\right)}{\left|z-y^{\diamond}\right|^{d}} \sigma_{r}(\mathrm{~d} z)=1, \quad\left|y^{\diamond}\right|<1<r .
$$

gives us

$$
\begin{aligned}
\int_{|v| \geq 1} \frac{1}{\left|1-|w|^{2}\right|^{\alpha / 2}}\left|w-y^{\diamond}\right|^{-d} \mathrm{~d} w & =\frac{\pi^{d / 2}}{\Gamma(d / 2)} \int_{1}^{\infty} \frac{2 r}{\left(r^{2}-1\right)^{\alpha / 2}\left(r^{2}-\left|y^{\diamond}\right|^{2}\right)} \mathrm{d} r \\
& =\frac{\pi}{\sin (\alpha \pi / 2)} \frac{1}{\left(1-\left|y^{\diamond}\right|^{2}\right)^{\alpha / 2}}
\end{aligned}
$$

- Plugging everything back in gives the result for $|x|<1$.

Exercises Set 2

EXERCISES

1. Use the fact that the radial part of a d-dimensional $(d \geq 2)$ isotropic stable process has MAP (ξ, Θ), for which the first component is a Lévy process with characteristic exponent given by

$$
\Psi(z)=2^{\alpha} \frac{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+\alpha)\right)}{\Gamma\left(-\frac{1}{2} \mathrm{i} z\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d)\right)}{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d-\alpha)\right)}, \quad z \in \mathbb{R} .
$$

to deduce the following facts:
\downarrow Irrespective of its point of issue, we have $\lim _{t \rightarrow \infty}\left|X_{t}\right|=\infty$ almost surely.

ExERCISES

1. Use the fact that the radial part of a d-dimensional $(d \geq 2)$ isotropic stable process has MAP (ξ, Θ), for which the first component is a Lévy process with characteristic exponent given by

$$
\Psi(z)=2^{\alpha} \frac{\Gamma\left(\frac{1}{2}(-\mathrm{i} z+\alpha)\right)}{\Gamma\left(-\frac{1}{2} \mathrm{i} z\right)} \frac{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d)\right)}{\Gamma\left(\frac{1}{2}(\mathrm{i} z+d-\alpha)\right)}, \quad z \in \mathbb{R} .
$$

to deduce the following facts:

- Irrespective of its point of issue, we have $\lim _{t \rightarrow \infty}\left|X_{t}\right|=\infty$ almost surely.
\Rightarrow By considering the roots of Ψ show that

$$
\exp \left((\alpha-d) \xi_{t}\right), \quad t \geq 0
$$

is a martingale.

- Deduce that

$$
\left|X_{t}\right|^{\alpha-d}, \quad t \geq 0,
$$

is a martingale.
2. Remaining in d-dimensions $(d \geq 2)$, recalling that

$$
\left.\frac{\mathrm{d} \mathbb{P}_{x}^{\circ}}{\mathrm{d} \mathbb{P}_{x}}\right|_{\mathcal{F}_{t}}=\frac{\left|X_{t}\right|^{\alpha-d}}{|x|^{\alpha-d}}, \quad t \geq 0, x \neq 0
$$

show that under \mathbb{P}°, X is absorbed continuously at the origin in an almost surely finite time.

EXERCISES

3. Recall the following theorem

Theorem

Define the function

$$
g(x, y)=\pi^{-(d / 2+1)} \Gamma(d / 2) \sin (\pi \alpha / 2) \frac{\left|1-|x|^{2}\right|^{\alpha / 2}}{\left|1-|y|^{2}\right|^{\alpha / 2}}|x-y|^{-d}
$$

for $x, y \in \mathbb{R}^{d} \backslash \mathbb{S}_{d-1}$. Let

$$
\tau^{\oplus}:=\inf \left\{t>0:\left|X_{t}\right|<1\right\} \text { and } \tau_{a}^{\ominus}:=\inf \left\{t>0:\left|X_{t}\right|>1\right\}
$$

(i) Suppose that $|x|<1$, then

$$
\mathbb{P}_{x}\left(X_{\tau \ominus} \in \mathrm{d} y\right)=g(x, y) \mathrm{d} y, \quad|y| \geq 1
$$

(ii) Suppose that $|x|>1$, then

$$
\mathbb{P}_{x}\left(X_{\tau \oplus} \in \mathrm{d} y, \tau^{\oplus}<\infty\right)=g(x, y) \mathrm{d} y, \quad|y| \leq 1
$$

Prove (ii) (i.e. $|x|>1$) from the identity in (i) (i.e. $|x|<1$).

References

- L. E. Blumenson. A Derivation of n-Dimensional Spherical Coordinates. The American Mathematical Monthly, Vol. 67, No. 1 (1960), pp. 63-66
- K. Bogdan and T. Żak. On Kelvin transformation. J. Theoret. Probab. 19 (1), 89-120 (2006).
- J. Bretagnolle. Résultats de Kesten sur les processus à accroissements indépendants. In Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969-1970), pages 21-36. Lecture Notes in Math., Vol. 191. Springer, Berlin (1971).
- M. E. Caballero, J. C. Pardo and J. L. Pérez. Explicit identities for Lévy processes associated to symmetric stable processes. Bernoulli 17 (1), 34-59 (2011).
- H. Kesten. Hitting probabilities of single points for processes with stationary independent increments. Memoirs of the American Mathematical Society, No. 93. American Mathematical Society, Providence, R.I. (1969).
- A. E.. Kyprianou. Stable processes, self-similarity and the unit ball ALEA, Lat. Am. J. Probab. Math. Stat. (2018) 15, 617-690.
- A. E.. Kyprianou and J. C. Pardo. Stable processes, self-similarity and the unit ball Stable Lévy processes via Lamperti-type representations (2019) Cambridge University Press.
- B. Maisonneuve. Exit systems. Ann. Probability, 3(3):399-411, 1975.
- S. C. Port. The first hitting distribution of a sphere for symmetric stable processes. Trans. Amer. Math. Soc. 135, 115-125 (1969).

