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cesses 93
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 The solution to the Shepp–Shiryaev stochastic game . . . . . . . . . 96
6.3 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.4 Proof of Theorem 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.1 The case δ > Z(q)(y∗)− 1. . . . . . . . . . . . . . . . . . . . . 105
6.4.2 The case δ ≤ Z(q)(y∗)− 1. . . . . . . . . . . . . . . . . . . . . 110

6.5 Proof of Theorem 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.6 Proof of Theorem 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Bibliography 117

Samenvatting 125

Acknowledgements 127

Curriculum Vitae 129



Chapter 1

Introduction

1.1 Lévy processes

Lévy processes have stationary, independent increments. This seemingly unassum-
ing (defining) property leads to a surprisingly rich class of processes which appear in
a large number of applications including queueing, fragmentation theory, branching
processes, dams, risk theory and finance. One may already appreciate the richness
of the class of Lévy processes by remarking that it includes both a compound
Poisson process (the paths of which are constant in between the jump times) and a
Brownian motion (the paths of which are almost surely continuous but nowhere dif-
ferentiable). Even though there is such a wide variety of Lévy processes, important
properties can often be deduced without the need to specify further characteristics
of the process over and above the stationarity and independence of its increments.
Comprehensive treatises on Lévy processes are the books [18; 41; 63; 104]. For
stochastic calculus for Lévy processes we refer to [2]. The recent book [21] illus-
trates the importance of Lévy processes in the context of fragmentation processes.

Because of the richness of the class of Lévy processes it is not surprising that
some of the main results from excursion theory for Lévy processes (such as the
Wiener–Hopf factorisation) can be deduced in more detail when we impose some
restrictions on the process. A subclass for which many expressions are more explicit
is formed by those (real-valued) Lévy processes without positive jumps (if such a
process has non-monotone paths, we call it spectrally negative). For example, for
a spectrally negative Lévy process we can find the probability that it leaves an
interval [a, b] at b, as well as the Laplace transform of the first exit time from an
interval. For further details we refer to Chapter 8.2 in [63] and references therein.

A recent surge in interest in Lévy processes is partly due to applications in
finance. It has been well documented that there are various flaws in the classical
Black–Scholes model ([23; 78]), in which a stock process is modelled by an expo-
nential Brownian motion. For example, the tails of a Brownian motion are too light
when compared with market observations, see [51] for a detailed account. Various
choices of Lévy processes other than a Brownian motion have numerous advan-
tages; some popular Lévy models for the price of a stock are CGMY [29], variance
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2 Introduction

gamma [76], hyperbolic [44] and normal inverse Gaussian [7]. An overview of ap-
plications of Lévy processes in finance can be found in the books [26; 37; 105] and
in the collection of research papers [68].

1.2 Optimal stopping problems

When is it optimal to stop? This is the main question in a wide variety of problems,
three of which we list here.

1. Quickest detection problem: one needs to decide when to send out an alarm
signal for a hazardous event (such as an earthquake, incoming war plane)
based on observable data (such as seismic measurements, radar).

2. Sequential testing: an observable process depends on a parameter which has
a certain prior distribution. The aim is to find this parameter as quickly and
accurately as possible based on a sequence of observations.

3. American option on a stock: the buyer of such an object has the right to
terminate the option at any time up to maturity, inducing a pay-off depending
on the value of the stock at that time. The stock is modelled by a certain
stochastic process.

In all three situations there is an underlying observable random process of which
the future value cannot be predicted. The aim is to optimise the expectation of a
function of this random process. The respective goal in the above examples can be
made more explicit as follows.

1*. Minimise a certain penalty function of false alarm and late response.

2*. Minimise the expectation of a function of the decision error and observation
time.

3*. Maximise the expected pay-off.

The optimisation takes place over all stopping strategies which depend only on the
history of the observable process up to that time (such strategies are called stopping
times). We refer to [49] and [109], where the quickest detection problem was studied
for a Poisson process and a Brownian motion, respectively. For sequential testing,
see [92] Section 21 for the Brownian case and Section 23 for the Poisson case and the
references therein. We also refer to [86] for an overview of these optimal stopping
problems. For the general theory of optimal stopping problems and many more
examples we refer to the books [92] and [110].

Much attention has been paid to the study of American options with a Brownian
motion (or a more general diffusion) as the underlying process. Although for most
applications it is more natural for the time horizon to be finite (the decision to
stop must be made before a pre-specified deterministic time), we consider optimal
stopping problems which have an infinite horizon. We refer to [28] for a method
to solve a finite time horizon optimal stopping problem in terms of a sequence
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of infinite horizon optimal stopping problems for which the underlying process is
killed at an exponential rate.

Consider an optimal stopping problem of the form

V (x) := sup
τ∈T

Ex[e−qτf(Bτ )],

where Ex denotes expectation with respect to the law of a Brownian motion B
started from x ∈ R, where the discount rate q is a non-negative constant and
where T is the set of (possibly infinite) stopping times for B. The general theory
of optimal stopping implies that, under some mild conditions, an optimal stopping
time is given by

τ∗ = inf{t ≥ 0 : Bt ∈ D},

where D is the optimal stopping region defined by

D = {x ∈ R : f(x) = V (x)}.

Furthermore, it holds that

{e−q(t∧τ
∗)V (Xt∧τ∗)}t≥0

is a Px-martingale and that
{e−qtV (Xt)}t≥0

is a Px-supermartingale. If V is smooth enough, these martingale properties are
equivalent (via Itô calculus) to

(L − q)V = 0 on Dc (1.1)

and
(L − q)V ≤ 0 on R.

Here L denotes the infinitesimal generator of the Brownian motion.
Solving the optimal stopping problem via (1.1) is more challenging for processes

with jumps, since in that case the infinitesimal generator L is non-local. More
precisely, the infinitesimal generator of a Lévy process X is given by the integro-
differential operator

Lf(x) = af ′(x) +
σ2

2
f ′′(x) +

∫
R
(f(x+ y)− f(x)− yf ′(x)1{|y|≤1})Π(dy),

for all functions f for which the right hand side is well defined (for example, for
functions f which are twice continuously differentiable and for which f, f ′ and f ′′

vanish at ±∞, see Theorem 31.5 in [104]). Here (a, σ2,Π) is the Lévy triple of X,
i.e. the unique a ∈ R, σ2 ≥ 0 and measure Π on R\{0} satisfying

∫
R(1 ∧ x2)Π(dx)

such that

− log E[eiλX1 ] = iaλ+
σ2

2
λ2 +

∫
R
(1− eiλx − iλx1{|x|<1})Π(dx).
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An additional difficulty over and above the non-locality of the infinitesimal gener-
ator is that (unlike in the diffusion case), in general, it is not necessarily known
whether V is smooth enough to transform martingale properties into generator
equations via Itô calculus, or whether the corresponding free boundary value prob-
lem

max((L − q)V, f − V ) = 0

has a solution. It is often the case that fluctuation theory for Lévy processes can
be used instead and it turns out to be a very useful tool indeed for solving optimal
stopping problems for Lévy processes.

Smooth fit at some point y ∈ ∂D states that when f is a differentiable function,
V pastes smoothly onto f at y, by which we mean

dV

dx
=
df

dx
at y ∈ ∂D. (1.2)

This is a well-studied phenomenon in the literature and first appeared in [79].
It holds for a much wider class of processes than just a Brownian motion, see
for example [103] and Section 9.1 in [92] (and references therein) for the case of
diffusions and also the “reasonable rule of thumb” in [1] for the case of a general
strong Markov process (note, however, that in [89] a counterexample is given).
Smooth fit turns out to be closely related to regularity. In fact, for almost all optimal
stopping problems in the literature (also for those for which the underlying process
has jumps), smooth fit at some point y ∈ ∂D holds precisely when the process
started at y hits the set D immediately. When this happens, we say that y is
regular for D for the underlying process. Thus, it is easy to come up with optimal
stopping problems for which smooth fit breaks down. For example, a bounded
variation spectrally negative Lévy process has the property that b is not regular for
(−∞, b), hence for any optimal stopping problem for which the optimal stopping
time is of the form τ∗ = inf{t ≥ 0 : Xt ≤ b} (such as for the American put, see
[1; 81]), one would expect smooth fit to break down. When smooth fit breaks down
at some point y ∈ ∂D, equation (1.2) is replaced by the continuous fit condition
V (y) = g(y). The idea that continuous fit happens as a principle was first noticed
in [90] and in [91].

In addition to the American put option mentioned above, various other specific
American options have been studied for Lévy processes ([1; 31; 69; 77; 81]). Methods
for finding the value of more general American options for Lévy processes can be
found in [27] and in [112]. However, it is important to remark that the uniqueness
of the martingale measure used for pricing such options in the standard Black–
Scholes model breaks down when the underlying process is a general Lévy process
and hence the price of the American option depends on the choice of martingale
measure. See [30] for a review of various martingale measures.

In [89] an example is given of an optimal stopping problem for a regular diffusion
and with an infinitely differentiable pay-off function for which smooth fit does not
hold. In that paper it is shown that in some cases the regularity condition is not
sufficient. Instead, it may be necessary to impose the stronger condition that the
process leaves symmetric intervals upwards with probability one half in the limit as
the length of the interval goes to zero. Hence, stronger assumptions than regularity
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may be necessary to ensure smooth fit holds for optimal stopping problems for
processes which are not spatial homogeneous.

Optimal stopping problems for one-dimensional strong Markov processes can be
related to obstacle problems (see [100]) which appear in physics. Consider putting
a rope over f , whilst pulling its extremities outwards to ±∞. The shape of the
corresponding rope will then coincide with the value of the corresponding optimal
stopping problem. When the underlying process is higher dimensional, we can re-
place the rope by its higher dimensional equivalent and the analogy will still hold.
In terms of the rope, smooth fit may then translate to the fact that, when the
boundary itself is smooth, the rope does not have kinks. The fact that for cer-
tain optimal stopping problems for Lévy processes smooth fit breaks down can be
thought of as taking a rope made of a more rigid material, leading to the kinks at
the points where the rope moves away from the obstacle. Note that this analogy is
not perfect for Lévy processes, since for most examples of optimal stopping prob-
lems the value function only has kinks at (certain parts of) the boundary of the
stopping region.

1.3 Stochastic games

The stochastic games we consider in this thesis are two-player optimal stopping
problems, for which one of the players is a minimiser and the other one a maximiser.
Such games first appeared in the literature in [43]. Following the formulation of [47],
consider a real-valued strong Markov process {Xt}t≥0 and functions f, g, h : R →
R+ satisfying f ≤ h ≤ g and Ex[supt g(Xt)] <∞. We say that

sup
τ∈T

inf
σ∈T

Ex[f(Xτ )1{τ<σ} + g(Xσ)1{σ<τ} + h(Xτ )1{τ=σ}]

and
inf
σ∈T

sup
τ∈T

Ex[f(Xτ )1{τ<σ} + g(Xσ)1{σ<τ} + h(Xτ )1{τ=σ}]

are, respectively, the lower and upper value of the game with pay-off functions
f, g, h (it is straightforward to check that the first quantity is never greater than
the second). A subtlety of a stochastic game (in comparison to a ‘standard’ optimal
stopping problem) is the issue whether we can unambiguously assign a value to it:
it can happen that the lower and upper value are different. If they are equal, this
common value is called the value V (x) of the game. A pair of stopping times (σ∗, τ∗)
is called a saddle point of the game when

Ex[f(Xτ )1{τ<σ∗} + g(Xσ∗)1{σ∗<τ} + h(Xτ )1{τ=σ∗}]
≤ Ex[f(Xτ∗)1{τ∗<σ∗} + g(Xσ∗)1{σ∗<τ∗} + h(Xτ∗)1{τ∗=σ∗}]
≤ Ex[f(Xτ∗)1{τ∗<σ} + g(Xσ)1{σ<τ∗} + h(Xτ∗)1{τ∗=σ}]

for all stopping times τ, σ and for all x ∈ R. This notion is analogous to that of a
Nash-equilibrium in game theory, see for example [84]. It is readily seen that when
a saddle point (σ∗, τ∗) exists, the stochastic game has a value given by

V (x) = Ex[f(Xτ∗)1{τ∗<σ∗} + g(Xσ∗)1{σ∗<τ∗} + h(Xτ∗)1{τ∗=σ∗}].
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In [47] it is shown that for a large class of optimal stopping games and a large
class of underlying (strong Markov) processes (not necessarily one-dimensional or
real-valued), the stochastic game has a value and that, under a mild additional
assumption, a saddle point exists.

Applications of stochastic games in finance come in the form of game options,
see [13; 59; 61; 64; 66] and (callable) convertible bonds, see [93; 111].

Finding a saddle point for specific examples is a challenging problem. In general,
solving such an optimal stopping game (with infinite horizon) boils down to finding
a function V and optimal stopping times τ∗ and σ∗ such that

σ∗ = inf{t ≥ 0 : Xt ∈ D1},
τ∗ = inf{t ≥ 0 : Xt ∈ D2},
f(x) ≤ V (x) ≤ g(x),
V (Xt∧σ∗) is a submartingale,
V (Xt∧τ∗) is a supermartingale,

where D1 = {x : V (x) = f(x)} and where D2 = {x : V (x) = g(x)}. Here we
have assumed for simplicity that Px(max(τ∗, σ∗) < ∞) = 1 for all x. When the
underlying process is a Brownian motion (or more generally, a diffusion), stochastic
games have been solved in several cases by finding the solution to the corresponding
(via Itô calculus) free boundary value problem, see [13; 46; 61]. In [50] it is shown
that under certain conditions on the jump measure, a specific stochastic game for
Lévy processes can also be solved directly by considering the corresponding free
boundary value problem. As with optimal stopping problems, fluctuation theory
can be very useful for solving stochastic games for Lévy processes when it seems
difficult to find directly the solution to the corresponding free boundary problem.

Smooth fit (at a point y1 ∈ ∂D1 and at y2 ∈ ∂D2) in the context of stochastic
games means that when f and g are smooth functions, it holds that

dV

dx
=
df

dx
at y1 ∈ ∂D1 and

dV

dx
=
dg

dx
at y2 ∈ ∂D2.

Again, it turns out that the issue of smooth fit is closely related to regularity of
the underlying process.

In the case of a one-dimensional strong Markov process, there still is an analogy
with obstacle problems. Now, consider two obstacles, one above and one below,
with the rope sandwiched between them. When one pulls the rope outwards at
its extremities, the shape of the rope will coincide with the value function of the
corresponding stochastic game. We refer to [88] for a detailed description of this
analogy.

1.4 Thesis outline

The outline of this thesis is as follows.
In Chapter 2, we study the last passage problem for a spectrally negative Lévy

process. In [36], the Laplace transform was found of the last time a spectrally
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negative Lévy process, which drifts to infinity, is below a certain level. The main
motivation for the study of this random time comes from risk theory: what is the
last time the risk process, modelled by a spectrally negative Lévy process drifting
to infinity, is (below) zero? We use fluctuation theory to extend this result and
find the Laplace transform of the last time before an independent, exponentially
distributed time that a spectrally negative Lévy process is below zero. Using similar
methods we also find an expression for the Laplace transform of the last passage
times above a certain level and of the last hitting time of a point. Furthermore, we
extend the result from [39] which states that the event that there exists some t > 0
such that a Brownian motion first reaches level t at time t has probability one half.

Chapter 3 focusses on Lévy processes reflected at their minimum. Reflected
Lévy processes appear in a wide variety of applications such as the study of the
water level in a dam, queueing (see [3; 25; 97]), optimal stopping ([15; 108]) and
optimal control ([6; 38; 52; 67]). For many of these applications, it is important to
have the overshoot distribution of the reflected process (i.e. the amount by which
the process exceeds a level at the time of first passage). We use excursion theory to
find the resolvent density for a reflected Lévy process in terms of the two-sided exit
problem and the resolvent density of the Lévy process itself. A main ingredient in
the proof consists of Lévy processes conditioned to stay positive (see for example
[33; 34; 35] for further details on such conditioned processes and, in particular,
for how to condition a process on an event which may be of probability zero). As
an application of the main result in Chapter 3, we find the potential density of a
symmetric (one-dimensional) stable process killed at exceeding a certain level. As
a corollary we also find the joint distribution of its undershoot and overshoot.

Chapter 4 deals with an application of a method introduced in [16] to solve op-
timal stopping problems for diffusions. We show that this method can also be used
to solve certain optimal stopping problems for processes with jumps. In particular,
we solve an optimal stopping problem for a stable process and a closely related
problem for a generalised Ornstein–Uhlenbeck process driven by a spectrally nega-
tive Lévy process. We discuss the issue of smooth fit for optimal stopping problems
for generalised Ornstein–Uhlenbeck processes driven by a spectrally negative Lévy
process with non-zero Gaussian component. The method of proof of smooth fit
presented in this chapter can be extended to more general processes with jumps.
We also show that for a specific choice of the discount rate, the optimal stopping
time for the American put option for a spectrally negative Lévy process is the first
hitting time of a point.

In Chapter 5 and Chapter 6 we study specific examples of stochastic games
(which we call the McKean and Shepp–Shiryaev stochastic game, respectively)
driven by a spectrally negative Lévy process. These stochastic games were treated
for a Brownian motion in [61] by solving the corresponding free boundary problem
directly and by making use of the fact that the scale functions are known explicitly
for a Brownian motion (they are given in terms of the hyperbolic sine and the
hyperbolic cosine). However, when the underlying process has jumps we need to
take a different approach. For example, unlike the Brownian case, solving directly
the corresponding free boundary problem seems out of reach. For the McKean game
based on a Brownian motion, it was found in [61] that the optimal stopping region
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for the minimiser consists of a single point. A spectrally negative Lévy process
without a Gaussian component does not creep downwards (which means that the
first passage below a level happens by a jump), and hence one would expect the
solution to be different in this case. Indeed, for the McKean game based on a
spectrally negative Lévy process without a Gaussian component we observe the
phenomenon that the stopping region thickens from a point to an interval. This
can also be interpreted intuitively, since one would expect the minimiser to adopt
a more conservative strategy to take into account that the process becomes less
‘predictable’ due to the presence of jumps. For both games we make use of an
auxiliary optimal stopping problem: we fix a particular strategy for one of the
players and optimise the corresponding pay-off function over the strategies of the
other player. We use general results from optimal stopping theory to deduce that
there exists an optimal stopping strategy for this auxiliary problem. Furthermore,
we deduce some of its properties which allow us to prove that the value function
of this auxiliary problem is in fact the value function of the stochastic game. Both
in Chapter 5 and in Chapter 6 the scale functions for the spectrally negative Lévy
process play an important role. For both stochastic games we observe that the
principle of smooth/continuous fit holds at an element a of the stopping region’s
boundary according to whether a is regular/irregular for the stopping region’s
interior.

1.5 Publication details

The second chapter of this thesis has been submitted as [11]. A slightly modified
version of the third chapter has been accepted for publication in ALEA, Latin
American Journal of Probability and Mathematical Statistics as [12]:

Baurdoux, E.J. (2007). Some excursion calculations for reflected Lévy
processes.

Chapter 4 appeared in abridged form as [10]:

Baurdoux, E.J. (2007). Examples of optimal stopping via measure trans-
formation for processes with one-sided jumps, Stochastics 79, 303–307.

The fifth and sixth chapter are joint work with Andreas Kyprianou and have been
submitted as [14] and as [15] respectively. A special case of [14] is included in
Section 9.6 of the book [63] and a special case of [15] is Exercise 9.2 in that same
book.



Chapter 2

Last exit before an
exponential time for
spectrally negative Lévy
processes∗

In [36] the Laplace transform was found of the last time a spectrally
negative Lévy process, which drifts to infinity, is below a certain level.
The main motivation for the study of this random time comes from
risk theory: what is the last time the risk process, modelled by a spec-
trally negative Lévy process drifting to infinity, is zero? We extend the
result found in [36] by taking as the time horizon an independent, ex-
ponentially distributed random variable eq with parameter q ≥ 0. To
be more precise, we find the Laplace transform of the last time before
eq at which a spectrally negative Lévy process (without any further as-
sumptions) exceeds or hits a certain level. As an application, we extend
a result found by Doney in [39].

2.1 Introduction

Consider an insurance company which collects premiums at a constant rate and re-
ceives claims from its customers at various (unpredictable) times. The classical risk
process {Xt}t≥0 as introduced in [75] consists of a deterministic, strictly positive
drift c plus a compound Poisson process which has only negative jumps. We denote
by λ > 0 the rate of the Poisson process and by µ the expected jump size. Of key
interest is the moment of ruin, i.e. the first time when the risk process becomes
negative. To ensure the moment of ruin is not almost surely finite, the net profit

∗Submitted as [11].

9



10 Last exit before an exponential time

condition
λµ

c
< 1 (2.1)

is imposed. This condition ensures that the risk process drifts to +∞. Recently,
various authors ([31], [55], [56], [60]) have replaced the compound Poisson process
by general spectrally negative Lévy processes. The latter are Lévy processes which
have no positive jumps and which are not the negative of a subordinator. In some
cases, the moment of ruin may not be the most important quantity for the risk
process. Indeed, consider the following scenario. Instead of going bankrupt when
the risk process becomes negative, the firm has other funds which can be used
to support the negative surplus for a while. For this reason, in [52], the Laplace
transform was found of the last passage time at a certain level for the classical risk
process. This was extended to the case of a general spectrally negative Lévy process
in [36]. However, a more realistic quantity for study may be the last passage time
below zero before a fixed time

S−t := sup{0 ≤ u ≤ t : Xu ≤ 0} for t ≥ 0, (2.2)

with the convention that sup ∅ = 0. It turns out that it is easier to replace the
fixed, deterministic time horizon by an independent, exponentially distributed time.
For θ ≥ 0, we denote by ẽθ an exponentially distributed random variable with
parameter θ. Here, we use the convention that an exponential random variable with
parameter zero is taken to be infinite with probability one. For a spectrally negative
Lévy process {Xt}t≥0 (defined on a probability space (Ω, {Ft}t≥0,P) satisfying the
usual conditions) starting from x 6= 0 we write Px as its probability measure.

Now, define the random time

σ−θ = Sẽθ
= sup{0 ≤ t ≤ ẽθ : Xt ≤ 0}.

In Theorem 2.5, the main result of this chapter, we give the Laplace transform of
σ−θ . Using similar techniques, we also find the Laplace transform of

σ+
θ = sup{0 ≤ t ≤ ẽθ : Xt ≥ 0}

and of
Tθ = sup{0 ≤ t ≤ ẽθ : Xt = 0}.

For convenience, we suppress the subscript when θ = 0. For spectrally negative Lévy
processes drifting to ∞, the Laplace transform of σ− was found in [36]. Trivially,
when X drifts to ∞ it holds that T = σ−.

Remark 2.1. The random times introduced above are not stopping times, as they
depend on the future of the process {Xt}t≥0.

2.2 Preliminaries

In this section we review some important properties and tools of spectrally nega-
tive Lévy processes. For further details we refer to the books [18] and [63]. For a
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spectrally negative Lévy process {Xt}t≥0 it holds that the Laplace exponent

ψ(λ) := log E[eλX1 ] λ ≥ 0

is well defined, convex and infinitely differentiable on (0,∞) and ψ(0) = 0. Also,
becauseX has non-monotone paths, we have that limλ→∞ ψ(λ) = ∞. Furthermore,
when X is of bounded variation, we can express the Laplace exponent as

ψ(λ) = dλ+
∫

(−∞,0)

(eλx − 1) Π(dx),

where Π is the jump measure of X and d > 0 is called the drift.
The condition in [36] that X drifts to +∞ (i.e. that limt→∞Xt = +∞) is

equivalent to ψ′(0) > 0. The case ψ′(0) < 0 corresponds to X drifting to −∞ (i.e.
that limt→∞Xt = −∞) and ψ′(0) = 0 occurs precisely when X oscillates, i.e. when

lim sup
t→∞

Xt = − lim inf
t→∞

Xt = +∞.

For q ≥ 0, the scale function W (q)(x) is defined as the unique continuous,
increasing function on [0,∞) which satisfies∫ ∞

0

e−λxW (q)(x) dx =
1

ψ(λ)− q
for any λ > Φ(q).

Here, Φ denotes the right inverse of ψ. See Chapter 8 in [63] for a detailed study of
the scale function. We extend W (q) to the negative half line by putting W (q)(x) = 0
when x < 0. Note that W (q) is not necessarily continuous in 0. In fact, it is not
difficult to show thatW (q)(0) = 0 whenX is of unbounded variation andW (q)(0) =
1/d when X is of bounded variation with drift d. Furthermore, for q ≥ 0 we define
the function Z(q) by

Z(q)(x) = 1 + q

∫ x

0

W (q)(y) dy.

Note that Z(q)(x) = 1 when x ≤ 0. Integrating by parts we readily deduce that∫ ∞

0

e−λxZ(q)(x) dx =
1
λ

+
q

λ

∫ ∞

0

e−λxW (q)(x) dx =
1
λ

+
q

λ(ψ(λ)− q)
. (2.3)

For a, b ∈ R we denote first passage times by

τ−a := inf{t > 0 : Xt ≤ a} (2.4)

and
τ+
b := inf{t > 0 : Xt ≥ b}. (2.5)

Also, we denote the first hitting time by

T (a) := inf{t > 0 : Xt = a}. (2.6)
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Scale functions play a vital role in exit problems. For example, it holds that

Ex[e−qτ
−
0 1{τ−0 <∞}] = Z(q)(x)−W (q)(x)

q

Φ(q)
, (2.7)

where for the case q = 0 the fraction q/Φ(q) is to be understood in the limiting
sense. Expression (2.7) first appeared in the form of its Fourier transform in [48].
For spectrally negative processes, the q-potential measure defined by

U (q)(dy) =
∫ ∞

0

e−qt P(Xt ∈ dy) dt

is absolutely continuous with respect to Lebesgue measure and a version of its
density is given by

uq(y) = Φ′(q)e−Φ(q)y −W (q)(−y) for y ∈ R, (2.8)

see Corollary 1 on page 733 in [22].
Since, for c ≥ 0, the process {ecXt−ψ(c)t} is a martingale with mean 1, we can

introduce the change of measure

dPc

dP

∣∣∣∣
Ft

= ecXt−ψ(c)t.

The process {Xt}t≥0 is still a spectrally negative Lévy process under Pc and we
mark the Laplace exponent and scale functions of X under Pc with the subscript
c. It is straightforward to check that

ψc(λ) = ψ(c+ λ)− ψ(c) (2.9)

for λ ≥ 0 and, by taking Laplace transforms, we also find

W (q)
c (x) = e−cxW (q+ψ(c))(x) (2.10)

for q ≥ 0. Furthermore, we readily check that for c, p ≥ 0

Φc(p) = sup{x : ψc(x) = p}
= sup{x : ψ(x+ c) = p+ ψ(c)}
= Φ(p+ ψ(c))− c.

For future reference we state the following result.

Lemma 2.2. For q > 0 and λ ≥ −Φ(q)∫
[0,∞)

e−λxWΦ(q)(dx) =
λ

ψ(Φ(q) + λ)− q
, (2.11)

where the right hand side is to be interpreted in the limiting sense as Φ′(q) for the
case λ = 0.
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Note that Lemma 2.2 follows by integration by parts when λ > 0 (compare
with (8.17) in [63]). The proof that (2.11) still holds when λ ∈ [−Φ(q), 0] is more
complicated and we defer it to the appendix of this chapter.

Finally, we collect numerous known expressions for first exit problems, which
we will use throughout this chapter.

Lemma 2.3. For x > 0 and u, v ≥ 0,

Ex[e
−uτ−0 +vX

τ
−
0 1{τ−0 <∞}] = evx

(
Z(p)
v (x)−W (p)

v (x)
p

Φv(p)

)
, (2.12)

where p = u − ψ(v). For the case u = ψ(v), p/Φv(p) is to be interpreted in the
limiting sense as

lim
u→ψ(v)

u− ψ(v)
Φv(u− ψ(v))

=
1

Φ′(ψ(v))
. (2.13)

For x < 0 and q ≥ 0
Ex[e−qτ

+
0 1{τ+

0 <∞}] = eΦ(q)x. (2.14)

Finally, for x > 0 and q ≥ 0

Ex[e−qT (0)1{T (0)<∞}] = eΦ(q)x − ψ′(Φ(q))W (q)(x) (2.15)

and the case x = 0 is given by 1− (dΦ′(0))−1 when X has bounded variation with
drift d.

Expression (2.12) follows after a change of measure and (2.7). From the fact
that {e−qt+Φ(q)Xt}t≥0 is a martingale, one can deduce (2.14). Finally, (2.15) was
established in the form of its Laplace transform in Theorem 1 in [39].

2.3 Main result

Not surprisingly, scale functions also appear in expressions for last exit times. The
following result is Theorem 3.1 in [36].

Theorem 2.4. Suppose ψ′(0) > 0. Then for q > 0 and x ∈ R

Ex[e−qσ
−
1{σ−>0}] = Φ′(q)ψ′(0)eΦ(q)x − ψ′(0)W (q)(x).

We extend this result by considering last passage below a certain level before
an independent, exponentially distributed time as well as last passage above and
last hit of a fixed level before such a time. We state the main result.

Theorem 2.5. For q ≥ 0, θ ≥ 0 and x ∈ R

Ex[e−qσ
−
θ ] = 1 + eΦ(q+θ)xΦ′(q + θ)

(
θ

Φ(θ)
− θ

Φ(q + θ)

)
+

θ

q + θ
Z(q+θ)(x)− Z(θ)(x)

+
θ

Φ(θ)

(
W (θ)(x)−W (q+θ)(x)

)
. (2.16)
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Furthermore,

Ex[e−qσ
+
θ ] =

q

q + θ
Z(q+θ)(x)− eΦ(θ)xZ

(q)
Φ(θ)(x)

+
θ

θ + q
+ eΦ(q+θ)x qΦ(θ)Φ′(q + θ)

Φ(q + θ)(Φ(q + θ)− Φ(θ))
. (2.17)

Also,

Ex[e−qTθ ] = 1− eΦ(θ)x+
1

Φ′(θ)
(W (θ)(x)−W (q+θ)(x))+

Φ′(q + θ)
Φ′(θ)

eΦ(q+θ)x. (2.18)

Combined with the strong Markov property, Theorem 2.5 allows us to readily
obtain expressions for the joint Laplace transform of first and last exit times.

Corollary 2.6. Let p, q ≥ 0. When X does not oscillate

Ex[e−pT (0)−qT1{T (0)<∞}] =
Φ′(q)
Φ′(0)

(
eΦ(p+q)x − 1

Φ′(p+ q)
W (p+q)(x)

)
. (2.19)

When X drifts to −∞ and x < 0

Ex[e−pτ
+
0 −qσ

+
1{τ+

0 <∞}] =
qΦ(0)Φ′(q)

Φ(q)(Φ(q)− Φ(0))
eΦ(p+q)x. (2.20)

When X drifts to +∞

Ex[e−pτ
−
0 −qσ

−
1{τ−0 <∞}] =

Φ′(q)
Φ′(0)

(
eΦ(q)xZ

(p)
Φ(q)(x)−

p

Φ(p+ q)− Φ(q)
W (p+q)(x)

)
.

(2.21)

Proof of Corollary 2.6. The third equality was already obtained in [36]. We only
prove (2.19), as the proofs of the other claims are similar. Suppose that X drifts
to +∞. Then Φ(0) = 0 and from the strong Markov property applied at T (0) and
(2.15) we find

Ex[e−pT (0)−qT1{T (0)<∞}] = Ex[e−(p+q)T (0)1{T (0)<∞}E[e−qT ]]

=
Φ′(q)
Φ′(0)

(
eΦ(p+q)x − 1

Φ′(p+ q)
W (p+q)(x)

)
.

Remark 2.7. Note that Theorem 2.4 follows by taking p = 0 in (2.21) (or in
(2.19)).

When X is a stable process, we can invert the double Laplace transform in
(2.18) when x = 0 and retrieve the known result that, for each t ≥ 0, the random
variable defined, analogously to (2.2), by

St := sup{0 ≤ u ≤ t : Xu = 0}, t ≥ 0
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is distributed according to the so-called generalised arcsine law. When α = 2, this
is the well-known arcsine law for a Brownian motion (see eg. [74]). In fact, using
the scaling property of stable processes, the following result can be shown to hold
for any stable process with index α ∈ (1, 2] (i.e. not only in the spectrally negative
case). We refer to Theorem VIII.12 in [18] for the proof in the general case.

Corollary 2.8. Suppose X is a spectrally negative stable process with index α ∈
(1, 2]. Then for 0 ≤ s ≤ t

P(St ∈ ds) =
sin(π/α)

π
s−1/α(t− s)−1+1/αds. (2.22)

Also, the distribution of S−t is given by

P(S−t ∈ ds) =
1
α

sin(π/α)
π

s−1/α(t− s)−1+1/αds+ (1− 1
α

)δt(ds), (2.23)

where δt is the Dirac measure at t.

Proof of Corollary 2.8. When X is a spectrally negative stable process of index α,
it holds that (without loss of generality) ψ(λ) = λα for λ ≥ 0 and thus Φ(q) = q1/α

for q ≥ 0. It is straightforward to check that∫ ∞

0

∫ ∞

s

e−qs−θts−1/α(t− s)−1+1/α dt ds = Γ(1/α)Γ(1− 1/α)θ−1/α(θ + q)−1+1/α.

From (2.18) we deduce (2.22) and (2.23) follows in a similar way from (2.16).

2.4 Proof of Theorem 2.5

For q ≥ 0, we denote by eq an exponentially distributed random variable with
parameter q which is independent of X and ẽθ. We split the proof of Theorem 2.5
in several parts.

Proof of (2.16). Let

A+ = {ẽθ ≥ eq, Xs > 0 for all s ∈ [eq, ẽθ]}.

We can then write the event {σ−θ < eq} as a disjoint union

{σ−θ < eq} = {ẽθ < eq} ∪A+. (2.24)

We thus have for x ∈ R,

Ex[e−qσ
−
θ ] = Px(σ−θ < eq) = P(ẽθ < eq) + Px(A+) =

θ

θ + q
+ Px(A+).
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We find for x ≤ 0

Px(A+) = qEx
[∫ ∞

0

e−qt1{ẽθ≥t}1{Xs>0 for all s∈[t,ẽθ]} dt

]
= q

∫ ∞

0

e−(q+θ)t

∫
(0,∞)

Px(Xt ∈ dy)Py(τ−0 > ẽθ) dt

= q

∫ ∞

0

u(q+θ)(y − x)(1− Ey[e−θτ
−
0 ]) dy

= q

∫ ∞

0

Φ′(q + θ)e−Φ(q+θ)(y−x)(1− Z(θ)(y) +W (θ)(y)
θ

Φ(θ)
) dy

= qΦ′(q + θ)eΦ(q+θ)x

(
1

Φ(q + θ)
− 1

Φ(q + θ)
− θ

qΦ(q + θ)
+

θ

qΦ(θ)

)
= Φ′(q + θ)eΦ(q+θ)x

(
θ

Φ(θ)
− θ

Φ(q + θ)

)
, (2.25)

where the second line follows from the Markov property and lack of memory of
the exponential distribution, the fourth line from (2.8) and (2.12) and the fifth line
from (2.3) and the definition of W (q). Hence,

Ex[e−qσ
−
θ ] =

θ

θ + q
+ Φ′(q + θ)eΦ(q+θ)x

(
θ

Φ(θ)
− θ

Φ(q + θ)

)
for x ≤ 0.

Next, let x > 0. In this case, σ−θ is equal to zero whenever X does not become
negative before ẽθ. Taking this into account, we refine (2.24) and write the event
{σ−θ < eq} as a disjoint union

{σ−θ < eq} = {ẽθ < eq} ∪ {σ−θ = 0, ẽθ ≥ eq} ∪ {σ−θ ∈ (0, eq), ẽθ ≥ eq}
= {ẽθ < eq} ∪ {τ−0 > ẽθ, ẽθ ≥ eq} ∪ ({τ−0 < ẽθ} ∩A+).

We thus have that

Ex[e−qσ
−
θ ] =

θ

θ + q
+ Px(τ−0 > ẽθ ≥ eq) + Px(τ−0 < ẽθ, A+).

We deduce

Px(τ−0 > ẽθ ≥ eq) = Ex
[∫ ∞

0

θe−θy1{τ−0 >y>eq} dy

]
= Ex[(e−θeq − e−θτ

−
0 )1{τ−0 >eq}]

= Ex
[∫ ∞

0

(e−θz − e−θτ
−
0 )qe−qz1{τ−0 >z} dz

]
=

q

q + θ
+

θ

q + θ
Ex[e−(q+θ)τ−0 ]− Ex[e−θτ

−
0 ]

=
q

q + θ
+

θ

q + θ

(
Z(q+θ)(x)− q + θ

Φ(q + θ)
W (q+θ)(x)

)
− Z(θ)(x) +

θ

Φ(θ)
W (θ)(x),
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where (2.7) was used for the last equality. Denote for θ, q ≥ 0,

λ(θ, q) = Φ′(q + θ)
(

θ

Φ(θ)
− θ

Φ(q + θ)

)
.

From the strong Markov property, the memoryless property of the exponential
distribution, (2.12) and (2.25) we deduce that

Px(τ−0 < ẽθ, A+) = Ex[1{τ−0 <eq∧ẽθ}PXτ
−
0

(A+)]

= λ(θ, q)Ex[e
Φ(q+θ)X

τ
−
0 1{τ−0 <eq∧ẽθ}]

= λ(θ, q)Ex[ e
−(q+θ)τ−0 +Φ(q+θ)X

τ
−
0 1{τ−0 <∞}]

= λ(θ, q)eΦ(q+θ)x

(
1−WΦ(q+θ)(x)

1
Φ′(q + θ)

)
,

since eq ∧ ẽθ is exponentially distributed with parameter q + θ. From (2.10) we
know that eΦ(p+q)xWΦ(p+q)(x) = W (p+q)(x) and thus (2.16) follows.

Proof of (2.17). We can write the event {σ+
θ < eq} as a disjoint union

{ẽθ < eq} ∪A−,

where
A− = {ẽθ > eq, Xs < 0 for all s ∈ [eq, ẽθ]}.

We thus have

Ex[e−qσ
+
θ ] = Px(σ+

θ < eq) =
θ

θ + q
+ Px(A−).

Let x ≥ 0. Then

Px(A−) = qEx
[∫ ∞

0

e−qt1{ẽθ>t}1{Xs<0 for all s∈[t,ẽθ]} dt

]
= q

∫ ∞

0

e−(q+θ)t

∫
(−∞,0)

Px(Xt ∈ dy)Py(τ+
0 > ẽθ) dt

= q

∫
(−∞,0)

u(q+θ)(y − x)Py(τ+
0 > ẽθ) dy

= q

∫
(−∞,0)

(
Φ′(q + θ)eΦ(q+θ)(x−y) −W (q+θ)(x− y)

)
(1− eΦ(θ)y) dy

= q

∫
(0,∞)

(
Φ′(q + θ)−WΦ(q+θ)(x+ y)

)
eΦ(q+θ)(x+y)(1− e−Φ(θ)y) dy

= qeΦ(q+θ)x

∫
(0,∞)

∫ ∞

x+y

W ′
Φ(q+θ)(z)(e

Φ(q+θ)y − e(Φ(q+θ)−Φ(θ))y) dz dy

= qeΦ(q+θ)x

∫
(x,∞)

∫ z−x

0

W ′
Φ(q+θ)(z)(e

Φ(q+θ)y − e(Φ(q+θ)−Φ(θ))y) dy dz,
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where the second line follows from the Markov property and the lack of memory
property of the exponential distribution, the fourth line from (2.8) and (2.14), the
penultimate equality from WΦ(q+θ)(∞) = Φ′(q + θ), see (2.34) in the appendix of
this chapter and the last equality from an application of Fubini’s theorem. Denote

f(x, z) :=
eΦ(q+θ)(z−x)

Φ(q + θ)
− e(Φ(q+θ)−Φ(θ))(z−x)

Φ(q + θ)− Φ(θ)
+

Φ(θ)
Φ(q + θ)(Φ(q + θ)− Φ(θ))

.

Integration by parts yields∫
(x,∞)

∫ z−x

0

W ′
Φ(q+θ)(z)(e

Φ(q+θ)y − e(Φ(q+θ)−Φ(θ))y) dy dz

=
∫

[0,∞)

f(x, z)WΦ(q+θ)(dz)−
∫

[0,x]

f(x, z)WΦ(q+θ)(dz)

=
∫

[0,∞)

f(x, z)WΦ(q+θ)(dz)

+
∫ x

0

WΦ(q+θ)(z)(eΦ(q+θ)(z−x) − e(Φ(q+θ)−Φ(θ))(z−x)) dz

=
∫

[0,∞)

f(x, z)WΦ(q+θ)(dz)

+ e−Φ(q+θ)xZ
(q+θ)(x)− 1
q + θ

− e(Φ(θ)−Φ(q+θ))x
Z

(q)
Φ(θ)(x)− 1

q
.

We find that

Ex[e−qσ
+
θ ] =

θ

q + θ
+ Px(A−)

=
θ

q + θ
+ qeΦ(q+θ)x

∫
[0,∞)

f(x, z)WΦ(q+θ)(dz)

+
q

q + θ

(
Z(q+θ)(x)− 1

)
− eΦ(θ)x

(
Z

(q)
Φ(θ)(x)− 1

)
=

θ

q + θ
+

q

q + θ
− q

Φ(q + θ)− Φ(θ)
Φ(θ)− Φ(q + θ)
ψ(Φ(θ))− (q + θ)

eΦ(θ)x

+
qΦ(θ)

Φ(q + θ)(Φ(q + θ)− Φ(θ))
WΦ(q+θ)(∞)eΦ(q+θ)x

+
q

q + θ

(
Z(q+θ)(x)− 1

)
− eΦ(θ)x

(
Z

(q)
Φ(θ)(x)− 1

)
=

q

q + θ
Z(q+θ)(x)− eΦ(θ)xZ

(q)
Φ(θ)(x)

+
θ

θ + q
+ eΦ(q+θ)x qΦ(θ)Φ′(q + θ)

Φ(q + θ)(Φ(q + θ)− Φ(θ))
, (2.26)

where the third equality follows from an application of Lemma 2.2 and where the
last equality is again a consequence of WΦ(q+θ)(∞) = Φ′(q + θ). Note that (2.26)
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implies that

P(A−) =
qΦ(θ)Φ′(q + θ)

Φ(q + θ)(Φ(q + θ)− Φ(θ))
− θ

θ + q
(2.27)

Next, let x < 0. We decompose {eq > σ+
θ } as

{σ+
θ < eq} = {ẽθ < eq} ∪ {τ+

0 > ẽθ, ẽθ ≥ eq} ∪ ({τ+
0 < ẽθ} ∩A−).

As before, we deduce from the strong Markov property, the memoryless property
of the exponential distribution, (2.14) and (2.27) that

Ex[e−qσ
+
θ ] =

θ

θ + q
+ Px(τ+

0 > ẽθ > eq) + Px(τ+
0 < ẽθ, A−)

=
θ

θ + q
+ Ex

[∫ ∞

0

θe−θy1{τ+
0 >y>eq} dy

]
+ Ex

[
1{τ+

0 <eq∧ẽθ}P(A−)
]

=
θ

θ + q
+ Ex[(e−θeq − e−θτ

+
0 )1{τ+

0 >eq}]

+
(

qΦ(θ)Φ′(q + θ)
Φ(q + θ)(Φ(q + θ)− Φ(θ))

− θ

θ + q

)
Px(τ+

0 < eq ∧ ẽθ)

=
θ

θ + q
+ Ex

[∫ ∞

0

qe−qt(e−θt − e−θτ
+
0 )1{τ+

0 >t}
dt

]
+
(

qΦ(θ)Φ′(q + θ)
Φ(q + θ)(Φ(q + θ)− Φ(θ))

− θ

θ + q

)
Ex[e−(q+θ)τ+

0 ]

= 1 +
θ

q + θ
Ex[e−(q+θ)τ+

0 ]− Ex[e−θτ
+
0 ]

+
(

qΦ(θ)Φ′(q + θ)
Φ(q + θ)(Φ(q + θ)− Φ(θ))

− θ

θ + q

)
eΦ(q+θ)x

= 1− eΦ(θ)x +
qΦ(θ)Φ′(q + θ)

Φ(q + θ)(Φ(q + θ)− Φ(θ))
eΦ(q+θ)x,

which is (2.17), since Z(r)
ν (x) = 1 for all x ≤ 0 and ν, r ≥ 0.

Proof of (2.18). We can write the event {Tθ < eq} as a disjoint union

{ẽθ < eq} ∪A− ∪A,

where
A− = {ẽθ > eq, Xs < 0 for all s ∈ [eq, ẽθ]}

and where
A = {ẽθ > eq, Xeq > 0, Xs 6= 0 for all s ∈ [eq, ẽθ]}.

Since we already have an expression for Px(A−) we need only to consider A.
First, assume that x ≤ 0. We use (2.8), (2.15), the lack of memory property of

the exponential distribution and the Markov property in a similar fashion as we
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did to show (2.25) and deduce that

Px(A) = qEx
[∫ ∞

0

e−qt1{ẽθ≥t}1{Xt>0,Xs 6=0 for all s∈[t,ẽθ]} dt

]
= q

∫ ∞

0

e−(q+θ)t

∫ ∞

0

Px(Xt ∈ dy)Py(T (0) > ẽθ) dt

= q

∫ ∞

0

u(q+θ)(y − x)Py(T (0) > ẽθ) dy

= q

∫ ∞

0

Φ′(q + θ)e−Φ(q+θ)(y−x)(1− eΦ(θ)y + ψ′(Φ(θ))W (θ)(y)) dy

= qΦ′(q + θ)eΦ(q+θ)x

(
1

Φ(q + θ)
− 1

Φ(q + θ)− Φ(θ)
+

1
qΦ′(θ)

)
.

We find that

Ex[e−qTθ ] = Px(A) + Px(A−) +
θ

θ + q

= qΦ′(q + θ)eΦ(q+θ)x

(
1

Φ(q + θ)
− 1

Φ(q + θ)− Φ(θ)
+

1
qΦ′(θ)

)
+ 1− eΦ(θ)x + eΦ(q+θ)x qΦ(θ)Φ′(q + θ)

Φ(q + θ)(Φ(q + θ)− Φ(θ))

= 1− eΦ(θ)x +
Φ′(q + θ)

Φ′(θ)
eΦ(q+θ)x.

Finally, let x > 0. As before, we find

{Tθ < eq} = {ẽθ < eq} ∪ {T (0) > ẽθ, ẽθ ≥ eq} ∪
(
{T (0) < ẽθ} ∩ (A ∪A−)

)
.

An application of the strong Markov property at T (0), the memoryless property of
the exponential distribution, (2.12), (2.13) and (2.15) imply that

Ex[e−qTθ ] =
θ

θ + q
+ Ex[(e−θeq − e−θT (0))1{T (0)>eq}]

+ Px(T (0) < eq ∧ ẽθ)P(Tθ < eq < ẽθ)

= 1 +
θ

θ + q
Ex[e−(q+θ)T (0)]− Ex[e−θT (0)]

+ Ex[e−(q+θ)T (0)]
(

Φ′(q + θ)
Φ′(θ)

− θ

θ + q

)
= 1− eΦ(θ)x +

1
Φ′(θ)

(W (θ)(x)−W (q+θ)(x)) +
Φ′(q + θ)

Φ′(θ)
eΦ(q+θ)x,

which completes the proof of Theorem 2.5.

Remark 2.9. Two of the main ingredients in the proof of Theorem 2.5 are the
q-potential measure of X and the Laplace transform of the first passage time above
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or below a given level. These quantities are also known for certain Lévy processes
which do have positive jumps. Proposition 2 in [4] indicates that results similar to
(2.16) and (2.17) can be obtained for so-called phase-type Lévy processes. Similarly,
as mentioned before in Corollary 2.8, we can use the scaling property to find the
Laplace exponent of the last hitting time of zero for any stable process with index
α > 1. See Lemma VIII.13 in [18] for details.

Remark 2.10. As mentioned in the introduction, result (2.16) could be useful in
risk theory, since it gives information about the last time when the risk process
is negative before an independent, exponentially distributed time. Indeed, the last
passage of X below zero before a fixed time horizon can be found by inverting
the double Laplace transform in (2.16). Unfortunately, this seems to be tractable
analytically only in very specific cases. An additional complication is the fact that
only in few cases the scale functions are known explicitly. For example, the scale
functions of a spectrally negative stable process with index α ∈ (1, 2] were found
in [19] in terms of the so-called Mittag–Leffler functions. To be precise, in this case
the scale function Z(q)(x) is given by

Z(q)(x) =
∑
n

qn

Γ(1 + αn)
xαn for q, x ≥ 0,

where Γ is the gamma function, see [71]. For a spectrally negative Lévy process of
bounded variation with drift d it holds that (see [63])

W (dx) =
1
d

∑
n

ν∗n(dx) x ≥ 0, (2.28)

where ν(dx) = d−1Π(−∞,−x)dx and where ν∗n denotes the n-fold convolution of
ν, with ν∗0 = δ0(dx) the Dirac measure at zero. From (2.9) and (2.10) we can find
a similar expression for the scale function W (q)(x). Indeed, we have that

W (q)(x) = eΦ(q)xWΦ(q)(x).

Also, under PΦ(q) the process X is still of bounded variation and

ψΦ(q)(λ) = ψ(λ+ Φ(q))− q

= d(λ+ Φ(q)) +
∫

(−∞,0)

(e(λ+Φ(q))x − 1) Π(dx)

− dΦ(q)−
∫

(−∞,0)

(eΦ(q)x − 1) Π(dx)

= dλ+
∫

(−∞,0)

(eλx − 1)eΦ(q)x Π(dx),

which shows that X has drift d and jump measure eΦ(q)xΠ(dx) under PΦ(q).
In the general case, scale functions can be evaluated numerically. We refer to [101]
and [113] for such numerical schemes.
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2.5 An extension of a result of Doney

In Corollary 3 in [39] it was shown that for a spectrally negative stable process
{Xt}t≥0 with index α, it holds that

P(Xt = Xt = t for some 0 < t <∞) =
1
α
,

where Xt is the running supremum of X, i.e. Xt = sup0≤s≤tXs. In this section
we extend this result and, in particular, we find (for a general spectrally negative
Lévy process) the Laplace exponent of the random time τ1 defined by

τ1 := sup{t ≥ 0 : Xt = Xt = t},

recalling the convention that sup ∅ = 0. Similarly, we define

τ2 = sup{t ≥ 0 : Xt = t},
τ3 = sup{t ≥ 0 : Xt ≥ t},
τ4 = sup{t ≥ 0 : Xt ≥ t}.

Since

{t ≥ 0 : Xt = Xt = t} ⊆ {t ≥ 0 : Xt = t} ⊆ {t ≥ 0 : Xt ≥ t} ⊆ {t ≥ 0 : Xt ≥ t},

it holds that
τ1 ≤ τ2 ≤ τ3 ≤ τ4.

These random times are trivial when X is of bounded variation with drift d ≤ 1
(since they are all equal to the first jump time when d = 1 and all equal to zero
when d < 1) and hence we assume that d > 1 whenever X is of bounded variation.
Let q > 0. Since

lim
λ→∞

ψ(λ)
λ

=
{
∞ when X is of unbounded variation,
d when X is of bounded variation with drift d,

we see that there exists a unique yq > 0 such that

ψ(yq) = q + yq.

Now let zq := ψ(yq). Then Φ(zq) = Φ(ψ(yq)) = yq = ψ(yq) − q = zq − q. Finally,
define

y0 :=
{

0 when ψ′(0) ≥ 1,
y when ψ′(0) < 1,

where y is the unique solution on (0,∞) of ψ(λ) = λ when ψ′(0) < 1. We can use
Theorem 2.5 to establish the following result.
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Corollary 2.11. Let q > 0 and suppose X is a spectrally negative process which
is of unbounded variation or of bounded variation with drift d > 1. Then

E[e−qτ1 ] =
ψ′(yq)
ψ′(y0)

ψ′(y0)− 1
ψ′(yq)− 1

, (2.29)

E[e−qτ2 ] =
ψ′(y0)− 1
ψ′(yq)− 1

and (2.30)

E[e−qτ3 ] =
qy0

yq(yq − y0)(ψ′(yq)− 1)
. (2.31)

Finally,

E[e−qτ4 ] =
qy0ψ

′(yq)
ψ(yq)(ψ(yq)− y0)(ψ′(yq)− 1)

. (2.32)

Proof. First, suppose that X does not drift to −∞. Introduce the processes Yt =
Xt − t and Zt = t − τ+

t , which are both spectrally negative Lévy processes. The
assumption thatX does not drift to−∞ is used here to ensure that P(τ+

t <∞) = 1.
Note that, since

{t ≥ 0 : Xt = Xt = t} = {t ≥ 0 : τ+
t = t},

it holds that τ1 and τ2 are, respectively, the last hitting times T of zero for Z and
Y , and that τ3 and τ4 are the last passage times above 0 of Y and Z, respectively.
Using obvious notation, it holds that ψY (λ) = ψ(λ)−λ and ψZ(λ) = λ−Φ(λ) and
thus

ΦY (q) = yq and ΦZ(q) = zq.

From the implicit function theorem we find that

d

dq
yq =

1
ψ′(yq)− 1

and that
d

dq
zq =

1
1− Φ′(zq)

=
ψ′(yq)

ψ′(yq)− 1
.

The result now follows from Theorem 2.5 by taking θ = 0.
When X does drift to −∞, equations (2.30) and (2.31) still hold, but in this

case τ+
t is a subordinator killed at exponential rate Φ(0), which is strictly positive

as ψ′(0) < 0. Hence, we are now looking for the last passage times before eΦ(0) of
a Lévy process with Laplace exponent given by λ−Φ(λ)+Φ(0). Statements (2.29)
and (2.32) thus follow from an application of Theorem 2.5 with θ = Φ(0).

Define for s ≥ 0

As := {there exists some t > s : Xt = Xt = t}

and denote A = A0. In [39] it was shown that for a spectrally negative stable
process of index α, P(A) = 1/α. We show how such a result can be obtained from
Corollary 2.11.
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Corollary 2.12. For a spectrally negative Lévy process we have

P(A) =

{
1

ψ′(y0)
when X is of unbounded variation,

d−ψ′(y0)
dψ′(y0)−ψ′(y0) when X is of bounded variation with drift d > 1.

In particular, P(A) = 1
α for a spectrally negative stable process of index α ∈ (1, 2].

Also
P(A) = 1 ⇔ ψ′(0) = 1.

In fact, when ψ′(0) = 1,
P(As) = 1

for all s ≥ 0.

Proof. Since

lim
λ→∞

ψ′(λ) =
{
∞ when X is of unbounded variation,
d when X is of bounded variation with drift d,

it follows from Corollary 2.11 that

P(A) = 1− P(τ1 = 0)
= 1− lim

q→∞
E[e−qτ1 ]

= 1− lim
q→∞

ψ′(yq)
ψ′(y0)

ψ′(y0)− 1
ψ′(yq)− 1

=

{
1

ψ′(y0)
when X is of unbounded variation,

d−ψ′(y0)
dψ′(y0)−ψ′(y0) when X is of bounded variation with drift d > 1.

When X is a stable process of index α, we have y0 = 1 and thus

P(A) =
1

ψ′(1)
= 1/α.

We also see that ψ′(0) = 1 implies y0 = 1 and hence P(A) = 1.
For the other direction we remark that when ψ′(0) > 1 it holds that ψ′(y0) =

ψ′(0) > 1 and when ψ′(0) < 1 we have that ψ′(y0) > 1, because in the latter case
y0 is the unique solution to ψ(y) = y on (0,∞) and because ψ is a strictly convex
function on [0,∞). We conclude that whenever ψ′(0) 6= 1 we have that ψ′(y0) > 1
from which it follows that P(A) < 1.
From (2.29) we see that ψ′(0) = 1 implies that E[e−qτ1 ] = 0 for any q > 0. The
final statement in Corollary 2.12 now follows.

Remark 2.13. As an example, we consider a standard Brownian motion. Of
course, by continuity, τ2 = τ3. We have ψ(λ) = λ2/2, so ψY (λ) = λ2/2 − λ and
ψZ(λ) = λ−

√
2λ, hence

yq = 1 +
√

2q + 1 and zq = 1 + q +
√

2q + 1.
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From Corollary 2.11 we readily deduce that

E[e−qτ1 ] =
aq + 1
2aq

,

E[e−qτ2 ] = E[e−qτ3 ] =
1
aq
,

E[e−qτ4 ] =
2aq + 2

(q + 2)aq + 4q + 2
,

where aq =
√

2q + 1.

Appendix: proof of Lemma 2.2

Here, we prove Lemma 2.2.

Proof. Suppose q > 0. First, let λ > 0. Then (2.11) follows by integration by parts.
Indeed, in this case∫

[0,∞)

e−λxWΦ(q)(dx) = λ

∫ ∞

0

e−λxWΦ(q)(x)dx

=
λ

ψΦ(q)(λ)

=
λ

ψ(Φ(q) + λ)− q
. (2.33)

Under PΦ(q), the process {Xt}t≥0 drifts to ∞ and now from equation (8.15) in [63]
we deduce that

WΦ(q)(x) =
1

ψ′Φ(q)(0+)
Px(inf

t≥0
Xt ≥ 0).

It follows that
lim
x→∞

WΦ(q)(x) = Φ′(q) (2.34)

and hence (2.11) follows in this case as well.
Next, we show that (2.11) holds for λ = −Φ(q). We make use of an expression

for the resolvent measure for the reflected process {Yt}t≥0 defined by

Yt = sup
0≤s≤t

(Xs ∨ 0)−Xs.

In Theorem 1 (ii) in [94], the resolvent measure

Rqa(x, dy) =
∫ ∞

0

e−qt Px(Yt ∈ dy, sup
0≤s≤t

Ys ≤ a)

of Y killed at exceeding a certain level a > 0 was found. In particular, for x = 0 it
holds that

Rqa(0, dy) =
(
W (q)(a)

W (q)′(y+)
W (q)′(a+)

−W (q)(y)
)
dy for y ∈ (0, a]
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and Rqa(0, {0}) = W (q)(a)W (q)(0)/W (q)′(a+). Using the fact that WΦ(q)(∞) < ∞
and (2.10), we can take a→∞ and deduce that the resolvent measure

Rq(0, dy) =
∫ ∞

0

e−qt P0(Yt ∈ dy)

of the unkilled reflected process is given by

Rq(0, dy) =
(

1
Φ(q)

W (q)′(y+)−W (q)(y)
)
dy =

1
Φ(q)

eΦ(q)yWΦ(q)(dy) for y ≥ 0.

We can use Fubini’s theorem∫
[0,∞)

eΦ(q)xWΦ(q)(dx) = Φ(q)
∫

[0,∞)

R(q)(0, dx)

= Φ(q)
∫

[0,∞)

∫ ∞

0

e−qt P(Yt ∈ dx) dt

= Φ(q)
∫ ∞

0

e−qtP(Yt ∈ [0,∞)) dt

=
Φ(q)
q

, (2.35)

which is (2.11) for λ = −Φ(q).
Finally, for the case −Φ(q) < λ < 0 we make use of analytic extension. We

can extend the function ψ to those z ∈ C for which <(z) > 0 and we denote this
extension by Ψ. Define the function g : A→ C by

g(z) =
{ z

Ψ(z+Φ(q))−q when z 6= 0 and <(z) > −Φ(q),
Φ′(q) when z = 0,

where A is an open set in C containing {z ∈ C : <(z) ∈ (−Φ(q),∞),=(z) = 0}
such that Ψ(z + Φ(q)) 6= q on A\{0}. We prove that g is analytic on A.
Since the Laplace exponent Ψ is analytic when <(z) > 0, we can write

Ψ(z + Φ(q)) = q +
∞∑
k=1

zk

k!
Ψ(k)(Φ(q)) when <(z) > −Φ(q),

where Ψ(k) denotes the kth derivative of Ψ. The fact that ψ′(Φ(q)) > 0 implies that
Ψ is bounded in some (complex) neighbourhood of 0, and we can use the Riemann
removable singularity theorem to deduce that g(λ) is real analytic for λ > −Φ(q).
The coefficients cn in the power series of g are given in terms of the nth (right)
derivative at zero of the left hand side of (2.33). Specifically, because of (2.35),

cn =
∫

[0,∞)

(−x)n

n!
WΦ(q)(dx) for n ∈ N.

In particular, for λ ∈ (−Φ(q), 0)

g(λ) =
∞∑
n=0

λn
∫

[0,∞)

(−x)n

n!
WΦ(q)(dx) =

∞∑
n=0

∫
[0,∞)

|λx|n

n!
WΦ(q)(dx),
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which allows us to use Fubini’s theorem to find for any |λ| < Φ(q) that

g(λ) =
∞∑
n=0

cnλ
n

=
∞∑
n=0

λn
∫

[0,∞)

(−x)n

n!
WΦ(q)(dx)

=
∫

[0,∞)

∞∑
n=0

(−λx)n

n!
WΦ(q)(dx)

=
∫

[0,∞)

e−λxWΦ(q)(dx).

This completes the proof of Lemma 2.2.





Chapter 3

Some excursion calculations
for reflected Lévy processes∗

Using methods analogous to those introduced in [40], we express the
resolvent density of a (killed) reflected Lévy process in terms of the
resolvent density of the (killed) Lévy process. As an application we
find a previously unknown identity for the potential density for killed
reflected symmetric stable processes.

3.1 Introduction

Lévy processes reflected at their maximum or at their minimum appear in a wide
variety of applications, such as the study of the water level in a dam, queueing (see
[3; 25; 97]), optimal stopping ([15; 108]) and optimal control ([6; 38; 52; 67]). For
example, in [108] it was shown that finding the value of the so-called Russian option
(on a Brownian motion B) is equivalent to solving an optimal stopping problem of
the form

sup
τ

E[e−ατ+Y
x

τ ], (3.1)

where α is some constant, where Y is the process B reflected at its infimum and
where the supremum is taken over all stopping times with respect to the filtration
generated by B. Recently, there have been various studies on (3.1) with the Brow-
nian motion B replaced by a more general Lévy process X, see for example [4; 5]
and also [15] for a two-player version of (3.1). It was found that for a broad class
of Lévy processes, an optimal stopping time τ∗ in (3.1) is given by the first time
the reflected Lévy process exceeds a certain level, i.e.

τ∗ = inf{t ≥ 0 : Yt ≥ b}, (3.2)

∗This chapter is an extended version of [12], which has been accepted for publication in ALEA
Lat. Am. J. Probab. Math. Stat.

29
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for a specific choice of b and where Y now is the process X reflected at its infimum.
A similar strategy was proved to be optimal (under some conditions) for the optimal
control problem considered for a Lévy process without positive jumps in [38]. Hence,
a further understanding of reflected Lévy processes killed at exceeding a certain
level could be helpful for the study of certain optimal stopping and optimal control
problems.

In Theorem 3.5 we express the resolvent density of a (killed) reflected Lévy
process in terms of the resolvent density of the (killed) Lévy process. The proof of
Corollary 3.10 indicates that the compensation formula allows us to find the joint
law of the undershoot and the overshoot of Y in terms of the resolvent density of
Y and the jump measure of the Lévy process, which, in turn, gives us information
about the expressions involving the first passage time (3.2). As an application of
Theorem 3.5 we find the potential density of a killed, reflected symmetric stable
process.

In [40] Doney introduced a new method based on excursion theory to find an
expression for the resolvent density for reflected spectrally negative Lévy processes
killed at exceeding a certain level. Previously, this density had been obtained in [94]
using excursion theory, Itô calculus and martingale techniques (see also [82]). We
extend the method introduced in [40] to general reflected Lévy processes. As a new
result and an application of Theorem 3.5, we find in Section 3.5 the potential density
for the killed reflected symmetric process. Possibly, the result in the symmetric
stable case could lead to proving similar results for a broader class of reflected
Lévy processes.

3.2 Preliminaries

Let X = {Xt}t≥0 be a Lévy process, starting at 0, with respect to some proba-
bility space (Ω, (Ft)t≥0,P). To avoid trivialities, we exclude the case when X has
monotone paths and the case when X is a compound Poisson process. We refer to
the books [18] and [63] for a detailed description of Lévy processes. We denote by
Px the law of the Lévy process starting at x. Define the process Y = {Yt}t≥0 by

Yt = Xt −Xt,

where Xt = inf0≤s≤tXs ∧ 0. Denote by L(t) a local time of Y at zero (note that
the definition of L depends on the nature of the zero set of Y ) and let n be the
measure of excursions of Y away from zero, defined on the excursion space E (see
chapter 4 of [18]). Since a positive multiple of a local time is again a local time, most
expressions concerning local time also involve a multiplicative constant. However,
this constant does not play a role in the results in this chapter and henceforth we
omit it. Define the inverse local time of Y by

L−1(t) =
{

inf{s > 0 : L(s) > t} when t < L(∞),
∞ otherwise.

Furthermore, denote by H = {Ht}t≥0 the downward ladder height process of X,
i.e. Ht = XL−1(t) when 0 ≤ t < L(∞) and Ht = −∞ otherwise. We denote the exit
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times for excursions ε by

ρa = inf{t ≥ 0 : ε(t) ≥ a}

and by ζ the length of an excursion. The renewal function h : [0,∞) → [0,∞) of
H is defined by

h(x) =
∫ ∞

0

P(Ht ≥ −x) dt = E
[∫ ∞

0

1{Xt≥−x}
dL(t)

]
.

Denote the first passage times for X by

τ−b = inf{t ≥ 0 : Xt ≤ b} and τ+
a = inf{t ≥ 0 : Xt ≥ a}

and by
T+
a = inf{t ≥ 0 : Yt ≥ a}

the first passage time of Y. For q > 0, let eq be an exponentially distributed random
variable with parameter q, independent of X. The function h can also be expressed
in terms of the excursion measure as

h(x) = lim
q↓0

Px(τ−0 > eq)
ηq + n(eq < ζ)

,

where η ≥ 0 is the drift of L−1(t). This is a consequence of the following result
which we will use later.

Lemma 3.1. Let q > 0. Then

Px(eq < τ−0 ) = E

[∫
[0,∞)

e−qt1{Xt≥−x} dL(t)

]
(ηq + n(eq < ζ)) (3.3)

Proof. Note that

Px(τ−0 > eq) = E
[∫ ∞

0

qe−qt1{Xt≥−x} dt

]
.

By distinguishing between those times t for which Xt = Xt and those which lie in
an excursion interval of the process {Xs −Xs}s≥0 we find that

Px(τ−0 > eq) = E
[∫ ∞

0

qe−qt1{Xt≥−x,Xt=Xt} dt

]
+ E

[∑
g

1{Xg≥−x}

∫ d

g

qe−qt dt

]
,

(3.4)
where the sum is taken over all left end points g of excursion intervals (g, d). Since
1{Xt=Xt}dt = ηdL(t) (see Theorem 6.8 in [63]), the first term on the right hand
side of (3.4) is equal to

ηqE

[∫
[0,∞)

e−qt1{Xt≥−x} dL(t)

]
.
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From an application of the compensation formula it follows that the second term
on the right hand side of (3.4) is equal to

E

[∑
g

e−qg1{Xg≥−x}1{eq<d−g}

]
= n(eq < ζ)E

[∫
[0,∞)

e−qt1{Xt≥−x} dL(t)

]
,

which completes the proof.

We say that X drifts to ∞ (−∞) when limt→∞Xt = ∞ (−∞). Whenever there
exists some ν > 0 (which is then called the Lundberg exponent of X) such that

E[eνX1 ] = 1,

we can then define the Laplace exponent ψ of X by

ψ(λ) = log(E[eλX1 ]), λ ∈ [0, ν].

The function ψ is strictly convex on [0, ν] and ψ(0) = ψ(ν) = 0, so we find that
ψ′(0+) < 0, which implies that X drifts to −∞. Furthermore, we can change
measure by defining

dPν

dP

∣∣∣∣
Ft

= eνXt .

Trivially, the Laplace exponent ψν of X under Pν is given by

ψν(λ) = log(Eν [eλX1 ]) = ψ(λ+ ν) for λ ∈ [−ν, 0].

In particular, ψ′ν(0−) = ψ′(ν−) > 0 and thus X drifts to +∞ under Pν .

3.3 Excursion measure in terms of renewal func-
tion

In this section we show that for a large class of Lévy processes, the excursion
measure n can be expressed in terms of the renewal function h. We make use
of various results obtained in [35] concerning Lévy processes conditioned to stay
positive. The Lévy processes we consider are given in the following definition.

Definition 3.2. Let H be the class of those Lévy processes X such that X is not
a compound Poisson process and X does not have monotone paths, and X has a
Lundberg exponent if it drifts to −∞.

Remark 3.3. For future reference we remark that H contains any Lévy process for
which its Lévy measure has support bounded from above. Indeed, when the support
of the Lévy measure of X is bounded from above we know (e.g. Theorem 25.3 in
[104]) that the Laplace exponent ψ(λ) is finite for λ ≥ 0. Furthermore, it is not
difficult to check that ψ is strictly convex and that limλ→∞ ψ(λ) = ∞. When X
drifts to −∞ it holds that ψ′(0) < 0 and thus the Lundberg exponent exists.
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The following result indicates how, for processes in H, the excursion measure n
is related to the renewal function h.

Lemma 3.4. Let X ∈ H and let A be a Borel subset of R+ satisfying inf A > 0
and n(∂A) = 0 (here, ∂A denotes the boundary of A with respect to the Skorokhod
topology). We then have for q ≥ 0∫ ∞

0

e−qtn(ε(t) ∈ A, t < ζ ∧ ρa) dt = lim
z↓0

∫∞
0
e−qtPz(Xt ∈ A, t < τ+

a ∧ τ−0 ) dt
h(z)

.

(3.5)
Furthermore,

n(ρa ≤ ζ ∧ eq) = lim
x↓0

1
h(x)

Px(τ+
a < τ−0 ∧ eq), (3.6)

and, when q > 0,

n(eq < ρa ∧ ζ) = lim
z↓0

Pz(eq < τ+
a ∧ τ−0 )

h(z)
. (3.7)

Proof. Let X ∈ H and suppose for the moment that X does not drift to −∞.
According to Lemma 1 in [35] we can then introduce the family of probability
measures by

P↑x(Xt ∈ dy) =
h(y)
h(x)

Px(Xt ∈ dy, t < τ−0 ) for x, y > 0.

Proposition 1 in [35] provides the justification for calling P↑x the law of X condi-
tioned to stay positive. When X is regular upwards we know from Theorem 2 in
[35] that the laws P↑x converge in the Skorokhod topology as x ↓ 0 to a probability
measure denoted by P↑. For the case when X is irregular upwards, it can be checked
that, at time zero, the process with law P↑x does not converge in probability towards
zero. However, Theorem 2 in [35] states that in this case (X ◦ θδ,P↑x) converges in
probability to (X ◦ θδ,P↑) for any δ > 0, where θ denotes the shift operator and P↑
is some probability measure.

In [34] Theorem 3, under the assumptions that 0 is regular downwards for X,
X does not drift to −∞ and its semigroup is absolutely continuous, it is shown
that this measure is related to the excursion measure n in the following way:

n(B, t < ζ) = E↑[(h(Xt))−11B ] for any B ∈ Ft such that n(∂B) = 0, (3.8)

where ∂B denotes the boundary of B with respect to the Skorokhod topology.
However, from Theorem 1 in [35] it follows that (3.8) still holds whenever X is not
a Poisson process. By Fubini’s theorem and (3.8) we then find for any Borel subset
A of R+ satisfying inf A > 0 that

n

(∫ ζ∧ρa

0

e−qt1{εt∈A} dt

)
= E↑

[∫ τ+
a

0

e−qt1{Xt∈A}(h(Xt))−1 dt

]
.

Let T ∈ R+ We show that for any bounded and continuous F , it holds that
ω →

∫ T
0
F (ωt) dt is a continuous functional of ω in the set D of paths which
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are right-continuous and have a left limit. Denote by d a metric which induces the
Skorokhod topology and let ωn ∈ D and ω ∈ D be such that d(ωn, ω) → 0 as
n→∞. Define the countable set

C := ∪n∈N{t : ωnt 6= ωnt−} ∪ {t : ωt 6= ωt−}.

Since Skorokhod convergence implies pointwise convergence at points of continuity
we can use bounded convergence to deduce that∫ T

0

(F (ωnt )− F (ωt)) dt =
∫ T

0

(F (ωnt )− F (ωt))1{Cc} dt→ 0

as n → ∞. Since h is an increasing function and since inf A > 0, we deduce by a
monotone class argument and (3.8) that

n

(∫ ζ∧ρa

0

e−qt1{εt∈A} dt

)
= lim

x↓0
E↑x
[∫ ∞

0

e−qt1{Xt∈A,t<τ+
a }(h(Xt))−1 dt

]
= lim

x↓0

1
h(x)

Ex
[∫ ∞

0

e−qt1{Xt∈A,t<τ+
a ∧τ−0 }

dt

]
,

which is (3.5). The proof of (3.6) is similar, since h(Xτ+
a

) is bounded away from
zero. Next, we show (3.7) (still under the assumption that X drifts to +∞). Let
q > 0 and suppose X is regular upwards. Similar to the reasoning above, we can
show that for any δ > 0 it holds that

lim
x↓0

E↑x
[∫ ∞

0

e−qt(h(Xt))−11{Xt>δ} dt

]
= E↑

[∫ ∞

0

e−qt(h(Xt))−11{Xt>δ} dt

]
.

(3.9)
Also, as q > 0, it follows from the definition of h that

E
[∫ ∞

0

e−qt1{Xt≥−x} dL(t)
]
≤ h(x).

Since X is regular upwards, the drift η of L−1(t) is equal to zero and thus we
deduce from (3.3) that for δ, x > 0

1
h(x)

Ex

[∫ τ−0

0

e−qt1{Xt≤δ} dt

]
+

1
h(x)

Ex

[∫ τ−0

0

e−qt1{Xt>δ} dt

]
(3.10)

=
1

h(x)
Ex

[∫ τ−0

0

e−qt dt

]

=
1

h(x)
E

[∫
[0,∞)

e−qt1{Xt≥−x} dL(t)

]
n

(∫ ζ

0

e−qt dt

)

≤ n

(∫ ζ

0

e−qt dt

)

= n

(∫ ζ

0

e−qt1{ε(t)≤δ} dt

)
+ n

(∫ ζ

0

e−qt1{ε(t)>δ} dt

)
. (3.11)
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It follows from (3.9) that the second term in (3.10) converges to the second term
in (3.11) as x ↓ 0. The equation

n

(∫ ζ

0

1{ε(t)=0} dt

)
= 0

implies that for any ξ > 0 there exists some δ0 > 0 such that for 0 < δ < δ0

lim sup
x↓0

1
h(x)

Ex

[∫ τ−0

0

e−qt1{Xt≤δ} dt

]
≤ n

(∫ ζ

0

e−qt1{ε(t)≤δ} dt

)
≤ ξ.

It now readily follows that

lim
x↓0

1
h(x)

Ex

[∫ τ+
a ∧τ

−
0

0

e−qt dt

]
= lim

δ↓0
lim
x↓0

1
h(x)

Ex

[∫ τ+
a ∧τ

−
0

0

e−qt1{Xt>δ} dt

]

= lim
δ↓0

n

(∫ ρa∧ζ

0

e−qt1{ε(t)>δ} dt

)

= n

(∫ ρa∧ζ

0

e−qt dt

)
,

which is (3.7).
When X is irregular upwards (and still does not drift to −∞), the drift η of

L−1(t) is strictly positive. We now deduce from (3.3) and reasoning similar to the
above that for 0 < r ≤ q and δ > 0

lim sup
x↓0

1
h(x)

Ex

[∫ τ−0

0

e−qt1{Xt≤δ} dt

]
≤ lim sup

x↓0

1
h(x)

Ex

[∫ τ−0

0

e−rt1{Xt≤δ} dt

]

≤ n

(∫ ζ

0

e−rt1{ε(t)≤δ} dt

)
+ rη,

which can be made arbitrarily small by taking r and δ close to zero. The proof of
(3.7) now follows similarly to the regular case above.

Finally, let X be a process in H which drifts to −∞. Since X ∈ H, its Lundberg
exponent exists and we denote it by ν. We denote by nν the excursion measure of
Xt−Xt under Pν . Then we claim that the excursion measure nν can be expressed
in terms of n by

nν(ε(t) ∈ dy, t < ζ) = eνyn(ε(t) ∈ dy, t < ζ). (3.12)

In order to prove (3.12), we show that the left hand side and the right hand side
of (3.12) have the same double Laplace transform in t and y. Denote by κ (κ̂) the
Laplace exponent of the downward (upward) ladder height. We use the obvious
notation κν and κ̂ν for the analogous objects under Pν . Similar to X, we denote
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the running supremum of X by Xt = sup0≤s≤tXs. Then, for any q, λ ≥ 0

nν

(∫ ζ

0

∫ ∞

0

e−qt−(ν+λ)y1{ε(t)∈dy} dt

)
=

κν(q, 0)
q

Eν [e−(ν+λ)(Xeq−Xeq
)]

=
κν(q, 0)

q
Eν [e−(ν+λ)Xeq ]

=
κν(q, 0)

q

κ̂ν(q, 0)
κ̂ν(q, ν + λ)

= c
1

κ̂ν(q, ν + λ)

for some constant c > 0. Here, we have used equation (7) on p. 120 in [18] for the
first equality, the duality principle (which implies that Xeq

− Xeq
has the same

distribution as Xeq
) for the second equality and the Wiener–Hopf factorisation for

the third and fourth equalities. We also have that (with (L̂t, Ĥt) the upward ladder
process)

κ̂ν(q, ν + λ) = − log
(
Eν [e−qL̂

−1
1 −(ν+λ)Ĥ11{L̂(∞)>1}]

)
= − log

(
E[e

−qL̂−1
1 −(ν+λ)Ĥ1+νXL̂

−1
1 1{L̂(∞)>1}]

)
= κ̂(q, λ).

This implies (3.12).
By denoting hν the renewal function under Pν , we use the fact that X drifts to

+∞ under Pν to deduce that for any t, y > 0

n(ε(t) ∈ dy, t < ζ) = eνynν(ε(t) ∈ dy, t < ζ)

= eνyk lim
x↓0

Pνx(Xt ∈ dy, t < τ−0 )
hν(x)

= lim
x↓0

Px(Xt ∈ dy, t < τ−0 )
h(x)

.

The last equality is implied by

lim
x↓0

hν(x)
h(x)

= 1,

which is a consequence of

e−νxP(XL−1(t) ≥ −x) ≤ E[eνXL−1(t)1{XL−1(t)≥−x}] ≤ P(XL−1(t) ≥ −x).

The results in Lemma 3.4 now follow.
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3.4 Resolvent measure of the killed reflected pro-
cess

The q-resolvent measure of X killed at exiting [0, a] is given by

U (q)(x, dy) =
∫ ∞

0

e−qtPx(Xt ∈ dy, t < τ−0 ∧ τ+
a ) dt.

We assume throughout that U (q)(x, dy) is absolutely continuous with respect to
Lebesgue measure and we denote a version of its density by u(q)(x, y). We also
assume that X is regular upwards, which means that the first hitting time of
(0,∞) is almost surely equal to zero. These assumptions are not strictly necessary,
but suffice for the application we consider in Section 3.5. We refer to Remark 3.12
for a discussion about how we can weaken the assumptions.

Similarly, denote by R(q)(x, dy) the q-resolvent measure of the process {Yt}t≥0

killed at exceeding a, i.e.

R(q)(x, dy) =
∫ ∞

0

e−qtPx(Yt ∈ dy, t < T+
a ) dt.

In this section we show that (under the conditions above) R(q)(x, dy) is absolutely
continuous with respect to Lebesgue measure and we find an expression for its
density.

By the strong Markov property applied at τ−0 , we have for any y ≥ 0

R(q)(x, dy) = u(q)(x, y)dy + Ex[e−qτ
−
0 1{τ−0 <τ+

a }]R
(q)(0, dy) (3.13)

and thus the problem of finding R(q)(x, dy) reduces to finding an expression for
R(q)(0, dy), provided of course that we have an expression for the two-sided exit
problem. The following result shows that R(q)(x, dy) is absolutely continuous with
respect to Lebesgue measure and that a density is given in terms of u(q)(x, y) and
the two-sided exit problem.

Theorem 3.5. Let 0 < x ≤ a, 0 ≤ y ≤ a and q ≥ 0. The resolvent measure of the
killed reflected process has a density, which can be expressed in terms of u(q) and
the two sided exit problem as

r(q)(x, y) = u(q)(x, y) + Ex[e−qτ
−
0 1{τ−0 <τ+

a }]r
(q)(0, y), (3.14)

where

r(q)(0, y) = lim
z↓0

u(q)(z, y)

1− Ez[e−qτ
−
0 1{τ−0 <τ+

a }]
. (3.15)

Similarly,
r(x, y) := r(0)(x, y) = u(x, y) + Px(τ−0 < τ+

a )r(0, y), (3.16)

where

r(0, y) := r(0)(0, y) = lim
z↓0

u(z, y)
Pz(τ+

a < τ−0 )
. (3.17)
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Before proving Theorem 3.5, we obtain a couple of auxiliary results. Since R(q)

depends only on the behavior of Y until the first time Y exceeds the level a, we
can replace all jumps of X greater than a by jumps of size a without affecting
R(q). Hence, recalling Remark 3.3, we may assume without loss of generality that
X ∈ H.

Denote by ε the height of a generic excursion ε, i.e.

ε = sup{ε(s) : 0 ≤ s ≤ ζ}.

Recall that ρa is the first time an excursion exceeds the level a. Now, for any q > 0,
define the event Aq = Bq ∪ Cq, where

Bq = {ε ∈ E : ρa(ε) ≤ ζ(ε) ∧ eq} and Cq = {ε ∈ E : eq < ρa(ε) ∧ ζ(ε)}.

Hence, an excursion is in Aq if and only if its height is at least a or if its length is
at least eq. Similarly, we define

A := {ε ∈ E : ρa(ε) ≤ ζ(ε)}. (3.18)

In the following lemma we find an expression for the excursion measure of the set
Aq.

Lemma 3.6. For q > 0

n(Aq) = lim
z↓0

1− Ez[e−qτ
−
0 1{τ−0 <τ+

a }]

h(z)

and

n(A) = lim
z↓0

Pz(τ+
a ≤ τ−0 )
h(z)

.

Proof of Lemma 3.6. Let q > 0. Conditional on ρa < ∞, {ε(t + ρa)}t≥0 is equal
in law to the process {Xt}t≥0, started at ε(ρa) and killed at entering (−∞, 0].
Using this observation in combination with an application of the strong Markov
property at time ρa and the assumption that X is regular upwards allows us to
deduce that n(ε = a) = 0. From the definition of Aq and Bq it then follows that
n(∂Aq) = n(∂Bq) = 0 and thus we can apply Lemma 3.4 to deduce that

n(Aq) = n(Bq) + n(Cq)
= n(ρa ≤ ζ ∧ eq) + n(eq < ρa ∧ ζ)

= lim
z↓0

1
h(z)

(
Ez
[
e−qτ

+
a 1{τ+

a <τ
−
0 }

]
+ Pz(eq < τ−0 ∧ τ+

a )
)

= lim
z↓0

1
h(z)

(
1− Ez[e−qτ

−
0 1{τ−0 <τ+

a }]
)

The expression for n(A) follows similarly.

Next, we show that R(q)(0, dy) can be expressed as a quotient involving excur-
sion measures.
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Lemma 3.7. For q > 0

R(q)(0, dy) =
n(ε ∈ E : eq < ζ, ε(eq) ∈ dy, ε(eq) ≤ a)

qn(Aq)
. (3.19)

Also,

R(0, dy) =

∫∞
0
n(ε ∈ E : ε(t) ∈ dy, t < ρa ∧ ζ) dt

n(A)
. (3.20)

Proof of Lemma 3.7. Let q > 0. We have

R(q)(0, dy) =
∫ ∞

0

e−qtP(Yt ∈ dy, Y t ≤ a) dt =
P(Yeq

∈ dy, Y eq
≤ a)

q
.

We denote by T the (countable) set of times t such that L−1(t−) < L−1(t) and
note that excursions away from zero of Y always start at time L−1(t−) for some
t ∈ T . We introduce the family {etq}t∈T of independent copies of the exponential
random variable eq and we assume that this family is independent of X as well.
Since {εt}t∈T is a Poisson point process with characteristic measure n, the random
variable σq defined by

σq = inf{t ∈ T : εt ∈ Aq}

has an exponential distribution with parameter n(Aq). The memoryless property of
the exponential distribution allows us to use the compensation formula in excursion
theory to deduce that

P(Yeq
∈ dy, Y eq

≤ a)

= E

[∑
t∈T

1{εt(et
q)∈dy,et

q∈(L−1(t−),L−1(t)),et
q<ρa(εt),sups<t,s∈T εs≤a}

]
= E[σq]n(ε ∈ E : eq < ζ, ε(eq) ∈ dy, ε(eq) ≤ a), (3.21)

from which (3.19) follows. For (3.20) we use similar reasoning to deduce that∫ ∞

0

P(Yt ∈ dy, Y t ≤ a) dt = E[σ]
∫ ∞

0

n(ε ∈ E : ε(t) ∈ dy, t < ρa ∧ ζ) dt, (3.22)

where the random variable σ defined by

σ = inf{t ∈ T : εt ∈ A}

has an exponential distribution with parameter n(A).

Proof of Theorem 3.5. By the strong Markov property, it suffices to show (3.15)
and (3.17). For (3.15) we use (3.19) and Lemmas 3.4 and 3.6 to find

R(q)(0, dy) =
n(eq < ζ, ε(eq) ∈ dy, ε(eq) ≤ a)

qn(Aq)

= lim
z↓0

u(q)(z, y)

1− Ez[e−qτ
−
0 1{τ−0 <τ+

a }]
dy,
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where the limit is understood in the weak sense. For (3.17) we use Lemma 3.4 and
(3.20) to find

R(0, dy) =

∫∞
0
n(ε ∈ E : ε(t) ∈ dy, t < Ta(ε) ∧ ζ) dt

n(A)

= lim
z↓0

u(z, y)
P(τ+

a ≤ τ−0 )
dy.

This completes the proof of Theorem (3.5).

3.5 Resolvent density for reflected symmetric sta-
ble process killed at exceeding a

In this section, as an application of Theorem 3.5, we find the resolvent density for
reflected symmetric stable processes killed at exceeding a. We say that a process is
symmetric when X and −X have the same law. A Lévy process {Xt}t≥0 is called
stable if X1 has a stable distribution, i.e. when for all n ≥ 1 there exist an > 0
and bn ∈ R such that X(1)

1 + . . . + X
(n)
1 has the same distribution as anX1 + bn,

where X(i)
1 are independent copies of X1. It turns out that an is then of the form

an = n1/α for some α ∈ (0, 2], where α is referred to as the index of the stable
process. When bn = 0 for all n ∈ N we say that X is strictly stable. It then holds
that for each k > 0 the process {k−1/αXkt}t≥0 has the same finite-dimensional
distributions as {Xt}t≥0. This is called the scaling property. The characteristic
exponent of a strictly stable process is of the form

Ψ(θ) =
{

c|θ|α(1− iβ tan πα
2 sgn θ) when α 6= 1,

c|θ|+ iηθ when α = 1,

where β ∈ [−1, 1], c > 0, η ∈ R and sgn θ = 1{θ>0} − 1{θ<0}. It is not difficult
to see that a symmetric stable process is also strictly stable and that in terms of
the characteristic exponent this means that either α = 1 and η = 0 or α 6= 1 and
β = 0. We refer to [104] and [115] for further details.

For a killed symmetric stable process we have the following expression for the
potential density, which follows after rescaling the formula in Corollary 4 in [24].

Theorem 3.8. The potential measure for a symmetric stable process killed at ex-
iting [0, a] has a density given by

u(0)(x, y) =
1

2αΓ2(α/2)
| x− y |α−1

∫ s(x,y)

0

uα/2−1

√
u+ 1

du

where

s(x, y) =
4xy(a− x)(a− y)

a2(x− y)2
. (3.23)

Furthermore,

Px(τ+
a < τ−0 ) =

21−αΓ(α)
Γ2(α/2)

∫ −1+2x/a

−1

(1− u2)α/2−1 du.
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We can apply Theorem 3.5 to deduce the following result.

Theorem 3.9. The potential measure for a reflected symmetric stable process killed
at exceeding a has a density given by

r(0, y) =
yα/2−1(a− y)α/2

Γ(α)
for y ∈ [0, a] (3.24)

and thus for any x, y ∈ [0, a]

r(x, y) =
1

2αΓ2(α/2)
| x− y |α−1

∫ 4xy(a−x)(a−y)/(a(x−y))2

0

uα/2−1

√
u+ 1

du

+
yα/2−1(a− y)α/2

Γ(α)

(
1− 21−αΓ(α)

Γ2(α/2)

∫ −1+x/2a

−1

(1− u2)A/2−1 du

)
.

Proof. Any non-monotone stable process is regular upwards (in the case of bounded
variation, this follows from the fact that the Lévy measure of such a process satisfies
the integral test in [20]) and thus we are within the scope of Theorem 3.5. Let s
be defined as in (3.23). A quick calculation shows that

lim
z↓0

∂s(z, y)
∂z

=
4(a− y)
ay

.

For (3.24) we deduce from Theorem 3.5 and 3.8 that

r(0, y) = lim
z↓0

u(z, y)
Pz(τ+

a < τ−0 )

=
1

2Γ(α)
lim
z↓0

| z − y |α−1
∫ s(z,y)
0

uα/2−1(u+ 1)−1/2 du∫ −1+2z/a

−1
(1− u2)α/2−1 du

=
yα−1

2Γ(α)
lim
z↓0

s(z, y)α/2−1(s(z, y) + 1)−1/2 ∂s(z,y)
∂z

(1− (2z/a− 1)2)α/2−12/a

=
yα/2−1(a− y)α/2

Γ(α)
.

The second part of Theorem 3.9 now follows directly from (3.13).

As a corollary we find the joint law of the undershoot and the overshoot at level
a of the reflected symmetric stable process Y .

Corollary 3.10. For 0 ≤ z ≤ a ≤ y

P(YT+
a − ∈ dz, YT+

a
∈ dy) =

α sin(απ/2)
π

(y − z)−α−1zα/2−1(a− z)α/2dy dz.

Proof. The ladder height process of a stable process is again stable and hence it has
no drift. It follows that X does not creep upwards, which implies P(Y +

Ta
= a) = 0,
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and thus Y exceeds the level a by a jump. By the compensation formula we find
that for any 0 ≤ z ≤ a ≤ y

P(YT+
a − ∈ dz, YT+

a
∈ dy) = r(0, z)Π(dy − dz). (3.25)

The result now follows from (3.24) and from taking into account that the right
hand side of (3.25) has unit mass on [0, a]× [a,∞).

Remark 3.11. When we integrate both sides of the equation in Corollary 3.10
over z, we deduce the result in Theorem 2 in [62] for the special case when the
stable process is symmetric.

3.6 Bounded variation strictly stable process

Let X now be a strictly stable process with index 0 < α < 1 and which is not
monotone. Note that this implies that X is of bounded variation. For any t > 0,
denote by q = P(Xt > 0) the positivity parameter, which indeed does not depend
on t since the scaling property gives us

P(Xt > 0) = P(t1/αX1 > 0) = P(X1 > 0).

This parameter can be expressed as

q =
1
2

+
1
πα

arctan(β tan(πα/2)). (3.26)

We can prove (3.26) by using the expression for the density of a stable process
(equation (2.6.4) in [115])

P(X1 ∈ dx)
dx

=
1
π
=
∫ ∞

0

exp
(
−xueiπρ/2 − uαe−iπρα/2 + iπρ/2

)
du,

where, from page 17 of [115], ρ = 1/2 + (πα)−1 arctan(β tan(πα/2)). After some
analysis (see p. 113 in [115]) it can be deduced that for any s ≥ 0∫ ∞

0

e−sxP(X1 ∈ dx) =
1
π

∫ ∞

0

e−(su)α sin(πρ)
u2 + 2u cos(πρ) + 1

du.

By taking s = 0 and by substituting u = z sin(πρ)− cos(πρ) we find that

q =
sin(πρ)
π

∫ ∞

0

1
u2 + 2u cos(πρ) + 1

du

=
sin(πρ)
π

∫ ∞

− cot(π(ρ))

1
sin(πρ)

1
z2 + 1

dz

=
1
π

(arctan∞− arctan(− cot(πρ)))

=
1
2
− 1
π

arctan(sin(π/2− πρ)/ cos(π/2− πρ))
= ρ.
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In Exercise 39.2 in [104] the potential density of X is given by

p(x) = C(1 + β sgnx)|x|α−1,

where

C =
(
2cΓ(α) cos(πα/2)

(
1 + β2 tan2(πα/2)

))−1
.

See pages 440 and 441 in [104] for a proof. Denote by τ the first exit of X from
[0, 1], i.e.

τ := inf{t ≥ 0 : Xt /∈ [0, 1]} = τ−0 ∧ τ+
1 .

By the strong Markov property applied at time τ we have

p(y − x) dy = U(x, dy) +
∫
z/∈[0,1]

Px(Xτ ∈ dz)p(y − z) dy.

In Theorem 1 in [102] the law of Xτ was found to be for x ∈ [0, 1] and y > 0

Px(1 ≤ Xτ ≤ 1 + y) = f1(x, y)

and

Px(−y ≤ Xτ ≤ 0) = f2(x, y),

where

f1(x, y) =
sin(παq)

π
(1− x)αqxα(1−q)

∫ y

0

t−αq(t+ 1)−α(1−q)(t+ 1− x)−1 dt (3.27)

and

f2(x, y) =
sin(πα(1− q))

π
(1− x)αqxα(1−q)

∫ y

0

t−α(1−q)(t+ 1)−αq(t+ x)−1 dt.

From (3.27) it follows that

Px(τ+
1 < τ−0 ) = f1(x,∞) =

1
B(αq, α(1− q))

∫ x

0

uαq−1(1− u)α(1−q)−1 du,

where B is the beta function. For x, y ∈ [0, 1), we denote by R(x, dy) the potential
measure of X reflected at its infimum and killed at exceeding 1. Then Theorem 3.5
implies that R has a density, which can in principle be deduced from

r(0, y) = lim
x↓0

p(y − x)−
∫
z/∈[0,1]

Px(Xτ ∈ dz)p(y − z)

Px(τ+
1 < τ−0 )

for y ∈ (0, 1),

using the functions f1, f2 and the expression for p above.
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3.7 Concluding remarks

Remark 3.12. As mentioned before, the assumptions that X is regular upwards
and that the resolvent measure U (q)(x, dy) has a density can be relaxed. Reconsider-
ing the proof of Theorem 3.5 and Lemma 3.6 in particular, we find that R(q)(x, dy)
is still given as in Theorem 3.5 for x > 0 when the regularity condition is replaced
by n(ε = a) = 0. The latter holds if Lévy measure Π of X does not have an atom at
a. When X is irregular upwards, the time Y spends at zero has positive Lebesgue
measure and hence in this case R(x, dy) has an atom at zero. We use the strong
Markov property to derive

R(q)(x, {0}) = Ez[e−qτ
−
0 1{τ−0 <τ+

a }]R
(q)(0, {0}).

Next we remark that

qR(q)(0, {0}) = P(eq < T+
a )− q

∫ a

0

r(q)(0, y) dy

and it now follows from Lemma 3.4, Theorem 3.5, Lemma 3.6 and (3.21) that

R(q)(0, {0}) =
1
q

lim
z↓0

1− Ez[e−q(τ
−
0 ∧τ

+
a )]

1− Ez[e−qτ
−
0 1{τ−0 <τ+

a }]
−
∫ a

0

lim
z↓0

u(q)(z, y)

1− Ez[e−qτ
−
0 1{τ−0 <τ+

a }]
dy.

(3.28)
When U (q)(x, dy) is not absolutely continuous with respect to Lebesgue measure,
a version of Theorem 3.5 can be obtained in terms of measures.
When X is spectrally one-sided, u(q)(x, y) and the two-sided exit problem are given
in terms of the so-called scale function and we find Theorem 1 of [94] (note that a
bounded variation spectrally positive Lévy process is irregular upwards and thus
the atom at zero of R(q)(x, dy) is given by (3.28)). This essentially is the method
of proof as introduced in [40].
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Chapter 4

Examples of optimal
stopping via measure
transformation for processes
with one-sided jumps∗

We show that the method introduced by Beibel and Lerche in [16] for
solving certain optimal stopping problems for Brownian motion can be
applied to some optimal stopping problems involving processes with
one-sided jumps as well.

4.1 Introduction

In [16] Beibel and Lerche proposed a method for solving certain optimal stopping
problems for a Brownian motion B (see also [72] and, for the case of regular diffu-
sions, [17]). They used a change of measure to reduce the optimal stopping problem
to the problem of finding the maximum of a (deterministic) function. One example
solved in [16] is

sup
τ

E
[
Bτ
τ + 1

]
. (4.1)

This problem was first solved in ([106], Theorem 1) and, independently, in ([114],
Example 2). In section 10 of [106] it was suggested that it is of interest to replace
B in (4.1) by a stable process of index α ∈ (1, 2). We show that in some cases, the
method proposed in [16] can be used for processes with one-sided jumps as well.
In particular, for a spectrally negative strictly stable process of index α ∈ (1, 2)
we solve the problem (4.1) in two ways: firstly by a change of measure similar to

∗Appeared in abridged version as [10].
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the one used in Problem 3 in [16] and secondly by using results from [83] about
generalised Ornstein–Uhlenbeck processes.

4.2 Preliminaries

In this section we review some properties of (spectrally negative) Lévy processes and
generalised Ornstein–Uhlenbeck processes. For further details about Lévy processes
we refer to [18] and [63]. For generalised Ornstein–Uhlenbeck processes we refer to
[53], [83] and [85]

Let Z be a spectrally negative Lévy process (i.e. a Lévy process with no
positive jumps and non-monotone paths) defined on a filtered probability space
(Ω, {Ft}t≥0,P) satisfying the usual conditions. We denote by (a, σ,Π) its Lévy
triple, where a ∈ R, σ ≥ 0 (called the Gaussian component) and where Π is a
measure with mass zero on the positive halfline (due to the assumption that Z is
spectrally negative) satisfying the integral condition∫

(−∞,0)

(1 ∧ x2)Π(dx) <∞. (4.2)

If we denote by Bt a standard Brownian motion and by N a Poisson random
measure on ([0,∞) × R,B[0,∞) × B(R)) with intensity dt × Π(dx) we write Z as
a sum of three independent Lévy processes

Zt = X
(1)
t +X

(2)
t +X

(3)
t , (4.3)

where X(1)
t = at+ σBt, where

X
(2)
t =

∫
[0,t]

∫
{x≤−1}

xN(ds× dx)

and where

X
(3)
t =

∫
[0,t]

∫
{−1<x<0}

x (N(ds× dx)−Π(dx) ds) .

Note that X(2)
t is a compound Poisson process and that X(3)

t is a martingale. This
decomposition is known as the Lévy–Itô decomposition and is attributed to [57]
and [73]. The Laplace exponent ψ of Z is given by

ψ(λ) =
σ2

2
λ2 + aλ+

∫
(−∞,0)

(
eλx − 1− λx1{x≥−1}

)
Π(dx), λ ≥ 0. (4.4)

A Lévy process A is said to be of bounded variation if its paths are of bounded
variation on each compact interval of R+ (almost surely), which means that for
any t ≥ 0

sup
S

m∑
k=1

|Atk −Atk−1 | <∞ P-a.s.,
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where the supremum is taken over all partitions S = {t0, . . . ..., tm} of [0, t]. Oth-
erwise, A is said to be of unbounded variation. For the Lévy triple of a bounded
variation Lévy process this means that σ = 0 and that the jump measure Π must
satisfy ∫

(−∞,0)

(1 ∧ |x|) Π(dx) <∞,

see p. 15 of [18]. This implies that whenever Z is of bounded variation, we can
rewrite its Laplace exponent ψ as

ψ(λ) =

(
a−

∫
(−∞,0)

xΠ(dx)

)
λ+

∫
(−∞,0)

(
eλx − 1

)
Π(dx)

and Z may then be written as

Zt =

(
a−

∫
(−∞,0)

xΠ(dx)

)
t+
∫

[0,t]

∫
(−∞,0)

xN(ds× dx).

Since we have excluded the case when Z has monotone paths, it follows that

a−
∫

(−∞,0)

xΠ(dx) > 0. (4.5)

In the rest of this section we discuss some properties of spectrally negative strictly
stable Lévy processes and generalised Ornstein–Uhlenbeck processes driven by
spectrally negative Lévy processes.

Denote by {Xt}t≥0 a spectrally negative strictly stable process of index α ∈
(1, 2) defined on a filtered probability space (Ω, {Ft}t≥0,P) which satisfies the usual
conditions. We denote by Px the translation of P under which X0 = x. The Laplace
exponent of X is given by ψ(λ) = Cλα, where C > 0 is a constant. We exclude the
case when α = 2 as this corresponds to X =

√
2CBt, with B a Brownian motion.

The jump measure of a spectrally negative strictly stable Lévy process is given by

Π(dx) = c(−x)−1−αdx for x < 0,

where c > 0 is some constant (see Theorem C.1 in [115]). Naturally, the case α = 1
is excluded as well, as this just corresponds to X being a deterministic drift. Fur-
thermore, we have that α < 2 since the jump measure Π needs to satisfy the integral
condition (4.2). When 0 < α < 1, it holds that X is of bounded variation and that
a =

∫
(−∞,0)

xΠ(dx), which implies that the paths of X are monotone decreasing.
Summarising, for a spectrally negative strictly stable process with jumps it must
hold that α ∈ (1, 2). In particular, a spectrally negative strictly stable Lévy pro-
cess is always of unbounded variation. We refer to [115], Chapter VIII in [18] and
Chapter 3 in [104] for further details about stable processes.
In the rest of this section, we recall some properties of generalised Ornstein–
Uhlenbeck processes. Most of the results are from [83], but for completeness we
include them here. The (standard) Ornstein–Uhlenbeck process {Vt}t≥0 is the so-
lution to the stochastic differential equation

dYt = −γYtdt+ dBt, (4.6)
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where γ, σ > 0 and where {Bt}t≥0 is a standard Brownian motion (see p. 358 in
[58]). Equation (4.6) is known as Langevin’s equation and originates from physics
where it was used to model (the speed of) a particle which experiences friction.
Since this friction increases as the speed of the particle increases, the constant γ is
taken to be strictly positive. Using Itô’s formula (see [58]) it can be checked that

Yt = Y0e
−γt + e−γt

∫ t

0

eγs dBs

solves (4.6). In fact, this is the unique solution to (4.6). If we replace the Brownian
motion in (4.6) by a spectrally negative Lévy process {Zt}t≥0, i.e.

dYt = −γYtdt+ dZt, Y0 = y under Py (4.7)

we can use an extended version of Itô’s formula (see [2]) to deduce that the solution
is now given by

Yt = Y0e
−γt + e−γt

∫ t

0

eγs dZs. (4.8)

An application of such non-Gaussian Ornstein–Uhlenbeck processes to financial
economics can be found in [8] and in [9]. See also Theorem 17.5 in [104] for the
close link between generalised Ornstein–Uhlenbeck processes and so-called selfde-
composable distributions. We give a review of those elements of [83] which will be
useful for Section 4.4 below, where we study optimal stopping problems for Y . The
main ingredient we need for these problems is

a function G such that {e−rtG(r, Yt)}t≥0 is a martingale. (4.9)

As we will study an optimal stopping problem for a generalised Ornstein–Uhlenbeck
process, we want to exclude the case when Y has monotone paths. It turns out that
this happens whenever X is of bounded variation or when

a−
∫

(−1,0)

xΠ(dx) ≤ γY0.

Indeed, if this is the case, we deduce from (4.3) that

Yt = Y0e
−γt + ae−γt

∫ t

0

eγs ds+ e−γt
∫ t

0

∫
(−1,0)

eγsx (N(ds, dx)−Π(dx)ds)

+e−γt
∫ t

0

∫
(−∞,−1]

xeγsN(ds, dx)

≤ Y0e
−γt +

a

γ
(1− e−γt)− e−γt

∫ t

0

∫
(−1,0)

xeγs Π(dx) ds

= e−γtY0 +
1
γ

(
a−

∫
(−1,0)

xΠ(dx)

)
(1− e−γt)

≤ Y0.



4.2 Preliminaries 49

On the other hand it turns out that whenever Y is of unbounded variation or when

a−
∫

(−1,0)

xΠ(dx) > γb (4.10)

it holds that Py(σb < ∞) = 1 for all y < b. We remark that, because of (4.5), the
latter always holds when b ≤ 0 .

Next, let (t(n)
k )k,n∈N be a sequence such that for all n ∈ N

0 = tn0 < tn1 . . . < t
(n)
k < t

(n)
k+1 < . . . tn∞ = t

and such that for all k ∈ N

t
(n)
k − t

(n+1)
k → 0 as n→∞.

By dominated convergence and using the fact that Z has stationary, independent
increments we find that

E[eλYt ] = eλY0e
−γt

E
[
exp

(
λe−γt

∫ t

0

e−γs dZs

)]
= eλY0e

−γt

E
[
exp

(
λ

∫ t

0

e−γu dZu

)]
= eλY0e

−γt

E

[
exp

(
λ

∫ t

0

lim
n→∞

∑
k

e−γt
(n)
k 1

[t
(n)
k ,t

(n)
k+1)

(u) dZu

)]
= eλY0e

−γt

lim
n→∞

∏
k

E
[
exp

(
λe−γt

(n)
k (Z

t
(n)
k+1

− Z
t
(n)
k

)
)]

= eλY0e
−γt

lim
n→∞

∏
k

exp
(
ψ(λe−γt

(n)
k )(t(n)

k+1 − t
(n)
k )
)

= exp
(
λY0e

−γt +
∫ t

0

ψ(λe−γs) ds
)
,

from which it readily follows that the process {Ct}t≥0 defined by

Ct(λ) = exp
(
λeγtYt −

∫ t

0

ψ(λeγs) ds
)

is a martingale for any λ ≥ 0.
We now make the assumption that the driving spectrally negative Lévy process Z
satisfies

E[log(1 + (−Z1)+)] <∞, (4.11)

where y+ := max(y, 0). This assumption implies that the function φ defined by

φ(s) =
1
γ

∫ s

0

v−1ψ(v) dv s ≥ 0,
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is finite. To see this, note that (4.2) and (4.4) imply that an infinite value of φ(s)
can only be caused by the term∫ u

0

1
v

∫
(−∞,−1)

(evx − 1) Π(dx) dv

being infinite. However, for any x < 0 and u > 0,∫ u

0

v−1(evx − 1) dv =
∫ 1

0

y−1(e−y − 1) dy − log(−x)− log(u)−
∫ 1

−ux
y−1e−y dy.

It now follows from condition (4.11) and Π(−∞,−1) < ∞ (due to (4.2)) that for
any u > 0∫ −1

−∞

(∫ 1

0

y−1(e−y − 1) dy − log(−x)− log(u)−
∫ 1

−ux
y−1e−ydy

)
Π(dx) > −∞.

(4.12)
We conclude that φ is well defined.
For r > 0, integrating Ct(λ) over [0,∞) with respect to the measure

µ(dλ) = e−φ(λ)λr−1 dλ,

allows us to deduce that the process {Dt(r)}t≥0 defined by

Dt(r) =
∫ ∞

0

Ct(λ)µ(dλ)

=
∫ ∞

0

exp
(
λeγtYt −

∫ t

0

ψ(λeγs)ds− φ(λ)
)
λr−1 dλ

=
∫ ∞

0

eλe
γtYt−φ(λeγt)λr−1 dλ

= e−rγt
∫ ∞

0

euYt−φ(u)ur−1 du

is a martingale for any r > 0 as well (see Lemma 1 in [83] for the finiteness of
Dt(r)). We see that the function G alluded to in (4.9) can be taken as

G(r, x) =
∫ ∞

0

eux−φ(u)duu−1+r/γ du.

4.3 Alphabolic boundaries

Recall that X is a spectrally negative strictly stable process of index α ∈ (1, 2).
Let β > 0 and define the function

H(β, x) =
∫ ∞

0

eux−u
α

uαβ−1 du,
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which is finite since α > 1. Suppose h is a function on R such that there exists
some x∗ satisfying

x∗ = arg max
x

h(x)
H(β, x)

. (4.13)

Denote by T the set of stopping times with respect to {Ft}t≥0. In this section we
study optimal stopping problems of the form

V (x) := sup
τ∈T

Ex

[
h
(
(τ + 1)−1/αXτ

)
(τ + 1)β

1{τ<∞}

]
. (4.14)

We have the following result.

Theorem 4.1. Let h be a function on R such that x∗ in (4.13) exists. Suppose
x < x∗. The optimal stopping time in (4.14) is given by

τ∗ = inf{t ≥ 0 : Xt = (t+ 1)1/αx∗}.

Furthermore,

V (x) =
h(x∗)

H(β, x∗)
H(β, x).

Proof. By changing variables y = u(t+ 1)−1/α we find that

H(β, (t+ 1)−1/αXt) =
∫ ∞

0

eu(t+1)−1/αXt−uα

uαβ−1 du

= (t+ 1)β
∫ ∞

0

eyXt−yαt−yα

yαβ−1 dy.

Since E[eyXt ] = eψ(y)t, it holds that {At(y)}t≥0 := {eyXt−yαt}t≥0 is a martingale
for any y ≥ 0. It follows that {Mt}t≥0 defined by

Mt =
∫ ∞

0

At(y)e−y
α

yαβ−1 dy

=
H(β, (t+ 1)−1/αXt)
H(β, x)(t+ 1)β

is a mean one martingale under Px. Hence, for any Px stopping time τ we have
that

Ex
[
h((τ + 1)−1/αXτ )

(τ + 1)β
1{τ<∞}

]
= Ex

[
H(β, x)

h((τ + 1)−1/αXτ )
H(β, (τ + 1)−1/αXτ )

Mτ1{τ<∞}

]
≤ H(β, x)

h(x∗)
H(β, x∗)

Ex[Mτ1{τ<∞}]

≤ H(β, x)
h(x∗)

H(β, x∗)
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and thus
τ∗ := inf{t ≥ 0 : (t+ 1)−1/αXt = x∗}

is the optimal stopping time if we can show that

Px(τ∗ <∞) = 1 and Ex[Mτ∗ ] = 1.

By the law of iterated logarithm for spectrally negative stable processes (see The-
orem 5 (ii) in [18]) we deduce that for any x < x∗

Px(τ∗ <∞) = 1.

Also, since H is an increasing function and since (τ∗ + 1)−1/αXτ∗ ≤ x∗ we deduce
that for x < x∗ and any n ∈ N

Mτ∗∧n ≤
H(β, x∗)
H(β, x)

under Px.

We use the optional sampling theorem and bounded convergence to deduce that

1 = lim
n→∞

Ex[Mτ∗∧n]

= Ex[Mτ∗ ].

This completes the proof.

4.4 Optimal stopping problems for a generalised
Ornstein–Uhlenbeck process

In this section we consider optimal stopping problems for generalised Ornstein–
Uhlenbeck processes driven by spectrally negative Lévy processes. When the driving
spectrally negative process is strictly stable, then Remark 4.3 below indicates how
these optimal stopping problems are related to those treated in the previous section.

Denote by Z the spectrally negative Lévy process which drives the generalised
Ornstein–Uhlenbeck process Y defined in (4.15). Let r > 0. In this section we
consider optimal stopping problems of the form

U(y) := sup
τ∈T

Ey[e−rτg(Yτ )1{τ<∞}], (4.15)

where g belongs to a class of functions which is yet to be specified and where now,
with some abuse of notation, Ey denotes the expectation when the process Y starts
from y, i.e. when Y0 = y. Assume that

σ > 0 or a−
∫ 0

−1

zΠ(dz) > γy, (4.16)

since otherwise the generalised Ornstein–Uhlenbeck process never hits points b > y
with probability one. Clearly, (4.16) is satisfied when Z is of unbounded variation.
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To simplify, we also assume (but see Remark 4.4 below) that condition (4.11) holds.
Recall that for u ≥ 0

φ(u) =
1
γ

∫ u

0

ψ(v)
v

dv

and for r > 0

G(r, x) =
∫ ∞

0

eux−φ(u)u−1+r/γ du.

As {e−rtG(r, Yt)}t≥0 is a martingale for any r > 0, we can introduce the locally
equivalent measure Q by

dQy

dPy

∣∣∣∣
Ft

= e−rt
G(r, Yt)
G(r, y)

.

We see that (4.15) can be written as

U(y) = G(r, y) sup
τ∈T

EQ
y

[
g(Yτ )
G(r, Yτ )

1{τ<∞}

]
.

Theorem 4.1. Suppose g is a function on R such that g/G attains its maximum at
y∗ and suppose that {Zt}t≥0 is a spectrally negative Lévy process satisfying (4.11)
and

σ > 0 or a−
∫ 0

−1

zΠ(dz) > γy∗.

Then for any Y0 = y < y∗ the optimal stopping time in (4.15) is given by

σ∗ = σ+
y∗ = inf{t ≥ 0 : Yt = y∗}.

Furthermore,

U(y) =
g(y∗)
G(r, y∗)

G(r, y).

Proof. Let y < y∗. It suffices to prove that σ∗ is almost surely finite under Py and
Qy. The first statement is contained in Theorem 2 in [83]. The proof of the second
statement is similar to the end of the proof of Theorem 4.1.

Remark 4.2. When the driving spectrally negative Lévy process is strictly stable,
we find that

G(r, x) =
∫ ∞

0

eux−φ(u)u−1+r/γ du

=
∫ ∞

0

eux−γ
−1 R u

0 sα−1dsu−1+r/γ du

=
∫ ∞

0

eux−(αγ)−1uα

u−1+r/γ du.

We can, for example, apply Theorem 4.1 to functions g of the form

g(x) =
{

0 for x < k,
b(x) for x ≥ k,
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where k ∈ R and where b is a continuous function such that limx→∞ eaxb(x) = 0
for some a ∈ R.

Remark 4.3. Denote by Y (α) the generalised Ornstein–Uhlenbeck process which
has a spectrally negative strictly stable process X(α) with index α ∈ (1, 2) as its
driving Lévy process with γ = 1/α and Y

(α)
0 = 0. Then e−t/α(X(α)(et − 1)) and

Y
(α)
t are equal in distribution. Indeed, when λ ≥ 0, we both have that

E[eλY
(α)

t ] = exp
(∫ t

0

ψ(λe−γs) ds
)

= exp
(
λα
∫ t

0

e−αγs ds

)
= exp

(
1
αγ

λα(1− e−αγt)
)

= exp
(
λα(1− e−t)

)
and

E
[
exp

(
λe−t/α(X(α)(et − 1))

)]
= exp

(
λα(e−t/α)α(et − 1)

)
= exp

(
λα(1− e−t)

)
.

We deduce that

sup
τ

E

[
X

(α)
τ

τ + 1

]
= sup

τ
E
[
e−τX(α)(eτ − 1)

]
= sup

τ
E
[
e−(1−α−1)τY (α)

τ

]
.

Hence, for a spectrally negative strictly stable process we can also solve (4.1) by
applying Theorem 4.1 to the case g(x) = x and r = (α− 1)/α.

Remark 4.4. In fact, we can state an alternative version of Theorem 4.1 when
we drop condition (4.11). This condition was necessary to ensure finiteness of the
function G (see p. 290 in [83]). Denote by Z(n) the (spectrally negative Lévy)
process obtained from Z by ignoring all its jumps with size in (−∞,−n), i.e. the
jump measure Π(n) of Z(n) is given by Π(n)(dx) = 1{x≥−n}Π(dx). Then Z(n) does
satisfy (4.11). To see this, we first remark that for any t ≥ 0

E[log(1 + (−Z(n)
t )+)] ≤ 1 + E[1 ∨ |Z(n)

t |].

Next, since 1 ∨ |x| is a submultiplicative function and since∫
{|x|≥1}

(1 ∨ |x|) Π(n)(dx) ≤ (1 + n)Π(−n,−1) <∞,

it follows from Theorem 25.3 in [104] that Z(n) satisfies (4.11). We can define a
modification G̃ of G by

G̃(r, x) :=
∫ ∞

0

eux−φ̃(u)u−1+r/γ du,
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where

γφ̃(u) = au+
σ2

4
u2 +

∫ u

0

1
v

∫
(−1,0)

(evx − 1− vx) Π(dx) dv

−
∫

(−∞,−1)

(
log(u) +

∫ 1

−xu

1
y
e−y dy

)
Π(dx). (4.17)

The function G̃ is finite even when (4.11) fails (see again Lemma 1 in [83]) and
G̃(r, x) = kG(r, x) for some constant k > 0 whenever (4.11) does hold (compare
(4.17) with the left hand side of (4.12)). Denote by Y (n) the generalised Ornstein–
Uhlenbeck process driven by Y (n). We then deduce that there exist some constants
kn > 0 such that (with the obvious notation)

e−rtG̃(n)(r, Y (n)
t ) = e−rtknG

(n)(r, Y (n)
t )

and thus {e−rtG̃(n)(r, Y (n)
t )}t≥0 is a martingale for any n ∈ N. Since Π(−∞,−1) <

∞, we have that Πn → Π as n→∞, which in turn implies that limn→∞ G̃(n) = G̃.
Since limn→∞ Y

(n)
t = Yt a.s., we deduce that condition (4.11) can be dropped if we

replace G by G̃ in Theorem 4.1.

4.5 Smooth fit

We continue this chapter with a discussion on smooth fit for optimal stopping
problems of the form

V (x) = sup
τ∈T

Ex[e−qτf(Yτ )], q > 0, (4.18)

where Y is a generalised Ornstein–Uhlenbeck process driven by a real valued Lévy
process and where we assume that f is a C1 function on R with a uniformly
bounded derivative. The property of smooth fit means that the value function V
of an optimal stopping problem with a (smooth) pay-off function f is differentiable
on ∂D and satisfies V ′(x) = f ′(x) for x ∈ ∂D, with D = {x ∈ R : V (x) = f(x)}.
It was conjectured in [1] that for ‘nice enough’ optimal stopping problems for a
Lévy process Z, smooth fit holds at x ∈ ∂D whenever x is regular for intD for Z.
However, regularity is not a sufficient condition to imply smooth fit for diffusions,
see [89] for a counterexample. In that paper it was also shown that a sufficient
condition for smooth fit for a diffusion is that the diffusion leaves a symmetric
interval upwards with probability 1/2 in the limit when the length of this interval
goes to zero.

Since Y is a strong Markov process which is right-continuous and left-continuous
over stopping times, general theory of optimal stopping (see Section 2.2 in [92])
implies that the optimal stopping region D for (4.18) is again given by

D = {x ∈ R : V (x) = f(x)}.

In Theorem 4.5 below we give conditions under which, in this case, smooth fit
holds. For convenience, we assume that D is of the form D = (−∞, y] for some
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y ∈ R. However, by inspection of the proof it can be checked that Theorem 4.5 still
holds when D consists of several closed intervals.
Define for ε > 0

τε := inf{t ≥ 0 : Yt /∈ [y − ε, y + ε]}.

Furthermore,
τ+ := inf{t ≥ 0 : Yt > y + ε}

and
τ− := inf{t ≥ 0 : Yt < y − ε}.

In Theorem 4.5 below we prove that the properties

lim
ε↓0

Py(τ+ < τ−) =
1
2
, (4.19)

lim
ε↓0

Ey[e−qτε ]− 1
ε

= 0, (4.20)

lim
ε↓0

Yτ+ − y

ε
= 1 Py a.s. and (4.21)

lim
ε↓0

Yτ− − y

ε
= −1 Py a.s. (4.22)

are sufficient to imply smooth fit for the optimal stopping problem (4.18). We refer
to Remark 4.6 for a discussion on these conditions. We have the following result.

Theorem 4.5. Suppose f is a C1 function with bounded derivative and suppose
that the generalised Ornstein–Uhlenbeck process Y (as described above) satisfies
conditions (4.19)–(4.22). Then the function V defined in (4.18) is differentiable at
y and V ′(y) = f ′(y).

Proof. Suppose the conditions mentioned in the Theorem are fulfilled. The func-
tions f and V are equal on (−∞, y] and thus

lim
ε↓0

V (y)− V (y − ε)
ε

= f ′(y).

Since V (y) = f(y) and V (x) ≥ f(x) for all x we have that

V (x)− V (y)
x− y

≥ f(x)− f(y)
x− y

for all x > y,

which implies that

lim inf
ε↓0

V (y + ε)− V (y)
x− y

≥ f ′(y). (4.23)

It thus suffices to show that

lim sup
ε↓0

V (y + ε)− V (y)
ε

≤ f ′(y). (4.24)
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The process {e−qtV (Yt)}t≥0 is a supermartingale, hence

Ey[e−qτεV (Yτε)] ≤ V (y)

= V (y)Ey[e−qτ
+
1{τ+<τ−}]

+ f(y)(1− Ey[e−qτ
+
1{τ+<τ−}]). (4.25)

Furthermore, since f = V on (−∞, y], we have

Ey[e−qτεV (Yτε
)] = Ey[e−qτ

+
V (Yτ+)1{τ+<τ−}] + Ey[e−qτ

−
V (Yτ−)1{τ−<τ+}]

= Ey[e−qτ
+
V (Yτ+)1{τ+<τ−}] + Ey[e−qτ

−
f(Yτ−)1{τ−<τ+}]

= V (y + ε)Ey[e−qτ
+
1{τ+<τ−}] + f(y − ε)Ey[e−qτ

−
1{τ−<τ+}]

+ Ey[e−qτ
+
(V (Yτ+)− V (y + ε))1{τ+<τ−}]

+Ey[e−qτ
−
(f(Yτ−)− f(y − ε))1{τ−<τ+}]. (4.26)

From (4.25) and (4.26) we see that

(V (y + ε)− V (y))Ey[e−qτ
+
1{τ+<τ−}]

≤ (f(y)− f(y − ε))(1− Ey[e−qτ
∗
1{τ+<τ−}])

−Ey[e−qτ
+
(V (Yτ+)− V (y + ε))1{τ+<τ−}]

−Ey[e−qτ
−
(f(Yτ−)− f(y − ε))1{τ−<τ+}]

+ f(y − ε)(1− Ey[e−qτε ]). (4.27)

Since the derivative of f is uniformly bounded, f is Lipschitz-continuous and we
denote by K its Lipschitz constant. Of course, the optimal stopping time inf{t ≥ 0 :
Yt ≤ y} of (4.18) depends on the initial value Y0 and we denote by τ∗x the optimal
stopping time when Y0 = x for x ∈ R. Let x, z ∈ R. Then, from the definition of Y
in (4.8) and from the fact that τ∗z is also a stopping time for the process Y under
Pz we find

V (z)− V (x) ≤ E0[e−qτ
∗
z (f(Yτ∗z + ze−γτ

∗
z )− f(Yτ∗z + xe−γτ

∗
z ))]

≤ E0

[
e−qτ

∗
z |f(Yτ∗z + ze−γτ

∗
z )− f(Yτ∗z + xe−γτ

∗
z )|
]

≤ KE0

∣∣∣ze−γτ∗z − xe−γτ
∗
z

∣∣∣
≤ K|z − x|.

Since we can interchange the roles of x and z above, we deduce that

|V (z)− V (x)| ≤ K|x− z| for all x, z ∈ R.

Because f and V are Lipschitz-continuous it follows from (4.21) and (4.22) that

lim
ε↓0

|V (Yτ+)− V (y + ε)|
ε

= 0 Pa a.s.



58 Optimal stopping via measure transformation

and

lim
ε↓0

|f(Yτ−)− f(y − ε)|
ε

= 0 Pa a.s..

As f and V are bounded functions, it follows from dominated convergence that

Ey[e−qτ
+
(V (Yτ+)− V (y + ε))1{τ+<τ−}] + Ey[e−qτ

−
(f(Yτ−)− f(y − ε))1{τ−<τ+}]

goes to zero as ε goes to zero. From (4.19), (4.20) and (4.27) we now deduce that

lim sup
ε↓0

V (y + ε)− V (y)
ε

≤ lim sup
ε↓0

f(y)− f(y − ε)
ε

1− Ey[e−qτ
+
1{τ+<τ−}]

Ey[e−qτ+1{τ+<τ−}]

+ lim sup
ε↓0

f(y − ε)
Ey[e−qτ+1{τ+<τ−}]

1− Ey[e−qτε ]
ε

= f ′(a),

which concludes the proof of Theorem 4.5.

Remark 4.6. In this remark, we indicate why it is vital for the driving Lévy
process to have a Gaussian component for the conditions (4.19)–(4.22) to hold.
The stochastic integral in the definition (4.8) of the generalised Ornstein–Uhlenbeck
process Z can be written as∫ t

0

eγs dZs =
∫ t

0

eγs dBs +
∫ t

0

∫
(−∞,−1]

xeγsN(ds, dx) +
∫ t

0

∫
(−1,0)

xeγs Ñ(ds, dx),

where N and Ñ are the Poisson random measure of large (in absolute size) jumps
and the compensated Poisson random measure of small jumps of Y , respectively.
When t is small, eγs ∼ 1 on [0, t], and hence Y at small times behaves like the un-
derlying Lévy process Z. In the following lemma we show for which Lévy processes
conditions (4.19)–(4.22) hold.

Lemma 4.7. Let L be a Lévy process and, with some abuse of notation, denote by
τε, τ

+ and τ− the exit times for L (just as they were defined for Y ). The following
statements are equivalent:

i) L has a Gaussian component.

ii) L satisfies conditions (4.19)–(4.22).

Proof. Let L be a Lévy process. We first prove that i) implies ii).
Suppose L has a Gaussian component. Theorem 36 (i) in [41] then implies that

lim
t↓0

P(Lt ≥ 0) =
1
2

and thus
lim
ε↓0

Py(τ+ < τ−) = lim
ε↓0

Py(Lτε
≥ 0) =

1
2
,
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which is (4.19).
For (4.20), we recall a result from [99], see Lemma 8 in [41]. Denote by (a, σ,Π)
the Lévy triple of L. Then there exists a constant C > 0 such that for all ε > 0

Ey[τε] ≤
C

k(ε)
,

where k(x) = A(x)/x + U(x)/x2, A(x) = a + D(1) −
∫ 1

x
D(y) dy and U(x) =

σ2 + 2
∫ x
0
yL(y) dy. Here D(x) = N(x) −M(x) and L(x) = N(x) + M(x), where

N(x) = Π((x,∞)) and M(x) = Π((−∞,−x)). The important thing to remark is
that

lim
x↓0

U(x) = σ2 and lim
x↓0

xA(x) = 0.

Indeed, by Fubini’s theorem

lim
x↓0

U(x) = σ2 + 2 lim
x↓0

∫ x

0

y L(y)dy

= σ2 + 2 lim
x↓0

∫ x

0

∫
(y,∞)

yΠ(dz) dy + 2 lim
x↓0

∫ x

0

∫
(−∞,−y)

yΠ(dz) dy

= σ2 + 2 lim
x↓0

∫
(0,∞)

∫ z∧x

0

y dyΠ(dz) + 2 lim
x↓0

∫
(−∞,0)

∫ −z∧x

0

y dyΠ(dz)

= σ2 + lim
x↓0

∫ ∞

0

(z2 ∧ x2) Π(dz) + lim
x↓0

∫
(−∞,0)

(z2 ∧ x2) Π(dz)

= σ2,

where the ultimate equality follows from (4.2) and the dominated convergence
theorem. Similarly, by integration by parts and (4.2) we find

lim
x↓0

xA(x) = − lim
x↓0

x

∫ 1

x

D(y) dy

= lim
x↓0

x2Π((x,∞))− lim
x↓0

x2Π((−∞,−x))

− lim
x↓0

x

∫
(x,1]

yΠ(dy) + lim
x↓0

x

∫
[−1,−x)

yΠ(dy)

= 0.

Since 1− e−x ≤ x for x ≥ 0, it then follows that

lim sup
ε↓0

1− Ey[e−qτε ]
ε

≤ q lim sup
ε↓0

Ey[τε]
ε

≤ qC lim
ε↓0

1
k(ε)ε

= qC lim
ε↓0

ε

εA(ε) + U(ε)
= 0,
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which implies (4.20).
From the remark on p. 175 in [18] it follows that the upward/downward ladder

height process of L has strictly positive/negative drift. We invoke Theorem 42 in
[41] to deduce (4.21) and (4.22).

Next, we show that ii) implies i). Suppose that (4.21) and (4.22) hold. Theorem
42 in [41] then implies that the upward/downward ladder height process of L has a
strictly positive/negative drift, from which it follows that L must have a Gaussian
component.

We conclude this section by remarking that the (method of) proof of Theorem 4.5
can also be applied to more general strong Markov processes with jumps.

4.6 Example of an optimal stopping problem for
which the first hitting time of a certain point
is optimal

In this section, we use the method of measure transformation to show that for a
particular optimal stopping problem for a spectrally negative Lévy process Z, an
optimal stopping time is given by the first time Z hits a certain point. Assume that
Z drifts to +∞, i.e. limt→∞ Zt = ∞. We assume that the jump measure Π of Z
satisfies ∫

{x≤−1}
eλx Π(dx) <∞ for all λ < 0. (4.28)

From this assumption, it follows from Theorem 25.3 in [104] that

ψ(λ) := E[eλX1 ]

is well defined for all λ ∈ R. It is not difficult to check that ψ is a convex function
which is infinitely differentiable on R. Furthermore, since a spectrally negative
Lévy process does not have monotone paths, we have that P(Z1 < 0) > 0 and
P(Z1 > 0) > 0, and thus

lim
x→±∞

ψ(λ) = ∞.

We conclude that ψ has a unique minimum (say at λ = λ∗). Since Z was assumed
to drift to ∞, it holds that ψ′(0) > 0 and thus λ∗ < 0. The function ψ is monotone
decreasing on (−∞, λ∗] and monotone increasing on [λ∗,∞).

Consider the optimal stopping problem (of American put type)

V (x) = sup
τ∈T

Ex[e−ψ(λ∗)τ (K − eXτ )+1{τ<∞}], (4.29)

where K > 0. Note that ψ(λ∗) < 0 and hence there is a trade-off between the
process drifting towards the region with zero pay-off and the increase in value due to
the negative discount factor. Since, for any λ ∈ R, the process {e−ψ(λ)t+λ(Xt−x)}t≥0
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is a martingale with mean 1 under Px, we can introduce the probability measure
P̃x by

dP̃x
dPx

∣∣∣∣∣
Ft

= e−ψ(λ∗)t+λ∗(Xt−x).

We use the monotone convergence theorem to deduce that for any τ ∈ T

Ex[e−ψ(λ∗)τ (K − eXτ )+1{τ<∞}]

= lim
t→∞

Ex[e−ψ(λ∗)τ (K − eXτ )+1{τ<t}]

= lim
t→∞

Ẽx[e−ψ(λ∗)τ+ψ(λ∗)t−λ∗(Xt−x)(K − eXτ )+1{τ<t}]

= eλ
∗x lim

t→∞
Ẽx[Ẽx[e−ψ(λ∗)τ+ψ(λ∗)t−λ∗Xt(K − eXτ )+1{τ<t}|Fτ ]]

= eλ
∗x lim

t→∞
Ẽx[e−ψ(λ∗)τ (K − eXτ )+Ẽx[eψ(λ∗)t−λ∗Xt1{τ<t}|Fτ ]]

= eλ
∗x lim

t→∞
Ẽx[e−ψ(λ∗)τ (K − eXτ )+eψ(λ∗)τ−λ∗Xτ 1{τ<t}]

= eλ
∗xẼx[e−λ

∗Xτ (K − eXτ )+1{τ<∞}].

We find that we can rewrite (4.29) as

V (x) = eλ
∗x sup

τ∈T
Ẽx[e−λ

∗Xτ (K − eXτ )+1{τ<∞}].

The function m(x) := e−λ
∗x(K − ex) attains its unique maximum at

x∗ := logK + log(−λ∗)− log(−λ∗ + 1) < logK

and thus

V (x) ≤ eλ
∗xe−λ

∗x∗(K − ex
∗
). (4.30)

Under P̃, the process {Zt}t≥0 still is a spectrally negative Lévy process and we
denote its Laplace exponent by ψ̃. Since

Ẽ[eλZ1 ] = e−ψ(λ)E[e(λ+λ∗)Z1 ] = eψ(λ+λ∗)−ψ(λ),

it follows that
Ẽ[Z1] = ψ̃′(0) = ψ′(λ∗) = 0.

For x ∈ R, we denote the first hitting time of x by Tx, i.e.

Tx = inf{t ≥ 0 : Zt = x}.

Since an oscillating, spectrally one-sided process hits any point in an almost surely
finite time, we find that P̃(Tx) <∞ for all x ∈ R. We deduce that Tx∗ is a stopping
time at which the upper bound (4.30) is attained. We have shown the following
result.
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Theorem 4.8. Suppose Z is a spectrally negative Lévy process drifting to +∞ of
which the jump measure satisfies condition (4.28). Then an optimal stopping time
in (4.29) is given by

Tx∗ = inf{t ≥ 0 : Zt = x∗},

where x∗ = logK + log(−λ∗) − log(−λ∗ + 1) and ψ attains its minimum at λ∗.
Furthermore,

V (x) =
K

1− λ∗
eλ

∗(x−x∗).

Remark 4.9. The assumption that Z has no positive jumps is not vital here. For
a process with two-sided jumps, we can replace condition (4.28) by∫

{|x|≥1}
eλx Π(dx) <∞ for all λ ∈ R.

A second condition Z needs to satisfy is that, under P̃, it hits any point in an
almost surely finite time.
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Chapter 5

McKean stochastic game for
spectrally negative Lévy
processes∗

We consider the stochastic game analogue of McKean’s optimal stop-
ping problem when the underlying source of randomness is a spectrally
negative Lévy process. Compared with the solution for linear Brownian
motion given in [61], one finds two new phenomena. Firstly, the break-
down of smooth fit and secondly, the stopping domain for one of the
players ‘thickens’ from a singleton to an interval, at least in the case
that there is no Gaussian component.

5.1 Introduction

Let X = {Xt : t ≥ 0} be a Lévy process defined on a filtered probability space
(Ω,F ,F,P), where {Ft : t ≥ 0} is the filtration generated by X satisfying the usual
conditions. For x ∈ R denote by Px the law of X when it is started at x and write
simply P0 = P. Accordingly, we shall write Ex and E for the associated expectation
operators. We shall assume throughout that X is spectrally negative, meaning here
that it has no positive jumps and that it is not the negative of a subordinator. It is
well known that the latter implies that the Laplace exponent ψ(θ) := log E(eθX1)
is finite for θ ≥ 0 and that ψ is a convex function which is infinitely differentiable
on (0,∞). The Laplace exponent of X is of the form

ψ(λ) = aλ+
σ2

2
λ2 +

∫
(−∞,0)

(eλx − 1− λx1{x>−1}) Π(dx), for λ ≥ 0 (5.1)

∗Based on joint work [14] with A. E. Kyprianou.
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where a ∈ R, σ2 ≥ 0 and where the jump measure Π of X has zero mass on [0,∞)
as we have assumed that X is spectrally negative and satisfies∫

(−∞,0)

(1 ∧ x2)Π(dx) <∞. (5.2)

Whenever σ2 > 0, we call it the Gaussian component of X.
Denote by T0,∞ the set of all [0,∞]-valued stopping times with respect to F.

We are interested in establishing a solution to a special class of stochastic games
which are driven by spectrally negative Lévy processes. Specifically, for a given
K > 0, δ > 0 and r ≥ 0 , we study the stochastic game consisting of two players
and expected pay-off

Ex[e−rτ (K − eXτ )+1{τ≤σ} + e−rσ((K − eXσ )+ + δ)1{σ<τ}], (5.3)

which the max-player maximises over τ ∈ T0,∞ and the min-player minimises over
σ ∈ T0,∞. The order in which this optimisation takes place could be of importance,
as it may occur that

sup
τ∈T0,∞

inf
σ∈T0,∞

Ex[e−rτ (K − eXτ )+1{τ≤σ} + e−rσ((K − eXσ )+ + δ)1{σ<τ}] (5.4)

is strictly smaller than

inf
σ∈T0,∞

sup
τ∈T0,∞

Ex[e−rτ (K − eXτ )+1{τ≤σ} + e−rσ((K − eXσ )+ + δ)1{σ<τ}]. (5.5)

However, we prove (under an assumption on r) the existence of a saddle point.
That is, we show that a pair of stopping times (τ∗, σ∗) exists such that

Ex[e−rτ (K − eXτ )+1{τ≤σ∗} + e−rσ
∗
((K − eXσ∗ )+ + δ)1{σ∗<τ}]

≤ Ex[e−rτ
∗
(K − eXτ∗ )+1{τ∗≤σ∗} + e−rσ

∗
((K − eXσ∗ )+ + δ)1{σ∗<τ∗}]

≤ Ex[e−rτ
∗
(K − eXτ∗ )+1{τ∗≤σ} + e−rσ((K − eXσ )+ + δ)1{σ<τ∗}]

for all τ, σ ∈ T0,∞ and for all x ∈ R.
When such a pair of stopping times exist, we say that it solves the stochastic

game (5.3) and that these stopping times are optimal. Existence of a saddle point
implies that (5.4) equals (5.5) and we denote this common value by V, i.e.

V (x) = Ex[e−rτ
∗
(K − eXτ∗ )+1{τ∗≤σ∗} + e−rσ

∗
((K − eXσ∗ )+ + δ)1{σ∗<τ∗}]

for x ∈ R.
We shall assume (unless otherwise stated) that the parameter r satisfies

0 ≤ ψ(1) ≤ r and r > 0. (5.6)

Remark 5.1. The assumption that r > 0 and the fact that the functions (K−ex)+
and (K − ex)+ + δ are bounded together imply that it does not matter which pay-
off we assign to the event {σ = τ = ∞}. However, in the case r = 0, this is an
important issue, for which we refer to Section 5.10 at the end of this chapter.
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When ψ(1) = r > 0, the stochastic game with pay-off given by (5.3) can be
understood to characterise the so-called game option under the risk neutral measure
in a simple market consisting of a risky asset whose value is given by {eXt : t ≥ 0}
and a riskless asset which grows at rate r (cf. [59]). The latter game option is an
American-type contract with infinite horizon which offers the holder the right but
not the obligation to claim (K − eXτ )+ at any stopping time τ ∈ T0,∞, but in
addition it also gives the writer the right but not the obligation to force a payment
of (K − eXσ )+ + δ at any stopping time σ ∈ T0,∞. However, in this thesis we do
not discuss the financial consequences of the mathematical object (5.3).

The stochastic game (5.3) is closely related to the McKean optimal stopping
problem

U(x) = sup
τ∈T0,∞

Ex[e−rτ (K − eXτ )+], (5.7)

which, when r = ψ(1), characterises the value of a perpetual American put option
(cf. [77]). Indeed, should it be the case that the stochastic saddle point for (5.3) is
achieved when σ = ∞, then U = V .

Thanks to a plethora of research papers on the latter topic it is known that an
optimal stopping strategy for (5.7) is then given by

τ∗ = inf{t > 0 : Xt < log
(
KE[eXer ]

)
}

where Xt = infs≤tXs and er is an exponentially distributed random variable with
parameter r which is independent of X. We refer to [31] and [81] for the case that
X is spectrally negative and the case that X is a general Lévy process respectively.
The stochastic game (5.3) may therefore be thought of as a natural extension of the
McKean optimal stopping problem and we henceforth refer to this as the McKean
stochastic game. The McKean stochastic game for a Brownian motion was studied
in [61].

The finite horizon version of (5.3) (i.e. the game with the same pay-off but for
which both players choose stopping times valued in [0, T ] for some fixed T > 0)
was solved in [64] for a Brownian motion by decomposing into two finite horizon
optimal stopping problems.

5.2 The solution to the McKean stochastic game

Below in Theorems 5.4, 5.5 and 5.6, we give a qualitative and quantitative exposi-
tion of the solution to (5.3) under the assumption (5.6). Before doing so, we need
to give a brief reminder of a class of special functions which appear commonly
in connection with the study of spectrally negative Lévy processes and indeed in
connection with the description below of the McKean stochastic game. For each
q ≥ 0, we introduce a function W (q) : R → [0,∞) which satisfies for all x ∈ R and
a ≥ 0

Ex[e−qτ
+
a 1{τ+

a <τ
−
0 }

] =
W (q)(x ∧ a)
W (q)(a)

, (5.8)

where
τ+
a := inf{t > 0 : Xt > a} and τ−0 = inf{t > 0 : Xt < 0},



66 McKean stochastic game

cf. Chapter 8 of [63]. In particular, it is evident that W (q)(x) = 0 for all x < 0. Note
that a function satisfying equation (5.8) multiplied by a constant still satisfies that
equation. Furthermore, it is known that for q ≥ 0, W (q)(x) is almost everywhere
differentiable on (0,∞), right-continuous at zero and, by specifying the appropriate
multiplicative constant, ∫ ∞

0

e−βxW (q)(x) dx =
1

ψ(β)− q

for all β > Φ(q), where Φ(q) is the largest root of the equation ψ(θ) = q (of
which there are at most two). For convenience we shall write W instead of W (0).
Associated to the functions W (q) are the functions Z(q) : R → [1,∞) defined by

Z(q)(x) = 1 + q

∫ x

0

W (q)(y) dy

for q ≥ 0. Together, the functions W (q) and Z(q) are collectively known as scale
functions and predominantly appear in almost all fluctuation identities for spec-
trally negative Lévy processes. For example, it is also known that for all x ∈ R and
a, q ≥ 0,

Ex[e−qτ
−
0 1{τ+

a >τ
−
0 }

] = Z(q)(x ∧ a)− Z(q)(a)
W (q)(a)

W (q)(x ∧ a) (5.9)

and
Ex[e−qτ

−
0 1{τ−0 <∞}] = Z(q)(x)− q

Φ(q)
W (q)(x), (5.10)

where q/Φ(q) is to be understood in the limiting sense ψ′(0) ∨ 0 when q = 0.
If we assume that

the jump measure X has no atoms when X has bounded variation

then it is known from existing literature ([32; 96]) that W (q) ∈ C1(0,∞) and hence
Z(q) ∈ C2(0,∞). Further, if X has a Gaussian component, they both belong to
C∞(0,∞). For computational convenience we shall proceed with the above assump-
tion on X. It is also known that if X has bounded variation with drift† d, then
W (q)(0) = 1/d and otherwise W (q)(0) = 0. Further,

W (q)′(0+) =


2
σ2 if σ > 0,
Π(−∞,0)+q

d2 if X is of bounded variation with Π(−∞, 0) <∞,
∞ otherwise.

(5.11)
For completeness, we include the proof.

Lemma 5.2. Let q ≥ 0. The function x→W (q)(x) is continuous on R if and only
if X is of unbounded variation. Also, when X is of bounded variation, W (q)(0) =
1/d. Finally, W (q)′(0+) is given by (5.11).

†Here and in the sequel we take the canonical representation of a bounded variation Lévy
process Xt = dt − St for t ≥ 0 where {St : t ≥ 0} is a driftless subordinator and d is a strictly
positive constant which is referred to as the drift.
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Proof. From a Tauberian theorem we know that

W (q)(0) = lim
λ→∞

λ

ψ(λ)− q
.

The process {Xt}t≥0 is of unbounded variation when

σ > 0 or
∫

(−1,0)

|x|Π(dx) = ∞,

in which case W (q)(0) = 0 follows directly from (5.1). When X is of bounded
variation with drift d, the Laplace exponent of X can be written as

ψ(λ) = λ

(
d−

∫ ∞

0

e−λxΠ(−∞,−x) dx
)

and now the value ofW (q)(0) follows. Similarly, it follows from a Tauberian theorem
and integration by parts that

W (q)′(0+) = lim
λ→∞

λ

∫
(0,∞)

e−λxW (q) (dx)

= lim
λ→∞

λ

(∫
[0,∞)

e−λxW (q) (dx)−W (q)(0)

)

= lim
λ→∞

λ

(∫ ∞

0

λe−λxW (q)(x) dx−W (q)(0)
)

= lim
λ→∞

(
λ2

ψ(λ)− q
− λW (q)(0)

)
When X is of unbounded variation, we have just shown that W (q)(0) = 0 and
expression (5.11) now follows from Proposition 2 in Chapter 1 in [18]. When X is
of bounded variation, we find that

W (q)′(0+) = lim
λ→∞

λ2
∫
(0,∞)

e−λxΠ(−∞,−x) dx+ qλ

dλ(d−
∫
(0,∞)

e−λxΠ(−∞,−x) dx)− qd

= lim
λ→∞

λ
∫
(0,∞)

e−λxΠ(−∞,−x) dx+ q

d2 −
∫
(0,∞)

e−λxΠ(−∞,−x) dx

=
Π(−∞, 0) + q

d2
,

which implies (5.11).

Consider the exponential change of measure

dP1

dP

∣∣∣∣
Ft

= eXt−ψ(1)t. (5.12)
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Under P1, X is still a spectrally negative Lévy process and we mark its Laplace
exponent and scale functions with the subscript 1. It holds that

ψ1(λ) = log
(
E1[eλX1 ]

)
= log

(
e−ψ(1)E[e(λ+1)X1 ]

)
= ψ(1 + λ)− ψ(1), (5.13)

for λ ≥ 0 and, by taking Laplace transforms, we find for q ≥ 0

W
(q)
1 (x) = e−xW (q+ψ(1))(x) for all x ∈ R. (5.14)

Indeed, for λ ≥ 0 such that ψ1(λ > q),∫ ∞

0

e−λxe−xW (q+ψ(1))(x) dx =
1

ψ(1 + λ)− q − ψ(1)
=

1
ψ1(λ)− q

.

The reader is otherwise referred to Chapter VII of [18] or Chapter 8 of [63] for a
general overview of scale functions of spectrally negative Lévy processes.

For comparison with the main results in Theorems 5.4, 5.5 and 5.6 below, we
give the solution to the McKean optimal stopping problem as it appears in [31]
and [81].

Theorem 5.3. For the McKean optimal stopping problem under (5.6) we have

U(x) = KZ(r)(x− k∗)− exZ
(r−ψ(1))
1 (x− k∗), (5.15)

where

ek
∗

= K
r

Φ(r)
Φ(r)− 1
r − ψ(1)

. (5.16)

This is to be understood in the limiting sense when r = ψ(1), i.e.

ek
∗

= Kψ(1)/ψ′(1) when r = ψ(1).

We now return to the solution of the McKean stochastic game and present our
main results in terms of scale functions.

Theorem 5.4. Consider the McKean stochastic game under the assumption (5.6).

(i) If δ ≥ U(logK), then V = U.

(ii) If δ < U(logK) a stochastic saddle point to (5.3) is given by the pair

τ∗ = inf{t > 0 : Xt < x∗} and σ∗ = inf{t > 0 : Xt ∈ [logK, y∗]},

where x∗ uniquely solves

Z(r)(logK − x)− Z
(r−ψ(1))
1 (logK − x) =

δ

K
,

x∗ > k∗ (the optimal level of the corresponding McKean optimal stopping
problem in Theorem 5.3) and y∗ ∈ [logK, z∗], where z∗ is the unique solution
to

Z(r)(z − logK)− r

Φ(r)
W (r)(z − logK) =

δ

K
. (5.17)
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The next theorem gives partial information on the value of y∗. Unfortunately, we
are unable to give a complete characterisation of y∗.

Theorem 5.5. Suppose in Theorem 5.4 that δ < U(logK). If X has no Gaussian
component, then y∗ > logK and necessarily Π(−∞, logK − y∗) > 0, where Π is
the jump measure of X.

The question whether y∗ = logK is more difficult to answer when the Gaussian
component of X is positive and we refer to Section 5.8 for a discussion on this case.

For practical purposes, one would also like to be able to characterise y∗ as the
unique solution to some functional equation. Experience in the theory of optimal
stopping shows that this often follows as a consequence of, for example, a smooth
pasting condition. In this case, despite the fact that we are able to make decisive
statements about pasting of the value function onto the upper and lower gain
functions (see Theorem 5.6 below), the desired characterisation of y∗ does not
seem to be available.

Our last main result gives information concerning the analytical shape of the
value function V . Define the function j : R :→ R by

j(x) = KZ(r)(x− x∗)− exZ
(r−ψ(1))
1 (x− x∗) + αeΦ(r)(logK−x∗)W (r)(x− logK),

(5.18)
where

α = ex
∗ r − ψ(1)
Φ(r)− 1

− rK

Φ(r)
,

which is to be understood in the limiting sense when r = ψ(1), i.e.

α = ex
∗
ψ′(1)−Kψ(1) when r = ψ(1).

Theorem 5.6. For the McKean stochastic game under the assumption (5.6), when
δ < U(logK), V is continuous everywhere. In particular

V (x) = KZ(r)(x− x∗)− exZ
(r−ψ(1))
1 (x− x∗) (5.19)

for x ∈ (−∞, logK] and V (x) = δ for x ∈ [logK, y∗]. Further, if y∗ = logK, then
for any x ∈ R

V (x) = j(x).

Moreover,

(i) if X has unbounded variation, then there is smooth pasting at x∗. Further,
there is smooth pasting at y∗ if and only if y∗ > logK,

(ii) if X has bounded variation, then there is no smooth pasting at x∗ and no
smooth pasting at y∗.

Note that it is in fact possible to show that V is everywhere differentiable
except possibly at x∗, y∗ and logK. This is clear from the expression for V (x) on
x ∈ (−∞, y∗). However, when y∗ > logK, for the region V (x) ∈ (y∗,∞) things are
less clear without an expression for V . Nonetheless, in this case it is possible to use
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the compensation formula with the help of potential densities (which themselves
can be written in terms of the scale functions) to write down a formula for

V (x) = Ex
[
e−rτ

−
x∗ (K − e

X
τ
−
x∗ )1{τ−

x∗<τ[log K,y∗]} + δe−rτ[log K,y∗]1{τ[log K,y∗]<τ
−
x∗}

]
,

(5.20)
where τ[logK,y∗] = inf{t > 0 : Xt ∈ [logK, y∗]}. However, this formula is rather
lengthy and, simply for the sake of brevity, we refrain from including it here. It
may be possible to use this formula and the pasting conditions to find y∗. If we
write V (x, y∗) to show the dependence in (5.20) on the choice of y∗, then it holds
that y∗ satisfies

V (y∗, y∗+) = δ when X is of bounded variation

and
∂

∂x
V (y∗, y∗+) = 0 when X is of unbounded variation.

However, it seems difficult to show that a solution to these equations is unique.
There are a number of remarks which are worth making about the above three

theorems.
Theorem 5.4 (i) follows as a consequence of the same reasoning that one sees

for the case that X is a linear Brownian motion in [61]. That is to say, when
δ ≥ U(logK) it follows that U(x) ≤ (K − ex)+ + δ showing that the min-player
would not be behaving optimally by stopping in a finite time. The proof of this
fact is virtually identical to the proof given in [61] with the help of the Verification
Lemma in the next section and so we leave this part of the proof of Theorem 5.4 (i)
as an exercise.

We shall henceforth assume that U(logK) < δ.

For the McKean stochastic game when X is a linear Brownian motion and
r = ψ(1) > 0, it was shown in [61] that when δ is small enough, the optimal
stopping strategies for the max-player and min-player are respectively given by

τ∗ = inf{t > 0 : Xt < x∗} and σ∗ = inf{t > 0 : Xt = logK},

for some x∗ < logK. Also it was shown there that the solution is convex and that
there is smooth pasting at x∗. For spectrally negative Lévy processes in general,
Theorems 5.4–5.6 show that considerably different behaviour occurs.

Firstly, as was already found in numerous papers concerning optimal stopping
problems driven by spectrally one sided Lévy processes (cf. [1], [5] and [31]), smooth
pasting breaks down when the Lévy process is of bounded variation. Secondly and
more interestingly, the different form of the stopping region for the min-player
can be understood intuitively by the following reasoning. In the linear Brownian
motion case there is no possibility for the process started at x > logK to enter
(−∞, logK] without hitting {logK}. The positive discount rate r and the constant
pay-off on [logK,∞) imply that in this case it does not make sense for the min-
player to stop anywhere on (logK,∞). However, when X has negative jumps there
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is a positive probability to jump below points. When X starts at a value which is
slightly greater than logK, there is the danger (for the min-player) that X jumps
to a large negative value, which could in principle induce a big pay-off to the max-
player. The trade-off between this fact and the positive discount rate r when there
is no Gaussian component results in the interval hitting strategy for the min-player
indicated by Theorem 5.5. Also, note in this instance that Π(−∞, logK − y∗) > 0
implies that whenX0 > y∗ the max-player may still jump over the stopping interval
of the min-player and possibly stop the game by entering (−∞, x∗). This is also a
new feature of the optimal strategies compared with the linear Brownian motion
case as in the latter context, when X0 > y∗, the max-player will never exercise
before the min-player.

This chapter continues with the following structure. In the next section, we present
a set of sufficient conditions to check for a solution to the McKean stochastic game.
Following that, in Sections 5.4 and 5.5 we present a description of the candidate
solution in the regions x ≤ logK and x > logK. To some extent, the solution
may be decoupled into these two regions thanks to the spectral negativity of the
underlying process. In Section 5.6 we show that the previously described candidate
solution fulfils the sufficient conditions outlined in Section 5.3 thus proving The-
orem 5.4. Finally, in Sections 5.7 and 5.9 we give the proofs of Theorems 5.5 and
5.6, respectively.

5.3 Verification technique

To keep calculations brief and in order to avoid repetition of ideas, it is worth
stating upfront the fundamental technique which leads to establishing the existence
and hence characterisation of a solution. This comes in the form of the following
Verification Lemma.

Lemma 5.7 (Verification Lemma). Consider the stochastic game (5.3) with
r > 0. Suppose that τ∗ ∈ T0,∞ and σ∗ ∈ T0,∞ are candidate optimal strategies for
the stochastic game (5.3) and let

V ∗(x) = Ex[e−rτ
∗
(K − eXτ∗ )+1{τ∗≤σ∗} + e−rσ

∗
((K − eXσ∗ )+ + δ)1{σ∗<τ∗}].

Then the triple (V ∗, τ∗, σ∗) is a solution to (5.3) if

(i) V ∗(x) ≥ (K − ex)+,

(ii) V ∗(x) ≤ (K − ex)+ + δ,

(iii) V ∗(Xτ∗) = (K − eXτ∗ )+ almost surely on {τ∗ <∞},

(iv) V ∗(Xσ∗) = (K − eXσ∗ )+ + δ almost surely on {σ∗ <∞},

(v) the process {e−r(t∧τ∗)V ∗(Xt∧τ∗) : t ≥ 0} is a right-continuous submartingale
and

(vi) the process {e−r(t∧σ∗)V ∗(Xt∧σ∗) : t ≥ 0} is a right-continuous supermartin-
gale.
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Proof. Let r > 0. For convenience, write G(x) = (K− ex)+, H(x) = (K− ex)+ + δ
and

Θr
τ,σ = e−rτG(Xτ )1{τ≤σ} + e−rσH(Xσ)1{σ<τ}.

We remark again that the assumption r > 0 implies that we do not have to worry
about having to assign a value G(X∞) to the event {τ = σ = ∞}. From the
supermartingale property (vi), Doob’s optional stopping theorem, (iv) and (i) we
know that for any τ ∈ T0,∞ and t ≥ 0,

V ∗(x) ≥ Ex[e−r(t∧τ∧σ
∗)V ∗(Xt∧τ∧σ∗)]

≥ Ex[e−r(t∧τ)G(Xt∧τ )1{σ∗≥t∧τ} + e−rσ
∗
H(Xσ∗)1{σ∗<t∧τ}].

It follows from Fatou’s lemma by taking t ↑ ∞ that

V ∗(x) ≥ Ex[Θr
τ,σ∗ ].

Also, using (v), Doob’s optional stopping theorem, (iii) and (ii), we have for any
σ ∈ T0,∞ and t ≥ 0,

V ∗(x) ≤ Ex[e−r(t∧τ
∗∧σ)V ∗(Xt∧τ∗∧σ)]

= Ex[e−rτ
∗
V ∗(Xτ∗)1{τ∗≤t∧σ} + e−r(t∧σ)V ∗(Xt∧σ)1{τ∗>t∧σ}]

≤ Ex[e−rτ
∗
G(Xτ∗)1{τ∗≤t∧σ} + e−r(t∧σ)H(Xt∧σ)1{τ∗>t∧σ}].

Taking limits as t ↑ ∞, applying the dominated convergence theorem, taking note
of the non-negativity of G and of the fact that Θr

∞,∞ = 0, we have

V ∗(x) ≤ Ex[Θr
τ∗,σ],

from which it follows that (τ∗, σ∗) is a saddle point.

5.4 Candidature on x ≤ log K

Here, we describe analytically a proposed solution when X0 ∈ (−∞, logK].

Lemma 5.8. For x ∈ (−∞, logK] define

w(x) = KZ(r)(x− x∗)− exZ
(r−ψ(1))
1 (x− x∗), (5.21)

where x∗ > k∗ uniquely solves

Z(r)(logK − x)− Z
(r−ψ(1))
1 (logK − x) =

δ

K
. (5.22)

Then w has the following properties on (−∞, logK],

(i) w(x) = Ex[e−rτ
+
log K δ1{τ+

log K<τ
−
x∗}

+ e−rτ
−
x∗ (K − e

X
τ
−
x∗ )1{τ−

x∗<τ
+
log K}

],

(ii) w(x) ≥ (K − ex)+,
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(iii) w(x) ≤ (K − ex)+ + δ,

(iv) the derivative at x∗ is computed as follows:

w′(x∗+) = −ex
∗

if X has unbounded variation

and

w′(x∗) = −ex
∗

+
Kr − (r − ψ(1))ex

∗

d
if X has bounded variation,

where d is the drift term,

(v) w is decreasing,

(vi) w(Xτ+
log K

) = δ on {τ+
logK <∞, X0 ≤ logK},

(vii) w(Xτ−
x∗

) = (K − e
X

τ
−
x∗ ) on {τ−x∗ <∞},

(viii) {e−r(t∧τ
−
x∗∧τ

+
log K)w(Xt∧τ−

x∗∧τ
+
log K

) : t ≥ 0} is a Px-martingale for x ≤ logK
and

(ix) {e−r(t∧τ
−
x∗∧τ

+
log K)w(Xt∧τ+

log K
) : t ≥ 0} is a Px-supermartingale for x ≤ logK.

Proof. First, note that the left hand side of (5.22) is equal to

h(x) :=
∫ logK−x

0

(ψ(1)e−y − r(e−y − 1))W (r)(y) dy

which is a decreasing continuous function in x. Further, h(logK) = 0 and so we
need to show that h(−∞) > δ in order to deduce that x∗ is uniquely defined. From
Theorem 5.3 we have that U(logK) = Kh(k∗) (see (5.16) for the definition of k∗).
Hence, by monotonicity and the assumption on the size of δ,

h(−∞) ≥ h(k∗) = U(logK)/K > δ/K.

It also follows immediately from this observation that x∗ > k∗.
Next, denote by w(x) the right hand side of (5.21). The remainder of the proof

consists of verifying that w fulfils conditions (i) to (ix) of Lemma 5.8. We label the
proof in parts accordingly.

(i) Using (5.8) and (5.9) and the exponential change of measure (5.12), we find
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that for x ≤ logK

Ex[e−rτ
+
log K δ1{τ+

log K<τ
−
x∗}

+ e−rτ
−
x∗ (K − e

X
τ
−
x∗ )1{τ−

x∗<τ
+
log K}

]

= δ
W (r)(x− x∗)

W (r)(logK − x∗)
+K

(
Z(r)(x− x∗)− W (r)(x− x∗)Z(r)(logK − x∗)

W (r)(logK − x∗)

)
−exE1

x[e
−(r−ψ(1))τ−

x∗1{τ−
x∗<τlog K,y∗}]

= δ
W (r)(x− x∗)

W (r)(logK − x∗)
+K

(
Z(r)(x− x∗)− W (r)(x− x∗)Z(r)(logK − x∗)

W (r)(logK − x∗)

)
−ex

(
Z

(r−ψ(1))
1 (x− x∗)− W

(r−ψ(1))
1 (x− x∗)Z(r−ψ(1))

1 (logK − x∗)

W
(r−ψ(1))
1 (logK − x∗)

)

=
W (r)(x− x∗)

W (r)(logK − x∗)

(
δ −KZ(r)(logK − x∗) +KZ

(r−ψ(1))
1 (logK − x∗)

)
+KZ(r)(x− x∗)− exZ

(r−ψ(1))
1 (x− x∗)

= w(x),

where the last equality follows from the definition of x∗ in (5.22).

(ii) By definition

w(x) = K − ex +
∫ x−x∗

0

r(K − ex−y)W (r)(y) + ψ(1)ex−yW (r)(y) dy.

For any x ≤ logK, the integrand on the right hand side above is positive and hence
w(x) ≥ K − ex for x ≤ logK.

(iii) We also see that

w(x)− (K − ex) =
∫ x−x∗

0

(rK + ex−y(ψ(1)− r))W (r)(y) dy

=
∫ x

x∗
(r(K − ez) + ψ(1)ez)W (r)(x− z) dz

is increasing in x on [x∗, logK], which implies that for any x ≤ logK

w(x) ≤ K − ex +
∫ logK−x∗

0

KrW (r)(y)− cKW
(r−ψ(1))
1 (y) dy = K − ex + δ,

where c = r − ψ(1) ≥ 0.

(iv) For any x ∈ (−∞, logK)\{x∗}, the derivative of w is given by

w′(x) = −ex +KrW (r)(x− x∗)− cex
∗
W (r)(x− x∗)− cex

∫ x−x∗

0

e−yW (r)(y) dy.

Taking limits as x ↓ x∗, the stated result follows from Lemma 5.2.
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(v) Taking the expression for the value function, U , of the McKean optimal
stopping problem (5.7) recall that x∗ > k∗ where k∗ is the optimal level for (5.7).
It is also known that U is convex and decreasing in x. Hence, for any x > k∗

U ′(x) = KrW (r)(x− k∗)− exZ
(r−ψ(1))
1 (x− k∗)− cexW

(r−ψ(1))
1 (x− k∗) < 0.

Since we have that x∗ > k∗ we deduce that for x > x∗

w′(x) = KrW (r)(x− x∗)− exZ
(r−ψ(1))
1 (x− x∗)− cexW

(r−ψ(1))
1 (x− x∗)

< KrW (r)(x− x∗)− ex+k
∗−x∗Z

(r−ψ(1))
1 (x− x∗)

− cex+k
∗−x∗W

(r−ψ(1))
1 (x− x∗)

= U ′(x+ k∗ − x∗) < 0.

(vi) and (vii) These two conditions follow by inspection using (5.22) in the case
of (vi) and the fact that Z(q)(x) = 1 for all x ≤ 0 in the case of (vii).

(viii) From (i), (vi) and (vii) we deduce from the strong Markov property that
for X0 = x ≤ logK we have that

Ex[e−rτ
+
log K δ1{τ+

log K<τ
−
x∗}

+ e−rτ
−
x∗ (K − e

X
τ
−
x∗ )1{τ−

x∗<τ
+
log K}

|Ft∧τ−
x∗∧τ

+
log K

]

= e−r(t∧τ
−
x∗∧τ

+
log K)w(Xt∧τ−

x∗∧τ
+
log K

)

and now by the tower property of conditional expectation we observe the required
martingale property.

(ix) Noting that w is a C2(x∗, logK) function, a standard computation involving
Itô’s formula shows that (Γ− r)w = 0 on (x∗, logK) thanks to the just established
martingale property. For x < x∗ we have that

(Γ− r)w(x) = (Γ− r)(K − ex) = (−r − ψ(1))ex < 0,

where Γ is the infinitesimal generator of X. Despite the conclusion of part (iv) for
the case of bounded variation, the function w is smooth enough to allow one to use
the change of variable formula in the case of bounded variation, and the classical Itô
formula in the case of unbounded variation (cf. [70] and [98]) to show that, in light
of the above inequality, {e−r(t∧τ

+
log K)w(Xt∧τ+

log K
) : t ≥ 0} is a Px-supermartingale

for x ≤ logK.

5.5 Candidature on x > log K

In this section we give an analytical and probabilistic description of a proposed
solution when X0 > logK.

Lemma 5.9. Define the function v : R → [0,K] by

v(x) = inf
σ∈T0,∞

Ex[e−r(σ∧τ
−
log K)wδ(Xτ−log K∧σ

)]
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where wδ(x) = w(x) given in (5.21) for x ≤ logK and wδ(x) = δ for x > logK.
Then v has the following properties,

(i) v(x) = w(x) for x < logK,

(ii) v(x) ≥ (K − ex)+ for x ∈ R,

(iii) v(x) ≤ (K − ex)+ + δ for x ∈ R,

(iv) v(x) is non-increasing,

(v) there exists a y∗ ≥ logK such that

v(x) = Ex[e−rτ
−
y∗wδ(Xτ−

y∗
)],

(vi) if y∗ = logK, then X has a Gaussian component and for x ∈ R

v(x) = j(x), (5.23)

where j was defined in (5.18),

(vii) y∗ ≤ z∗, where z∗ was defined as the unique solution of (5.17),

(viii) v(Xτ−
x∗

) = (K − e
X

τ
−
x∗ ) on {τ−x∗ = τ−y∗ <∞, X0 ≤ logK},

(ix) v(Xτ−
y∗

) = δ on {τ[logK,y∗] = τ−y∗ <∞} where

τ[logK,y∗] = inf{t > 0 : Xt ∈ [logK, y∗]},

(x) {e−r(t∧τ
−
y∗ )v(Xt∧τ−

y∗
) : t ≥ 0} is a Px-martingale for x > logK,

(xi) {e−r(t∧τ
−
log K)v(Xt∧τ−log K

) : t ≥ 0} is a Px-submartingale for x > logK.

Proof. (i) Note that when x < logK we have Px(τ−logK = 0) = 1 so that v(x) =
w(x).

(ii) and (iii) These are trivial to verify in light of (i).

(iv) Denote X∗
t = Xt∧τ−log K

for all t ≥ 0. Since wδ is a continuous function and
since X∗ is quasi-left continuous we can deduce that v is upper semi-continuous.
Furthermore, wδ is bounded and continuous so we can apply a variant of Corollary
1.2.7 in [92]† to conclude that there exists an optimal stopping time, say σ∗, which
without loss of generality we assume to be not greater than τ−logK . By considering

the stopping time σ = ∞, we see by its definition that v(x) < KEx[e−rτ
−
log K ] and

hence limx↑∞ v(x) = 0. From the latter we deduce that the set defined by

C := {x > logK : v(x) < δ}
†See in particular their remarks at the end of section 1.1.1 and at the end of sections 2.1.1 and

2.1.2.
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is non-empty. The upper semi-continuity of v implies that this set is open. Corol-
lary 1.2.7 of [92] also implies that σ∗ is the first entry into the set R\C.

In what follows, if ζ is a stopping time for X we shall write ζ(x) to show the
dependence of the stopping time on the value of X0 = x. For x > y > logK we
have that τ−logK(x) ≥ τ−logK(y) and thus, also appealing to the definition of v as an
infimum,

v(x)− v(y) ≤ E
[
e−r(τ

−
log K(x)∧σ∗(y))wδ(Xτ−log K(x)∧σ∗(y) + x)

−e−r(τ
−
log K(y)∧σ∗(y))wδ(Xτ−log K(y)∧σ∗(y) + y)

]
≤ E

[
e−r(τ

−
log K(y)∧σ∗(y))(wδ(Xσ∗(y) + x)− wδ(Xσ∗(y) + y))

]
(5.24)

≤ 0,

where in the second inequality we have used that σ∗(y) ≤ τ−logK(y) ≤ τ−logK(x) and
from Lemma 5.8 (v), wδ is a decreasing function.

(v) The fact that v is non-increasing and that C, defined above, is open implies
that there exists a y∗ ≥ logK such that C = (y∗,∞). In that case σ∗ = τ−y∗ .

(vi) By the dynamic programming principle, taking into account the fact that
wδ = w for x ≤ logK, it follows that

v(x) = Ex[e−rτ
−
x∗ (K − e

X
τ
−
x∗ )1{τ−

x∗<TK} + e−rTK δ1{TK<τ
−
x∗}

].

It is shown in the Appendix that the right hand side above is equal to the right
hand side of (5.23).

Now, assume that X has no Gaussian component and suppose for contradiction
that y∗ = logK. If X has bounded variation with drift d, Lemma 5.2 entails that

v(logK+) = KZ(r)(logK − x∗)−KZ
(r−ψ(1))
1 (logK − x∗) + eΦ(r)(logK−x∗)α

d
= δ + eΦ(r)(logK−x∗)α

d
> δ.

Note that we have used the fact that since k∗ < x∗ < logK where k∗ is the optimal
crossing boundary in the McKean optimal stopping problem (cf. Theorem 5.3), we
have that α > 0. Taking account of part (iii) of this Lemma we thus have a
contradiction. When X has unbounded variation with no Gaussian component,
we know from Lemma 5.2 that W (r)′(0+) = ∞ and hence one can deduce that
v′(logK+) = ∞, which again leads to a violation of the upper bound in (iii).

(vii) First, we need to prove that z∗ in (5.17) is well-defined and that y∗ ≤ z∗.
Denote by k(z) the left hand side of (5.17). We first show that k(logK+) > δ/K.
As we remarked in the proof of (iv),

v(z) < KEz[e−rτ
−
log K ] = Kk(z),

where the equality follows from (5.10). We use (vi) to show that v(logK+) = δ.
When X has no Gaussian component this follows from the fact that y∗ > logK
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and when X has a Gaussian component this follows from continuity of the func-
tion j. It thus holds that k(logK+) > δ/K. Note that k is a continuous func-
tion on (logK,∞). From (5.10) it follows that k decreases on (logK,∞) and
that limz→∞ k(z) = 0. Hence, there exists a unique z∗ ∈ (logK,∞) such that
k(z∗) = δ/K. For z > z∗

v(z) < Kk(z) < Kk(z∗) = δ,

which implies y∗ ≤ z∗.

(viii) and (ix) These are trivial statements.

(x) and (xi) These are standard results from the theory of optimal stopping.
See for example Theorem 1.2.2. of [92].

5.6 Existence of a solution: proof of Theorem 5.4

Recall from earlier remarks that the first part of the theorem can be proved in the
same way as the Brownian case in [61]. We therefore concentrate on the second
part of the theorem.

We piece together the conclusions of Lemmas 5.8 and 5.9 in order to check the
conditions of the Verification Lemma 5.7.

In particular, we consider the candidate triple (V ∗, τ∗, σ∗) generated by the
choices τ∗ = inf{t > 0 : Xt < x∗} and σ∗ = inf{t > 0 : Xt ∈ [logK, y∗]} where the
constants x∗ and y∗ are given in Lemmas 5.8 and 5.9 respectively. Note also that,
due to the fact that X is spectrally negative, we have

V ∗(x) = v(x) for x ∈ R.

Conditions (i) – (iv) of Lemma 5.7 are now automatically satisfied and it remains
to establish the supermartingale and submartingale conditions in (v) and (vi). For
the former we note that if the initial value x ∈ [x∗, logK) then spectral negativity
and Lemma 5.8 (ix) gives the required supermartingale property. If on the other
hand x > y∗, then, since by Lemma 5.9 (ix) e−rtv(Xt) is a martingale up to the
stopping time τ−y∗ and since by Lemma 5.8 (ix), given Fτ−y∗ ∩ {Xτ−

y∗
< logK}, the

process {e−r(t+τ
−
y∗ )v(Xt+τ−

y∗
)} is a supermartingale, the required supermartingale

property follows. For the submartingale property, it is more convenient to break
the proof into the cases that y∗ = logK and y∗ > logK.

For the case y∗ > logK, pick two arbitrary points logK < a < b < y∗. Note
from the proof of Lemma 5.8 (ix) that (Γ−r)v(x) = 0 on x ∈ (x∗, logK). Also, it is
easy to verify that because of the monotonicity of v, it holds that (Γ−r)v(x) > 0 for
x ∈ (logK, a). The submartingale property follows by piece-wise consideration of
the path of X and the following two facts. Firstly, the above remarks on the value of
(Γ−r)v(x) together with an application of the Itô–Meyer–Tanaka formula (cf. [98])
imply that {e−rtv(Xt) : t ≥ 0} is a submartingale when X0 ≤ a and t < σ+

b ∧ τ
−
x∗ .

Secondly, from Lemma 5.9 (xi) {e−rtv(Xt) : t ≥ 0} is a submartingale when X0 ≥ b
and t < σ−a ∧ τ−x∗ .
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To deal with the case that y∗ = logK, recall from Lemma 5.9 (vi) that X
necessarily has a Gaussian component. As mentioned in Section 5.2, this is a suf-
ficient condition to guarantee that both scale functions are infinitely differentiable
on (0,∞). An application of Itô’s formula together with the martingale prop-
erties mentioned in Lemmas 5.8 (viii) and 5.9 (x) show that (Γ − r)v = 0 on
(x∗, logK) ∪ (logK,∞). Using this fact together with the Itô–Meyer–Tanaka for-
mula (cf. [98]) the submartingale property of {e−r(t∧τ

−
x∗ )v(Xt∧τ−

x∗
) : t ≥ 0} follows

from its semi-martingale decomposition which now takes the form

e−rtv(Xt) = v(X0) +Mt +
∫ t

0

e−rs (v′(logK+)− v′(logK−)) dLlogK
s

on {t < τ−x∗} where LlogK is the semi-martingale local time of X at logK and M
is a martingale. Specifically, the integral is non-negative, as one may check from
the expression given for v in (5.11), (5.18) and (5.23),

v′(logK+)− v′(logK−) =
2
σ2
αeΦ(r)(logK−x∗) > 0. (5.25)

Note that we have used the fact that α > 0, which was established in the proof of
Lemma 5.9 (vi). �

5.7 Proof of Theorem 5.5

It follows immediately from Lemma 5.9 that when y∗ = logK we necessarily have
that X has a Gaussian component.

Next, we show that Π(−∞, logK − y∗) > 0. Suppose that X0 ∈ (logK, y∗).
It follows that {e−rtV (Xt) : t ≤ τ−logK} is a submartingale and that V (x) = δ
on [logK, y∗]. We deduce from Itô’s formula (see for example Theorem 36 of [98])
that in the semi-martingale decomposition of the aforementioned submartingale,
the drift term must be non-negative and hence for any x ∈ (logK, y∗)

0 ≤ (L − r)V (x)

= −rδ +
∫ 0

−∞
(V (x+ y)− δ) Π(dy)

= −rδ +
∫ logK−x

−∞
(V (x+ y)− δ) Π(dy).

Since V is decreasing on (−∞, logK), we find that Π(−∞, logK − y∗) > 0 as
required. �

5.8 Remarks on y∗ for the case that X has a Gaus-
sian component

In the previous section we have shown that y∗ > logK wheneverX has no Gaussian
component. In this section we show that when X has a Gaussian component,
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the distinction between y∗ = logK and y∗ > logK is a more subtle issue. This
distinction is important since in the next section we will show that when X is
of unbounded variation, the value function is differentiable at y∗ if and only if
y∗ > logK. Lemma 5.9 (vi) implies that y∗ = logK exactly when the value function
is equal to j(x). Reviewing the calculations in the previous sections, one sees that
it is the upper bound condition (ii) of Lemma 5.7 which may not hold for j and
that all the other conditions are verifiable in the same way as before. A sufficient
condition that Lemma 5.7 (ii) holds is that j is a decreasing function in which case
of course y∗ = logK. Whenever X has no Gaussian component, the function j
violates this upper bound condition as was shown in the proof of Lemma 5.9 (vi).
This is caused by the behaviour of the scale function W at zero: when the Gaussian
component of X is zero, either W is discontinuous or its right derivative at zero is
infinite. Assume now that X has a Gaussian component. Then the behaviour of the
scale function at zero implies that j(logK+) = δ and that j has finite derivative on
(logK,∞). From these properties alone we are not able to deduce anything about
the value of y∗. In fact, as we will show next, whether the upper bound condition
is satisfied by j depends on the sign of j′(logK+). Whenever j′(logK+) > 0,
it must hold that y∗ > logK, since otherwise Lemma 5.9 (iii) and (vi) lead to a
contradiction. We show that a sufficient condition for j to be decreasing, and hence
for y∗ to be equal to logK, is given by j′(logK+) < 0. Recall that j(x) = w(x)
on (−∞, logK]. From Lemma (5.8) (v) and from j′(logK+) < 0 we deduce the
existence of some γ > 0 such that j is decreasing on (−∞, logK + γ]. Next, let
logK + γ ≤ x < y ≤ x+ γ. By the strong Markov property

j(y)− j(x) = E[e−rτ
−
log K−x(j(Xτ−log K−x

+ y)− j(Xτ−log K−x
+ x))].

From
Xτ−log K−x

+ x < Xτ−log K−x
+ y ≤ logK − x+ y ≤ logK + γ

we deduce that j(y)− j(x) < 0, which implies that j is a decreasing function on R.

Remark 5.10. WhenX is a Brownian motion and r = ψ(1) = σ2/2, the discussion
above agrees with Theorem 2 in [61]. Indeed, in this case the scale functions are
given by

W (ψ(1))(x) =
2
σ2

sinh(x) and Z(ψ(1))(x) = cosh(x)

for x ≥ 0. It follows that

j′(logK+) = ψ(1)KW (ψ(1))(logK − x∗)−K +
2αK
σ2

e−x
∗

= K sinh(logK − x∗)−K + 2K −K2e−x
∗

= −K
2

2
e−x

∗
− 1

2
ex

∗
+K.

Since x∗ solves KZ(ψ(1))(logK − x)−K = δ we deduce that

Ke−x
∗

+
1
K
ex

∗
= 2(δ +K)
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and thus
j′(logK+) = −δ < 0.

We conclude that the optimal stopping strategies are indeed given by

τ∗ = τ−x∗ and σ∗ = TK .

Also, for the other cases r 6= σ2/2, similar calculations lead to the results found in
[61].

Unfortunately, there are rather few spectrally negative Lévy processes for which
the scale functions are known in terms of elementary or special functions. Hence, in
general, numerical analysis is needed to check whether the condition j′(logK) < 0
holds.

5.9 Pasting properties at y∗: proof of Theorem 5.6

Using notation as in the proof of Lemmas 5.7 and 5.9, it follows from monotonicity
of V and the definition of V as a saddle point that for −∞ < x ≤ y <∞

0 ≤ V (x)− V (y) ≤ E[e−rτ
∗(x)(G(Xτ∗(x) + x)−G(Xτ∗(x) + y))1{τ∗(x)≤σ∗(y)}]

+E[e−rσ
∗(y)(G(Xσ∗(y) + x)−G(Xσ∗(y) + y))1{σ∗(y)<τ∗(x)}]

and continuity of V follows from continuity of G and dominated convergence.
It has already been shown in Section 5.4 whilst proving Theorem 5.4 that there

is smooth pasting at x∗ if and only if X has unbounded variation. It then remains
to establish the smoothness of V at y∗.

(i) Recall from (5.25) that

V ′(logK+)− V ′(logK−) =
2
σ2
αeΦ(r)(logK−x∗) > 0

showing that there can be no smooth fit at y∗.
Next suppose that y∗ > logK. Our aim is to show that V ′(y∗+) = 0. In order

to do this we shall need two auxiliary results.

Lemma 5.11. Suppose X is of unbounded variation and let c < 0. Then

lim
ε↓0

P(τ−c = τ−ε , τ
−
c < τ+

ε )
ε

= 0. (5.26)

Proof. Let c < 0. Define

Aε := {τ−c = τ−ε , τ
−
c < τ+

ε } = {Xτε−
< c, τ−c < τ+

ε }.

Define Xt = sups≤tXs. Let L = {Lt : t ≥ 0} be the local time at zero of the
reflected process {Xt − Xt : t ≥ 0}. Denote by {(t, εt) : t ≥ 0} the process of
excursions from zero of {Xt − Xt : t ≥ 0} on the local time scale. Note that
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excursions are of the form εt = {εt(s) : s ≤ ζt}, where ζt is the duration of the
excursion εt. For the generic excursion ε and x > 0 let

ρx := inf{s > 0 : ε(s) > x}

be the first time ε exceeds level x. Note that Aε only happens if and only if there
exists a left endpoint g of an excursion such that

(i) Lg < ε (at time g the process must not have exceeded ε),

(ii) εLh
< Xh + ε for all h < g in the support of dL (during excursions before

time g, the process must stay above −ε),

(iii) εLg
(ρXg+ε) > Xg + c (the first exit time below −ε must be the first exit time

below c).

Hence, we can use the compensation formula (with g and h denoting left end points
of excursion intervals) to deduce that

P (Aε) = E

 ∑
g<L−1

ε

1{εLh
<Xh+ε ∀h<g}1{εLg (ρXg+ε)>Xg+c}


= E

[∫ L−1
ε −

0

1{εLu<Xu+ε ∀u<s}ϕ(Xs) dLs

]
,

where ϕ(x) = n(ε(ρx+ε) > x+ c). Using the fact that XL−1
t

= t, we find for small
enough ε

0 ≤ 1
ε

P(Aε)

=
1
ε

E

[∫ ε∧L∞

0

1{εθ<θ+ε ∀θ<t}ϕ(t+ c) dt

]
(5.27)

≤ 1
ε

∫ ε

0

n(ε(ρt+ε) > c) dt

≤ 1
ε

∫ 2ε

0

n(ε(ρt) > c) dt.

However, it is known (cf. [80]) that, since X has unbounded variation and hence is
regular upwards, limt↓0 ε(ρt) = 0, which in turn implies that

lim
ε↓0

P (Aε)
ε

= 0

as required.

Lemma 5.12. For any spectrally negative Lévy process

lim sup
ε↓0

W (2ε)
W (ε)

≤ 2.
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Proof. We may assume without loss of generality that X does not drift to −∞, i.e.
Φ(0) = 0. Denote by h the renewal function of the downward ladder height process
and by κ its Laplace exponent. It is known (cf. [18]) that there is some constant
c > 0 such that W (x) = ch(x). The proof is completed by applying the strong
Markov property at time τ = inf{t ≥ 0 : Ht ≤ −x}, which allows us to deduce

h(2x) =
∫ ∞

0

(P(Ht ≥ −x) + P(Ht ∈ [−2x,−x])) dt

=
∫ ∞

0

(P(Ht ≥ −x) + P(H̃t ∈ [−2x−Hτ ,−x−Hτ ])) dt

≤ 2h(x).

Here H̃ denotes an independent copy of H.

(i) We are now ready to conclude the proof of part (i) of Theorem 5.6. To this
end suppose y > logK and X is of unbounded variation. Since V = δ on [logK, y∗]
it suffices to show that the right derivative of V exists at y∗ and that V ′(y∗+) = 0.
Since V (y∗) = δ and since V (x) ≤ δ for any x > logK we have for any x > y∗

V (x)− V (y∗)
x− y∗

≤ 0,

which implies that

lim sup
x↓y∗

V (x)− V (y∗)
x− y∗

≤ 0.

To show that V ′(y∗) = 0 we must thus show that

lim inf
x↓y∗

V (x)− V (y∗)
x− y∗

≥ 0.

In order to achieve this, define for ε < logK − y∗

τ∗ε = inf{t ≥ 0 : Xt /∈ [y∗ − ε, y∗ + ε]}.

Furthermore,
τ+ := inf{t ≥ 0 : Xt > y∗ + ε}

and
τ− := inf{t ≥ 0 : Xt < y∗ − ε}.

We have that for small enough ε, {e−r(t∧τε)V (Xt∧τε
)}t≥0 is a Py∗ -submartingale,

hence by the optional sampling theorem

E∗y[e−rτεV (Xτε
)]

≥ V (y∗)

= V (y∗)E∗y[e−rτ
+
1{τ+<τ−}] + δ(1− E∗y[e−rτ

+
1{τ+<τ−}]). (5.28)
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Furthermore, we use Lemma 5.11 and the fact that V is bounded by K to deduce

E∗y[e−rτεV (Xτε
)]

= V (y∗ + ε)E∗y[e−rτ
+
1{τ+<τ−}] + E∗y[e−rτ

−
V (Xτ−)1{τ−<τ+}]

= V (y∗ + ε)E∗y[e−rτ
+
1{τ+<τ−}] + δE∗y[e−rτ

−
1{τ−log K<τ

−<τ+}]

+ E∗y[e−rτ
−
V (Xτ−)1{τ−log K=τ−<τ+}]

≤ V (y∗ + ε)E∗y[e−rτ
+
1{τ+<τ−}] + δE∗y[e−rτ

−
1{τlog K−<τ

−<τ+}]

+KP(τ−logK = τ− < τ+)

≤ V (y∗ + ε)E∗y[e−rτ
+
1{τ+<τ−}] + δE∗y[e−rτ

−
1{τ−<τ+}] + o(ε) (5.29)

as ε ↓ 0. The two expectations on the right hand side of (5.29) can be evaluated
in terms of scale functions with the help of (5.8) and (5.9). Also, because X is of
unbounded variation, it is known that W (q)(0) = 0. Combining (5.28), (5.29) and
using Lemma 5.12 we find

lim inf
ε↓0

V (y∗ + ε)− V (y∗)
δε

≥ lim inf
ε↓0

1− E∗y[e−rτε ]
εE∗y[e−rτ

+1{τ+<τ−}]

= lim inf
ε↓0

1
ε

(
Z(r)(2ε)− 1− W (r)(2ε)

W (r)(ε)
(1− Z(r)(ε))

)
= 0.

This concludes the proof of part (i) of Theorem 5.6.

(ii) Suppose now that X has bounded variation. We know that necessarily X
has no Gaussian component and hence by Theorem 5.5 that y∗ > logK. We see
from (5.24) and continuity of V that for ε > 0

V (y∗ + ε)− δ

ε
≤ E

[
e−rτ

−
y∗ (y∗)

wδ(Xτ−
y∗ (y∗) + y∗ + ε)− wδ(Xτ−

y∗ (y∗) + y∗)

ε

]
where as before we are working under the measure P and indicate the dependency of
stopping times on an initial position ofX. Now, recalling that wδ is a non-increasing
function and is equal to V on (−∞, logK), we have with the help of Theorem 5.5,
dominated convergence and the fact that V is decreasing on (−∞, logK) that

lim sup
ε↓0

V (y∗ + ε)− δ

ε
≤ E[e−rτ

−
y∗ (y∗)V ′(Xτ−

y∗ (y∗) + y∗)1{X
τ
−
y∗ (y∗)

+y∗<logK}] < 0.

Hence, in this case, there is continuous fit but no smooth fit at y∗. �

5.10 The case r = 0

We conclude the study of the McKean stochastic game with the case r = 0. We
include this case here, since it illustrates the subtleties which arise when there is
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no discount factor. Some of the results in this section can also be found in [63]
(but see Remark 5.17 below). In the case when r = 0, the game (5.3) needs to be
formulated somewhat more carefully. The reason for this is that when there is no
discounting, the game depends on what value we assign to the event {τ = σ = ∞}.
Since any (non-trivial) Lévy process satisfies either (see Theorem 12 in [18])

lim
t→∞

Xt = −∞, or (5.30)

lim
t→∞

Xt = ∞, or (5.31)

lim sup
t→∞

Xt = − lim inf
t→∞

Xt = ∞, (5.32)

we can redefine (5.3), using the notation of the proof of Lemma 5.7, to have pay-off
function

Θ0
τ,σ = G(Xτ )1{τ≤σ,τ<∞} +H(Xσ)1{σ<τ} + L(lim sup

t→∞
Xt, lim inf

t→∞
Xt)1{τ=σ=∞},

(5.33)
where we put L(∞,∞) = δ and L(−∞,−∞) = K and L(∞,−∞) = K. See
Remarks 5.14, 5.15 and 5.16 below for a discussion on the choice of the function L.
We still denote by V the value of the corresponding game. From the Wiener–Hopf
factorisation it follows that for spectrally negative Lévy processes, (5.30), (5.31)
and (5.32) are equivalent to ψ′(0) < 0, ψ′(0) > 0 and ψ′(0) = 0 respectively. We
assume that δ < K, since otherwise stopping in a finite time would not be optimal
for any of the players. The latter follows from the observation that when δ ≥ K, it
holds that

inf
x
H(x) ≥ sup

x
G(x),

from which it follows that

V (x) = L(lim sup
t→∞

Xt, lim inf
t→∞

Xt).

We remark that value function U(x) of the McKean optimal stopping problem is
still given by (5.15) when r = 0 and ψ′(0) > 0 (see [81]). We have the following
result.

Theorem 5.13. Consider the stochastic game with pay-off given by (5.33) and let
0 < δ < K.

(i) When ψ(1) = 0, the stopping times

τ∗ = ∞ and σ∗ = inf{t > 0 : Xt > logK} (5.34)

form a saddle point for the stochastic game (5.33). Furthermore,

V (x) =
{
K − ex + δ

K e
x when x < logK,

δ when x ≥ logK.
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(ii) When ψ′(0) > 0 and δ ≥ U(logK), a saddle point consists of

τ∗ = inf{t > 0 : Xt < k∗} and σ∗ = ∞, (5.35)

with

ek
∗

=
Kψ′(0)
ψ(1)

.

In this case, V (x) = U(x).

(iii) When ψ(1) > 0 and ψ′(0) ≤ 0, or when ψ′(0) > 0 and δ < U(logK), a
saddle point is given by

τ∗ = inf{t > 0 : Xt < z∗} and σ∗ = inf{t > 0 : Xt > logK},

where z∗ is the unique solution to

Kψ(1)
∫ logK−z

0

e−yW (y) dy = δ. (5.36)

Also,

V (x) =
{
K − ex + ψ(1)ex

∫ x−z∗
0

e−yW (y) dy when x < logK,
δ when x ≥ logK.

(5.37)

Proof. Let 0 < δ < K. We prove Theorem 5.13 by a tweaked version of Theo-
rem (5.7). Firstly, suppose that ψ(1) ≤ 0. It then holds that ψ′(0) < 0 and thus
limt→∞Xt =−∞. From Theorem 3.12 in [63], it follows that, with τ∗ and σ∗ given
in (5.34), we have for x ≤ logK

V ∗(x) : = Ex[Θ0
τ∗,σ∗ ]

= δPx(τ+
logK <∞) +KPx(τ+

logK = ∞)

= K − ex +
δ

K
ex.

It is straightforward to check that (with the notation of (5.33))

G(x) ≤ V ∗(x) ≤ K ∧H(x).

Furthermore, {V ∗(Xt)}t≥0 is a submartingale and {V ∗(Xt∧σ∗)}t≥0 is a martingale.
We deduce that for any τ ∈ T it holds that

V ∗(x) = Ex[V ∗(Xt∧σ∗∧τ )]
≥ Ex[G(Xt∧τ )1{t∧τ≤σ∗} + δ1{σ∗<τ∧t}].

Taking limits and using dominated convergence, we find that

V ∗(x) ≥ Ex[G(Xτ )1{τ≤σ∗,τ<∞} +G(X∞)1{σ∗=τ=∞} + δ1{σ∗<τ}]
= Ex[G(Xτ )1{τ≤σ∗,τ<∞} +K1{σ∗=τ=∞} + δ1{σ∗<τ}]

= Ex[Θ0
τ,σ∗ ].
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Also, for any σ ∈ T

V ∗(x) ≤ Ex[V ∗(Xt∧σ)]
≤ Ex[H(Xt∧σ)1{σ<∞} +K1{σ=∞}].

Again by taking limits, we deduce

V ∗(x) ≤ Ex[H(Xσ)1{σ<∞} +K1{σ=∞}]

= Ex[Θ0
τ∗,σ].

This shows that the stopping times in (5.34) form a saddle point.
Secondly, suppose that ψ′(0) > 0 and that δ ≥ U(logK) (but still, δ < K). It
readily follows that the function U(x) (as given in (5.15)) has the properties

δ ∨G(x) ≤ U(x) ≤ H(x),

and {U(Xt)}t≥0 and {U(Xt∧τ∗)}t≥0 are a supermartingale and a martingale, re-
spectively, where τ∗ is defined in (5.35). Part (ii) now follows similarly to part (i).
Finally, suppose that either of the conditions in part (iii) holds. We then refer to
pp. 264–269 in [63] for the necessary martingale properties of and bounds on V
given in (5.37). The proof is similar to the proof of case (i) above.

Remark 5.14. When ψ′(0) = 0, we see from Theorem 5.13 that the optimal
stopping times τ∗ and σ∗ are both almost surely finite. This implies that, when
0 < δ < K, the game (5.33) does not depend on L(−∞,∞).

In the case when ψ′(0) = 0 and δ ≥ K, the game does depend on L(−∞,∞).
Whenever L(−∞,∞) ∈ [K, δ], it is suboptimal for either player to exercise in finite
time, and hence σ∗ = τ∗ = ∞.

When L(−∞,∞) < K, it is still optimal for the min-player to take σ = ∞,
but the max-player does not want to take τ = ∞ as this would lead to a pay-off of
L(−∞,∞) which is strictly smaller than the pay-off corresponding to the strategy

σn = inf{t ≥ 0 : Xt < −n}

for large enough n. Note that the latter stopping time is almost surely finite due
to the assumption that ψ′(0) = 0. We deduce that we can unambiguously assign a
value to the game, since

sup
τ∈T0,∞

inf
σ∈T0,∞

Ex[Θ0
τ,σ] = inf

σ∈T0,∞
sup

τ∈T0,∞

Ex[Θ0
τ,σ] = K.

However, there is no pair of stopping times at which this value is attained. Following
the terminology in [47], we say that the Stackelberg equilibrium holds as opposed
to the Nash equilibrium. The case L(−∞,∞) > δ is similar.

Finally, when ψ′(0) = 0, δ ≥ K and when L(−∞,∞) is not defined (in which
case we implicitly require each player to choose only an almost surely finite stopping
time), the game does not even have a value. Indeed, it then holds that

sup
τ∈T[0,∞)

inf
σ∈T[0,∞)

Ex[(K − eXτ )+1{τ≤σ} + ((K − eXσ )+ + δ)1{σ<τ}]

< inf
σ∈T[0,∞)

sup
τ∈T[0,∞)

Ex[(K − eXτ )+1{τ≤σ} + ((K − eXσ )+ + δ)1{σ<τ}]
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where T[0,∞) is the set of almost surely finite stopping times with respect to F. The
inequality above follows by considering stopping times of the form τ and σ = τ +1
and vice versa and by the observation that for any x, y ∈ R we have

(K − ex)+ < K ≤ (K − ey)+ + δ.

Remark 5.15. The choices of L(∞,∞) and L(−∞,−∞) are, in some sense,
the natural definition for the game (5.33). We have seen in the r > 0 case that
(−∞, logK) never belongs to the stopping region of the min-player and that
[logK,∞) never belongs to the stopping region of the max-player and, as such,
it is convenient to define L(∞,∞) = H(∞) and L(−∞,−∞) = G(−∞).

The case r = 0 is also included in section 9.6 in [63] for the case when ψ′(0) > 0.
Note, however, that the definition of the game there should be redefined as we did
above. With the notation of this chapter the function L in [63] is implicitly defined
by L(∞,∞) = 0. If we take this as the definition of L in (5.33), the solution
to the game should be different. Consider for example a Brownian motion with
positive drift. For x > logK, the min-player can choose the strategy inf{t ≥ 0 :
Xt = logK}, which leads to a strictly lower value than the one corresponding
to the min-player taking τ = inf{t ≥ 0 : Xt ≥ logK}, because of the fact that a
Brownian motion with positive drift and starting at a value x > logK with positive
probability never hits logK combined with the fact that on this event, the pay-off
in [63] is taken to be zero instead of δ.

Remark 5.16. As mentioned on p. 146 in [92], there is an analogy between optimal
stopping problems and so-called obstacle problems. An example of the latter is by
hanging a rope on an obstacle. The rope will then be bounded from below by the
obstacle and, at the same time, its energy is minimised. Hence, we see the close
link with solutions of optimal stopping problems (when the objective is to maximise
pay-off) being the smallest superharmonic functions bounded from below by the
pay-off function. In the case of stochastic games, there is a similar analogy as was
shown in [88]. Indeed, consider the following situation: a cable is pulled outwards
from points (−∞,K) and (∞, δ) while it is sandwiched between the functions
(K − ex)+ and (K − ex)+ + δ. This analogy shows from a different perspective
why the solution of the game for r = 0 depends on the value we give to the event
{σ = τ = ∞}, and hence on the choice of L. Indeed, pulling the rope from (∞, 0)
instead of (∞, δ) leads to a different shape. Intuitively, when the driving Lévy
process is of unbounded variation, we can think of the cable being made of a very
flexible material. However, when the Lévy process is of bounded variation, the
corresponding cable is less flexible which will lead to kinks at both (x∗,K − ex

∗
)

and at (y∗, δ).

Remark 5.17. We remark that the conditions in Lemma 9.13 in [63] are not
sufficient to show that candidate optimal strategies for a general game are in fact
optimal. Indeed, when σ∗ = ∞, then the last line on p. 262 reads

Ex[e−qtH(Xt)1{σ=∞} + e−q(t∧σ)H(Xt∧σ)1{σ<∞}].

The conditions mentioned in Lemma 9.13 are not sufficient to imply that the ex-
pectation above converges to Ex[Θq

∞,σ] as t→∞. One way to resolve this issue, is
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to assume that
lim
t→∞

e−qtH(Xt) = lim
t→∞

e−qtG(Xt).

However, the McKean game with no discounting does not satisfy this condition.
This issue on {σ = τ = ∞} is avoided when the candidate optimal strategies are
almost surely finite.

Appendix: value function when y∗ = log K

Here, our objective is to prove (5.23), i.e. to show that

Ex[e−rτ
−
x∗ (K − e

X
τ
−
x∗ )1{τ−

x∗<TK} + e−rTK δ1{TK<τ
−
x∗}

]

= KZ(r)(x− x∗)− exZ
(r−ψ(1))
1 (x− x∗)

+ αeΦ(r)(logK−x∗)W (r)(x− logK). (5.38)

First, we need a preliminary lemma. Recall that TK = inf{t > 0 : Xt = logK}.

Lemma 5.18. For all x ∈ R the following two identities hold:

Ex[e−rTK1{TK<τ
−
x∗}

] =
W (r)(x− x∗)

W (r)(logK − x∗)
− eΦ(r)(logK−x∗) W

(r)(x− logK)
W (r)(logK − x∗)

and

Ex[e−rτ
−
x∗1{τ−

x∗<TK}] =
(
cr −

r

Φ(r)

)
e−Φ(r)(logK−x∗)W (r)(x− logK)

+ Z(r)(x− x∗)− crW
(r)(x− x∗),

where

cr =
Z(r)(logK − x∗)
W (r)(logK − x∗)

.

Proof. Denote by u+
q the q-potential density of the process killed at exiting the

positive half-line. We know (Corollary 8.8 in [63]) that for x, a ≥ 0

u+
q (x, a) = e−Φ(q)aW (q)(x)−W (q)(x− a).

Proposition 1 in [95] allows us to deduce with some algebra that

Ex[e−rTK1{TK<τ
−
x∗}

] =
u+
r (x− x∗, logK − x∗)

u+
r ((logK − x∗)−, logK − x∗)

=
W (r)(x− x∗)

W (r)(logK − x∗)
− eΦ(r)(logK−x∗) W

(r)(x− logK)
W (r)(logK − x∗)

.
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From the Markov property it follows that Ex[e−rτx∗1{τ−
x∗<TK}] is equal to

Ex[e−rτ
−
x∗ ]− Ex[e−rτ

−
x∗1{TK<τ

−
x∗}

]

= Z(r)(x− x∗)− r

Φ(r)
W (r)(x− x∗)− ElogK [e−rτ

−
x∗ ]Ex[e−rTK1{TK<τ

−
x∗}

]

=
(
Z(r)(logK − x∗)
W (r)(logK − x∗)

− r

Φ(r)

)
eΦ(r)(logK−x∗)W (r)(x− logK)

+ Z(r)(x− x∗)− Z(r)(logK − x∗)
W (r)(logK − x∗)

W (r)(x− x∗)

thus concluding the proof.

Proof of (5.38). From Lemma 5.18

Ex[e−rτ
−
x∗ (K − e

X
τ
−
x∗ )1{τ−

x∗<TK} + e−rTK δ1{TK<τ
−
x∗}

]

= KEx[e−rτ
−
x∗1{τ−

x∗<TK}]− exE1
x[e

−cτx∗−1{τ−
x∗<TK}]

+ δ
W (r)(x− x∗)

W (r)(logK − x∗)
− δeΦ(r)(logK−x∗) W

(r)(x− logK)
W (r)(logK − x∗)

= K

(
Z(r)(logK − x∗)
W (r)(logK − x∗)

− r

Φ(r)

)
eΦ(r)(logK−x∗)W (r)(x− logK)

+KZ(r)(x− x∗)−K
Z(r)(logK − x∗)
W (r)(logK − x∗)

W (r)(x− x∗)

−ex
(
Z

(r−ψ(1))
1 (logK − x∗)

W
(r−ψ(1))
1 (logK − x∗)

− r − ψ(1)
Φ1(r − ψ(1))

)
×eΦ1(r−ψ(1))(logK−x∗)W

(r−ψ(1))
1 (x− logK)

−exZ(r−ψ(1))
1 (x− x∗) + ex

Z
(r−ψ(1))
1 (logK − x∗)

W
(r−ψ(1))
1 (logK − x∗)

W
(r−ψ(1))
1 (x− x∗)

+δ
W (r)(x− x∗)

W (r)(logK − x∗)
− δeΦ(r)(logK−x∗) W

(r)(x− logK)
W (r)(logK − x∗)

,

where Φ1 plays the role of Φ under P1. Using (5.13) we have

ψ1(Φ(r)− 1) = ψ(Φ(r))− ψ(1) = r − ψ(1)

and thus Φ1(r − ψ(1)) = Φ(r)− 1. By definition of x∗ we have

Z(r)(logK − x∗)− Z
(r−ψ(1))
1 (logK − x∗) = δ/K
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and we use (5.14) to conclude that

Ex[e−rτ
−
x∗ (K − e

X
τ
−
x∗ )1{τ−

x∗<TK} + e−rTK δ1{TK<τ
−
x∗}

]

= KZ(r)(x− x∗)− exZ
(r−ψ(1))
1 (x− x∗)

+eΦ(r)(logK−x∗) W
(r)(x− logK)

W (r)(logK − x∗)

×
(
KZ(r)(logK − x∗)− δ −KZ

(r−ψ(1))
1 (logK − x∗)

)
+

W (r)(x− x∗)
W (r)(logK − x∗)

(
δ −KZ(r)(logK − x∗) +KZ

(r−ψ(1))
1 (logK − x∗)

)
+KeΦ(r)(logK−x∗)W (r)(x− logK)

(
− r

Φ(r)
+Kex

∗ r − ψ(1)
Φ(r)− 1

)
= KZ(r)(x− x∗)− exZ

(r−ψ(1))
1 (x− x∗) + αKeΦ(r)(logK−x∗)W (r)(x− logK)

as required.





Chapter 6

Shepp–Shiryaev stochastic
game for spectrally negative
Lévy processes∗

In [61] the stochastic-game-analogue of Shepp and Shiryaev’s optimal
stopping problem (cf. [107] and [108]) was considered when driven by an
exponential Brownian motion. We consider the same stochastic game,
which we call the Shepp–Shiryaev stochastic game, but driven by a spec-
trally negative Lévy process and for a wider parameter range. Unlike
[61], we do not appeal predominantly to stochastic analytic methods.
Principally, this is due to difficulties in writing down variational in-
equalities of candidate solutions on account of then having to work
with non-local integro-differential operators. We appeal instead to a
mixture of techniques including fluctuation theory, stochastic analytic
methods associated with martingale characterisations and reduction of
the stochastic game to an optimal stopping problem.

6.1 Introduction

Let X = {Xt : t ≥ 0} be a Lévy process defined on a filtered probability space
(Ω,F ,F,P), where F = {Ft : t ≥ 0} is the filtration generated by X satisfying the
usual conditions. For x ∈ R, denote by Px the law of X when it is started at x
and write simply P0 = P. Accordingly, we shall write Ex and E for the associated
expectation operators. We shall assume throughout that X is spectrally negative,
meaning here that it has no positive jumps and that it is not the negative of a
subordinator. It is well known that the latter allows us to talk about the Laplace
exponent ψ(θ) := log E[eθX1 ] for θ ≥ 0, which will be of frequent use in the sequel.

∗Based on joint work [15] with A. E. Kyprianou.
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The Laplace exponent necessarily takes the form

ψ(θ) = aθ +
1
2
σ2θ2 +

∫
(−∞,0)

(eθx − 1− xθ1{x>−1}) ΠX(dx)

where a ∈ R, σ ≥ 0 is the Gaussian coefficient and ΠX is a measure concentrated
on (−∞, 0) satisfying

∫
(−∞,0)

(1 ∧ x2) ΠX(dx) <∞.
Denote by T0,∞ the family of all [0,∞]-valued stopping times with respect to

F. We are interested in establishing a solution to a special class of stochastic games
which are driven by spectrally negative Lévy processes. Specifically, for a given
q > 0 and δ > 0, we study the stochastic game consisting of two players and
expected pay-off given by

Ex
[
e−qτ+(x∨Xτ )1{τ≤σ, τ<∞} + e−qσ

(
ex∨Xσ + δeXσ

)
1{σ<τ}

]
for x ≥ 0, (6.1)

where Xt = sups≤tXs denotes the running supremum of X and where a ∨ b =
max(a, b). The min-player’s objective is to choose some σ ∈ T0,∞ which minimises
(6.1), whereas the max-player chooses some τ ∈ T0,∞ which maximises this quan-
tity. Our aim is to prove the existence of a saddle point (τ∗, σ∗) such that

Ex[e−qτ+(x∨Xτ )1{τ≤σ∗, τ<∞} + e−qσ
∗
(
ex∨Xσ∗ + δeXσ∗

)
1{σ∗<τ}]

≤ Ex[e−qτ
∗+(x∨Xτ∗ )1{τ∗≤σ∗, τ∗<∞} + e−qσ

∗
(
ex∨Xσ∗ + δeXσ∗

)
1{σ∗<τ∗}]

≤ Ex[e−qτ
∗+(x∨Xτ∗ )1{τ∗≤σ, τ∗<∞} + e−qσ

(
ex∨Xσ + δeXσ

)
1{σ<τ∗}]

for all τ, σ ∈ T0,∞ and for all x ∈ R. When such a pair of stopping times exists,
we say that it is the solution to the stochastic game (6.1) and we denote the
corresponding value by

V (x) = Ex[e−rτ
∗
(K − eXτ∗ )+1{τ∗≤σ∗} + e−rσ

∗
((K − eXσ∗ )+ + δ)1{σ∗<τ∗}]

for x ∈ R.
Note that we have included the indicator 1{τ<∞} in (6.1) since e−qt+(x∨Xt) may
not be well defined for t = ∞.

When q = 0, this issue does not occur since ex∨Xt is monotone in t, and in this
case we are interested in the stochastic game which, for a given δ > 0, has pay-off
given by

ex∨Xτ 1{τ≤σ} +
(
ex∨Xσ + δeXσ

)
1{σ<τ}. (6.2)

The game (6.1) was solved for q > ψ(1) ≥ 0 (under an extra technical assump-
tion on the parameters) for a Brownian motion in [61]. In some sense, that case
is easier, since for a Brownian motion we can use standard Itô calculus and gen-
eral theory of optimal stopping to show that a solution to a related free boundary
problem (with a differential operator) also solves the game (6.1). The solution to
this free boundary problem is readily found in terms of exponential functions. For
a Lévy process with jumps, the corresponding free boundary problem seems more
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difficult to solve directly (or even to establish existence of a solution), as it involves
an integro-differential operator. Instead, we use a mixture of fluctuation theory,
martingale techniques and reduction of the stochastic game to an optimal stopping
problem to solve (6.1). As a by-product, we find that a technical assumption in [61]
is not needed, see Remark 6.19.

When ψ(1) = q > 0, the stochastic game (6.1) can be understood to characterise
the risk neutral price of a so-called game option in a simple market consisting of a
risky asset the value of which is given by {eXt : t ≥ 0} and a riskless asset which
grows at rate q (cf. [59]). The latter game option is an American-type contract
with infinite horizon which offers the holder the right but not the obligation to
claim ex∨Xτ at any stopping time τ ∈ T0,∞. In addition, the contract also gives
the writer the right but not the obligation to force a payment of ex∨Xσ + δeXσ at
any stopping time σ ∈ T0,∞; that is to say, what the holder would claim at that
moment plus a penalty proportional to the current value of the asset. However, in
this thesis we do not discuss the relevance of the stochastic games (6.1) and (6.2)
in the context of mathematical finance.

The stochastic games (6.1) and (6.2) are closely related to the Shepp–Shiryaev
optimal stopping problem

U(x) = sup
τ∈T0,∞

E[e−qτ+(x∨Xτ )1{τ<∞}], (6.3)

which characterises the value of a perpetual Russian option (cf. [107; 108] in the
Brownian case and [5] for the Lévy case). See also [42], [45] and [87] for the finite
expiry case and [54] for a linear programming approach. Indeed, if it is the case
that the stochastic saddle point in (6.1) is achieved at σ = ∞, then it holds that
U = V . In the article [108], an idea which is instrumental in helping provide the
solution to (6.3), is to change measure from P to the measure P1, where

dPλ

dP

∣∣∣∣
Ft

= eλXt−ψ(λ)t (6.4)

defines an equivalent measure on {Ft : t ≥ 0} for any λ ≥ 0. Under Pλ, the process
X still belongs to the class of spectrally negative processes and its Laplace exponent
is given by

ψλ(θ) = ψ(θ + λ)− ψ(λ) for θ ≥ −λ. (6.5)

The effect of the change of measure is to reduce the dimension of the underlying
driving Markov process of (6.3) from three to two. That is to say, the driving source
of randomness changes from {(t,Xt, Xt) : t ≥ 0} to {(t, (x∨Xt)−Xt) : t ≥ 0}. The
Shepp–Shiryaev optimal stopping problem can be solved whenever it is possible to
solve

U(x) = sup
τ∈T0,∞

E1[e−ατ+Y
x

τ 1{τ<∞}],

where
α = q − ψ(1)

and
Y xτ = (x ∨Xτ )−Xτ .
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The same effect occurs when the change of measure is applied to (6.1) and thus
the pay-off function of the Shepp–Shiryaev game can be rewritten as

e−ατ+Y
x

τ 1{τ≤σ, τ<∞} + e−ασ
(
eY

x
σ + δ

)
1{σ<τ}. (6.6)

We call (6.1) or equivalently (6.6) the Shepp–Shiryaev stochastic game and the
purpose of this chapter is to give a complete study of its solution within the specified
parameter regime q ≥ 0 and δ > 0.

In the Brownian motion case, the finite horizon version of (6.1) (i.e. when both
players have to choose stopping times valued in [0, T ] for some T > 0) was solved in
the preprint [65] preceding [64] by decomposing it into two finite horizon optimal
stopping problems, just as was done for the McKean stochastic game.

6.2 The solution to the Shepp–Shiryaev stochastic
game

Below, in Theorems 6.2, 6.3 and 6.4 we give a qualitative and quantitative exposi-
tion of the solution to (6.1). Before doing so, we need to give a brief reminder of a
class of special functions which appear commonly in connection with the study of
spectrally negative Lévy processes and indeed in connection with the description of
the Shepp–Shiryaev stochastic game as given below. For each q ≥ 0 we introduce
the functions W (q) : R → [0,∞) which are known to satisfy for all x ∈ R and a ≥ 0

Ex[e−qτ
+
a 1{τ+

a <τ
−
0 }

] =
W (q)(x ∧ a)
W (q)(a)

(6.7)

where
τ+
a := inf{t > 0 : Xt > a} and τ−0 = inf{t > 0 : Xt < 0}

(cf. Chapter 8 of [63]). In particular, it is evident that W (q)(x) = 0 for all x < 0.
Further, it is known that W (q) is almost everywhere differentiable on (0,∞), there
is right-continuity at zero and∫ ∞

0

e−βxW (q)(x) dx =
1

ψ(β)− q
(6.8)

for all β > Φ(q), where Φ(q) is the largest root of the equation ψ(θ) = q (of which
there are at most two). For convenience, we write W instead of W (0).

Associated to the functions W (q) are the functions Z(q) : R → [1,∞) defined
by

Z(q)(x) = 1 + q

∫ x

0

W (q)(y) dy

for q ≥ 0. Together, the functions W (q) and Z(q) are collectively known as scale
functions and predominantly appear in almost all fluctuation identities for spec-
trally negative Lévy processes. For example, it is also known that for all x ∈ R and
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a, q ≥ 0,

Ex[e−qτ
−
0 1{τ+

a >τ
−
0 }

] = Z(q)(x ∧ a)− Z(q)(a)
W (q)(a)

W (q)(x ∧ a). (6.9)

We shall henceforth assume that

the jump measure of X, ΠX , has no atoms when X has bounded variation.

Then it is known from existing literature (cf. [32]) that W (q) ∈ C1(0,∞) and hence
Z(q) ∈ C2(0,∞). For computational convenience we shall proceed with the above
assumption on X. Recall that X has bounded variation if and only if it can be
written in the form Xt = dt − St for t ≥ 0 where {St : t ≥ 0} is a driftless
subordinator with jump measure ν satisfying ν(x,∞) = ΠX(−∞,−x) (and then
must necessarily satisfy

∫
(0,∞)

(1∧x) ν(dx) <∞) and d is a strictly positive constant
which is referred to as the drift. In that case, it is also known that W (q)(0) = 1/d
and otherwise, when X has unbounded variation, W (q)(0) = 0.

For comparison with the main contributions of this chapter (Theorems 6.2, 6.3
and 6.4), we give below the statement concerning existence of solutions to the
Shepp–Shiryaev optimal stopping problem (6.3), the essential part of which can
be found in [5]. For convenience, we shall first introduce a subclass of spectrally
negative Lévy processes. Denote by G the general class of spectrally negative Lévy
processes and the subclass

Hq =

{
X ∈ G :

∫
(−∞,0)

(1 ∧ |x|) ΠX(dx) = ∞ or σ > 0

or σ = 0,
∫

(−∞,0)

(1 ∧ |x|) ΠX(dx) <∞ and q < d

}
where we recall the constant d is the drift in the case of bounded variation. Also
needed is the following class of stopping times defined for all y ≥ 0 by

T+
y = inf{t > 0 : Y xt ≥ y} and T−y = inf{t > 0 : Y xt ≤ y}.

Finally, introduce the continuous function

f(x) = Z(q)(x)− qW (q)(x), (6.10)

which will play an important role in characterising optimal thresholds. Owing to
the fact that W (q)(x) = eΦ(q)xWΦ(q)(x), where WΦ(q)(x) plays the role of W (x)
under PΦ(q), we can differentiate f and easily deduce that, when q > ψ(1) ∨ 0, the
function f is strictly decreasing to −∞ and hence within this regime

k∗ := inf{x ≥ 0 : f(x) ≤ 0} ∈ [0,∞).

In particular, when q > ψ(1) ∨ 0, k∗ = 0 if and only if X ∈ G\Hq. This follows
from the fact that Z(q)(0) = 1 and W (q)(0) = 0 unless X has bounded variation in
which case W (q)(0) = 1/d.
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In the sequel, when U is attained by a stopping time in T0,∞, we shall denote
it by τ∗. That is to say, when it exists, τ∗ satisfies

U(x) = E[e−qτ
∗+(x∨Xτ∗ )1{τ∗<∞}].

Theorem 6.1. Let q ≥ 0.

(i) When q ≤ ψ(1) we have U(x) = ∞ which is not attained by any τ ∈ T0,∞,

(ii) when ψ(1) < q = 0

U(x) = ex +
1

Φ(0)− 1
ex(1−Φ(0)),

for x ≥ 0, which is not attained by any τ ∈ T0,∞,

(iii) when X ∈ G\Hq, then for x ≥ 0

U(x) = ex and τ∗ = 0,

(iv) when q > ψ(1) ∨ 0 and X ∈ Hq, then

U(x) = exZ(q)(k∗ − x) and τ∗ = T+
k∗ .

Proof. Cases (iii) and (iv) are contained in Theorem 2 in [5]. Suppose q ≤ ψ(1).
Since supt≥0 Y

x
t = supt≥0(x∨Xt)−Xt is P1-almost surely unbounded, the sequence

of stopping times {T+
n }n∈N are P1-almost surely finite. Hence when α ≤ 0,

U(x) ≥ E1[e
−αT+

n +Y x

T
+
n ] ≥ en,

which implies (i).
Suppose ψ(1) < q = 0. Then

U(x) = sup
τ∈T0,∞

E[ex∨Xτ 1{τ<∞}] ≥ sup
t≥0

E[ex∨Xt ] = E[ex∨X∞ ].

As ψ(1) < 0, it follows that ψ′(0+) < 0 and hence by a well-known result for
spectrally negative processes, X∞ is exponentially distributed with parameter

Φ(0) = sup{θ ≥ 0 : ψ(θ) = 0} > 1.

Since for any t ≥ 0 it holds that

E[ex∨Xt ] < E[ex∨X∞ ]

and since
lim
t→∞

E[ex∨Xt ] = E[ex∨X∞ ],

we deduce (ii).
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Note that when X ∈ G\Hq it follows that

q ≥ d > 0 ∨ (d +
∫

(−∞,0)

(ex − 1) ΠX(dx)) = 0 ∨ ψ(1)

and hence the four cases in the above theorem constitute an exhaustive partition
of the regime q ≥ 0 for the optimal stopping problem (6.3).

Now, turning to the solution of the Shepp–Shiryaev stochastic game, it turns
out that it is necessary to divide the regime q ≥ 0 into many more cases. We present
our main results accordingly.

Theorem 6.2 (The case q = 0). When q = 0 the solution to (6.1) is given as
follows:

(i) when ψ(1) ≥ 0 we have for any δ > 0 that σ∗ = 0 and hence V (x) = ex + δ,

(ii) when ψ(1) < 0 and (Φ(0)− 1)δ > 1 we have that τ∗ = σ∗ = ∞ and

V (x) = ex +
1

(Φ(0)− 1)
ex(1−Φ(0)),

for x ≥ 0,

(iii) when ψ(1) < 0 and (Φ(0)− 1)δ ≤ 1 we have τ∗ = ∞, σ∗ = T−0 and

V (x) = ex + δex(1−Φ(0)).

Theorem 6.3 (The case 0 < q < ψ(1)). Suppose 0 < q < ψ(1). Let f be defined
as in (6.10).

The equation
f(y) = 1 , y > 0 (6.11)

has a unique solution (which we denote by y∗).

(i) If δ > Z(q)(y∗)− 1 then

V (x) =
{
ex + δ when x < a∗,
exZ(q)(b∗ − x) when x ≥ a∗,

where 0 < a∗ < b∗ <∞ satisfy

Z(q)(b∗ − a∗) = 1 + δe−a
∗
, (6.12)

b∗ = a∗ + y∗, (6.13)

with σ∗ = T−a∗ and τ∗ = T+
b∗ . Further, the function V (x) is monotone increas-

ing and V (x)− ex is monotone decreasing.

(ii) If δ ≤ Z(q)(y∗) − 1, then there exists a unique z∗ ∈ (0, y∗] which satisfies
Z(q)(z∗) = 1 + δ and then

V (x) = exZ(q)(z∗ − x)

and the optimal stopping times are given by σ∗ = T−0 and τ∗ = T+
z∗ .
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Theorem 6.4 (The case q > 0 and q ≥ ψ(1)). Let q > 0. Recall that z∗ is the
unique solution of Z(q)(z) = 1+ δ which always exists uniquely as Z(q) is a strictly
increasing function with Z(q)(0) = 1 and Z(q)(∞) = ∞. Also, recall that for q > 0
and X ∈ Hq, the equation f(x) = 0 has a unique solution, denoted by k∗.

(i) When q = ψ(1) and δ > 0 we have σ∗ = T−0 , τ∗ = T+
z∗ and

V (x) = exZ(q)(z∗ − x),

(ii) when q > ψ(1), X ∈ Hq and δ > Z(q)(k∗) − 1 so that k∗ < z∗ we have
σ∗ = ∞, τ∗ = T+

k∗ and

V (x) = U(x) = exZ(q)(k∗ − x),

(iii) when q > ψ(1), X ∈ Hq and δ ≤ Z(q)(k∗) − 1 so that k∗ ≥ z∗ we have
σ∗ = T−0 , τ∗ = T+

z∗ and

V (x) = exZ(q)(z∗ − x),

(iv) when q > ψ(1) and X ∈ G\Hq, we have for any δ > 0 that τ∗ = 0, hence

V (x) = ex.

Remark 6.5 (Intuition). We briefly discuss some of the intuition behind the
results of Theorems 6.2, 6.3 and 6.4.

When q = 0, one might expect it not to be optimal for the max-player to stop,
since the gain in (6.2) is non-decreasing in time. One would also expect the min-
player to never stop when the penalty δ is too large, which is indeed the conclusion
of Theorem 6.2 (ii). When ψ(1) ≥ 0 we have

E[eXt∨x] ≥ E[eXt ] = eψ(1)t,

which indicates that the min-player cannot gain by waiting and hence should stop
immediately. When ψ(1) < 0 and δ is below a critical value, it becomes worthwhile
for the min-player to stop. Since ψ(1) < 0 implies that E[eXt ] decreases in t, it
might be lucrative for the min-player not to stop immediately and it turns out that
it is optimal for the min-player to stop when the reflected process Y reaches its
minimum 0. Note that this stopping time is infinite with positive probability.

When q ≥ ψ(1) and q > 0, we observe the same phenomenon that the min-
player stops when Y reaches 0 providing δ is below a critical value. This time, since
q > 0, the min-player should also stop in an almost surely finite stopping time and
indeed this happens at the first time Y exceeds a certain positive value (possibly
by a jump).

When 0 < q < ψ(1), the discount factor α in (6.6) is negative and therefore the
min-player should stop at an almost surely finite time. It also seems plausible that
the min-player should stop sooner than when ψ(1) ≤ q, resulting in an optimal
stopping set of the form [0, a∗]. However, this only happens when the penalty δ is
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large enough. It might seem counter-intuitive that the min-player is more eager to
stop when the penalty is large, but this strategy could be explained by reasoning
that the min-player is tolerant to the negative discount factor α in (6.6) as long as
δ is small enough. When δ becomes too large, the min-player needs to take evasive
action by stopping sooner.

Remark 6.6 (Pasting conditions). Theorems 6.3 and 6.4 both say that the
value function of the Shepp–Shiryaev stochastic game necessarily takes the form

V (x) =
{
δ + ex when x < a,
exZ(q)(b− x) when x ≥ a,

for some 0 ≤ a ≤ b < ∞. As a consequence of the behaviour at the origin of the
scale functions Z(q) and W (q), if follows that when a > 0, there is smooth pasting
at a (in accordance with the fact that 0 is regular for (0,∞) for X). Further, when
b <∞, there always is continuity at b and smooth pasting at b if and only if X has
unbounded variation (corresponding to the case that 0 is regular for (−∞, 0) for
X). See [1] for a discussion on the relevance of path regularity to pasting conditions.

The rest of this chapter is structured as follows. In the next section we make note
of a lemma which provides sufficient conditions for stopping times to be a saddle
point for the optimal stopping game (6.6) under the change of measure. This lemma
essentially allows us to ‘verify’ directly that the solutions presented in Theorems 6.3
and 6.4 are indeed optimal. In addition, we present the candidate functions which
will be used in conjunction with the Verification Lemma to establish the solution.
In Section 6.4 we give the proof of Theorem 6.3. Having done this, one sees that
the proof of Theorem 6.4 is a straightforward variant of a part of the proof of
Theorem 6.3. We only comment briefly in Section 6.5 on the proof of Theorem 6.4,
which is otherwise left as an exercise for the reader. In Section 6.6 we give the proof
of Theorem 6.2. The proof differs from the proofs of Theorems 6.3 and 6.4 in the
sense that one may no longer appeal to the change of measure (6.4).

6.3 Preliminary results

Following classical ideas in optimal stopping, we verify that a candidate solution
solves the Shepp–Shiryaev game by checking certain associated bounds and mar-
tingale properties. Specifically, we use the following Verification Lemma, which is
a variant of the similar one in Chapter 5.

Lemma 6.7 (Verification Lemma). Suppose that τ∗ ∈ T0,∞ and σ∗ ∈ T0,∞ are
candidate optimal strategies for the stochastic game (6.1) such that

eY
x

σ 1{σ<τ∗} (6.14)

is uniformly bounded by a constant for all σ ∈ T0,∞ and x ≥ 0. Let

V ∗(x) = E1[e−ατ
∗+Y x

τ∗1{τ∗≤σ∗, τ∗<∞} + e−ασ
∗
(
eY

x
σ∗ + δ

)
1{σ∗<τ∗}].

Then the triple (V ∗, τ∗, σ∗) is a solution to (6.1) if
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(i) V ∗(x) ≥ ex,

(ii) V ∗(x) ≤ ex + δ,

(iii) V ∗(Yτ∗) = eYτ∗ almost surely on {τ∗ <∞},

(iv) V ∗(Yσ∗) = eYσ∗ + δ almost surely on {σ∗ <∞},

(v) the process {e−α(t∧τ∗)V ∗(Yt∧τ∗)}t≥0 is a right-continuous submartingale un-
der P1 and

(vi) the process {e−α(t∧σ∗)V ∗(Yt∧σ∗)}t≥0 is a right-continuous supermartingale
under P1.

Proof. Define for each τ, σ ∈ T0,∞

Θα
τ,σ = e−ατ+Y

x
τ 1{τ≤σ, τ<∞} + e−ασ

(
eY

x
σ + δ

)
1{σ<τ}.

From the supermartingale property (vi), Doob’s optional stopping theorem, (i) and
(iv) we know that for any τ ∈ T0,∞ and t ≥ 0,

V ∗(x) ≥ E1[e−α(t∧τ∧σ∗)V ∗(Xt∧τ∧σ∗)]
≥ E1[e−α(t∧τ)+Y x

t∧τ 1{σ∗≥t∧τ, τ<∞} + e−ασ
∗
(eY

x
σ∗ + δ)1{σ∗<t∧τ}].

By taking limits t→∞, it follows from Fatou’s lemma that

V ∗(x) ≥ E1[Θα
τ,σ∗ ].

Next, we show that
V ∗(x) ≤ E1[Θα

τ∗,σ]. (6.15)

If σ is such that
E1[e−ασ1{σ<τ∗}] = ∞,

then (6.15) holds trivially (it then reads V ∗(x) ≤ ∞). Hence, we assume σ ∈ T0,∞
satisfies

E1[e−ασ1{σ<τ∗}] <∞.

Using (v), Doob’s optional stopping theorem, (ii) and (iii) we find

V ∗(x) ≤ E1[e−α(t∧τ∗∧σ)V ∗(Xt∧τ∗∧σ)]
= E1[e−ατ

∗
V ∗(Xτ∗)1{τ∗≤t∧σ} + e−α(t∧σ)V ∗(Xt∧σ)1{τ∗>t∧σ}]

≤ E1[e−ατ
∗+Y x

τ∗1{τ∗≤t∧σ} + e−α(t∧σ)(eY
x

t∧σ + δ)1{τ∗>t∧σ}].

Taking limits as t ↑ ∞ and applying the monotone convergence theorem to the first
term on the right hand side and the dominated convergence theorem (see (6.14))
to the second term on the right hand side, we find that indeed

V ∗(x) ≤ E1[Θα
τ∗,σ]

and hence the saddle point is achieved with the strategies (τ∗, σ∗).
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Note that Lemma 6.7 implies that when δ ≥ supx≥0(U(x) − ex), a solution
to the game is given by taking V ∗ = U and τ∗ as in Theorem 6.1 and σ∗ = ∞.
This agrees with the intuition that the min-player will force a greater payment by
stopping than the max-player would otherwise induce by stopping and hence it is
better for the min-player not to stop at all.

Often, we shall apply the above Verification Lemma to solutions of the form
V (x, a, b) for 0 ≤ a < x < b < ∞ corresponding to taking strategies σ = T−a
and τ = T+

b in (6.1). That is,

V (x, a, b) = E1[e
−αT+

b +Y x

T
+
b 1{T+

b ≤T−a } + e−αT
−
a

(
e
Y x

T
−
a + δ

)
1{T−a <T+

b }]. (6.16)

Using fluctuation theory we prove the following result.

Lemma 6.8. Let 0 ≤ a < x < b <∞. Then

V (x, a, b) = ex
(
Z(q)(b− x)−W (q)(b− x)

Z(q)(b− a)
W (q)(b− a)

+(1 + δe−a)
W (q)(b− x)
W (q)(b− a)

)
. (6.17)

Proof. Let 0 ≤ a < x < b < ∞. Note that τ−x−b = T+
b on the event {T+

b < T−a }
and τ+

x−a = T−a on the event {T−a < T+
b }. We change measure using (6.4), then use

(6.7) and (6.9) to derive

V (x, a, b) = E1[e
−αT+

b +Y x

T
+
b 1{T+

b ≤T−a } + e−αT
−
a

(
e
Y x

T
−
a + δ

)
1{T−a <T+

b }]

= E[e
−qτ−x−b+(x∨X

τ
−
x−b

)
1{τ−x−b≤τ

+
x−a}

]

+ (δ + ea)E[e
−qτ+

x−a+X
τ
+
x−a 1{τ+

x−a<τ
−
b−x}

]

= ex
(
Z(q)(b− x)−W (q)(b− x)

Z(q)(b− a)
W (q)(b− a)

+(1 + δe−a)
W (q)(b− x)
W (q)(b− a)

)
,

which was to be shown.

6.4 Proof of Theorem 6.3

We begin with a preliminary lemma (from which the opening part of Theorem 6.3
follows) concerning the function f(x) defined in (6.10).

Lemma 6.9. Suppose 0 < q < ψ(1). Then the function f satisfies limx→∞ f(x) =
∞ and f(ε) < 1 for all small enough ε > 0. Furthermore, f has a minimum valued
in (0, 1) which is uniquely attained, say at m. The function f is strictly increasing
on (m,∞). In particular, the equation f(y) = 1 has a unique solution (denoted by
y∗) on (0,∞), f(x) ≤ 1 for x ≤ y∗ and f ′(y∗) > 0.
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Proof. In the case when X has unbounded variation, f(0) = 1 and

f ′(0+) = −qW (q)′(0+) = −q lim
λ→∞

λ2

ψ(λ)− q
=
{
− 2q
σ2 when σ > 0,

−∞ when σ = 0.

In the case of bounded variation with drift d, we have f(0) = 1 − q/d < 1. Also
d > ψ(1) > q, so f(0) > 0. Hence in either case of bounded or unbounded variation,
it follows that f(ε) < 1 for some ε > 0.

Recalling that W (q)(x) = eΦ(q)xWΦ(q)(x), we have for x > 0

f ′(x) = q(W (q)(x)−W (q)′(x))
= qeΦ(q)x((1− Φ(q))WΦ(q)(x)−W ′

Φ(q)(x)).

It is also known that

W ′
Φ(q)(x) = WΦ(q)(x)nΦ(q)(h > x),

where nΦ(q) is the excursion measure of X −X under PΦ(q). Hence,

f ′(x) = qW (q)(x)(1− Φ(q)− nΦ(q)(h > x)) (6.18)

and thus, in particular, f(∞) = ∞ implying that the function f attains its mini-
mum. From (6.18) it also follows that if f ′(x) ≥ 0 for some x, then f ′(y) > 0 for
all y > x. From the first paragraph of this proof we deduce that the minimum of f
is valued in (−∞, 1) and that this minimum is uniquely attained (say at m). We
deduce that the equation f(y) = 1 has a unique solution on (0,∞) (denoted by
y∗). Clearly, y∗ > m and it readily follows that f ′(y∗) > 0 and that f(x) ≤ 1 for
all x ≤ y∗.

We now show positivity of f . It is known from the Wiener–Hopf factorisation
(cf. Chapter 8 of [63]) that

1
q
>

1
q

P(−Xeq
∈ [0, x]) =

1
Φ(q)

W (q)(x)−
∫ x

0

W (q)(y) dy,

where eq is an independent and exponentially distributed random variable with
parameter q and Xt = infs≤tXs. Since 0 < q < ψ(1), it follows that −Φ(q)−1 < −1
and hence

f(x) > Z(q)(x)− q

Φ(q)
W (q)(x) = 1− q

(
1

Φ(q)
W (q)(x)−

∫ x

0

W (q)(y) dy
)
> 0,

which completes the proof.

We now divide the forthcoming analysis into the two cases δ > Z(q)(y∗)−1 and
δ ≤ Z(q)(y∗)− 1 corresponding to parts (i) and (ii) respectively of Theorem 6.3.
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6.4.1 The case δ > Z(q)(y∗)− 1.

Under this sub-regime of 0 < q < ψ(1), we have the existence of 0 < a∗ < b∗ <∞
satisfying

Z(q)(y∗) = 1 + δe−a
∗

and
b∗ = a∗ + y∗,

where y∗ was defined as the unique solution in (0,∞) of (6.11). Note that this
choice of a∗ and b∗ has the convenient implication that for x ≥ a∗

V (x, a∗, b∗) = exZ(q)(b∗ − x).

From the latter, we see that on [a∗, b∗)

V (x, a∗, b∗) > ex.

Moreover, V ′(x, a∗, b∗) = exf(b∗−x) and, on account of the fact that f(b∗−x) < 1
for all x > a∗, it follows that

V (x, a∗, b∗) < ex + δ for all x > a∗. (6.19)

Since f is positive, it also follows that V (x, a∗, b∗) is increasing in x, and thus, in
particular,

ea
∗

+ δ = V (a∗, a∗, b∗) < V (b∗, a∗, b∗) = eb
∗
. (6.20)

Next, define the function θ : R 7→ R by

θ(x) = Z(q)(b∗ − x)− 1− δe−x. (6.21)

We will shortly make use of the following lemma.

Lemma 6.10. The function θ satisfies θ(a∗) = 0 and

θ(x) < 0 for all x < a∗.

Proof. The statement θ(a∗) = 0 rephrases (6.12). Next, differentiating and using
the fact that b∗ − a∗ = y∗ (and hence f(b∗ − a∗) = 1), we find

θ′(a∗) = −qW (q)(b∗ − a∗) + δe−a
∗

= 1− Z(q)(b∗ − a∗) + δe−a
∗

= 0.

From Lemma 6.9 we have f ′(y∗) > 0 and hence W (q)′(b∗ − a∗) < W (q)(b∗ − a∗),
which in turn implies that

θ′′(a∗) = qW (q)′(b∗ − a∗)− δe−a
∗
< qW (q)(b∗ − a∗)− δe−a

∗
= 0. (6.22)

In particular, θ(x) < 0 for all x ∈ (a∗ − ε, a∗) and some sufficiently small ε > 0.
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Suppose now, for contradiction, that c = sup{x < a∗ − ε : θ(x) = 0} > −∞.
Then by Rolle’s theorem, there exists some d ∈ (c, a∗) such that θ(d) < 0 and
θ′(d) = 0. On the other hand, for x < a∗ we also have

θ(x) + θ′(x) = f(b∗ − x)− 1
> f(b∗ − a∗)− 1
= 0,

where we have used Lemma 6.9. In particular with x = d we find θ(d) > 0 which
is in contradiction with the definition of d. In conclusion, c = a∗ and θ(x) < 0 for
all x < a∗ as required.

Our strategy for proving part (i) of Theorem 6.3 will be to look at an auxiliary
optimal stopping problem and then use the information above to associate the
solution of the aforementioned optimal stopping problem with the solution of the
Shepp–Shiryaev stochastic game. To this end, let

I(x) = inf
σ∈T0,∞

E1[e−ασg(Ỹ xσ )], (6.23)

where Ỹ xσ := Y x
σ∧T+

b∗
, g is any continuous function such that

g(x) =
{
ex + δ when x < a∗,
ex when x ≥ b∗

and
ex + δ > g(x) > exZ(q)(b∗ − x)

for any x ∈ (a∗, b∗).

Theorem 6.11. There exists a solution to the optimal stopping problem (6.23)
with the following properties.

(i) For x > a∗, I(x) = V (x, a∗, b∗) and hence σ∗ = T−a∗ .

(ii) For all x ∈ (0, b∗), I(x) > ex.

Proof. By taking σ = 0 in the expectation on the right hand side of (6.23), we see
that I(x) ≤ (ex + δ). Hence, it follows that

I(x) = I(x) ∧ (ex + δ) = inf
σ∈T0,∞

E1[(e−ασg(Ỹ xσ )) ∧ (ex + δ)]

and (6.23) is an optimal stopping problem for a strong Markov process where, for
each fixed x ≥ 0, the pay-off function is continuous and bounded but as a function
of x the stochastic gain is locally bounded in x.

Taking note of (2.2.80) in [92], we may now invoke Corollary 2.9 in the same
reference to deduce the existence of an optimal stopping time σ∗ in (6.23) which is
of the form

σ∗ = inf{t > 0 : Ỹ xt ∈ D},
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where D = {x : I(x) = g(x)}.
Since α = q − ψ(1) < 0 and g(x) ≥ 1 + δ, we have that 0 ∈ D. Now, define

s := sup{0 ≤ x < b∗ : I(x) = g(x)}.

Taking σ = T−a∗ in the expectation on the right hand side of (6.23) leads to a value
of V (x, a∗, b∗) and thus for any x > a∗ it holds that I(x) ≤ V (x, a∗, b∗) < ex + δ
where the last inequality follows by virtue of (6.19). As a consequence, we now see
that s ≤ a∗.

(i) We want to rule out the case that s < a∗ and then part (i) will follow.
Suppose for contradiction that s < a∗. Then, on [s, b∗] we have I = V (·, s, b∗). In
particular, it holds that

I ′(s+) = V ′(s, s, b∗)
= es + δ

+ es
(
−qW (q)(b− s) +

W (q)′(b− s)
W (q)(b− s)

(
Z(q)(b− s)− 1− δe−s

))
.

The fact that 0 < f ′(b∗−a∗) implies that W (q)′(b∗−s)/W (q)(b∗−s) < 1 and thus,
using Lemma 6.10 we find

I ′(s) > es + δ + es
(
−qW (q)(b∗ − s) + Z(q)(b∗ − s)− 1− δe−s

)
> es,

where the last inequality is a consequence of the fact that f(b∗−s) > f(b∗−a∗) = 1.
Since I(s) = es+δ, the previous calculations indicate that I violates its upper bound
ex + δ. We conclude that s = a∗ and thus (a∗, b∗) ⊆ Dc.

(ii) The next step in the proof is to show that for all x ≥ 0

I(x) > ex. (6.24)

We prove (6.24) by contradiction. First, we show that there are only a finite
number of intervals (l, r) satisfying (l, r) ⊂ Dc, 0 ≤ l < r ≤ a∗, I(l) = el + δ,
I(r) = er + δ and such that there is some x ∈ (l, r) for which I(x) ≤ ex. Indeed,
since α < 0, taking into account the fact that optimal stopping occurs whenever
Ỹ x hits the domain D and that X is spectrally negative, we deduce that for any
x ∈ (l, r), with (l, r) an interval satisfying the properties above,

I(x) ≥ el + δ.

For this inequality, we also use that (a∗, b∗) ⊂ Dc implies

inf
x∈D∩[r,∞)

g(x) = er + δ > el + δ,
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as for x ≥ a∗ it holds that (see (6.20))

g(x) ≥ V (x, a∗, b∗) ≥ V (a∗, a∗, b∗) = ea
∗

+ δ > el + δ.

Hence, whenever x ∈ (l, r) satisfies I(x) < ex, then it must hold that x ≥ log(el+δ).
In particular, (l, r) is necessarily of minimal length log(el + δ) − l and therefore
there can only be a finite number of intervals of this form. Now let (l∗, r∗) be the
rightmost of such intervals. Choose x ∈ (l∗, r∗) and define

T(l∗,r∗) := inf{t > 0 : Y xt /∈ (l∗, r∗)}.

Note that T(l∗,r∗) ≤ TD, where

TD = inf{t > 0 : Y xt ∈ D}.

Since
{e−α(t∧TD)I(Y xt∧TD

)}

is a P1-martingale (cf. Theorem 2.4 in [92]) we have

I(x) = E1[e−αT(l∗,r∗)I(Y xT(l∗,r∗)
)]

= E1[e−αT(l∗,r∗)

(
(e
Y x

T
−
l∗ + δ)1{T−

l∗<T
+
r∗}

+ I(Y x
T+

r∗
)1{T+

r∗<T
−
l∗}

)
]

≥ E1[e−αT(l∗,r∗)

(
(e
Y x

T
−
l∗ + δ)1{T−

l∗<T
+
r∗}

+ e
Y x

T
+
r∗ 1{T+

r∗<T
−
l∗}

)
]

= V (x, l∗, r∗),

where for the inequality we used the fact that we have chosen (l∗, r∗) as the right-
most interval on which I(x) > ex fails. Since r∗ ≤ b∗, we have for x ∈ (l∗, r∗)

V (x, l∗, r∗)

= ex
(
Z(q)(r∗ − x)−W (q)(r∗ − x)

Z(q)(r∗ − l∗)
W (q)(r∗ − l∗)

+ (1 + δe−l
∗
)
W (q)(r∗ − x)
W (q)(r∗ − l∗)

)
≥ ex

(
Z(q)(r∗ − x)− W (q)(r∗ − x)

W (q)(r∗ − l∗)

(
Z(q)(b∗ − l∗)− 1− δe−l

∗
))

≥ exZ(q)(r∗ − x)
> ex,

where we have used Lemma 6.10. This contradiction has the desired implication
that I(x) > ex for all x < a∗.

In the next result we establish that there exists a saddle point for the Shepp–
Shiryaev stochastic game.

Proposition 6.12. The stochastic game (6.1) has a solution and its value satisfies
V (x) = I(x) for all x ≥ 0.
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Proof. The proof uses the Verification Lemma 6.7 and the candidate triple V ∗ = I,
σ∗ equal to the optimal strategy in the solution of (6.23) and τ∗ = T+

b∗ .
From Theorem 6.11 we have that I(x) fulfils conditions (i)–(iv) of Lemma 6.7.

By standard optimal stopping theory and the strong Markov property, the sub-
martingale property (v) automatically holds, see for example Theorem 2.4 of [92].
To justify the remaining condition (vi), one notes that on (a∗,∞) the function
I(x) = exZ(q)(b∗ − x) is sufficiently smooth on (a∗, b∗) to apply the Itô for-
mula (cf. [98]). It is standard to deduce from the strong Markov property that
{e−αteY x

t Z(q)(b∗ − Y xt ) : t < T+
b∗ ∧ T

−
a∗} is a P1-martingale from which it follows

that (Γ−α)I(x) = 0 on (a∗, b∗), where Γ is the infinitesimal generator of −X under
P1. Note also that since {e−Xt+ψ(1)t : t ≥ 0} is a martingale under P1, we have that
(Γ − α)ex = −qex for all x ∈ R. It now follows that (Γ − α)I(x) ≤ 0 for x ≥ a∗.
Although the function I fails to have a continuous second derivative only at b∗ it
is still smooth enough to use I in conjunction with Itô’s formula (cf. [98]). The
required supermartingale condition can now be deduced from the semi-martingale
decomposition of {e−αteY x

t Z(q)(b∗ − Y xt ) : t < T−a∗}. Note that right-continuity of
the paths of all the above semi-martingales is clear.

Were it not for the fact that we have not yet proved that I(x) = ex + δ for
all x ≤ a∗, we would be able to claim that the proof of Theorem 6.3 (i) is now
complete. However, we must still rule out the possibility that I(x) < ex+δ for some
interval ∅ 6= (l, r) ⊆ [0, a∗]. We finish this subsection by excluding this possibility
and hence concluding the proof of Theorem 6.3 (i).

Theorem 6.13. The value function I(x)− ex is decreasing and hence part (i) of
Theorem 6.3 holds.

Proof. Let x > y ≥ 0. We use the notation σ(x) to make explicit the dependency
of the stopping time σ ∈ T0,∞ on the initial position of the process Y x. We then
find that for any x ≥ 0

V (x) ≤ E[e−qτ
∗(x)+(x∨Xτ∗(x))1{τ∗(x)≤σ∗(y)}]

+ E[e−qσ
∗(y)

(
ex∨Xσ∗(y) + δeXσ∗(y)

)
1{σ∗(y)<τ∗(x)}]

and similarly, for any y ≥ 0

V (y) ≥ E[e−qτ
∗(x)+(y∨Xτ∗(x))1{τ∗(x)≤σ∗(y)}]

+ E[e−qσ
∗(y)

(
ey∨Xσ∗(y) + δeXσ∗(y)

)
1{σ∗(y)<τ∗(x)}].

Now, let x > y ≥ 0. Then

V (x)− V (y) ≤ E[e−qτ
∗(x)

(
ex∨Xτ∗(x) − ey∨Xτ∗(x)

)
1{τ∗(x)≤σ∗(y)}]

+ E[e−qσ
∗(y)

(
ex∨Xσ∗(y) − ey∨Xτ∗(x)

)
1{σ∗(y)<τ∗(x)}].

Since for any a it holds that

ex∨a − ey∨a ≤ ex − ey,
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we deduce
V (x)− V (y) ≤ ex − ey. (6.25)

Since V (a∗) = ea
∗
+δ and since V (x) ≤ ex+δ for all x, it follows that V (x) = ex+δ

for all x ∈ [0, a∗]. The result follows.

6.4.2 The case δ ≤ Z(q)(y∗)− 1.

Let us now conclude this section and the proof of Theorem 6.3 by establishing the
following result. Recall that we are still under the regime 0 < q < ψ(1).

Theorem 6.14. If δ ≤ Z(q)(y∗)− 1, then there exists a unique z∗ ∈ (0, y∗] which
satisfies Z(q)(z∗) = 1 + δ. The value function is given by

V (x) = exZ(q)(z∗ − x)

and optimal stopping times are σ∗ = T−0 and τ∗ = T+
z∗ . In particular, part (ii) of

Theorem 6.3 holds.

Proof. Since 1 + δ ≤ Z(q)(y∗) and Z(q)(0) = 1, it follows that there exists a z∗ ∈
(0, y∗] such that 1 + δ = Z(q)(z∗).

Next, note that from Lemma 6.8

V (x) = exZ(q)(z∗ − x) = V (x, 0, z∗)

and hence we can complete the proof by showing that the triple (V, T+
z∗ , T

−
0 ) fulfils

the conditions (i) – (vi) of Lemma 6.7. It is immediately clear from the definition
of V that condition (i) holds. Next, note that V ′(x) = exf(z∗ − x). Since by
Lemma 6.9 the function f is strictly positive and since V (0) = δ, it follows that
V (x) ≤ δ + ex and hence condition (ii) of Lemma 6.7 holds. Conditions (iii) and
(iv) are automatic.

To establish conditions (v) and (vi) of Lemma 6.7 one needs to appeal to the
semi-martingale decomposition of e−αtV (Y xt ). In particular, again note that V is
smooth enough to use in conjunction with the Itô formula and hence

e−αtV (Y xt ) = V (x) +
∫ t

0

(Γ− α)V (Y xs ) ds+
∫ t

0

V ′(Y xs ) d(x ∨Xs) +Mt

= V (x) +
∫ t

0

(Γ− α)V (Y xs ) ds+ V ′(0+)(x ∨Xt) +Mt, (6.26)

where Γ is the generator of −X under P1, (Γ − α)V (x) = 0 for x ∈ (0, z∗), (Γ −
α)V (x) ≤ 0 for x ≥ 0 andM is a martingale. Note also that the term V ′(Y xs ) may be
replaced by V ′(0+) as x∨Xs increases only when Y xs = 0. From this, one sees in the
above semi-martingale decomposition that the process {e−αtV (Y xt ) : t ≤ T−0 ∧T+

z∗}
is a martingale and that {e−αtV (Y xt ) : t ≤ T−0 } is a supermartingale. Again,
right-continuity of paths is obvious. As the second integral in (6.26) is equal to
V ′(0+)(x ∨Xt) (in particular, it is an increasing, continuous, adapted process), it
follows that {e−αtV (Y xt ) : t ≤ T+

z∗} is also a right-continuous submartingale. This
completes the proof of Theorem 6.3.
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6.5 Proof of Theorem 6.4

The proof goes along the lines of the proof of Theorem 6.14, principally appealing
to the semi-martingale decomposition (6.26) for the specified triple (V, τ∗, σ∗). For
Theorem 6.4 (iv) it is possible to compute exactly the quantities (Γ − α)V (x)
and V ′(0+). In the remaining cases one may deduce the necessary properties of
(Γ − α)V (x) as in the proof of Theorem 6.14 and that V ′(0+) = f(z∗ ∧ k∗) ≥ 0
from the properties of the function f mentioned in Section 6.2.

6.6 Proof of Theorem 6.2

Recall that for q = 0, the pay-off of the game is given by

Gxt,s = eXt∨x1{t≤s} + (eXs∨x + δeXs)1{s<t}. (6.27)

Lemma 6.15. A saddle point for the game (6.27) exists and it is optimal for the
min-player to never stop, i.e.

V (x) = inf
σ∈T0,∞

E[Gx∞,σ]. (6.28)

Proof. Let σ, τ ∈ T0,∞ and let t > 0. Then on {τ <∞}

Gxτ+t,σ −Gxτ,σ = eXτ+t∨x1{τ+t≤σ} − eXτ∨x1{τ≤σ}

+ (eXσ∨x + δeXσ )1{τ≤σ<τ+t}

= −eXτ+t∨x1{τ≤σ<τ+t} + (eXτ+t∨x − eXτ∨x)1{τ≤σ}

+ (eXσ∨x + δeXσ )1{τ≤σ<τ+t}

≥ −eXτ+t∨x1{τ≤σ<τ+t} + (eXτ+t∨x − eXτ∨x)1{τ≤σ<τ+t}

+ (eXσ∨x + δeXσ )1{τ≤σ<τ+t}

= (eXσ∨x − eXτ∨x + δeXσ )1{τ≤σ<τ+t} ≥ 0.

We have that

inf
σ∈T0,∞

E[Gx∞,σ] ≤ sup
τ∈T0,∞

inf
σ∈T0,∞

E[Gxτ,σ] ≤ inf
σ∈T0,∞

sup
τ∈T0,∞

E[Gxτ,σ] ≤ inf
σ∈T0,∞

E[Gx∞,σ],

where the first inequality follows from the supremum and the last inequality is due
to the monotonicity of Gx·,σ. This completes the proof.

Remark 6.16 (Problems with change of measure). It is tempting to solve
(6.28) by the change of measure we have used throughout this chapter, but the
following example shows that when q = 0, the corresponding optimal stopping
problem under P1 is a different one.

Let q = 0 and ψ(1) < 0 such that ψ′(1) ≥ 0. Since Gxs,t ≥ ex for all s, t we
immediately see that

inf
σ∈T0,∞

E[Gx∞,σ] ≥ ex.
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However, the optimal stopping problem under the changed measure is given by

inf
σ∈T0,∞

E[eψ(1)σ(eY
x

σ + δ)].

The latter optimal stopping problem has value zero, which can be seen by consid-
ering the sequence of stopping times (σn)n∈N defined by

σn := inf{t ≥ n : Y xt = 0}

which is almost surely finite under P1. The reason for this phenomenon is that the
equality

E[ex∨Xσ + δeXσ ] = E1[eY
x

σ + δ]

holds whenever P1(σ < ∞) = P(σ < ∞) = 1. Since X drifts to −∞ under P we
have that P(σn <∞) < 1 for any n ∈ N.

On account of the above remark, we consider (6.28) as an optimal stopping
problem for (X,X), just as was done in the first paper on the Russian option in
[107]. We modify our notation and write for y ≥ x

V (x, y) := inf
σ∈T0,∞

E[ex∨(y+Xσ) + δey+Xσ ]. (6.29)

Again by standard theory on optimal stopping we know there exists a (possibly
infinite) stopping time σ∗ = σ∗(x, y) at which the infimum in (6.29) is attained.
We have the following verification lemma for (6.28), the proof of which is omitted
as it is similar to the proof of Lemma 6.7.

Lemma 6.17. Let σ∗ ∈ T0,∞ and let

V ∗(x, y) = E[ex∨(y+Xσ∗ ) + δey+Xσ∗ ].

Then (V ∗(x, 0), σ∗) is a solution to (6.28) if

(i) V ∗(x, y) ≤ ex + δey,

(ii) the process {V ∗(Xt, Xt) : t ≥ 0} is a right-continuous submartingale.

Proof of Theorem 6.2. First, suppose ψ(1) ≥ 0. Then {Mt}t≥0 defined by

Mt = ex∨(y+Xt) + δey+Xt

is a P-submartingale. Indeed, for 0 ≤ s ≤ t

E[Mt|Fs] ≥ ex∨(Xs+y) + δey+XsE[eX̃t−s ]

= ex∨(Xs+y) + δey+Xseψ(1)(t−s)

≥ Ms,

where X̃ denotes an independent copy of X. Hence, in this case Lemma 6.17 shows
that V (x) = ex + δ and σ∗ = 0 form a solution to (6.28), which agrees with part
(i) of Theorem 6.2.
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Next, let ψ(1) < 0 and δ(Φ(0) − 1) > 1 and consider σ∗ = ∞. Since X∞ is
exponentially distributed with parameter Φ(0), we find for x ≥ y

V ∗(x, y) : = E[ex∨(y+X∞) + δey+X∞ ]

= E[ex∨(X∞+y)]

= ex
∫ x−y

0

Φ(0)e−Φ(0)z dz +
∫ ∞

x−y
Φ(0)e−Φ(0)z+z+y dz

= ex(1− e−Φ(0)(x−y)) +
Φ(0)

Φ(0)− 1
exe−Φ(0)(x−y)

= ex +
1

Φ(0)− 1
e−(Φ(0)−1)x+Φ(0)y

and in particular, by the condition on δ

V ∗(x, y) ≤ ex + δey.

As X is a strong Markov process, we have that

X∞ = Xt ∨ (Xt +X
′
∞)

where X
′
∞ is a copy of X∞ which is independent of Ft. Thus

E[ex∨(X∞+y)|Ft] = E[ex∨(Xt+y)∨(Xt+y+X
′
∞)|Ft]

= V ∗(x ∨ (Xt + y), Xt + y).

It now follows that {V ∗(Xt, Xt)}t≥0 is a P-martingale (and hence in particular a
submartingale). Again using Lemma 6.17, we deduce part (ii) of Theorem 6.2.

Finally, let ψ(1) < 0 and δ(Φ(0)− 1) ≤ 1 and take x ≥ y. If we take

σ∗ = τ+
x = inf{t > 0 : Xt ≥ x} = T−0 ,

we have

V ∗(x, y) : = E[eXσ∗ + δeXσ∗ ]
= ex + δexP(τ+

x−y <∞)

= ex + δe−(Φ(0)−1)x+Φ(0)y

and again we have that V ∗(x, y) ≤ ex + δey. Since {eΦ(0)Xt} is a martingale, the
submartingale property follows from Itô’s formula and the fact that∫ t

0

∂

∂x
V ∗(Xt, Xt) dXt =

∫ t

0

(eXt + δ(1− Φ(0))e−(Φ(0)−1)Xt+Φ(0)Xt) dXt

=
∫ t

0

eXt(1 + δ − Φ(0)δ) dXt ≥ 0,

where the second equality is due to the fact that Xt only increases when Xt = Xt.
This completes the proof of Theorem 6.2.



114 Shepp–Shiryaev stochastic game

6.7 Concluding remarks

Remark 6.18. In the proof of Theorem 6.13, the spectral negativity of the process
is not used. This indicates that if a solution to the game exists, then the (possibly
empty) sets I1, I2 and I3 defined by

I1 : = {x ∈ [0,∞) : V (x) = ex + δ},
I2 : = {x ∈ [0,∞) : ex < V (x) < ex + δ},
I3 : = {x ∈ [0,∞) : V (x) = ex}

satisfy
x1 < x2 < x3 for all xi ∈ Ii, i = 1, 2, 3

and thus the solution to the game (if it exists) must be of the same nature for a
more general Lévy process. An existence result for optimal stopping games in a
general Markovian setting (including Lévy processes) can be found in [47]. In that
paper, optimal stopping games are considered with a pay-off function of the general
form

G1(Xτ )1{τ<σ} +G2(Xσ)1{σ<τ} +G3(Xτ )1{σ=τ},

where τ and σ are the strategies of the max-player and min-player, respectively.
For the Shepp–Shiryaev game the strong Markov process is (t,Xt, Xt) and the
functions G1, G2 and G3 are given by

G1(t, x, s) = G3(t, x, s) = e−qt+s and G2(t, x, s) = e−qt(es + δex).

The assumptions

Ex sup
t≥0

|Gi(Xt)| <∞ for x ∈ R (i = 1, 2, 3) (6.30)

in [47] on the pay-off functions (to imply existence of a solution to the corresponding
optimal stopping game) are consistent with the traditional assumption

Ex sup
t≥0

|G(Xt)| <∞

for existence results for optimal stopping problems with pay-off G. We find that
we cannot always fit the Shepp–Shiryaev game in this framework because of the
same reason the Russian optimal stopping problem does not always satisfy the
assumptions of traditional optimal stopping theorems.

For example, when X is a spectrally negative Lévy process with ψ(1) > q, the
conditions (6.30) are not satisfied since E supt≥0 |G2(t,Xt, Xt)| is bounded from
below by supt≥0 δE[e−qt+Xt ] ≥ supt≥0 δe

(ψ(1)−q)t = ∞.

Remark 6.19. When X is a Brownian motion with parameter σ > 0 and drift
µ, it can be directly checked by taking Laplace transforms that the scale functions
for X are given by

W (q)(x) =
2
σ2ε

eβx sinh(εx), Z(q)(x) = eβx cosh(εx)− β

ε
eγx sinh(εx),
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where ε = 1
σ

√
µ2/σ2 + 2q and β = −µ/σ2. In [61] the game is solved whenever

q > ψ(1) ≥ 0. Since, when δ is large enough, z∗ satisfies Z(q)(z∗) = 1 + δ we find
that k∗ := ez

∗
solves

kβ∗ (kε∗ + k−ε∗ )− β

ε
kβ∗ (kε∗ − k−ε∗ ) = 2(1 + δ),

which agrees with (7) in [61]. In [61] there is an additional technical condition (4)
on the optimal stopping boundary k∗. The aforementioned condition pertains to
the requirement that V ′(0+) ≥ 0 (which ultimately is required for the appropriate
submartingale property to hold). Working here with general spectrally negative
Lévy processes, and in particular with scale functions, has seemingly produced
arguments which have circumvented the need for such a condition. Hence, from
the results in this chapter, it follows that the claim in [61] (that this condition is
necessary) is in fact false.
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probabilities and decompositions for general perturbed risk processes. Ann.
Appl. Probab. 14, 1378–1397.
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Samenvatting

Wanneer is stoppen optimaal? Het is essentieel bij optimale stop problemen om
op deze vraag een antwoord te geven. Een belangrijk voorbeeld van een optimaal
stop probleem is een Amerikaanse optie. Stel dat je bepaalde aandelen bezit, maar
vreest dat de koers ervan zal dalen. Om het risico hierop te vermijden, kan je een
Amerikaanse put-optie (op dat aandeel) kopen, die je het recht geeft het aandeel
voor een vooraf vastgestelde prijs te verkopen op een tijdstip naar keuze. In deze
context wordt de bovenstaande vraag: wat is het optimale tijdstip om het aandeel
te verkopen?

Om zo’n vraagstuk vanuit een wiskundig perspectief te kunnen bestuderen,
dienen we eerst het waarneembare proces (de koers van het aandeel staat immers
in de krant) te modelleren door een kansproces. Een veelgebruikt model voor de
aandelenkoers is gebaseerd op een Brownse beweging (vernoemd naar de Schotse
botanicus Robert Brown die in 1827 de chaotische beweging van stuifmeelkorrels
in een vloeistof bestudeerde). Aan het begin van de twintigste eeuw was Louis Ba-
chelier de eerste die de toepassing van een Brownse beweging in de financiering
voorstelde. Ongeveer 70 jaar later werd het op een Brownse beweging gebaseerde
Black–Scholes model ontwikkeld, waarvoor Robert Merton en Myron Scholes in
1997 de Nobelprijs voor de Economie ontvingen (Fischer Black kwam niet in aan-
merking voor deze prijs omdat hij in 1995 overleden was). Uit recent empirisch
onderzoek blijkt echter dat het Black–Scholes model een aantal tekortkomingen
vertoont. Zo zijn grote, plotse koersbewegingen moeilijk te beschrijven door mid-
del van een Brownse beweging en observeert men vaker extreme koersen dan het
model doet vermoeden. Modellen gebaseerd op zogeheten Lévy processen kunnen
deze eigenschappen beter beschrijven. In tegenstelling tot de Brownse beweging
(die zelf ook een voorbeeld van een Lévy proces is), kunnen Lévy processen ook
sprongen hebben. Lévy processen vindt men ook terug in de wachtrijtheorie, verze-
keringswiskunde, fragmentaties en bij vertakkingsprocessen. Dit proefschrift gaat
over aspecten en toepassingen van Lévy processen.

In Hoofdstuk 2 beschouwen we een verzekeringsmaatschappij. Eveneens aan het
begin van de twintigste eeuw kwam Filip Lundberg met het idee om de waarde van
zo’n firma te modelleren door een constante drift plus een samengesteld Poisson
proces met negatieve sprongen (zo’n proces is constant tussen de negatieve sprongen
in en is zelf ook een Lévy proces). De reden hiervoor is dat de sprongen in de waarde
van de firma veroorzaakt worden door de claims en dus negatief zijn. De constante
drift stelt de premies voor die de klanten betalen. We vervangen het samengesteld
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Poisson proces door een algemeen Lévy proces zonder positieve sprongen; zo’n
proces noemt men een spectraal negatief Lévy proces. We veronderstellen dat de
firma een tijdelijke buffer heeft om faillissement te voorkomen op het moment dat
de waarde van de firma negatief wordt. Daar deze buffer niet oneindig is, bestuderen
we het laatste moment vóór een van te voren vastgesteld tijdstip T waarop de
waarde van de firma negatief is. Om de berekeningen te vereenvoudigen, vervangen
we T door een onafhankelijke, exponentieel verdeelde stochast τq. We vinden een
formule voor het laatste moment vóór τq waarop de waarde negatief is evenals het
laatste moment vóór τq waarop de waarde positief of gelijk aan nul is.

In Hoofdstuk 3 bestuderen we een algemeen Lévy proces X gespiegeld in zijn
infimum. Dit is een proces dat gelijk is aan nul op de tijdstippen waarop X een
nieuw minimum bereikt en dat zich op andere tijdstippen gedraagt als X. Toepas-
singen hiervan vindt men vooral als het te modelleren verschijnsel niet negatief kan
worden: bijvoorbeeld het waterniveau van een dam of de lengte van een wachtrij in
het postkantoor. Een andere toepassing vindt men in de financiering. Het nadeel
van het kopen van aandelen is dat men het risico loopt het aandeel pas te verkopen
als de prijs ervan alweer aan het dalen is. Een Russische optie voorkomt dit moge-
lijke probleem, doordat deze niet de waarde van het aandeel op een bepaald tijdstip
oplevert, maar juist de maximale waarde die tot dan toe is bereikt. Larry Shepp
en Albert Shiryaev toonden aan dat, door een handige verandering van maat, deze
optie beschouwd kan worden als een optimaal stop probleem voor het gespiegeld
proces. In dit hoofdstuk gebruiken we excursietheorie om een uitdrukking te vin-
den voor de maat die aangeeft hoeveel tijd het gespiegelde proces in een gegeven
verzameling doorbrengt.

Hoofdstuk 4 gaat over optimale stop problemen voor spectraal negatieve Lévy
processen en voor zogenaamde gegeneraliseerde Ornstein–Uhlenbeck processen ge-
dreven door een spectraal negatief Lévy proces. We tonen aan dat voor een grote
klasse uitbetalingsfuncties een door Beibel en Lerche gëıntroduceerde methode ge-
bruikt kan worden voor het vinden van de optimale strategie. Voorts laten we zien
wanneer het principe van gladde verbinding geldt. Dit veelbestudeerde maar niet
altijd even goed begrepen principe houdt in dat de waardefunctie van het optimale
stop probleem zonder ‘knik’ in verbinding staat met de uitbetalingsfunctie.

In de laatste twee hoofdstukken bestuderen we stochastische spelen voor een
spectraal negatief Lévy proces. Dit soort spelen kan men interpreteren als een op-
timaal stop probleem voor twee spelers. De stochastische spelen in Hoofdstukken
5 en 6 zijn gebaseerd op de eerder genoemde Amerikaanse put-optie en de Russi-
sche optie. Deze stochastische spelen werden eerder bestudeerd voor een Brownse
beweging, maar de sprongen van het Lévy proces maken het probleem een stuk
lastiger. We gebruiken een bijbehorend optimaal stop probleem en ook fluctuatie-
theorie om de optimale strategieën van beide spelers te vinden. Tevens geven we
aan voor welke spectraal negatieve Lévy processen het principe van gladde verbin-
ding geldt. We concluderen dat de oplossing voor een Lévy proces vaak wezenlijk
verschilt van die voor een Brownse beweging. Dit kan verklaard worden doordat
de sprongen van het Lévy proces plotselingen koerswijzigingen tot gevolg kunnen
hebben. Hierdoor wordt het proces in zekere zin minder voorspelbaar en zullen de
spelers voorzichtiger worden.
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