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Summary

Solving optimal stopping problems driven by Lévy processes has been a challenging

task and has found many applications in modern theory of mathematical finance. For

example situations in which optimal stopping problems typically arise include the

problems of finding the arbitrage-free price of the American put (call) option and

determining an optimal bankruptcy level in the problem of endogenous default.

The main concern in pricing the American put (call) option lies in finding the

critical value of the stock price process below (above) which the option is exercised.

In the case of endogenous default, the problem mainly deals with finding an optimal

bankruptcy level of a firm which keeps a constant profile of debt and chooses its

default level endogenously, to maximize the equity value. In the context of the theory

of optimal stopping, the arbitrage-free price of the American put (call) option and the

equity value of the defaultable firm correspond to the value function of an optimal

stopping problem while the critical value of the stock price process and the optimal

bankruptcy level correspond to the optimal stopping boundary.

In general, optimal stopping problems are two-dimensional in the sense that they

consist of finding the value function and the optimal boundary simultaneously; that

is to say that the value function can be seen as a function of an unknown stopping

boundary. Thus, from an analytical point of view, solving the problem is difficult.

A major technique that has been widely used in the theory of optimal stopping

problems driven by diffusion processes is the free boundary formulation for the value

function and the optimal boundary. The free boundary formulation consists primarily

of a partial differential equation and (among other boundary conditions) the contin-

uous and smooth pasting conditions used to determine the unknown boundary and

specify the value function. The first condition requires the value function to be con-

tinuous at the boundary while the second condition imposes a C1 smoothness of the

value function at the boundary. Depending on the nature of the problem and the

sample paths of the Lévy process, the smooth pasting condition may break down.

As will be shown in this thesis, this phenomenon can happen to be the case when

the Lévy process has paths of bounded variation. As a result, for this type of Lévy

processes, the continuous pasting condition appears to be the only criterion for choos-

ing the boundary. Thus, a better understanding of the appropriate choice of pasting

conditions to determine the boundary can play an important role in the theory.
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Much of this thesis is concerned with solving optimal stopping problems driven

by Lévy processes in a general setting. The aim is to propose a framework by which

semi-explicit solutions can be obtained. Using such solutions, we give sufficient and

necessary conditions for the continuous and smooth pasting conditions to occur in the

considered problem. In this thesis we give examples of different cases.

For finite expiration date, we focus on the American put option problem where

the evolution of the stock price is driven by a bounded variation Lévy process. The

problem is solved by using a change of variable formula with local time on curves for

bounded variation Lévy processes. Combining this with Itô-Doob-Meyer decomposi-

tion of the value process of the American put option problem into martingale and

potential processes, we show that the optimal stopping boundary can be character-

ized as a solution to a nonlinear integral equation. Taking account of the continuous

pasting condition, we show using the change of variable formula that such integral

equation admits, under some conditions, a unique solution for the optimal boundary.

By the uniqueness of such solution, we show that the value function of the American

put option problem and the optimal stopping boundary represent the unique pair

solution to a free boundary problem of parabolic integro-differential type.

In the case of infinite maturity, we give an optimal solution to a perpetual optimal

stopping problem for a general class of payoff functions under Lévy processes. The

solution is obtained by reducing the stopping problem into an averaging problem.

Using solution to the latter problem, we obtain using the Wiener-Hopf factorization

a fluctuation identity of Lévy processes. This fluctuation identity relates the solution

of the averaging problem with the expected value of discounted payoff function up to a

first passage time. Based on the identity, we show that if the solution to the averaging

problem has a certain monotonicity property then an optimal solution to the stopping

problem can be described in terms of such a monotone function, and the boundary

is given by a level at which the function changes its sign. Using such solution, we are

able to show that the smooth pasting condition is satisfied if and only if the optimal

stopping boundary is regular for interior of the stopping region for the Lévy process.

A number of problems are studied in detail, in particular for polynomial payoff and

the arbitrage-free pricing of the American put and call options.

For the problem of endogenous default, we show that within a particular class of

models, the issue of choosing an optimal bankruptcy level can be dealt with analyti-

cally and numerically when the underlying source of randomness for the value of the

firm’s asset is replaced by a general Lévy process with no positive jumps. By working

with the latter process, we bring to light a new phenomenon, namely that, depending

on the nature of the small jumps, the optimal bankruptcy level may be determined

by a continuous pasting condition as opposed to the usual smooth pasting condition.

Moreover, we are able to prove the optimality of the bankruptcy level according to

the appropriate choice of pasting conditions.

Most of the main results presented in this thesis are verified by means of numerical

examples for Lévy processes having one-sided jumps.
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6.7 The shape of the equity curves VB 7→ E(V ;VB) for a fixed value V of the
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of α− stable Lévy processes with indexes α = 2 and α = 1.75. . . . . . . . 121

7.5 The shape of the scale functionWΦ(q)(x) of tempered stable Lévy processes
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Px law of the Lévy process started at x ∈ R

P
ν Esscher transform defined by dP

ν

dP

∣∣
Ft

= eνXt

E(eνXt )
for t ≥ 0

E, Ex expectation operators associated with P, Px

Eν , Eν
x expectation operators associated with Pν , Pν

x

d drift coefficient of a bounded variation Lévy process
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Π Lévy measure of the jump process ∆X

Π
−

, Π
+

lower, upper tails of the Lévy measure
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Chapter 1

Introduction and Preliminaries

1.1 Motivation

The American put option problem

The valuation of contingent claims has been a widely known topic in the theory

of modern finance. Typical claims such as call and put options have been playing

significant role not only in the theory but also in the real financial markets. A put

(call) option is the “right” but not the obligation to sell (buy) a certain asset at a

specified price until or at a predetermined maturity date in the future. If the option

specifies that the option holder may exercise this right only at the given future date,

the claim is termed European.

The pricing of European puts and calls on stocks has an interesting history, dating

back to the work of Bachelier [9]. In 1900 Bachelier was the first to use a linear

Brownian motion to model the movement of stock price fluctuations. The theory

reaches a milestone with the celebrated papers of Black and Scholes [18] and Merton

[83] in which the principles of hedging and arbitrage-free pricing were introduced for

the first time. These idea were formalized and extended further by Harrison and Kreps

[56] and Harrison and Pliska [57] by applying the fundamental concepts of stochastic

integrals and the Girsanov theorem in stochastic calculus. Based on the important

principle of hedging, Black and Scholes [18] derived the now famous formula for the

value of the European call option, which bears their name and which was extended by

Merton [83] in a variety of very significant ways. For this foundational work, Robert

Merton and Myron Scholes were awarded the 1997 Nobel Prize in economics.

It is worth noting that most of the traded options, however, are of American

style (or in the sequel, American options)-that is, the holder has the right to exercise

an option at any instant before the option’s expiry. It is the added feature of early

exercise which makes the American options more interesting and complex to evaluate.

According to the theory of modern finance1, the arbitrage-free price of the American

1See for instance Karatzas and Shreve [66] and Myneni [90] for extensive review of the theory
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1. Introduction and Preliminaries

put option with strike price K coincides with the value function V of an optimal

stopping problem with payoff function G(x) = (K − x)+. That is to say that the

arbitrage-free price of the American put option is given by

V (t, x) = sup
0≤τ≤t

E

(
e−rτ

(
K − Sτ (x)

)+
)
, (1.1.1)

for all (t, x) ∈ [0, T ]× R+, where T is the maturity of the option and τ is a stopping

time of the stock price process S the evolution of which is given by exponential of a

linear Brownian motion

St(x) = xe(r+ω)t+σBt , (1.1.2)

taken under a chosen martingale measure P (with associated expectation operator E)

under which S0 = x. The parameter ω is chosen to be − 1
2σ

2 so that the discounted

stock price process e−rtSt(x) is P-martingale, implying that

E

(
e−rtSt(x)

)
= x.

Although the American put option problem was treated as an optimal stopping

problem, a financial justification using hedging arguments was given only later by

Bensoussan [12] and Karatzas [64], [65]. The optimal stopping time in the American

put option problem (1.1.1) is the first time when the stock price process S goes below

a time-dependent boundary b. When the maturity time T of the option is finite, the

problem (1.1.1) is essentially two-dimensional in the sense that it consists of finding the

value function V and the optimal stopping boundary b simultaneously; that is to say

that the value function can be seen as a function of the unknown stopping boundary.

Therefore, from an analytical point of view, solving the problem is difficult.

The first and one of the most penetrating mathematical analysis of the prob-

lem (1.1.1) was due to McKean [82]. There the problem was transformed into a free

boundary problem for the value function V and the boundary b. Solving the free

boundary problem, McKean obtained the American option price explicitly in terms

of the boundary. McKean’s work was taken further by van Moerbeke [86]. Motivated

by the physical problem of the condition of heat balance (i.e., the law of conservation

of energy), van Moerbeke [86] introduced a so-called the smooth pasting condition to

determine the boundary and specify the value function. This condition dictates that

the value and the payoff functions must join smoothly at the boundary.

The derivation of the smooth pasting condition for diffusion processes are given

by Grigelionis and Shiryaev [55], Shiryaev [113], Chernoff [30], McKean [82] and My-

neni [90] using Taylor approximation of the value function around the boundary and

by Bather [11] and van Moerbeke [86] using Taylor expansion of the payoff function

around the boundary plus the assumption that the boundary is regular2 for the inte-

rior of the stopping region for the underlying process. Since the value function is not

and methods of pricing American type options for diffusion processes.
2Starting at the boundary, the underlying process makes an immediate visit to the interior points

of the stopping region. See Definition 2.1.3 in Chapter 3.
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1.1. Motivation

known a priori, the approach of Bather [11] and van Moerbeke [86] is more satisfactory

than the others.

As an alternative to the Taylor expansion method, Peskir [98] introduced a prob-

abilistic approach to prove the smooth pasting condition. The main approach of the

proof is based on a change of variable formula with local time-space on curves which

he derived recently in [97]. This formula extends further the Itô-Tanaka formula for

convex functions (see for instance Revusz and Yor [106]). Using the change of variable

formula and the free boundary problem, Peskir [98] derived the smooth pasting con-

dition. (See also Peskir and Shiryaev [99] for more discussion on recent development

of local time-space calculus in the theory of optimal stopping.)

Based on the free boundary problem formulation of the optimal stopping problem

(1.1.1), with continuous and smooth pasting conditions in place, and combining with

the Itô-Doob-Meyer decomposition of the value function of the problem (1.1.1) into

martingale and potential processes, van Moerbeke [86], Myneni [90], El Karoui and

Karatzas [45], Jacka [62], Carr et al. [23], and later Peskir [98] showed that the optimal

stopping boundary can be characterized as a solution to a nonlinear integral equation.

Such an equation was already obtained earlier by Friedman [51] in 1959 for a one-

dimensional free boundary problem of ice melting. This nonlinear integral equation for

the optimal boundary is known as the Riesz decomposition for the value function of

the problem (1.1.1) and has a clear economical meaning to the early exercise premium

representation of the value function. We refer among others to Kim [67], Myneni [90]

and Carr et al. [23] and the literature therein for details.

The existence and local uniqueness of a solution to the nonlinear integral equation

for the boundary was proved by Friedman [51] and van Moerbeke [86] using the fixed

point theorem (contraction principle) first for a small time interval and extending it

to any interval of time using induction arguments. The result of applying the fixed

point theorem is that the nonlinear equation involves continuous differentiability of

the curve boundary, a condition that is needed to be proved a priori, and results in

a long computation and strong condition imposed on the boundary. In contrast to

the fixed point method, Jacka [62] and later Peskir [98] introduced a probabilistic

approach to prove the existence and uniqueness of a solution to the nonlinear integral

equation. The key ingredient of the proof is based on the smooth pasting condition

and the Itô-Doob-Meyer decomposition of the value function of the optimal stopping

problem (1.1.1). (Note that the Itô-Doob-Meyer decomposition underlies the basic

principle of the theory of optimal stopping developed earlier by Snell [115], Dynkin

[39] and Dynkin and Yushkevich [41].) However, the incorporation of the smooth

pasting condition in the proof was made clear by Peskir [98] using his change of

variable formula.
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Alternative modelling for underlying processes

Until now we have discussed exponential of a linear Brownian motion as the continuous

time model for the evolution of the stock price process (1.1.2). In recent years, there

has been a lot of interest in looking for alternative models for the evolution of the stock

price process which gives a better fit to the real data. Empirical study of financial

data reveals the fact that the distribution of the log-return of stock price exhibits

features which cannot be captured by the normal distribution such as heavy tails and

asymmetry. For the purpose of replicating more effectively these features, there has

been a general shift in the literature to modelling with exponential Lévy process as

an alternative to exponential of a linear Brownian motion.

A Lévy process is a stochastic process with stationary independent increments

whose paths are right-continuous and have left limits. Most recent examples of Lévy

processes used in modelling the evolution of the stock price process we refer among

others to the normal inverse Gaussian model of Bandorff-Nielsen [10], the hyperbolic

model of Eberlein and Keller [42], the variance gamma model of Madan and Seneta

[80], the CGMY model of Carr et al. [24], and tempered stable process first introduced

by Koponen [68] and extended further by Boyarchenko and Levendorski [21].

Working with a Lévy process leads to many intriguing mathematical issues which

need to be resolved to completely settle the problem of valuing American options. In

a market where the underlying dynamics for the stock price process is driven by the

exponential of a linear Brownian motion, as discussed before, the valuation is trans-

formed into a free boundary problem. The critical value (the stopping boundary) of

the stock price process is determined by imposing continuous and smooth pasting

conditions as optimality criterion for choosing the stopping boundary. However, by

allowing jumps in the sample paths of the underlying dynamics of the stock price pro-

cess, the smooth pasting may break down at the stopping boundary as the stock price

process may jump over the boundary. As a result, the continuous pasting condition

is perhaps the only criterion for determining the stopping boundary.

When maturity T is infinite and the underlying is a general Markov process, the

optimal stopping problem (1.1.1) could be solved without necessarily being trans-

formed into a free boundary problem and using the smooth pasting condition. The

solution can be obtained using probabilistic approach. This approach was first intro-

duced by Darling et al. [33] for random walks and was extended further using similar

arguments in [33] to continuous time among others by Mordecki [87], Asmussen et

al. [6], and Alili and Kyprianou [3]. Taking the result of Mordecki [87], it was shown

recently by Alili and Kyprianou [3] that the existence of the smooth pasting condi-

tion for the problem (1.1.1) is determined by the regularity of the sample paths of

the underlying process; for the problem considered there the smooth pasting occurs

if and only if 0 is regular for the lower half-line (−∞, 0) for the process itself.

However, the solution to a perpetual optimal stopping problem with a more general

payoff function was not discussed by the aforementioned authors. This problem was
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1.2. The main contribution of this thesis

addressed by Boyarchenko and Levendorski [21]. There they considered the problem of

solving perpetual optimal stopping for payoff functions with exponential growth. Their

approach is much more sophisticated in which potential theory of Lévy processes and

the theory of pseudo-differential operators are heavily used to solve the problem. See

for instance [20] for recent work in this direction. Working under a particular class of

Lévy processes with stable like characteristic exponent, Boyarchenko and Levendorski

[21] gave an integral test for the smooth pasting condition to occur.

1.2 The main contribution of this thesis

This section outlines the main contribution of this thesis to the theory of optimal

stopping problems driven by Lévy processes. The aim is to propose a framework by

which semi-explicit solutions can be obtained. The solutions are given for both finite

and infinite maturity and are obtained without using the continuous and smooth

pasting conditions. Using the semi-explicit solutions in the problems we consider, we

give sufficient and necessary conditions for the pasting conditions to be fulfilled.

The thesis consists of seven self-contained chapters. The content of the chapters

is outlined in what follows.

Chapter 1 This chapter overviews some past and recent developments in the

theory of optimal stopping and outlines some points that have not been discussed

in the literature. The missing gaps in the theory are explained in this chapter and

constitute the main source of motivation of the writing of this thesis.

Chapter 2 This chapter provides a brief introduction to Lévy processes and the

Wiener-Hopf factorization formula which underlies the fluctuation theory of Lévy

processes and forms one of the two main principles for solving an infinite horizon

optimal stopping problem under Lévy processes. We also discuss in this chapter some

important classes of Lévy processes for which the two factors of the Wiener-Hopf fac-

torization have explicit expressions. Among theses classes, we use spectrally negative

Lévy processes for the numerical computation performed in the last four chapters.

Chapter 3 In this chapter we establish a change of variable formula for ‘ripped’

time-space functions of Lévy processes of bounded variation at the cost of an addi-

tional integral with respect to local time-space in the formula. Roughly speaking, by a

ripped function, we mean here a time-space function which is C1,1 on either side of a

time dependent barrier and which may exhibit a discontinuity along the barrier itself.

Such functions have appeared in the theory of optimal stopping problems for Markov

processes of bounded variation (cf. Peskir and Shiryaev ([95], [96]), Chan ([26], [27]),

Avram et al. [7]. This result complements the recent work of Föllmer et al. [50], Eisen-

baum ([43], [44]) and Peskir ([97], [98]) and Elworthy et al. [46] in which generalized

versions of Itô’s formula were established with local time-space. Using the change of

variable formula, we address the finite maturity American put option problem where

5
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the evolution of the stock price process is driven by a bounded variation Lévy pro-

cess. Combining this with Itô-Doob-Meyer decomposition of the value process of the

American put option problem into martingale and potential processes, we show that

the optimal stopping boundary can be characterized as a solution to a nonlinear inte-

gral equation. Taking account of the continuous pasting condition, we show using the

change of variable formula that such integral equation admits, under some conditions,

an unique solution for the optimal boundary. By the uniqueness of such solution, we

show that the value function of the American put option problem and the optimal

stopping boundary represent an unique pair solution to a free boundary problem of

parabolic integro-differential type.

Chapter 4 This chapter discusses a relatively new optimal stopping problem

where the payoff is an integer power function. This problem was first introduced by

Novikov and Shiryaev [91] for random walks based on other similar examples given

by Darling et al [33]. We give the analogue of their results when the random walks

are replaced by Lévy processes. The main ingredient of solving this problem is central

to using Appell polynomials and fluctuation theory of Lévy processes.

Chapter 5 In this chapter, we generalize the recent work of Boyarchenko and

Levendorski [21] on a perpetual optimal stopping problem under Lévy processes. Un-

like their approach, we do not appeal to the theory of pseudo-differential operators to

solve the problem. We work with a more general class of Lévy processes and we allow

for a more general class of payoffs. The solution is obtained by reducing the problem

into an averaging problem from which we obtain, using the Wiener-Hopf factoriza-

tion, a fluctuation identity for overshoots of Lévy processes. This fluctuation identity

relates the solution of the averaging problem with the expected value of discounted

payoff function up to a first passage time and is the key element in obtaining the value

function and the optimal boundary of the stopping problem. Using our approach, we

are able to verify the smooth pasting condition analytically and to reproduce the

special results of those discussed among others by Darling et al. [33], Mordecki [87],

Boyarchenko and Levendorskii [21], Alili and Kyprianou [3], Novikov and Shiryaev

[91], and Kyprianou and Surya [73] (also presented in Chapter 4). Furthermore, as-

suming that the moment generating function of the underlying Lévy process exists on

an open set containing zero, we obtain a lower and upper bounds for the arbitrage-free

price of the finite maturity American put option in terms of the value function of the

perpetual American put option problem.

Chapter 6 In this chapter we consider an endogenous bankruptcy problem. This

problem is closely related to a perpetual type optimal stopping problem which pri-

marily deals with finding an optimal bankruptcy level VB of a firm which keeps a

constant level of its debt and chooses its bankruptcy level endogenously so that the

value of its equity is maximized. The firm declares bankruptcy when the value of its

asset goes below the level VB . This problem has been investigated by Leland and

Leland and Toft in a sequence of their papers in [77] and [76], respectively. The work
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of Leland and Toft was extended further from diffusion to a Lévy process which is

the independent sum of a linear Brownian motion and a compound Poisson process

with one-sided exponential jumps by Hilberink and Rogers [58]. As it was suggested

by Leland and Toft [76] and later by Hilberink and Rogers [58] that, subject to the

limited liability constraint3 of the equity value, the smooth pasting condition is used

for optimality criterion for choosing the bankruptcy level VB. In other recent work,

Chen and Kou [29] generalized the works of Leland and Toft [76] and Hilberink and

Rogers [58] by adding a two-sided exponential jumps compound Poisson process to

a linear Brownian motion. They succeeded in proving that the optimal bankruptcy

level is obtained by using the smooth pasting condition for the case considered there.

The main purpose of this chapter is threefold. Firstly to revisit the previous works

of Leland and Toft [76] and Hilberink and Rogers [58] and show that the issue of

choosing an optimal endogenous bankruptcy level can be dealt with analytically and

numerically when the underlying source of randomness for the value of the firm’s asset

is replaced by a general Lévy process with no positive jumps. Secondly, by working

with the latter class of Lévy processes we bring to light a new phenomenon, namely

that, depending on the nature of the small jumps, the optimal default level may

be determined by a principle of continuous pasting as opposed to the usual smooth

pasting. Thirdly, we are able to prove the optimality of the default level according to

the appropriate choice of pasting. This improves on the results of Hilberink and Rogers

[58] who were only able to give a numerical justification for the case of smooth pasting.

Our calculations are greatly eased by the recent perspective on fluctuation theory of

spectrally negative Lévy processes in which many new identities are expressed in

terms of the so called scale functions. To finish this chapter, we study analytically

and numerically the behaviour of the term structure of credit spreads for very short

maturity bonds when we allow the firm’s assets to be driven by a general Lévy process

with no positive jumps. The study reveals the fact that the credit spreads have strictly

positive values, a feature typically observed in the financial market.

Chapter 7 In this chapter we discuss a robust numerical method to numerically

produce the q-scale function {W (q)(x) : q ≥ 0, x ∈ R} of a general spectrally negative

Lévy process (X,P). The method is based on the Esscher transform of measure Pν

under which X is taken and the scale function is determined. This change of measure

makes it possible for the scale function to be bounded and hence makes numerical

computation easier, fast and stable. Working under the new measure P
ν and using

the method of Abate and Whitt [1] and Choudhury et al. [31], we give a fast stable

numerical algorithm for the computation. The algorithm has been extensively used

to give numerical verification of the main results presented in this thesis.

3Equity must worth non-negative for all values V of the firm’s asset bigger than equal to the

bankruptcy level VB .
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1.3 Publication details

The material presented in this thesis has resulted in the following research papers.
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Séminaire de Probabilité XL, Lecture Notes in Mathematics, Springer-Verlag.

(ii) Kyprianou, A. E. and Surya, B. A. On the Novikov-Shiryaev optimal stop-

ping problems in continuous time. Appeared in Electronic Communications in

Probability, Vol. 10 (2005), 146-154.

(iii) Kyprianou, A. E. and Surya, B. A. Principles of smooth and continuous

fit in the determination of endogenous bankruptcy levels. To appear in Finance
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(iv) Surya, B. A. An approach for solving perpetual optimal stopping problems

driven by Lévy processes. To appear in Stochastics.

(v) Surya, B. A. Evaluating scale functions of spectrally negative Lévy pro-

cesses. Submitted for publication to Journal of Applied Probability.
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Chapter 2

A Brief Introduction to Lévy Processes

In this chapter, we present a brief introduction to Lévy processes which underlie the

main object of interest of the optimal stopping problems considered in this thesis.

We refer among others to Applebaum [5], Bertoin [13], Kyprianou [69], Protter

[105], and Sato [111] for a detailed account on Lévy processes.

2.1 Introduction

Definition 2.1.1 (Lévy process) Let P be a probability measure on probability space

(Ω,F). A process X = (Xt, t ≥ 0) defined on (Ω,F ,P) is said to be a Lévy process if

the paths of X are right continuous with left limits P-almost surely, for every s, t ≥ 0,

the increment Xt+s −Xt is independent of the process (Xu, 0 ≤ u ≤ t) and has the

same law as Xs. In particular, P(X0 = 0) = 1.

From now on, the law of the Lévy process started at x ∈ R will be denoted by Px.

For convenience we write P = P0 and we shall write Ex for the expectation operator

associated with Px and in the special case that x = 0 we write E.

The characteristic exponent of X is given by the well known Lévy-Khintchine

formula which shall be given by the following theorem (see for instance Theorem 1 in

Chapter I of Bertoin [13]).

Theorem 2.1.2 (Lévy-Khintchine formula) Suppose that µ ∈ R, σ ≥ 0 and Π is

a measure concentrated on R\{0} such that
∫ ∞

−∞(1 ∧ y2)Π(dy) <∞. From this triple

define for each θ ∈ R a continuous function Ψ : R → C given by

Ψ(θ) = iµθ +
σ2

2
θ2 +

∫ ∞

−∞

(
1 − eiθy + iθy1{|y|≤1}

)
Π(dy). (2.1.1)

Then there exists a unique probability measure P on Ω under which (Xt, t ≥ 0) is a

Lévy process with characteristic exponent Ψ, i.e.,

E
(
eiθXt

)
= e−tΨ(θ) for θ ∈ R and t ≥ 0. (2.1.2)
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2. A Brief Introduction to Lévy Processes

Moreover, the jump process of X, namely ∆X = (∆Xt, t ≥ 0), is a Poisson point

process with characteristic measure Π.

The measure Π is called the Lévy measure and the parameter σ the Gaussian

coefficient. The Lévy-Khintchine formula has a simpler expression when the sample

paths of the Lévy process have bounded variation on every compact time interval

almost surely. For short, we will then say that the Lévy process has bounded variation.

Specifically, a Lévy process has bounded variation if and only if σ = 0 and the Lévy

measure Π satisfies the integral test
∫ ∞

−∞
(1∧|y|)Π(dy) <∞. In that case, the mapping

λ 7→
∫ ∞

−∞ λx1{|y|<1}Π(dy) is a well-defined linear function and the characteristic

exponent Ψ can be re-expressed for each θ ∈ R as

Ψ(θ) = −idθ +

∫ ∞

−∞

(
1 − eiθy

)
Π(dy), (2.1.3)

for some d ∈ R which is known as the drift coefficient. Moreover, if ∆ = (∆t, t ≥ 0)

is a Poisson point process with characteristic measure Π, then the process

Xt = dt+
∑

0≤s≤t

∆s, for t ≥ 0,

is a Lévy process of bounded variation (recall that the series is absolutely convergent

almost surely if and only if the Lévy measure Π satisfies
∫ ∞

−∞(1∧ |y|)Π(dy) <∞, see

for instance Chapter I of Bertoin [13]) with characteristic exponent Ψ (2.1.3). It is

clear that a compound Poisson process has bounded variation and, conversely, a Lévy

process with bounded variation is a compound Poisson process if and only if its drift

coefficient d is null and its Lévy measure Π has finite mass.

For every rapidly decreasing function1 f , one can use the Lévy-Khintchine formula

to get the infinitesimal generator LX of the Lévy process X defined by

LXf(x) := lim
t↓0

t−1
(
Exf(Xt) − f(x)

)

= µ
df

dx
(x) +

1

2
σ2 d

2f

dx2
(x)+

∫ ∞

−∞

(
f(x+ y) − f(x) − y

df

dx
(x)1{|y|≤1}

)
Π(dy).

We refer to Section 4.1 in Skorohod [114] for the details of the calculations.

To finish this section, let us introduce the notion of regularity of a point for an open

or closed set O for a Lévy process. This notion becomes relevant to the discussions

on the smooth and continuous pasting conditions later in this thesis.

Definition 2.1.3 (Regularity of a point for a Lévy process) For a Lévy pro-

cess X , the point x ∈ R is said to be regular (respectively, irregular) for an open or

closed set O if

Px

(
τO = 0

)
= 1 (respectively, 0),

1We say a function f(x) is rapidly decreasing if there are constants MN such that |f(x)| ≤

MN |x|−N as x → ∞ for N = 1, 2, 3, · · · . See for example Gel’fand and Shilov [52] for more details.
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2.2. The Wiener-Hopf factorization

thanks to Blumenthal’s zero-one law, where the stopping time

τO = inf{t > 0 : Xt ∈ O}.

Intuitively speaking, x is regular for O if, when starting from x, the Lévy process hits

O immediately.

2.2 The Wiener-Hopf factorization

In this section we discuss the fundamental notion of the Wiener-Hopf factorization

in fluctuation theory of Lévy processes. The results presented in this section will be

used later in Chapters 4, 5 and 6. What we shall say in this section mainly refers to

the Chapters VI and 6 of the books of Bertoin [13] and Kyprianou [69], respectively.

To begin with, let us introduce a so-called the supremum and infimum processes

Xt = sup
0≤s≤t

Xs and Xt = inf
0≤s≤t

Xs.

We see that X and −X are two nonnegative increasing right-continuous processes,

which are adapted to the filtration Ft = σ(Xs, s ≤ t). It is well known (see Proposition

1 in Chapter VI of Bertoin [13]) that the reflected process at supremum X −X is a

Markov process in the filtration Ft. (Note thatX−X, the reflected process at infimum,

can also be viewed as the dual process −X reflected at its supremum.)

We denote by L = (L(t), t ≥ 0) a local time of the reflected process X − X

at zero and by L−1(t) = inf{s > 0 : L(s) > t} its right-continuous inverse also

known as the (ascending) ladder time process. Note that the range of the inverse local

time L−1 corresponds to the set of real times at which new maxima occur. Recalling

from Chapter IV of Bertoin [13] and Chapter 6 of Kyprianou [69], the support of the

Stieltjes measure dLt coincides with the closure of the zero set of the reflected process.

Next, let us introduce a ascending ladder height process H , using the inverse local

time to time-change the supremum process. The process H is defined by

H(t) = XL−1(t) if L−1(t) <∞, H(t) = ∞ otherwise. (2.2.1)

The pair (L−1, H) is known as the ascending ladder process. Analogously, the process

(L̂−1, Ĥ) constructed from the dual process −X is called the descending ladder pro-

cess. The law of the ladder process is characterized by the bivariate Laplace exponent

κ and κ̂ defined by

e−κ(α,β) = E

(
e−αL−1(1)−βH(1)

)
and e−bκ(α,β) = E

(
e−αbL−1(1)−β bH(1)

)

for α, β ≥ 0. It is therefore important to evaluate explicitly the quantities κ and κ̂ as

they play fundamental role in the fluctuation theory of Lévy processes.

The random variables of interest in fluctuation theory are the following. Let eq

be an independent exponentially distributed random time with parameter q ≥ 0. We
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2. A Brief Introduction to Lévy Processes

shall work with the convention that when q = 0, the random variable eq is understood

to be equal to ∞ with probability one. Next, we define by

Geq
= sup{t < eq : Xt = Xt} and G

eq
= sup{t < eq : Xt = Xt}

the last zero of the reflected processes before the exponential random time eq. Ac-

cording to Proposition VI.4 in Bertoin [13], it is known that, if X is not a compound

Poisson process, Geq
is actually the unique instant time t in the random interval [0, eq]

such that Xt = Xeq
or Xt− = Xeq

.

We move on now to introducing the fluctuation identity which provides many

results concerning the distributional decomposition of the excursions of any Lévy

process when sampled at an independent exponentially distributed random time.

Theorem 2.2.1 (The Wiener-Hopf factorization) 2 Suppose that X is any Lévy

process other than compound Poisson process.

(i) The pairs (Geq
, Xeq

) and (eq − Geq
, Xeq

− Xeq
) are independent and infinitely

divisible, yielding the factorization

E

(
eiϑeq+iθXeq

)
=

q

q − iϑ+ Ψ(θ)
= Ψ(−)

q (ϑ, θ).Ψ(+)
q (ϑ, θ), (2.2.2)

where ϑ, θ ∈ R,

Ψ(−)
q (ϑ, θ) = E

(
e

iϑG
eq

+iθX
eq

)
and Ψ(+)

q (ϑ, θ) = E

(
eiϑGeq +iθXeq

)
.

The pair Ψ
(−)
q (ϑ, θ) and Ψ

(+)
q (ϑ, θ) are called the Wiener-Hopf factors.

(ii) The Wiener-Hopf factors may themselves be identified in terms of the analytically

extended Laplace exponent κ(α, β) and κ̂(α, β) via the Laplace transforms,

E

(
e
−αG

eq
+βX

eq

)
=

κ̂(q, 0)

κ̂(q + α, β)
and E

(
e−αGeq−βXeq

)
=

κ(q, 0)

κ(q + α, β)

for every complex numbers α, β having positive real part.

(iii) The Laplace exponent κ(α, β) and κ̂(α, β) may also be identified in terms of the

law of X in the following way,

κ(α, β) = k exp
(∫ ∞

0

∫

(0,∞)

(
e−t − e−αt−βx

)
t−1

P(Xt ∈ dx)dt
)

(2.2.3)

and

κ̂(α, β) = k̂ exp
(∫ ∞

0

∫

(−∞,0)

(
e−t − e−αt+βx

)
t−1

P(Xt ∈ dx)dt
)
, (2.2.4)

where α, β ∈ R and k and k̂ are strictly positive constants.

2We refer to Theorem 6.16 of Chapter 6 of Kyprianou [69].
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(iv) By setting ϑ = 0 and taking limits as q tends to zero in (2.2.2), we obtain

k′Ψ(θ) = κ(0,−iθ)κ̂(0, iθ)

for some constants k′ > 0 (which may be taken equal to unity by a suitable

normalization of local time).

We conclude this section with an important result of Theorem 2.2.1. Recall that Ψ

is the characteristic exponent of X so that, for q > 0, q/(q+Ψ(θ)) is the characteristic

function of Xeq
. Theorem 2.2.1 yields the following remarkable fluctuation identity:

E
(
eiθXeq

)
=

q

q + Ψ(θ)
= Ψ(−)

q (θ)Ψ(+)
q (θ), (2.2.5)

for q > 0, where Ψ
(−)
q (θ) and Ψ

(+)
q (θ) are respectively the characteristic function of

the random variable X
eq

and Xeq
−X

eq
defined by

Ψ(−)
q (θ) = E

(
e

iθX
eq

)
, (2.2.6)

and

Ψ(+)
q (θ) = E

(
e

iθ(Xeq−X
eq

))
= E

(
eiθXeq

)
. (2.2.7)

Notice that Ψ
(−)
q (θ) (respectively, Ψ

(+)
q (θ)) admits the analytic continuation into the

lower half-plane Im(θ) < 0 (respectively, upper half-plane Im(θ) > 0), and does not

vanish there. We refer among others to Applebaum [5], Bertoin [13], Kyprianou [69],

and Sato [111] for more details.

2.3 Some important classes of Lévy processes

In the next section, we outline some important class of Lévy processes for which the

two factors Ψ
(−)
q (λ) and Ψ

(+)
q (λ) of the Wiener-Hopf factorization formula (2.2.5)

have explicit expressions. These class of Lévy processes can be found among others in

Bertoin [13], [15], Kyprianou [69], Mordecki [87], [88], [89], and Asmussen et al. [6].

Working under these classes of Lévy processes, numerical computation for the

problem discussed in Chapters 4, 5 and 6 can be performed quite easily.

2.3.1 Lévy processes with no positive jumps

This class of processes has a great interest from a practical point of view, because they

are processes for which fluctuation theory takes the nicest form and can be developed

explicitly to its full extent. The degenerate case when X is either the negative of

a subordinator or a deterministic drift has no interest and will not be discussed

throughout. What we shall say here is based on Chapter VII in Bertoin [13].

Due to the absence of the positive jumps, the characteristic function θ 7→ E(eiθXt)

(θ ∈ R) can be extended to define an analytic function in the complex lower half-plane

13



2. A Brief Introduction to Lévy Processes

(Im(θ) ≤ 0). Because of the fact that the Lévy measure vanishes on the positive half-

line, the Lévy-Khintchine formula shows that the characteristic exponent Ψ(θ) is well

defined and analytic on (Im(θ) ≤ 0). Hence, it is therefore sensible to define

κ(θ) = −Ψ(−iθ) = −µθ +
1

2
σ2θ2 +

∫

(−∞,0)

(
eθy − 1 − θy1{y>−1}

)
Π(dy),

and, hence, we see that the identity E(exp{θXt}) = exp{tκ(θ)} holds whenever

Re(θ) ≥ 0. The function κ : [0,∞) → (−∞,∞) also called as the Laplace expo-

nent of X is zero at the origin and is strictly convex with limθ↑∞ κ(θ) = ∞. Next we

denote by Φ(α) the largest solution of the equation

κ(p) = α for all α ≥ 0.

Note that due to the convexity of κ, there exists at most two solutions for a given

α and precisely one root when α > 0. A special feature of spectrally negative Lévy

processes is that Xeq
is known to have exponential law with parameter Φ(q), namely

P
(
Xeq

∈ dx
)

= Φ(q)e−Φ(q)xdx, (2.3.1)

whose Laplace transform is given by

κ+
q (λ) = E

(
e−λXeq

)
=

∫ ∞

0

e−λx
P
(
Xeq

∈ dx
)

=
Φ(q)

λ+ Φ(q)
, (2.3.2)

for all λ ≥ 0 which in turn by the Wiener-Hopf factorization (2.2.5) yields

κ−q (λ) = E
(
e

λX
eq

)
=

∫ ∞

0

e−λx
P
(
−X

eq
∈ dx

)
=

q

Φ(q)

(λ− Φ(q))

(κ(λ) − q)
. (2.3.3)

In principle, there is no difficulty to invert the above equation numerically. How-

ever, by introducing a special class of functions known as scale functions, the definition

of which is given below, the measure P
(
−X

eq
∈ dx

)
can be recovered theoretically

in terms of such functions.

Definition 2.3.1 (q-Scale function) For a given spectrally negative Lévy process

X with Laplace exponent κ, there exists for every q ≥ 0 a right-continuous function

W (q) : [0,∞) → [0,∞), called the q-scale function, with Laplace transform given by
∫ ∞

0

e−λxW (q)(x)dx =
1

κ(λ) − q
, for λ > Φ(q), (2.3.4)

where Φ(q) was defined previously. We shall write for short W (0) = W .

Following the definition of W (q) introduced above and by applying Laplace inver-

sion method to (2.3.3), the measure of the random variable −X
eq

is given by

P
(
−X

eq
∈ dx

)
=

q

Φ(q)
dW (q)(x) − qW (q)(x)dx. (2.3.5)

14



2.3. Some important classes of Lévy processes

If the Lévy measure Π has no atoms, it is known that the q-scale function W (q) is

at least C1 smooth, see for instance Lambert [75] and Chan and Kyprianou [28] for

more details. For some spectrally negative Lévy processes, the q-scale functions W (q)

are available in explicit form. In general, numerical methods are required to compute

W (q) from the equation (2.3.4). Further discussion on the property of scale functions

and their numerical computation are given in Chapters 6 and 7, respectively.

2.3.2 Lévy processes with mixed exponential jumps

Consider now a Lévy process with Lévy measure Π given by

Π(dy) = 1(y>0)π(dy) + 1(y<0)λ
n∑

k=1

akαke
αkydy, (2.3.6)

where π is an arbitrary Lévy measure on (0,∞), 0 < α1 < ... < αn, ak > 0, for

k = 1, ..., n and
∑n

k=1 ak = 1. The magnitude of the negative jumps of X is mixed

exponentially distributed, with parameter αk chosen with probability ak, and they

occur at the times of a Poisson process with rate λ. Simple computations give

Ψ(θ) = iηθ −
σ2

2
θ2 +

∫ ∞

0

(
eiθy − 1 − iθh(y)

)
π(dy) − λ

n∑

k=1

ak
iθ

αk + iθ
, (2.3.7)

where h(y) = y1{0<y<1} and η is given by

η = µ+ λ
n∑

k=1

ak

αk

(
1 − (1 + αk)e−αk

)
.

Considered as a function with complex domain, the characteristic exponent iq 7→ Ψ(q)

in (2.3.7) can be extended analytically to the complex strip {z = p+ iq : p ∈ (−α1, 0]}

and, for −α1 < p ≤ 0, we have the Laplace exponent of X defined by

κ(p) = ηp+
σ2

2
p2 +

∫ ∞

0

(
epy − 1 − ph(y)

)
π(dy) − λ

n∑

k=1

ak
p

αk + p
. (2.3.8)

Due to the convexity of κ(p) on (−α1, 0], it follows when σ > 0 that under the

condition

κ′(0−) = lim
p→0−

1

p
κ(p) = η +

∫ ∞

1

yπ(dy) − λ

n∑

k=1

ak

αk
> 0, (2.3.9)

(where the integral can take the value ∞), the equation κ(p) = 0 has n+ 1 negative

roots −pj , j = 1, · · · , n+ 1, that satisfy

0 < p1 < α1 < p2 < ... < pn < αn < pn+1. (2.3.10)
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2. A Brief Introduction to Lévy Processes

Furthermore, observe that when γ > 0, the Cramèr-Lundberg equation

κ(p) = γ, for γ > 0 (2.3.11)

has always n+ 1 negative roots {−pj, j = 1, ..., n+ 1} satisfying (2.3.10).

Denote by eγ an exponential random variable with parameter γ ≥ 0, independent

of X , and for γ = 0, it is understood that eγ = ∞ with probability 1. Assuming that

the condition (2.3.9) holds when γ = 0, Mordecki [87], [88] shows that

Ψ(−)
γ (s) =

n+1∑

j=1

Aj
pj

s+ pj
,

where −p1, ...,−pn+1 are the negative roots of the equation (2.3.11) and the constants

A1, ..., An+1 are given by

Aj =

∏n
k=1(1 − pj/αk)

∏n+1
k=1,k 6=j(1 − pj/pk)

, for j = 1, ..., n+ 1.

By applying Laplace inversion to Ψ
(−)
γ (s), Mordecki [87], [88] shows that

P
(
−X

eγ
∈ dx

)
=

n+1∑

j=1

Ajpje
−pjxdx, x ≥ 0.

2.3.3 Lévy processes with jumps of phase-type

This class of Lévy processes includes and generalizes exponential jumps Lévy processes

detailed earlier. A phase-type Lévy process is constructed by independent sum of a

spectrally positive process with a compound Poisson process having negative phase-

type jumps. We refer to Mordecki [89] and Asmussen et al. [6] for more details.

A distribution F on (0,∞) is said to be phase-type if it is the distribution of the

absorption time in a finite state continuous time Markov process {Jt : t ≥ 0} with

one state ∆ absorbing and the remaining ones 1, ...,m transient. The parameters of

this system are m, the restriction T of the full intensity matrix to the m transient

states and the initial probability (row) vector a = (a1, ..., am), where ai = P(J0 = i).

For any i = 1, ...,m, let ti be the intensity of the transition i→ ∆ and write t for the

column vector of intensities. It follows that F has a density given by f(x) = aeTxt

and its Laplace transform is given for s > 0 by F̂ (s) =
∫ ∞

0 e−sxf(x)dx = a(sI−T)−1t

which can be analytically extended to the complex plane except at a finite number of

poles (the eigen values of T). The phase-type Lévy process has the representation

Xt = X+
t −

N(t)∑

j=1

Uj , t ≥ 0,
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2.3. Some important classes of Lévy processes

where {X
(+)
t : t ≥ 0} is a spectrally positive Lévy process, {Nt : t ≥ 0} is a Poisson

process with rate λ and {Uj : j ≥ 1} are i.i.d random variables with a common

distribution F ; all of the objects mentioned above are mutually independent.

The corresponding Lévy-Khintchine exponent, Ψ, can be analytically extended to

the complex plane {z ∈ C : Re(z) ≤ 0} with the exception of a finite number of poles

(the eigenvalues of T). Define, for each α > 0, the finite set of roots, with negative

real part, of the Cramèr-Lundberg equation Ψ(pi) = α, i.e.,

Iα = {pi : Ψ(pi) = α,Re(pi) < 0},

where multiple roots are counted individually. Next, define, for each α > 0, a second

set of roots with negative real part

Jα = {qi :
α

α− Ψ(qi)
= 0,Re(qi) < 0},

again taking into account of multiplicity, Mordecki [89] and Asmussen et al. [6] show

that

Ψ(−)
α (s) =

∏
j∈Jα

(s− qj)∏
j∈Jα

(−qj)

∏
j∈Iα

(−pj)∏
j∈Iα

(s− pj)
,

which can be analytically extended to the whole complex plane C except for the poles

at {pj ∈ Iα}. Applying Laplace inversion to Ψ
(−)
α (s), it was shown in [89] and [6] that

P
(
−X

eα
∈ dx

)
=

n∑

j=1

m(j)∑

k=1

Aj,k
(−pjx)

k−1

(k − 1)!
epjxdx, x ≥ 0,

where m(j) is the multiplicity of root pj , n is the number of distinct roots and

Aj,k =
1

(m− k)!

dm−k

dsm−k

(Ψ
(−)
α (s)(s− pj)

m

(−pj)k

)∣∣∣
s=pj

.
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Chapter 3

A Change of Variable Formula with Local Time-Space

for Bounded Variation Lévy Processes with Application

to Solving the American Put Option Problem1

Abstract

We establish a change of variable formula with local time-space for ‘ripped’

functions of Lévy processes of bounded variation. Our results complement the

recent work of Föllmer et al. [50], Eisenbaum ([43], [44]), Peskir ([97], [98])

and Elworthy et al. [46] in which generalized versions of Itô’s formula were

established with local time-space. The result is applied to solving the American

put option problem driven by bounded variation Lévy processes.

3.1 Lévy processes of bounded variation and local time-space

In this chapter we shall establish a change of variable formula for ‘ripped’ time-

space functions of Lévy processes of bounded variation at the cost of an additional

integral with respect to local time-space in the formula. Roughly speaking, by a ripped

function, we mean here a time-space function which is C1,1 on either side of a time-

dependent barrier and which may exhibit a discontinuity along the barrier itself.

Such functions have appeared in the theory of optimal stopping problems for Markov

processes of bounded variation (cf. Peskir and Shiryaev ([95], [96]), Chan ([26], [27]),

Avram et al. [7]). Our starting point is to give a brief review of the relevant features

of Lévy processes of bounded variation and what is meant by local time-space for

these processes.

Suppose that (Ω,F ,F, P ) is a filtered probability space with filtration F = {Ft :

t ≥ 0} satisfying the usual conditions of right continuity and completion. In this text,

1This chapter is the extended version of: Kyprianou, A. E. and Surya, B. A. A note on the

change of variable formula with local time-space for bounded variation Lévy processes. To appear in

Séminaire de Probabilité XL, Lecture Notes in Mathematics, Springer-Verlag.
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3. A Change of Variable Formula with Local Time-Space

we take as our definition of a Lévy process on (Ω,F ,F, P ), the strong Markov, F-

adapted process X = {X(t) : t ≥ 0} with paths that are right continuous with left

limits (càdlàg) having the properties that P (X(0) = 0) = 1 and for each 0 ≤ s ≤ t,

the increment X(t) − X(s) is independent of Fs = σ(Xu, u ≤ s) and has the same

distribution asX(t−s). On each finite time interval,X has paths of bounded variation

(or just X has bounded variation for short) if and only if for each t ≥ 0,

X(t) = dt+
∑

0<s≤t

∆s, (3.1.1)

where d ∈ R and {(s,∆s) : s ≥ 0} is a Poisson point process on [0,∞)× (R\{0}) with

(time-space) intensity measure dt× Π(dx) satisfying

∫ ∞

−∞

(1 ∧ |x|)Π (dx) < ∞.

Note that the later integrability condition is necessary and sufficient for the conver-

gence of
∑

0<s≤t |∆s|. The process X is further a compound Poisson process with

drift if and only if Π (R\{0}) <∞.

For any such Lévy process we say that 0 is irregular for itself if

P (T = 0) = 0

where T is the first visit of X to the origin,

T = inf
{
t > 0 : Xt = 0

}

with the usual definition inf ∅ = ∞ being understood in the present context as cor-

responding to the case that Y never visits the origin over the time interval (0,∞).

Standard theory allows us to deduce that T is a stopping time. With the exception of

a compound Poisson process, 0 is always irregular for itself within the class of Lévy

processes of bounded variation. Further, again excluding the case of a compound

Poisson process, we have that

P (T <∞) > 0 ⇐⇒ d 6= 0. (3.1.2)

We refer to Bertoin [14] for a much deeper account of regularity properties Lévy

processes. For the purpose of this text we need to extend the idea of irregularity for

points to irregularity of time-space curves.

Definition 3.1.1 Given a Lévy process X with finite variation, a measurable time-

space curve b : [0,∞) → R is said to be irregular for itself for X if for all ∞ > T ≥

s ≥ 0,

P(s,b(s))(#{t ∈ (s, T ] : X(t) = b(t)} <∞) = 1,

and t ∈ {s ≥ 0 : X(s) = b(s)} if and only if lims↑t |X(s) − b(s)| = 0.
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3.1. Lévy processes of bounded variation and local time-space

A curve b which is irregular for itself for X allows for the construction of the

almost surely finite counting measure

Lb : B[0,∞) → N

defined by

Lb[0, t] = 1 +
∑

0<s≤t

δ(X(s)=b(s))(s) (3.1.3)

where δx is the Dirac unit mass at point x. Further, Lb[0,∞] is almost surely 1 if and

only if d = 0. We call the right continuous process

Lb = {Lb
t := L[0, t] : t ≥ 0}

local time-space for the curve b. Our choice of terminology here is motivated by Peskir

[97] who gave the name local time-space for an analogous object defined for continuous

semi-martingales.

There seems to be little known about local times of Lévy processes of bounded

variation (see however Fitzsimmons and Port [49]) and hence a full classification of

all such curves b which are irregular for themselves for X remains an open question.

The definition as given is not empty however as we shall now show with the following

simple examples.

Example 3.1.2 Suppose simply that b(t) = x for all t ≥ 0 and some x ∈ R and that

X is not a compound Poisson process. In this case, the local time process is nothing

more than the number of visits to x plus one which is a similar definition to the one

given in Fitzsimmons and Port [49]. As can be deduced from the above introduction to

Lévy processes of bounded variation, if d = 0 then Lt = 1 for all t > 0. If on the other

hand d 6= 0 then since X has the property that {0} is irregular for itself forX then the

number of times X hits x in each finite time interval is almost surely finite. Further,

X hits x by either creeping upwards over it or creeping downwards below according

to the respective sign of d. (Creeping both upwards and downwards is not possible

for Lévy processes which do not posses a Gaussian component). Creeping upwards

above x occurs at first passage time T if and only if lims↑T X(s) = x. Since the same

statement is true of downward creeping andX may only creep in at most one direction,

it follows with the help of the Strong Markov Property that t ∈ {s > 0 : X(s) = x}

if and only if lims↑t |X(s) − x| = 0.

Example 3.1.3 More generally, if Π(R\{0}) = ∞ then an argument similar to the

above shows that if b satisfying b(0+) = b(0) and |b′(0+)| < ∞, belongs to the class

C1(0,∞), then it is also irregular for itself for X. One needs to take advantage in this

case of the fact that b has locally linear behaviour. Furthermore, one sees that points

t for which b′(t) = d cannot be hit. We have excluded Π(R\{0}) < ∞ in order to

avoid simple pathological examples such as the case of the compound Poisson process

and b(t) = 0 for all t > 0.
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3. A Change of Variable Formula with Local Time-Space

3.2 A generalization of the change of variable formula

In this section we state our result. The idea is to take the change of variable formula

and to weaken the assumption on the class of functions to which it applies. For clarity,

let us first state the Itô’s change of variable formula in the special form that it takes

for bounded variation Lévy processes. The proof can be found in a standard text book

on semimartingales, see for instance Revuz and Yor [106], Protter [105], and Jacod

and Shiryaev [63] (Theorem I.4.57).

Theorem 3.2.1 (Itô’s Change of Variable Formula) Suppose that the time-space

function f ∈ C1,1([0,∞) × R). Then for any Lévy process X of bounded variation of

the form (3.1.1), it holds almost surely that

f(t,X(t)) − f(0, X(0)) =

∫ t

0

∂f

∂t
(s,X(s−))ds+ d

∫ t

0

∂f

∂x
(s,X(s−))ds

+
∑

0<s≤t

{
f(s,X(s)) − f(s,X(s−))

}
. (3.2.1)

Remark 3.2.2 By inspection of the proof of the change of variable formula it is also

clear that if for some random time T , Xt ∈ D for all t < T where D is an open set,

then the change of variable formula as given above still holds on the event {t ≤ T }

for functions f ∈ C1,1([0,∞), D).

The generalization we are interested in consists of weakening the class C1,1([0,∞)×

R) in the Change of Variable formula to the following class.

Definition 3.2.3 Suppose that b : [0,∞) → R is a measurable function. A function

f is said to be C1,1([0,∞) × R) ripped along b if

f (t, x) =

{
f (1) (t, x) x > b(t), t ≥ 0

f (2) (t, x) x < b(t), t ≥ 0
(3.2.2)

where f (1) and f (2) each belong to the class C1,1([0,∞) × R).

We shall prove the following theorem.

Theorem 3.2.4 Suppose that b is a measurable function which is irregular for itself

for X and f is C1,1([0,∞)×R) ripped along b. Then for any Lévy process of bounded

variation, X, it holds almost surely that

f(t,X(t)) − f(0, X(0+)) =

∫ t

0

∂f

∂t
(s,X(s−))ds+ d

∫ t

0

∂f

∂x
(s,X(s−))ds

+
∑

0<s≤t

{
f(s,X(s)) − f(s,X(s−))

}
(3.2.3)

+

∫ t

0

{
f(s,X(s+)) − f(s,X(s−))

}
dLb

s,
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where dLb
s refers to integration with respect to s 7→ Lb

s.

Note, the term f(0, X(0+)) is deliberate in place of f(0, X(0)) as, in the case that

X(0) = b(0), it is possible that the process f(·, X(·)) starts with a jump.

This result complements the recent results of Peskir [97] which concern an exten-

sion of Itô’s formula for continuous semi-martingales. Peskir accommodates for the

case that the time-space function, f, to which Itô’s formula is applied has a disrup-

tion in its smoothness along a continuous space time barrier of bounded variation. In

particular, on either side of the barrier, the function is equal to a C1,2(R × [0,∞))

time-space function but, unlike the case here, it is assumed that there is continuity in

f across the barrier. The formula that Peskir obtained has an additional integral with

respect to the semi-martingale local time at zero of the distance of the underlying

semi-martingale from the boundary (this is again a semi-martingale) which he calls

local time-space. As mentioned above, we have chosen for obvious reasons to refer to

the integrator in the additional term obtained in Theorem 3.2.4 as local time-space

also. Peskir’s results build further on those of Föllmer et al. [50] and Eisenbaum [43]

for Brownian motion and in this sense our results now bring the discussion into the

particular and somewhat simpler class of bounded variation semimartingales that we

study here. Eisenbaum [44], Elworthy et al. [46] and Peskir [97] all have further results

for general and special types of semi-martingales. However, the present study is cur-

rently the only one which considers discontinuous functions and hence the necessity to

introduce a local time-space as a counting measure rather than an occupation density

at zero of the semimartingale X − b as one normally sees. Note in the case at hand,

the semimartingale definition of local time at zero of X − b is in fact identically zero

(cf. Protter [105]). Other definitions of local time-space may be possible in order to

work with more general classes of curves than those given in Definition 1 and hence

the current presentation merely scratches the surface of the problem considered.

3.3 Proofs and main calculations

Proof of Theorem 3.2.4

Proof The essence of the proof is based around a telescopic sum which we shall now

describe. Define the inverse local time process τ = {τt : t ≥ 0} where

τt = inf
{
s > 0 : Lb

s > t
}

for each t ≥ 0. Note the second strict inequality in the definition ensures that τ is a

càdlàg process and since Lb
0 = 1 by definition, it follows that τ0 = 0. The process τ

is nothing more than a step function which increases on the integers k = 1, 2, 3, ... by

an amount corresponding to the length of the excursion of X from b whose right end

point corresponds to the k-th crossing of b by X . Note that even when X0 6= b(0) we

count the section of the path of X until it first meets b as an (incomplete) excursion.
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3. A Change of Variable Formula with Local Time-Space

The increment in {f(s,X(s)) : s ≥ 0} between s = 0+ and s = t can be seen

as the accumulation of the increments incurred by X crossing the boundary b, the

excursions of X from b and the final increment between the last time of contact of X

with b and time t. We have

f(t,X(t)) − f(0, X(0+)) =

∫ t

0

{
f(s,X(s+))− f(s,X(s−))

}
dLb

s

+
∑

s≤Lb
t

{
f(τs, Xτs

) − f(τs−, Xτs−
)
}
1{|∆τs|>0}

+
{
f(t,X(t)) − f(τLb

t
, Xτ

Lb
t
+)

}
.

(3.3.1)

The proof is then completed once we know that the increments in the curly brackets

of the second and third term on the right hand side of (3.3.1) observe the same

development as the change of variable formula. Indeed, taking into account of the

Strong Markov Property, it would suffice to prove that under the given assumptions

on f we have that for all t ∈ (0,∞]

f(t ∧ η,X(t ∧ η)) − f(0, X(0+))

=

∫ t∧η

0

∂f

∂t
(s,X(s−))ds+ d

∫ t∧η

0

∂f

∂x
(s,X(s−))ds

+
∑

0<s≤t∧η

{
f(s,X(s)) − f(s,X(s−))

}
. (3.3.2)

Note that η is the first strictly positive time that X − b = 0, that is to say that

η = inf
{
t > 0 : Xt − b(t) = 0

}
.

The statement in (3.3.2) is intuitively appealing since up to the stopping time η

the process X does not intersect with the boundary b and hence the discontinuity in

f should not appear in a development of the function f(·, X(·)). The result is proved

in the lemma below and thus concludes the proof of the main result.

Lemma 3.3.1 Under the assumptions of Theorem 3.2.4, the identity (3.3.2) holds

for all t ∈ (0,∞].

Proof First fix some κ > 0, define

σκ,0 = inf
{
t ≥ 0 : |X(t) − b(t)| > κ

}
.

and Ωκ = {ω ∈ Ω : σκ,0 < η}. Next define for each j ≥ 1 the stopping times

σκ,j = inf
{
t > σκ,j−1 : |X(t) − b(t)| <

1

2

∣∣X (σκ,j−1) − b(σκ,j−1)
∣∣}

where we again work with the usual definition inf ∅ = ∞. On the set Ωκ ∩ {η < ∞}

we have that

lim sup
j↑∞

∣∣X(σκ,j) − b(σκ,j)
∣∣ ≤ lim

j↑∞

(
1

2

)j ∣∣Xσκ,0

∣∣ = 0
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and hence by the definition of irregularity of b for itself for X ,

lim
j↑∞

σκ,j = η (3.3.3)

where the limit is interpreted to be infinite on the set {η = ∞}. It is also clear that,

since X has right continuous paths,

lim
κ↓0

P (Ωκ) = 1. (3.3.4)

Over the time interval [σκ,j−1, σκ,j) the processX does not enter a tube of positive,

Fσκ,j−1 -measurable radius around the curve b, we may appeal to then standard Change

of Variable Formula to deduce that on Ωκ

f
(
σκ,j ∧ t,Xσκ,j∧t

)
− f

(
σκ,j−1 ∧ t,Xσκ,j−1∧t

)

=

∫ σκ,j∧t

σκ,j−1∧t

∂f

∂t
(s,X(s−))ds+ d

∫ σκ,j∧t

σκ,j−1∧t

∂f

∂x
(s,X(s−))ds

+
∑

σκ,j−1∧t<s≤σκ,j∧t

{
f(s,X(s)) − f(s,X(s−))

}
.

Hence on Ωκ we have

f(η ∧ t,X(η ∧ t)) − f(σκ,0, X(σκ,0))

=
∑

j≥1

{
f (σκ,j ∧ t,X(σκ,j ∧ t)) − f (σκ,j−1 ∧ t,X(σκ,j−1 ∧ t))

}

=
∑

j≥1

∫ η∧t

0

{∂f
∂t

(s,X(s−)) + d
∂f

∂x
(s,X(s−))

}
1(σκ,j−1∧t<s≤σκ,j∧t)ds

+
∑

j≥1

∑

0<s≤η∧t

{
f(s,X(s)) − f(s,X(s−))

}
1(σκ,j−1∧t<s≤σκ,j∧t)

=

∫ η∧t

0

∂f

∂t
(s,X(s−))ds+ d

∫ η∧t

0

∂f

∂x
(s,X(s−))ds

+
∑

0<s≤η∧t

{
f(s,X(s)) − f(s,X(s−))

}
,

where the final equality follows from (an almost sure version of) Fubini’s theorem

which in turn appeals to the assumption that the limits of f, ∂f/∂t and ∂f/∂x all

exist and are finite when approaching any point on the curve b. In particular, to deal

with the final term in the second equality, note that an almost sure uniform bound

of the form ∣∣f(s,X(s)) − f(s,X(s−))
∣∣ ≤ C

∣∣△X(s)
∣∣

holds (for random C) because of the assumptions on ∂f/∂x and hence the double sum

converges (as X is a process of bounded variation). Since κ may be chosen arbitrarily

small, (3.3.4) shows that (3.3.2) is true almost surely on Ω. �
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3. A Change of Variable Formula with Local Time-Space

3.4 Application to solving the American put option problem

We present in this section a connection between the change of variable formula de-

veloped in the previous section with the problem of finding the arbitrage-free price of

the finite maturity American put option. The option confers the right to sell a unit

of stock at any time up to a finite time horizon T at a strike price K.

We assume that the stock pays no dividends during the lifetime of the option and

the evolution of the stock price process St = eXt is driven under a chosen martingale

measure Px by a bounded variation Lévy process of the form

Xt = x+ (r + ω)t+ Jt, (3.4.1)

where (Jt, t ≥ 0) is a pure jump Lévy process of bounded variation defined as Jt =∑
0<s≤t ∆s and {(s,∆s) : s ≥ 0} is a Poisson point process on [0,∞)× (R\{0}) with

(time-space) intensity measure dt × Π(dx) (see the expression (3.1.1)). Throughout

the remaining of this section, we assume that the Lévy measure Π satisfies
∫ ∞

−∞

(
e|y| − 1

)
Π(dy) < ∞, (3.4.2)

and the rate (r + ω) in (3.4.1) is assumed to be strictly positive. Furthermore, we

assume that the discounted process (e−rtSt, t ≥ 0) is Px-martingale, implying that

Ex

(
e−rtSt

)
= ex.

This condition implies that the parameter ω in (3.4.1) is given by

ω = −

∫ ∞

−∞

(
ey − 1

)
Π(dy), (3.4.3)

which is well-defined due to the integral test (3.4.2). Note that under the martingale

condition (3.4.3) and the integral test (3.4.2), it can be shown using the formula

(3.2.1) that the stock price process St fulfills the arbitrage-free condition

Ex

(
dSt − rSt−dt

)
= 0.

The problem of interest in this section is to characterize the arbitrage-free price

of the finite maturity American put option

V (t, x) = sup
0≤τ≤t

Ex

(
e−rτ

(
K − eXτ

)+
)

(3.4.4)

for all (t, x) ∈ [0, T ]× R+ where τ is a Markov stopping time of X .

Adapting arguments of Peskir [98], we derive using the change of variable formula

(3.2.3) a nonlinear integral equation for optimal stopping boundary of the problem

(3.4.4) within a bounded variation Lévy process and show that the optimal value func-

tion V is continuous across the boundary. Taking into account the continuous pasting
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3.4. Application to solving the American put option problem

condition, we give a proof similar to Jacka [62] and Peskir [98] for the uniqueness of

the nonlinear integral equation and show that the value function V solves uniquely a

free boundary problem of parabolic integro-differential type 2.

The results are given by the following two theorems.

Theorem 3.4.1 (Free boundary problem) Assume that the Lévy measure Π of

X (3.4.1) satisfies the integrability condition (3.4.2) and b : [0, T ] → (−∞, log(K)] is

a curved boundary which is irregular for itself for X. Suppose that (U, b) is a solution

pair, with U ∈ C1,1([0, T ]× R) ripped along the curved boundary b, to the problem:

(
−
∂

∂t
+ LX − r

)
U(t, x) = 0 for (t, x) ∈ C (3.4.5)

U(0, x) = (K − ex)+ for all x ∈ R, (3.4.6)

U(t, x) = (K − ex)+ for x = b(t) (continuous fit), (3.4.7)

U(t, x) > (K − ex)+ for (t, x) ∈ C (3.4.8)

U(t, x) = (K − ex)+ for (t, x) ∈ D (3.4.9)

where the continuation region C and the stopping region S = D are defined by

C =
{
(t, x) ∈ [0, T ]× R

∣∣ x > b(t)
}

(3.4.10)

and

D =
{
(t, x) ∈ [0, T ] × R

∣∣ x < b(t)
}
, (3.4.11)

and the infinitesimal generator LX of X (3.4.1) is defined by

LXU(t, x) = (r + ω)
∂U

∂x
(t, x) +

∫ ∞

−∞

(
U(t, x+ y) − U(t, x)

)
Π(dy). (3.4.12)

Then, the curved boundary b solves for all t ∈ (0, T ] the nonlinear integral equation3

K − eb(t) = e−rt
Eb(t)

(
K − eXt

)+
+ rK

∫ t

0

e−ru
Pb(t)

(
Xu− ≤ b(t− u)

)
du. (3.4.13)

Theorem 3.4.2 (Uniqueness) If the value function V of the problem (3.4.4) solves

the free boundary problem (3.4.5)-(3.4.12) and the optimal stopping time is the first

passage time τ−b of X below a curved boundary b solving the integral equation (3.4.13),

then (V, b) represents the unique pair solution to the problem (3.4.5)-(3.4.12).

2For jump-diffusion processes, the uniqueness of a free boundary problem of parabolic integro-

differential type associated to the optimal stopping problem (3.4.4) was discussed in Pham [100].
3For exponential of a linear Brownian motion St(x) = x exp

`
σBt + (r − 1/2σ2)t

´
, it was shown

in Kim [67], El Karoui and Karatzas [45], Jacka [62], Myneni [90], Carr et al. [23], and Peskir [98]

that the optimal boundary h(t) of the stopping problem V (t, x) = sup0≤τ≤t E
`
e−rτ

`
K − Sτ (x)

´+´

solves a nonlinear integral equation of the similar form:

K − h(t) = e−rt
E

`
K − St(h(t))

´+
+ rK

Z t

0
e−ru

P
`
Su(h(t)) ≤ h(t − u)

´
du.
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3. A Change of Variable Formula with Local Time-Space

3.4.1 Proof and main calculations of Theorem 3.4.1

To start with, let us remind ourself that the curved boundary b is irregular for itself

for the Lévy process (3.4.1) and T is a finite maturity time. Next, let us consider for

a fixed t ∈ (0, T ] a function f : [0, t] × R → R+ defined by

f(u, x) = e−ruU(t− u, x),

where U is a C1,1 function, ripped along the curved boundary b, that solves the free

boundary problem (3.4.5)-(3.4.12). Observe that the functions f and U have the same

number of continuous derivatives w.r.t t and x. Since U is ripped along b, we have by

the construction that f is also a C1,1 function that is ripped along b. Therefore, we

can now apply the change of variable formula (3.2.3) to get

f(s,Xs) = f(0, X0) +

∫ s

0

∂f

∂u
(u,Xu−)du + (r + ω)

∫ s

0

∂f

∂x
(u,Xu−)du

+
∑

0<u≤s

{
f(u,Xu− + ∆Xu) − f(u,Xu−)

}
(3.4.14)

+

∫ s

0

(
f(u,X(u+))− f(u,X(u−))

)
dLb

u(X).

Using the chain rule for partial differentiation, we see that

∂f

∂u
= −

(
re−ruU + e−ru ∂U

∂t

)
and

∂f

∂x
= e−rt∂U

∂x
.

Inserting these expressions in (3.4.14), we obtain

e−rsU(t− s,Xs)

= U(t, x) +

∫ s

0

e−ru
(
− rU −

∂U

∂t
+ (r + ω)

∂U

∂x

)
(t− u,Xu−)du

+
∑

0<u≤s

e−ru
{
U(t− u,Xu− + ∆Xu) − U(t− u,Xu−)

}
(3.4.15)

+

∫ s

0

e−ru
{
U(t− u,Xu+) − U(t− u,Xu−)

}
dLb

u(X).

Notice that the sum in the foregoing expression converges in absolute value due to

the assumptions on U and the fact that X has path of bounded variation.

On recalling the fact that for a Borel set Λ ⊂ R, with 0 /∈ Λ, we have for every

(bounded) measurable function h that
∫ t

0

∫

Λ

h(u, y)ν(dy, du) =
∑

0<u≤t

h(u,∆Xu)1Λ(∆Xu), (3.4.16)

where ν(dy, du) is a Poisson random measure, with the space-time compensator

Π(dy) × du, defined by

ν(dy, du) =
∑

s≥0

1{∆Xs 6=0}δ(∆Xs,s)(dy, du),
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3.4. Application to solving the American put option problem

where δx denotes the Dirac measure at point x, see for instance Proposition 1.16 in

Chapter II of Jacod and Shiryaev [63] for details. By adding and subtracting
∫ s

0

∫

R

e−ru
(
U(t− u,Xu− + y) − U(t− u,Xu−)

)
Π(dy)du

in the equation (3.4.15) we finally obtain

e−rsU(t− s,Xs)

=U(t, x) +

∫ s

0

e−ru
(
−
∂

∂t
+ LX − r

)
U(t− u,Xu−)du+ Ms

+

∫ s

0

e−ru
{
U(t− u,Xu+) − U(t− u,Xu−)

}
dLb

u(X),

(3.4.17)

where LX is the infinitesimal generator of the Lévy process (3.4.1) defined earlier in

(3.4.12) and the stochastic process (Ms)0≤s≤t is a Px-(local) martingale defined by

Ms =

∫ s

0

∫

R

e−ru
(
U(t− u,Xu− + y) − U(t− u,Xu−)

)
ν(dy, du)

−

∫ s

0

∫

R

e−ru
(
U(t− u,Xu− + y) − U(t− u,Xu−)

)
Π(dy)du.

(3.4.18)

Using the fact that U is C1,1 ripped at b and is continuous at b (see (3.4.7)), we

see that there exists for all u ∈ [0, s] a positive constant Cs such that
∣∣U(u, x+ y) − U(u, x)

∣∣ ≤ Cs

∣∣y
∣∣ for all x, y ∈ R.

Note that the constant Cs depends on the interval of time over which u is considered,

i.e., the estimate has a uniform constant Cs for all u in the interval [0, s]. Hence,

in view of the integrability condition (3.4.2), we see that the last double integral in

(3.4.18) converges in absolute value, and therefore we have that

E
∣∣Ms

∣∣ ≤ E

∫ s

0

∫

R

e−ru
∣∣∣U(t− u,Xu− + y) − U(t− u,Xu−)

∣∣∣ν(dy, du)

+ E

∫ s

0

∫

R

e−ru
∣∣∣U(t− u,Xu− + y) − U(t− u,Xu−)

∣∣∣Π(dy)du

≤
2Cs

r

(
1 − e−rs

) ∫

R

∣∣y
∣∣Π(dy).

(3.4.19)

Moreover, by recalling that U is a C1,1 function and is continuous along the curved

boundary b and that the Lévy process X has paths of bounded variation, we can

apply the compensation formula (see for instance Theorem 4.4 in Kyprianou [69]) to

have that

E

(∫ s

0

∫

R

e−ru
(
U(t− u,Xu− + y) − U(t− u,Xu−)

)
ν(dy, du)

)

= E

(∫ s

0

∫

R

e−ru
(
U(t− u,Xu− + y) − U(t− u,Xu−)

)
Π(dy)du

)
.

(3.4.20)
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3. A Change of Variable Formula with Local Time-Space

Hence, in view of (3.4.19) it follows that the process (Ms)0≤s≤t is an L1-integrable

Px-martingale and hence vanishes after taking expectation under the measure Px.

On noticing the fact that (− ∂
∂t + LX − r)U(t, x) = 0 for all (t, x) ∈ C and

(
−
∂

∂t
+ LX − r

)
(K − ex) = −rK,

we have following (3.4.17) that

e−rsU(t− s,Xs) = U(t, x) − rK

∫ s

0

e−ru1(Xu−≤b(t−u))du+ Ms

+

∫ s

0

e−ru
{
U(t− u,Xu+) − U(t− u,Xu−)

}
dLb

u(X),

(3.4.21)

holds Px almost surely. Note that we have used in (3.4.21) the fact that the curved

boundary b is bounded from above by log(K). Since U(0, x) = (K−ex)+ for all x ∈ R

we have after inserting s = t in (3.4.21) and taking expectation under Px that

U(t, x) =e−rt
Ex

(
K − eXt

)+

+ rK

∫ t

0

e−ru
Px

(
Xu− ≤ b(t− u)

)
du

− Ex

( ∫ t

0

e−ru
{
U(t− u,Xu+) − U(t− u,Xu−)

}
dLb

u(X)
) (3.4.22)

for all (t, x) ∈ [0, T )×R. On recalling that U(t, x) = (K − ex)+ for (t, x) ∈ D, we see

that

(K − ex)+ =e−rt
Ex

(
K − eXt

)+

+ rK

∫ t

0

e−ru
Px

(
Xu− ≤ b(t− u)

)
du

− Ex

(∫ t

0

e−ru
{
U(t− u,Xu+) − U(t− u,Xu−)

}
dLb

u(X)
)
.

(3.4.23)

Since U is a C1,1 function ripped along the curved boundary b and is continuous at

b (see (3.4.7)), the second expectation on the right hand side of (3.4.23) vanishes.

Hence, we deduce that b must solve the integral equation

(K − ex)+ =e−rt
Ex

(
K − eXt

)+

+ rK

∫ t

0

e−ru
Px

(
Xu− ≤ b(t− u)

)
du,

for all x ≤ b(t) and all t ∈ (0, T ]. By inserting x = b(t) in the foregoing equation, we

come to rest at a free-boundary equation that the boundary b has to solve:

(
K − eb(t)

)+
= e−rt

Eb(t)

(
K − eXt

)+

+ rK

∫ t

0

e−ru
Pb(t)

(
Xu− ≤ b(t− u)

)
du.

Thus, the claim that the curved boundary b solves the nonlinear integral equation

(3.4.13) is then established. �

30



3.4. Application to solving the American put option problem

3.4.2 Proof and main calculations of Theorem 3.4.2

To start with let us denote by τ−h the first exit time of X below a curved boundary

h defined by

τ−h = inf{u > 0 : Xu ≤ h(t− u)} ∧ t. (3.4.24)

Suppose that (W, c) is a solution pair, with W ∈ C1,1([0, T ]×R) ripped along a curved

boundary c, to the free boundary problem (3.4.5)-(3.4.12). By applying the formula

(3.2.3) to the function W subject to the pasting condition (3.4.7), we have following

the similar calculations as before that

e−rtW (0, Xt) = W (t, x) − rK

∫ t

0

e−ru1(Xu−≤c(t−u))du+ Mt (3.4.25)

where M is in principle a Px (local) martingale process, but in view of (3.4.19) and

(3.4.20) one can argue that it is Px-martingale. Recall that W (0, x) = (K − ex)+ for

all x ∈ R+ and W (t, x) = (K − ex)+ for all x ≤ c(t). Following these two facts, one

can deduce following the same arguments as before that the curved boundary c solves

the integral equation (3.4.13). Moreover, by replacing t with stopping time τ−c in the

expression (3.4.25) and taking expectation under Px, we have for all (t, x) ∈ [0, T ]×R

that

W (t, x) = Ex

(
e−rτ−

c (K − e
X

τ
−

c )+
)
. (3.4.26)

Since the value function V of the problem (3.4.4) is assumed to solve the free

boundary problem (3.4.5)-(3.4.12) and the optimal stopping time is the first exit of

X below a curved boundary b solving (3.4.13), we have that

V (t, x) = sup
0≤τ≤t

Ex

(
e−rτ (K − eXτ )+

)
= Ex

(
e−rτ−

b (K − e
X

τ
−

b )+
)
. (3.4.27)

Following (3.4.26) and (3.4.27), we see for every t > 0 and x ∈ R that

V (t, x) ≥ W (t, x). (3.4.28)

This inequality implies that

c(t) ≥ b(t) for all t ∈ [0, T ]. (3.4.29)

Suppose that there exists t ∈ (0, T ) such that c(t) > b(t). Next, let us take for a

given t ∈ (0, T ) a point x ∈ (b(t), c(t)). By replacing s and t with the stopping time

τ−b in (3.4.25) and (3.4.21), respectively, we obtain after taking expectation under the

measure Px that

Ex

(
e−rτ−

b (K − e
X

τ
−

b )+
)

= W (t, x) − rKEx

(∫ τ−

b

0

e−ru1(Xu−≤c(t−u))du
)
,

and

Ex

(
e−rτ−

b (K − e
X

τ
−

b )+
)

= V (t, x).
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3. A Change of Variable Formula with Local Time-Space

On remarking that V (t, x) ≥W (t, x) for all (t, x) ∈ [0, T ]×R (see equation (3.4.28)),

we deduce from the two foregoing equations that

Ex

( ∫ τ−

b

0

e−ru1(Xu−≤c(t−u))du
)

≤ 0,

which can not be true. Hence, in absence of the existence of such a point x, it follows

that

b(t) = c(t) for all t ∈ [0, T ].

As a result, having shown that the integral equation (3.4.13) admits a unique

solution for the optimal stopping boundary of the problem (3.4.4), we deduce following

the two expressions (3.4.26) and (3.4.27) that

W (t, x) = Ex

(
e−rτ−

b (K − e
X

τ
−

b )+
)

= V (t, x)

for all (t, x) ∈ [0, T ] × R. Thus, the claim that the integral equation (3.4.13) and the

free boundary problem (3.4.5)-(3.4.12) admit a unique solution is then proved. �

Remark 3.4.3 In fact using the change of variable formula (3.2.3), it can be shown

in the similar calculations as before that a solution to the free boundary problem

(3.4.5)-(3.4.12) coincides with the value function V of the optimal stopping problem

(3.4.4), and the optimal stopping time of (3.4.4) is the first exit time τ−b of X below

a curved boundary b that solves the integral equation (3.4.13).

3.5 Concluding remarks

To summarize, we have seen using the free boundary problem (3.4.5)-(3.4.11) that

the change of variable formula (3.2.3) with local time-space on a irregular curved

boundary b, developed earlier in Section 2, has been able to deliver three important

things. Firstly, we show using the formula that the smallest superharmonic majorant

property of the value function V (3.4.4) is simplified to the analytic condition of

continuous pasting at the stopping boundary b. By imposing the continuous pasting

condition, we derive using the change of variable formula a nonlinear integral equation

for b and show that b is the optimal stopping boundary for the problem (3.4.4).

Secondly, given the continuous pasting condition, we show using (3.2.3) that such a

nonlinear integral equation admits a unique solution. Thirdly, as a final result of the

use of the formula (3.2.3), we see that it is possible to show that (V, b) is the unique

solution pair to the free boundary problem.
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Chapter 4

On the Novikov-Shiryaev Optimal Stopping Problems

in Continuous Time1

Abstract

Novikov and Shiryaev [91] give explicit solutions to a class of optimal stop-

ping problems for random walks based on other similar examples given in Dar-

ling et al. [33]. We give the analogue of their results when the random walks

are replaced by Lévy processes. Further we show that the solutions show no

contradiction with the conjecture given in Alili and Kyprianou [3] that there

is smooth pasting at the optimal boundary if and only if the boundary of the

stopping region is irregular for the interior of the stopping region.

4.1 Introduction

Let X = {Xt; t ≥ 0} be a Lévy process defined on a filtered probability space

(Ω,F , {Ft},P) satisfying the usual conditions, see Chapter 2 for more details. Con-

sider for a given Lévy process X an optimal stopping problem of the form

V (x) = sup
τ∈T[0,∞]

Ex

(
e−qτG(Xτ )1(τ < ∞)

)
, (4.1.1)

where q ≥ 0 and T[0,∞] is the family of stopping times with respect to the filtration

Ft = σ(Xs, s ≤ t). The purpose of this chapter is to characterize the solution to the

problem (4.1.1) for the choices of gain functions

G(x) = (x+)n, for n = 1, 2, 3, . . .

under the hypothesis that

either q > 0 or q = 0 and lim sup
t↑∞

Xt <∞. (H)

1This chapter is the extended version of: Kyprianou, A.E. and Surya, B. A. On the Novikov-

Shiryaev optimal stopping problems in continuous time. Elect. Comm. Probab., 10 (2005), 146-154.
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Note that when q = 0 and lim supt↑∞Xt < ∞ it is clear that it is never optimal to

stop in (4.1.1) for the given choices of gain function G.

This chapter thus verifies that the results of Novikov and Shiryaev [91] for random

walks carry over into the context of the Lévy process as predicted by the aforemen-

tioned authors. Novikov and Shiryaev [91] write:

”The results of this paper can be generalized to the case of stochastic processes with

continuous time parameter (that is for Lévy processes instead of random walk). This

generalization can be done by passage of limit from discrete time case (similarly to the

techniques used in Mordecki [87] for pricing American options) or by use of the tech-

nique of pseudo-differential operators (described e.g. in the monograph Boyarchenko

and Levendorskii [20] in the context of Lévy processes)”.

We appeal to neither of the two methods referred to by Novikov and Shiryaev however.

Instead we work with fluctuation theory of Lévy processes which is essentially the

direct analogue of the random walks counterpart used in Novikov and Shiryaev [91].

In this sense our proofs are loyal to those of the latter. Minor additional features of our

proofs are that we also allow for discounting as well avoiding the need to modify the

gain function in order to obtain the solution. Truncation techniques are also avoided

as much as possible. Undoubtedly however, the link with Appell polynomials as laid

out by Novikov and Shiryaev remains the driving force of the solution. In addition we

show that the solutions show no contradiction with the conjecture given in Alili and

Kyprianou [3] that there is smooth pasting at the optimal boundary if and only if the

boundary of the stopping region is regular for the interior of the stopping region.

4.2 Main results

In order to state the main results we need to introduce one of the tools identified by

Novikov and Shiryaev to be instrumental in solving the optimal stopping problems at

hand.

Definition 4.2.1 (Appell Polynomials) Suppose that Y is a non-negative random

variable with n-th cummulant given by κn ∈ (0,∞] for n = 1, 2, ... Then define the

Appell polynomials iteratively as follows. Take Q0(x) = 1 and assuming that κn <∞

(equivalently Y has an n-th moment) given Qn−1(x) we define Qn(x) via

d

dx
Qn(x) = nQn−1(x). (4.2.1)

This definesQn up to a constant. To pin this constant down we insist that E(Qn(Y )) =

0. The first three Appell polynomials are given for example by

Q0(x) = 1, Q1(x) = x− κ1, Q2(x) = (x− κ1)
2 − κ2

Q3(x) = (x− κ1)
3 − 3κ2(x− κ1) − κ3,

(4.2.2)
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Figure 4.1: Plots of the first five Appell polynomials Qn(x), n = 1, 2, . . . , 5, generated

by upward jumps compound Poisson process having drift d = −0.1.

under the assumption that κ3 < ∞ (see Figure 4.1 above for the plots of Qn(x),

n = 1, 2, ..5). We refer to Schoutens [112] for further details of Appell polynomials.

In the following theorem, we shall work with the Appell polynomials generated

by the random variable Y = Xeq
where for each t ∈ [0,∞], Xt = sups∈[0,t]Xs and

eq is an exponentially distributed random variable which is independent of the Lévy

process X . We shall work with the convention that when q = 0, the variable eq is

understood to be equal to ∞ with probability 1.

Theorem 4.2.2 Let ζ = 1(q=0). Fix n ∈ {1, 2, ...}. Suppose that the assumption (H)

holds as well as ∫

(1,∞)

xn+ζΠ(dx) < ∞.

Then Qn(x) has finite coefficients and there exists x⋆
n ∈ [0,∞) being the largest root

of the equation Qn(x) = 0. Let

τ⋆
n = inf{t ≥ 0 : Xt ≥ x⋆

n}.

Then τ⋆
n is an optimal strategy to (4.1.1) with G(x) = (x+)n. Further,

Vn(x) = Ex

(
Qn(Xeq

)1(Xeq≥x⋆
n)

)
.

Theorem 4.2.3 For each n = 1, 2, ... the solution Vn to the optimal stopping problem

in the previous theorem is continuous and has the property that

d

dx
Vn(x⋆

n−) =
d

dx
Vn(x⋆

n+) −
d

dx
Qn(x⋆

n)P(Xeq
= 0).
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Hence there is smooth pasting at x⋆
n if and only if 0 is regular for (0,∞) for X.

Remark 4.2.4 (Regularity of 0 for (0,∞) for Lévy processes) Suppose thatX

is any Lévy process other than a compound Poisson process. The theory of Lévy pro-

cesses offers us the opportunity to specify when regularity of 0 for (0,∞) for X occurs

in terms of the triple (a, σ,Π) appearing the Lévy-Khintchine exponent (2.1.1). When

X has bounded variation it will be more convenient to write (2.1.1) in the form

Ψ(θ) = −idθ +

∫ ∞

−∞

(1 − eiθx)Π(dx) (4.2.3)

where d ∈ R is known as the drift coefficient. We have that the point 0 is regular for

(0,∞) for X (i.e., P(Xeq
= 0) = 0) if and only if one of the following three conditions

are fulfilled.

(i)
∫
(−1,1)

|x|Π(dx) = ∞ (so that X has unbounded variation).

(ii)
∫
(−1,1) |x|Π(dx) <∞ (so that X has bounded variation) and in the representation

(4.2.3) we have d > 0.

(iii)
∫
(−1,1) |x|Π(dx) <∞ (so that X has bounded variation) and in the representation

(4.2.3) we have d = 0 and further

∫

(0,1)

x∫
(0,x) Π(−∞,−y)dy

Π(dx) = ∞.

The latter conclusions being collectively due to Rogozin [108], Shtatland [116] and

Bertoin [16].

Intuitively, the conditions (i)− (iii) can be explained as follows. In case (i) when

σ > 0 regularity follows as a consequence of the presence of Brownian motion whose

behavior on the small time scale always dominates the path of the Lévy process. If on

the other hand σ = 0, the condition
∫
(−1,1) |x|Π(dx) = ∞ causes small jumps to have

behavior on the small time scale close to Brownian motion. The case (ii) says that

when the Poisson point process of jumps fulfills the condition
∫
(−1,1)

|x|Π(dx) < ∞,

over small time scales, the sum of the jumps grows sublinearly in time almost surely.

Therefore if the drift is present, this dominates the initial movement of the path. In

case (iii) when there is no dominant drift, the integral test may be thought of as a

statement about what the ’relative weight’ of the small positive jumps compared to

the small negative jumps needs to be in order for regularity to occur.

4.3 Preliminary lemmas

We need some preliminary results given in the following series of lemmas. All have

previously been dealt with in Novikov and Shiryaev [91] for the case of random walks.

For some of these lemmas we include slightly more direct proofs which work equally

well for random walks (for example avoiding the use of truncation methods).
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Lemma 4.3.1 (Moments of the supremum) Let ζ = 1(q=0). Fix n > 0 and q ≥

0. Suppose that the Lévy process X has jump measure Π satisfying
∫

(1,∞)

xn+ζΠ(dx) < ∞. (4.3.1)

Then E
(
(X+

1 )n+ζ
)
<∞. Suppose further that (H) holds. Then E

(
X

n

eq

)
<∞.

Although the analogue of this lemma is well known for random walks, it seems that

one cannot find so easily the equivalent statement for Lévy processes in the existing

literature; in particular the final statement of the lemma. None the less the proof can

be extracted from a number of well known facts concerning Lévy processes.

Proof The fact that E
(
(X+

1 )n+ζ
)
<∞ follows from the integral condition (4.3.1) can

be seen by combining the result of Theorem 25.3 and Proposition 25.4 of Sato [111].

The remaining statement follows when q ≥ 0 by Theorem 25.18 of the same book.

To see this let us denote by XK the Lévy process with the same characteristic as

X except that the Lévy measure Π is replaced by the truncated one ΠK defined as

ΠK(dx) = Π(dx)1(x>−K) + δ−K(dx)Π(−∞,−K).

In other words, the paths of the Lévy process XK are an adjustment of the paths of

X in that all negative jumps of magnitude K or greater are replaced by a negative

jump of precisely magnitude K. To establish our claim, first suppose that q > 0. The

Wiener-Hopf factorization (see Theorem 2.2.1 in Chapter 2) gives us

E

(
e
−iθX

K

eq

)
= E

(
e

iθXK
eq

)
×
κ̂K(q, iθ)

κ̂K(q, 0)
(4.3.2)

where eq is an independent and exponentially distributed random variable with mean

1/q and κ̂K is the Laplace-Fourier exponent of the bivariate descending ladder process

Ĥ (see Section 2.2). Note that the descending ladder height process of Ĥ cannot have

jumps of size greater than K as XK cannot jump downwards by more than K. Hence

the Lévy measure of the descending ladder height process of XK has bounded support

which with the help of Theorem 25.3 and Proposition 25.4 of Sato [111] imply that all

moments of the aforementioned process exist. Since E
(
(X+

1 )n
)
< ∞, it implies that

E(|XK
t |n) <∞ for all t > 0. The latter implies that the right-hand side of (4.3.2) has

a Maclaurin expansion up to order n. Specifically this means that E
(
(X

K

eq
)n

)
< ∞.

Due to the truncation, we finally have Xeq
< X

K

eq
and hence E(X

n

eq
) <∞.

Now suppose that lim supt↑∞Xt < ∞ and q = 0 so that Xeq
= X∞. In the

absence of the killing constant, we assume2 that E
(
(X+

1 )n+1
)
< ∞. This condition

follows from the integral condition (4.3.1) combining the result of Theorem 25.3 and

2This is a sufficient condition used in [91] to prove that E(X
n

∞) < ∞ for random walk. In our

case, this condition is required in case ΨK(θ) and bκK(0, iθ) has a factor θ cancelling in (4.3.3).
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Proposition 25.4 of Sato [111]. As before, we appeal to the Wiener-Hopf factorization

for XK in the form (up to a multiplicative constant)

κK(0,−iθ) =
ΨK(θ)

κ̂K(0, iθ)
(4.3.3)

where κK and ΨK are obviously defined. The same reasoning in the previous para-

graphs shows that the Maclaurin expansion on the right-hand side above exists up to

order n and hence the same is true for the left-hand side. We make the truncation level

K large enough so that it is still the case that limt→∞XK
t = −∞. This is possible by

choosing K sufficiently large so that E(XK
1 ) < 0.

We now have that κ̂K(0, 0) = 0 and that κ̂K(0, iθ) has an infinite Maclaurin

expansion. The assumption E
(
(X+

1 )n+1
)
< ∞ implies that ΨK(θ) has Maclaurin

expansion up to order n + 1 and as a matter of fact ΨK(0) = 0. It now follows that

the ratio ΨK(θ)/κ̂K(0, iθ) has a Maclaurin expansion up to order n. Since κK(0,−iθ)

is the cumulative generating function of the ascending ladder height process of XK it

follows that the aforementioned process has finite nth moments. Since X
K

∞ is equal

in law to the ascending ladder height process of XK stopped at an independent and

exponentially distributed random time, we have that E
(
(X

K

∞)n
)
< ∞. Finally we

have E
(
(X∞)n

)
<∞ since X∞ ≤ X

K

∞, which can be shown similar to above. �

Lemma 4.3.2 (Mean value property) Fix n ∈ {1, 2, ...}. Suppose that Y is a

non-negative random variable satisfying E(Y n) < ∞. Then if Qn is the n-th Appell

polynomial generated by Y then we have that

E

(
Qn(x+ Y )

)
= xn for all x ∈ R.

Proof As remarked in Novikov and Shiryaev [91], this result can be obtained by

truncation of the variable Y . However, it can also be derived from the definition of

Qn given in (4.2.1). Indeed note the result is trivially true for n = 1. Next suppose

the result is true for Qn−1. Then using dominated convergence we have from (4.2.1)

d

dx
E

(
Qn(x+ Y )

)
= E

(
d

dx
Qn(x+ Y )

)
= nE

(
Qn−1(x+ Y )

)
= nxn−1.

Solving together with the requirement that E(Qn(Y )) = 0 we have the result. �

Lemma 4.3.3 (Fluctuation identity) Let ζ = 1(q=0). Fix n ∈ {1, 2, ...} and sup-

pose that ∫

(1,∞)

xn+ζΠ(dx) < ∞,

and that (H) holds. Define τ+
a = inf{t ≥ 0 : Xt > a}. Then for all a > 0 and x ∈ R

Ex

(
e−qτ+

a Xn
τ+

a
1(τ+

a <∞)

)
= Ex

(
Qn(Xeq

)1(Xeq >a)

)
.
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Proof Note that on the event {τ+
a < eq} we have that Xeq

= Xτ+
a

+ S where S is

independent of Fτ+
a

and has the same distribution as Xeq
. It follows that

Ex

(
Qn(Xeq

)1(Xeq >a)

∣∣∣Fτ+
a

)
= 1(τ+

a <eq)h(Xτ+
a

)

where h(x) = Ex(Qn(Xeq
)). From Lemma 4.3.2 with Y = Xeq

one also has that

h(x) = xn. We see then by taking expectations again in the previous calculation that

Ex

(
Qn(Xeq

)1(Xeq >a)

)
= Ex

(
e−qτ+

a Xn
τ+

a
1(τ+

a <∞)

)

as required. �

Lemma 4.3.4 (Largest positive root) Let ζ = 1(q=0). Fix n ∈ {1, 2, ...} and sup-

pose that ∫

(1,∞)

xn+ζΠ(dx) < ∞.

Suppose that (H) holds and Qn is generated by Xeq
. Then Qn has a unique positive

root x∗n such that Qn(x) is negative on [0, x∗n) and positive and increasing on [x∗n,∞).

Proof The proof follows proof of the same statement given for random walks in Novikov

and Shiryaev [91] with minor modifications. (It is important to note that in following

their proof, it is not necessary to make an approximation of the Lévy process by a

random walk). Notice that the statement of the lemma is straightforward for n = 1.

The proof for n > 1 is done using induction arguments.

The first step is to show that Qn(0) ≤ 0. To start with let us denote by

τ+
a = inf{t ≥ 0 : Xt ≥ a}

the first time X goes above a level a and

γ(a, n) = E

(
e−qτ+

a Xn
τ+

a
1τ+

a <∞

)
.

Note that γ(a, n) ≥ 0 for all a ≥ 0 and n = 1, 2, ... On the other hand, we see that

γ(a, n) = E

(
Qn(Xeq

)1(Xeq≥a)

)

= −E

(
Qn(Xeq

)1(Xeq <a)

)

= −P
(
Xeq

< a
)
Qn(0)

+E

(
(Qn(0) −Qn(Xeq

))1(Xeq <a)

)

where the first equality follows from applying Lemma 4.3.3 while the second equality

follows from using Lemma 4.3.2. Following the definition

Qn(x) = Qn(0) + n

∫ x

0

Qn−1(y)dy (4.3.4)
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for all x ≥ 0 we have the estimate
∣∣∣E

(
(Qn(0) −Qn(Xeq

))1(Xeq <a)

)∣∣∣ ≤ na sup
y∈[0,a]

∣∣∣Qn−1(y)
∣∣∣P

(
Xeq

< a
)
,

which tends to zero as a ↓ 0. Thus, we then deduce that

0 ≤ γ(a, n) ≤ −P
(
Xeq

< a
)[
Qn(0) + o(a)

]

as a approaches zero. This implies that Qn(0) ≤ 0. Under the induction hypothesis for

Qn−1, we see from (4.3.4) together with the fact that Qn(0) ≤ 0 that Qn is negative

and decreasing on the interval [0, x⋆
n−1). The point x⋆

n−1 corresponds to the minimum

of Qn thanks to the positivity and the monotonicity of Qn−1(x) for x > x⋆
n−1. In

particular, Qn(x) tends to infinity from its minimum point and hence there must be

a unique strictly positive root of the equation Qn(x) = 0. Thus, our claim that Qn

has a unique positive root is then established. �

4.4 Proofs of theorems

Proof of Theorem 4.2.2

Proof In light of the Novikov-Shiryaev optimal stopping problems and their solutions,

we verify that the analogue of their solution, namely the one proposed in Theorem

4.2.2, is also a solution for (4.1.1) for G(x) = (x+)n, n = 1, 2, ....

To this end, fix n ∈ {1, 2, ...} and define

Vn(x) = Ex

(
Qn(Xeq

)1(Xeq >x∗

n)

)
.

First note from Lemma 4.3.3 that

Vn(x) = Ex

(
e−qτ∗

n(X+
τ∗

n
)n1(τ∗

n<∞)

)

and hence the pairs (Vn, τ
∗
n) are a candidate pair to solve the problem (4.1.1).

Secondly we prove that Vn(x) ≥ (x+)n for all x ∈ R. Note that this statement

is obvious for x ∈ (−∞, 0] ∪ [x∗n,∞) just from the definition of Vn. Otherwise when

x ∈ (0, x∗n) we have, using the mean value property in Lemma 4.3.2 that

Vn(x) = Ex

(
Qn(Xeq

)1(Xeq >x∗

n)

)

= xn − Ex

(
Qn(Xeq

)1(Xeq≤x∗

n)

)

≥ (x+)n

where the final inequality follows from Lemma 4.3.4 and specifically the fact that

Qn(x) ≤ 0 on (0, x∗n]. Note in particular, embedded in this argument is the statement

that Vn(x−) = (x+)n at x = x∗n.
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Thirdly, we have Px almost surely that Qn(Xeq
)1(Xeq >x∗

n) ≥ 0. Using the latter

together with the fact that, on the event that {eq > t} we have Xeq
is equal in

distribution to Xt + I where I is independent of Ft and equal in distribution to Xeq
,

it follows that

Vn(x) ≥ Ex

(
1(eq>t)Qn(Xeq

)1(Xeq >x∗

n)

)

= Ex

(
1(eq>t)Ex

(
Qn(Xt +Xeq

)1(Xt+Xeq >x∗

n)

∣∣∣Ft

))

= Ex

(
e−qtVn(Xt)

)
.

From this inequality together with the Markov property, it is easily shown that

{e−qtVn(Xt) : t ≥ 0} is a supermartingale.

Finally we put these three facts together as follows to complete the proof. From

the supermartingale property and the lower bound on Vn it follows that

Vn(x) ≥ sup
τ∈T[0,∞]

Ex

(
e−qτVn(Xτ )1(τ<∞)

)
≥ sup

τ∈T[0,∞]

Ex

(
e−qτ (X+

τ )n1(τ<∞)

)
. (4.4.1)

On the other hand, rather trivially, we have

sup
τ∈T[0,∞]

Ex

(
e−qτ (X+

τ )n1(τ<∞)

)
≥ Ex

(
e−qτ∗

n(X+
τ∗

n
)n1(τ∗

n<∞)

)
= Vn(x). (4.4.2)

and the proof of the theorem follows. �

Proof of Theorem 4.2.3

Proof It has already been noted in the previous proof that there is continuity of Vn at

the point x∗n. To establish when there is a smooth pasting at this point, we calculate

as follows. For x < x∗n

Vn(x∗n) − V (x)

x∗n − x
=

(x∗n)n − xn

x∗n − x
+

Ex(Qn(Xeq
)1(Xeq≤x∗

n))

x∗n − x

=
(x∗n)n − xn

x∗n − x
+

Ex((Qn(Xeq
) −Qn(x∗n))1(Xeq≤x∗

n))

x∗n − x

where the final equality follows because Qn(x∗n) = 0. Clearly

lim
x↑x∗

n

(x∗n)n − xn

x∗n − x
=
dVn

dx
(x∗n+).

However,

Ex((Qn(Xeq
) −Qn(x∗n))1(Xeq≤x∗

n))

x∗n − x
=

Ex((Qn(Xeq
) −Qn(x))1(x<Xeq≤x∗

n))

x∗n − x

−
Ex((Qn(x∗n) −Qn(x))1(Xeq≤x∗

n))

x∗n − x
,

(4.4.3)
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where in the first term on the right hand side we may restrict the expectation to

{x < Xeq
≤ x∗n} as the atom of Xeq

at zero gives zero mass to the expectation.

Denote by Ax and Bx the two expressions on the right hand side of equation (4.4.3).

We have that

lim
x↑x∗

n

Bx = −
dQn(x∗n)

dx
P(Xeq

= 0).

Integration by parts also gives

Ax =

∫

(0,x∗

n−x]

Qn(x+ y) −Qn(x)

x∗n − x
P(Xeq

∈ dy)

=
Qn(x∗n) −Qn(x)

x∗n − x
P(Xeq

∈ (0, x∗n − x])

−
1

x∗n − x

∫ x∗

n−x

0

P(Xeq
∈ (0, y])

dQn

dx
(x+ y)dy.

Hence it follows that

lim
x↑x∗

n

Ax = 0.

In conclusion we have that

lim
x↑x∗

n

Vn(x∗n) − V (x)

x∗n − x
=
dVn

dx
(x∗n+) −

dQn(x∗n)

dx
P(Xeq

= 0)

which concludes the proof. �

4.5 Numerical examples

This section discusses some numerical examples of the results presented in Section 2.

For this numerical purposes, we consider two cases. Firstly, we choose X to be a

spectrally negative Lévy process of bounded variation. Necessarily, it takes the form

of a linear drift minus a subordinator. We take the drift d to be at rate 0.1 and the

subordinator to be a compound Poisson process with exponentially distributed jumps;

that is to say that X has Laplace exponent

κ(λ) = dλ+

∫ 0

−∞

acecx(eλx − 1)dx = dλ−
aλ

c+ λ
. (4.5.1)

As explained in Section 2.3 of Chapter 2, it is known that the moment generating

function Ψ
(+)
q (λ) of the random variable Xeq

is given for q ≥ 0 and Re(λ) ≥ 0 by

Ψ(+)
q (λ) =

∫ ∞

0

e−λx
P(Xeq

∈ dx) =
Φ(q)

λ+ Φ(q)
.

Following this Laplace transform, we deduce using Tauberian theorem that

P(Xeq
= 0) = lim

λ↑∞

Φ(q)

λ+ Φ(q)
= 0, (4.5.2)
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Figure 4.2: The shape of the value function of an optimal stopping problem with

payoff function G(x) = (x+)4 driven by downward jumps compound Poisson process

with drift d = 0.1. The optimal stopping boundary is given by x⋆
4 = 2.7789.
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Figure 4.3: The shape of a candidate solution Vy(x) for different values of bound-

ary y of an optimal stopping problem with payoff function G(x) = (x+)4 driven by

downward jumps compound Poisson process with drift d = 0.1. The optimal stopping

boundary is given by x⋆
4 = 2.7789.
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Figure 4.4: The shape of the value function of an optimal stopping problem with

payoff function G(x) = (x+)4 driven by upward jumps compound Poisson process

with drift d = −0.1. The optimal stopping boundary is given by x⋆
4 = 0.6832.
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Figure 4.5: The shape of a candidate solution Vy(x) for different values of boundary y

of an optimal stopping problem with payoff function G(x) = (x+)4 driven by upward

jumps compound Poisson process with drift d = −0.1. The optimal stopping boundary

is given by x⋆
4 = 0.6832.
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from which it follows that 0 is regular for the upper half-line (0,∞) for X .

Secondly, we consider the dual process X̂ = −X of the former spectrally negative

compound Poisson process X . We denote by X̂eq
= sup0≤s≤eq

X̂s the running supre-

mum of the dual process X̂ up to random time eq. Since X̂eq
= −X

eq
, by duality

arguments, it is known (see for instance Section 5 of Bingham [17]) that the moment

generating function Ψ
(+)
q (λ) of the random variable X̂eq

is given by

Ψ(+)
q (λ) =

∫ ∞

0

e−λx
P(X̂eq

∈ dx) =
q

Φ(q)

(λ− Φ(q)

κ(λ) − q

)
,

for q > 0 and Re(λ) ≥ 0, where Φ(a) is the largest root γ of the equation κ(γ) = a.

(See also Section 2.3 of Chapter 2 for more details.) For numerical inversion of Laplace

transform, we refer to Chapter 7 for further discussions. Applying the same arguments

as before, we deduce from the foregoing expression that

P(X̂eq
= 0) = lim

λ↑∞

q

Φ(q)

(λ− Φ(q)

κ(λ) − q

)
=

q

Φ(q)

(1

d

)
> 0. (4.5.3)

The expression (4.5.3) tells us that 0 is irregular for (0,∞) for the dual process X̂ .

For all computations, we set q = 0.075, n = 4, c = 9 and a = 0.5. The numerical

computation is carried out using MATLAB6.5.

For each of these two Lévy processes, we consider the function

Vy(x) = (x+)n − Ex

(
Q4(Xeq

)1(Xeq≤y)

)
(4.5.4)

as a candidate solution to the optimal stopping problem (4.1.1). By varying the values

of the boundary y, we present in Figures 4.2-4.5 the plots of the function x 7→ Vy(x)

for x ≥ 0 with steps dx = 0.01. From these plots, we notice in all respects that all

curves Vy are upper bounded by that of associated with the optimal boundary y = x⋆
4

(the largest root of the equation Q4(x) = 0). This majorant property of Vx⋆
4

can be

explained using (4.4.1)-(4.4.2) and the result of Lemma 4.3.3 as follows

Vx⋆
4
(x) = sup

τ∈T[0,∞]

Ex

(
e−qτ (X+

τ )n1(τ<∞)

)
{by (4.4.1) and (4.4.2)}

≥ Ex

(
e−qτ+

y (X+

τ+
y

)n1(τ+
y <∞)

)

= Ex

(
Qn(Xeq

)1(Xeq >y)

)
{by Lemma 4.3.3}

= Vy(x).

For the spectrally negative compound Poisson process X (4.5.1), we observe from

Figures 4.2-4.3 that the continuous pasting condition Vy(x) = (x+)4 holds at point

x = y, for any y ≥ 0. This is because by evaluating the candidate solution (4.5.4) at

the point x = y, we see that

Vy(x) = (x+)4 − P(Xeq
= 0)Q4(x) at x = y. (4.5.5)
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Hence, since P(Xeq
= 0) = 0 for this process (see the expression (4.5.2)) we obtain

following (4.5.5) that Vy(x) = (x+)4 at the point x = y of any stopping boundary

y ≥ 0. In addition, we observe also from Figures 4.2 and 4.3 that the smooth pasting

condition d
dxVy(x) = d

dx(x+)4 only holds at the point x = y of the optimal boundary

y = x⋆
4. In view of Theorem3 4.2.3, this observation is obvious following the fact that

P(Xeq
= 0) = 0 for this process. Thus, our claim in Theorem 4.2.3 is then verified.

In contrast to the first two plots, we observe from Figures 4.4-4.5 that the candi-

date solution Vy(x) for the dual process X̂ satisfies the continuous pasting condition

Vy(x) = (x+)4 only at the point x = y of the optimal stopping boundary y = x⋆
4 (as

displayed in Figure 4.4) and exhibit negative jumps of magnitude P(X̂eq
= 0)Q4(y)

when y 6= x⋆
4 (as Figure 4.5 shows). This phenomenon is well understood following

the equation (4.5.5). Moreover, taking account of the fact that P(X̂eq
= 0) > 0 for

the dual process X̂ (see expression (4.5.3)), it is clear following Theorem 4.2.3 that

the smooth pasting condition d
dxVy(x) = d

dx(x+)4 does not hold at the point x = y of

the optimal stopping boundary y = x⋆
4 as illustrated in Figure 4.4.

To summarize, we have seen that all the numerical results obtained in this section

are found to be consistent with the main results of Section 2.

4.6 Concluding remarks

(i) As in Alili and Kyprianou [3] one can argue that the occurrence of continuous

pasting for irregularity and smooth pasting for regularity appear as a matter

of principle. The way to see this is to consider the candidate solutions (Vy , τ
+
y )

where τ+
y = inf{t ≥ 0 : Xt > y} and Vy(x) = Ex

(
Qn(Xeq

)1(Xeq >y)

)
. By varying

the value of y in (0,∞) one will find that, when there is irregularity, in general

there is a discontinuity of Vy at y (as illustrated in Figure 4.5) and otherwise

when there is regularity, there is always continuity at y (as Figure 4.5 displays).

In both cases, let C be the class of y > 0 for which Vy is lower bounded by

the gain and is superharmonic (it composes with X to make a supermartingale

when discounted at rate q). When there is irregularity, the choice of y = x∗n is

the unique point in C for which the discontinuity at y is closed and hence the

function Vy turns out to be pointwise minimal. When there is regularity, the

minimal curve indexed in C will occur by adjusting y so that the gradients either

side of y match which again turns out to be the unique value y = x∗n.

(ii) From arguments presented in Novikov and Shiryaev [91] together with the sup-

porting arguments given in this chapter, it is now clear how to handle the gain

function G(x) = 1 − ex+

for Lévy processes instead of random walks as well as

how to handle the pasting principles at the optimal boundary.

3See also Theorem 5.4.3 in Chapter 5.
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Chapter 5

An Approach for Solving Perpetual Optimal Stopping

Problems Driven by Lévy Processes1

Abstract

In this chapter, we propose an approach for solving perpetual optimal stop-

ping problems for a general class of payoff functions under Lévy processes. This

approach was inspired by the work of Boyarchenko and Levendorski [21]. In

contrast to [21], our approach does not appeal to a free boundary problem asso-

ciated to the optimal stopping problem nor to the theory of pseudodifferential

operators to solve the problem. Instead, we introduce an averaging problem from

which we obtain, using the Wiener-Hopf factorization, a fluctuation identity for

first passage of Lévy processes. This identity constitutes the main principle in

solving the optimal stopping problem. If a solution to the averaging problem

can be found and has certain monotonicity properties, we show using the fluc-

tuation identity that an optimal solution to the optimal stopping problem can

be written in terms of such a monotone function.

Using the optimal solution, we give sufficient and necessary condition for the

C1 smooth pasting condition to occur in the considered problem. Our conclusion

over the smooth pasting condition extends further the recent result of Alili and

Kyprianou [3] into a more general payoff function.

Furthermore, assuming that the moment generating function of the Lévy

process exists on an open set containing zero, we give an estimate for the value

function of the finite maturity American put option problem in terms of the

value function of the perpetual American put option problem.

5.1 Introduction and problem formulation

Let X = {Xt; t ≥ 0} be a Lévy process defined on a filtered probability space

(Ω,F , {Ft},P) satisfying the usual conditions, see Chapter 2 for more details. For

1This chapter is the extended version of: Surya, B. A. An approach for solving perpetual optimal

stopping problems driven by Lévy processes. To appear in Stochastics.
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5. An Approach for Solving Optimal Stopping

a given Lévy process X , we consider the following optimal stopping problem which

consists of finding the optimal value function

V (x) = sup
τ∈T[0,∞]

Ex

(
e−qτG(Xτ )1(τ < ∞)

)
, (5.1.1)

where G is a measurable function, and the supremum is taken over the class T[0,∞]

of Markov stopping times taking values in [0,∞] with respect to the filtration Ft =

σ(Xs, s ≤ t). We say that a stopping time τ⋆ is optimal if

V (x) = Ex

(
e−qτ⋆

G(Xτ⋆)1(τ⋆ < ∞)

)
. (5.1.2)

From general results for the optimal stopping problem of diffusion processes (see

for instance Shiryaev [113]), it is well-known that if the stopping time

τ⋆ = inf{t > 0 : Xt ∈ S}, (5.1.3)

where S is the stopping region in which the optimal value function V is equal to

the payoff G, is finite Px a.s. for any x ∈ R then under very general assumptions on

the payoff G it is optimal in the class T[0,∞] of Markov stopping times. Thus finding

such a stopping time τ⋆ completely determines the value function V in (5.1.1). For

diffusion processes, it was shown in Shiryaev and Grigelionis [55], van Moerbeke [86],

and Shiryaev [113] that the boundary ∂S of S is determined by using the smooth

pasting principle, and solving the optimal stopping problem (5.1.1) is then reduced to

solving a corresponding Stefan’s free boundary problem. However, when the sample

paths of X are not continuous, this smooth pasting principle may break down. This

observation over the breakdown of the smooth pasting was studied by Peskir and

Shiryaev in [96] for the problem of sequential testing for compound Poisson processes,

by Boyarchenko and Levendorskii in [21], Hirsa and Madan [59], Matache et al. [81],

Almendral and Oosterlee [4], and Alili and Kyprianou [3] for the problem of pricing

the American put option under a Lévy process, and Kyprianou and Surya [73] for

an American call-type optimal stopping problem with integer power function of Lévy

processes. (Note that in [21], [59], [81], and [4] the solution to the problem (5.1.1) was

obtained by solving the free boundary problem without imposing the smooth pasting

condition). Observe that even though the stopping time (5.1.3) characterizes the value

function V , it presents only qualitative features of the solution to the problem (5.1.1),

but it does not present an effective way of finding the value function or for constructing

the optimal stopping boundary explicitly.

In this chapter we propose an effective approach for solving the problem (5.1.1)

in a general setting. This approach was inspired by the work of Boyarchenko and

Levendorski [21] on perpetual American put-type optimal stopping problem for payoff

function with exponential growth under stable like Lévy processes. In contrast to [21],

our approach does not appeal to a free boundary problem associated to the problem

(5.1.1) nor to the theory of pseudodifferential operators to solve the problem. Instead,

48



5.1. Introduction and problem formulation

we introduce an averaging problem from which we obtain, using the Wiener-Hopf

factorization, a fluctuation identity for first passage of Lévy processes. This fluctuation

identity represents the main principle in obtaining an optimal solution to the problem

(5.1.1). This identity gives a generic link to some known identities which have been

used to solve the problem (5.1.1) for special payoff functions. See for instance Darling

et al. [33], Mordecki [87], Asmussen et al. [6], Alili and Kyprianou [3], Novikov and

Shiryaev [91], and Kyprianou and Surya [73]. If a solution to the averaging problem

can be found and has certain monotonicity properties, we show using the fluctuation

identity that an optimal solution to the problem (5.1.1) can be written explicitly in

terms of such monotone function.

Using our approach, we are able to reproduce the special results of those discussed

among others by Darling et al. [33], Mordecki [87], Boyarchenko and Levendorskii

[21], Alili and Kyprianou [3], Novikov and Shiryaev [91], and Kyprianou and Surya

[73]. Using the optimal solution to the problem (5.1.1), we show that the C1 smooth

pasting condition exists if and only if the optimal stopping boundary is regular for

the interior points of the stopping region for the Lévy process. But, in the case when

the optimal boundary is irregular for the interior points of the stoping region for the

Lévy process, we replace the principle of smooth pasting by a principle of continuous

pasting in determining the optimal boundary. Our observation on the smooth pasting

principle extends further the recent work of Alili and Kyprianou [3] and Kyprianou

and Surya [73], into a more general payoff function.

In addition, assuming that the moment generating function of a Lévy process

exists on an open set containing zero, we obtain an estimate for the value function

of the finite maturity American put option problem in terms of the value function of

the perpetual American put option problem. The estimate allows us to have a quick

access of information about an estimate of what the arbitrage-free price V (t, x) of the

finite maturity American put option would be at time t given the initial value x of

the stock price process.

The outline of this chapter is as follows. Building upon the Wiener-Hopf factor-

ization introduced in Chapter 2, we present in Section 2 an averaging problem and

fluctuation identity for first passage of Lévy processes which form the main principle

in obtaining an optimal solution to the problem (5.1.1) in a general setting. The result

is presented in Section 3. In Section 4, we discuss sufficient and necessary conditions

for the C1 smooth pasting to occur in the considered problem. In Section 5, we use our

approach to reproduce the results of the aforementioned authors. Section 6 presents

details of derivation of the main results of Sections 2-4. We exemplify in Section 7 the

main results by means of numerical examples for pricing the perpetual American put

and call options driven by tempered stable Lévy processes with downward jumps. The

estimate for the the arbitrage-free price of the finite maturity American put option is

given in Section 8. Finally, Section 9 concludes this chapter.
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5. An Approach for Solving Optimal Stopping

5.2 Preliminary results

Before establishing our general solution to the problem (5.1.1), we present in this

section our main tool needed to obtain the main results.

5.2.1 An averaging problem

Suppose that X is a Lévy process with the assumption that

either q > 0 or
(
q = 0 and P

(
lim inf
t→∞

Xt > −∞
)

= 1
)
. (H1)

The problem consists of finding a function P
(q)
G such that for a given continuous

function G and q ≥ 0, we have for every x ∈ R that

E

(
P

(q)
G

(
x+X

eq

))
= G(x). (5.2.1)

In general, this problem may or may not have a solution in the class Cb(R) of bounded

continuous functions f : R → R, and the solution of which may not necessarily be

unique.

However, there are examples for which the problem (5.2.1) is solved. We give below

some solutions to this problem for exponential, linear combination of exponential,

polynomials, and sufficiently regular functions.

In the sequel below let us remind ourself that X
eq

is a negative valued ran-

dom variable and therefore for a positive θ ∈ R we see that the Wiener-Hopf factor

Ψ
(−)
q (−iθ) = E

(
e

θX
eq

)
(see Section 2.2 of Chapter 2) is finite and, in particular, for

q = 0 it is strictly positive due to the assumption (H1) imposed on the Lévy process.

Example 5.2.1 (Exponential) Suppose that X is a Lévy process with property

(H1). Define, for a given θ ≥ 0, a function G(x) = eθx. Then, a solution to the

problem (5.2.1) is given for every x ∈ R by

P
(q)
G (x) =

eθx

Ψ
(−)
q (−iθ)

. (5.2.2)

It is clear to see for each q ≥ 0 and every x ∈ R that E
(
P

(q)
G (x +X

eq
)
)

= G(x).

Example 5.2.2 (Linear combination of exponential) Suppose that X is a Lévy

process with property (H1). Define, for a given m = 1, 2, · · · , a function G(x) =∑m
j=1 cje

θjx with θj ≥ 0. Then, a solution to the problem (5.2.1) is given for each

q ≥ 0 and every x ∈ R by

P
(q)
G (x) =

m∑

j=1

cj
eθjx

Ψ
(−)
q (−iθj)

, with θj ≥ 0. (5.2.3)

It is clear to see for each q ≥ 0 and every x ∈ R that E
(
P

(q)
G (x +X

eq
)
)

= G(x).
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Example 5.2.3 (Polynomials) Suppose that X is a Lévy process with property

(H1). Define, for a given n = 1, 2, · · · , a function G(x) = xn.

Let us consider the Esscher transform

eθx

E
(
e

θX
eq

) =

∞∑

n=0

θn

n!
Qn(x), with θ ≥ 0. (5.2.4)

In literature, Qn(x), n = 1, 2, · · · , are known as the Appell polynomials generated

by the random variable X
eq

. We refer to Schoutens [112] for more details. For the

polynomials xn, n = 1, 2, · · · , a solution to the problem (5.2.1) is given by

P
(q)
G (x) = Qn(x). (5.2.5)

Following the Esscher transform (5.2.4), it is not difficult to check that for each q ≥ 0

and every x ∈ R we have E
(
P

(q)
G (x +X

eq
)
)

= G(x).

Example 5.2.4 (Sufficiently regular function) Denote by R a subset of L1− in-

tegrable functions h : R → R within which the Fourier transform ĥ of h, defined by

ĥ(λ) =

∫ ∞

−∞

e−iλxh(x)dx, (5.2.6)

satisfies the integrability condition

∫ ∞

−∞

(
1 + |λ|3

)∣∣ĥ(λ)
∣∣dλ < ∞. (5.2.7)

From the fact that the function h and its Fourier transform ĥ are L1-integrable, every

function in R can be decomposed into the Fourier integral representation

h(x) =
1

2π

∫ ∞

−∞

eiλxĥ(λ)dλ. (5.2.8)

We refer to Rudin [109] for more details of discussion. We call throughout R as the

set of sufficiently regular functions. It is clear that the set R belongs to the class C3
b of

continuously differentiable functions bounded with its derivatives f j with j = 1, 2, 3

and contains the Schwartz class2 S(R) of rapidly decreasing functions and the class

C∞
0 of infinitely differentiable functions which tend to zero at infinity.

2If h is in the Schwartz class S(R) of rapidly decreasing functions, then using integration by

parts it can be checked straightforwardly from (5.2.6) that the function bh admits the estimate

|bh(λ)| ≤ C
`
(1+ |λ|)−N

´
, for C > 0, as λ −→ ∞ for any integer N = 1, 2, 3.... This is the reason that

the class S(R) is useful in studying Fourier transform since bh ∈ S(R) whenever h ∈ S(R). We refer

to Hörmander [61] for more details on general theory of Fourier integral operators.
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Lemma 5.2.5 Suppose that the Wiener-Hopf factor Ψ
(−)
q (λ) (2.2.6) is nowhere zero.

For a function G ∈ R and a fixed q > 0, the problem (5.2.1) has a unique solution

within the class of C1
b given for each q > 0 and every x ∈ R by

P
(q)
G (x) =

1

2π

∫ ∞

−∞

eiλx Ĝ(λ)

Ψ
(−)
q (λ)

dλ. (5.2.9)

The proof of this claim can be found in Section 6.

5.2.2 Fluctuation identity for first passage of Lévy processes

We present in this section a fluctuation identity for the first passage above or below

a certain level of a Lévy process. To a fixed level y ∈ R we associate the first strict

passage time τ−y (resp. τ+
y ) below (resp. above) y defined by

τ−y = inf{t > 0 : Xt < y} and τ+
y = inf{t > 0 : Xt > y}. (5.2.10)

The identity is stated as follows.

Lemma 5.2.6 Let X be a Lévy process under the hypothesis (H1). Suppose that P
(q)
G

solves the problem (5.2.1). Then for every x, y ∈ R such that x ≥ y, we have

Ex

(
e−qτ−

y G(Xτ−

y
)1(τ−

y < ∞)

)
= Ex

(
P

(q)
G (X

eq
)1(X

eq
<y)

)
. (5.2.11)

Proof The proof is mainly based on the fact that conditionally on Fτ−

y
and on the event

{eq > τ−y }, X
eq

−Xτ−

y
is independent of Fτ−

y
, and has the same distribution as X

eq
,

thanks to the lack of memory property of exponential random variable eq and the

stationary independent increment of X . Combined with the fact that the function

P
(q)
G solves the problem (5.2.1), we see that

Ex

(
P

(q)
G (X

eq
)1(X

eq
<y)

)
= Ex

(
P

(q)
G (X

eq
)1(eq>τ−

y )

)

= Ex

(
E
(
P

(q)
G (X

eq
)1(eq>τ−

y )

∣∣∣Fτ−

y

))

= Ex

(
1(eq>τ−

y )E
(
P

(q)
G (X

eq
)
∣∣∣Fτ−

y

))

= Ex

(
1(eq>τ−

y )E
(
P

(q)
G (X

eq
−Xτ−

y
+Xτ−

y
)
∣∣∣Fτ−

y

))

= Ex

(
1(eq>τ−

y )EX
τ
−

y

(
P

(q)
G (X

eq
−Xτ−

y
)
∣∣∣Fτ−

y

))

= Ex

(
1(eq>τ−

y )EX
τ
−

y

(
P

(q)
G (X

eq
)
))

= Ex

(
1(eq>τ−

y )G(Xτ−

y
)
)

= Ex

(
e−qτ−

y G(Xτ−

y
)
)
,

which indeed establishes our claim. �
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Example 5.2.7 Now let us consider, for a given θ ≥ 0, the function G(x) = eθx.

Then using (5.2.2), we deduce from the foregoing theorem that

Ex

(
e
−qτ−

y +θX
τ
−

y 1(τ−

y < ∞)

)
=

Ex

(
e

θX
eq 1(X

eq
<y)

)

E
(
e

θX
eq

) . (5.2.12)

This identity can be analytically extended to θ ∈ C with Re(θ) > 0. This particular

fluctuation identity goes back to the work of Darling et al. [33] for random walks,

and has been extended to continuous-time, among others, by Alili and Kyprianou [3],

Asmussen et al. [6], and Mordecki [87], and was used to solve the optimal stopping

problem (5.1.1) with payoff function G(x) = (K − ex)+.

By replacing X with its dual X̂ = −X and y with −y, the problem of first exit

above a level y for X can be transformed into the problem of first exit of X̂ below a

level −y. The following result is the dual form of Lemma 5.2.6.

Corollary 5.2.8 Let X be a Lévy process with the assumption that

either q > 0 or
(
q = 0 and P

(
lim sup

t→∞
Xt <∞

)
= 1

)
. (H2)

Suppose that for a given continuous function G and q ≥ 0, C
(q)
G solves the problem

E

(
C

(q)
G

(
x+Xeq

))
= G(x), for every x ∈ R. (5.2.13)

Then for every x, y ∈ R such that x ≤ y, we have

Ex

(
e−qτ+

y G(Xτ+
y

)1(τ+
y < ∞)

)
= Ex

(
C

(q)
G (Xeq

)1(Xeq >y)

)
. (5.2.14)

Apart from exponential, linear combination of exponential, polynomials, and suffi-

ciently regular functions, we provide here another example of solution to the problem

(5.2.13).

Example 5.2.9 (Appell functions with index ν < 0 and ν > 0) It was shown re-

cently by Novikov and Shiryaev [92] that it is possible to construct Appell functions

Qν(x) associated with the random variable Xeq
with index ν < 0 and ν > 0. What

we shall say below is based on [92]. The construction is based on the Esscher-Mellin

transform

C
(q)
G (x; ν) =

1

Γ(−ν)

∫ ∞

0

λ−ν−1 e−λx

E
(
e−λXeq

)dλ, for ν < 0. (5.2.15)

Following this, we see for x > 0 and ν < 0 that

dC
(q)
G

dx
(x; ν) =

ν

Γ(1 − ν)

∫ ∞

0

λ−ν e−λx

E
(
e−λXeq

)dλ = νC
(q)
G (x; ν − 1), (5.2.16)
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and (5.2.15) solves the problem (5.2.13) for G(x) = xν . That is to say

E

(
C

(q)
G (x +Xeq

; ν)
)

=
1

Γ(−ν)

∫ ∞

0

λ−ν−1 E
(
e−λ(x+Xeq )

)

E
(
e−λXeq

) dλ

= xν , for x > 0.

(5.2.17)

An analytical continuation of the function ν 7→ C
(q)
G (x; ν), ν < 0, to the region ν > 0

can be constructed with the help of (5.2.16), see Novikov and Shiryaev [92] for more

details. Thus, we see that the Appell function C
(q)
G (x; ν) is a solution to the problem

(5.2.13) for G(x) = xν .

Example 5.2.10 Let ζ = 1(q=0). Assume that the assumption (H2) holds and that

the Lévy measure Π satisfies the integrability condition

∫

(1,∞)

xn+ζΠ(dx) < ∞.

For a fixed n = 1, 2, · · · , let us consider a function G(x) = xn. Then using (5.2.15),

we deduce for every x ∈ R and n = 1, 2, · · · that

Ex

(
e−qτ+

y Xn
τ+

y
1(τ+

y < ∞)

)
= Ex

(
Qn(Xeq

)1(Xeq >y)

)
,

where Qn, n = 1, 2, · · · , are now the Appell polynomials generated by the random

variable Xeq
. This particular fluctuation identity goes back to the work of Darling et

al. [33] for random walks, and was used recently by Novikov and Shiryaev [91] and

Kyprianou and Surya [73] to solve the optimal stopping problem (5.1.1) with integer

power function G(x) = (x+)n of random walks and Lévy processes, respectively.

If the function P
(q)
G (resp. C

(q)
G ), solving the problem (5.2.1) (resp. (5.2.13)), has a

certain monotonicity property, using the fluctuation identity (5.2.11) (resp. (5.2.14)),

we will show in the next section that the optimal solution to the problem (5.1.1), with

payoff function G, can be written in terms of the function P
(q)
G (resp. C

(q)
G ).

5.3 General results on optimal stopping problems

In this section, we present a general solution to the perpetual optimal stopping prob-

lem (5.1.1). The solution is expressed in terms of the function P
(q)
G (resp. C

(q)
G ) that

solves the problem (5.2.1) (resp. (5.2.13)).

5.3.1 American put-type optimal stopping problems

A general solution to the problem (5.1.1) is given by the following theorem.
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Theorem 5.3.1 (General solution) Suppose that P
(q)
G is a continuous function

that solves the problem (5.2.1), and there exists x̂ ∈ R such that P
(q)
G (x̂) = 0, P

(q)
G (x)

is non-increasing for x < x̂, and P
(q)
G (x) ≤ 0 for x > x̂, under the assumption that

(H1) holds. Denote by x⋆ the smallest root of the equation

P
(q)
G (x) = 0. (5.3.1)

Then the optimal solution to the problem (5.1.1), with payoff G, is given by

Vx⋆(x) = E

(
P

(q)
G (x+X

eq
)1{x+X

eq
<x⋆}

)
, (5.3.2)

for every x ∈ R while the optimal stopping time is given by

τ−x⋆ = inf{t > 0 : Xt < x⋆}. (5.3.3)

That is to say that

Vx⋆(x) = sup
τ∈T[0,∞]

Ex

(
e−qτG(Xτ )1(τ < ∞)

)
= Ex

(
e−qτ−

x⋆G(Xτ−

x⋆
)1(τ−

x⋆ < ∞)

)
.

The result of the previous theorem still holds true while the payoff G is replaced

by the function G̃(x) = max{G(x), 0}. The following lemma establishes this claim.

Lemma 5.3.2 Let Ṽ (x) be the value function of the problem (5.1.1) under the payoff

function G̃(x) = max{G(x), 0}. Then for all x ∈ R, we see that V (x) = Ṽ (x).

To obtain the main result in Theorem 5.3.1, the following lemma is needed.

Lemma 5.3.3 (Candidate solution) Suppose that P
(q)
G is a continuous function

that solves the problem (5.2.1) and fulfills the requirements of Theorem 5.3.1. Define

for every y ∈ R and q ≥ 0 a candidate solution to the problem (5.1.1) as

Vy(x) , E

(
P

(q)
G (x+X

eq
)1{x+X

eq
<y}

)
. (5.3.4)

Let x⋆ be the smallest root of the equation (5.3.1). Then it holds true that

(i) for all x, y ∈ R such that x < y, we have

Vy(x) = G(x);

(ii) for any x ∈ R, we have

Vx⋆(x) ≥ G(x);

(iii) and {e−qtVx⋆(Xt), t ≥ 0} is a Px-supermartingale.

As a result of the optimality of the function Vx⋆ , we have the following result.
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Proposition 5.3.4 For every x, y ∈ R, it is then true that

Vx⋆(x) ≥ Vy(x); (5.3.5)

and if y < x⋆, then there exists x such that

Vy(x) < G(x). (5.3.6)

5.3.2 American call-type optimal stopping problems

By replacing X with its dual X̂ = −X and y with −y, the problem of first exit above

a level y for X can be transformed into the problem of first exit of X̂ below a level

−y. Thus, the results below are the obvious dual forms with respect to those achieved

previously for the American put-type optimal stopping problem.

Theorem 5.3.5 (General solution) Suppose that C
(q)
G is a continuous function

that solves the problem (5.2.13), and there exists x̂ ∈ R such that C
(q)
G (x̂) = 0, C

(q)
G (x)

is non-decreasing for x > x̂, and C
(q)
G (x) ≤ 0 for x < x̂, under the assumption that

(H2) holds. Denote by x⋆ the largest root of the equation

C
(q)
G (x) = 0. (5.3.7)

Then the optimal solution to the problem (5.1.1), with payoff G, is given by

Vx⋆(x) = E

(
C

(q)
G (x+Xeq

)1{x+Xeq >x⋆}

)
, (5.3.8)

for every x ∈ R while the optimal stopping time is given by

τ+
x⋆ = inf{t > 0 : Xt > x⋆}. (5.3.9)

That is to say that

Vx⋆(x) = sup
τ∈T[0,∞]

Ex

(
e−qτG(Xτ )1(τ < ∞)

)
= Ex

(
e−qτ+

x⋆G(Xτ+
x⋆

)1(τ+
x⋆ < ∞)

)
.

It can be shown in the similar way as before that the result of the previous theo-

rem still holds true when the payoff G is replaced by G̃(x) = max{G(x), 0}.

5.4 The continuous and smooth pasting principles

In this section, we discuss the behaviour of the candidate solution (5.3.4) of an Ameri-

can put-type optimal stopping problem at a stopping boundary y ∈ R. The behaviour

of the candidate solution Vy(x) = E
(
C

(q)
G (x+Xeq

)1{x+Xeq >y}

)
of an American call-

type optimal stopping problem can be obtained similarly.

Firstly, assume that the solution is evaluated at the optimal stopping boundary

x⋆ (5.3.1). Then we have the following results.

56



5.4. The continuous and smooth pasting principles

Theorem 5.4.1 Suppose that the functions G and P
(q)
G are continuously differen-

tiable. Then, the optimal value function (5.3.2) of the problem (5.1.1) is continuous

at the optimal stopping boundary x⋆, i.e.,

Vx⋆(x⋆) = G(x⋆),

and has the property that

dVx⋆

dx
(x⋆) =

dG

dx
(x⋆) − P

(
−X

eq
= 0)

dP
(q)
G

dx
(x⋆). (5.4.1)

Hence there is C1 smooth pasting at x⋆ if and only if

P(−X
eq

= 0) = 0,

that is when 0 is regular for the lower half-line (−∞, 0) for the Lévy process X.

The theory of Lévy processes offers the opportunity to specify when regularity of

0 for the lower half-line (−∞, 0) (resp. for the upper half-line (0,∞)) for the Lévy

process X occurs in terms of the triplet (µ, σ,Π) of the Lévy-Khintchine exponent

(2.1.1). When X has bounded variation, it will be more convenient to write (2.1.1) in

the form

Ψ(θ) = −idθ +

∫ ∞

−∞

(
1 − eiθx

)
Π(dx).

Theorem 5.4.2 (Regularity of half-line for Lévy processes) Suppose that X is

any Lévy process other than a compound Poisson process. Denote the upper and lower

tails Π
±

of the Lévy measure Π by

Π
+
(x) = Π((x,∞)), and Π

−
(x) = Π((−∞, x)).

We have that 0 is regular for (−∞, 0) (respectively, for (0,∞)) for X if and only if

one of the following conditions3 is satisfied:

(i) X has bounded variation with d < 0 (respectively, with d > 0).

(ii) X has bounded variation, d = 0, and the Lévy measure Π satisfies

∫ 0−

−1

|x|Π(dx)
∫ |x|

0 Π
+
(y)dy

= ∞,
(
respectively,

∫ 1

0

xΠ(dx)
∫ x

0 Π
−

(−y)dy
= ∞

)

(iii) X has unbounded variation.

On the other hand, when the candidate solution (5.3.4) to the problem (5.1.1) is

evaluated at a stopping boundary y ∈ R other than the optimal stopping boundary

x⋆ (5.3.1), we have the following results.

3See for instance [16], [3], [73], and the literature therein for more details on regularity of half-line

for Lévy processes.
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Theorem 5.4.3 Suppose that the functions G and P
(q)
G are continuously differen-

tiable. Let us denote by P
(−)
q (x) := P

(
− X

eq
≤ x

)
the distribution function of the

random variable −X
eq

. Consider the candidate solution (5.3.4) of the problem (5.1.1)

Vy(x) = E

(
P

(q)
G (x+X

eq
)1{x+X

eq
<y}

)
.

If the limit

p(−)
q (x) , lim

h↓0

1

h

(
P (−)

q (x + h) − P (−)
q (x)

)
(5.4.2)

exists for every x ∈ R, then we see at x = y that

Vy(y) = G(y) − P
(
−X

eq
= 0

)
P

(q)
G (y), (5.4.3)

and the derivative at x = y of the function Vy(x) is given by

dVy

dx
(y) =

dG

dx
(y) − P

(
−X

eq
= 0

)dP(q)
G

dx
(y) − p(−)

q (0)P
(q)
G (y). (5.4.4)

Hence, when y 6= x⋆ we see that there is discontinuity for the candidate solution

Vy(x) and its derivative at x = y when X is a Lévy process for which 0 is irregular

for (−∞, 0) for X. In the regular case, there is only discontinuity for the derivative.

Additionally, if |p
(−)
q (0)| = ∞, then there is an infinite gradient of the candidate

solution Vy(x) at the point x = y.

Below are examples of Lévy processes for which p
(−)
q (0) = ∞.

Lemma 5.4.4 Suppose that the Lévy measure Π of X has no atoms and Π(0,∞) = 0

so that the Laplace exponent of X exists and is given by

κ(λ) = −Ψ(−iλ) = dλ+
1

2
σ2λ2 +

∫

(−∞,0)

(
eλx − 1 − λx1{x>−1}

)
Π(dx).

For every q ≥ 0 the value of the limit (5.4.2) at zero is given by

p(−)
q (0) =





2q
σ2Φ(q) , when X has unbounded variation and σ 6= 0,

∞, when X has unbounded variation with σ = 0,

∞, when X has bounded variation and Π(−∞, 0) = ∞,
q(Π(−∞,0)+q)

d2Φ(q) − q
d , when X has bounded variation and Π(−∞, 0) <∞,

where Φ(q) = sup{λ : κ(λ) = q} is the largest root of the equation κ(x) − q = 0.
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Example 5.4.5 (Regular Lévy process of exponential type [21]) Suppose that

X is a regular Lévy process of exponential type4 with the Wiener-Hopf factor

Ψ(−)
q (λ) = C(α+ iλ)−β + f̂(λ), (5.4.5)

where α and C are positive constants, β ∈ (0, 1], and f̂(λ) = O((1+ |λ|)−s) as λ→ ∞

for some s > 1. Hence, f , the inverse Fourier transform of f̂ , is a bounded continuous

function. Since it is known that
∫ ∞

−∞

e−iλxxν−1e−αx1(0,∞)(x)dx = Γ(ν)(α + iλ)−ν , for ν > 0,

following the Wiener-Hopf factorization (2.2.6), discussed in Section 2.2 of Chapter

2, we deduce from equation (5.4.5) that the function

p(−)
q (x) = CΓ(β)−1xβ−1e−αx1(0,∞)(x) + f(x),

is continuous on (0,+∞) and is unbounded as x→ 0. On noticing the fact that p
(−)
q

represents the density of the distribution function P(−X
eq

≤ x), it is clear following

Theorem 5.4.3 that there exists an infinite gradient for the candidate solution Vy(x)

at a stopping boundary y, unless y = x⋆ or β = 1.

5.5 Consistency with existing literature

In this section, we use our approach to reproduce the special results of those discussed,

among others, by Darling et al. [33], Mordecki [87], Boyarchenko and Levendorskii [21],

Novikov and Shiryaev [91], [92], and Kyprianou and Surya [73].

Example 5.5.1 (Option with a relatively general payoff) In [21], Boyarchenko

and Levendorskii considered perpetual optimal stopping problems of American put

option type with a relatively general payoff function G of the form

G(x) =
m∑

j=1

cje
θjx, with θj ≥ 0, (5.5.1)

for a class of regular Lévy processes of exponential type which includes normal inverse

Gaussian, hyperbolic processes, tempered stable processes, and Variance Gamma pro-

cesses. Using the result (5.2.3) of Section 2.1, we see that the function

P
(q)
G (x) =

m∑

j=1

cjΨ
(−)
q (−iθj)

−1eθjx

4This is a process of pure jumps whose characteristic exponent is given for c > 0, κ− < 0 < κ+,

ν ∈ (0, 2] and ν1 < ν by Ψ(λ) = −iµλ + φ(λ) where φ(λ) = c|λ|ν + O(|λ|ν1) as λ → ∞ in the strip

Im(λ) ∈ [κ−, κ+]. This type of Lévy process was considered by Boyarchenko and Levendorskii [21].

They showed in [21] that under some regularity conditions imposed on φ(λ) the Wiener-Hopf factor

Ψ
(−)
q (λ) (2.2.6) is of the form (5.4.5).
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solves for a given q ≥ 0 and the payoff function G the averaging problem (5.2.1).

Denote by x⋆ the root of the equation P
(q)
G (x) = 0. Suppose that the measure P

(
−

X
eq

∈ dx
)

is absolutely continuous w.r.t the Lebesque measure dx. (This assumption

was used in Theorem 4.6 of [21] to prove the optimality of the stopping time τ−x⋆).

By applying Fourier transform, with Im(λ) = σ, for some σ > 0, to the optimal

value function (5.3.2), we come to rest at the following expression

∫ ∞

−∞

e−iλxVx⋆(x)dx = ŵ(λ)Ψ(−)
q (λ), (5.5.2)

where ŵ(λ) is the Fourier transform, with Im(λ) = σ, for some σ > 0, of the function

x 7→ P
(q)
G (x)1(−∞,x⋆)(x) defined by

ŵ(λ) =

∫ ∞

−∞

e−iλx
P

(q)
G (x)1(−∞,x⋆)(x)dx.

The result in (5.5.2) was given by Boyarchenko and Levendorskii [21] (see Section

4.2 of [21]). They obtained the result by reducing the problem (5.1.1) using potential

theory of Lévy processes and Dynkin’s formula to a free boundary problem and solving

the latter using the standard theory of pseudodifferential operators.

Example 5.5.2 (Perpetual American put option) Let us consider an optimal

stopping problem (5.1.1) with the payoff function G(x) = K−ex under the hypothesis

(H1). Applying the result in (5.2.2), we see that P
(q)
G (x) = K −Ψ

(−)
q (−i)−1ex solves

the averaging problem (5.2.1) for a given q ≥ 0 and the payoff function G.

According to Theorem 5.3.1, the optimal stopping boundary y = x⋆ is determined

as the smallest root of the equation

0 = P
(q)
G (x) = K − Ψ(−)

q (−i)−1ex.

That is to say that ex⋆

= KΨ
(−)
q (−i) = KE

(
e

X
eq

)
. The rational price can be

calculated using the explicit pricing formula (5.3.2) and is given by

Vx⋆(x) = E

(
P

(q)
G (x+X

eq
)1{x+X

eq
<x⋆}

)

= E

((
K − Ψ(−)

q (−i)−1e
(x+X

eq
))

1{x+X
eq

<x⋆}

)

=
E
(
KE

(
e

X
eq

)
− e

(x+X
eq

))+

E
(
e

X
eq

) .

(5.5.3)

This expression for the rational price was given by Mordecki [87].

Example 5.5.3 (Perpetual American call option) Let us consider the optimal

stopping problem (5.1.1) with the payoff function G(x) = ex−K under the hypothesis

(H2). Similar to (5.2.2), it is clear that C
(q)
G (x) = Ψ

(+)
q (−i)−1ex − K solves the

averaging problem (5.2.13).
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According to Theorem 5.3.5, the optimal stopping boundary y = x⋆ is determined

as the largest root of the equation

C
(q)
G (x) = Ψ(+)

q (−i)−1ex −K = 0.

That is to say that ex⋆

= KΨ
(+)
q (−i) = KE

(
eXeq

)
. The rational price can be

calculated using the explicit pricing formula (5.3.8) and is given by

Vx⋆(x) = E

(
C

(q)
G (x+Xeq

)1{x+Xeq >x⋆}

)

= E

((
Ψ(+)

q (−i)−1ex+Xeq −K
)
1{x+Xeq >x⋆}

)

=
E
(
e(x+Xeq ) −KE

(
eXeq

))+

E
(
eXeq

) .

(5.5.4)

This solution was given by Darling et al [33] for random walks and by Mordecki in

[87] for continuous time.

Example 5.5.4 (Option with integer power function) This is a special type of

optimal stopping problem where the payoff is an integer power function G(x) = (x+)n,

n = 1, 2, ..., of the underlying process. For random walks, this problem was introduced

by Novikov and Shiryaev [91] and was extended to continuous time by Kyprianou and

Surya [73]. Similar to (5.2.15), it is clear for ν = n = 1, 2, ... that

C
(q)
G (x) = Qν(x).

According to Theorem 5.3.5, the optimal boundary y = x⋆ is determined as the

largest root of the equation Qn(x) = 0 and the optimal value function is given by

Vx⋆(x) = E

(
C

(q)
G (x+Xeq

)1{x+Xeq >x⋆}

)

= E

(
Qn(x+Xeq

)1{x+Xeq >x⋆}

)
.

This result is equal to the one given by Novikov and Shiryaev [91] for discrete time

and to the one in Kyprianou and Surya [73] for continuous time.

In particular, for n = 1, we have Q1(x) = x−E
(
Xeq

)
and the optimal boundary

is given by x⋆ = E
(
Xeq

)
. The optimal value function is given by

Vx⋆(x) = E

((
x+Xeq

− E
(
Xeq

))
1{x+Xeq >x⋆}

)

= E

(
x+Xeq

− E
(
Xeq

))+

.

This result was also given by Darling et al [33] for payoff function G(x) = x+ under

random walks.
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Remark 5.5.5 It was shown recently by Novikov and Shiryaev [92] that it is possible

to extend the result of Darling et al. [33] to the function xν , for ν < 0 and ν > 0, as a

payoff function of random walks and Lévy processes. Our results presented in Section

4 show no contradiction with their results for the case of Lévy processes.

Thus, we have seen that our results in Theorems 5.3.1 and 5.3.5 are consistent

with those provided in the above mentioned literature.

5.6 Proofs and main calculations

Proof of Lemma 5.2.5

Proving uniqueness of the solution

To see that (5.2.9) is the solution to the problem (5.2.1), let us first show that the

integral in (5.2.9) exists. Due to the regularity assumption (5.2.7) imposed on the

payoff function G, using the Wiener-Hopf factorization (2.2.5), we see for q > 0 that

∫ ∞

−∞

∣∣∣
Ĝ(λ)

Ψ
(−)
q (λ)

∣∣∣dλ =

∫ ∞

−∞

∣∣∣
Ψ

(+)
q (λ)Ĝ(λ)

Ψ
(−)
q (λ)Ψ

(+)
q (λ)

∣∣∣dλ

= q−1

∫ ∞

−∞

∣∣(q + Ψ(λ)
)∣∣∣∣Ψ(+)

q (λ)
∣∣∣∣Ĝ(λ)

∣∣dλ

≤ q−1

∫ ∞

−∞

∣∣(q + Ψ(λ)
)∣∣∣∣Ĝ(λ)

∣∣dλ

≤

∫ ∞

−∞

∣∣Ĝ(λ)
∣∣dλ+ q−1

∫ ∞

−∞

∣∣Ψ(λ)
∣∣∣∣Ĝ(λ)

∣∣dλ.

(5.6.1)

In view of (5.2.7), it is clear that the first integral in (5.6.1) is finite. To see that the

second integral is finite, we need to take account on the fact that

∣∣eiλx − 1 − iλx1{|x|≤1}

∣∣ ≤
1

2
|λ|2|x|21{|x|≤1} + 21{|x|>1},

which, following (2.1.1), implies that

∣∣Ψ(λ)
∣∣ ≤ µ|λ| +

1

2
|λ|2

(
σ2 +

∫

{|y|≤1}

|y|2Π(dy)
)

+ 2

∫

{|y|>1}

Π(dy),

where the Lévy measure Π satisfies the integrability condition
∫ ∞

−∞

(1 ∧ |y|2)Π(dy) < ∞.

On observing that
∫ ∞

−∞

|λ|
∣∣Ĝ(λ)

∣∣dλ =

∫

{|λ|≤1}

|λ|
∣∣Ĝ(λ)

∣∣dλ+

∫

{|λ|>1}

|λ|
∣∣Ĝ(λ)

∣∣dλ

≤

∫ ∞

−∞

∣∣Ĝ(λ)
∣∣dλ+

∫ ∞

−∞

|λ|3
∣∣Ĝ(λ)

∣∣dλ < ∞,
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and similarly ∫ ∞

−∞

|λ|2
∣∣Ĝ(λ)

∣∣dλ < ∞, (5.6.2)

we see that the integral in (5.2.9) is convergent in absolute value.

We move now to showing that the function (5.2.9) is the solution to the averaging

problem (5.2.1).

Taking account of the fact that every sufficiently regular function in R can be

decomposed as the Fourier integral representation (5.2.8), and the Wiener-Hopf factor

Ψ
(−)
q (λ) is nowhere zero, we see for every x ∈ R that

G(x) =
1

2π

∫ ∞

−∞

eiλxĜ(λ)dλ

=
1

2π

∫ ∞

−∞

eiλx
E
(
e

iλX
eq

) Ĝ(λ)

Ψ
(−)
q (λ)

dλ

= E

( 1

2π

∫ ∞

−∞

e
iλ(x+X

eq
) Ĝ(λ)

Ψ
(−)
q (λ)

dλ
)

= E

(
P

(q)
G (x+X

eq
)
)
,

where the third equality was obtained by applying (in view of the integrability con-

ditions (5.6.1)-(5.6.2)) Fubini’s theorem.

Proving boundedness and continuous differentiability

Following (5.6.1)-(5.6.2), it is clear that the function P
(q)
G (x) is bounded in R. To see

that the function P
(q)
G (x) is continuous in R, let us take a ∈ R and ǫ > 0 arbitrarily

such that for the chosen ǫ > 0 there exists an R > 1 such that

∫ −R

−∞

∣∣∣
Ĝ(λ)

Ψ
(−)
q (λ)

∣∣∣dλ <
ǫ

10
and

∫ ∞

R

∣∣∣
Ĝ(λ)

Ψ
(−)
q (λ)

∣∣∣dλ <
ǫ

10
. (5.6.3)

The existence of such an R is guaranteed by the fact that the integral (5.6.1) is finite.

For such an R, we see for all x ∈ R that

∣∣∣
∫ −R

−∞

Ĝ(λ)

Ψ
(−)
q (λ)

eiλxdλ
∣∣∣ ≤

∫ −R

−∞

∣∣∣
Ĝ(λ)

Ψ
(−)
q (λ)

∣∣∣
∣∣∣ cos(λx)

∣∣∣dλ+

∫ −R

−∞

∣∣∣
Ĝ(λ)

Ψ
(−)
q (λ)

∣∣∣
∣∣∣ sin(λx)

∣∣∣dλ

≤ 2

∫ −R

−∞

∣∣∣
Ĝ(λ)

Ψ
(−)
q (λ)

∣∣∣dλ <
ǫ

5
.

Likewise, following the similar arguments, we see that

∣∣∣
∫ ∞

R

Ĝ(λ)

Ψ
(−)
q (λ)

eiλxdλ
∣∣∣ <

ǫ

5
.
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Hence, following (5.2.9), we see that

∣∣∣P(q)
G (x) − P

(q)
G (a)

∣∣∣ =
∣∣∣
∫ ∞

−∞

( Ĝ(λ)

Ψ
(−)
q (λ)

)
eiλxdλ−

∫ ∞

−∞

( Ĝ(λ)

Ψ
(−)
q (λ)

)
eiλadλ

∣∣∣

<
4ǫ

5
+

∣∣∣
∫ R

−R

( Ĝ(λ)

Ψ
(−)
q (λ)

)
eiλxdλ−

∫ R

−R

( Ĝ(λ)

Ψ
(−)
q (λ)

)
eiλadλ

∣∣∣

≤
4ǫ

5
+

∫ R

−R

∣∣∣
Ĝ(λ)

Ψ
(−)
q (λ)

∣∣∣
∣∣∣ cos(λx) − cos(λa)

∣∣∣dλ

+

∫ R

−R

∣∣∣
Ĝ(λ)

Ψ
(−)
q (λ)

∣∣∣
∣∣∣ sin(λx) − sin(λa)

∣∣∣dλ.

Let us now define

δ =
(
2R2

∫ R

−R

∣∣∣
Ĝ(λ)

Ψ
(−)
q (λ)

∣∣∣dλ
)−1 ǫ

10
.

Making use of the inequalities
∣∣ cos(λx) − cos(λa)

∣∣ ≤ 2
(
1 ∧ |λ(x− a)|2

)
,

and ∣∣ sin(λx) − sin(λa)
∣∣ ≤ 2

(
1 ∧ |λ(x − a)|

)
,

where a ∧ b = min{a, b}, it is easy to see for all x ∈ R, with |x− a| < δ, that

∫ R

−R

∣∣∣
Ĝ(λ)

Ψ
(−)
q (λ)

∣∣∣
∣∣∣ cos(λx) − cos(λa)

∣∣∣dλ <
ǫ

10
,

and ∫ R

−R

∣∣∣
Ĝ(λ)

Ψ
(−)
q (λ)

∣∣∣
∣∣∣ sin(λx) − sin(λa)

∣∣∣dλ <
ǫ

10
. (5.6.4)

Thus, combining the results of (5.6.3)-(5.6.4), we see for all x ∈ R, with |x − a| < δ,

that ∣∣∣P(q)
G (x) − P

(q)
G (a)

∣∣∣ < ǫ.

By replacing Ĝ(λ) with λĜ(λ) in (5.6.3)-(5.6.4) we see that

∫ ∞

−∞

∣∣∣
λĜ(λ)

Ψ
(−)
q (λ)

∣∣∣dλ < ∞, (5.6.5)

and therefore the function
dP

(q)
G

dx is bounded in R. Taking account of the condition

(5.6.5), it can be shown following the similar steps as before that

∣∣∣
dP

(q)
G

dx
(x) −

dP
(q)
G

dx
(a)

∣∣∣ < ǫ,

for all x ∈ R with |x−a| < δ. Thus, our claim that the function P
(q)
G and its derivative

dP
(q)
G

dx are both continuous and bounded in R is then proved. �
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Proof of Lemma 5.3.3

To establish the results, let us recall that the function P
(q)
G solves the problem (5.2.1)

and our notation for the first passage time below a level y of X is given by

τ−y = inf
{
t > 0 : Xt < y

}
.

Proof of (i)-(iii)

(i) Let us now consider the function (5.3.4):

Vy(x) = E

(
P

(q)
G (x+X

eq
)1{x+X

eq
<y}

)
. (5.6.6)

Since X
eq

≤ 0 almost surely, it is obvious from equations (5.6.6) and (5.2.1) that

Vy(x) = G(x) for all x, y ∈ R such that x < y.

(ii) Majorant property We want to show that the function Vx⋆(x) (5.3.2) is

majorant to the payoff function G(x), namely Vx⋆(x) ≥ G(x) for every x ∈ R.

On noticing the fact that P
(q)
G (x) ≤ 0 for all x ≥ x⋆, we see for each q ≥ 0 and

every x ∈ R that

Vx⋆(x) = E

(
P

(q)
G (x+X

eq
)1{x+X

eq
<x⋆}

)

= E

(
P

(q)
G (x+X

eq
)
)

− E

(
P

(q)
G (x+X

eq
)1{x+X

eq
≥x⋆}

)

≥ E

(
P

(q)
G (x+X

eq
)
)

= G(x),

where the inequality is due to the fact that P
(q)
G (x) ≤ 0 for all x ≥ x⋆, while the last

equality is based on the fact that P
(q)
G solves the problem (5.2.1). Thus, the claim

that the function Vx⋆ is majorant to the payoff function G is then proved.

(iii) Supermartingale property Let us now show that the function Vx⋆ (5.3.2)

has the supermartingale property. The proof is obtained by noticing the fact that

conditionally on the event {eq > t}, the following identity

X
eq

= Xt ∧ (I +Xt)

holds, and conditionally on the filtration Ft, the random variable I has the same

distribution as X
eq

. Following this and the fact that the function x 7→ P
(q)
G (x) is
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non-increasing on the interval (−∞, x⋆], we see for every q ≥ 0 that

Vx⋆(x) = Ex

(
P

(q)
G (X

eq
)1{X

eq
<x⋆}

)

= Ex

(
E
(
P

(q)
G (X

eq
)1{X

eq
<x⋆}

∣∣∣Ft

))

≥ Ex

(
1{eq>t}E

(
P

(q)
G (Xt + I)1{Xt+I<x⋆}

∣∣∣Ft

))

= Ex

(
1{eq>t}EXt

(
P

(q)
G (X

eq
)1{X

eq
<x⋆}

))

= Ex

(
1{eq>t}Vx⋆(Xt)

)

= Ex

(
e−qtVx⋆(Xt)

)
.

Thus, the supermartingale property of the process {e−qtVx⋆(Xt), t ≥ 0} is established.

�

Proof of Theorem 5.3.1

The proof of the theorem is mainly based on the fluctuation identity (5.2.11), the

majorant and supermartingale properties of the function Vx⋆ (5.3.2), see Lemma 5.3.3.

On noticing the fact that τ is arbitrary in T[0,∞] and the function Vx⋆ is lower bounded

by the payoff G and has the supermartingale property, we see for every x ∈ R that

Vx⋆(x) ≥ sup
τ∈T[0,∞]

Ex

(
e−qτVx⋆(Xτ )1(τ < ∞)

)
≥ sup

τ∈T[0,∞]

Ex

(
e−qτG(Xτ )1(τ < ∞)

)
.

On the other hand, rather trivially, we have for every x ∈ R that

sup
τ∈T[0,∞]

Ex

(
e−qτG(Xτ )1(τ < ∞)

)
≥ Ex

(
e−qτ−

x⋆G(Xτ−

x⋆
)1(τ−

x⋆ < ∞)

)
= Vx⋆(x),

where the equality is due to the fluctuation identity (5.2.11).

Thus, all the inequalities are equalities and hence

Vx⋆(x) = sup
τ∈T[0,∞]

Ex

(
e−qτG(Xτ )1(τ < ∞)

)
= Ex

(
e−qτ−

x⋆G(Xτ−

x⋆
)1(τ−

x⋆ < ∞)

)
.

Thus, the value function V (x) of the optimal stopping problem (5.1.1) coincides for

every x ∈ R with the function Vx⋆(x), and the optimal stopping time is given by

τ−x⋆ . Thus, the claim that the function Vx⋆(x) (5.3.2) is the optimal solution to the

problem (5.1.1) is then proved. �

Proof of Proposition 5.3.4

The proof that the candidate solution Vy(x) (5.3.4) satisfies the first claim (5.3.5)

follows from applying the results of Lemma 5.2.6 and Theorem 5.3.1.

66



5.6. Proofs and main calculations

The proof of the other claim (5.3.6) is established as follows. Following the as-

sumption (H1) imposed on X , we see for a fixed y ∈ R that

lim
x→∞

Vy(x) = lim
x→∞

E

(
P

(q)
G (x+X

eq
)1(X

eq
<y−x)

)
= 0.

Notice also that the function Vx⋆(x) (5.3.2) is lower bounded for every x ∈ R by the

payoff function G(x), and for y < x⋆ we have that 0 ≤ Vy(x) < Vx⋆(x) for every

x ∈ R. Taking into account of the fact that Vy(x) = G(x) for every x < y, we see that

there exists x ∈ R such that for each y < x⋆ we have Vy(x) < G(x). Thus, the claim

that the candidate solution Vy(x) (5.3.4) satisfies the inequalities (5.3.5) and (5.3.6)

is then proved. �

Proof of Lemma 5.3.2

Let Ṽ be the optimal value function of the problem (5.1.1) under the payoff function

G̃(x) = max{G(x), 0}. Since G̃(x) ≥ G(x) for all x ∈ R, we see that

Ṽ (x) = sup
τ∈T[0,∞]

Ex

(
e−qτ G̃(Xτ )

)
≥ sup

τ∈T[0,∞]

Ex

(
e−qτG(Xτ )

)
= Vx⋆(x). (5.6.7)

However, following the positivity of the optimal value function Vx⋆ and the majorant

property of Vx⋆ over the payoff G, it is straightforward to verify that Vx⋆(x) ≥ G̃(x)

for all x ∈ R. Thus, from the supermartingale property of Vx⋆ , we then obtain

Vx⋆(x) ≥ sup
τ∈T[0,∞]

Ex

(
e−qτVx⋆(Xτ )

)
≥ sup

τ∈T[0,∞]

Ex

(
e−qτ G̃(Xτ )

)
= Ṽ (x).

Hence, combining with the inequality (5.6.7), our claim is then established. �

Proof of Theorem 5.4.3

In this section, we provide details of calculations for the proof of Theorem 5.4.3. By

evaluating the candidate solution Vy(x) (5.3.4) at the point x = y, we have

Vy(y) = G(y) − P
(
−X

eq
= 0

)
P

(q)
G (y). (5.6.8)

Since P
(q)
G (y) 6= 0, it is clear from the foregoing relation above that Vy(y) 6= G(y)

whenever P
(
−X

eq
= 0

)
> 0, the case where 0 is irregular for (−∞, 0) for X .

The other claim is achieved as follows. Since the function P
(q)
G solves the problem

(5.2.1), the candidate solution Vy(x) (5.3.4) can be rewritten as follows

Vy(x) = G(x) − Hy(x), (5.6.9)

where the function Hy(x) is defined for every x ∈ R by

Hy(x) = E

(
P

(q)
G (x+X

eq
)1(x+X

eq
≥y)

)
.
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The proof will be done once we show that

dHy

dx
(y) = P

(
−X

eq
= 0

)dP(q)
G

dx
(y) + p(−)

q (0)P
(q)
G (y).

After some algebra, we have

Hy(x) −Hy(y)

x− y
= E

((P
(q)
G (x +X

eq
) − P

(q)
G (y +X

eq
)

x− y

)
1(−X

eq
≤x−y)

)

+ E

(
P

(q)
G (y +X

eq
)
(1(−X

eq
≤x−y) − 1(−X

eq
=0)

x− y

))

+ E

(P
(q)
G (y +X

eq
)1(−X

eq
=0) − P

(q)
G (y)1(−X

eq
=0)

x− y

)
.

On noticing the fact that the third term is zero, the above expression now reduces to

Hy(x) −Hy(y)

x− y
= E

((P
(q)
G (x +X

eq
) − P

(q)
G (y +X

eq
)

x− y

)
1(−X

eq
≤x−y)

)

+ E

(
P

(q)
G (y +X

eq
)
(1(−X

eq
≤x−y) − 1(−X

eq
=0)

x− y

))
.

(5.6.10)

Since the functions G and P
(q)
G are assumed to be continuously differentiable, we see

using the Lebesque dominated convergence theorem that

Hy(x) −Hy(y)

x− y
−→ P

(
−X

eq
= 0

)dP(q)
G

dx
(y) + p(−)

q (0)P
(q)
G (y), (5.6.11)

as x ↓ y. Thus, following (5.6.9)-(5.6.11), we see that

dVy

dx
(y) =

dG

dx
(y) − P

(
−X

eq
= 0

)dP(q)
G

dx
(y) − p(−)

q (0)P
(q)
G (y). (5.6.12)

Hence, while y 6= x⋆, we see that there is discontinuity at x = y for the candidate

solution Vy(x) and its derivative when X is a Lévy processes for which 0 is irregular

for (−∞, 0) for X . In the regular case, there is only discontinuity for the derivative

when p
(−)
q (0) 6= 0. The infinite gradient only exists if and only if |p

(−)
q (0)| = ∞. �

Proof of Theorem 5.4.1

Following (5.6.12) above, we see at y = x⋆ that

dVx⋆

dx
(x⋆) =

dG

dx
(x⋆) − P

(
−X

eq
= 0

)dP(q)
G

dx
(x⋆) − p(−)

q (0)P
(q)
G (x⋆).

Since the optimal stopping boundary x⋆ solves the equation P
(q)
G (x) = 0, we see

following the previous equation that

dVx⋆

dx
(x⋆) =

dG

dx
(x⋆) − P

(
−X

eq
= 0

)dP(q)
G

dx
(x⋆).

Hence, the smooth pasting condition holds if and only if P
(
−X

eq
= 0

)
= 0. �
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Proof of Lemma 5.4.4

From Section 2.3 of Chapter 2, we see that by applying integration by part to (2.3.3)

the Stieltjes measure dP
(
−X

eq
≤ x

)
, associated to the function P

(
−X

eq
≤ x

)
, can

be written in terms of the q-scale function W (q)(x), defined in (2.3.4), as

dP
(
−X

eq
≤ x

)
=

q

Φ(q)
dW (q)(x) − qW (q)(x)dx. (5.6.13)

By defining P
(−)
q (x) = P

(
−X

eq
≤ x

)
, we have from (5.6.13) that

P (−)
q (x) = P

(
−X

eq
= 0

)
+

q

Φ(q)

(
W (q)(x) −W (q)(0)

)
− q

∫ x

0

W (q)(y)dy.

Therefore, following (5.4.2) we see that

p(−)
q (0) = lim

h↓0

1

h

(
P (−)

q (h) − P (−)
q (0)

)

=
q

Φ(q)
lim
h↓0

1

h

(
W (q)(h) −W (q)(0)

)
− q lim

h↓0

1

h

∫ h

0

W (q)(y)dy

=
q

Φ(q)

dW (q)

dx
(0+) − qW (q)(0),

where the last equality is due to the fact that the Lévy measure has no atoms so that

the q-scale function W (q)(x) is differentiable (we refer to Lambert [75] and Chan and

Kyprianou [28]) and, hence, a right derivative at zero of W (q)(x) exists. Using the

result of Lemma 2 in Section 6.4 of Chapter 6, our claim is then proved. �

5.7 Numerical examples: the arbitrage-free pricing of American options

under tempered stable processes with downward jumps

In this section we verify our main results in Theorems 5.3.1 and 5.3.1 for the optimal

stopping problem (5.1.1) with payoffs (K−ex)+ and (ex−K)+ under tempered stable

processes with no positive jumps, so its Lévy measure Π has support in (−∞, 0].

5.7.1 Tempered stable processes with downward jumps

A tempered stable process is obtained by taking a one-dimensional stable process and

multiplying the Lévy measure with a decreasing exponential on each half of the real

axis. This exponential softening keeps the initial stable-like behaviour whereas the

large jumps become much less heavy tailed. A tempered stable process is thus a Lévy

process with no Gaussian component and a Lévy measure of the form

Π(dx) = C
e−λ|x|

|x|1+α
1{x<0}dx (5.7.1)
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where C > 0, λ > 0 and α < 2. Unlike the case of stable processes, which can only

be defined for α > 0, in the tempered stable process there is no natural lower bound

on α and the expression in (5.7.1) yields a Lévy measure for α < 2. In fact, taking

negative values of α we obtain compound Poisson models with a rich structure. We

refer among others to Cont and Tankov [32] for more details. It is clear that tempered

stable process is of compound Poisson type if α < 0 and has paths of bounded

variation if α < 1. Because of exponential decay of the tails of the Lévy measure, it

is then more convenient to work with tempered stable process without truncation of

big jumps. To compute the Laplace exponent, we consider the case that α 6= 1 and

α 6= 0. The integration maybe performed in the following way:
∫ ∞

0

(
e−θx − 1 + θx

) e−λx

x1+α
dx =

∞∑

n=2

(−θ)n

n!

∫ ∞

0

xn−1−αe−λxdx

=
∞∑

n=2

(−θ)n

n!
λα−nΓ(n− α)

= λαΓ(−α)
{(

1 +
θ

λ

)α

− 1 −
θα

λ

}
. (5.7.2)

Note that interchanging the sum and integral and the convergence of the power series

are possible if |θ| < λ. By analytic continuation, it is clear that the expression (5.7.2)

exists for all values of θ such that Re(θ) < λ.

Performing similar calculation for the case α = 1, we obtain
∫ ∞

0

(
e−θx − 1 + θx

) e−λx

x1+α
dx = −θ + (λ+ θ) log

(
1 +

θ

λ

)
,

and for α = 0, we have
∫ ∞

0

(
e−θx − 1 + θx

) e−λx

x1+α
dx =

θ

λ
+ log

( λ

λ+ θ

)
.

Following the Lévy-Khintchine formula, the Laplace exponent κ of a tempered stable

process having no positive jumps is given by the following proposition.

Proposition 5.7.1 Let X be a tempered stable process having no positive jumps. In

the general case (α 6= 1 and α 6= 0) the Laplace exponent of X is given by

κ(θ) =µθ + Γ(−α)λαC
{(

1 +
θ

λ

)α

− 1 −
θα

λ

}
. (5.7.3)

If α = 1, then

κ(θ) = (µ− C)θ + C(λ + θ) log
(
1 +

θ

λ

)
, (5.7.4)

and if α = 0, then

κ(θ) =µθ − C
{
−
θ

λ
+ log

(
1 +

θ

λ

)}
. (5.7.5)
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(a) Tempered stable process with α = 0.5.
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(b) Tempered stable process with α = 1.5

Figure 5.1: Numerical plots of the scale functionW (q)(x) for tempered stable processes

of bounded and unbounded variations.
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(a) Tempered stable process with α = 0.5.
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(b) Tempered stable process with α = 1.5

Figure 5.2: Numerical plots of the derivative of the scale functionW (q)(x) for tempered

stable processes of bounded and unbounded variations.

5.7.2 The rational price of perpetual American options

5.7.2.1 Perpetual American put option

Let us now consider the perpetual American put option problem

V (x) = sup
τ∈T[0,∞]

Ex

(
e−qτ

(
K − eXτ

)+
1(τ<∞)

)
, (5.7.6)

under the hypothesis that (H1) holds. To get a better understanding of the prob-

lem (5.7.6) both analytically and numerically, let us consider, for a given stopping

boundary y ≥ 0, a candidate solution Vy(x) to the problem (5.7.6) defined by

Vy(x) = E

([
K − Ψ(−)

q (−i)−1e
x+X

eq

]
1{x+X

eq
<y}

)
.
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In the sequel below we write V (x; y) , Vy(x). Using the measure (2.3.5), we can

rewrite the function V (x; y) explicitly in terms of the q-scale function5 W (q) as

V (x; y) = K − ex + 1{x≥y}

( (κ(1) − q)

(1 − Φ(q))
ey −K

q

Φ(q)

)
W (q)(x− y)

+ (κ(1) − q)ex1{x≥y}

∫ x−y

0

e−zW (q)(z)dz +Kq1{x≥y}

∫ x−y

0

W (q)(z)dz.

(5.7.7)

Let us now define for each q ≥ 0 a function

WΦ(q)(x) := e−Φ(q)xW (q)(x), (5.7.8)

where Φ(q) is the largest root of the equation κ(θ) = q. Due to the convexity of the

Laplace exponent κ, there exists at most two solutions for a given q and precisely

one root when q > 0. As will be shown later in Chapters 6 and 7, the scale function

WΦ(q)(x) is increasing and corresponds to the role of the scale function W (0)(x) when

X is taken under the measure PΦ(q) defined by the Esscher transform

dPΦ(q)

dP

∣∣∣
Ft

= eΦ(q)Xt−qt for all t ≥ 0.

Using the transformation (5.7.8) in (5.7.7) and varying the value of the stopping

boundary y in the interval (−∞, x], we obtain after some calculations that

dV

dy
(x; y) = −

( (κ(1) − q)

(1 − Φ(q))
ey −K

q

Φ(q)

)
eΦ(q)(x−y)W ′

Φ(q)(x− y)1{x≥y}.

Next, let us define x⋆ = log
(
K q

Φ(q)
(1−Φ(q))
(κ(1)−q)

)
, i.e., x⋆ = log

(
KE(e

X
eq )

)
. Since the

scale function WΦ(q)(x) is increasing, we see from the foregoing expression that

dV

dy
(x; y) > (<) 0 for y < (>) x⋆ and

dV

dy
(x;x⋆) = 0.

Hence, we deduce that y = x⋆ is the level at which the candidate function x 7→ V (x; y)

attains its maximum value. As explained previously in Section 3, it is known that

the level y = log(KE(e
X

eq )) corresponds to the optimal stopping boundary for the

optimal stopping problem (5.7.6) and the function V (x;x⋆) coincides for every x ∈ R

with the value function V (x) of the problem (5.5.3).

Furthermore, by evaluating (5.7.7) at the point x = y, we see that

V (y; y) = K − ey +
( (κ(1) − q)

(1 − Φ(q))
ey −K

q

Φ(q)

)
W (q)(0), (5.7.9)

while its derivative at x = y is defined by

dV

dx
(y; y) = − ey +

( (κ(1) − q)

(1 − Φ(q))
ey −K

q

Φ(q)

)dW (q)

dx
(0)

+
(
(κ(1) − q)ey +Kq

)
W (q)(0).

(5.7.10)

5Using excursion theory of spectrally negative Lévy processes, Avram et al [7], Pistorius [101]

obtained the expression (5.7.7) as the candidate solution to the problem (5.7.6).
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Thus, discontinuity or infinite gradient of the function V (•; y) only exists if

W (q)(0) 6= 0 or
dW (q)

dx
(0) = ∞,

respectively. The latter happens when 0 is regular for (−∞, 0) for X with zero Gaus-

sian component and X has paths of bounded variation with Π(−∞, 0) = ∞, see

Lemma 5.4.4. Therefore, following (5.7.9) and (5.7.10), we observe that the optimal

value function V (x) is continuous at the point x = x⋆ and there exists smooth pasting

if and only if W (q)(0) = 0, the case when 0 is regular6 for the lower half-line (−∞, 0)

for X .

5.7.2.2 Perpetual American call option

Let us now consider the perpetual American call option problem

V (x) = sup
τ∈T[0,∞]

Ex

(
e−qτ

(
eXτ −K

)+
1(τ<∞)

)
, (5.7.11)

under the hypothesis that (H2) holds. To obtain a better understanding of the prob-

lem (5.7.11) both analytically and numerically, let us consider, for a given stopping

boundary y ≥ 0, a candidate solution Vy(x) to the problem (5.7.11) defined by

Vy(x) = E

((
Ψ(+)

q (−i)−1ex+Xeq −K
)
1{x+Xeq >y}

)
. (5.7.12)

Again, we will write V (x; y) , Vy(x). Using the measure (2.3.1), the expression for

V (x; y) can be simplified further as

V (x; y) = ex −K +K
(
1 − e−Φ(q)(y−x)

)
1{y≥x}

+ ex
(
e−(Φ(q)−1)(y−x) − 1

)
1{y≥x}.

(5.7.13)

By varying the value of boundary y in the interval [x,∞), we obtain from (5.7.13)

that
dV

dy
(x; y) = −

(
(Φ(q) − 1)ey −KΦ(q)

)
e−Φ(q)(y−x)1{y≥x}.

By defining x⋆ = log
( KΦ(q)

(Φ(q)−1)

)
, i.e., x⋆ = log(KE(eXeq )), it is clear that

dV

dy
(x; y) > (<) 0 for y < (>) x⋆ and

dV

dy
(x;x⋆) = 0.

Hence, we deduce that y = x⋆ is the level at which the candidate function x 7→ V (x; y)

attains its maximum value. As explained previously in Section 3, it is known that

the level y = log(KE(eXeq )) corresponds to the optimal boundary for the stopping

6By applying integration by parts and a Tauberian theorem to the Laplace transforms (2.3.3)

and (2.3.4), it can be shown that P(−X
eq

= 0) = q

Φ(q)
W (q)(0).
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problem (5.7.11) and the function V (x;x⋆) coincides for every x ∈ R with the value

function V (x) of the optimal stopping problem (5.5.4).

Furthermore, by evaluating the expression (5.7.13) at the point x = y, we see that

V (y; y) = ey −K,

and the derivative at x = y of the value function V (x; y) is given by

dV

dx
(y; y) = ey − Φ(q)

(( Φ(q)

(Φ(q) − 1)

)−1
ey −K

)
.

On noticing the fact that ex⋆

= KΦ(q)
(Φ(q)−1) , we see that the candidate solution V (x; y)

obeys the smooth pasting condition at the stopping boundary y = x⋆. While y 6= x⋆,

we observe that there exists discontinuity at the point x = y for the derivative of the

candidate solution V (x; y) with no infinite gradient.

The results of numerical computation for the value functions V (x; y) (5.7.7) and

(5.7.13) of the perpetual American put and call option problems will be discussed in

more details in the section below. In particular, for the perpetual American put option,

the computation boils down to numerically produce the q-scale function {W (q)(x) :

q ≥ 0, x ∈ R+} of the Lévy process (X,P). Further details of the computation will be

elaborated in more details later in Chapter 7.

5.7.3 Numerical results

This section deals with pricing the perpetual American put and call options (5.7.6)

and (5.7.11) on the stock price process St whose dynamics are given under a chosen

martingale measure P by an exponential Lévy process

St(x) = xeXt . (5.7.14)

We assume that a default-free asset exists that pays a continuous interest rate r > 0

and denote by δ the total payout rate of dividend. Furthermore, we assume under

the measure P that the discounted stock price process e−(r−δ)tSt(x) is P-martingale

which implies that

E

(
e−(r−δ)tSt(x)

)
= x. (5.7.15)

For the purpose of numerical computation, we use generalized tempered stable process

for X whose Laplace exponent is given in Proposition 5.7.1. The numerical compu-

tation is carried out using MATLAB6.5. The parameter setting for interest rate r,

dividend rate δ, the strike value K, and the jump rate λ are set to be 0.1, 0.07, 10,

and 2.5, respectively. In the case where X has path of bounded variation we choose

α = 0.5 and the relative frequency of downward jumps C to be 0.075. In the case of

unbounded variation X , we set α = 1.5 and C = 0.05 and the other parameters have

the same value. The drift in the Laplace exponent κ is chosen so that the martingale

condition (5.7.15) is satisfied.
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Figure 5.3: The shape of the rational price Vx⋆(x) of the American put option.
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Figure 5.4: The shape of the rational price Vx⋆(x) of the American call option.

We present in Figure 5.3 plots of the value function Vx⋆ (5.5.3) of the American

put option problem (5.7.6). From this figure, we observe that the value function

Vx⋆ satisfies the smooth pasting condition at the optimal stopping boundary x⋆ =

log(KE(e
X

eq )) for both Lévy processes, except for the case of α = 0.5. Since for this

case X has path of bounded variation with positive drift and hence 0 is irregular for

(−∞, 0) for X , we see from figure 5.3(b) that the smooth pasting condition does not

hold. All of the plots exhibit the general types of behaviour found recently by Hirsa

and Madan [59], Matache et al. [81], and Almendral and Oosterlee [4].

Figure 5.4 shows plots of the value function Vx⋆ (5.5.4) of the American call option
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Figure 5.5: The shape of a candidate solution Vy(x) of the American put option

problem for different values of stopping boundary y.
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Figure 5.6: The shape of a candidate solution Vy(x) for different values of stopping

boundary y of the American call option problem.

problem (5.7.11). From this figure, we observe for both Lévy processes that the value

function Vx⋆ satisfies the smooth pasting condition at the optimal stopping boundary

x⋆ = log(KE(eXeq )), the fact that follows from regularity of 0 for (0,∞) for both

Lévy processes (see Theorem 5.4.2 for more details).

Next in Figures 5.5(a) and 5.5(b) we present plots of the candidate solution

x 7→ Vy(x) (5.7.7) of the American put option problem (5.7.6) for different values

of stopping boundary y. From these figures we observe that Vy(x) = G(x) for every

x < y, Vx⋆ ≥ G(x) for all x ∈ R, and for y < x⋆ we see that there exists x such

that Vy(x) < G(x). These are the features specified previously in Lemma 5.3.3. In

particular, we observe from these figures that all of the curves Vy(x) are seen to be
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Figure 5.7: The shape of a candidate solution Vy(x) of the American put option

problem at x = y for y 6= x⋆.
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Figure 5.8: The shape of a candidate solution Vy(x) of the American call option

problem at x = y for y 6= x⋆.

upper bounded by the curve Vx⋆ of the value function (the one associated with the

stopping boundary x⋆ = log(KE(e
X

eq ))) (see Proposition 5.3.4). Hence, the claim

that x⋆ is the optimal stopping boundary is numerically justified.

Furthermore, In the irregular case of α = 0.5 we notice from Figure 5.5(b) that

the candidate solution Vy(x) exhibits a jump of size
( (κ(1)−q)

(1−Φ(q))e
y −K q

Φ(q)

)
W (q)(0) at

the point x = y, with y 6= x⋆. In the regular case of α = 1.5, we see from figures

5.5(a) that there is discontinuity only for the derivative of the candidate solution

Vy(x) at a stopping boundary y 6= x⋆; the smooth pasting only exists at the optimal

stopping boundary y = x⋆. Moreover, since the sample path ofX contains no Gaussian

component, we observe from Figure 5.7 that there exists an infinite gradient at a

stopping boundary y 6= x⋆ for the candidate solution Vy(x) of the American put
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option problem (5.7.6). The different behaviour of the (candidate) solution of the

problem (5.7.6) is the principle point of difference between the numerical results of

Hirsa and Madan [59], Matache et al. [81], and Almendral and Oosterlee [4] and

ours. In other respects, the results associated with the optimal boundary y = x⋆

are qualitatively similar. This numerical observation agrees with our claim stated

previously in Theorem 5.4.3.

In the final plot, Figure 5.6 displays numerical plots of the candidate solution

x 7→ Vy(x) (5.7.13) of the American call option problem (5.7.11) for various values of

stopping boundary y. All of the curves are seen to be dominated by the curve Vx⋆ of the

value function (the one associated with the stopping boundary x⋆ = log(KE(eXeq ))).

This is to say that x⋆ is indeed the optimal stopping boundary of the problem (5.7.11).

From the plots, we also observe that Vy(x) = G(x) for every x ≥ y, Vx⋆ ≥ G(x) for all

x ∈ R, and for y ≥ x⋆ we see that there exists x such that Vy(x) ≤ G(x). These are

the features specified by Lemma 5.3.3 in its dual form. In complement to the plots of

the candidate solution of the American put option problem (5.7.6), we observe that

there exists only discontinuity for the derivative of the curve Vy(x) with no infinite

gradient at the stopping boundary y 6= x⋆ (see Figure 5.8).

To summarize this section, we have shown that, by working with a completely

general spectrally negative Lévy process, it is possible to verify both analytically and

numerically the main results of Sections 3 and 4.

5.8 Connection to the finite maturity American put option problem

Let us now consider the finite maturity American put option problem

V (t, x) = sup
0≤τ≤t

E

(
e−ατ

(
K − Sτ (x)

)+
)

(5.8.1)

for α ≥ 0 and all (t, x) ∈ [0, T ] × R+, where τ is a stopping time of the stock price

process S whose dynamics are given under a measure P by

St(x) = xe(α+ω)t+Xt , (5.8.2)

where X is a Lévy process with X0 = 0 under the measure P.

We assume that the moment generating function

Ψ(θ) = t−1 log E(eθXt) exists on the interval (−η1, η2) with η1, η2 ≥ 1. (H3)

The discount rate α is chosen so that

α ≥ (Ψ(−1) + Ψ(1)). (H4)

Furthermore, we assume under the measure P that the discounted stock price process(
e−rtSt(x), t ≥ 0

)
is P-martingale, which implies that

E
(
e−αtSt(x)

)
= x.
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The latter condition requires the parameter ω in (5.8.2) to be equal to

ω = −t−1 log E(eXt) = −Ψ(1).

The problem of interest is to give an estimate for the value function V of the

problem (5.8.1) in terms of the rational price of the perpetual American put option.

Remark 5.8.1 For finite maturity optimal stopping problem with payoff function

G(x) = (x+)n, n = 1, 2, ... or G(x) = 1 − e−x+

for random walks, an estimate for the

value function V (5.8.1) was given recently by Novikov and Shiryaev in [91].

In the sequel below it should be understood that V (∞, x) corresponds to the value

function of the perpetual American put option problem (5.7.6) and will be written

simply by V (x). Next, let us define for a fixed level y ∈ R a first passage time under

the measure P of the stock price process S below a level ey:

τ−y = inf{t > 0 : St(x) ≤ ey}. (5.8.3)

Since the moment generating function Ψ(θ) of the underlying Lévy process is

assumed to exist on an open set containing zero, we have an estimate for the value

function of the finite maturity American put option problem (5.8.1) in terms of the

value function of the perpetual American put option problem (5.7.6). The result is

given by the following theorem.

Theorem 5.8.2 Suppose that the assumptions (H3) and (H4) are satisfied. Assume

that τ−b⋆ is the optimal stopping time for the perpetual optimal stopping problem asso-

ciated to (5.8.1). Then for each x ∈ R+ and all t > 0 we have the following estimate7

max
{
V (x) −Ke−(log(x)−b⋆) × e−(α−(Ψ(1)+Ψ(−1)))t, 0

}
≤ V (t, x) ≤ V (x). (5.8.4)

From (5.8.4) we obtain the asymptotic value for the value function V (t, x) as

lim
t↑∞

V (t, x) = V (x) for every x ∈ R.

and

lim
x↑∞

V (t, x) = 0 for every t ≥ 0.

The latter is quite straightforward from the equations (5.8.1) and (5.8.2), and from

the fact that limx↑∞ V (x) = 0 (see the proof of Proposition 1 and also Figure 5.5).

Proof Following (5.8.1), it is clear that V (t, x) ≥ 0 for all t ≥ 0 and every x ∈ R.

Moreover, by the nature of the increasing property of the function t 7→ V (t, x), we

see that

V (x) − V (t, x) ≥ 0 for all (t, x) ∈ [0, T ]× R+. (5.8.5)

7Note that the result in Theorem 5.8.2 can be extended to a non-negative bounded payoff function

G for which the problem (5.2.1) has a solution P
(q)
G

for each q ≥ 0 given.
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Furthermore, from the optimal stopping problem (5.8.1), we see for all Markov stop-

ping time τ , taking values in [0, t], that

V (t, x) ≥ E

(
e−ατ (K − Sτ (x))+1(τ ≤ t)

)

= E

(
e−ατ (K − Sτ (x))+1(τ <∞)

)
(5.8.6)

−E

(
e−ατ (K − Sτ (x))+1(t<τ<∞)

)
.

Since the level eb⋆

is assumed to be the optimal boundary for the perpetual coun-

terpart of the problem (5.8.1) with the associated stopping time τ−b⋆ , we see that

V (x) = E

(
e−ατ−

b⋆ (K − Sτ−

b⋆
(x))+1(τ−

b⋆ <∞)

)
.

Following the inequality (5.8.6), we then obtain

V (x) − V (t, x) ≤ E

(
e−ατ−

b⋆ (K − Sτ−

b⋆
(x))+1(t<τ−

b⋆<∞)

)

≤ KE

(
1(t<τ−

b⋆ <∞)

)

≤ KP(t < τ−b⋆ <∞).

The proof is completed once we show that

P(t < τ−b⋆ <∞) ≤ e−(log(x)−b⋆) × e−(α−(Ψ(1)+Ψ(−1)))t. (5.8.7)

To complete the proof, let us introduce the Esscher transform8:

dP̃

dP

∣∣∣
Ft

= e−Xt−Ψ(−1)t for all t ≥ 0.

Using this Esscher transform, we see that

P̃(t < τ−b⋆ <∞) = Ẽ

(
1(t<τ−

b⋆<∞)

)

= E

(
1(t<τ−

b⋆<∞)e
−X

τ
−

b⋆
−Ψ(−1)τ−

b⋆
)

≥ E

(
1(t<τ−

b⋆<∞)e
(log(x)−b⋆)+(α−Ψ(1))τ−

b⋆−Ψ(−1)τ−

b⋆

)

= E

(
1(t<τ−

b⋆<∞)e
(log(x)−b⋆)+(α−(Ψ(1)+Ψ(−1)))τ−

b⋆

)

≥ E

(
1(t<τ−

b⋆<∞)e
(log(x)−b⋆)+(α−(Ψ(1)+Ψ(−1)))t

)

= e(log(x)−b⋆)+(α−(Ψ(1)+Ψ(−1)))t
E

(
1(t<τ−

b⋆ <∞)

)

= e(log(x)−b⋆)+(α−(Ψ(1)+Ψ(−1)))t
P(t < τ−b⋆ <∞),

8The Esscher transform is by now standard methodology in mathematical insurance, gradually

however its appearance within mathematical finance is becoming more and more prominent, see for

instance Gerber and Shiu [54] and the references and discussions therein.
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which in turn leads to the inequality

P(t < τ−b⋆ <∞) ≤ e−(log(x)−b⋆)−(α−(Ψ(1)+Ψ(−1)))t
P̃(t < τ−b⋆ <∞).

Since P̃(t < τ−b⋆ < ∞) ≤ 1, the claim that the value function V (t, x) of the optimal

stopping problem (5.8.1)-(5.8.2) satisfies the bounds (5.8.4) is then established. �

5.9 Conclusion and remarks

We have presented in this chapter an effective approach for solving perpetual optimal

stopping problem (5.1.1) in a general setting. The approach is based on finding a

solution to an averaging problem from which we obtain, using the Wiener-Hopf fac-

torization, a fluctuation identity for first passage of Lévy processes. This fluctuation

identity constitutes the main principle in obtaining an optimal solution of (5.1.1).

This identity gives a generic link to some known identities used to solve the problem

(5.1.1) with special payoff G, see for instance Darling et al. [33], Mordecki [87], As-

mussen et al. [6], Alili and Kyprianou [3], Novikov and Shiryaev [91], and Kyprianou

and Surya [73]. If a solution to the averaging problem can be found and has certain

monotonicity properties, we showed that an optimal solution to the problem (5.1.1)

can be written in terms of such monotone function.

Using the proposed approach, we are able to reproduce the special results of those

discussed, among others, by Darling et al. [33], Mordecki [87], Boyarchenko and Lev-

endorski [21], Alili and Kyprianou [3], Novikov and Shiryaev [91], and Kyprianou and

Surya [73]. Using the optimal solution, we show that the C1 smooth pasting condition

holds if and only if the optimal stopping boundary is regular for the interior points

of the stoping region for the Lévy process. Our conclusion over the smooth pasting

condition extends further the recent work of Alili and Kyprianou [3] and Kyprianou

and Surya [73] into a more general payoff function.

Furthermore, this conclusion shows no contradiction to the current numerical

work, among others, of Hirsa and Madan [59], Matache et al.[81], and Almendral

and Oosterlee [4]. Furthermore, assuming that the moment generating exists on an

open set containing zero, we provided an upper and lower bounds for the value func-

tion of the finite maturity American put option problem in terms of the value function

of the perpetual American put option problem.

Throughout this chapter we have assumed that the optimal stopping time belongs

to a class of first passage times. This assumption boils down to computing the joint

Laplace transform of the time of first exit of Lévy process below a certain level and

its overshoot. It should also be possible to extend the problem (5.1.1) into the case

where the class of Markov stopping times have values in finite time interval [0, T ].

This problem amounts to solving the problem of first exit below a moving barrier for

the Lévy process and solving this problem will be a challenging task both theoretically

and numerically. We keep this task for possible future work.
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Chapter 6

Principles of Smooth and Continuous Fit in the

Determination of Endogenous Bankruptcy Levels1

Abstract

The purpose of this chapter is threefold. Firstly to revisit the previous works

of Leland [77], Leland and Toft [76] and Hilberink and Rogers [58] on optimal

capital structure and show that the issue of determining an optimal endogenous

bankruptcy level can be dealt with analytically and numerically when the under-

lying source of randomness is replaced by that of a general spectrally negative

Lévy process. Secondly, by working with the latter class of processes we bring

to light a new phenomenon, namely that, depending on the nature of the small

jumps, the optimal bankruptcy level may be determined by a principle of con-

tinuous pasting as opposed to the usual smooth pasting. Thirdly, we are able to

prove the optimality of the bankruptcy level according to the appropriate choice

of pasting. This improves on the results of Hilberink and Rogers [58] who were

only able to give a numerical justification for the case of smooth pasting. Our

calculations are greatly eased by the recent perspective on fluctuation theory of

spectrally negative Lévy processes in which many new identities are expressed

in terms of the so called scale functions.

6.1 Introduction

We consider the following model for a firm based on the earlier works of Leland [77],

Leland and Toft [76] and Hilberink and Rogers [58].

The firm is assumed to be partly financed by debt, whose maturity profile is kept

constant through time, by the simultaneous issue of new debt and retirement of old

debt. This debt is of equal seniority, and distributes a continuous stream of coupon

1This chapter is the extended version of: Kyprianou, A.E. and Surya, B. A. Principles of smooth

and continuous fit in the determination of endogenous bankruptcy levels. To appear in Finance and

Stochastics, Springer-Verlag.
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6. endogenous bankruptcy under Lévy processes

payment to bondholders in a fixed amount. From this the firm also receives tax benefits

which are also issued as a continuous stream, providing the value of its assets is above

a certain threshold, at a fixed rate. The bankruptcy level is determined endogenously

by the shareholders to maximize the firm’s equity value. Note that most of the authors

mentioned above consider the case where the coupon is paid at a constant rate to the

bondholder rather than proportional to the value of the underlying asset and the

tax rebates are accordingly received at a constant rate providing the value of the

underlying asset is above a certain threshold.

In this chapter we shall assume that the value of underlying assets of the firm

is modelled using a general exponential spectrally negative Lévy process. This was

also the case in Hilberink and Rogers [58]; however, it was necessary for them af-

ter a certain point in their calculations to work with the special case of a spectrally

negative Lévy process taking the form of an independent sum of a linear Brownian

motion and a compound Poisson process with negative jumps (cf. formula (3.21) on

p245). As advocated by Leland and Toft [76] and Hilberink and Rogers [58], the

optimal bankruptcy level should be determined by applying the smooth-pasting con-

dition. Although for the special subclass of spectrally negative processes considered by

Hilberink and Rogers [58], no rigorous proof was given to show that smooth pasting

leads to the optimal choice bankruptcy level; the authors relied instead on numerical

observation. By working with a completely general spectrally negative Lévy process

here, we not only show that an analytical treatment of the optimal bankruptcy level

is possible, but we are able to show that the smooth-pasting condition is not always

appropriate. We give an analytical proof of the fact that, depending on the path

regularity of the underlying Lévy process, a principle of either smooth pasting or

continuous pasting should be applied accordingly as the underlying Lévy process has

unbounded or bounded variation, respectively.

Among the class of spectrally negative Lévy processes, we consider the α-stable

process with index α ∈ (0, 1) ∪ (1, 2] for numerical examples. With the exception of

the case α = 2 which corresponds to linear Brownian motion, these are pure jump

processes. Further, they have paths of unbounded variation when α ∈ (1, 2] and paths

of bounded variation when α ∈ (0, 1). The numerical results for these processes give a

significant differences from the jump diffusion processes considered by Hilberink and

Rogers [58].

In other recent work, Chen and Kou [29] consider the same model as we do here

except that the underlying source of randomness is a Lévy process which is the inde-

pendent sum of a linear Brownian motion and a compound Poisson process with two-

sided exponential jumps. They also succeed in proving that the optimal bankruptcy

level is obtained by a principle of smooth pasting for the case considered there.

The chapter is organized as follows. In Section 2 we present in more mathematical

terms the basic models for the evolution of the value of the firm’s assets and the

capital structures of the firm following Hilberink and Rogers [58]. Section 3 and 4

discuss some notions of fluctuation theory of (general) Lévy processes, including a
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6.2. The capital structure of the firm

number of identities expressed in terms of scale functions, from which we are able

to give analytic expressions for the value and debt of a firm. In Section 5 we discuss

the computation of the optimal endogenous bankruptcy level. The term structure of

credit spreads are given in Section 6. The main conclusion of this section is that the

term structure rapidly goes to zero as debt maturity approaches zero for the case

where the Lévy process has no jumps and has positive value when there are jumps in

the Lévy process. This observation confirms the result of Hilberink and Rogers [58] for

the jump diffusion case with one-sided independent exponential jumps and Chen and

Kou [29] for the jump diffusion case with two-sided independent exponential jumps.

The computation of the term structure of credit spreads requires numerical inversion

of a double Laplace transform. The numerical method for this is given in Section 7.

In Section 8 we verify the main results of Sections 5 and 6 by means of numerical

examples. Finally, Section 9 concludes this chapter.

6.2 The capital structure of the firm

Throughout this chapter we assume that Lévy processes will form the basis of the

model for the value of a firm as we shall now describe. Note that with some exceptions,

most of what we shall say below is fundamentally the model described in Duffie and

Lando [37], Hilberink and Rogers [58], and Leland and Toft [76].

To start with, let V (t) denote the value of the firm’s assets at time t whose

dynamics are given by an exponential Lévy process

V (t) = V eXt . (6.2.1)

We assume the existence of a default-free asset that pays a continuous interest rate

r > 0. Further, it is assumed that under P, the discounted value e−(r−δ)tV (t) of the

firm’s assets is P− martingale, that is to say that

E
(
e−(r−δ)tV (t)

)
= V, (6.2.2)

where δ > 0 is the total payout rate to the firm’s investors (including both bond and

equity holders).

The firm is assumed to be partly financed by debt, which is being constantly

retired and reissued in the following way. In a time interval (t, t+ dt), the firm issues

new debt with face value pdt, and maturity profile ϕ, where ϕ is non-negative and∫ ∞

0
ϕ(s)ds = 1. Thus in the time the interval (t, t+ dt) it issues debt with face value

pϕ(s)dtds maturing in the time interval (t + s, t + s + ds). Therefore, at time 0 the

face value of debt maturing in (s, s+ ds) is given by

(∫ 0

−∞

pϕ(s− u)du
)
ds = pF (s)ds, (6.2.3)

where F (s) ≡
∫ ∞

s ϕ(u)du is the tail of the maturity profile. Taking s = 0 in (6.2.3),

we see that the face value of debt maturing in (0, ds) is pds, the same as the face
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6. endogenous bankruptcy under Lévy processes

value of the newly-issued debt. Thus the face value of all debt is constant, equal to

P = p

∫ ∞

0

F (s)ds. (6.2.4)

This is same the debt profile given in Hilberink and Rogers [58] and opposed to the

paper of Leland and Toft [76] who take the Dirac delta-function at T which means

that all new debt is always issued with a maturity of T . As in both of the above

papers, however, we take ϕ(t) = me−mt for some positive m. This has the direct

implication that P = p/m.

All debt is of equal seniority and attracts coupons of an amount ρP at time t until

maturity, or until default if that occurs sooner, where ρ > 0. Default happens at the

first time that the value of the firm’s assets falls to some level VB or lower, i.e., at

σ−
VB

= inf{t > 0 : V (t) < VB}. (6.2.5)

As we shall show later, the value of VB can be determined endogenously for a general

class of Lévy processes. At default, a fraction η of the value of the firm’s asset is also

assumed to be lost in reorganization.

Let us now consider a bond issued at time 0 with face value 1 and maturity t,

which continuously pays a constant coupon flow at a fixed rate ρ > 0. Let 1
P be the

fraction of the asset value V (σ−
VB

) which debt of maturity t receives in the event of

bankruptcy. The value of the debt with maturity t is given by

d(V ;VB , t) = E

( ∫ t∧σ−

VB

0

ρe−rsds
)

+ E

(
e−rt : t < σ−

VB

)

+
1

P
(1 − η)E

(
e
−rσ−

VBV (σ−
VB

) : σ−
VB

< t
)
.

(6.2.6)

The first term on the right-hand side of (6.2.6) represents the expected discounted

value of all coupon payment until time t or the default time σ−
VB

, whichever is sooner.

The second term represents the expected discounted value of the principle repayment,

if this occurs before bankruptcy, and the final term must be the net present value of

what is recovered upon bankruptcy, if this happens before maturity time t. Indeed,

V (σ−
VB

) is the value of the firm’s asset when bankruptcy occurs and (1− η)V (σ−
VB

) is

the value of the remains after bankruptcy costs are deducted. Of this, the bondholder

with face value 1 gets the fraction 1
P , since his debt represents this fraction of the total

debt outstanding. Notice that if the process X were continuous, then V (σ−
VB

) would

simply be the bankruptcy level VB ; but since we allow X to have possible jumps,

V (σ−
VB

) can be below the bankruptcy level VB.

Let D(V ;VB) denote the total value of debt. The fraction of the firm’s asset

value lost in bankruptcy is η. The remaining value (1 − η)V (σ−
VB

) is distributed to

debt holders so that the sum of all fractional claims 1
P for debt of all outstanding

maturities equals (1 − η). We can now determine the total value at time 0 of all
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6.3. Lévy processes with no positive jumps

outstanding debt as

D(V ;VB) =

∫ ∞

0

pe−mtd(V ;VB , t)dt

=ρPE

( ∫ σ−

VB

0

e−(r+m)tdt
)

+ pE
(∫ σ−

VB

0

e−(r+m)tdt
)

+ (1 − η)E
(
e
−(r+m)σ−

VBV (σ−
VB

)
)

=
(ρ+m)P

r +m
E

(
1 − e

−(r+m)σ−

VB

)
+ (1 − η)E

(
e
−(r+m)σ−

VBV (σ−
VB

)
)
.

(6.2.7)

We assume that there is a corporate tax rate τ > 0 which depends on the value of

the underlying risky asset in the following way. As introduced by Leland and Toft

[76] (see also Hilberink and Rogers [58]), there exists a cutoff level VT , whose effect is

that the tax rebates are 0 while V (t) < VT , and are τρPdt when V (t) ≥ VT . Under

this assumption, the value of the firm at time zero becomes

v(V ;VB) = V − ηE
(
e
−rσ−

VBV (σ−
VB

)
)

+ τρPE

( ∫ σ−

VB

0

e−rt1{V (t)≥VT }dt
)
. (6.2.8)

In terms of (6.2.8) and (6.2.7), the value of the firm’s equity is given by

E(V ;VB) = v(V ;VB) −D(V ;VB). (6.2.9)

The expressions for the expectation in (6.2.7) and (6.2.8) cannot be written in

closed form in general, although this is possible in the Brownian motion case of Leland

and Toft [76]. These difficulties can be circumvented by modeling the dynamics of the

firm’s asset value by Lévy processes having downward jumps.

6.3 Lévy processes with no positive jumps

Now, let us return to the dynamics (6.2.1) for the value of the firm’s assets. We

assume throughout the remaining of this chapter that X is a real-valued Lévy process

having no positive jumps, that is, its Lévy measure Π is concentrated on (−∞, 0).

This class of processes has a great interest from theoretical point of view, because

they are processes for which fluctuation theory can be developed to a fuller extent.

As X will be chosen from this class in our financial model, we devote a little time

in this section and the next to an overview of a number of relevant results from the

above-mentioned fluctuation theory. Unless otherwise stated, all of what follows in

this section can be extracted from the books of Bertoin [13] or Kyprianou [69].

The degenerate case when X is either the negative of a subordinator or a deter-

ministic drift has no interest and will be excluded throughout. The Laplace exponent

κ of X is given by

E
(
eλXt

)
= etκ(λ) for λ, t ≥ 0. (6.3.1)
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6. endogenous bankruptcy under Lévy processes

The function κ : [0,∞) → (−∞,∞) is defined by

κ(λ) = −Ψ(−iλ) = µλ+
1

2
σ2λ2 +

∫

(−∞,0)

(
eλx − 1 − λx1{x>−1}

)
Π(dx). (6.3.2)

It is easily shown that κ is zero at the origin, tends to infinity at infinity and is strictly

convex. We denote by Φ : [0,∞) → [0,∞) the right continuous inverse of κ(λ), so

that

Φ(α) = sup{p > 0 : κ(p) = α}

and

κ(Φ(λ)) = λ for all λ ≥ 0.

Note that due to the convexity of κ, there exist at most two roots for a given α and

precisely one root when α > 0.

The class of spectrally negative Lévy processes is very rich. Among other things

it allows for processes which have paths of both unbounded and bounded variations.

The latter case occurs if and only if σ = 0 and

∫

(−∞,0)

|x|Π(dx) < ∞.

In that case one may rearrange (6.3.2) into the form

κ(λ) = dλ−

∫

(−∞,0)

(
1 − eλx

)
Π(dx) (6.3.3)

where necessarily d > 0. This reflects the fact that a spectrally negative Lévy process

of bounded variation must be the difference of a linear drift and a pure jump subor-

dinator. If further it is assumed that Π(−∞, 0) < ∞, then X is nothing more than

the difference of a linear drift and a compound Poisson subordinator.

The path variation for a spectrally negative Lévy process also dictates how the

process moves away from its initial position. It can be shown that a general Lévy

process has one of four types of behaviour in this respect which we shall now describe.

Let

σ+
0 = inf{t > 0 : Xt > 0} and σ−

0 = inf{t > 0 : Xt < 0}.

Then either

(i) P(σ+
0 = 0) = P(σ−

0 = 0) = 1,

(ii) P(σ+
0 = 0) = P(σ−

0 > 0) = 1,

(iii) P(σ+
0 > 0) = P(σ−

0 = 0) = 1 or

(iv) P(σ+
0 > 0) = P(σ−

0 > 0) = 1.
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6.4. Scale functions and fluctuation identities

Note in particular that all probabilities are either zero or one (this follows by Blumen-

thal’s zero-one law). Case (iv) is only fulfilled by compound Poisson processes. It is well

known that a spectrally negative Lévy process necessarily obeys case (i) when it has

paths of unbounded variation and case (iii) when it has paths of bounded variation. To

some extent, it is clear that when a spectrally negative process has a Gaussian com-

ponent (σ > 0) then (i) must hold on account of the dominant behavior of the latter.

If however σ = 0, then the above conclusions tell us that when
∫
(−1,0)

|x|Π(dx) = ∞,

the movement of X is volatile enough that the process visits both the upper and lower

half-lines immediately. If on the other hand
∫
(−1,0)

|x|Π(dx) <∞ then, taking (6.3.3)

into account, the accumulation of negative jumps in the first moments of time is not

sufficient to counterbalance the upward linear motion with rate d, thus bringing X

immediately into the upper half line for a strictly positive period of time.

When P(σ+
0 = 0) = 1(= 0) we say that 0 is regular (irregular) for (0,∞). When

P(σ−
0 = 0) = 1(= 0) we say that 0 is regular (irregular) for (−∞, 0).

6.4 Scale functions and fluctuation identities

As mentioned in the previous section, spectrally negative Lévy processes form a gen-

eral class of Lévy processes that enjoy a degree of analytic tractability. The purpose

of this section is to give some exposure to explicit expressions for certain fluctua-

tion identities which will be of use when considering the problem of determining the

optimal endogenous bankruptcy level for the financial model described in Section 6.2.

The starting point is the so-called scale function which features invariably in almost

all known identities (see [13] and [14] for the origin of this function).

6.4.1 Scale functions

Definition 6.4.1 (Scale function) For a given spectrally negative Lévy process X

with Laplace exponent κ, there exists for every q ≥ 0 a function W (q) : R → [0,∞)

such that W (q)(x) = 0 for all x < 0 and W (q) is differentiable on [0,∞), satisfying

∫ ∞

0

e−λxW (q)(x)dx =
1

κ(λ) − q
for λ > Φ(q), (6.4.1)

where Φ(q) was defined in the previous section. We write W (0) = W for short.

Smoothness properties of the scale functions W (q) are very closely related to the

roughness of the underlying paths of the associated Lévy process. The following result,

found in Lambert [75] and Chan and Kyprianou [28], gives necessary and sufficient

conditions for the scale function on (0,∞) to belong to C1(0,∞).
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6. endogenous bankruptcy under Lévy processes

Theorem 6.4.2 Suppose that X is a spectrally negative Lévy process. For each q ≥ 0,

(i) if X is of unbounded variation, then W (q) is continuously differentiable on (0,∞);

(ii) if X is of bounded variation, then W (q) is continuously differentiable on (0,∞)

if and only if Π has no atoms.

In addition the behavior of the scale function at the origin can also be established. In

both lemmas below, recall that d is the drift coefficient appearing in the representation

(6.3.3) of the Laplace exponent κ when X has bounded variation.

Lemma 6.4.3 At the point zero, the value of the scale function W (q)(x) is determined

for every q ≥ 0 by

W (q)(0+) =

{
1/d, when X has bounded variation

0, when X has unbounded variation

Proof From (6.4.1) we have for q ≥ 0 that

∫

[0,∞)

λe−λxW (q)(x)dx =
λ

κ(λ) − q
for λ > Φ(q). (6.4.2)

When X has unbounded variation, a straightforward argument using the expression

(6.3.2) shows that limλ↑∞ κ(λ)/λ = ∞. (In particular one can show that the integral

in the expression for κ is of order λ2). Hence by the continuity of W (q) it follows by

taking limits as λ ↑ ∞ in (6.4.2) that W (q)(0+) = 0. On the other hand, when X

is of bounded variation, then another straightforward argument shows that in fact

limλ↑∞ κ(λ)/λ = d. �

Lemma 6.4.4 Following Theorem 6.4.2, we see for every q ≥ 0 that

dW (q)

dx
(0+) =






2/σ2, when X has unbounded variation and σ 6= 0,

∞, when X has unbounded variation with σ = 0,

∞, when X has bounded variation and Π(−∞, 0) = ∞,
(Π(−∞,0)+q)

d2 , when X has bounded variation and Π(−∞, 0) <∞.

Proof Integrating (6.4.1) by parts and noting from Definition 6.4.1 and Theorem

6.4.2 that a right derivative at zero always exists, we have for each q ≥ 0

dW (q)

dx
(0+) = lim

λ↑∞

∫ ∞

0

λe−λx dW
(q)(x)

dx
dx = lim

λ↑∞

λ2

κ(λ) − q
.

In the spirit of the previous proof, it is easy to show when X has unbounded variation

that limλ↑∞ κ(λ)/λ2 = σ2/2 (see also Proposition 2 of Section I in Bertoin [13]). This

accounts for the first two cases. When X has bounded variation, a little more care is
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needed. Integrating again (6.4.1) by parts, taking care to note that W (q)(0+) = d−1,

we have

dW (q)

dx
(0+)

= lim
λ↑∞

λ2

dλ − λ
∫ ∞

0
e−λxΠ(−∞,−x)dx − q

− λW (q)(0+)

= lim
λ↑∞

λ2(1 −W (q)(0+)d +W (q)(0+)
∫ ∞

0 e−λxΠ(−∞,−x)dx) + qλW (q)(0+)

dλ−
∫ ∞

0 λe−λxΠ(−∞,−x)dx + q

= lim
λ↑∞

1

d

∫ ∞

0
λe−λxΠ(−∞,−x)dx + q

d −
∫ ∞

0
e−λxΠ(−∞,−x)dx

=
Π(−∞, 0) + q

d2
.

In particular, if Π(−∞, 0) = ∞ then the right-hand side above is equal to ∞, and if

Π(−∞, 0) <∞, then dW (q)(0+)/dx is finite and equals to (Π(−∞, 0) + q)/d2. Thus

our claim is then proved. �

It should be noted that the first of the last two lemmas is essentially not new but

implicitly embedded in the literature for spectrally negative Lévy processes.

Due to the complexity of the Laplace exponent κ, the scale functions W (q) are

not available in explicit form in general. However, it turns out that we have sufficient

analytical information regarding these ‘special’ functions in order to achieve our main

goal of establishing an optimal choice of VB via the imposition of an appropriate

pasting condition.

Numerical inversion of the Laplace transform (6.4.1) can always be used to com-

pute the scale function numerically. We refer to Choudhury et al [31] for a general

discussion on numerical inversion of Laplace transforms and to Surya [118] for a spe-

cific description of the case at hand (see also Chapter 7 for more details). For some

spectrally negative Lévy processes, the scale functions W (q) are available explicitly.

We consider four such examples below.

Example 6.4.5 Standard Brownian motion. Taking κ(λ) = λ2/2, it is a straightfor-

ward exercise to show that the scale function is given by

W (q)(x) =

√
2

q
sinh(x

√
2q).

Example 6.4.6 Spectrally negative α-stable process. In this case X has (up to a

multiplicative constant which we take as equal to 1) Laplace exponent κ(λ) = λα

with α ∈ (1, 2). Due to [14], it is known that the scale function W (q) satisfies
∫

[0,∞)

e−λxW (q)(x)dx =
1

λα − q
for λ > q1/α,
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(a) X is standard Brownian motion.
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(b) X is α-stable process with α = 1.75

Figure 6.1: The shapes of W (q)(x), q = 0.075, for unbounded variation X .
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(a) X is α-stable process with α = 0.5
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(b) X is compound Poisson process with drift

d = 0.05.

Figure 6.2: The shapes of W (q)(x), q = 0.075, for bounded variation X .

following which one can deduce that

W (q)(x) = αxα−1E′
α(qxα) for x ≥ 0,

where Eα(.) is the Mittag-Leffler function of parameter α defined as

Eα(y) =

∞∑

n=0

yn

Γ (1 + αn)
, y ∈ R.

Example 6.4.7 Spectrally negative Lévy process of bounded variation drifting to in-

finity. Suppose that Xt = dt − St where {St : t ≥ 0} is a subordinator with Lévy

measure Π having no atoms and E(X1) > 0 so that P(limt↑∞Xt = ∞) = 1. It can be
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Figure 6.3: The shapes of d
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(q)(x), q = 0.075, for unbounded variation X .
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Figure 6.4: The shapes of d
dxW

(q)(x), q = 0.075, for bounded variation X .

shown that the scale function W (x) satisfies

∫

[0,∞)

e−λxW (x)dx =
1

d −
∫
(0,∞)

e−λxΠ(x,∞)dx
,

from which we can deduce that

W (x) =
1

d

∑

n≥0

ν⋆n(x),

where ν⋆n denotes the nth convolution power of ν(x) = d−1Π(x,∞) with ν⋆0(x) being

understood as δ0(x).
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Example 6.4.8 Compound Poisson process with exponential jumps with parameter

µ > 0 and rate β. From the previous example one may deduce further that when

dµ− β > 0, the scale function is given by

W (x) =
1

d

(
1 +

β

dµ− β

(
1 − e−(µ−d−1β)x

))
.

The scale function W (q) can be determined by the formula

W (q)(x) = eΦ(q)xWΦ(q)(x) (6.4.3)

where WΦ(q)(x) plays the role of W (x) when X is taken under the measure PΦ(q)

defined by
dPΦ(q)

dP

∣∣∣∣
Ft

= eΦ(q)Xt−qt.

Note that it is known that under the latter change of measure, (X,PΦ(q)) is still a

spectrally negative Lévy process whose Laplace exponent has changed to

κΦ(q)(λ) = κ(λ+ Φ(q)) − κ(Φ(q)).

Various numerical plots of the scale function W (q) and its derivative d
dxW

(q) can be

found in Figures 6.1- 6.4 for each of the above examples when q > 0. Note that in

each case the asymptotic behaviour is that of an exponential function. This is not

surprising since for λ > 0 and V (q)(x) = e−Φ(q)xW (q)(x),

∫ ∞

0

e−λxV (q)(dx) =
λ

κ(λ+ Φ(q)) − q
,

and hence by taking limits as λ ↓ 0 on the right hand side to obtain 1/κ′(Φ(q)), it

follows from an application of the standard Tauberian theorem that

W (q)(x) ∼
eΦ(q)x

κ′(Φ(q))
as x→ ∞.

6.4.2 Fluctuation identities

Recall our notation,

σ−
y = inf{t > 0 : Xt < y}, (6.4.4)

the first time that the Lévy processX goes below a level y. Under the model described

in Section 6.2, it is possible to write the equity (6.2.9) in terms of this stopping time.

Via a number of fluctuation identities for spectrally negative processes this then allows

us to write the equity in terms of scale functions. We devote this section to doing

precisely this and we begin with quoting the necessary fluctuation identities. These

come in the form of three lemmas. The first is due to Bertoin [15], the second is due

to Emery [47] and the third is due to Bingham [17].
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Lemma 6.4.9 Denote by eq an independent exponential random variable with mean

q−1. We have for every x, y > 0 and q > 0 that

q−1
Px(Xeq

∈ dy, eq < σ−
0 ) =

(
e−Φ(q)yW (q)(x) − 1{x≥y}W

(q)(x− y)
)
dy. (6.4.5)

Lemma 6.4.10 For all q, β, x ≥ 0, the joint Laplace transform under P of the stop-

ping time σ−
−x and its overshoot Xσ−

−x
is given by

Ex

(
e
−qσ−

0 +βX
σ
−

0

)
= eβx −

(κ(β) − q)

(β − Φ(q))
W (q)(x)

− (κ(β) − q)

∫ x

0

eβ(x−y)W (q)(y)dy.

(6.4.6)

By applying Laplace transform in x in the expression (6.4.6), we then end up with

the well-known identity of Pecherskii and Rogozin (see for instance Bingham [17]).

Lemma 6.4.11 Let X be a spectrally negative Lévy process. For every q, λ ≥ 0 and

θ ∈ C with Re(θ) ≥ 0 we have

∫ ∞

0

λe−λx
Ex

(
e
−qσ−

0 +θX
σ
−

0

)
dx =

λ

λ− θ

(
1 −

κ
(−)
q (λ)

κ
(−)
q (θ)

)
, (6.4.7)

where κ
(±)
q (λ) are the factors of the Wiener-Hopf factorization formula defined in

equations (2.3.2) and (2.3.3) of Chapter 2.

Throughout the rest of this chapter, we define

γ(x; q, β) = E

(
1 − e

−qσ−

−x+βX
σ
−

−x

)

g(x; q, b) = E

( ∫ σ−

−x

0

e−qt1(Xt≥b−x)dt
)
.

Writing x = log(V/VB) and reconsidering (6.2.7), the total value of the debt can be

re-expressed as follows

D(V ;VB) =
(ρ+m)P

m+ r
Ex

(
1 − e−(m+r)σ−

0

)
+ (1 − η)VBEx

(
e
−(r+m)σ−

0 +X
σ
−

0

)

=
(ρ+m)P

m+ r
γ(x;m+ r, 0) + (1 − η)V (1 − γ(x;m+ r, 1)). (6.4.8)

The value of the firm (6.2.8) can be re-expressed as

v(V ;VB) = VBe
x + τρPEx

(∫ σ−

0

0

e−rt1{Xt≥b}dt
)
− ηVBEx

(
e
−rσ−

0 +X
σ
−

0

)

= V (1 − η) + τρPg(x; r, b) + ηV γ(x; r, 1), (6.4.9)

where b = log(VT

VB
).

Following the expression in (6.4.6) one can easily deduce an explicit expression for

the function γ in terms of the scale function W (q).
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Lemma 6.4.12 For x ∈ R, q ≥ 0 and β ≥ 0,

γ(x; q, β) =
(κ(β) − q)

(β − Φ(q))
e−βxW (q)(x) + (κ(β) − q)

∫ x

0

e−βyW (q)(y)dy.

Using the resolvent density (6.4.5), the expression for g, a function that appears

in the expression for the value of the firm, can also be deduced explicitly in terms of

the scale function W (q). The expression for g will be of use in the next section. The

following lemma gives the expression of g.

Lemma 6.4.13 For x ∈ R, q ≥ 0 and b ∈ R,

g(x; q, b) =
e−Φ(q)(b∨0)

Φ(q)
W (q)(x) −

∫ x−(b∨0)

0

W (q)(y)dy (6.4.10)

Proof Using (6.4.5) of Lemma 6.4.9, we see that

Ex

( ∫ σ−

0

0

e−qt1{Xt≥b}dt
)

= q−1
Px

(
Xeq

≥ b, eq < σ−
0

)

=

∫ ∞

b∨0

(
e−Φ(q)yW (q)(x) − 1{x≥y}W

(q)(x− y)
)
dy

=

∫ ∞

b∨0

e−Φ(q)yW (q)(x)dy −

∫ ∞

b∨0

1{x≥y}W
(q)(x− y)dy

=
e−Φ(q)(b∨0)

Φ(q)
W (q)(x) −

∫ x−b∨0

0

W (q)(y)dy,

where the last equality was obtained after changing variables in the integral. The

required identity is then proved. �

To conclude this section, we may now write an explicit expression for the firm’s

equity values in terms of the scale function W (q)(x), namely

E(V ;VB) = V
(
ηγ(x; r, 1) + (1 − η)γ(x;m + r, 1)

)

−
(m+ ρ)P

m+ r
γ(x;m+ r, 0) + τρPg(x; r, b) (6.4.11)

where x = log(V/VB) and b = log(VT /VB).

We now move on to determining an optimal bankruptcy level VB .

6.5 Determining the bankruptcy level VB

The expression for E in (6.4.11) gives the firm’s equity value as a function of the

firm’s initial asset value V and the chosen bankruptcy-triggering asset level VB. In

determining the bankruptcy level VB , the idea is to fix V and maximize E with respect

to VB subject to the limited liability constraint that the equity E(V ;VB) must always
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be worth uniformly non-negative for V ≥ VB . We refer to Leland [77], Leland and

Toft [76], Hilberink and Rogers [58], and the literature therein for a more detailed

discussion of the underlying economics.

The main claim of this chapter is that, observing this constraint, the bankruptcy

level VB is determined in the following way.

Theorem 6.5.1 If the spectrally negative Lévy process X has unbounded variation,

so that 0 is regular for the lower half-line (−∞, 0), then the bankruptcy-triggering

asset level VB satisfies the condition of smooth-pasting; that is to say that VB is

chosen to satisfy
∂E

∂V
(VB+;VB) = 0. (6.5.1)

However, if the spectrally negative Lévy process X has bounded variation, so that 0 is

irregular for the lower half-line (−∞, 0), then VB satisfies the condition of continuous-

pasting; that is to say that VB is chosen to satisfy

E(VB+;VB) = 0. (6.5.2)

In both cases, it follows that VB is the unique solution to the equation

x =

(m+ρ)P
Φ(m+r) −

τρP
Φ(r)

((
x

VT

)
∧ 1

)Φ(r)

(
η

(
r−κ(1)

)
(
Φ(r)−1

) + (1 − η)

(
m+r−κ(1)

)
(
Φ(m+r)−1

)
) . (6.5.3)

Before moving to the proof of this theorem, note that

f(x) = x−

(m+ρ)P
Φ(m+r) −

τρP
Φ(r)

((
x

VT

)
∧ 1

)Φ(r)

(
η

(
r−κ(1)

)
(
Φ(r)−1

) + (1 − η)

(
m+r−κ(1)

)
(
Φ(m+r)−1

)
)

is continuous, strictly increasing in x, f(0+) < 0 and f(∞) = ∞ so that there is a

unique solution to the equation f(x) = 0 which we denote by V ⋆
B . The equation (6.5.3)

naturally agrees with the equation for determining the optimal VB in Hilberink and

Rogers [58] who considered the case of a linear Brownian motion plus an independent

spectrally negative compound Poisson process.

In fact Hilberink and Rogers [58] show that smooth pasting leads to the equation

(6.5.3) for VB by using the Wiener-Hopf factorization where, in principle, they are

working with a general spectrally negative Lévy process. However, close inspection

of their calculations shows that they are implicitly assuming that X has a Gaussian

component. Specifically this is because of the assumed asymptotic behaviour of their

functions ϕ(x, λ) and γ(x, θ, λ) as x ↓ 0 in the text following (3.16) on p. 244. One

sees that this assumed asymptotic behaviour is equivalent to the assumption that the
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6. endogenous bankruptcy under Lévy processes

scale function W (λ) is zero with a finite derivative at the origin which in turn implies

the presence of a Gaussian component.

We also note that in Chen and Kou [29], where the underlying Lévy process

takes the form of an independent sum of a linear Brownian motion and a compound

Poisson process with two-sided exponential jumps, it was proved that the optimal

bankruptcy level follows as a consequence of the smooth-pasting condition. Their

result is consistent with the above theorem in the sense that, for the Lévy process

considered there, 0 is regular for (−∞, 0) on account of the presence of the Gaussian

term.

We now move to the proof of Theorem 6.5.1. Without further elaboration, we

shall make use of a number of facts and notions from the theory of spectrally nega-

tive Lévy processes which are well documented in the literature. We refer to Chapter

8 of Kyprianou [69] for a recent review in which all of the used concepts are addressed.

To establish our claim in the Theorem 6.5.1, the following lemma is needed.

Lemma 6.5.2 For each fixed x ≥ 0, the quantity

Θ(q)(x) := W (q)′(x) − Φ(q)W (q)(x), (6.5.4)

is non-negative for all x, q ≥ 0 and monotone decreasing in q.

Proof It is known that the q-resolvent measure of the descending ladder height process,

Ĥ = {Ĥt : t ≥ 0} (see Section 2.2 of Chapter 2), of X can be identified as

E

(∫ ∞

0

e−qt1{ bHt∈A}dt

)
= c

∫

A

Θ(q)(y)dy,

where q ≥ 0 and c > 0 is a meaningless constant (determined by the normalization

of local time at the minimum to generate the descending ladder height process Ĥ)

and A is a Borel set in [0,∞). See for example Millar [85] and Pistorius [102]. It

is immediately obvious from this relation, in particular on account of the arbitrary

choice of A, that Θ(q)(x) is non-negative and for each fixed x ≥ 0 it is also monotone

decreasing in q.

The fact that Θ(q)(x) ≥ 0 for all q, x ≥ 0 is a simple consequence of its definition

as a resolvent density. Thus the claim that Θ(q)(x) ≥ 0 is non-negative for all x, q ≥ 0

and monotone decreasing in q is then proved. �

Proof of Theorem 6.5.1 We split the proof into two: the cases that X has paths of

unbounded and bounded variation.

Firstly, we assume that X has paths of unbounded variation. Since the scale func-

tion W (q)(x) is continuous and equal to zero at x = 0, it is easy to check that

the continuous pasting condition (6.5.2) is always satisfied for any bankruptcy level

VB > 0. We look instead at choosing V ⋆
B by the criterion (6.5.1).
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6.5. Determining the bankruptcy level

Assume temporarily that σ > 0. By differentiating the firm’s equity value E with

respect to V , we see after a rather long calculation that

∂E

∂V
(VB+;VB) =

2

σ2VB

(
η

(r − κ(1))

(Φ(r) − 1)
+ (1 − η)

(m+ r − κ(1))

(Φ(m + r) − 1)

)
f(VB).

From the remarks following the statement of Theorem 6.5.1 we can now see that

∂E

∂V
(VB+;VB) > (<) 0 for VB > (<) V ⋆

B and
∂E

∂V
(V ⋆

B+, V ⋆
B) = 0.

In the case that σ = 0 one may similarly check with the help of the second case

in the conclusion of Lemma 6.4.4 that if VB is chosen strictly greater than V ⋆
B then

in fact ∂E
∂V (VB+;VB) = ∞ and similarly if VB is chosen strictly less than V ⋆

B then
∂E
∂V (VB+;VB) = −∞. When VB = V ⋆

B it conveniently turns out that ∂E
∂V (VB+;VB) =

0.

Taking account of the limited liability constraint that the equity curve must be

uniformly non-negative for all V ≥ VB, the calculations lead to the conclusion that

the bankruptcy level VB must be at least as big as V ⋆
B , i.e., VB ≥ V ⋆

B. We should now

like to prove that V ⋆
B is the optimal bankruptcy level. We do this by showing that for

each fixed V > V ⋆
B, the function VB 7→ E(V ;VB) is monotone decreasing in VB . To

this end, we note that it can be shown after some algebra that for each fixed V > V ⋆
B

and VB ∈ [V ⋆
B , V ],

∂E

∂VB
(V ;VB) = −η

(
r − κ(1)

)
(
Φ(r) − 1

)
{
Θ(r)(x) − Θ(r+m)(x)

}

−
τρPe−Φ(r)(b∨0)

Φ(r)VB

{
Θ(r)(x) − Θ(r+m)(x)

}
(6.5.5)

−
Θ(r+m)(x)

VB

{
η

(
r − κ(1)

)
(
Φ(r) − 1

) + (1 − η)

(
m+ r − κ(1)

)
(
Φ(m+ r) − 1

)
}
f(VB),

where x = log(V/VB) and the function Θ(q)(x) is defined in (6.5.4). Note that in

computing this derivative it is worth reminding oneself that

∂γ

∂VB
(x; q, β) = −

1

VB

∂γ

∂x
(x; q, β)

= −
1

VB

(q − κ(β))

(Φ(q) − β)
e−βxΘ(q)(x),

and that

∂g

∂VB
(x; q, b) = −

1

VB

∂g

∂x
(x; q, b) −

1

VB

∂g

∂b
(x; q, b)

= −
e−Φ(q)(b∨0)

VBΦ(q)
Θ(q)(x),
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where special care should be taken in the derivatives of g accordingly with the sign

of the value b.

Our objective now is to show that each of the three terms on the right-hand side

of (6.5.5) is non-positive.

Combined with the result of Lemma 6.5.2, we see that the first two terms on the

right-hand side of (6.5.5) are non-positive. The monotonicity of f also implies that

the third expression is non-positive. In conclusion we see that for each fixed V ≥ V ⋆
B ,

∂E

∂VB
(V ;VB) < 0

when VB ∈ [V ⋆
B , V ] thus justifying the claim that V ⋆

B is optimal.

Now consider the case that X has paths of bounded variation. In that case the

arguments above do not apply due to the fact that, for any given choice of VB ,

0 = E(VB−;VB) is not necessarily equal to E(VB+, VB). To see this, one can show

with the help of Lemma 6.4.3 that

E(VB+;VB) =
f(VB)

d

(
η

(r − κ(1))

(Φ(r) − 1)
+ (1 − η)

(m+ r − κ(1))

(Φ(m+ r) − 1)

)
.

The monotonicity of f in VB now implies that

E(VB+, VB) > (< ) 0 for VB > (< )V ⋆
B and E(V ⋆

B+, V ⋆
B) = 0. (6.5.6)

The constraint of non-negativity of the equity curve thus implies that we must choose

VB ≥ V ⋆
B . Exactly the same analysis of the partial derivative ∂E

∂VB
(V ;VB) as for the

unbounded variation case shows that in fact V ⋆
B must be optimal as E(V ;VB) is

decreasing in VB for each fixed V . Thus, our claim is then established. �

6.6 The term structure of credit spreads

In this section we discuss the term structure of credit spreads. Following Hilberink

and Rogers [58], we identify the credit spreads as what coupon would be required to

induce an investor to lend one dollar to the firm until maturity time T . This is the

interpretation that one would put on a reported credit spreads curve for a given firm.

To start the discussion, let us return to the expression (6.2.6) and compute for a

fixed t > 0 the value ρ⋆ of ρ for which d(V0;VB, t) = 1. We denote by σ−
y the time of

first exit of X below a level y defined in (6.4.4). By putting x = log
(
V0/VB

)
, we can

rewrite the equation (6.2.6) as

f(t, x) ≡ d(VBe
x;VB, t)

= E

( ∫ t∧σ−

−x

0

ρe−rsds
)

+ Ex

(
e−rt : t < σ−

0

)
(6.6.1)

+
(1 − η)

P
VBEx

(
e
−rσ−

0 +X
σ
−

0 : σ−
0 < t

)
.
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Taking Laplace transform in t, we have after some calculations that
∫ ∞

0

e−λtf(t, x)dt =
ρ

λ(λ+ r)
E

(
1 − e−(λ+r)σ−

−x

)
+

1

λ+ r
E

(
1 − e−(λ+r)σ−

−x

)

+
(1 − η)VBe

x

λP
E

(
e
−(λ+r)σ−

−x+X
σ
−

−x

)
.

If we take again Laplace transform in x, we see using (6.4.7) that

f̂(λ, β) ≡

∫ ∞

0

dxe−βx

∫ ∞

0

e−λtf(t, x)dt

=
ρ

βλ(λ + r)
κ

(−)
λ+r(β) +

κ
(−)
λ+r(β)

β(λ+ r)
+

(1 − η)VB

λP (β − 1)

(
1 −

κ
(−)
λ+r(β)

κ
(−)
λ+r(1)

)

= ρf̂1(λ+ r, β) + f̂2(λ+ r, β), (6.6.2)

where the two Laplace transforms f̂1 and f̂2 are defined subsequently by

f̂1(λ+ r, β) =
1

βλ(λ + r)
κ

(−)
λ+r(β),

and

f̂2(λ+ r, β) =
κ

(−)
λ+r(β)

β(λ+ r)
+

(1 − η)VB

λP (β − 1)

(
1 −

κ
(−)
λ+r(β)

κ
(−)
λ+r(1)

)
.

By applying double inversion of Laplace transform, we obtain

f(t, x) = L−1
β L−1

λ [f̂ ](t, x) =

∫
dλ

2πi

∫
dβ

2πi
et(λ−r)+βxf̂(λ− r, β), (6.6.3)

from which the credit spreads is given by

Credit spreads = ρ⋆ − r =
1 − L−1

β L−1
λ [f̂2](VBe

x;VB , t)

L−1
β L−1

λ [f̂1](VBex;VB, t)
− r. (6.6.4)

This expression is not available in analytic form in general. Thus, numerical inver-

sion to compute the inverse Laplace transform (6.6.3) is needed. Further technical

discussion on this will be given later in Section 7.

6.6.1 Non-zero credit spreads for very short maturity bonds

This section discusses an analytical expression of the credit spreads for very short

maturity bonds. It appears that credit spreads have strictly positive values.

By finding the value of ρ = ρ⋆ for which the right-hand side of (6.2.6) equals

1 when t = T and V (T ) = V , we find the spread ρ⋆ − r for borrowing with fixed

maturity T . Rearrangement of (6.2.6) yields the following expression for the spreads:

Credit spreads =
1 − e−rT + E

(
e−rT − 1−η

P V (σ−
VB

)e
−rσ−

VB ;σ−
VB

≤ T
)

1
r E

(
1 − e

−r(T∧σ−

VB
)
) − r. (6.6.5)
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To understand the asymptotic of the credit spreads (6.6.5) as the maturity T

approaches zero, let us denote by ν(dx, dt) the Poisson random measure associated

with the jumps of a Lévy process X and by σ(−ǫ,ǫ)c , with ǫ > 0, the first entrance

time of a jump of X in the set {R\(−ǫ, ǫ)}. It is known (see Proposition 2 on page 7

of Bertoin [13]) that σ(−ǫ,ǫ)c is exponentially distributed with parameter Π(R\(−ǫ, ǫ))

since

P(σ(−ǫ,ǫ)c > t) = P(ν({R\(−ǫ, ǫ)} × [0, t]) = 0) = exp
(
− tΠ(R\(−ǫ, ǫ))

)
.

(See also page 143 in Kyprianou [69].) Note that this expression can be rewritten as

P(σ(−ǫ,ǫ)c ≤ t) = 1 − exp
(
− tΠ(R\(−ǫ, ǫ))

)
. (6.6.6)

The expression in (6.6.6) tells us that if Π(R) = ∞ then it becomes more and

more probable to have jumps of size greater than ǫ > 0 as t ↓ 0. Thus the jumps have

very significant influence over the initial behavior of the sample path of X , i.e., any

contribution of the continuous part such as the drift and the Brownian motion to the

movement of X can be ignored. Thus, by ignoring the contribution of the continuous

part, a spectrally negative Lévy process could have gone below the bankruptcy level

x = log(VB

V ) < 0 only made possible by a jump. Hence, following (6.6.6) we see for a

very short maturity T that

P
(
σ−

x ≤ T
)

= TΠ
−

(x) + o(T ) as T ↓ 0,

where Π
−

(x) = Π(−∞, x) and o(T ) is the probability of having more than one jump

in the very short period [0, T ] of time. Given that σ−
x ≤ T , the law of log(V (σ−

x )) will

be the law of a single jump conditioned to have gone below the level x, and therefore

E
(
V (σ−

x )
∣∣σ−

x ≤ T
)

=
1

Π
−

(x)

∫ x

−∞

V eyΠ(dy) ≡ V .

Since the denominator of (6.6.5) is asymptotically equal to rT as T ↓ 0, it is easily

seen that

Credit spreads → Π
−

(x)
(
1 −

(1 − η)

P
V

)
(6.6.7)

as T ↓ 0. Observe that when the process X is continuous, that is when Π = 0,

the credit spreads go to zero as T ↓ 0. Thus, as a summary, the limiting spreads

have strictly positive values as T ↓ 0 except when the process X is continuous. This

conclusion agrees with the recent result of Hilberink and Rogers [58] and Chen and

Kou [29] for jump diffusion processes and may be extended to cover a broader class

of Lévy processes. To exemplify this observation over non-zero credit spreads for very

short maturity bonds, we give some numerical examples in the next section.
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6.7 Numerical inversion of double Laplace transform

This section discusses numerical inversion of double Laplace transforms of Abate and

Whitt [1] and Choudhury et al [31] used to determine the term structure of credit

spreads (6.6.4) expressed in terms of inversion of double Laplace transforms.

To begin with, let f(t, x) be a complex-valued function on R2
+ whose double

Laplace transform is given by

f̂(λ, β) =

∫ ∞

0

∫ ∞

0

e−(λt+βx)f(t, x)dtdx, (6.7.1)

which we assume to be well defined (see for example Ditkin and Prudnikov [35]). In

(6.7.1), λ and β are complex variables with Re(λ) > 0 and Re(β) > 0. In this section,

we discuss how to calculate f(t, x) using the values of f̂(λ, β).

Let F be a complex valued function on R2 with a well-defined double Fourier

transform

φ(λ, β) =

∫ ∞

−∞

∫ ∞

−∞

ei(λt+βx)F (t, x)dtdx. (6.7.2)

If F is a probability density function, then φ is known as its characteristic exponent,

see for instance equation (2.1.1). Under regularity conditions, F can be recovered

using the Fourier inversion formula

F (t, x) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

e−i(tλ+xβ)φ(λ, β)dλdβ. (6.7.3)

Our task is to compute the double integral numerically. The numerical approximation

can be obtained using the two-dimensional Poisson summation formula

∞∑

j=−∞

∞∑

k=−∞

F
(
t+

2πj

h1
, x+

2πk

h2

)

=
h1h2

4π2

∞∑

j=−∞

∞∑

k=−∞

e−i(jh1t+kh2x)φ(jh1, kh2).

(6.7.4)

The left-hand side of (6.7.4) is constructed by aliasing to be a periodic function of t

and x with periods h−1
1 and h−1

2 , respectively. Assuming that the series on the left

in (6.7.4) converges and that this periodic function has a proper Fourier series, the

Fourier series is given by the right side of (6.7.4).

The key point in the inversion problem is that the Fourier transform values

φ(jh1, kh2) from (6.7.2) appear as the Fourier coefficients in (6.7.4); see equation

(5.47) in Abate and Whitt [1] and Champeney [25] page 163. Note that the right-

hand side of (6.7.4) can be regarded as a trapezoidal rule form of numerical integration

applied to the inversion integral (6.7.3).

In order to control the aliasing error, we apply exponential damping; that is, if

f is our original function of interest in the equation (6.7.1), then we replace F (t, x)
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6. endogenous bankruptcy under Lévy processes

by the function f(t, x)e−(a1t+a2x) when t, x ≥ 0 and 0 elsewhere. Then we have that

φ(λ, β) = f̂(a1 − iλ, a2 − iβ) for f̂ in (6.7.1), and the right-hand side of (6.7.4) can be

expressed in terms of Laplace transform values. If, furthermore, we let h1 = π/(tl1)

and h2 = π/(xl2), with l1, l2 ≥ 1, and take a1 = A1/(2tl1) and a2 = A2/(2xl2), we

obtain

f(t, x) =
exp

(
A1/(2l1) +A2/(2l2)

)

4tl1xl2

×
∞∑

j=−∞

∞∑

k=−∞

e−i(jπ/l1+kπ/l2)f̂
( A1

2tl1
−
ijπ

l1t
,
A2

2xl2
−
ikπ

l2x

)
− e∞.

where the error e∞ is given by

e∞ ≡
∑

0≤j,k≤∞
not j = k = 0

e−(jA1+kA2)f
(
(1 + 2jl1)t, (1 + 2kl2)x

)
.

The term e∞ can be regarded as the error term, which will not be explicitly

computed. If |f(t, x)| ≤ C for some constant C and all t, x (C = 1 if f(t, x) is a

probability distribution), then the error can be bounded as

|e∞| ≤
C(e−A1 + e−A2 − e−(A1+A2))

(1 − e−A1)(1 − e−A2)
≈ C(e−A1 + e−A2).

Therefore, a good approximation of the function f(t, x) is given by

SN (t, x) =
exp

(
A1/(2l1) +A2/(2l2)

)

4tl1xl2

×
N∑

j=−N

N∑

k=−N

e−i(jπ/l1+kπ/l2)f̂
( A1

2tl1
−
ijπ

l1t
,
A2

2xl2
−
ikπ

l2x

)
.

The raw value of SN may not be a very good approximation; but by using Euler

summation to smooth the values of the (nearly) alternating sums, we were able to

obtain good accuracy. The approximation to f(t, x) finally is given by

f(t, x) +

M∑

n=0

2−M

(
M

n

)
SN+n(t, x).

This is the formula we used in the thesis to invert numerically a double Laplace

transform for the term structure of credit spreads (6.6.4).

6.8 Numerical examples

We verify the results of Sections 5 and 6 by means of numerical examples. Our main

objective is to show that the bankruptcy level V ⋆
B is the one that maximizes the equity
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value E(V ;VB). For our numerical examples, we pay attention to two cases. Firstly,

we assume that the underlying dynamics of X is generated by α-stable processes with

Laplace exponent

κ(λ) = Kλ− λα, and κ(λ) = Kλα,

respectively. For the first (second) Laplace exponent, we choose α = 0.5 (α = 1.75).

Secondly, we consider jump diffusion processes where the jump component of X is

contributed by a compound Poisson process having independent downward jumps

with exponential exp(c) distribution occurring at the times of a Poisson process with

rate a, i.e., X has Laplace exponent

κ(λ) = dλ+
1

2
σ2λ2 +

∫ 0

−∞

acecx(eλx − 1)dx

= dλ+
1

2
σ2λ2 −

aλ

c+ λ
. (6.8.1)

This special case of spectrally negative Lévy process was considered by Hilberink

and Rogers in [58]. For all computations, we fix some values of parameters: we set

r = 7.5%, δ = 7%, η = 50% and τ = 35%, σ = 0.2, a = 0.5, c = 9, which are

the values used in [77],[76], and [58]. We shall also assume as in [76] and [58] that

VT = ρP/δ. The parameters in the Laplace exponent κ are chosen such that they

match the martingale condition

E

(
e−(r−δ)tV (t)

)
= V.

Since our modeling for capital structures of a firm depends on the bankruptcy

level VB , we need to do the following in order to get one point on the curves (for the

firm’s (equity) values and debt values). Once a firm has been set up, the face value

of the debt P and the coupon rate ρ are calculated for a fixed m > 0 in such a way

that the equation (6.5.3) for the bankruptcy level VB holds,

D(V ;VB) = P and L =
P

v(V ;VB)
,

for some positive constants leverage L running from 5% to 95% in steps of 5%. The

firm’s value v(V ;VB) and the total debt outstanding value D(V ;VB) at time zero are

defined in (6.2.8) and (6.2.7), respectively. The numerical results for the equity curves

E(V ;VB) are reported in Figures 6.5 and 6.6.

We present the numerical outcomes in Figures 6.5 for the case where the underlying

dynamics X of the firm asset has path of unbounded variation. The first picture is for

the case where X is a jump diffusion process and the other is for α-stable process with

α = 1.75. The latter process is a process of pure jumps with no Gaussian component.

We see that all the curves of the equity value E(V ;VB) has zero values for all V ≤ VB .

The curves with negative (positive) gradient at V = VB correspond with bankruptcy
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(a) X is a jump diffusion process with drift d =

r−δ−σ2/2+a/(1+c). The optimal bankruptcy

level is V ⋆
B

= 15.9964.
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(b) X is α-stable process with Laplace exponent

κ(λ) = Kλα, α = 1.75, and K = r − δ. The

optimal bankruptcy level is V ⋆
B

= 43.9815.

Figure 6.5: Various shapes of the equity curves V 7→ E(V ;VB) for different values

of bankruptcy level VB for unbounded variation Lévy processes. The curve with zero

gradient (smooth pasting) at V = VB (horizontal axis) corresponds to VB = V ⋆
B ; those

with negative (positive) gradient correspond to VB < (>) V ⋆
B.
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(a) X is α-stable process with Laplace exponent

κ(λ) = Kλ − λα, α = 0.5, and K = 1 + r − δ.

The optimal bankruptcy level is V ⋆
B

= 19.3159.
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(b) X is compound Poisson process with drift

d = r − δ + a/(1 + c). The optimal bankruptcy

level is V ⋆
B

= 21.5487.

Figure 6.6: Various shapes of the equity curves V 7→ E(V ;VB) for different values of

bankruptcy level VB for bounded variation Lévy processes. The curve with zero value

(continuous pasting) at V = VB (horizontal axis) corresponds to VB = V ⋆
B; those with

negative (positive) jumps correspond to VB < (>) V ⋆
B .
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(a) X is a jump diffusion process with drift d =

r−δ−σ2/2+a/(1+c). The optimal bankruptcy

level is V ⋆
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(b) X is α-stable process with Laplace exponent

κ(λ) = Kλα, α = 1.75, and K = r − δ. The

optimal bankruptcy level is V ⋆
B

= 43.9815.

Figure 6.7: The shape of the equity curves VB 7→ E(V ;VB) for a fixed initial value

V of the firm’s asset for unbounded variation Lévy processes. The curve achieves its

maximum value at VB = V ⋆
B .
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(a) X is α-stable process with Laplace exponent

κ(λ) = Kλ − λα, α = 0.5, and K = 1 + r − δ.

The optimal bankruptcy level is V ⋆
B = 19.3159.
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(b) X is compound Poisson process with drift

d = r − δ + a/(1 + c). The optimal bankruptcy

level is V ⋆
B = 21.5487.

Figure 6.8: The shape of the equity curves VB 7→ E(V ;VB) for a fixed initial value

V of the firm’s asset for bounded variation Lévy processes. The curve achieves its

maximum value at VB = V ⋆
B .
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Figure 6.9: The shape of the credit spreads of a firm with debt maturity profilem = 10.

The case where X is a pure Brownian motion. Credit spreads are zero for very short

maturity bonds.
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Figure 6.10: The shape of the credit spreads of a firm with debt maturity profile

m = 10. The case where X is α− stable process with index α = 1.75. Credit spreads

are strictly positive for very short maturity bonds.
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Figure 6.11: Credit spreads as a function of maturity, for different values of leverage,

running from 5% to 75% in steps of 5%. The higher the leverage, the higher the

spread. The case where X is a pure Brownian motion. Credit spreads are zero for

very short maturity bonds.
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Figure 6.12: Credit spreads as a function of maturity, for different values of leverage,

running from 5% to 75% in steps of 5%. The higher the leverage, the higher the

spread. The case where X is α− stable process with index α = 1.75. Credit spreads

are strictly positive for very short maturity bonds.
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level VB < (>)V ⋆
B . The only curve which has zero gradient (smooth pasting) at

V = VB corresponds to the one with the bankruptcy level VB = V ⋆
B. In addition,

while X has no Gaussian component we observe also that there are infinite gradient

at V = VB for VB 6= V ⋆
B for the equity curves.

For the case where X has paths of bounded variation, the numerical outcomes are

presented in Figure 6.6. We see that all the curves of the equity value E(V ;VB) have

zero values for all V < VB. From the picture we observe that at the bankruptcy level

VB < (>)V ⋆
B the equity curves E(V ;VB) exhibit negative (positive) jumps. The only

curve which has no jumps (continuous pasting) at V = VB corresponds to the one

with the bankruptcy level VB = V ⋆
B.

It is seen from the two figures that the equity curve associated with VB = V ⋆
B seems

to dominate the other curves, even without the constraint of positive equity. This is to

say that the bankruptcy level V ⋆
B is indeed the optimal level of bankruptcy at which

the firm’s equity value is maximized. This conclusion concerning the optimality of

the bankruptcy level V ⋆
B is illustrated in Figures 6.7 and 6.8 from which we see that

V ⋆
B is the only bankruptcy value at which, for a fixed initial value V of the firm’s

asset, the firm’s equity value E(V ;VB) is optimal. These numerical findings confirm

our theoretical results given in Section 5.

The final plot, Figure 6.9-6.12, shows various shapes of the credit spreads as a

function of maturity for a range of different values of leverage taken from 5% to 75%

increasing in steps of 5%. Compare the continuous case, a pure Brownian motion,

see Figures 6.9 and 6.11, with the other case with jumps, α− stable process with

α = 1.75 (see Figures 6.10 and 6.12). We notice that the credit spreads go to zero as

the time to maturity T tends to zero in the pure Brownian motion case, but seem to

have positive limiting values in the other case. In other respects, the numerical results

obtained resemble the similar type of behavior found previously by Sarig and Warga

[110], Pitts and Shelby [103], Leland [77], Leland and Toft [76], Hilberink and Rogers

[58], and Chen and Kou [29].

6.9 Conclusion and remarks

We have built on the work of Leland [77], Leland and Toft [76] and Hilberink and

Rogers [58] showing that one may push the model considered by these authors fully

into the case that the underlying source of randomness is a spectrally negative Lévy

process. We have done this by giving an analytical treatment using scale functions.

This has lead to the discovery that the optimal bankruptcy level is not always achieved

by a smooth pasting condition, but instead continuous pasting is sufficient according

to the path regularity of the underlying Lévy process. Moreover, our justification for

the pasting principles goes further than numerical observation and we give a formal

proof of this fact.
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Chapter 7

Evaluating Scale Functions of Spectrally Negative

Lévy Processes1

Abstract

In this chapter we discuss a robust numerical method to compute the scale

function {W (q)(x) : q ≥ 0, x ∈ R+} of a general spectrally negative Lévy process

(X, P). The method is based on the Esscher transform of measure P
ν under which

X is taken and the scale function is determined. This change of measure makes

it possible for the scale function to be bounded and hence makes numerical

computation easier, fast and stable. Working under the measure P
ν and using

the method of Abate and Whitt [1] and Choudhury et al. [31], we give a fast

stable numerical algorithm for the computation of W (q)(x) for q ≥ 0.

7.1 Introduction

In literature, we have seen that many fluctuation identities associated with the prob-

lem of first-exit from positive half-line or finite interval of a (reflected) spectrally

negative Lévy process (X,P) can be written in terms of the so called q-scale func-

tion {W (q)(x) : q ≥ 0, x ∈ R+}. For literature review, we refer to Bertoin [14], [15],

Avram et al. [7], Lambert [75], Rogers [107], and the literature therein. In connection

with pricing American put and Russian options driven by spectrally negative Lévy

processes, the rational price of these options appears to be some functional of this

function, see for instance Avram et al. [7]. In mathematical insurance, this function

appears in the problem of finding optimal dividend payments, see for instance Avram

et al. [8]. In credit risk theory, the scale function plays an important role in determin-

ing an endogenous bankruptcy level VB as well as in assessing the optimality of VB , see

for instance Kyprianou and Surya [73] (see also Chapter 5 for more details). Working

under a completely general spectrally negative Lévy process, it was shown recently

1Submitted for publication to Journal of Applied Probability.
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in Kyprianou and Surya [73] that not only the analytical treatment of the optimal

bankruptcy level is possible, but also the smooth pasting condition used by Leland

and Toft [76] and Hilberink and Rogers [58] for optimality criterion for choosing VB

can be verified both analytically and numerically. It is also worth noting that the

scale function appears to be an important factor in Queuing theory (see for instance

Dube et al. [36]) and the theory of continuous state branching processes (we refer to

Chapter 10 in Kyprianou [69] for details).

For some spectrally negative Lévy processes, the scale function is available in

explicit form. Typical examples are standard Brownian motion, α-stable processes

with α ∈ (0, 2), jump diffusion process with exponential negative jumps and Com-

pound Poisson processes. See for instance Bertoin [14], [15] and Kyprianou [69] for

more details. Due to complexity of the Laplace exponent of the Lévy process, the scale

function is not available in explicit form in general. An example for this is a spectrally

negative tempered stable process with index less than two. Thus, numerical inversion

of Laplace transform can be used to compute the scale function numerically.

Quite recently, a fast and stable numerical inversion for the scale function W (0)(x)

of a spectrally negative Lévy process containing Brownian motion whose Laplace

exponent satisfying κ′(0+) > 0 was proposed by Rogers [107]. We will come back to

this point later on Section 3. For the case q ≥ 0 and X contains no Brownian motion,

the issue of how to evaluate the q-scale function W (q)(x) was not addressed. As will

be shown later, there is a problem on the computation. The problem is that for each

q > 0 the q-scale function W (q)(x) is exponentially unbounded at infinity under the

measure P and hence numerical inversion for producing W (q)(x) could be unstable.

We try to overcome this problem by a change of measure using the Esscher transform

P
ν under which the scale function could be bounded. Working under the measure P

ν

and using the method of Abate and Whitt [1] and Choudhury et al. [31], we give a

fast stable numerical algorithm for the computation of W (q)(x) for q ≥ 0.

The organization of this chapter is as follows. In Section 2, we briefly discuss

spectrally negative Lévy processes and its exponential change of measure Pν . Section

3 defines the q-scale function of a general spectrally negative Lévy process. In Section

4 we discuss numerical methods for the computation of the q-scale function. Numerical

examples of the computation are given in Section 5. Finally, we provide the MATLAB

program code for the computation in Section 6.

7.2 Spectrally negative Lévy processes

In this chapter, we consider a Lévy process X having the canonical decomposition

Xt = µt+ σBt + J
(−)
t ,

where B = {Bt, t ≥ 0} is a standard Brownian motion and J (−) = {J
(−)
t , t ≥ 0} is a

non-Gaussian Lévy process, having no positive jumps, independent of B. This class
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of Lévy processes has a great interest from theoretical point of view, because they

are processes for which fluctuation theory takes the nicest form and can be developed

explicitly to its fuller extent. The degenerate case when X is either the negative

of a subordinator or a deterministic drift has no interest and will not be discussed

throughout. What we shall say here is based on (for the most part) Chapter VII in

Bertoin [13].

The law of the Lévy process started at zero will be denoted by P (with the associ-

ated expectation operator E). Since X has no positive jumps, the moment generating

function θ 7→ E(eθXt) exists for all θ ≥ 0 and is given by

E(eθXt) = etκ(θ),

where the function κ : [0,∞) → (−∞,∞), also called as the Laplace exponent of X ,

is defined by

κ(θ) = µθ +
1

2
σ2θ2 +

∫

(−∞,0)

(
eθy − 1 − θy1{y>−1}

)
Π(dy). (7.2.1)

It is easily seen that κ is zero at the origin and is strictly convex with limθ↑∞ κ(θ) = ∞.

Next we denote by Φ(α) the largest solution of the equation

κ(p) = α for all α ≥ 0.

Note that due to the convexity of κ, there exists at most two roots for a given α and

precisely one root when α > 0. The asymptotic behaviour of X can be determined

from the sign of κ′(0+), the right-derivative of κ at zero. X drifts to −∞, oscillates

or drifts to +∞ according to whether κ′(0+) is negative, zero or positive. See for

instance Kyprianou and Palmowski [70] for more details.

It is worth mentioning that under the Esscher transform Pν defined by

dPν

dP

∣∣∣
Ft

= eνXt−κ(ν)t for all ν ≥ 0, (7.2.2)

the Lévy process (X,Pν) is still a spectrally negative Lévy process. The Laplace

exponent of X under the measure Pν has changed to

κν(θ) =
1

t
log E

ν
(
eθXt

)

=
1

t
log E

(
e(θ+ν)Xt−κ(ν)t

)

= κ(θ + ν) − κ(ν).

(7.2.3)

To each ν ≥ 0, we will denote by P
ν
x the translation of P

ν under which X0 = x.

7.3 Scale functions

This section discusses the so called scale functions. (See Bertoin [13], [14] and [15]

for the origin of this function). This function features invariably all known identities
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for Laplace transforms of first-exit and overshoots for spectrally negative (reflected)

Lévy processes. See the aforementioned literature for more details.

Definition 7.3.1 Let q ≥ 0 and define Φν(q) as the largest root of κν(θ) = q.

Definition 7.3.2 (q-Scale function) For a given spectrally negative Lévy process

with Laplace exponent (7.2.1), there exists for every q ≥ 0 a right-continuous function

W (q) : [0,∞) → [0,∞), called the q-scale function, with Laplace transform given by

∫ ∞

0

e−λxW (q)(x)dx =
1

κ(λ) − q
for λ > Φ(q), (7.3.1)

where Φ(q) was defined in the previous section. We shall write for short W (0) = W .

Furthermore, we refer to W
(q)
ν (x) the scale function under the measure Pν .

We assume throughout the remaining of this chapter that the Lévy measure Π

has no atoms. It turns out that the smoothness properties of the q-scale functions

W (q)(x) are very closely related to the roughness of the underlying paths of the

associated Lévy process. If X has paths of unbounded variation or bounded variation

and the Lévy measure Π has no atoms, it is known that the q-scale function W (q)(x)

is continuously differentiable, see for instance Lambert [75], Chan and Kyprianou [28],

and the literature therein for more details.

Lemma 7.3.3 (Asymptotic behaviour) Suppose that either (q > 0) or (q = 0

and κ′(0+) > 0). Then the scale function {WΦ(q)(x) : q ≥ 0, x ∈ R} of X taken under

the measure PΦ(q) is increasing and bounded from above by 1/κ′(Φ(q)). However, when

X is taken under the measure P, the q-scale function W (q)(x) is given by

W (q)(x) = eΦ(q)xWΦ(q)(x), (7.3.2)

and hence has the asymptotic W (q)(x) ∼ eΦ(q)x

κ′(Φ(q)) as x→ ∞.

Remark 7.3.4 In the case of q = 0 and κ′(0+) = 0, the scale function WΦ(q)(x)

is increasing and unbounded at infinity and hence the numerical computation may

produce instability in the tail (as x→ ∞).

Proof From (7.3.1) and (7.2.3), it is clear to see for all q ≥ 0 that

∫ ∞

0

e−λxWΦ(q)(x)dx =
1

κΦ(q)(λ)
=

1

κ(λ+ Φ(q)) − κ(Φ(q))
, (7.3.3)

for λ > 0. It is clear following (7.3.3) and using a standard Tauberian theorem that

lim
x↑∞

WΦ(q)(x) = lim
λ↓0

λ

κ(λ+ Φ(q)) − κ(Φ(q))
=

1

κ′(Φ(q))
< ∞. (7.3.4)
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Taking into account of (7.3.4), we see using integration by parts that the Laplace-

Stieltjes transform of the scale function WΦ(q)(x) is given by

∫ ∞

0

e−λxdWΦ(q)(x) =
λ

κ(λ+ Φ(q)) − κ(Φ(q))
,

where dWΦ(q) denotes the Stieltjes measure associated to the scale function WΦ(q)(x)

which gives the mass WΦ(q)(0) zero value. Since the Lévy measure Π has no atoms so

that WΦ(q) is continuously differentiable, it is clear that the scale function WΦ(q)(x)

is increasing and bounded from above by 1
κ′(Φ(q)) .

The claim that the q-scale function W (q)(x) is given by the expression (7.3.2) can

be verified by applying Laplace transform to the both sides of (7.3.2). As a result of

(7.3.2), it is clear by Tauberian theorem that the q-scale function W (q)(x) has the

asymptotic W (q)(x) ∼ eΦ(q)x

κ′(Φ(q)) as x→ ∞. Thus, our claim is then proved. �

Remark 7.3.5 Following (7.3.1), it is straightforward to check that

W (q)
ν (x) = e−νxW (q+κ(ν))(x) for all ν ≥ 0 and q ≥ −κ(ν). (7.3.5)

To verify the relation (7.3.5), apply Laplace transform to the both sides of (7.3.5).

7.4 Evaluating scale functions

In this section we discuss numerical algorithms based on a univariate version of Rogers’

method [107], and the methods of Abate and Whitt [1] and Choudhury et al [31] for

the computation of the q-scale function W (q)(x). In order to apply these algorithms,

we need the result of Lemma 7.3.3 for the computation.

7.4.1 A method based on Roger’s approach

In [107], Rogers gives a fast stable numerical algorithm (which is a variant of Abate

and Whitt [1]) to invert the bivariate Laplace transform

∫ ∞

0

∫ ∞

0

e−(λx+qt)
P(τ−−x ≥ t)dtdx =

λ− Φ(q)

(κ(λ) − q)λΦ(q)
(7.4.1)

of the probability of first passage time τ−x = inf{t > 0 : Xt < −x} below a level

−x ≤ 0 of a spectrally negative Lévy process having Gaussian component.

Compared to the problem (7.4.1), the inversion problem (7.3.1) is different on

its own. Unlike the inversion problem (7.4.1) the problem (7.3.1) is univariate. How-

ever, the algorithm for inverting the Laplace transform (7.4.1) could be adapted to

accommodate the inversion problem (7.3.1).
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7. Evaluating the Scale Functions

By identifying the fact that P(τ−−x ≥ t) = P(−Xt ≤ x), we can now reduce the

problem (7.4.1) into a univariate case as

∫ ∞

0

e−λx
P(−X

eq
≤ x)dx =

q

Φ(q)

1

(κ(λ) − q)
−

q

λ(κ(λ) − q)
. (7.4.2)

Note that the expression in (7.4.2) is based on the Wiener-Hopf factorization formula

(2.3.3) (see Section 3 of Chapter 2 for details) for spectrally negative Lévy processes

and is obtained by applying integration by part in (2.3.3). Hence, as a result of

inverting the Laplace transform (7.4.2), the q-scale function W (q)(x) in (7.3.1) might

be deduced from the relation (7.4.2).

In the special case of q = 0 and κ′(0+) > 0, we see that the result of inverting

(7.4.2) coincides up to multiplicative constant with that of (7.3.1). In this case, a

univariate version of Rogers’ algorithm might be applied to get the scale function

W (0)(x). Due to the presence of the second term on the right-hand side of the equation

(7.4.2), it is not straightforward, however, how to get W (q)(x) from (7.4.2).

Suppose that the problem (7.4.2) could be solved numerically using the univariate

version of Rogers’ algorithm to produce the distribution function P(−X
eq

≤ x). The

goal is to find an expression for the q-scale functions {W (q)(x), q ≥ 0} in terms of the

function P(−X
eq

≤ x). To solve this problem, we can use the Esscher transform PΦ(q)

(7.2.2) to first compute the scale function WΦ(q)(x) and then use the transformation

(7.3.2) to obtain W (q)(x) for q ≥ 0. (Note that WΦ(q)(x) plays the role of the scale

function W (q)(x) for q = 0 when X is taken under the measure PΦ(q).) Under this

measure, we obtain after some calculations that

WΦ(q)(x) =
Φ(q)

q
e−Φ(q)x

P(−X
eq

≤ x) +
Φ(q)2

q

∫ x

0

e−Φ(q)y
P(−X

eq
≤ y)dy. (7.4.3)

To see that this is the correct expression for the scale function WΦ(q)(x), take Laplace

transform on both sides of the above expression and use (7.4.2) to get (7.3.3), i.e.,

∫ ∞

0

e−λxWΦ(q)(x)dx =
1

(κ(λ + Φ(q)) − q)
for λ > 0 and q ≥ 0. (7.4.4)

Hence, following (7.4.3) and (7.3.2) the q-scale function W (q)(x) is finally given by

W (q)(x) =
Φ(q)

q
P(−X

eq
≤ x) +

Φ(q)2

q

∫ x

0

e−Φ(q)(y−x)
P(−X

eq
≤ y)dy.

Note that the algorithm given in Rogers [107] can be used to handle the case where

a spectrally negative Lévy process contains a Gaussian component (σ > 0). To deal

with a more general class of spectrally negative Lévy processes, we need to modify

the algorithm based on the method of Abate and Whitt [1] and Choudhury et al. [31].
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7.4. Evaluating scale functions

7.4.2 A method based on Abate and Whitt [1] and Choudhury et al. [31]

In this section we discuss a robust numerical method based on Abate and Whitt [1]

and Choudhury et al. [31] for inverting univariate Laplace transform which works

with a good accuracy for bounded functions. In this thesis, we use this method to

invert the Laplace transform (7.4.4) to produce the function {WΦ(q)(x), q ≥ 0} and

then apply the transformation (7.3.2) to obtain the q-scale function {W (q)(x), q ≥ 0}.

To start with, let f be a real-valued function (not necessarily a probability density)

defined on the positive real line. For such a function f , it is often convenient to work

with the Laplace transform

f̂(λ) =

∫ ∞

0

e−λtf(x)dx, (7.4.5)

where λ is a complex variable for which the integral exists. The standard inversion

integral for the Laplace transform f̂ is the Bromwich contour integral, which can also

be expressed as the integral of a real-valued function of a real variable by choosing a

specific contour by any vertical line λ = a1 such that f̂(λ) has no singularities on or

to the right of the vertical line. By applying this integral, we obtain

f(x) =
1

2πi

∫ a1+i∞

a1−i∞

eλxf̂(λ)dλ =
ea1x

2π

∫ ∞

−∞

eiλxf̂(a1 + iλ)dλ. (7.4.6)

For some Laplace transforms f̂ , analytic expressions for f are available explicitly, see

for instance Obberhettinger [93]. When the transform can not be inverted analytically,

the function f can be approximated by means of numerical approximation.

Several numerical inversion algorithms have been proposed by several authors.

The fast and stable one is given by Abate and Whitt [1] and Choudhury et al. [31].

Following Abate and Whitt [1], we use the trapezoidal rule to approximate the inte-

gral in (7.4.6) and analyze the corresponding discretization error using the Poisson

summation formula. The trapezoidal rule approximates the integral of a function g

over the bounded interval [c, d] by the integral of the piecewise linear function ob-

tained by connecting the n + 1 evenly spaced points g(c + kh), 0 ≤ k ≤ n where

h = (d− c)/n. Using the trapezoidal rule, we have

∫ d

c

g(x)dx ≈ h
[g(c) + g(d)

2
+

n−1∑

k=1

g(c+ kh)
]
, (7.4.7)

see page 51 in Davis and Rabinowitz [34]. The trapezoidal rule (7.4.7) also applies for

the case c = −∞ and d = ∞ with the following modification

∫ ∞

−∞

g(x)dx ≈ h1

∞∑

j=−∞

g(jh1), (7.4.8)
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where h1 is a small positive constant. Applying (7.4.8) to (7.4.6) with step size h1 =

π/x, x > 0, and letting a1 = A1/x at the same time, we get

f(x) ≈
eA1

2x

∞∑

j=−∞

(−1)j f̂((A1 + ijπ)/x). (7.4.9)

The advantage of using this simple numerical procedure of trapezoidal rule is that

it tends to work well for periodic and oscillating integrands since the errors tend to

cancel out and the realized errors can be substantially less than from other alterna-

tive numerical procedure such as Simpson’s rule. Moreover, the Poisson summation

formula can be applied to obtain a convenient representation of the discretization

error associated with the trapezoidal rule. Using the Poisson summation formula, the

approximation (7.4.9) can be obtained for an integrable function g by

∞∑

j=−∞

g(x+ 2πj/h2) =
h2

2π

∞∑

j=−∞

e−ijh2xφ(jh2) (7.4.10)

where h2 is some positive constant and φ(u) =
∫ ∞

−∞
eiuxg(x)dx, the Fourier trans-

form of g. In order to control the aliasing2 error, we do exponential damping; that

is, if f is our original function of interest, then we replace g(x) by the function

f(x)e−a1x1[0,∞)(x). Then φ(λ) = f̂(a1 − iλ), and the right-hand side of (7.4.10)

can be expressed in terms of Laplace transform values:

∞∑

j=0

e−a1(x+2πj/h2)f(x+ 2πj/h2) =
h2

2π

∞∑

j=−∞

e−ijh2xf̂(a1 − ijh2). (7.4.11)

In addition, if we let h2 = π/(xl1), with l1 ≥ 1, and a1 = A1/(2xl1) in (7.4.11) we

obtain

f(x) =
eA1/(2l1)

2xl1

∞∑

j=−∞

e−ijπ/l1 f̂
( A1

2xl1
−
ijπ

l1x

)
− e∞, (7.4.12)

where the error e∞ is given by

e∞ =

∞∑

j=1

e−2jA1f
(
(2j + 1)x

)
.

Comparing (7.4.11) with (7.4.9), we conclude that e is an explicit expression for

the discretization error associated with the trapezoidal rule approximation. This

discretization error can easily be bounded whenever f is bounded. For example if

|f(x)| ≤ C for some C > 0 and all x (C = 1 if f(x) is a probability distribution),

then we have

|e∞| ≤
Ce−2A1

(1 − e−2A1)
. (7.4.13)

2Aliasing means that the new function is constructed by adding a translated version of the

original function
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Therefore, an approximation of the function f (7.4.6) is given by

SN (x) =
eA1/(2l1)

2xl1

N∑

j=−N

e−ijπ/l1 f̂
( A1

2xl1
−
ijπ

l1x

)
. (7.4.14)

The raw value of SN may not be a very good approximation, but by using Euler

summation to smooth the values of the (nearly) alternating sums, we were able to

obtain good accuracy. The approximation to f(x) finally is given by

f(x) +

M∑

n=0

2−M

(
M

n

)
SN+n(x).

This is the formula we used in the thesis to invert numerically a univariate Laplace

transform for the scale function WΦ(q)(x) (the role of the scale function W (x) under

the measure P
Φ(q)) with Laplace transform given by (7.3.3).

7.5 Numerical examples

For our numerical examples, we consider four different Lévy processes. Firstly, we

assume that X is generated by α-stable processes with Laplace exponent

κ(λ) = Kλα, for α ∈ (0, 2]. (7.5.1)

Secondly, we consider jump diffusion processes where the jump component of X

is contributed by a compound Poisson process having independent downward jumps

with exponential exp(b) distribution occurring at the times of a Poisson process with

rate a; that is to say that X has Laplace exponent

κ(λ) = dλ+
σ2

2
λ2 −

aλ

b+ λ
. (7.5.2)

Thirdly, we consider X to be a one sided tempered stable process. In the general

case (α 6= 1 and α 6= 0) the Laplace exponent of X is given by

κ(λ) = dλ+ Γ(−α)βαC
{(

1 +
λ

β

)α

− 1 −
λα

β

}
. (7.5.3)

(See Section 5.7.1 of Chapter 5 for further details.) Tempered stable processes were

used in Section 5.7 of Chapter 5 for the computation of the arbitrage-free price of the

perpetual American put and call options.

Finally, we consider the case where X is a gamma process perturbed by diffusion

process. The Laplace exponent of X is described by

κ(λ) = dλ+
σ2

2
λ2 − ψ(λ) (7.5.4)
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Figure 7.1: The shape of the scale function WΦ(q)(x) for compound Poisson and jump

diffusion processes. All the curves are bounded by 1/κ′(Φ(q)), equal to 30.8640 and

10.1787, respectively. From the plot, we notice that WΦ(q)(0) is respectively positive

for compound Poisson process and zero for jump diffusion process.
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Figure 7.2: The absolute error
∣∣ŴΦ(q)(x)−WΦ(q)(x)

∣∣ between numerical and theoret-

ical results for the scale function WΦ(q)(x) for compound Poisson (CPP) and jump

diffusion (JDP) processes. For CPP (resp. JDP) the error is bounded by 2.5664×10−5

(resp. 8.4639× 10−6). See inequality (7.5.5) for the error estimate.
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Figure 7.3: The shape of the scale function WΦ(q)(x) of α− stable Lévy processes

with indexes α = 2 and α = 1.75. All the curves are bounded by 1/κ′(Φ(q)), equal

to 2.2361 and 1.5330, respectively. From the plot, we notice that WΦ(q)(0) has zero

value for both processes.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−6

A
bs

ol
ut

e 
E

rr
or

x

Abs. Error SP α=2
Abs. Error SP α=1.75

Figure 7.4: The absolute error
∣∣ŴΦ(q)(x)−WΦ(q)(x)

∣∣ between numerical and theoret-

ical results for the scale function WΦ(q)(x) of α− stable Lévy processes with indexes

α = 2 and α = 1.75. For α = 2 (resp. α = 1.75) the error is bounded by 1.8594×10−6

(resp. 1.2747× 10−6). See inequality (7.5.5) for the error estimate.
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Figure 7.5: The shape of the scale functionWΦ(q)(x) of tempered stable Lévy processes

with indexes α = 0.5 and α = 1.5. All the curves are bounded by 1/κ′(Φ(q)), equal to

13.7137 and 8.7532, respectively. From the plot, we notice that WΦ(q)(0) is positive

for α = 0.5 and zero for α = 1.5.
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Figure 7.6: The shape of the scale function WΦ(q)(x) of gamma process perturbed by

diffusion process. All the curves are bounded by 1/κ′(Φ(q)), equal to 10.5823 (when

σ > 0) and 41.7222 (when σ = 0), respectively. From the plot, we notice that WΦ(q)(0)

is positive when σ = 0 and zero when σ > 0.
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where ψ(λ) is the Laplace exponent of a gamma process S defined by

ψ(λ) =

∫ ∞

0

(1 − e−λx)ax−1e−bxdx = a log
(
1 +

λ

b

)
, for a, b > 0.

Note that the perturbed gamma process (7.5.4) is a slight generalization of the model

studied by Dufresne and Gerber [38] and has been used in risk theory quite extensively.

For related references, see for instance Dufresne and Gerber [38], Gerber [53], Gerber

and Shiu [54], Yang and Zhang [119], and the literature therein.

For all computations, we fix some values of parameters:N = 11,M = 9,A1 = 14.0,

l1 = 1; for jump diffusion and gamma processes we set σ = 0.2, d = 0.055, a = 0.5,

b = 9; for α-stable process we set K = 0.5 for α = 2 (a standard Brownian motion)

and K = 1 for α = 1.75. In the case where X is tempered stable process with α = 0.5

(resp. α = 1.5) we choose the relative frequency of downward jumps C to be 0.075

(resp. C = 0.05) and the jump rate β to be 2.5 (resp. β = 2.5).

The numerical results of the scale function WΦ(q)(x) (7.3.3) for q = 0.1 are pre-

sented in Figures 7.1-7.6. We observe from these plots that all of the curves are

increasing and bounded from above by 1/κ′(Φ(q)). These numerical outcomes sup-

port our theoretical results given previously in Lemma 7.3.3. In particular, for the

case where X has path of bounded and unbounded variation we see respectively that

WΦ(q)(0) > 0 and WΦ(q)(0) = 0, (see Section 6.4 of Chapter 6 for more discussions).

Using the explicit form of the scale function WΦ(q)(x) of α-stable (7.5.1) and jump

diffusion (7.5.2) processes, given in Section 6.4.1 of Chapter 6, we present in Figures

7.2 and 7.4 plots of the absolute error between the theoretical curve WΦ(q)(x) and

the numerical curve ŴΦ(q)(x) produced by the proposed numerical method. Following

(7.4.13) we observe that the absolute error is bounded by 1
κ′(Φ(q))

e−A1

(1−e−A1 )
, i.e.,

∣∣ŴΦ(q)(x) −WΦ(q)(x)
∣∣ ≤

1

κ′(Φ(q))

e−A1

(1 − e−A1)
. (7.5.5)

Since the (tuning) parameter A1 was chosen relatively big (with A1 = 14), we see

that the absolute error is relatively small and hence our numerical method performs

very good job in the computation of the scale function WΦ(q)(x).

The final plot, Figures 7.5-7.6 show the shape of the scale function WΦ(q)(x) for

tempered stable processes (7.5.3) with indexes α = 0.5 and α = 1.5, and perturbed

gamma process (7.5.4). For these stochastic processes, we notice that an explicit

expression for the scale function WΦ(q)(x) is not available. But nonetheless, it exhibits

the important properties of the scale function as specified in Lemma 7.3.3.
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7.6 MATLAB program code

We present in this section a simple MATLAB program used to compute the function

WΦ(q)(x) by means of numerical inversion of the Laplace transform (7.3.3). The al-

gorithm is based on the framework of Abate and Whitt [1] and Choudhury et al. [31]

described earlier. However, to handle matrix multiplication, we use the approach of

Rogers [107].

function G=ILT(F,X,P)

% This program is for numerical inversion

% of univariate Laplace transform

% F is the Laplace transform function,

% P is a vector of parameters sitting in F

% Setting the parameters values 11, N, M and A1

N=11; M=9; A1=14.0; l1=1;

% Creating the weights to be used in the

% Euler summation of the partial sums:

mx=pascal(M+1); my=fliplr(mx); bn=diag(my)*2^(-M);

weight=ones([2*N+1 1]); head=cumsum(bn); tail=1-cumsum(bn);

tail(M+1,:)=[]; head(M+1,:)=[]; weight=[head;weight;tail];

% Setting the values of the arguments at which the

% transfor series to be evaluated:

val1=-(N+M):(N+M); val1=(i*pi*val1+A1/2)/l2; X_inv=1./X;

X_args=kron(X_inv,val1);

% Evaluating the integrand at all the points.

integrand=feval(F,X_args,P)

.*exp(X_args*diag(kron(X,ones(1,1+2*N+2*M))));

% Preparing the matrix which will

% post-multiply the integrand

right=kron(diag(X_inv),weight)/(2*l2);
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% and finally the answer is given by

G=real(integrand*right);

------------------------------------------

The following MATLAB m-files are needed to compute the scale function WΦ(q)(x)

of α-stable, jump diffusion, tempered stable, and gamma processes whose Laplace

exponents are given in equations (7.5.1)-(7.5.4).

function g=LEXP(z,A)

% Non zero value of the parameter A is needed to compute

% the largest root of the Laplace exponent

% For Spectrally Negative (SN) alpha stable process with alpha <1

alpha=0.5; K=1; f=K.*z-z.^(alpha); g=f-A;

% For SN alpha stable processes with alpha >=1

alpha=1.75; K=1; f=K.*z.^(alpha); g=f-A;

% For SN alpha stable process with alpha =2

f=z.^2/2; g=f-A;

% For SN Jump Diffusion Processes (JDP)

sigma=0.2; a=0.5; c=9; d=0.055;

f=d.*z+0.5.*(sigma.^2).*(z.^2)-a.*z./(c+z); g=f-A;

% For SN bounded variation (BV) tempered stable process

alpha=0.5; lambda=2.5; C=0.075; d=0.0550;

% For SN unbounded variation (UBV) tempered stable process

alpha=1.5; lambda=2.5; C=0.05; d=0.0550;

f=d.*z+gamma(-alpha).*(lambda).^(alpha).*(C)...

.*((1+z./(lambda)).^(alpha)-1-(alpha).*z./lambda); g=f-A;

% For Gamma process perturbed by diffusion process

sigma=0.2; d=0.0550; a=0.5; b=9;

f=d.*z+0.5.*(sigma.^2).*(z.^2)-a.*log(1+z./b); g=f-A;

------------------------------------------

function f=Phir(q)
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7. Evaluating the Scale Functions

% Computing the largest root of the Laplace exponent

x0=1; f=fsolve(’LEXP’,x0,optimset(’MaxFunEvals’,100),q);

------------------------------------------

function f=funcscale(lambda,q)

% The right hand side of the equation (7.4.9)

A=0; g=(LEXP(lambda+Phir(q),A)-q); f=1./g;

------------------------------------------

Finally, the scale function WΦ(q)(x) is given by

function W=Scale(x,q)

% Producing the scale function

W=ILT(’funcscale’,x,q);

------------------------------------------

Having solved the problem (7.3.3), the q-scale function W (q)(x) is given by

W (q)(x) = exp(Phir(q)*x).*W.
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exponential phase-type Lévy models. Stochastic Process. Appl., 109 (2004), No. 1, 79-

111.

[7] Avram, F., Kyprianou, A. E., and Pistorius, M. R. Exit problems for spectrally negative
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Samenvatting

Het oplossen van optimale stoptijdproblemen gedreven door Lévy processen is een

uitdagende opgave en kent verscheidene toepassingen in de moderne theorie van

de financiering. Voorbeelden zijn het vinden van de arbitrage-vrije prijs van een

Amerikaanse put (call) optie en het bepalen van een optimaal faillissementsniveau

voor het probleem van endogeen faillissement.

Het belangrijkste aspect van het prijzen van de Amerikaanse put (call) optie is het

vinden van de kritieke waarde van het prijsproces waaronder (waarboven) de optie

uitgeoefend wordt. Voor endogeen faillissement gaat het vooral om het vinden van een

optimaal faillissementsniveau van een bedrijf dat een constant schuldenprofiel heeft

en dat het faillissementsniveau endogeen kiest om de equity waarde te maximaliseren.

Binnen de context van de optimale stoptijdtheorie komen de arbitrage-vrije prijs van

de Amerikaanse put (call) optie en de equity waarde overeen met de waardefunctie

van een optimaal stoptijdprobleem, terwijl de kritieke waarde van het prijsproces en

het optimale faillissementsniveau overeenkomen met de optimale stopgrens.

In het algemeen zijn optimale stoptijdproblemen twee-dimensionaal, omdat de

waardefunctie en de optimale stopgrens tegelijk gevonden dienen te worden. Hierbij

kan de waardefunctie gezien worden als functie van de te vinden optimale stopgrens.

Dit is een van de redenen dat het oplossen van optimale stoptijdproblemen, vanuit

een analytisch oogpunt, uitdagend is.

Een belangrijke techniek die vaak gebruikt wordt bij het oplossen van optimale

stoptijdproblemen gedreven door diffusies, is de vrije-randwaarde probleem formule-

ring van de waardefunctie en de grens. Deze formulering bestaat hoofdzakelijk uit een

partiële differentiaalvergelijking en (naast andere voorwaarden) de continue en gladde

verbindingvoorwaarde. Voor de eerste voorwaarde dient de waardefunctie continu te

zijn op de grens, terwijl voor de tweede voorwaarde op de rand C1- gladheid van de

waardefunctie vereist is. Afhankelijk van het optimale stoptijdprobleem en van het

gedrag van de paden van het Lévy proces kan het gebeuren dat de waardefunctie niet

voldoet aan de gladde verbindingsvoorwaarde. In dit proefschrift zullen we laten zien

dat dit fenomeen plaatsvindt als het Lévy proces van begrensde variatie is. Dit heeft

tot gevolg dat voor dit type Lévy processen de continue verbindingsvoorwaarde het

enige criterium blijkt te zijn volgens dewelke de grens gekozen kan worden. Een beter

begrip van de juiste keus van verbindingsvoorwaarde voor het bepalen van de grens
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kan een belangrijke rol spelen in de theorie.

Een groot gedeelte van dit proefschrift behandelt optimale stoptijdproblemen

gedreven door Lévy processen. Het doel is om semi-expliciete oplossingen te vin-

den voor een bepaalde klasse van optimale stoptijdproblemen. Aan de hand van de

gevonden oplossingen geven we noodzakelijke en voldoende voorwaarden waaronder

continue en gladde verbinding plaatsvindt. In dit proefschrift geven we voorbeelden

van verschillende gevallen.

Voor eindige expiratiedatum bestuderen we de Amerikaanse put optie waarbij

het prijsproces gedreven wordt door een Lévy proces van begrensde variatie. Het

probleem wordt opgelost met behulp van een verandering van veranderlijke formule

met lokale tijd op krommen voor Lévy processen van begrensde variatie. Gecombi-

neerd met de Itô-Doob-Meyer decompositie van het waarde-proces van het optimale

stoptijdprobleem in een martingaal en een potentiaal proces laten we zien dat de op-

timale stopgrens gekarakteriseerd kan worden als oplossing van een niet-lineaire inte-

graalvergelijking. Gebruikmakend van de continue verbindingsvoorwaarde vinden we

dat, onder enkele verdere voorwaarden, deze integraalvergelijking een unieke oplossing

heeft. Deze uniciteit impliceert dat de waardefunctie van de Amerikaanse put optie

en de bijbehorende optimale stopgrens de unieke oplossing is van een parabolisch

vrije-randwaarde probleem van het integro-differentiaal type.

In het geval van oneindige expiratiedatum geven we een optimale formule voor de

oplossing van optimale stoptijdproblemen voor een algemene klasse van uitbetalings-

functies en Lévy processen. De oplossing wordt gevonden door het optimale stoptijd-

probleem te reduceren tot een gemiddelde probleem. De oplossing van dit probleem

leidt met behulp van de Wiener-Hopf factorisatie tot een fluctuatie-identiteit voor

Lévy processen. Deze identiteit relateert de oplossing van het gemiddelde probleem

aan de verwachtingswaarde van de gedisconteerde uitbetalingsfunctie tot een eerste

passage tijd. Op basis van de identiteit laten we zien dat, mits de oplossing van

het gemiddelde probleem een zekere monotoniciteitseigenschap heeft, een optimale

oplossing van het optimale stoptijdprobleem gegeven kan worden in termen van een

monotone functie en dat de grens gegeven wordt door een niveau waar deze functie

van teken verandert. Aan de hand van deze oplossing kunnen we laten zien dat aan

de gladde verbindingsvoorwaarde voldaan is dan en slechts dan als de rand van het

stopgebied regulier is voor het inwendige van het stopgebied voor het Lévy proces.

Een aantal problemen wordt in detail bestudeerd, in het bijzonder de polynomiale

uitbetalingsfunctie en het vinden van de arbitrage-vrije prijzen van de Amerikaanse

put en call opties.

Voor het probleem van endogeen faillissement laten we zien dat voor een specifieke

klasse van modellen een optimaal faillissementsniveau gevonden kan worden wanneer

de waarde van de activa van de firma gemodelleerd wordt door een Lévy proces zonder

positieve sprongen. Aan de hand van dit process brengen we een nieuw fenomeen aan

het licht, namelijk dat afhankelijk van het gedrag van de kleine sprongen, het optimale

faillissementsniveau gekozen dient te worden door middel van de continue verbind-
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ingsvoorwaarde in plaats van de gladde verbindingsvoorwaarde, die men normaal ge-

bruikt. Bovendien laten we zien dat de keuze van het faillissementsniveau inderdaad

optimaal is overeenkomstig met de juiste keuze van verbindingsvoorwaarde.

Het merendeel van de resultaten in dit proefschrift wordt geverifieerd aan de hand

van numerieke voorbeelden voor Lévy processen met eenzijdige sprongen.
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