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SUMMARY

We prove three results concerning homogeneous fragmentations of the unit interval.
First we study the asymptotic behaviour of the size of the largest fragment at large
times. It is known that for some constant v

max

> 0 the size of the largest fragment
is roughly equal to exp(�v

max

t) at the large time t. We refine this result by showing
that the largest fragment’s size is roughly equal to t�↵ exp(�v

max

t) whenever t is
large, where ↵ > 0 is a constant we identify explicitly in terms of the characteristics
of the fragmentation process.
Next we turn our attention to killed fragmentation processes, in which fragments
smaller than exp(�vt) are removed from the system at time t. We show that when v =
v
max

+ ✏, the killed process survives with probability roughly equal to exp(��✏�1/2 )
provided ✏ is small, for a constant � > 0 which we calculate. Finally, when v = v

max

we show that the killed process survives until the large time t with probability roughly
equal to exp(��t1/3) for a constant � > 0 which we calculate.
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CHAPTER 1

INTRODUCTION

Fragmentation processes are mathematical models that describe the phenomenon of
objects breaking apart. This fracturing process arises naturally in many contexts:
“studies of stellar fragments in astrophysics, fractures and earthquakes in geophysics,
breaking of crystals in crystallograpy, degredation of large polymer chains in chem-
istry, DNA fragmentation in biology, fission of atoms in nuclear physics, [and] frag-
mentation of a hard drive in computer science” [14], among others. A glance at the
contents page of Fragmentation Phenomena [16] will convince the reader of the ubiq-
uity of fragmentation phenomena in the physical sciences, with titles ranging from
the prosaic Experimental Results on Single Particle of Cement Clinker to the playful
Surface and Coulomb Instabilities of Sheets, Bubbles and Donuts.

In fact, the first serious probabilistic work concerning fragmentation processes, dating
from 1941, and written by the father of modern probability himself, was motivated
by just such an application. Kolmogorov begins his paper On the logarithmic normal
distribution of particle sizes under grinding [30] (in a translation from the Russian
by G. Lindquist) by remarking that “In a recent paper N.K. Razumovskii indicates
many cases when the logarithms of particle sizes (gold grits in gold placers, rock
particles under grinding, etc.) obey approximately the Gauss distribution law”. In
an article of less than four pages, he proceeds to explain this observation by proving
a result that we would now describe as a “special case of the central limit theorem
for branching random walks” [14].

Work on fragmentation processes continued sporadically throughout the rest of the
twentieth century. In 1961, Aleksei Filippov, a student of Kolmogorov, proved a
result on the typical particle size of conservative self-similar fragmentations [24], a
result later rediscovered, for binary fragmentations, by Brennan and Durrett in 1987
[20]. Several contributions to the subject have also appeared in the physics litera-
ture, though the results obtained there are typically special cases of the more general
results appearing soon after in the work to be discussed below; see, for instance,[6].

All the fragmentation processes considered in the work mentioned above have in com-
mon that the time taken for a given particle to fracture is assumed to be almost surely
positive; moreover, the number of fragments produced by such an event, though in
some cases random, is always taken to be finite. It wasn’t until the year 2001 that

1



a rigorous formulation of fragmentation processes in their full generality appeared in
the literature. In his paper Homogeneous fragmentation processes [10], Jean Bertoin
used a powerful discrete construction based on a Poisson point process to allow for
instantaneous shattering of fragments into infinitely many fragments. This pioneer-
ing work was continued by Bertoin in [11], with further constructive groundwork laid
by Julien Berestycki [7] and Anne-Laure Basdevant [5]. These papers also contain
important first properties of fragmentation processes, and some further interesting
results.

The study of fragmentation processes now forms an active area of research, reflecting
the preponderance of natural questions one can ask about them. Using the theory of
regular variation, Bertoin describes the small-time proliferation of very small parti-
cles in [13]. In [15], sharp large deviation results are obtained for fragment sizes by
using the theory of probability tilting, discretization and the famous derivative mar-
tingale. In his paperMultifractal spectra of fragmentation processes, Julien Berestycki
employs martingale theory to calculate the Hausdor↵ dimension of fragments with
atypical exponential rates of decay. In [29], so-called “killed fragmentation processes”
are defined, and a criterion for their survival is identified. These papers form only a
drop in the ocean; since 2010, at least forty-five preprints with the word “fragmen-
tation” in their title have appeared on the arXiv under the “probability” classification.

In this thesis we will study conservative homogeneous fragmentations of the unit in-
terval. The word “conservative” means that, at all times, the total length of all the
fragments of the unit interval is unity. The word “homogeneous” means that the rate
at which particles break up does not depend on their size. Some of the work mentioned
above generalises such processes in two directions. First, dissipative fragmentations
allow for loss of mass through a deterministic process called erosion. Second, self-
similar fragmentations allow fragments to break up at a rate dependent on their size.
The latter generalization is of particular interest in physical applications, where, for
instance, one might imagine that smaller fragments of an object are more fragile,
and hence more prone to fracture. We content ourselves with the remark that these
more general processes can be recovered from conservative homogeneous fragmen-
tation processes via fairly simple transformations. Processes incorporating erosion
are obtained simply by introducing a deterministic exponential decay to the particle
sizes of a corresponding process with no erosion. Self-similar fragmentation processes
are obtained from homogeneous fragmentation processes via the now-classical Lam-
perti time transform, first introduced in 1962 [37]. Therefore, although the subclass
of fragmentation processes we consider may seem restrictive, results can, at least in
theory, be translated to the more general setting using these ideas.

Our main results concern the large-time asymptotics of fragmentation processes. First
we consider the size of the largest fragment at large times. The first work in this
direction is contained in [11], where the rate of exponential decay of this fragment
is calculated. We identify the polynomial correction to this rate of decay, which we
express explicitly in terms of parameters intrinsic to the fragmentation process.
Our second and third results concern the survival probability of killed fragmenta-
tions, using the killing regime introduced in [29]. At time t, particles of size smaller
than exp(�ct) are removed from the system. Depending on the value of the pa-
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rameter c, this system may survive or die. In [29], this behaviour is classified into
super- and sub-critical regimes, and the critical parameter value is identified. In the
super-critical regime, the process survives with positive probability. Our second re-
sult estimates this survival probability for values of c slightly larger than the critical
value. In the critical case, the process dies almost surely. With this in mind, our
third result estimates the probability that a critically killed fragmentation survives
until a given large time.

We will employ a variety of tools and techniques to prove these results. The overarch-
ing theme is the theory of spines and changes of measure, championed in the seminal
paper by Lyons, Pemantle and Peres [38]. Roughly speaking, this approach seeks to
simplify the study of branching phenomena by identifying a “privileged” embedded
stochastic process called the spine, before relating its behaviour to the underlying
process by using a change of measure. This technique is now a cornerstone of modern
branching process theory, and has been used to elegantly tackle problems arising in
a variety of contexts. Examples include work by Chauvin and Roualt on branching
Brownian motion [21], Kyprianou on branching di↵usions [34], Bertoin and Roualt
on homogeneous fragmentations [15], Athreya on Markov chains [4], Biggins and
Kyprianou [19] and Hu and Shi [27] on branching random walk, and Engländer and
Kyprianou on superprocesses [23]; these references are borrowed from Matt Roberts’
thesis Spine Changes of Measure and Branching Di↵usions [42].

Our spine turns out to be a centered Lévy process with further special characteris-
tics. An important part of our work will therefore consist in generalising several well
known results from the theory of random walk to the Lévy setting. This includes
a Lévy version of Mogulskii’s Theorem for large deviation probabilities of random
walk. With these tools in hand, the proofs will be completed using the second mo-
ment method.

The structure of this thesis is as follows. In the remainder of this chapter, we define
conservative homogeneous fragmentation processes, and survey their basic properties;
none of this work is original. In the next chapter, we will prove several preliminary
lemmas on these processes, and transfer results from random walks to Lévy processes.
Chapter 3 contains the proof of our first main result, and we prove our second and
third main results in Chapters 4 and 5 respectively.

3



1.1 What is a conservative homogeneous fragmen-
tation process?

1.1.1 Informal discussion

Before entering into technical formalities, we orientate ourselves with a dynamic de-
scription of a particular finite activity conservative homogeneous fragmentation pro-
cess. We start with the unit interval (0, 1), which serves as the “object” undergoing
fragmentation. After a random period of time ⌧ with an exponential distribution
of rate 1, we generate some random number 1 < N < 1 of (0, 1)–valued uniform
random variables, which we arrange in the usual order: 0 < a

1

< · · · < a
N

< 1.
At times in [0, ⌧), the “value” of the fragmentation process is the interval (0, 1); the
initial fragment has so far remained intact. At time ⌧ , the fragmentation process
jumps to the “value” [(0, a

1

), (a
1

, a
2

), · · · , (a
N

, 1)]. The interval-valued entries in this
vector are referred to as particles, fragments or blocks, and sometimes as children of
the parent interval (0, 1). The jump discontinuity producing them from the parent
particle is variously referred to using the verbs fracture, fragment, split, dislocate, and
shatter. The subsequent evolution (from time ⌧ onwards) of each of these particles
is identical to the evolution of the parent particle (0, 1), provided we scale them to
unit length at their birth times. Finally, distinct children evolve independently of
their history and of one another. For instance, the interval (0, a

1

) shatters at time
⌧ + �, where � is an independent copy of ⌧ ; the children of (0, a

1

) born at this time
are described by L uniform random variables concentrated on this interval, where L
is an independent copy of N .

This example illustrates many of the salient features of conservative homogeneous
fragmentation processes. First, the process is Markovian. Second, after scaling to
unit length, all particles evolve in exactly the same way and independently of one
another. This means, in particular, that the rate at which a particle fragments is
independent of its size; this is what “homogeneous” means. Finally, no mass is lost:
in the example above, the Lebesgue measure of the collection of fragments at any
time is, by construction, unity. This property is signified by the word “conservative”.

There are several phenomena consistent with these properties, however, that our ex-
ample lacks. In general, we allow particles to shatter instantaneously. More precisely,
we allow the infimum of times at which the process di↵ers from (0, 1) to be 0. Sec-
ond, we allow particles to shatter into infinitely many pieces (though all fragments
must have positive length). The word “crumbling” captures what happens to the
unit interval in this most general setting.

Providing a formal description of fragmentation processes incorporating these addi-
tional features is no easy feat. Before setting out to do so, Jean Bertoin remarks in
[10] that

“ ... the analysis of random processes in continuous times may be
much more subtle than that of their counterparts in discrete times. For
instance, the law of a random walk, say in Rd, is completely characterized
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by the distribution of its generic step, which is an arbitrary probability
measure on Rd. The continuous time analogue of a random walk is a Lévy
process... [and] its structure is only revealed by the combination of the
celebrated Lévy-Khintchine formula and Lévy-Itô decomposition, which
are two deep and di�cult results of probability theory.”

Bertoin achieves his explicit construction of homogeneous fragmentation processes by
encoding them as stochastic processes taking values in the space of partitions on N, an
approach based on the important paper The coalescent by John Kingman, published
in 1982 [28]. Briefly put, particle sizes are represented by the asymptotic frequencies
of blocks in the partitions, which exist almost surely in certain circumstances.

The laws of Bertoin’s partition-valued fragmentation processes are in one-to-one cor-
respondence with the laws of so-called ranked fragmentations, as shown by Julien
Berestycki in [7]; these are not quite what we want. In this thesis we will make use
of interval fragmentations. The example we began this section with is an example of
an interval fragmentation: in short, we retain information about the spatial position
of our fragments. For instance, the state [(0, 1

4

), (1
4

, 1
2

), (1
2

, 1)] is considered to be dif-
ferent to the state [(0, 1

4

), (1
4

, 3
4

), (3
4

, 1)], despite the fact that the collection of block
sizes equals (1

2

, 1
4

, 1
4

) in both cases . In a ranked fragmentation process, particles are
always arranged in order of their size. As a result, the only information captured by
a ranked fragmentation process is the collection of particle sizes: clear genealogical
structure is not available. Unsurprisingly, the class of interval fragmentations can be
mapped surjectively to the class of ranked fragmentations, but the correspondence is
not one-to-one.

Further work done by Anne-Laure Basdevant in 2006 [5], and based on the earlier
work of Bertoin and Berestycki, completes the picture. She provides an explicit con-
struction of interval fragmentations using fragmentations taking values in the space
of compositions (ordered partitions) of N. Her paper also provides the fundamen-
tal link between interval fragmentations and composition-valued fragmentations, and
summarizes the links between the four kinds of fragmentations we have discussed.
Briefly put, interval and composition-valued fragmentations are in one-to-one cor-
respondence in law, as are ranked and partition-valued fragmentations; the former
classes are mapped surjectively to the latter classes by discarding all information
about the order of particles.

The questions we address in this thesis make sense and have the same answers re-
gardless of which type of fragmentation we use, so we end this section with a few
words on why we will make exclusive use (with one exception) of interval fragmenta-
tions. Ranked fragmentations are out of the question: the re-ordering of particles by
size destroys genealogical information that will play a central role in our proofs. In
contrast, given a fragment alive at some non-zero time in an interval fragmentation
process, we can trace its lineage back to the unit interval. That is, if we look at a
fragment (a, b) ⇢ (0, 1) alive at time t, we can find nested intervals (a

s

, b
s

) ⇢ (0, 1)
(for s 2 [0, t]) such that (a

0

, b
0

) = (0, 1) and (a
t

, b
t

) = (a, b). As it happens, both
partition- and composition-valued fragmentation processes also contain genealogical
information. Our final choice between the three appropriate candidates boils down
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to the fact that useful pictures can most easily be drawn of interval fragmentations;
they are the most intuitive of the four models, and the easiest to get a handle on. The
principle value of partition- and composition-valued fragmentations is their discrete
nature, which we will not use (except on one important occasion).

1.1.2 The formal defintion

As we have seen, our fragments will be represented by disjoint open subintervals
of (0, 1) whose union is the unit interval minus a countable set. In [11], Bertoin
establishes an elegant way of encoding such collections, by metrizing the space U
of open subsets of (0, 1). Given an open set u 2 U , he introduces the continuous
function �

u

on [0, 1] defined by

�
u

(x) := min{|x� y| : y 2 uc }.

The distance between two open sets u, v 2 U is then given by

d(u, v) := ||�
u

� �
v

||1.

As Bertoin remarks, this definition coincides with the Hausdor↵ distance between uc

and vc; moreover, the space (U , d) is compact. We also endow U with the �–algebra
generated by the open sets corresponding to this distance, which we denote by B(U).

It is an elementary fact that that any open set in R has a unique decomposition
into a countable collection of disjoint open intervals. We will frequently need to
enumerate this countable collection, and do so by defining the following total order
on the collection of finite subintervals of R:

(a, b) < (c, d) () b� a < d� c or (b� a = d� c and a < c).

Given u 2 U we will write (u
i

: i 2 N) for the elements in the decomposition of u
written in decreasing <–order, filling the tail of this sequence with empty sets in case
u has only finitely many components. Technical details aside, the point is that, given
a set u 2 U , the intervals in the collection (u

i

: i 2 N) correctly capture our intuitive
image of what “fragments” of (0, 1) are.

With our state-space in hand, we need to specify how fragments are to break apart.
Our basic datum is a family (q

t

: t > 0) of probability measures defined on (U ,B(U)).
We fix an interval I := (a, b) ✓ (0, 1) and write I for the set of open subsets of I
(with the distance inherited from U and the corresponding �–algebra). We let g

I

stand for the unique a�ne map sending (0, 1) to I, and retain the notation g
I

for its
natural extension to a map from U to I. We write qI

t

for the image measure of q
t

under the map g
I

, so that qI
t

is a probability measure on I. Given an open set u 2 U ,
we let qu

t

stand for the distribution of [X
i

, where the X
i

are independent random
variables with laws qui

t

respectively.

We are now ready to say exactly what a conservative homogeneous fragmentation is.
The following definition is lifted from [5].
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Definition 1.1. A Markov process U := (U(t) : t � 0) taking values in U is called a
conservative homogeneous interval fragmentation if it has the following properties:

1. U is continuous in probability: for all t � 0 and ✏ > 0,

P
�

d(U(t), U(s)
� � ✏) ! 0 as s ! t.

2. U is nested: s > t =) U(s) ✓ U(t).

3. Fragmentation property: there exists some family (q
t

: t > 0) of probability
measures on U such that

8t � 0 8s > t 8A 2 B(U) P
�

U(s) 2 A
�

� U(t)
�

= qU(t)

s�t

(A).

4. Conservative property: |U(t)| = 1 for all t � 0.

Throughout this thesis, |A| stands for the Lebesgue measure of a Borel set A. The
filtration generated by U is denoted by F := (F

t

: t � 0) after the usual comple-
tion. Sometimes we will want to start our fragmentation process from some u 2 U
other than (0, 1). Accordingly, we write P

u

for the law of the fragmentation process
started from u 2 U , and E

u

for the corresponding expectation operator. We also
define P := P

(0,1)

, with expectation operator E.

All fragmentation processes have regular versions. Indeed, for a fragmentation U let
us define a new process U+ by setting

U+(t) =
[

s2(t,1)\Q

U(s).

Using the continuity in probability of U , it is easily verified that U+ is a version of
U , and that the sample paths of U+ are almost surely càdlàg (a map from R

+

to
a metric space is called càdlàg if it has left limits and is right continuous). In the
remainder of this thesis, whenever we talk about a fragmentation U , we are implicitly
working with U+.

Since, with one exception, we will only consider conservative, homogeneous, interval
fragmentation processes in this thesis, such processes will henceforth be referred to
as “fragmentation processes”, without qualification, in those contexts where no con-
fusion can arise.

With Definition 1.1 in hand, we move on to an exposition of the key ideas that we
will use in our proofs. This entails studying several martingales, changes of measure,
spines and Lévy process theory.
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1.2 Technical preliminaries

1.2.1 Dislocation measures

The kernel (q
t

: t > 0) will make no further appearance in the rest of this thesis.
Instead, we work with the more useful class of dislocation measures, which capture
the same information [5]. Under the total order introduced in the previous section, u

1

stands for the largest interval component in the decomposition of a given u 2 U . (In
case there are several largest components, u

1

is the one with the largest left endpoint.)

Definition 1.2. A measure ⌫ on U is called a dislocation measure if

⌫((0, 1)) = 0 and

Z

U
(1� |u

1

|)⌫(du) < 1 .

In [5], Basdevant shows that the collection of laws of conservative homogeneous in-
terval fragmentation processes is in one-to-one correspondence with the collection of
dislocation measures. Her proof proceeds by establishing a bijection between the laws
of interval fragmentation processes and the laws of fragmentation processes taking
values in the space of ordered partitions. She then shows that the latter class is in
bijective correspondence with the class of dislocation measures. This work is precisely
analogous to the work contained in [8], where ranked fragmentations and partition
fragmentations are shown to be in bijective correspondence. We remark that, for an
interval fragmentation process with corresponding dislocation measure ⌫, the value
⌫(A) (which may be infinite) describes the rate at which a given particle breaks up
into fragments described by a given collection of possible configurations A 2 B(U).
The proof of all these statements can be found in [5].

The first condition in Definition 1.2 is self-explanatory; it says that something ac-
tually happens at fragmentation events. Whenever ⌫(U) = 1, fragments shatter
instantaneously:

inf{t � 0 : U(t) 6= (0, 1)} = 0, almost surely.

The second condition is necessary in this case to prevent fragments from being im-
mediately reduced to dust (particles of zero size).

In view of the display above, a fragmentation processes corresponding to a dislocation
measure with infinite mass is called an infinite activity fragmentation process. When
⌫ has finite mass, the first time when U(t) di↵ers from (0, 1) is exponentially dis-
tributed with rate ⌫(U). Fragmentation processes corresponding to finite dislocation
measures are therefore given the qualifier finite activity.

We emphasize that phrase “finite activity” signifies the fact that a given fragment
waits a positive time before shattering; it does not mean that fragmentation events
are isolated in time. To illustrate this comment, consider the fragmentation pro-
cess corresponding to the dislocation measure which assigns unit mass to an atom at
S

(2�(n+1), 2�n) and no mass elsewhere. Then the time of the first dislocation event
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⌧ is well-defined. Furthermore, the set of all splitting times is dense in [⌧,1) almost
surely. To see why, write �

n

for the time at which the interval (2�(n+1), 2�n), nec-
essarily alive at time ⌧ , fractures. Then (�

n

: n 2 N) is collection of independent
exponentially distributed random variables with rate 1. It remains to make the trivial
observation that any infinite collection of independent continuous random variables
whose laws have support equal to [0,1) is dense there almost surely.

In a similar vein, it is possible to have an infinite activity process in which each
dislocation event produces only finitely many new fragments. Indeed, define elements
v(n) := (0, 1

n

) [ ( 1
n

, 1) 2 U for each n � 2. Let ⌫ be a measure on U assigning mass 1

n

to v(n), and no mass elsewhere. Then
Z

U
(1� |u

1

|)⌫(du) =
1
X

n=2

1

n2

< 1,

so ⌫ is a dislocation measure. On the other hand, ⌫(U) = 1. Although jump dis-
continuities produce only finitely many new fragments, their infinite rate of arrival
guarantees that infinitely many fragments exist at arbitrarily small times.

We conclude this section by defining geometric dislocation measures. The dislocation
measure ⌫ is called geometric if there exists a number r > 1 such that

�

u 2 U : 8i 2 N 9n 2 N such that u
i

= r�n

 

is a ⌫–full set (that is, its complement is null with respect to ⌫). In view of the in-
tegrability condition in Definition 1.2, geometric dislocation measures are necessarily
finite. This is because the value 1� |u

1

| is bounded below by 1� r�1 > 0, ⌫–almost
everywhere, for some r > 1.

1.2.2 Some Lévy Process Theory

Before carrying on with our discussion of fragmentation processes, it is now neces-
sary to say a bit about Lévy processes. Afterwards, we will discover important Lévy
processes embedded in the class of fragmentation processes, which will be invaluable
to us in the rest of this thesis.

A Lévy process is a Markov process issued from the origin with stationary and inde-
pendent increments, and almost surely càdlàg paths. Their importance in the present
context has already been hinted at, and will be elucidated in the following sections.
Here we will discuss several special kinds of Lévy processes, and a few of their basic
properties. There are several monographs on the subject; we will refer to [35] in this
section. Other references include [9] and [44].

A subordinator is a Lévy process with increasing sample paths. A pure jump subor-
dinator is a Lévy process that can be expressed as a Poisson random sum of positive
jumps. To be precise, we say that a Lévy process S is a pure jump subordinator if
there exists a Poisson random measure N on [0,1)⇥ (0,1) such that for all t � 0,

S
t

=

Z

[0,t]⇥(0,1)

x N(ds⇥ dx).

9



The Poisson random measure corresponding to a pure jump subordinator is uniquely
characterized by its Lévy measure ⇧, which is defined by the equation EN(ds⇥dx) =
ds⇧(dx), and is concentrated on (0,1). If ⇧ is the Lévy measure corresponding to
a pure jump subordinator, it is automatically true [35, Lemma 2.14] that

Z

(0,1)

(1 ^ x) ⇧(dx) < 1.

For Lévy processes in general, this inequality is only guaranteed to hold when the
integrand is replaced by 1 ^ x2.

Because subordinators only take positive values, they have Laplace exponents defined
on the non-negative half-line. The Laplace exponent � of a subordinator X is defined
for � � 0 by the equation

exp(��(�)) = E exp(��X
1

).

If S is a pure-jump subordinator, its Laplace exponent can be neatly expressed [35,
pg. 116] in terms of its Lévy measure ⇧:

�(�) =

Z

(0,1)

�

1� e��x

�

⇧(dx). (1.1)

This equation together with elementary measure theory tells us a lot about the
Laplace exponent of a pure jump subordinator. For instance, � is infinitely dif-
ferentiable on (0,1). Di↵erentiating once tells us that � increases strictly, and
di↵erentiating twice tells us that � is strictly concave. Clearly �(0) = 0 for any
Laplace exponent, and �(1) < 1 if and only if S is a compound Poisson process.
Of course, � may exist for negative values too. If �

0

is the infimum of those values
for which � exists, then � is infinitely di↵erentiable, strictly increasing, and strictly
concave on (�

0

,1).

We will make frequent use of spectrally one-sided Lévy processes of bounded variation.
Spectrally one-sided Lévy processes are those with jumps of only one sign and non-
monotone paths. The class of spectrally one-sided processes of bounded variation
coincides with the class of those Lévy processes that are the di↵erence between a
pure jump subordinator and a deterministic linear drift, or vice versa [35, pg. 58].

A spectrally positive (respectively negative) process has only positive (respectively
negative) jumps and non-monotone paths. If X is a spectrally positive Lévy process
of bounded variation, then 0 is irregular for [0,1) relative to X [35, Theorem 6.5].
This means that the negative drift initially triumphs over the positive jumps, and
the process almost surely starts its life with a dip in the negative half-line. That is,

P
�

inf{t > 0 : X
t

2 [0,1)} = 0
�

= 0.

Similarly, if X is a spectrally negative process of bounded variation, then 0 is irreg-
ular for (�1, 0] relative to X.

10



To state the next property of Lévy processes we need, we fix a Lévy process X and
introduce random variables ⌧�

a

:= inf{t > 0 : X
t

 a} and ⌧+
b

:= inf{t > 0 : X
t

� b}
for a, b 2 R. If X is a spectrally positive process of bounded variation, we claim that
P(⌧��a

< ⌧+
0

) > 0 for all a > 0. Indeed, by the irregularity of 0 for [0,1), there exist
some t

0

, r > 0 such that

p := P
�

X
t0 < �r and X

t

< 0 on (0, t
0

]
�

> 0.

By the stationarity and independence of increments, we conclude that

P(⌧��a

< ⌧+
0

) � pda/re > 0.

Finally, we introduce the Esscher transform of a subordinator X. Let � stand for
the Laplace exponent of X, which we suppose exists on the set A. (The set A is
an infinite interval, closed or open, with left end-point in (�1, 0].) For p 2 A we
introduce the process (E(t, p) : t � 0) defined by

E(t, p) := exp
�

�(p)t� pX
t

�

.

The process E(·, p) is a unit mean (F
t

)–martingale for each p 2 A [35, pg. 82],
allowing us to define the family of probability measures

�

Pp : p 2 A) by

dPp

dP

�

�

�

�

F
t

= E(t, p) for t � 0.

In the sequel, it will be important for us to understand the characteristics of spec-
trally positive processes of bounded variation under these changes of measure. Let Z
be such a process, in which case it necessarily has the form Z

t

= X
t

�ct for some pure
jump subordinator X and some c > 0. Under Pp (defined relative to X, as above),
the process Z is still a spectrally positive process of bounded variation, and has the
same drift coe�cient c. Write ⇧ for the Lévy measure of X under P. Then the Lévy
measure of Z under Pp is e�px⇧(dx) for x 2 (0,1). Finally, Z under Pp also has
a Laplace exponent on A; it is given by the function � 7! �(� + p) � �(p) � c�,
where � denotes the Laplace exponent of X under P. We refer to [35, Theorem 3.9]
for a proof of these facts in a more general setting; see also [35, pg. 233] for further
discussion.

This completes our brief survey of Lévy process theory. We are now ready to explore
fragmentation processes in more detail.

1.2.3 Tagged fragments and the intrinsic subordinator

Given a fragmentation process U , it is natural to follow those intervals containing a
particular value x 2 (0, 1) as time passes. Accordingly, for all t � 0 and x 2 (0, 1) we
write

Ix

t

:=

(

(U(t))
i

if x 2 (U(t))
i

; if x /2 U(t),

for the component of U(t) which contains x 2 (0, 1). (Recall that (U(t))
i

denotes
the i’th component of U(t) under the order introduced in 1.1.2.) We call Ix

t

the

11



x–tagged fragment at time t, and define corresponding length processes by Ix
t

:= |Ix

t

|.
We also use the x–tagged processes to define an important collection (⇠x : x 2 (0, 1))
of stochastic processes by setting

⇠x
t

:= � log Ix
t

for t � 0,

where we define � log 0 := 1. We call this collection the � log transform of U (see
Figure 1.1, page 14); it inherits genealogical information from U , allowing us to talk
about ⇠–particles, ⇠–children, and so on. In section 1.4 we show that the collection
(⇠x : x 2 (0, 1)) naturally corresponds to a branching random walk, whenever the
dislocation measure of U is finite.

Di↵erent x–tagged fragments have di↵erent laws, and are intrinsically dependent on
one another. For instance, it should be clear that

I
1
4
t

6= I
1
2
t

=) I
1
4
t

6= I
3
4
t

.

In order to overcome these di�culties, the key idea [10, 8] is to follow a randomly
tagged fragment and relate its behaviour to the fragmentation process as a whole. To
this end, we assume that the underlying probability space is rich enough to support a
random variable � which is distributed uniformly on (0, 1) and is independent of the
fragmentation process. Using this uniform random variable, we define the randomly
tagged interval process I := (I

t

: t � 0) by setting I
t

:= I�

t

. We also define the
length process I = (I

t

: t � 0) by I
t

:= |I
t

|. We note that, since the sets (U
t

: t � 0)
are nested, and each of them has Lebesgue measure 1 almost surely, the set

[

{(0, 1) \ U(t) : t � 0}

has Lebesgue measure 0 almost surely. It follows that

P(I
t

6= ; for all t � 0) = 1.

Definition 1.3. We continue to write P for the joint law of the fragmentation process
and the random tag �, and E for the corresponding expectation operator. We write
G = (G

t

: t � 0) for the enriched filtration defined by G
t

:= �(F
t

, I
t

). In particular,
note that I is G-adapted.

The following fundamental result was first proven in [10] in the context of partition-
valued fragmentations. The following formulation, appropriate in the interval-valued
fragmentation context, can be found in [11]; see also [5].

Theorem 1.4. The [0,1)–valued stochastic process ⇠ defined by

⇠
t

:= � log I
t

for t � 0

is a pure-jump G–subordinator. Its Lévy measure is given by

L(dx) = e�x

1
X

n=1

⌫(� log |u
n

| 2 dx), x 2 (0,1),

where ⌫ is the dislocation measure of the underlying fragmentation process.

12



The process ⇠ is called the intrinsic subordinator corresponding to the fragmentation
process U . Using equation (1.1), we can write its Laplace exponent � in terms of L:

�(p) =

Z

(0,1)

�

1� e�px

�

L(dx).

We can also express � in terms of the measure ⌫ [10, pg. 16]:

�(p) =

Z

U

 

1�
1
X

n=1

|u
n

|1+p

!

⌫(du). (1.2)

Note, in particular, that �(0) = 0. This is because dislocation measures correspond-
ing to conservative fragmentation processes only give mass to those configurations
u 2 U with

P1
n=1

|u
n

| = 1 (c.f. [5, pg. 408]).

We already know that �(p) exists for values p � 0, and obviously the sum
P

u1+p

n

diverges whenever p < �1. It is possible, however, that (1.2) exists (that is, takes a
finite, necessarily negative value) for p 2 [�1, 0). With this in mind, we define the
parameter

p := inf

(

p 2 R :

Z 1
X

n=2

|u
n

|1+p⌫(du) < 1
)

.

Note that the sum starts at n = 2; the integrability condition in Definition 1.2 controls
the size of |u

1

|. Using this integrability condition, it’s easy to check that p coincides
with the infimum of those p 2 R for which

Z

U

�

�

�

�

�

1�
1
X

n=1

|u
n

|1+p

�

�

�

�

�

⌫(du) < 1.

As discussed, we know that p 2 [�1, 0]. The values �(p) and �0(p+) may or may not
be finite.

Next, we introduce the parameter p, which is of central importance in characterising
the asymptotic properties of fragmentation processes. The following lemma is taken
from [12, pg. 10].

Lemma 1.5. The equation

�0(p) =
�(p)

1 + p

has a unique solution p 2 (p,1). This solution is necessarily positive. We have the
equivalence

(1 + p)�0(p)� �(p) > 0 () p 2 ( p, p ).

The function

p 7! �(p)

1 + p

increases on (p, p) and decreases on (p,1).
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⌧4

⌧5
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t

t
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2

1

4

3

Figure 1.1. A sample path of a finite activity fragmentation process U (top),

and the corresponding sample paths of the collection ((⇠

x

t

)

t�0 : x 2 (0, 1))

(bottom). The intervals with labels 1, 2, 3, 4 2 (0, 1) correspond to the ⇠–particle

positions with respective labels. In particular, note that � log u is a decreasing

map, so the largest particle is mapped to the smallest ⇠–value. Particles that

reproduce before time t are represented by hollow circles, and those that do not

by solid circles. The union of the grey intervals equals U(t), and the collection

of grey circles are the corresponding realization of the point process generated

by the collection (⇠

x

t

: x 2 (0, 1)).
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Many interesting properties of fragmentation processes can be expressed in terms
of � and the parameters associated with it. In 1.3 we discuss some large-time
asymptotic properties of fragmentation processes, which will hopefully give the reader
some intuition about how fragmentation processes behave. For now, we continue with
our technical survey.

1.2.4 Martingales, changes of measure, and spines

Before introducing our first class of martingales, we introduce the following useful
notation. For a Borel set A ⇢ (0, 1), we use the notation

P

[x]

t

:A

to represent sums
taken over the (countable) collection of distinct fragments alive at time t that are
subsets of A. We also write

P

[x]

t

for
P

[x]

t

:(0,1)

, the sum taken over all distinct frag-
ments at time t.

Let us briefly explain how such sums can be rigorously constructed as random vari-
ables. We denote by D([0, t]) the space of càdlàg functions on [0, t], and endow this
space with the Skorokhod topology. We endow D([0, t]) with the �–algebra gener-
ated by the open sets of this topology, and write m+D([0, t]) for the collection of
measurable functionals mapping D([0, t]) to [0,1). Finally, we let m(↵) denote the
midpoint of the finite interval ↵, and let m

t,i

:= m((U
t

)
i

), where we recall that (U
t

)
i

is the i’th element in the decreasing rearrangement of the components of U
t

under
the total order introduced in 1.1.2. Then, given F 2 m+D([0, t]) and a Borel set
A ✓ (0, 1), we define

X

[x]

t

:A

F (|Ix

s

| : s  t) :=
X

i2N

1{(U
t

)

i

✓A} · F (|Im

t,i

s

| : s  t).

The first important class of martingales we will use are the intrinsic additive martin-
gales, first defined in [12, pg. 10]. For p > p, define

M(t, p) := exp (�(p) t)
X

[x]

t

(Ix
t

)1+p.

It is easy to show that (M(t, p) : t � 0) is a non-negative, unit mean (F
t

)–martingale
whenever p > p. The martingale convergence theorem then tells us that M(·, p)
converges almost surely to an almost surely finite random variable, M(1, p). In fact
[12, Theorem 2], whenever p 2 (p, p), the process M(·, p) is uniformly integrable, and
M(1, p) > 0 almost surely. This result is the analogue of the work on branching
random walk contained in the famous paper [17] by John Biggins.

The second class of martingales we will use are the exponential martingales introduced
in 1.2.2, but now corresponding to the particular G–subordinator ⇠. In fact, we will
only use E(·, p). To see why, write c

p

:= �(p)/(1 + p) = �0(p), and introduce the
process ⇣ defined by ⇣

t

:= ⇠
t

� c
p

t. Following the general theory in 1.2.2, we also
define a measure Q on G1 := �(

S{G
t

: t � 0}) by setting

dQ

dP

�

�

�

�

G
t

= E(t, p) for t � 0.
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0

p

�

C1

C2

L

Figure 1.2. Illustration of the power of the transformation (⇠,P) ! (⇣,Q)

in the worst-case scenario, in which p = 0, with �

0
(0+) = 1. C1 maps the

Laplace exponent � of (⇠,P), and C2 maps the Laplace exponent � 7! �(� +

p)��(p)�c

p

� of (⇣,Q). The line L is the tangent to C1 at � = p, and therefore

has gradient �

0
(p) = c

p

. Clearly, C1 is sent to C2 by placing a new origin at

the solid circle, and taking di↵erences between L and C1 as illustrated by the

double-headed arrow. The diagram makes it clear that the Lévy process (⇣,Q)

is centred and has finite moments of all orders.

We have the following:

Lemma 1.6. The process (⇣,Q)

1. is a centered spectrally positive Lévy process of bounded variation;

2. has drift coe�cient c
p

, and Lévy measure e�pxL(dx); and

3. has finite exponential moments:

8✏ 2 [0, p� p) 8t � 0 Q exp (✏|⇣
t

|) < 1.

In other words, (⇣,Q) is just about the nicest kind of Lévy process there is, after
the compound Poisson process. Facts 1 and 2 (except the centeredness property) are
particular instances of the general theory described in 1.2.2. Fact 3 can be found
in [36, 4.1]. So we just need to show that the process is centered. From 1.2.2,
we know that the Laplace exponent of (⇣,Q) is � 7! �(� + p) � �(p) � c

p

�. The
derivative of this function at 0, which coincides with the value Q ⇣

1

, equals �0(p)�c
p

.
By the definitions of p and c

p

we know that �0(p) � c
p

= 0. An illustration of the
transformation (⇠,P) ! (⇣,Q) in terms of Laplace exponents is given in Figure 1.2.

The importance of the process (⇣,Q) is reflected by the following Many-to-One
Lemma, which will be a fundamental tool in our proofs. To state it, we define the
family of processes (⇣x : x 2 (0, 1)) by ⇣x

t

:= ⇠x
t

� c
p

t for t � 0.
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Lemma 1.7. (MT1) For any map F 2 m+D([0, t]) and any starting configuration
u 2 U we have

E
u

X

[x]

t

F (⇣x
s

: s  t) =
1
X

i=1

Q
�

e(1+p)⇣

tF (⇣
s

� log |u
i

| : s  t)
�

.

In particular,
E
X

[x]

t

F (⇣x
s

: s  t) = Q
�

e(1+p)⇣

tF (⇣
s

: s  t)
�

.

Proof. First we remind the reader of the notation
P

[x]

t

:A

introduced earlier in this
section. In particular,

P

[x]

t

:u

i

stands for the sum taken over distinct particles at time
t which result from the fragmentation of the interval u

i

, which is E
u

–almost surely a
component of U(0). Now we make the following simple calculation:

E
u

X

[x]

t

F (⇣x
s

: s  t) =
1
X

i=1

E
u

X

[x]

t

:u

i

F (⇣x
s

: s  t)

=
1
X

i=1

E
X

[x]

t

:(0,1)

F (⇣x
s

� log |u
i

| : s  t),

where the sums in i should be regarded as finite in case u consists of finitely many
blocks. In the second equality we have used the fact that, fixing x 2 u

i

, the law of Ix
t

under E
u

is the same as the law of |u
i

| ·Ig(x)
t

under E, were g is the a�ne map sending

u
i

to (0, 1). This means that the law of ⇣x
t

under E
u

equals the law of ⇣g(x)
t

� log |u
i

|
under E.

Now we make a size-biased pick: for ↵ 2 R, we can write

E
X

[x]

t

F (⇣x
s

+ ↵ : s  t) = E
X

[x]

t

Ix
t

· (Ix
t

)�1 · F (⇣x
s

+ ↵ : s  t)

= E
X

[x]

t

P(� 2 Ix

t

|F
t

) · (Ix
t

)�1 · F (⇣x
s

+ ↵ : s  t)

= E
X

[x]

t

1
(�2Ix

t

)

· (Ix
t

)�1 · F (⇣x
s

+ ↵ : s  t)

= E (I
t

)�1 · F (⇣
s

+ ↵ : s  t).

The first and final lines are trivial. In the second we use the fact that the uniform
random variable � is independent of the fragmentation process. In the third line we
use the F

t

–measurability of everything outside the conditional probability in the line
before.

To obtain the required result it remains to use the definitions of the measure Q, the
process ⇣

t

, and the special value c
p

= �(p)(1 + p)�1:

dQ

dP

�

�

�

�

G
t

= exp
�

�(p)t� p⇠
t

�

= I�1

t

exp
�� (1 + p)⇣

t

�

.

Substituting this simple rearrangement into the previous display yields the required
result.
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The Many-to-One Lemma relates functionals of paths of fragmentation processes to
functionals of the paths of ⇣. In view of this property, the process (⇣,Q) is referred
to as the spine of the fragmentation process.

1.2.5 Frozen fragmentation processes

Usually the simple Many-to-One Lemma above will be su�cient for our purposes.
On one occasion, however, we will need a version that we can apply to frozen frag-
mentation processes. The following definition was introduced by Bertoin [11]. His
picturesquely named frosts bear the same relation to fragmentation processes as stop-
ping times do to Markov processes.

Definition 1.8. Let Fx := (Fx

t

: t � 0) denote the filtration (completed by null sets)
generated by the process (Ix

t

: t � 0). We call a random function T : (0, 1) ! [0,1]
a frost for the fragmentation process U if

1. for all x 2 (0, 1), T
x

is an Fx–stopping time; and

2. T
x

= T
y

whenever x 2 (0, 1) and y 2 Ix

T

x

.

A fragmentation process U together with a frost T and a time t � 0 naturally
correspond to the element of U whose decomposition is given by

�Ix

T

x

: x 2 (0, 1), T
x

 t
 [ {Ix

t

: x 2 (0, 1), T
x

> t} ;

see Figure 1.3, page 19. We will use the notation
P

(T,t)

to refer to sums taken over
the distinct interval components of this decomposition. Such sums can be constructed
rigorously as random variables, but this time we don’t labour the point.

Given a frost T , we introduce the G–stopping time ⌧(T ) := T
�

, where � is the
uniformly distributed random tag used to define I. We now state a Many-to-One
Lemma for frosts. It is proven in the same way as the standard Many-to-One Lemma.

Lemma 1.9. For each s 2 [0, t] let F
s

be a map in m+D([0, s]). For any frost T and
any starting configuration u 2 U we have

E
u

X

(T,t)

F
T

x

^t(⇣
x

s

: s  T
x

^ t) =
1
X

i=1

Q
�

e⇣⌧^t

(p+1)F
⌧^t(⇣s � log |u

i

| : s  ⌧ ^ t)
�

,

where ⌧ := ⌧(T ). In particular,

E
X

(T,t)

F
T

x

^t(⇣
x

s

: s  T
x

^ t) = Q
�

e⇣⌧^t

(p+1)F
⌧^t(⇣s : s  ⌧ ^ t)

�

.

Our second and third main results concern the survival probability of killed fragmen-
tations, which we proceed to define in the next section.
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t

a

Figure 1.3. An illustration of the frost T := x 7! inf{t � 0 : I

x

t

< a} for

fixed a 2 (0, 1). Time runs vertically. Whenever a fragment is produced whose

size is smaller than a, it is “frozen”, ceasing to break apart any further. These

fragments, in their frozen state, are represented at the time of their birth as

thick horizontal lines. The remaining fragments continue to evolve as usual;

this is signified by the vertical dashed lines. At the bottom of the figure, we

have illustrated the element of U corresponding to the frost T and the time t.

1.2.6 Fragmentation processes with killing

Given a fragmentation process, Knobloch and Kyprianou [29] fix parameters a, c 2 R,
and introduce an embedded process in which particles born at time t are removed
from the system if their size is less than exp(�a� ct). This corresponds to removing
the particle tagged by x 2 (0, 1) from the system at time t if and only if ⇠x

t

� ct+ a.
We will call the resulting process the (a, c)–killed fragmentation process. When a < 0,
the (a, c)–killed fragmentation process obviously dies immediately, so we can assume
that a � 0. In fact, little loss of generality is incurred by making the assumption
a = 0, and, for simplicity, we will do so in the statements and proofs of our second
and third main results. We will refer to the (0, c)–killed fragmentation process as the
c-killed process; see Figure 1.4, page 20.

Let us now fix a fragmentation process, and consider what happens to the c-killed
process as c varies. It turns out that the case c = c

p

is critical in the following
sense. Whenever c  c

p

, the c–killed process almost surely dies within a finite period
of time. When c > c

p

, the probability of survival lies in (0, 1). With these facts
in mind, we say that a c–killed fragmentation process is supercritically killed when
c > c

p

, critically killed when c = c
p

, and subcritically killed when c < c
p

.
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t

L

c

Figure 1.4. The � log transform of a c-killed fragmentation process in case

⌫(U) < 1. L

c

is the graph of the map t 7! ct. Particles whose ⇠–values at

birth fall above this line, are killed instantly; they are represented by hollow

circles. The remaining particles (whose � log values correspond to the solid

circles) reproduce as normal.

Finally, we introduce some more notation that will be used later. For ✏ > 0, we let
⇢(✏) stand for the survival probability of the (c

p

+✏)–killed fragmentation process. We
also let (t) stand for the probability that the critically killed fragmentation survives
until time t � 0. Later on, we will consider the asymptotics of ⇢(✏) as ✏ # 0, and the
asymptotics of (t) as t ! 1.

1.2.7 Partition-valued fragmentation processes

In Chapter 2, we will show how to calculate the second moments of random variables
of the form

Z :=
X

[x]

t

F (Ix
s

: 0  s  t),

for elements F 2 m+D([0, t]). One way of tackling this problem would be to formulate
a Many-to-Two Lemma, expressing second moments in terms of two randomly tagged
particles. Harris and Roberts [26] develop this approach for a large class of branching
processes, and address the more general problem of calculating k’th moments for any
integer k � 1. Our approach is slightly di↵erent—we will express second moments in
terms of a single randomly tagged particle—but the Many-to-Two approach would
work just as well.
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The first step is to write EZ2 = EZ + E⇤, with

⇤ :=
X

[x]

t

6=[y]

t

F (Ix
s

: 0  s  t)F (Iy
s

: 0  s  t),

where the sum is over distinct components of the fragmentation process which are
alive at time t. We would then like to proceed by using an ancestral decomposition
of the fragmentation process. As will become clear, giving such a decomposition
rigorous sense relies on the existence of a suitable Poissonian construction of frag-
mentation processes at the path-wise level. Such a construction is not available (in
the literature) for U–valued processes, beyond Basdevant’s tantalizing remark that
“A Poissonian construction of an [interval] fragmentation with no erosion is also pos-
sible... For more details, we refer to Berestycki [7] who has already proved this result
for [ranked] fragmentation and the same approach works in our case.” Rather than
pursue this approach, we will show how to relate a given U–valued fragmentation to
a particular partition-valued process whose Poissonian construction has been consid-
ered extensively in the literature (see, for instance, [10, 15]). We attempt to keep the
exposition as concise as possible. No material in this section is original; the construc-
tive work is lifted from [10], and the coup de grâce is delivered by [5].

We start with a few definitions:

1. A partition of A ⇢ N is collection of pairwise disjoint, non-empty subsets of
N whose union equals A. For A ⇢ N, the symbol P(A) stands for the set of
partitions of A. We write P for P(N).

2. Given a set A ⇢ N and a partition � 2 P(A), we write N
�

2 N [ {1}
for the number of blocks (i.e. subsets of N) in �. We then write the blocks
(B�

i

: 1  i  N
�

) of � in order of increasing least element. Normally we will
just write � = (B

1

, B
2

, ...) with the understanding that this sequence may be
finite.

3. For sets A ⇢ B ⇢ N and � = (B
1

, B
2

, ...) 2 P(B), we write �
A

for the element of
P(A) whose blocks are the non-empty entries in the sequence (B

1

\A,B
2

\A, ...).
4. For A ⇢ N we define P⇤(A) := {� 2 P : �

A

6= {A}}. We write P⇤ for P⇤(N),
which of course is just P � {N}.

5. We write [n] for {1, ..., n}, P
n

for P([n]), and P⇤
n

for P⇤([n]). In particular, note
that elements of P⇤

n

are partitions of N—not of [n].

6. Given a partition � 2 P , we write �n for the block of � that contains n.

For elements � and � of P , we write n(�,�) for the supremum of those k 2 N
witnessing �

[k]

= �
[k]

. Note that n(�,�) = 1 if and only if � = �. We then define
d(�,�) := exp(�n(�,�)). The pair (P , d) is a compact metric space. We endow P
with the �–algebra generated by the collection of d–open subsets of P .

We also need to introduce a mechanism by which one partition can be used to dislo-
cate another. To this end, fix a set A ⇢ N, and a partition � 2 P . Let (a

1

, a
2

, ...) be
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the increasing enumeration of the elements of A (this sequence may be finite). We
define an equivalence relation on A by saying that (a

i

⇠ a
j

) if and only if i and j lie
in the same block of �. The resulting equivalence classes form a partition of A which
we call � � A.

Now we fix A ⇢ N, a partition � = (�
1

,�
2

, ...) 2 P(A) and a partition � 2 P .

Given k 2 N we define a new partition �
k� � 2 P(A) as follows. If k > N

�

, then the

operator �
k� (·) acts as the identity: � k� � = �. Otherwise, we replace the block �

k

with � ��
k

(as defined in the previous paragraph) and leave the blocks (�
i

: i 6= k)

in tact.

We emphasize that �
k� (·) may act as the identity on �, even when N

�

� k. This
happens precisely when the set {1, 2, ...,Card(�

k

)} is a subset of some block of �.
(This condition reduces to � = {N} in case Card(�

k

) = 1, but otherwise has non-
trivial import.)

Next we introduce the auxiliary space S# ⇢ [0, 1]N defined by

S# :=

⇢

s
1

� s
2

� ... � 0 :
X

s
i

= 1

�

,

which we endow with the topology of point-wise convergence. A measure � on S# is
called a Lévy measure if it assigns no mass to the singleton {(1, 0, 0, ...)}, and satisfies
the integrability condition

Z

S#
(1� s

1

)�(ds) < 1. (1.3)

Given an element s 2 S#, we follow Bertoin following Kingman by defining a proba-
bility measure P s on P using a “paint-box” construction. Let Y be a random variable
specified by setting P(Y = n) = s

n

, and let (Y
i

: i 2 N) be a sequence of independent
copies of Y . We define an equivalence relation on N by writing

(i ⇠ j, s) () Y
i

= Y
j

.

This relation generates a random partition of N whose law we denote by P s. Given
a Lévy measure �, we define the mixture

µ
�

(·) :=

Z

S#
�(ds) · P s(·)

which is a measure on P . We note that µ
�

is sigma-finite for all Lévy measures �.
Indeed, for any s 6= (1, 0, 0...), we have

P s(P⇤
n

) = 1�
1
X

k=1

sn
k

 1� sn
1

 n(1� s
1

)

and also P s({N}) = 0. It remains to note that P =
SP⇤

n

[ {N}, that Lévy measures
assign no mass to {(1, 0, 0, ...}, and to apply the integrability condition (1.3).
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Now we fix a Lévy measure, and show how to associate it with a P–valued stochastic
process. We have seen that (P , d) is a compact metric space—in particular, Polish—
and that µ = µ

�

is a sigma finite measure on this space. We endow N with the
discrete metric, and write # for the counting measure. Then [0,1)⇥ N⇥ P is also
Polish, and Leb ⇥ # ⇥ µ is a �–finite measure on this space. The machinery of
Poisson point processes can therefore grind into action. We let M be the Poisson
random measure on [0,1) ⇥ N⇥ P with intensity Leb⇥# ⇥ µ. We let Mn denote
the projection of M to the space [0,1) ⇥ [n] ⇥ P⇤

n

. The atoms of Mn arrive at the
finite rate n · µ(P⇤

n

). Fixing n 2 N, this observation allows us to construct a process

(⇡(n)

s

: s � 0) according to the following rules:

1. ⇡(n)

0

:= [n].

2. ⇡(n) is a pure jump process which jumps at time t only if Mn has an atom on
the fibre {t}⇥ [n]⇥ P⇤

n

.

3. If Mn has an atom at (t, k, ⇡) we define ⇡(n)

t

:= ⇡
k� ⇡(n)

t� .

An atom (t, k, ⇡) of Mn may act trivially in the construction above; see the previous
paragraph beginning “We emphasize that...”.

The processes ⇡(n) are piecewise constant and, by construction, right-continuous

(hence càdlàg). Moreover, it is quite easy to see that they are compatible with

restriction in the sense that (⇡(n+1)

t

)
[n]

= ⇡(n)

t

for all n 2 N at t � 0. This allows us to

define a P-valued process ⇧ by insisting that for all n 2 N and t � 0, the restriction

of ⇧
t

to [n] equals ⇡(n)

t

. Moreover, we can assert that ⇧ is a pure jump càdlàg process.

To summarize, we have seen the following. There exists a pure jump càdlàg process

that jumps only when M has atoms. When M has an atom at (t, k, ⇡), the partition

⇧(t�) is replaced by the partition ⇡
k�⇧

t�. There is clearly only one P-valued process

with these properties, and we call ⇧ = ⇧(�) the Poissonian P–fragmentation with

Lévy measure �. We make the following definition:

Definition 1.10. A P–valued process is called a conservative homogeneous P–frag-
mentation process if it is equal in law to ⇧(�) for some Lévy measure �.

Now we turn our attention to the subject of asymptotic frequencies. A set A ⇢ N is
said to have an asymptotic frequency if the limit

lim
n!1

1

n
#(A \ [n])

exists, and then we write |A| for value of this limit. For an index set I ⇢ N and a
sequence (a

i

: i 2 I) of positive numbers with
P

a
i

 1 we write (a
i

: i 2 I)# for the
decreasing rearrangement of (a

i

: i 2 I) (in case some of the a
i

are equal, we preserve
their original ordering in the rearrangement).

Lemma 1.11. Fix a Poissonian P–valued fragmentation ⇧, write (B
1

(t), B
2

(t), ...)
for the blocks of ⇧(t), and N

t

for N
⇧

t

. The event

|B
i

(t)| exists and is postive for all t � 0 and 1  i  N
t
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occurs with probability 1. On this event it is almost surely the case that

N

t

X

i=1

|B
i

(t)| = 1 for all t � 0.

Suppose M has an atom at (t, k, ⇡), and that N(t) � k. The sequence (|B
i

(t)| : 1 
i  N

t

)# is equal to the sequence obtained by interpolating the values (|⇡
j

| · |B
k

(t�)| :
1  j  N

⇡

)# between the elements of (|B
i

(t�)| : i 6= k, 1  i  N(t�))#.

With regards to the final statement, we note that µ
�

–almost everywhere, |⇡
j

| 6= 0 for
all 1  j  N

⇡

.

Let us summarise some other useful properties of conservative homogeneous P–valued
fragmentation processes. We recall that a permutation on N is called “finite” if
its restriction to N � [n] acts as the identity for some n 2 N, and note that any
permutation naturally induces a map from P to itself.

Theorem 1.12. Let ⇧ be a conservative homogeneous P–valued fragmentation pro-
cesses and assume that ⇧ is càdlàg. Then

1. ⇧ has the Feller property.

2. ⇧ is exchangeable: for all finite permutations � on N, �⇧
t

is equal in law to ⇧
t

.

3. ⇧ has the fragmentation property: given ⇧
t

= (B
1

, B
2

, ...), the process

(⇧(t+ s) : s � 0) is equal in law to the process (�(1)

s

�B
1

,�(2)

s

�B
2

, ... : s � 0),
where the �(i) are independent copies of ⇧.

4. The event {|⇧1

t

| exists for all t � 0} has probability 1, and (� log |⇧1

t

| : t � 0)
is a subordinator.

The second two properties are usually used to define P–valued fragmentations, before
showing that every such process has a Poissonian version.

Now we explain the fundamental relationship between U–valued and P–valued frag-
mentation processes. Let us fix a U–valued fragmentation process U . We assume that
the underlying probability space is rich enough to support a sequence (X

n

: n 2 N)
of independent random variables each with the uniform distribution on (0, 1), which
are independent of U . In an abuse of notation, we will write E for the joint law of the
fragmentation process U , this sequence of random variables, and the uniform random
tag � we used before. Recalling that the set

[

{(0, 1) \ U(t) : t � 0}

almost surely has Lebesgue measure 0, it is E–almost surely the case than for all t
“simultaneously”, we can well-define an equivalence relation on N by

(i ⇠ j, U
t

) () X
i

and X
j

lie in the same block of U
t

.
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We let ⇧U

t

stand for the partition of N generated by this equivalence relation, and
then let ⇧(U) := (⇧U

t

: t � 0). Finally, let us write % : U ! S# for the map u 7!
(|u

1

|, |u
2

|, ...). We note that if ⌫ is a dislocation measure, then %⌫ is a Lévy measure.
The following result is obtained from [5] by first mapping U to a fragmentation taking
values in the space of ordered partitions of N, and then projecting this fragmentation
onto P .

Theorem 1.13. Fix a U-valued fragmentation process U with dislocation measure ⌫.
Then the process ⇧(U) is equal in law to ⇧(%⌫).

1.3 What do fragmentation processes look like?

In this section we will discuss some existing results that describe the asymptotic be-
haviour of fragmentation processes, focusing first on results concerning the speed of
fragments, before turning our attention to killed fragmentation processes. We will
see that di↵erent qualitative behaviours arise depending on the underlying disloca-
tion measure ⌫. These di↵erent cases can be separated conveniently using the Laplace
exponent � of the intrinsic subordinator ⇠.

We say the particle labelled by x 2 (0, 1) has speed v 2 [0,1] if we have the almost
sure convergence

⇠x
t

t
=

� log Ix
t

t
! v as t ! 1.

This means, of course, that at the large time t, the fragment containing the tag x has
size approximately equal to exp(�vt). The interesting case where v = 1 corresponds
to particles exhibiting superexponential decay.

Before proceeding with our discussion, let’s introduce a few parameters that will ap-
pear frequently. We define v

typ

:= �0(0+) 2 (0,1], v
min

:= �0(p) = c
p

2 (0,1), and
v
max

:= �0(p+) 2 (0,1]. As we will see, these values, when finite, are the typical,
minimal and maximal particle speeds, respectively.

Jean Bertoin [12] carried out the first work on the asymptotic properties of fragmen-
tation processes in their most general form. (Although [12] was only published in
2003, preprints existed as early as 2001.) In this paper, the paths of fragmentation
processes are described using a family of random measures. For t � 0, introduce the
measures ⇢

t

on the Borel sets of [0,1), where

⇢
t

:=
X

[x]

t

Ix
t

�
⇠

x

t

/t

.

As usual, the measure �
a

attributes unit mass to the value a 2 [0,1). Bertoin shows
that a law of large numbers and a central limit theorem hold for the measures (⇢

t

: t �
0) under certain hypotheses. To be precise, we introduce the value �2 := ��00(0+) 2
(0,1], and let b⇢

t

stand for the image of ⇢ under the map x 7! p
t(x� v

typ

)/�.
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Then [12, Theorem 1(a)], as t ! 1,

⇢
t

P�! �
vtyp whenever v

typ

< 1, and

b⇢
t

P�! N whenever �2 < 1,

where N denotes the standard normal distribution.

One very simple consequence of the first convergence result in the previous display
is that ⇠

t

/t ! v
typ

in probability, whenever v
typ

< 1. In fact, the strong law of
large numbers for the subordinator ⇠ tells us that this convergence holds almost
surely. This simple result has an interesting implication. As Bertoin notes [12, pg.
7], the measure ⇢

t

coincides with conditional distribution of ⇠
t

/t given the underlying
fragmentation process (after this conditioning, the “only randomness” comes from
the uniform random tag used in the definition of ⇠). As a result, whenever v

typ

< 1,
�

�{x 2 (0, 1) : Ix has speed v
typ

}�� = 1.

This makes precise the statement that v
typ

is the typical fragment speed, whenever
this value is finite.

In the case where v
typ

= 1, Bertoin [12, Proposition 1] extends the two convergence
statements above, under the additional hypothesis that � varies regularly at 0. The
statement of this theorem is rather complicated, so we omit it here.

Bertoin then proceeds to study large deviations of the measures (⇢
t

: t � 0) by
applying the Gärtner-Ellis theorem. Rather than quoting these results in full, let
us mention that they are used [12, pg. 15] to explicitly calculate the value of the
function C on (�1, 0) defined by

C(a) := lim
✏#0

lim
t!1

log#
�Ix

t

: x 2 (0, 1), e(a�✏)t  Ix
t

 e(a+✏)t

 

in terms of the Legendre transform of a function associated with �. Roughly speak-
ing, exp(C(a)t) is the number of particles at time t of size exp(at), whenever t is
su�ciently large. Bertoin then uses the properties of the function C to make the
following remark: almost surely there exist particles of size roughly exp(�v

min

t) at
time t, though the number of such particles is always less than exp(⌘t) for all ⌘ > 0.
Moreover, there are no particles of larger size at time t.

The previous paragraph suggests that the size of the largest particle has size approx-
imately equal to exp(�v

min

t) at time t. Indeed, we refer to [14, Corollary 1.4] for a
proof of the following important fact: the convergence

1

t
min {⇠x

t

: x 2 (0, 1)} ! c
p

holds almost surely as t ! 1. We remark that this holds true for all (conservative,
homogeneous) fragmentation processes; no special hypothesis on � (or equivalently,
on the dislocation measure ⌫) is required.
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We also make the important remark that this result does not imply the existence of
an x 2 (0, 1) such that ⇠x

t

/t ! v
min

as t ! 1. In general, this is not the case; the
largest particle at time t > s is not necessarily a descendant of the largest particle at
time s.

So far, we’ve seen that the largest particle has speed v
min

and that the typical particle
speed is v

typ

whenever this value is finite. Since � is strictly concave and p > 0, we
know that v

min

< v
typ

, as we’d expect. Pursuing these ideas further, it’s natural to
ask whether particles exist with other speeds. This question is addressed in Julien
Berestycki’s paper Multifractal spectra of fragmentation processes. He calculates the
Hausdor↵ dimension of the set G

v

of particles of speed v,

G
v

:=

⇢

x 2 (0, 1) : lim
t!1

⇠x
t

t
= v almost surely

�

in terms of the Legendre transform of �. Let us summarize his results, which are ob-
tained under the hypothesis that p < 0, forcing v

typ

< 1. We use the notation D(v)
to stand for the Hausdor↵ dimension of G

v

. Berestycki proves the following state-
ments: D is a continuous function on (v

min

, v
max

), D(v
typ

) = 1, and D(v) decreases
as |v � v

typ

| increases. Interestingly, it is not necessarily the case that D(v) ! 0 as
v ! v

max

. This reflects the existence of particles exhibiting superexponential decay,
which correspond to the set G1. Whenever p > �1 and v

max

= 1, Berestycki shows
that D(1) = 1 + p.

Another interesting question one can ask about fragmentations concerns the cardi-
nalities of the sets

H
v,a,b

(t) :=
�Ix

t

: x 2 (0, 1), ae�vt  Ix
t

 be�vt

 

,

where 0 < a < b. Using powerful discretization methods, Bertoin and Rouault [15,
Corollary 2] are able to show that

lim
t!1

1

t
log#H

v,a,b

(t)

exists almost surely and takes positive values whenever v 2 (v
min

, v
max

) and 0 < a < b.
This result makes precise the statement that the number of particles of size approxi-
mately equal to exp(�vt) grows exponentially for any possible speed v.

Now let us turn our attention to the theory of killed fragmentation processes, which
we introduced in 1.2.6. The killing scheme defined there was first implemented ex-
plicitly in 2014 by Knobloch and Kyprianou in their paper Survival of homogeneous
fragmentation processes with killing [29]. (In fact, as far as we know, killed fragmen-
tation processes haven’t been considered in the literature since.) Their paper contains
three main results, which we now summarize, writing &(a, c) for the probability that
the (a, c)–killed fragmentation process survives.

First they show that &(a, c) = 0 whenever c  c
p

, and that for fixed c > c
p

the
function a 7! &(a, c) is an increasing (0, 1)-valued function on [0,1). Letting Na,c(t)
stand for the number of particles alive in the (a, c)–killed fragmentation process at
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time t, they then show that whenever the process survives, lim sup
t!1 Na,c(t) = 1

almost surely. Finally, they show that the speed of the largest particle in a (a, c)–
killed process is still c

p

almost surely, on the event that the process survives.

Although [29] is the first paper to explicitly deal with killed fragmentation processes,
we mention that several results in Natalie Krell’s paper [31], published six years ear-
lier, can be interpreted as concerning fragmentation processes with two-sided killing.
In this context, she establishes more precise versions of some of the results mentioned
in the previous paragraph, under the hypothesis that the absolutely continuous part
of the dislocation measure assigns infinite mass to all intervals of the form [0, ✏) with
✏ > 0. Indeed, let Na,b,c(t) denote the number of particles alive at time t which have
remained in the intervals (exp(a� cs), exp(b� cs)) for all s 2 [0, t]. Krell shows that
with positive probability Na,b,c(1) 6= 0 whenever a < 0 < b and c > c

p

. Whenever
this obtains, she shows that Na,b,c(t) almost surely grows at an exponential rate,
which she explicitly calculates in terms of the characteristics of the Lévy process ⇠.

Having given a flavour of the qualitative properties of fragmentation processes, we
proceed in the next section to a discussion of our main results. This will include an ex-
planation of the intimate connection between fragmentation processes and branching
random walk, which provides the basis for our proofs. As we will explain, however,
the infinite activity exhibited by fragmentation processes in their full generality leads
to complications that must be treated with care.

1.4 Main results

Our first result concerns the size of the largest fragment of a conservative homoge-
neous fragmentation process. We show that the largest particle has roughly the size
t�↵ exp(�c

p

t) at time t, where ↵ > 0 is a constant that we identify explicitly in terms
of the characteristics of the underlying process.

Theorem 1.14. Starting from any initial configuration in U , the following conver-
gence holds in probability, as t ! 1:

min
x2(0,1) ⇠x

t

� c
p

t

log t
�! 3

2
(1 + p)�1 .

Next we turn our attention to the class of killed fragmentation processes introduced
in 1.2.6. First we show that the survival probability of a (c

p

+✏)–killed fragmentation
process is roughly exp

�� �

✏

1/2

�

whenever ✏ is small, where � > 0 is a constant that we
identify.

Theorem 1.15. The survival probability ⇢(✏) of the (c
p

+ ✏)–killed fragmentation
process satisfies the following asymptotic identity:

lim
✏#0

✏1/2 log ⇢(✏) = �
r

⇡2(1 + p)|�00(p)|
2

.

28



Our third and final result concerns the long-term survival probability of a critically
killed fragmentation. We will show that the probability that such a process survives
until the large time t is roughly exp(��t1/3), where � > 0 is a constant that we
identify.

Theorem 1.16. The probability (t) that the critically killed fragmentation process
survives until time t satisfies the following asymptotic identity:

lim
t!1

1

t1/3
log (t) = �

✓

3⇡2(1 + p)2|�00(p)|
2

◆

1/3

.

Having stated our main results, we conclude this chapter by discussing the key idea
that kick-starts our proofs: the connection between fragmentation processes and
branching random walk. In particular, we highlight the usefulness and limitations of
this relationship.

Given a fragmentation process U , we defined (in 1.2.3) an associated collection of
stochastic processes (⇠x : x 2 (0, 1)) by setting ⇠x

t

:= � log |Ix

t

|. For fixed t � 0, we
can encode the values ⇠x

t

(as x ranges over representatives of interval components of
U(t)) using the point process

W
t

:=
X

[x]

t

�
⇠

x

t

.

We write � logU for the stochastic process whose value at time t is W
t

, and we endow
� logU with the genealogical information it naturally inherits from U .

Suppose now that U is a finite activity fragmentation process, and write ⌧ for the time
of the first dislocation event. Then the fragmentation property immediately implies
that � logU is equal in law to the branching random walk in continuous time (with
branching rate ⌫(U)) generated by the point process W

⌧

. To see why, fix x 2 (0, 1)
and write � + ⌧ for the time when Ix

⌧

fractures. By the fragmentation property, the
following statement holds: ⌧ and � are independent exponential random variables
with parameter ⌫(U) and we have the following equality in law of point processes:

(Iy
⌧+�

/Ix
⌧

: y 2 Ix

⌧

)
L

= (Ix
⌧

: x 2 (0, 1)).

Moreover, these point processes are independent. Taking minus logarithms, we de-
duce that

(⇠y
⌧+�

: y 2 Ix

⌧+�

)� ⇠x
⌧

L

= (⇠x
⌧

: x 2 (0, 1)),

and that these point processes are independent. It follows that (W
t

: t � ⌧) is equal
in law to the point process obtained by rooting independent copies of (W

t

: t � 0)
at each ⇠–particle alive at time ⌧ , and taking their sum.

Branching random walk analogues of Theorems 1.14, 1.15 and 1.16 exist in the liter-
ature under hypotheses of varying severity; we refer to [3], [25] and [2] respectively.
In light of the connection between fragmentation processes and branching random

29



walks just discussed, it is natural to expect that we might be able to adapt the proofs
contained in these papers to the present context; this is exactly what we do in the
following chapters. As Jean Bertoin’s comment (quoted on page 4) suggests, this
process of proof adaptation is not a trivial technical exercise.

In contrast to our method of proof adaptation, it is sometimes possible to use a
discretization method introduced by Bertoin and Rouault in [15] to directly transfer
results from branching random walks to fragmentation processes. We conclude this
chapter by briefly describing this method and explaining why it will not work for us
(at least in the case of our second and third main results).
Bertoin and Rouault start by observing that the process Wh := (W

nh

: n 2 N) is a
branching random walk in discrete time, even in the infinite activity case. Speaking
very roughly, they then send h # 0, and use the Croft-Kingman lemma, to extend
a famous result of John Biggins concerning discrete time branching random walk to
the fragmentation context. This is only possible because Biggins proved his result in
su�cient generality. In particular, Biggins does not exclude the possibility of infinite
o↵spring in his branching random walk. Nor does he assume that the point process
describing o↵spring positions can be constructed using a sequence of independent and
identically distributed random variables. In short, the branching random walk Wh

satisfies the hypotheses of Biggins’ paper.

In contrast, our three references, [3], [25] and [2], assume at the very least that the
size of the first generation has a finite moment of order 1 + �, for some � > 0. This
already restricts the scope of their results to branching random walks in which birth
events produce a finite number of o↵spring. Starker still, the third of these references
assumes that the number of o↵spring of an individual is a fixed (finite) number, and
also assumes that particle positions (relative to birth position) are given by indepen-
dent identically distributed random variables. The branching random walk Wh does
not satisfy these hypotheses: o↵spring numbers are random, and may be infinite;
and particle positions are intrinsically dependent (the image of their values under the
map x 7! exp(�x) sum to unity, almost surely).

In this direction, we make a few further remarks concerning our first main result,
Theorem 1.14. In his paper Convergence in law of the minimum of a branching
random walk [1], Elie Aı̈dékon shows that for some random variable D (which is
almost surely positive on the event that the branching random walk survives) and
some deterministic c 2 (0,1), the following convergence obtains:

lim
n!1

P

✓

M
n

� x+
3

2
log n

◆

= E
�

e�c e

x

D

�

,

where M
n

denotes the minimal particle position. As the author remarks, “We can
see our theorem as the analogue of the result of Lalley and Sellke in the case of the
branching Brownian motion: the minimum converges to a random shift of the Gum-
bel distribution.”

In the published version of this paper, various integrability conditions are assumed;
one of them is that the first generation size is almost surely finite (though need not
have a finite first moment). In the latest arXiv version (version 6, November 2013),
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however, even this mild hypothesis is not assumed, resulting in remarkably general
theorem. As the author notes, though, the non-lattice hypothesis is a necessary con-
dition for the result above to hold.

In fact, provided that the underlying dislocation measure is non-geometric, Dadoun
[22] has recently shown that the branching random walk Wh satisfies all the hypothe-
ses of arXiv version 6 of [1]. He then applies the Croft-Kingman lemma to deduce
that the appropriate analogue of Aı̈dékon’s result holds for fragmentation processes,
thereby providing finer information about the size of the largest fragment than our
Theorem 1.14 does.

We emphasize, though, that a branching random walk result with su�cient power
to yield a fragmentation result via the discretization method is only available in the
case of Theorem 1.14. Random walk results under su�ciently mild hypotheses do
not exist in the literature to grant similar proofs of Theorems 1.15 and 1.16.

In any case, we aim to present proofs that give some insight into why the intrinsic
structure of fragmentation processes negates the need for complicated collections of
moment conditions in the first place. It is natural to suspect that the questions we
ask (for instance, how large is the largest particle?) are not influenced by the presence
of (even infinitely many) very small particles. Our proofs, we hope, make clear how
this intuition plays out mathematically.
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CHAPTER 2

PRELIMINARY RESULTS

In this chapter we will develop the technical machinery required to adapt proofs of
branching random walk results to the fragmentation setting. The proofs of our three
main results proceed by the second moment method. Accordingly, the most impor-
tant result in this Chapter is Corollary 2.7, which provides a formula expressing the
second moment of certain functionals of fragmentation paths in terms of the spine
(⇣,Q) and the dislocation measure of the underlying fragmentation process. This
result is contained in the first section of this chapter, where we also prove a collection
of simple statements needed later.

Since we will express second moments in terms of the spine, we need to be able
to estimate the probabilities that (⇣,Q) behaves in certain ways. The results we
need are contained in the second section of this chapter, and concern the fluctuation
theory of spectrally positive Lévy processes of bounded variation. We prove these
results by making reference to the theory centred random walks with finite variance.
In particular, we will give a “Lévy version” of Mogulskii’s Theorem concerning the
small deviations of paths of random walks, which is the main technical tool used in
Chapters 4 and 5.

2.1 First results on fragmentation processes

We warm up with a simple application of the Many-to-One Lemma for frozen frag-
mentations, bounding from above the probability that at least one fragment remains
“large” as time passes. This result will enable us to painlessly extract the easy halves
of Theorem 1.15 and Theorem 1.16 from their branching random walk analogues.

Lemma 2.1. Let f and g be non-negative continuous functions on [0,1), and sup-
pose that g � f increases. Then, for any t � 0,

P
�9x 2 (0, 1) : ⇣x

s

 g
s

8s  t
�  e(1+p)g

tI
t

+
dte�1

X

i=0

e(1+p)(g

i+1�f

i+1)I
i

,

where I
r

:= Q
�

g
s

� f
s

< ⇣
s

 g
s

8s  r
�

for r � 0.
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Proof. We denote the probability we aim to bound above by p(t), and define the frost
T by

T
x

:= inf
�

t � 0 : ⇣x
t

 g
t

� f
t

 

,

with inf ; := 1. We note that T
x

is an Fx–stopping time by the Début Theorem (see
[43, II.76]), since the stochastic process t 7! ⇣x

t

� (g
t

� f
t

) has càdlàg paths almost
surely, and the set [0,1) is closed. Writing indicators in the form 1{·} (to avoid
subscripts), we make the trivial observation that

p(t)  P
�9x 2 (0, 1) : ⇣x

s

 g
s

8s  T
x

^ t
�

= P

✓

X

(T,t)

1
�

⇣x
s

 g
s

8s  T
x

^ t
 � 1

◆

.

Now we apply Markov’s inequality to bound p(t) above by

E
X

(T,t)

1
�

⇣x
s

 g
s

8s  T
x

^ t
 

.

Next we apply the Many-to-One Lemma for frosts to arrive at the bound

p(t)  Q
�

e(1+p)⇣

⌧^t1
�

⇣
s

 g
s

8s  ⌧ ^ t
 �

,

where ⌧ is the G–stopping time inf
�

t � 0 : ⇣
t

 g
t

� f
t

 

.

We continue by partitioning the sample space according to whether or not the in-
equality ⌧  t holds. If it does not, we have

Q
�

e(1+p)⇣

⌧^t1
�

⇣
s

 g
s

8s  ⌧ ^ t and ⌧ > t
 �

= Q
�

e(1+p)⇣

t1
�

⇣
s

 g
s

8s  t and ⌧ > t
 �

 e(1+p)g

tQ
�

⇣
s

 g
s

8s  t and ⌧ > t
�

= e(1+p)g

tQ
�

g
s

� f
s

< ⇣
s

 g
s

8s  t
�

.

If it does, we have

Q
�

e(1+p)⇣

⌧^t1
�

⇣
s

 g
s

8s  ⌧ ^ t and ⌧  t
 �

= Q
�

e(1+p)⇣

⌧1
�

⇣
s

 g
s

8s  ⌧ and ⌧  t
 �


dte�1

X

i=0

Q
�

e(1+p)⇣

⌧1
�

⇣
s

 g
s

8s  ⌧ and i  ⌧  i+ 1
 �

.

Now we show that the spectral positively of ⇣ provides the bound ⇣
⌧

 g
⌧

� f
⌧

on
{⌧ < 1}. Indeed, suppose that � := ⇣

⌧

� (g
⌧

� f
⌧

) is positive. By the continuity
of the function g � f we can find � = �(�) so small that the line L of gradient �c

p

rooted at ⇣
⌧

does not intersect the graph of g � f on [⌧, ⌧ + �]. But the path of ⇣ on
[⌧, ⌧ + �] lies almost surely above L. This means that ⇣

s

> g
s

�f
s

for all s 2 [⌧, ⌧ + �].
We deduce that P(� > 0) = 0, else the definition of ⌧ is contradicted with positive
probability.
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Since the function g� f increases, we conclude that ⇣
⌧

 g
⌧

� f
⌧

 g
i+1

� f
i+1

up to
a null set on the event {⌧  i + 1}. It follows that final expression in the previous
display is bounded by

dte�1

X

i=0

e(1+p)(g

i+1�f

i+1)Q
�

⇣
s

 g
s

8s  ⌧, and ⌧ � i
�

,

which in turn is trivially bounded above by

dte�1

X

i=0

e(1+p)(g

i+1�f

i+1)Q
�

g
s

� f
s

< ⇣
s

 g
s

8s  i
�

.

Putting the two bounds together gives the required statement.

Now we move on to the main goal of this section—calculating second moments of
random variables of the form

X

[x]

t

F (Ix
s

: s 2 [0, t]). (2.1)

for appropriate elements F 2 m+D([0, t]). The first step is to translate the problem
into the language of P–valued fragmentations. Throughout this section we fix an
interval-valued fragmentation U . We then write ⇧ for the P–valued fragmentation
⇧(U) introduced in 1.2.7. We write � for the Poissonian fragmentation �(⇢⌫), which,
according to Theorem 1.13, is equal in law to ⇧.

Recall that we defined ⇧ using a collection of independent uniform random variables
{X

i

: i 2 N}. The first step is to relabel the summands in (2.1) using this collection.
To this end write In

s

for the component of U(s) that contains X
n

, and In
s

for its
length. Then we have the almost sure equality

X

[x]

t

F (Ix
s

: s 2 [0, t]) =
X

n2N

F (In
s

: s 2 [0, t]) · 1(n = min{j : X
j

2 In

t

}).

Now we want to replace In
s

with |⇧n

s

| and In

s

with ⇧n

s

. We claim that

Lemma 2.2. For each n 2 N,

P(|⇧n

t

| exists for all n 2 N and t � 0) = 1.

The process (� log |⇧n

t

| : t � 0) is a subordinator for each n 2 N.

Proof. We aim to apply Theorem 3 of [10]. At first glance this theorem is immediately
applicable, because ⇧ is a homogeneous fragmentation process (it is equal in law to
�). Since we want the càdlàg property (part of the definition of ‘subordinator’),
however, we need to check that the regularized version of ⇧ that Bertoin works with
is indistinguishable from ⇧ as we have defined it. We now show that this follows from
the fact that we work with càdlàg interval-fragmentations.
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Bertoin’s regularisation (applied to our ⇧) is defined as follows. For each t introduce
a new partition ⇧(t+) defined by writing

(i ⇠ j,⇧(t+)) () (i ⇠ j, ⇧(t0)) for some t0 2 (t,1) \Q.

We will show that on the part of the sample space where ⇧ is well-defined, and where
t 7! U(t) is right-continuous (‘for all t simulataneously’), the functions t 7! ⇧(t) and
t 7! ⇧(t+) coincide. So let us assume that U is right-continuous at t, and show that
⇧(t+) = ⇧(t). (The following argument is path-wise; all random variables should be
read as realizations of random variables.) ⇧(t+) is plainly finer than ⇧(t) so we need
to show that (i ⇠ j,⇧(t)) implies (i ⇠ j,⇧(t+)). To this end, suppose (i ⇠ j,⇧(t)),
and fix a sequence (q

n

) of rationals decreasing strictly to t. Define V := U(t) and
V
n

:= U(q
n

). By hypothesis, V
n

! V as n ! 1. Let I stand for the component of V
containing X

i

and X
j

. By Lemma 2(i) of [11] we conclude that there are components
I
n

of V
n

with the property that I
n

! I. Write I
n

= (a
n

, b
n

) and I = (a, b). We
deduce that |a

n

� a| ! 0 and that |b
n

� b| ! 0. Since I is open and contains X
i

and
X

j

, we deduce that X
i

and X
j

both lie in I
n

whenever n is large enough. That is,
(i ⇠ j,⇧(q

n

)) for all large n.

Returning to our second moment problem, we conclude that for each n 2 N, the
process |⇧n| := (|⇧n

t

| : t � 0) is well-defined, and right-continuous. Clearly the
process In := (In

t

: t � 0) inherits right-continuity from U , and, by the law of large
numbers, is a version of |⇧n|. Right continuous versions are indistinguishable. We
conclude that
X

n2N

F (In
s

: s 2 [0, t]) · 1
(n=min{j:X

j

2In

t

}) =
X

n2N

F (|⇧n

s

| : s 2 [0, t]) · 1
(n=min⇧

n

t

)

.

We now want to replace ⇧ with � on the right-hand side. So far, we have worked with
indistinguishable random elements of the space D([0, t]), so have not need to use any
special properties of F . Since ⇧ and � are only equal in the sense of finite-dimensional
distributions, we now need to show that the functions F we are interested in are, in
some sense, determined in a countable way. We now make this idea precise.

Let (q
i

: i 2 N) be a sequence with entries [0,1). For each k 2 N fix a measurable
function A

k

: Rk ! [0,1), and fix a measurable function A : RN ! [0,1). For a
map f 2 D([0, t]) and k 2 N write f

k

for the sequence (f(q
1

), ..., f(q
k

)), and write f1
for the sequence (f(q

1

), f(q
2

), ...). We call ((q
i

), (A
k

), A) an approximation scheme if
for each f 2 D([0, t]) we have lim

k

A
k

(f
k

) = A(f1).

Definition 2.3. We call a function F : D([0, t]) ! R
+

nice if for some approxima-
tion scheme ((q

k

), (A
k

), A) we have A(f1) = F (f) for all f 2 D([0, t]).

The point is that if F is nice and the almost surely càdlàg stochastic processes X and
Y are equal in law, then so are the random variables F (X

s

: 0  s  t) and F (X
s

:
0  s  t). Indeed, A

k

(X
k

) = A
k

(X
q1 , ..., Xq

k

) is equal to A
k

(Y
k

) = A
k

(Y
q1 , ..., XY

k

)
in law. The former converges almost surely (on the part of the sample space where X
is càdlàg) to A(X

q1 , ...) = F (X
s

: 0  s  t) and the latter converges almost surely
to A(Y

q1 , ...) = F (Y
s

: 0  s  t).
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In short, provided F is nice, we can replace ⇧ with � in the previous display. This
completes the first step:

Lemma 2.4. Suppose that F : D([0, t]) ! R
+

is nice. Then

X

[x]

t

F (Ix
s

: s 2 [0, t])
L

=
X

n2N

F (|�n

s

| : s 2 [0, t]) · 1
(n=min�

n

t

)

.

Next we give the only examples of nice functions we need.

Lemma 2.5. Fix right-continuous functions a : [0, t] ! R and b : [0, t] ! R [ 1
with a < b, and a measurable map g : R ! [0,1). The following maps from D([0, t])
to R

+

are nice:

F (f) := 1(f(s) 2 K
s

8s 2 [0, t)), where K
s

:= [a
s

, b
s

].

With F as above, G(f) := F (f) · g(f(t)) .
.
Proof. The fact that F is nice is witnessed by any enumeration (q

i

: i 2 N) of
[0, t) \Q, the functions A

k

(x
1

, ..., x
k

) := 1(x
i

2 K(q
i

) 81  i  k), and the function
A(x

1

, ...) := 1(x
i

2 K(q
i

) 8i 2 N). To see that G is nice, let q
1

:= t and fix an
enumeration (q

i

: i � 2) of [0, t) \Q. Define B
1

: R ! [0,1) arbitrarily. For k � 2,
define (with A

k

and A as before) the maps B
k

(x
1

, ..., x
k

) := g(x
1

) · A
k�1

(x
2

, ..., x
k

),
and set B

k

(x
1

, ...) := g(x
1

) · A(x
2

, ...). Then ((q
i

), (B
k

), B) witnesses how nice G
is.

In particular, the second example of a nice function shows that the interval [0, t) in
the definition of F can be replaced with [0, t] to obtain another nice function.

We are now ready to present the second moment calculation. Before proceeding, we
recall (c.f. 1.2.7) that the following result, and its corollary, could be interestingly
approached from a di↵erent angle, by formulating a Many-to-Two Lemma in the
sense of Harris and Roberts [26].

Let us first introduce some notation to stream-line the proof. Recall that � is the
Poissonian fragmentation corresponding to our interval fragmentation U . For s � 0
and n 2 N, we define

�
s,n

:= 1(n = min�n

s

) and ⇤n

s

:= |�n

s

|,

where �n

s

stands for the block of �
s

which contains n 2 N. We will write A = (A
t

)
for the natural filtration associated with �, and E for the law of �.

Proposition 2.6. Fix a fragmentation process U with dislocation measure ⌫. Fix
t � 0, right-continuous functions a : [0, t] ! R and b : [0, t] ! R with a < b, and
define K

s

:= [a
s

, b
s

]. Define the random variable Z by

Z :=
X

[x]

t

1(Ix
s

2 K
s

8s 2 [0, t]).
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Define the function F : [0, t]⇥ [0, 1] ! [0,1] by

F (r,↵) := E
X

[x]

t�r

1(↵ Ix
s

2 K
s+r

8s 2 [0, t� r])

and the function G : [0,1)⇥ [0, 1]⇥ U ! [0,1] by

G(r,↵, u) :=
X

i 6=j

F (r,↵ · |u
i

|) F (r,↵ · |u
j

|).

Then EZ2 = EZ + �, where

� :=

Z

t

0

dr · E
X

[x]

r

1
(I

x

s

2K
s

8s2[0,r])

Z

U
G(r, Ix

r

, u)⌫(du).

Proof. We have seen that the functional f 7! 1(f
s

2 K
s

8s 2 [0, t]) is nice, so we
can use Lemma 2.4 to write

Z
L

=
X

�
t,n

· 1(⇤n

s

2 K
s

8s 2 [0, t]) =: ZP .

For Borel sets ↵ ✓ [0, t] and n 2 N, we define the event random variable An

↵

by

An

↵

:= 1(⇤n

s

2 K
s

8s 2 ↵).

We are now going to calculate EZP , and we start by separating “diagonal” and
“non-diagonal” terms:

Z2

P =

✓

X

i2N

�
t,i

Ai

[0,t]

◆✓

X

j2N

�
t,j

Aj

[0,t]

◆

= ZP +
X

i 6=j

�
t,i

�
t,j

Ai

[0,t]

Aj

[0,t]

=: ZP + Y.

We now make crucial use of the Poissonian construction of �. Let us write D1 for
the set of times at which � is discontinuous, and let us define D

t

:= D1 \ [0, t]. Un-
ravelling notation, we see that all non-zero elements in the sum

P

i 6=j

in the previous
display correspond to pairs of distinct blocks of �

t

. Let us fix i, j 2 N with i 6= j.
We make the following observations. The process ⇡(i_ j) used in the construction of
� is piecewise constant and right-continuous, and its jump times are a subset of (the
projection onto the time axis of) the atoms of the Poisson random measure M (i_ j)

(the restricted random measure used to define ⇡(i_ j)). These atoms arrive at a finite
rate. As a result, there is a unique r = r

i,j

2 D1 with the following properties: i
and j lie in the same block of �

r�, but in distinct blocks of �
r

. It therefore makes
sense to call �i(r

i,j

�) = �j(r
i,j

�) the most recent common ancestor of i and j. (Our
statement assumes that i and j are eventually separated; this is true.)

We use these comments to give an ancestral decomposition of Y . Given (i ⌧ j,�
t

),
we find their most recent common ancestor �i

r�. We then find the siblings �k

r

and
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�l

r

born to the parent �i

r� at time r which are the ancestors of i and j (respectively)
alive at time r. This verbal description gives rise to the following expression:

Y =
X

r2D
t

X

n2N

�
r�,n
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[0,r)

1
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r� 6=�

n

r

)

X

k 6=l

k,l2�n

r�

�
r,k

�
r,l

X

i2�k

r
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r

�
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Ai

[r,t]

Aj

[r,t]

.

Now we give an explicit enumeration of D1 in which each element is an A–stopping
time. Recall that the Poissonian fragmentation process � corresponds to a Poisson
point process M on [0,1) ⇥ N ⇥ P . For each n, k 2 N, let us write P (n,k) :=
{k} ⇥ (P⇤

n+1

� P⇤
n

), and M (n,k) for the restriction of the Poisson point process M

to [0,1) ⇥ P(n,k). We write D(n,k)

M

for the projection onto the time axis of the set

of atoms of M (n,k). These atoms arrive at a finite rate, so D(n,k)

M

almost surely has

no limit points. We can therefore enumerate D(n,k)

M

\ D1 by writing its elements in

increasing size: (r(n,k)
i

: i 2 N). We note that r(n,k)
i

is an A–stopping time—it is the
i’th time a dislocation occurs corresponding to an element of P (n,k). This enumeration
allows us to write
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X

r2D
t
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,

and to use the strong fragmentation property to calculate the conditional expec-
tations. Indeed, whenever r is an A–stopping time, we can use the independent
evolution of distinct blocks to write

EA
r

✓

X

i2�k

r

j2�l

r

�
t,i

�
t,j

Ai

[r,t]

Aj

[r,t]

◆

=

✓

EA
r

X

i2�k

r

�
t,i

Ai

[r,t]

◆✓

EA
r

X

j2�l

r

�
t,j

Aj

[r,t]

◆

whenever k 6= l and �
r,k

�
r,l

= 1 (which means in particular that �k

r

and �l

r

are distinct
blocks of �

r

). The fragmentation property tells us that

EA
r

X

i2�k

r

�
t,i

Ai

[r,t]

= EA
r

✓

X

i2N

e�
t�r,i

1(⇤k

r

· e⇤i

s

2 K
s+r

8s 2 [0, t� r])

◆

where the e⇤– and e�–values are derived from an independent fragmentation process
with the same law as �. We can therefore write

EA
r

X

i2�k

r

�
t,i

Ai

[r,t]

= FP(r,⇤k

r

)

where we define the function FP : [0,1)⇥ [0, 1] ! [0,1] by

FP(r,↵) := E
X

i2N

�
t�r,i

1(↵⇤i

s

2 K
s+r

8s 2 [0, t� r]).

By Lemma 2.4, F and FP are identical. Applying this work to our ancestral decom-
position of Y yields the following formula:

EY = E
X

r2D
t

X

n2N

�
r�,n

An

[0,r)

1
(�

n

r� 6=�

n

r

)

X

k 6=l

k,l2�n

r�

�
r,k

�
r,l

F (r,⇤k

r

)F (r,⇤l

r

).
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The next step is to write all dislocation activity in terms of the atoms of M . There
is a slight technicality to be addressed, which is e↵ectively induced by the fact that
we are working with the collection (�n : n 2 N) which contains duplicate blocks
(whereas the Poissonian construction uses the ordering of blocks by least element,
which contains no duplicates). To deal with this, write �

s

= (B
1

(s), ...) where the
(B

i

(s) : i 2 N) are the blocks of �
s

written in order of least element. If n 2 B
k

(s),
then we write f(s, n) = k. Writing (r, k

r

, ⇡
r

) for the atoms of M , we can say that
EY is equal to

E
X

r2D
t

X

n2N

�
r�,n

An

[0,r)

1
(f(r�,n)=k

r

)

X

i 6=j

�M
r,i

�M
r,j

F (r, |⇡i

r

| · ⇤n

r�)F (r, |⇡j

r

| · ⇤n

r�),

where �M
r,i

:= 1(i = min ⇡i

r

). We are now in fantastic shape to apply the compensation
formula (see [9, pg. 7]), which tells us that EY equals

Z

t

0

dr · E
Z

N⇥P
(#⇥ µ)(dk, d⇡)·
X

n2N

�
r�,n

An

[0,r)

1
(f(r�,n)=k)

X

i 6=j

�⇡
i

�⇡
j

F (r, |⇡i| · ⇤n

r�)F (r, |⇡j| · ⇤n

r�),

where �⇡
i

:= 1(i = min ⇡i), and µ := µ
⇢⌫

, the mixture of paint-boxes directed by the
Lévy measure ⇢⌫. Now we note that for each n 2 N and r > 0 there is precisely one
k 2 N for which f(r�, n) = k (this says nothing more or less than “�

r� is a partition
of N”). Performing the sum in k (viz. the integral #(dk)), we conclude that EY is
equal to

Z

t

0

dr · E
Z

P
µ(d⇡) ·

X

n2N

�
r�,n

An

[0,r)

X

i 6=j

�⇡
i

�⇡
j

F (r, |⇡i| · ⇤n

r�)F (r, |⇡j| · ⇤n

r�).

Now we translate the integral in ⇡ to an integral in u, recalling that µ is equal to the
(⇢⌫)–mixture of paint-boxes. For any functions measurable functions f, g : [0, 1] !
R

+

, and writing ◆
i

for the map that sends a sequence to its i’th element, we have
Z

P
µ(d⇡) ·

X

i 6=j

�⇡
i

�⇡
j

f(|⇡i|)g(|⇡j|) =

Z

S#
⇢⌫(ds) · P s

✓

X

i 6=j

�⇡
i

�⇡
j

f(|⇡i|)g(|⇡j|)
◆

=

Z

S#
⇢⌫(ds) ·

X

i 6=j

f(s
i

)g(s
j

)

=

Z

S#
⇢⌫(ds) ·

X

i 6=j

f(◆
i

s)g(◆
j

s)

=

Z

U
⌫(du) ·

X

i 6=j

(f ◆
i

⇢u)(f ◆
j

⇢u).

In the first line we just use the definition of µ as a mixture of paint-boxes; the second
equality is a simple consequence of the definition of the s–paint-box; the third is
trivial; and in the fourth we make a change of variables. It remains to note that ◆

i

⇢u
is precisely what we’ve been calling |u

i

| all along. We conclude that

EY =

Z

t

0

dr · E
X

n2N

�
r�,n

An

[0,r)

Z

U
⌫(du) ·

X

i 6=j

F (r, |u
i

| · ⇤n

r�)F (r, |u
j

| · ⇤n

r�).
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Sample paths of the fragmentation � have at most a countable number of discon-
tinuities. Lebesgue measure assigns zero mass to countable sets. We can therefore
replace r� with r in the previous expression, which, together with an application of
Fubini’s theorem, yields

EY =

Z

t

0

dr

Z

U
⌫(du) · E

X

n2N

�
r,n

An

[0,r]

G(r,⇤n

r

, u)

where G is defined in the statement of the proposition. We know that, for fixed r � 0
and u 2 U , that the functional

D([0, t]) 3 f 7! 1
(f(s)2K(s) 8s2[0,r]) G(r, f(r), u)

is nice, so Lemma 2.4 tells us that

E
X

n2N

�
r,n

An

[0,r]

G(r,⇤n

r

, u) = E
X

[x]

r

1
(I

x

s

2K
s

8s2[0,r])G(r, Ix
r

, u).

Returning to the previous display, we conclude that EY is equal to � (as defined in
the statement of the proposition). According to proposition Lemma 2.4, Z and ZP
are equal in law. We conclude that

EZ2 = EZ2

P = EZP + EY = EZ + �,

as required.

The following corollary is obtained from the proposition above by applying the Many-
to-One Lemma. We state the corollary in terms of the ⇣x–processes since we will only
use it in this form.

Corollary 2.7. Fix a fragmentation process U with dislocation measure ⌫. Fix t � 0,
right-continuous functions a : [0, t] ! R and b : [0, t] ! R[1 with a < b, and define
K

s

:= [a
s

, b
s

]. Define the random variable Z by

Z :=
X

[x]

t

1(⇣x
s

2 K
s

8s 2 [0, t]).

Define the function F : [0, t]⇥ R ! [0,1] by

F (r,↵) := Q
�

e(1+p)⇣

t�r 1
(↵+⇣

s

2K
s+r

8s2[0,t�r])

�

and the function G : [0,1)⇥ R⇥ U ! [0,1] by

G(r,↵, u) :=
X

i 6=j

F (r,↵� log |u
i

|) F (r,↵� log |u
j

|).

Then EZ2 = EZ + �, where

� :=

Z

t

0

dr · Q
✓

e(1+p)⇣

r 1
(⇣

s

2K
s

8s2[0,r])

Z

U
G(r, ⇣

r

, u) ⌫(du)

◆

.
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At a certain point in the proof of the lower bounds of Theorem 1.15 and Theorem 1.16,
we will need to recognize the Lévy measure of (⇣,Q) hidden in a rather complicated
expression. The next two results contain the required information.

We remind the reader that, given a measurable space (⌃
1

,G
1

), a measure space
(⌃

2

,G
2

, µ) and a measurable function f : ⌃
1

! ⌃
2

, the image measure fµ on (⌃
1

,G
1

)
is defined by fµ(·) := µf�1(·).

Lemma 2.8. For any non-negative measurable function g on (0, 1], we have

Z

U
⌫(du) ·

X

|u
i

|g(|u
i

|) =

Z 1

0

g(e�x)e�x

X

⌫(� log |u
i

| 2 dx)

=

Z 1

0

g(e�x)L(dx)

where L is the Lévy measure of (⇣,P), and where the sums are finite when the de-
composition of u contains finitely many fragments.

Proof. The proof is trivially completed by making two changes of variable. Let us
introduce, for each i 2 N, the projection map ⇡

i

: U ! [0, 1], which maps the open
set u 2 U to |u

i

|, the length of its i’th largest interval component. Let’s also write
F := � log and G(x) := F�1(x) = exp(�x). Using the change of variables formula

under the maps U \ {|u
i

| > 0} ⇡

i�! (0, 1]
F�! [0,1) we obtain

Z

U
|u

i

|g(|u
i

|)⌫(du) =

Z

U
(⇡

i

u)g(⇡
i

u)⌫(du) =

Z

1

0

xg(x)(⇡
i

⌫)(dx)

=

Z

1

0

GF (x)g(GF (x))(⇡
i

⌫)(dx)

=

Z 1

0

G(x)g(G(x))(F⇡
i

⌫)(dx).

By definition, for a Borel set A ⇢ R, we have

F⇡
i

⌫(A) = ⌫(u 2 U : � log |u
i

| 2 A).

The first equality in the statement of the lemma then follows by summing over i, and
the second follows from the explicit identification of L contained in 1.2.3.

In Lemma 1.6, we saw that the Lévy measure ⇧ of (⇣,Q) is e�pxL(dx). Applying
the previous lemma to the function x 7! xpg(x) for a given non-negative measurable
function g on (0, 1], we deduce the following corollary:

Corollary 2.9. For any non-negative measurable function g on (0, 1], we have

Z

U
⌫(du) ·

X

u1+p

i

g(u
i

) =

Z 1

0

g(e�x)⇧(dx)

where ⇧ is the Lévy measure of (⇣,Q).
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The next two results in this section will allow us, later on, to move ⇣–particle killing
barriers of the form t 7! f(t) to killing barriers t 7! f(t) + ✏t1/3. We will need to do
this when proving Theorem 1.15 and Theorem 1.16, in order to apply our version of
Mogulskii’s Theorem.

Lemma 2.10. There exists ⌘ > 0 such that

P
�9x 2 (0, 1) : ⇣x

s

< 0 8s 2 (0, 1], ⇣x
1

 �⌘
�

> 0.

Proof. Define the random variable

Y :=
X

[x]1

1
�

⇣x
s

< 0 8s 2 (0, 1], ⇣x
1

 �⌘
 

.

We want to show that P(Y � 1) > 0 for some ⌘ > 0. Since Y is integer-valued, it
su�ces to show that EY > 0. An application of the Many-to-One Lemma gives

EY = Q
�

e(1+p)⇣1 ; ⇣
s

< 0 8s 2 (0, 1], ⇣
1

 �⌘
�

where of course Q(X;A) := Q(X1
A

) for a random variable X and an event A.
Because (⇣,Q) only jumps up and only drifts down (at rate c

p

), c.f. Lemma 1.6, we
know that ⇣

1

is at least �c
p

. Consequently,

EY � �Q(⇣
s

< 0 8s 2 (0, 1], ⇣
1

 �⌘)

where � := e�c

p

(1+p). We will be done if we can show that the probability on the
right-hand side is positive for some ⌘ > 0.

Let us fix some � > c
p

. We proved in 1.2.2 that Q(⌧���

< ⌧+
0

) > 0 (here the ⌧ ’s
are defined relative to ⇣). Again using the structure of (Q, ⇣) as summarized in
Lemma 1.6, we know that ⌧���

� �/c
p

> 1. In consequence,

�

⌧���

< ⌧+
0

 ✓ {⇣
s

< 0 8s 2 (0, 1]}.

The result follows immediately.

The next result is a simple corollary of the previous lemma and the fragmentation
property.

Corollary 2.11. Fix ⌘ as in the previous lemma, and denote the positive probability
there by p. For all t � 0 and ✏ > 0, we have

P(9x 2 (0, 1) : ⇣x
s

< 0 8s 2 (0,↵], ⇣x
↵

 �✏t1/3) � p↵

where ↵ = ↵(t, ✏, ⌘) := d ✏t

1/3

⌘

e.

The key point, as will become clear later, is that lim
t!1 t�1/3 log p↵(t,✏,⌘) = o(✏). This

will give us just enough wiggle room.
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Proof. Using the previous lemma there exists, with probability at least p, a point
x
1

2 (0, 1) such that ⇣x1 stays below 0 on (0, 1] and ends below �⌘ at time 1. Using
the fragmentation property and the previous lemma we can pick a point x

2

2 Ix1
1

,
again with probability at least p, such that ⇣x2 remains below ⇣x1

1

on (1, 2] and ends

below ⇣x1
1

� ⌘  �2⌘ at time 2. Iterating this procedure ↵ = d ✏t

1/3

⌘

e times, we find

(with probability at least p↵) a point x↵ 2 (0, 1) such that ⇣x
↵

s

< 0 on (0,↵], and
⇣x

↵

↵

 �✏t1/3.

We are now going to present several results of John Biggins. The theorem to follow is
an amalgamation of the discussion preceding Theorem A in [17], and the contents of
Theorem B in [18]. First we set up the required notation. Given is a branching ran-
dom walk in discrete time, in which individuals alive at time a given time reproduce
independently of one another and the history of the process, and in the same way as
the initial ancestor, which is located at the origin. This process can be encoded as a
point process on the real line, which we denote by V . We let V stand for the intensity
measure of V , defined by V (A) := EV(A) for Borel sets A ⇢ R. We also write Vn for
the point process describing the positions of particles in generation n, and write V n

for its intensity. In a standard abuse of notation we write V n(y) for V n((�1, y]).

The Laplace transform m of V is defined by

m(✓) :=

Z

R
e�✓y V (dy)

whenever it exists and is finite. For all such values of ✓, the process

W (n)(✓) := m(✓)�n

Z

R
e�✓y Vn(dy)

is a non-negative martingale; its almost sure limit is denoted by W (✓).

Next we define

✓
1

:= inf{✓ 2 R : m(✓) < 1} and

✓
2

:= sup{✓ 2 R : m(✓) < 1}.
For ✓ 2 (✓

1

, ✓
2

), we define

b(✓) := �m0(✓)

m(✓)
and then v(✓) := m(✓) exp (✓ b(✓)) .

According to the discussion preceding Theorem A in [17], the set (✓
1

, ✓
2

)\ v�1(1,1)
is an open (possibly empty) interval, which we denote by (#

1

,#
2

). For ✓ 2 (✓
1

, ✓
2

),
we also define

w(✓) := ✓ b(✓) + logm(✓).

Given d > 0, we write `
d

for the measure on the Borel sets of R which gives weight
d to points on the lattice dZ, and assigns no mass elsewhere. We call a function
f : R ! R directly Riemann integral with respect to `

d

if
R

R |f | `d < 1. When d = 0,
we use the notation dZ to stand for R, and `

d

to stand for the Lebesgue measure. In
this case, the usual definition of direct Riemann integrability applies.
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Theorem 2.12. Suppose that V is a point process on R, and define

d := max{h � 0 : V is concentrated on hZ}.

Suppose, in the notation introduced above, that the following hypotheses hold:

1. The function y 7! V (y) is finite for all y 2 R, has more than one point of
increase, and satisfies V (1) > 1.

2. The value ✓ lies in the (possibly empty) interval (#
1

,#
2

), and that, for some
✏ > 0,

E
⇣

W (1)(✓) (log
+

W (1)(✓))5/2+✏

⌘

< 1.

3. The function g : R ! R is directly Riemann integrable with respect to `
d

.

Then w(✓) > 0, the inequalities 0 < W (✓) < 1 hold almost surely, and

B(n, ✓)

Z

R
g(y � nb(✓))V (n)(dy) �! W (✓)

Z

R
e✓yg(y) `

d

(dy)

almost surely as n ! 1, where

B(n, ✓) := �
p
2⇡n exp (�nw(✓))

and

�2 :=
m00(✓)

m(✓)
� b(✓)2 2 (0,1).

In particular, the following limits hold almost surely as n ! 1:

B(n, ✓)Vn({nb(✓) + y}) �! d e✓y W (✓)

whenever d > 0 and y 2 dZ, and

B(n, ✓)Vn

�

[nb(✓) + y, nb(✓) + y + x)
� �! ✓�1 e✓y (e✓x � 1)W (✓)

whenever d = 0, y 2 R and x > 0.

Bertoin and Rouault provide an analogue of this result for fragmentation processes
in [15]. We prefer to rely on Biggins’ far earlier work, however, as it is more than
powerful enough for our purposes. In addition, Bertoin and Rouault restrict their at-
tention to non-geometric dislocation measures. This restriction excludes, for instance,
fragmentation processes in which each dislocation event produces a fixed number of
intervals equal in length. We want to avoid ruling out this very natural class of frag-
mentation processes in our proof.

With this collection of useful fragmentation results in hand, we move on to our dis-
cussion of the fluctuation theory of spectrally one-sided Lévy processes with bounded
variation.
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2.2 Fluctuations of Lévy Processes

As we saw in the introduction, the Many-to-One Lemma allows us to relate func-
tionals of fragmentation processes to their corresponding spines, denoted by (⇣,Q).
We will be exclusively interested in functionals that count the number of particles
lying in certain intervals at given times. This corresponds, after applying the Many-
to-One Lemma, to studying a weighted Q–probability that ⇣ lies in certain intervals
as time passes. In this section we will develop large-time asymptotic relations for
such probabilities, which we derive from well-trodden random walk theory. Although
the process of translating these results from discrete to continuous time is simple, to
the best of our knowledge the results we derive here are not explicitly stated in the
existing literature.

First we show that a “triangular” version of Mogulskii’s Theorem holds for Lévy
processes like (⇣,Q). The non-triangular result first appeared in [40], and has been
fruitfully applied ever since. We derive our version from the one contained in [25].

Lemma 2.13. For each t � 0, let X(t) be a spectrally positive Lévy process with
bounded variation. Suppose that the drift coe�cient of all these processes is the same,
and call it �c < 0. Let a : R

+

! R
+

be a function satisfying a
t

! 1 and a
t

= o(t1/2)
as t ! 1. Suppose that for some ⌘, �2 > 0 the family (X(t) : t � 0) has the following
properties:

1. sup
t�1

E|X(t)

1

|2+⌘ < 1 ;

2. EX(t)

1

= o(a
t

/t) ;

3. varX(t)

1

! �2 as t ! 1.

Let g
1

< g
2

be continuous functions on [0, 1] with g
1

(0) < 0 < g
2

(0), and define the
events

E
t

:=

(

g
1

⇣s

t

⌘

 X(t)

s

a
t

 g
2

⇣s

t

⌘

8s 2 [0, t]

)

.

Then

lim
t!1

a2
t

t
logP(E

t

) = �⇡2�2

2

Z

1

0

dt

(g
2

(t)� g
1

(t))2
.

Moreover, for any b > 0,

lim
t!1

a2
t

t
logP

 

E
t

,
X(t)

t

a
t

� g
2

(1)� b

!

= �⇡2�2

2

Z

1

0

dt

(g
2

(t)� g
1

(t))2
.

Proof. Denote the proposed limit by � < 0. Assume that we can find ✏ > 0 and a
sequence of positive numbers t

k

" 1 such that

a2
t

k

t
k

logP(E
t

k

)  �(1 + ✏) < � 8k 2 N.

Define n
k

:= dt
k

e, b
n

k

:= a
t

k

, and S(n

k

)

i

:= X(t

k

)

i

for 1  i  n
k

. For n 2 N \ {n
k

: k 2
N}, let S(n)

i

:= Y
1

+ · · · + Y
i

, where the Y
i

iid copies of some random variable with
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variance �2 and zero mean. Also set b
n

:= n1/3 for for n 2 N \ {n
k

: k 2 N}. Now
fix � > 0 so small that g

2

� g
1

� 2� > 0 on [0, 1] and that g
1

(0) + � < 0 < g
2

(0) � �
(recall that g

1

and g
2

are continuous), and define

G
n

(�) :=

(

g
1

✓

i

n

◆

+ �  S(n)

i

b
n

 g
2

✓

i

n

◆

� � 81  i  n

)

.

By construction, the array (S(n)

i

) satisfies the hypotheses of the triangular version of
Mogulskii’s Theorem in [25]. This allows us to conclude that

lim
n!1

b2
n

n
logP(G

n

(�)) = �⇡2�2

2

Z

1

0

dt

(g
2

(t)� g
1

(t)� 2�)2
. (2.2)

Now for each ✓ � 0 we introduce the seminorm

�(f, ✓) := sup{|f(x)� f(y)| : x, y 2 [0, 1], |x� y|  ✓}
defined on the space C([0, 1]). For a fixed f 2 C([0, 1]), the uniform continuity of f
is equivalent to the statement lim

✓#0 �(f, ✓) = 0. Since t
k

, a
t

k

! 1 as k ! 1, it is
therefore possible to choose K = K(�) 2 N so large that k � K forces

2�(g
1

, t�1

k

) + 2�(g
2

, t�1

k

) + ca�1

t

k

 �,

where we recall that c is the common drift of the Lévy processes (X(t) : t � 0). The
point of all this is that

k � K(�) =) G
n

k

(�) ⇢ E
t

k

. (2.3)

Before checking that this is the case, let us see how to conclude the argument. Using
this implication, we conclude that, for arbitrary (small) � > 0, we have

lim sup
k!1

b2
n

k

n
k

logP(G
n

k

(�))  lim sup
k!1

a2
t

k

t
k

logP(E
t

k

)  �(1 + ✏) < �,

recalling that b
n

k

= a
t

k

by definition. Using (2.2), we deduce that

�⇡2�2

2

Z

1

0

dt

(g
2

(t)� g
1

(t)� 2�)2
 �(1 + ✏) < �,

for arbitrary (small) � > 0. Letting � # 0, we arrive at the contradiction � < �. It
remains to check (2.3), which is a simple consequence of the definition of K(�) and
the fact that the Lévy processes under consideration decrease by at most c� over an
interval of length �. Let us suppose k � K(�) and that ! 2 G

n

k

(�); that is,

g
1

✓

i

n
k

◆

+ �  S(n

k

)

i

(!)

b
n

k

 g
2

✓

i

n
k

◆

� � 81  i  n
k

.

For all n 2 N we define S(n)

0

:= 0. This doesn’t a↵ect the probabilities because

g
1

(0) < 0 < g
2

(0), so g
1

(0) < S(n)

0

< g
2

(0) for all n 2 N as a matter of deterministic
fact. We want to show that

g
1

✓

s

t
k

◆

 X(t

k

)

s

(!)

a
t

k

 g
2

✓

s

t
k

◆

8s 2 [0, t
k

].
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So fix s 2 [0, t
k

]. Then s 2 [i, i + 1] for some 0  i < n
k

. We have (all random
variables are evaluated at !)

X(t

k

)

s

a
t

k

� S(n

k

)

i

� c

b
n

k

� g
1

✓

i

n
k

◆

+ � � c

b
n

k

� g
1

✓

s

n
k

◆

��(g
1

, n�1

k

) + � � c

b
n

k

= g
1

✓

s

t
k

◆

+

✓

g
1

✓

s

n
k

◆

� g
1

✓

s

t
k

◆◆

��(g
1

, n�1

k

) + � � c

b
n

k

.

Now we note that
�

�

�

�

s

n
k

� s

t
k

�

�

�

�

=
s(n

k

� t
k

)

n
k

t
k

 s

n
k

t
k

 1

n
k

,

so that, returning to the previous display, we have

X(t

k

)

s

a
t

k

� g
1

✓

s

t
k

◆

� 2�(g
1

, n�1

k

) + � � c

b
n

k

.

It remains to note that, since k � K(�), we have

�2�(g
1

, n�1

k

) + � � c

b
n

k

� 0.

To prove the other inequality in the definition of E
t

k

(referring to X t

k

s

and g
2

), we

bound X(t

k

)

s

above by S(n

k

)

i+1

+ c for s 2 [i, i+ 1], and proceed as above.

Altogether, we’ve so far shown that

lim inf
t!1

a2
t

t
logP(E

t

) � �.

The proof of the upper bound uses the same discretization, but is essentially trivial,
as the set inclusion corresponding to the one we just proved will be reversed; and, if
a Lev́y process lies in some intervals for all times in [0, t], it certainly does at times
i 2 [0, t] \ N. The proof of the second statement is similar.

In fact we will only use the ‘non-triangular’ version of the previous two results, which
follows as a simple corollary:

Lemma 2.14. Let X be a spectrally positive Lévy process with bounded variation.
Suppose X is centered and has finite moment of order 2+ ⌘ for some ⌘ > 0. Then X
has finite variance which we denote by �2. Let a : R

+

! R
+

be a function satisfying
a
t

! 1 and a
t

= o(t1/2) as t ! 1, and suppose that g
1

and g
2

are continuous
functions on [0, 1] satisfying g

1

< g
2

on [0, 1] and g
1

(0) < 0 < g
2

(0). Define events
E

t

for t � 0 by

E
t

:=

⇢

g
1

⇣s

t

⌘

 X
s

a
t

 g
2

⇣s

t

⌘

8s 2 [0, t]

�

.

Then the two conclusions of Lemma 2.13 obtain.
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Our next result combines several results from [32], slightly adapted to our particular
needs. In particular, we direct the reader to Theorem 2.7(ii) of this review article,
which identifies the resolvent measure of a spectrally positive Lévy process killed on
passing below a fixed level.

Lemma 2.15. Let X be a spectrally positive Lévy process with zero mean and finite
variance �2. There exists a strictly increasing, absolutely continuous function W on
R that vanishes on the negative half-line, and has the following properties:

1. W (x) ⇠ x

�2

as x ! 1.

2. For all real numbers a  x and all non-negative measurable functions f on
[a,1), we have

E
x

Z

⌧

�
a

0

f(X
t

) dt =

Z 1

a

dv · f(v)⇥W (v � a)�W (v � x)
⇤

.

The remaining results in this section are proved with reference to the corresponding
random walk results contained in the appendix of [3]. Our approach is simple: we
assume that the result in question does not hold for a given Lévy process, and obtain
a random walk contradicting the corresponding result in [3] by looking at the Lévy
process on a su�ciently fine mesh. First we state two elementary lemmas which will
be of use in carrying out such arguments. The first is a topological lemma whose proof
can be found in [41]. The second is a simple observation, recorded for convenience.

Lemma 2.16. Let U ✓ [0,1) be open and unbounded. Then there exists h > 0
such that nh 2 U for infinitely many n 2 N.

Lemma 2.17. Let X be a real-valued stochastic process issued from zero which is
right-continuous at the origin. Then

8✏ > 0 8� > 0 9a > 0 such that P
�||X ||

[0,a]

> �
�

< ✏ ,

where ||X ||
[0,a]

:= sup
0ta

|X
t

| .

The following result corresponds to statement (A.1) in [3].

Proposition 2.18. Let X be a Lévy process with zero mean and finite variance.
Then

9C > 0 such that 8h � C 8t � 0 sup
r2R

P
�

r  X
t

 r + h
�  C

h

t1/2
.

Proof. Assume the above statement is not true, i.e. for some such Lévy process X,
the following statement holds:

8n 2 N 9h
n

� n 9t
n

> 0 9r
n

2 R such that P
�

r
n

 X
t

n

 r
n

+ h
n

�

> n
h
n

t1/2
n

.
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Now select an a > 0 corresponding to the choices ✏ = 1

2

and � = 1 in Lemma 2.17.
Evidently, for all n 2 N,

P
�

r
n

� 1  X
t

r
n

+ h
n

+ 1 8t 2 [t
n

, t
n

+ a]
�

� P
�

r
n

 X
t

n

 r
n

+ h
n

, ||X
t

�X
t

n

||
t2[t

n

,t

n

+a]

< 1
�

� 1

2
P
�

r
n

 X
t

n

 r
n

+ h
n

� � n

2

h
n

t1/2
n

,

where in the second inequality we have used the Markov property of the Lévy process
at time t

n

. Let U :=
S1

n=1

(t
n

, t
n

+ a), which is an open set. Note that, to prevent
the probability in the first display of the proof from exceeding one, we must have
t
n

� n4, proving that U is unbounded. Lemma 2.16 therefore supplies an h > 0 and
two strictly increasing sequences (m

j

) and (n
j

) of natural numbers with the property
that, for all j 2 N we have m

j

h 2 [t
n

j

, t
n

j

+ a]. Note that t
n

j

/m
j

! h as j ! 1. In
particular, there exists K > 0 such that K/m1/2

j

< 1/t1/2
n

j

for all j 2 N. Now define
a random walk on R by S

n

:= X
nh

, and note that this random walk has zero mean
and finite variance. We estimate

P
�

r
n

j

� 1  S
m

j
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n

j

+ h
n

j

+ 1
�
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�

r
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j

� 1  X
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j

+ 1 8t 2 [t
n

j
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n

j

+ a]
�

� K

2
n
j

h
n

j

m1/2

j

.

Taking suprema and assuming without loss of generality that h
n

j

� 2 for all j 2 N,
we find that, for all j 2 N,

sup
r2R

P(r  S
m

j

 r + h
n

j

+ 2) � K

4
n
j

h
n

j

+ 2

m1/2

j

,

contradicting (A.1) in [3].

Our next proposition corresponds to statement (A.3) in [3].

Proposition 2.19. Let X be a Lévy process with zero mean and finite variance.
Then, with X

t

:= inf
0st

X
s

, we have

lim sup
t!1

t1/2 sup
u�0

1

u+ 1
P
�

X
t

� �u
�

< 1 .

Proof. The statement in the proposition is equivalent to the following statement:

9C > 0 9T > 0 such that t � T ) sup
u�0

1

u+ 1
P
�

X
t

� �u
�  C

t1/2
.

For a contradiction, let us assume the converse of this statement holds. Then

8n 2 N 9t
n

� n 9u
n

� 0 such that
1

u
n

+ 1
P
�

X
t

n

� �u
n

� � n

t1/2
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.
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As in Proposition 2.18, select a > 0 with the following property:

1

u
n

+ 1
P
�

X
t

� �u
n

� 1 8t 2 [t
n

, t
n

+ a]
� � n

2t1/2
n

.

Now choose sequences (m
j

) and (n
j

), and K > 0 precisely as in the proof of Propo-
sition 2.18. Select furthermore an M > 0 with the property that 1

u

 M

u+1

8u � 1 .
Defining the random walk (S

n

)
n2N as in Proposition 2.18, we estimate

K

2
n
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u
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X
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� �u
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� 1 8t 2 [t
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S
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� �u� 1
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1

u
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 M sup
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1
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P
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S
m

j

� �u
�  M sup
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1
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P
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S
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� �u
�

.

This contradicts (A.3) in [3].

With Proposition 2.18 and Proposition 2.19 in hand, the proof of the following corol-
lary follows verbatim from the proof of Lemma A.1 of [3].

Corollary 2.20. Let C be the constant whose existence is guaranteed by Proposi-
tion 2.18. For all C 0 � C there exists � = �(C 0) > 0 such that, for all a � 0 and
b � �a, the following inequality holds for all t � 0:

P
�

X
t

� �a, b  X
t

 b+ C 0 �  �

��

1 + a
� ^ t1/2

 ��

1 + a+ b
� ^ t1/2

 

t3/2
.

In particular, there exists �̃ > 0 such that for all a � 0 and b � �a the following
inequality holds for all t � 0:

P
�

X
t

� �a, X
t

 b
�  �̃

��

1 + a
� ^ t1/2

 ��

1 + a+ b
�

2 ^ t
 

t3/2
.

Our final result concerning fluctuation theory corresponds to Lemma A.3 in [3]. Like
our version of Mogulskii’s Theorem, this lemma is only stated for Lévy process that
are spectrally positive and have bounded variation.

Proposition 2.21. Let X be a spectrally positive Lévy process with bounded varia-
tion, zero mean, and finite variance. We write c > 0 for the coe�cient characterizing
the downward drift. For ↵ > 0 let X↵

t

:= X
t

+ ↵. Then there exists C > 0 such that,
for any f : [0,1) ! R satisfying lim sup

t!1 t�1/2f(t) < 1 and f(t) � ↵, for all
large t, we have

lim inf
t!1

t3/2 P
⇣

X↵

t

� 0, inf
ts2t

X↵

s

� f(t), f(t)  X↵

2t

< f(t) + C
⌘

> 0. (2.4)

50



Proof. Let us assume that there exists no such constant C > 0, and fix an ↵ > 0.
Select an a > 0 corresponding to the choices ✏ = 1

2

and � = 1 in Lemma 2.17. Finally,
choose an h 2 (0, 1

4

min{a, ↵
c

}). Define a random walk (S
n

) by S
n

:= X
nh

and note
that (S

n

) satisfies the hypotheses of Lemma A.3 in [3]. Let K denote the positive
constant corresponding to (S

n

) whose existence is guaranteed by Lemma A.3 in [3]
(there, K is called 2C), and pick C̃ > K+1+↵. Since, in particular, we are assuming
that (2.4) does not hold for C = C̃, we infer the existence of a sequence (t

k

) ✓ [0,1)
such that lim

k!1 t
k

= 1, and the existence of a function f with the properties given
in the statement of the proposition, which together satisfy
✓

t
k

h

◆

3/2

P
⇣
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t

k
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k

s2t

k
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� f(t
k

), f(t
k

)  X↵

2t

k

< f(t
k

) + C̃
⌘

<
1

k
(2.5)

for all k 2 N. Now define n
k

:= b t

k

h

c�1. Note in particular that (n
k

+1)h 2 [t
k

�h, t
k

];
this will allow us to ensure that X↵

t

k

� f(t
k

) in the following computation. Define
a
n

k

:= f(t
k

)+↵ for each k 2 N, and a
n

:= 0 whenever there is no k such that n = n
k

.
The important thing to note is that for any j, k 2 N with j  k and all r � 0 we
have
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2 [h, 2h]. Consequently,
we deduce that
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,

and the condition on r
k

holds because we have selected h < ↵

2c

. We will use this in
the computation below, where we require {S
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� 0} ✓ {X↵
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k

� 0}. By the same
considerations, we also have the inclusion
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since we have in fact picked h < ↵
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. We can therefore make the estimate
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t2[2n

k

h,2t
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< 1
⌘

� 1

2
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P
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S
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� a
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, a
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 S
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. (2.6)

In the second inequality we used the fact that h < a

4

and the Markov property of X↵

at time 2n
k

h. Combining (2.5) and (2.6), we find that, for all k 2 N, we have

n3/2

k

P
⇣

S
n

k

� 0, min
n

k

<j2n

k

S
j

� a
n

k

, a
n

k

 S
2n

k

< a
n

k

+K
⌘

 2

k
,

contradicting Lemma A.3 in [3].

We now have all the technical tools required for the proofs of our three main results,
which we embark on now. We begin with our theorem on the size of the largest
fragment.
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CHAPTER 3

THE LARGEST FRAGMENT OF A HOMOGENEOUS
FRAGMENTATION PROCESS

In this chapter we prove Theorem 1.14. This result is joint work with Andreas
Kyprianou and Peter Mörters, and has been published in The Journal of Statistical
Physics [33].

Recall that the largest fragment decays exponentially at rate �0(p), almost surely.
As discussed in the introduction, our theorem, which we state again now, refines this
result:

Theorem. Starting from any initial configuration in U , the following convergence
holds in probability, as t ! 1:

min
x2(0,1) ⇠x

t

� c
p

t

log t
�! 3

2
(1 + p)�1 .

At this point let’s re-orientate ourselves with some very simple remarks. First, recall
that ⇠x

t

:= � log |Ix

t

|. Since � log is a decreasing function, the largest particle at time
t corresponds to the smallest value of ⇠x

t

. Second, the reason we can write “min”
instead of “inf” is because there are always finitely many particles whose sizes are
greater than a given positive number.

Before giving the proof in full detail, we provide a brief sketch to explain the main
ideas. First let us emphasize our debt to Aı̈dékon and Shi [3], on whose proof the
following work is based.

We start by breaking the result into an upper and lower bound. Throughout this
chapter the proposed limit is denoted by l. We will show that the following two
statements hold:

P
u

✓

min
x2(0,1)

⇣x
t

 ↵ log t

◆

! 0 as t " 1 for all ↵ < l ; and (3.1)

lim sup
t!1

min
x2(0,1) ⇣x

t

log t
 l P

u

–almost surely. (3.2)
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Since the second bound holds almost surely, it’s natural to ask whether we can
strengthen our theorem to an almost sure statement. In the discrete-time branching
random walk case, this is not possible (see [27, Theorem 1.2]), so we have good reason
to believe to believe that it isn’t possible here either.

The proof of the lower bound (3.1) is the easy part, and could be derived directly from
the random walk result using Lemma 2.1. We will prove it from scratch, however, as
the proof is short and consolidates the notation and ideas introduced in the previous
chapters. Fix ↵ < l and k 2 N. Let Zk

t

stand for the number of x–labelled particles
that satisfy the inequality ⇣x

t

 ↵ log t and the inequality ⇣x
s

� �k for all s 2 [0, t].
Using the Many-to-One Lemma and Corollary 2.20, we will show that EZk

t

! 0.
The reason why we introduce the truncation in k is so we can apply Corollary 2.20.
To remove the truncation, we will use the convergence of the additive martingale
introduced in 1.2.4 to show that the entire � log process almost surely lies above
some fixed level.

Now let’s discuss our approach to proving (3.2), which is significantly more compli-
cated. We will show, using the second moment method, that for any x 2 (0, 1), t � 0,
and su�ciently large s, we have

P(9y 2 Ix

t

: ⇣y
t+s

 ⇣x
t

+ l log s) � (log s)�3. (3.3)

That is, a ⇣–parent alive at time s will have a ⇣–child exceeding its position at time
t + s by at most l log t with a probability that, as we will see below, is su�ciently
large. (In fact there will be constants all over the place, which we omit in this sketch
for clarity.)

Now fix ✏ > 0. We will see that at a random time T (n, ✏) satisfying

lim sup
n

T (n, ✏)

log n
 K✏

for some constant K > 0 independent of ✏ and n, there are at least n✏ ⇣–particles
alive whose positions do not exceed K✏ log n. Let’s denote this set of n✏ ⇣–particles
by L

n

. Let’s also call a ⇣–particle, alive at time t, s–good if at least one of its
descendants alive at time t+ s exceeds the value of its parent by at most l log s, and
s–bad otherwise. Using (3.3), we find that

P(all particles in L
n

are n–bad)  �

1� (log n)�3

�

n

✏

.

It is simple to show that
X

n�4

�

1� (log n)�3

�

n

✏

< 1.

By the Borel-Cantelli lemma, it follows that the event

lim inf
n

�

some particle in L
n

is n–good
 

(3.4)

has probability 1. This means that with probability 1 we can find a sequence of tags
(x

n

) ⇢ (0, 1) such that Ix

n

T

n

2 L
n

and

⇣xn

T

n

+n

 ⇣xn

T

n

+ l log n (3.5)
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for all su�ciently large n. Since Ix

n

T

n

2 L
n

, we know that

⇣xn

T

n

 K✏ log n.

Combining this with (3.4) and (3.5) we find that almost surely, for all large n we have

min
x2(0,1)

⇣x
T

n

+n

 (K✏+ l) log n.

For any x 2 (0, 1) we know that

⇣x
T

n

+n

= ⇠x
T

n

+n

� c
p

(T
n

+ n) � ⇣x
n

� c
p

T
n

where the inequality holds because ⇠x
T

n

+n

� ⇠x
n

. It follows that almost surely the
following inequality holds for all large n:

inf
x2(0,1)

⇣x
n

 (K✏+ l) log n+ c
p

T
n

,

almost surely. Dividing by log n and taking lim sup’s we deduce that

lim sup
N3n!1

⇣x
n

log n
 l + (1 + c

p

)K✏.

Letting ✏ go to zero, we arrive at nearly what we want, just with the delimiter of the
lim sup running through N. But this isn’t a problem because inf

x2(0,1) ⇣x
s

is bounded
above on s 2 [n, n+ 1] by inf

x2(0,1) ⇣x
n+1

+ c
p

, and c
p

= o(log n).

We hope that this sketch will help the reader navigate their way through our detailed
proof, which we turn to now.

3.1 Proof of the lower bound

Fix an arbitrary ↵ 2 (0, l), k 2 N and u 2 U . Define, for t � 0, the random variable

Zk

t

:=
X

[x]

t

1
⇣

⇣x
t

 ↵ log t, ⇣x
t

� �k
⌘

, (3.6)

where ⇣x
t

:= inf
0st

⇣x
s

. This random variable counts the number of ‘bad’ particles
(with a truncation we will remove later).

We estimate the mean of Zk

t

under E
u

as follows:

E
u

Zk

t

=
1
X

i=1

Q
⇣

e⇣t(p+1)1
�

⇣
t

� log |u
i

|  ↵ log t, ⇣
t

� log |u
i

| � �k
�

⌘

 t↵(p+1)

X

i

|u
i

|p+1Q
⇣

⇣
t

� log |u
i

|  ↵ log t, ⇣
t

� log |u
i

| � �k
⌘

. (3.7)

In the first line we use MT1 (Lemma 1.7), and in the second we bound the exponential
factor using the indicator. Recalling that (⇣,Q) is a spectrally positive Lévy process
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with zero mean and finite variance (c.f. Lemma 1.6), we can estimate a typical
probability on the right-hand side of the previous inequality using Corollary 2.20:

Q
⇣

⇣
t

� log |u
i

|  ↵ log t, ⇣
t

� log |u
i

| � �k
⌘

 � t�3/2(k � log |u
i

|+ 1)(k + ↵ log t)2

 �
k

t�3/2(log t)2(1� log |u
i

|),

for some constants �, �
k

> 0 (where the latter depends on k). Putting this back into
(3.7), we find that, for all su�ciently large t,

E
u

Zk

t

 �
k

t↵(p+1)t�3/2(log t)2
X

i

|u
i

|p+1(1� log |u
i

|).

Since p > 0, the function x 7! xp(1� log x) has an upper bound K > 0 on (0, 1), so
the sum on the right-hand side is bounded by K

P |u
i

| = K. We deduce that

E
u

Zk

t

 K�
k

t↵(p+1)t�3/2(log t)2.

Since ↵(p+ 1) < l(p+ 1) = 3/2, this quantity goes to zero as t ! 1.

To complete this part of the proof we must remove the truncation ⇣x
t

� �k in (3.6).
To this end, we recall the intrinsic additive martingale corresponding to p, which we
introduced in 1.2.4:

M
t

:= e�(p)t

X

[x]

t

Ix(t)1+p =
X

[x]

t

exp
�� (1 + p) ⇣x

t

�

.

By the martingale convergence theorem, M
t

converges to a finite limit P
u

–almost
surely as t ! 1. Noting that p > 0, we find that

inf
t�0

inf
x2(0,1)

⇣x
t

> �1 P
u

–almost surely.

Letting B
k

:=
�

inf
t�0

inf
x2(0,1) ⇣x

t

� �k
 

for each k 2 N, it follows that

lim
k!1

P
u

(B
k

) = 1. (3.8)

Next fix an arbitrary ✏ > 0, and (using (3.8)) select k = k(✏) 2 N so large that
P

u

(B
k

) � 1� ✏. Observing that Zk

t

� 1
B

k

P

[x]

t

1(⇣x
t

 ↵ log t) for all t � 0, we may
then write,

P
u

(Zk

t

= 0)  P
u



B
k

\
n

X

[x]

t

1
�

⇣x
t

 ↵ log t
�

= 0
o

�

+ P
u

(Bc

k

)

 P
u



X

[x]

t

1
�

⇣x
t

 ↵ log t
�

= 0

�

+ ✏, (3.9)

for all t � 0. We have already shown that E
u

(Zk

t

) ! 0 as t ! 1, and so, since Zk

t

takes values in {0, 1, 2, ...}, we deduce that P
u

(Zk

t

= 0) ! 1 as t " 1. Combining
this observation with (3.9) we conclude that
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1 = lim inf
t!1

P
u

(Zk

t

= 0)  lim inf
t!1

P
u



X

[x]

t

1
�

⇣x
t

 ↵ log t
�

= 0

�

+ ✏ .

Since ✏ > 0 was arbitrary, we deduce that lim
t!1 P

u

h

P

[x]

t

1
�

⇣x
t

 ↵ log t
�

= 0
i

= 1.

Finally, observe that
⇢

X

[x]

t

1(⇣x
t

 ↵ log t) = 0

�

✓
⇢

inf
x2(0,1)

⇣x
t

> ↵ log t

�

,

so that P
u

�

inf
x2(0,1) ⇣x

t

> ↵ log t
�! 1 as t " 1, for arbitrary ↵ < l. This is equivalent

to (3.1) .

3.2 Proof of the upper bound

In this part of the proof, we can work under P without loss of generality. To see why,
note that we are now trying to show the existence of ‘big’ particles (in the sense made
precise by (3.2)). This means that, starting the fragmentation from general u 2 U ,
we can immediately look only at the largest particle at time t descending from u

1

,
whose size we call Bu1

t

. Let B
t

denote the size of the largest fragment at time t in a
fragmentation issued from (0, 1). The fragmentation property implies that (Bu1

t

,P
u

)
is equal in law to (|u

1

|B
t

,P). The numerator in (3.2) corresponding to these two
processes will therefore only di↵er by the additive constant � log |u

1

|, which, upon
division by log t, goes to zero in the limit.

3.2.1 Step 1: The second moment method

As mentioned in our sketch, we first want to show (up to some constants) that for
all x 2 (0, 1), t � 0 and su�ciently large s we have

P(9y 2 Ix

t

: ⇣y
t+s

 ⇣x
t

+ l log t) � (log s)�3. (3.10)

Let C > 0 be the larger of the two constants provided by Proposition 2.18 and
Proposition 2.21. Introduce the following intervals:

J
s

(t) :=

8

>

<

>

:

[�1,1) if 0  s  t

[l log t,1) if t < s < 2t

[l log t, l log t+ C] if s = 2t.

The reason we work on the interval [0, 2t] and not on [0, t] is simply to avoid messy
fractional indices like t/2.

For x 2 (0, 1) and u, v 2 [0, 2t], define the events Ax

[u,v]

:= {⇣x
s

2 J
s

(t) 8s 2 [u, v]},
and write Ax

2t

:= Ax

[0,2t]

. In what follows, A
[u,v]

(with no superscript) means A�

[u,v]

,
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where � is the uniformly distributed random tag in (0, 1) in the definition of ⇣.
Finally, define for t � 0 the random variable

Z
t

:=
X

[x]2t

1
A

x

2t
.

We want to show that P(Z
t

> 0) is eventually bounded below by some constant
multiple of (log t)�3. The key to doing this is the so-called Paley-Zygmund inequality,
which is a trivial consequence of the Cauchy-Schwarz inequality:

P(Z
t

> 0) � (EZ
t

)2

E(Z2

t

)
.

In view of this inequality, we need to bound the first moment of Z
t

from above and the
second moment from below. In fact, we will show the following: for some �

1

, �
2

> 0,
we have

E(Z
t

) � �
1

; and (3.11)

Z2

t

= Z
t

+ ⇤
t

, with (3.12)

E⇤
t

 �
2

(log t)3, (3.13)

for all large t. Before proving these facts, let’s see how we can use them to complete
the second moment argument. First we make the following simple calculation, valid
for all large t:

E(Z2

t

)  �
2

(log t)3 + E(Z
t

) 
h

�2

�1
(log t)3 + 1

i

E(Z
t

)


h

�2

�1
(log t)3 + 1

i

1

�1
E(Z

t

)2 . (3.14)

In the first inequality we use (3.12) and (3.13), and in the next two inequalities we
use (3.11). First making use of the Paley-Zygmund inequality, and then of (3.14), we
find that

P(Z
t

> 0) � (EZ
t

)2

E(Z
t

)2
� �

(log t)3
.

for some � > 0 and all large t. The point is that

⇢

min
x2(0,1)

⇣x
t

 l log t

2

+ C

�

◆ �

Z
t/2

> 0
 

so that, for all su�ciently large t, we have

P

⇢

min
x2(0,1)

⇣x
t

 l log t+ C

�

� P

⇢

min
x2(0,1)

⇣x
t

 l log t

2

+ C

�

� P(Z
t/2

> 0) � �

(log(t/2))3

� �

(log t)3

for some � and all large t. By the fragmentation property, this is equivalent (modulo
the constants C and �) to our aim, (3.10).
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Let’s now complete this part of the proof by proving (3.11), (3.12) and (3.13).

Proof of (3.11): This is the easy part. Using MT1 we obtain

EZ
t

= Q
�

e⇣2t(p+1) 1
A2t

� � � t3/2 Q(A
2t

) � �0 > 0,

for some �, �0 > 0 and all large t. In the first inequality we have used the indicator
to bound the exponential factor from below; the second uses Proposition 2.21.

Proof of (3.12) and (3.13): Using Corollary 2.7 we find that EZ2

t

= EZ
t

+ ⇤
t

, where

⇤
t

=

Z

2t

0

dr · Q
✓

e(1+p)⇣

r1
A[0,r]

Z

U
G(⇣

r

, u)⌫(du)

◆

with
G(↵, u) :=

X

i 6=j

F (↵� log |u
i

|)F (↵� log |u
j

|),

where, for ↵ 2 R,

F (↵) := Q e⇣2t�r

(p+1)1�
↵+⇣

s

2J
s+r

(t) 8s2[0,2t�r]

�.

For r 2 [0, t], let’s write �
r

for the integrand of the integral defining ⇤
t

.

It remains to show that: E⇤
t

=

Z

2t

0

�(r)dr = O
�

(log t)3
�

as t " 1.

Notation: In the remainder of this section, positive constants (independent of t) will
be denoted by � > 0, the value of which will change from one inequality to another.

First we estimate F (↵ � log |u
i

|) for interval components u
i

of u 2 U and ↵ 2 R:
using the indicator to bound the exponent we have

F (↵� log |u
i

|) = Q e⇣2t�r

(p+1)1�
↵�log |u

i

|+⇣

s

2J
s+r

(t) 8s2[0,2t�r]

�

 � t3/2 |u
i

|p+1e�↵(p+1)f(↵� log |u
i

|),
for some � > 0, with

f(✓) := Q

✓

✓ + ⇣
s

2 J
s+r

(t) 8s 2 [0, 2t� r]

◆

, for ✓ 2 R.

We estimate f in two di↵erent ways, depending on the value of r. For r 2 [t, 2t],
Proposition 2.18 provides the estimate

f(✓)  Q

✓

⇣
2t�r

2 [l log t� ✓, l log t� ✓ + 2C]

◆

 � n
2t�r

,

with n
✓

:= ✓�1/2 ^ 1 for ✓ � 0. This leads to the bound

Z

2t

t

�(r) dr  � I
1

t3
Z

2t

t

dr · n2

2t�r

Q
⇣

e�(1+p)⇣

r1
A[0,r]

⌘

, (3.15)
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where

I
1

:=

Z

U
⌫(du) ·

X

i 6=j

|u
i

|p+1|u
j

|p+1 .

Let us check that I
1

is finite. Indeed,

X

i 6=j

|u
i

|p+1|u
j

|p+1 
X

i 6=j

|u
i

||u
j

| =
X

i

|u
i

|(1� |u
i

|)

 (1� |u
1

|) +
X

i�2

|u
i

|

= 2(1� |u
1

|).

In the first inequality we use the facts that |u
i

|, |u
j

| < 1 and p > 0; in the first equality
we fix an interval component u

i

of u 2 U and sum over the interval components u
j

6=
u
i

of u; and in the second inequality we use the fact that |u
i

| 2 (0, 1). The finiteness
of I

1

then follows from the integrability condition in the definition of dislocation
measures, Definition 1.2. It remains to estimate the expectation in (3.15):

Q
�

e�⇣

r

(p+1)1
A[0,r]

�  t�3/2 Q
�

1
A[0,r]

1
(⇣

r

2 l log t)

�

+Q
�

e�⇣

r

(p+1)1
A[0,r]

1
(⇣

r

>2 l log t)

�

 t�3/2Q
�

⇣
r

� �1, ⇣
r

 2l log t
�

+ t�3

 � t�3/2 r�3/2(log t)2 + t�3

 � t�3(log t)2.

In the first line we split the event {⇣
r

� l log t} ⇢ A
[0,r]

into the events {⇣
r

> 2l log t}
and {l log t  ⇣

r

 2l log t}. In the second line, we discard some information from
the indicator on the interval [t, r] and estimate the exponential factor in the second
term using the indicator 1

(⇣

r

>2 l log t)

. In the penultimate line, we use Corollary 2.20
to estimate the remaining expectation. Returning to (3.15), we conclude that

Z

2t

t

�(r) dr  �(log t)2
Z

2t

t

n2

2t�r

dr = O
�

(log t)3
�

,

as required.

Now we look at �(r) for r 2 [0, t]. This time we make the estimate, valid for ✓ � �1:

f(✓)  Q
⇣

⇣
2t�r

� �1� ✓, ⇣
2t�r

2 [l log t� ✓, l log t� ✓ + 2C]
⌘

 � (2 + ✓) (log t) (2t� r)�3/2

 � (2 + ✓) (log t) t�3/2.

In the first inequality we throw away some information from the indicator on the
interval [t, 2t� r); in the second we use Corollary 2.20; and the final inequality uses
the fact that r 2 [0, t]. Making the substitution ✓ = ↵� log |u

i

|, we arrive at

f(↵� log |u
i

|)  � (2 + ↵� log |u
i

|) (log t) t�3/2

 2� (2 + ↵) (1� log |u
i

|) (log t) t�3/2
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for ↵ � �1 (recall we intend to make the substitution ↵ = ⇣
r

� �1). This leads to
the bound

�(r)  � I
2

(log t)2 Q
⇣

e�(1+p)⇣

r(2 + ⇣
r

)21
A[0,r]

⌘

,

where

I
2

:=

Z

U
⌫(du) ·

X

i 6=j

|u
i

|p+1|u
j

|p+1(1� log |u
i

|)(1� log |u
j

|).

This time we note that the function x 7! xp(1 � log x) is bounded on [0, 1], since
p > 0. This allows us to write I

2

 K
R

U ⌫(du) ·P |u
i

||u
j

| (for some K > 0), which
is finite by the same arguments we used for I

1

. It remains to show that

Z

t

0

dr ·Q
⇣

(2 + ⇣
r

)2e�⇣

r

(p+1)1
A[0,r]

⌘

< 1.

We start by noting that the function x 7! (1 + x)2e�(1+p)x is bounded above on
[�1,1) by Ke�x, for some finite constant K > 0 (since p > 0). First using this fact,
and then Lemma 2.15, we find that

Z

t

0

dr ·Q
⇣

(2 + ⇣
r

)2e�⇣

r

(p+1)1
A[0,r]

⌘

 KQ

Z

⌧

�
�1

0

exp(�⇣
t

) dt

= K

Z 1

�1

exp(�v)
⇥

W (v + 1)�W (v)
⇤

dv,

whereW is the function discussed in Lemma 2.15 corresponding to the spectrally pos-
itive process (⇣,Q). Since W is continuous and asymptotically linear, the rightmost
expression in the previous display is finite.

Let us summarize what we have shown so far:

Proposition 3.1. There exist constants C, � > 0 such that for all su�ciently large t,

P

⇢

min
x2(0,1)

⇣x
t

 l log t+ C

�

� �

(log t)3
.

3.2.2 Step 2: The proliferation of large particles

As per our sketch, we now estimate how many particles are alive at integer times k
whose sizes are close to exp(�c

p

k), which is roughly the size of the largest particle.
First we introduce the following notation:

N (k, �) := {Ix

k

: ⇣x
t

 �k}.

We also define a function ⇢ : R
+

! R
+

as follows. Recall that v
max

:= �0(0+) 2
(c

p

,1]. Also recall that the image of (p, p) under the continuous map �0 is (c
p

, v
max

).
Now fix � > 0. If c

p

+� < v
max

, we find the unique p
�

2 (p, p) satisfying �0(p
�

) = c
p

+�
and then set ⇢(�) := (1+ p

�

)�0(p
�

)��(p
�

). Now suppose c
p

+ � � v
max

. This is only
possible in case v

max

< 1, so we can set �⇤ :=
1

2

(v
max

�c
p

). We then set ⇢(�) := ⇢(�⇤),
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which we have already defined (note that c
p

+ �⇤ < v
max

). Note that ⇢(�) > 0 for all
� > 0, by Lemma 1.5.

We will use Theorem 2.12 to prove the following proposition:

Proposition 3.2. For all � > 0 the following inequality holds almost surely:

lim inf
N3k!1

1

k
log #N (k, �) � ⇢(�).

Proof. We will apply Biggins’ result, Theorem 2.12, to the branching random walk
in discrete time generated by the point process

V :=
X

[x]1

�
⇠

x

1
,

which is concentrated on [0,1). We note that, by the fragmentation property, the
process (Vn : n 2 N) is equal in law to the process obtained by sampling ⇠–values
at times in N. We also note that the branching random walk generated by V is con-
centrated on a lattice if and only if the dislocation measure ⌫ of the fragmentation
process is geometric. We will treat both cases in what follows.

First we need to identify identify the various functions and values discussed before
the statement of Theorem 2.12. We have

m(✓) = E

0

@

Z

[0,1)

e�✓y

X

[x]1

�
⇠

x

1
(dy)

1

A = E
X

[x]1

(Ix
1

)✓ = exp(��(✓ � 1))

yielding the identifications ✓
1

= 1 + p and ✓
2

= 1. Similarly, we find that the

martingale (W (n)(✓)) coincides with the intrinsic additive martingale (see 1.2.4) cor-
responding to the value p = ✓ � 1 and sampled at integer times. That is, for all
n 2 N, there is the equality W (n)(✓) = M(n, ✓ � 1) in law.

Next, we see that

b(✓) = �0(✓ � 1) and v(✓) = exp (✓�0(✓ � 1)� �(✓ � 1)) .

It follows that the inequality v(✓) > 1 is equivalent to the inequality ✓�0(✓ � 1) �
�(✓�1) > 0, which, according to Lemma 1.5, is in turn equivalent to ✓ 2 (1+p, 1+p).
We can therefore make the identification (#

1

,#
2

) = (1 + p, 1 + p). We also have

w(✓) = ✓�0(✓ � 1)� �(✓ � 1) and �2(✓) = ��00(✓ � 1).

Now we verify that hypotheses 1 and 2 of Theorem 2.12 hold. Since V((�1, y]) is
bounded deterministically by exp(y) by conservation of mass, V (y) is finite for all
y � 0. Since with positive probability at least one fragmentation event occurs before
time 1 (and fragmentation events always produce at least two particles), V (1) > 1.
Next we check that V has at least two points of increase. In fact, we show V has
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infinitely many. Suppose that V is constant on [↵,1) for some ↵ > 0. Then for
y > ↵ we have

0 = V (y)� V (↵) = E
X

[x]1

1
(⇠

x

12(↵,y]) ! E
X

[x]1

1
(⇠

x

12(↵,1))

as y ! 1, by monotone convergence. But the right-hand side equals

Q
�

e(1+p)⇣11
(⇠12(↵,1)

� � e�(1+p)c Q(⇠
1

> ↵).

We conclude that Q(⇠
1

> ↵) = 0. Unless the fragmentation process is trivial, how-
ever, there exists some a > 0 such that jumps of ⇠ (under Q) of size exceeding a
arrive according to a Poisson process with positive rate. The probability that more
than ↵/a such jumps arrive before time 1 is positive, giving a contradiction.

Now we verify hypothesis 2 of Theorem 2.12: we fix p > p and show that, for all
q > 0,

E
⇣

M(1, p) (log
+

M(1, p))q
⌘

< 1.

Recall that
M(1, p) = e�(p)

X

[x]1

(Ix
1

)1+p = � A
p

,

where we’ve written � := exp(�(p)) < 1 and A
p

:=
P

[x]1
(Ix

1

)1+p. Then note that
log

+

(ab)  log
+

(a) + log
+

(b) for all a, b > 0, and that (a + b)q  2q(aq + bq) for all
a, b, q > 0. We deduce that

M(1, p) (log
+

M(1, p))q  2q�A
p

((log
+

�)q + (log
+

A
p

)q)

Now EA
p

= exp(��(p)) < 1, since p > p, so we just need to show that

E
�

A
p

(log
+

A
p

)q
�

< 1
whenever p > p and q > 0. Since (log

+

(y))q = o(y✏) as y ! 1, for all q, ✏ > 0, it
further su�ces to show that for all p > p there exists ✏ > 0 so small that EA1+✏

p

< 1;
i.e., that

E

✓

X

[x1]

(Ix
1

)1+p

◆

1+✏

< 1.

But this follows immediately from Lemma 4.5 of [36].

We will only need the conclusions (2.1) and (2.2) of Theorem 2.12, which now read
as follows. Define, for n 2 N and p > p,

C(k, p) := ��00(p)
p
2⇡ke�k

�

(1+p)�

0
(p)��(p)

�

.

Then, in the lattice case (that is, when ⌫ is geometric),

C(k, p)Vk({k�0(p) + y}) �! d e(1+p)y M(1, p)

almost surely as k ! 1, for all p 2 (p, p) and y 2 dZ.
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In the non-lattice case,

C(k, p)Vk

�

[k�0(p) + y, k�0(p) + y + x)
� �! (1 + p)�1e(1+p)y(e(1+p)x � 1)M(1, p)

almost surely as k ! 1, for all p 2 (p, p), all y 2 R and all x > 0.

In both cases, the martingale limit M(1, p) satisfies the inequalities 0 < M(1, p) <
1 almost surely. In the lattice case we set y = 0 and take logarithms, to deduce
that, almost surely,

lim
k!1

1

k
log Vk({k�0(p)}) = (1 + p)�0(p)� �(p).

In the non-lattice case we start with the trivial observation that

Vk

�

(�1, k�0(p) + y + x)
� � Vk

�

[k�0(p) + y, k�0(p) + y + x)
�

.

We set y = �1 and x = 1/2. Taking logarithms then allows us to conclude that,
almost surely,

lim inf
k!1

1

k
log Vk

�

(�1, k�0(p)]
� � (1 + p)�0(p)� �(p).

Now let us define N ⇠(t, �) := {Ix

t

: ⇠x
t

 �t}. We can summarize our conclusions
above, in both the lattice and non-lattice case, by asserting that for all p < p < p,
we have

lim inf
k!1

1

k
log#N ⇠(k,�0(p)) � (1 + p)�0(p)� �(p)

almost surely.

It remains to note that N ⇠(k, c
p

+�) = N (k, �), and to use the definition of ⇢. Indeed,
suppose that c

p

+ � < v
max

. Then

#N (k, �) = #N ⇠(k, c
p

+ �) = #N ⇠(k,�0(p
�

)),

so that

lim inf
k!1

1

k
log#N (k, �) � (1 + p

�

)�0(p
�

)� �(p
�

) = ⇢(�).

If c
p

+ � � v
max

, we have

#N (k, �) � #N (k, �⇤).

As above, we deduce that

lim inf
k!1

1

k
log#N (�, k) � lim inf

k!1

1

k
log#N (�⇤, k) � ⇢(�⇤) = ⇢(�),

completing the proof.

Now we want to see how long it takes for #N (k, �) to exceed n✏ for ✏ > 0 and n 2 N.
So for all such ✏ and n we define

T (n, ✏, �) := inf{k 2 N : #N (k, �) � n✏}.
The following result follows from Proposition 3.2.
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Corollary 3.3. The following inequality holds almost surely:

lim sup
n!1

1

log n
T (n, ✏, �)  ✏

⇢(�)
.

Proof. We will show that
⇢

lim inf
k!1

1

k
log #N (k, �) � ⇢(�)

�

✓
⇢

lim sup
n!1

1

log n
T (n, ✏, �)  ✏

⇢(�)

�

.

So let us fix a sample point ! in the left-hand side and show that ! belongs to the
right-hand side (all random variables below are evaulated at !). For ⌘ 2 (0, ⇢(�)),
there exists some integer M � 0 such that k � M forces

#N (k, �) � e(⇢(�)�⌘)k.

We have

T (n, ✏, �) = inf{k 2 N : #N (k, �) � n✏}
 inf{k � M : #N (k, �) � n✏}
 inf{k � M : e(⇢(�)�⌘)k � n✏}
= max

✓

✏

⇢(�)� ⌘
log n+ 1,M

◆

=
✏

⇢(�)� ⌘
log n+ 1

for all large n. We conclude that

lim sup
n!1

1

log n
T (n, ✏, �)  ✏

⇢(�)� ⌘
.

Since ⌘ was arbitrary, the claim follows.

3.2.3 Step 3: Completing the argument

We are now ready to complete the argument using the Borel Cantelli Lemma. First,
fix arbitrary ✏ > 0 and choose the bn✏c largest elements of N (1, T

n

) (we write T
n

for T (n, ✏, 1)), labelling them (In,j : 1  j  bn✏c). Since distinct particles evolve
independently, we know that

P
⇣

min
x2In,j

⇣x
T

n

+n

> � log |In,j|� c
p

T
n

+ l log n+ C 81  j  bn✏c
⌘

is bounded above by

P
⇣

min
x2(0,1)

⇣x
n

> l log n+ C
⌘bn✏c

which, by Proposition 3.1, is bounded above by

✓

1� �

(log n)3

◆bn✏c
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whenever n is su�ciently large. We now claim that this expression is summable in
n. It clearly su�ces to show that for any ↵ > 0 and k 2 N we have

1
X

n=4

✓

1� 1

(log n)k

◆

n

↵

< 1.

We will show that
Z 1

4

�

1� (log x)�k

�

x

↵

dx =

Z 1

log 4

ex
�

1� x�k

�

e

↵x

dx < 1.

by proving that the second integrand is o(e�x) as x ! 1, or, equivalently, that

e↵x
�

log(xk)� log(xk � 1)
�� 2x ! 1 as x ! 1.

But for all t > 1 we have log0(s) � 1

t

8s 2 [t� 1, t], so log(xk)� log(xk � 1) � 1

x

k

for
all x > 1. It remains to note that x�ke↵x � 2x ! 1 as x ! 1.

By the Borel Cantelli Lemma we deduce that, almost surely, for all su�ciently large
n there exists a j

n

2 {1, ..., bn✏c} such that

min
x2In,j

n

⇣x
T

n

+n

 � log |In,j

n |� c
p

T
n

+ l log n+ C

where In,j

n is an element of N (1, T
n

). But this means that

� log |In,j

n |� c
p

T
n

 T
n

.

On the other hand,

min
x2In,j

n

⇣x
T

n

+n

� min
x2(0,1)

⇣x
T

n

+n

= min
x2(0,1)

⇠x
T

n

+n

� c
p

(T
n

+ n)

� min
x2(0,1)

⇠x
n

� c
p

(T
n

+ n)

= min
x2(0,1)

⇣x
n

� c
p

T
n

.

Altogether, we deduce that, almost surely, for all large enough n we have

min
x2(0,1)

⇣x
n

 (1 + c
p

)T
n

+ l log n+ C.

Diving by log n and sending n ! 1, we deduce that

lim sup
N3n!1

1

log n
min

x2(0,1)
⇣x
n

 (1 + c
p

)
✏

⇢(1)
+ l.

Letting ✏ ! 0 gives

lim sup
N3n!1

1

log n
min

x2(0,1)
⇣x
n

 l,

almost surely.

65



For t 2 [n, n + 1] we have ⇣x
t

= ⇠x
t

� c
p

t  ⇠x
n+1

� c
p

n = ⇣x
n+1

+ c
p

. We deduce that,
whenever t 2 [n, n+ 1], we have

1

log t
min

x2(0,1)
⇣x
t

 1

log s

⇣

min
x2(0,1)

⇣x
n+1

+ c
p

⌘

 log(n+ 1)

log n

1

log(n+ 1)
min

x2(0,1)
⇣x
n+1

+
c
p

log(n+ 1)
.

This is enough to show that
⇢

lim sup
N3n!1

1

log n
min

x2(0,1)
⇣x
n

 l

�

✓
⇢

lim sup
R+3t!1

1

log t
min

x2(0,1)
⇣x
t

 l

�

.

Since the smaller of these events has probability 1, the proof is complete.
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CHAPTER 4

SURVIVAL OF SUPERCRITICALLY KILLED
FRAGMENTATION PROCESSES

In this chapter we will prove Theorem 1.15, which concerns the asymptotic behaviour
of the survival probability of a (c

p

+ ✏)–killed fragmentation process as ✏ # 0. We
refer the reader to 1.2.6 for a summary of the relevant definitions. Let’s state
Theorem 1.15 again:

Theorem. The survival probability ⇢(✏) of the (c
p

+ ✏)–killed fragmentation process
satisfies the following asymptotic identity:

lim
✏#0

✏1/2 log ⇢(✏) = �
r

⇡2(1 + p)|�00(p)|
2

.

Our proof of this theorem is based on a paper by Gantert, Hu and Shi [25], in which
the authors address the analogous question in the context of branching random walk.
In fact, we will use Lemma 2.1 to extract the upper bound from this paper, without
much further work. The lower bound, on the other hand, must be proved from
scratch, and will rely on several applications of our version of Mogulskii’s Theorem,
Lemma 2.14.

4.1 Proof of the upper bound

In this section, we will prove that

lim sup
✏#0

✏1/2 log ⇢(✏)  �
r

⇡2(1 + p)|�00(p)|
2

.

We start by noting that, for all n 2 N, we have

⇢(✏)  P
�9x 2 (0, 1) : ⇣x

s

 ✏s 8s 2 [0, n]
�

. (4.1)

Next we fix an array (b(n)
i

: 1  i  n)
n2N with b(n)

i

 b(n)
j

whenever i � j. For each

n 2 N, we let f (n) be the function on [0, n] obtained by applying linear interpolation
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to the collection of coordinates {�i, (1 + p)�1b(n)
i

�

: 0  i  n}, where we define

b(n)
0

:= b(n)
1

for all n 2 N. The function f (n) is continuous and decreasing. Applying
Lemma 2.1 to (4.1) for each n 2 N leads to the bounds

⇢(✏)  e✏(1+p)nI(n)
n

+
n�1

X

i=0

e(1+p)

�

✏(j+1)�f

(n)
j+1

�

I(n)
j

8n 2 N (4.2)

where, for each n 2 N,

I(n)
j

:= Q
�

✏r � f (n)

r

< ⇣
r

 ✏r 8r 2 [0, j]
�

for j 2 [0, n] \ N.

Now we define a random walk S by setting S
i

:= (1+p)⇣
i

for i 2 N. First discretizing
in time and then using the definition of f (n) gives

I(n)
j

 Q
�

✏i� f (n)

i

< ⇣
i

 ✏i 8i  j
�

= Q
�

(1 + p)✏i� b(n)
i

< S
i

 (1 + p)✏i 8i  j
�

.

Let us define
J (n)

j

:= Q
�

✏i� b(n)
i

< S
i

 ✏i 8i  j
�

.

Returning to (4.2), we deduce that

⇢

✓

✏

1 + p

◆

 e✏nJ (n)

n

+
n�1

X

j=0

e✏(j+1)�b

(n)
j+1J (n)

j

=: F (n, b(n), ✏).

The argument b(n) =
�

b(n)
1

, · · · , b(n)
n

�

on the right-hand side means that F is a function
of the whole (finite) sequence b(n).

Now we fix � > 0 and make the explicit choice b(n)
i

:= �(n� i)1/3. It is shown in [25]
that for any ✓ > 0 and N 2 N, the following inequality holds:

lim sup
k!1

✓1/2

(Nk)1/3
logF

✓

Nk, b(Nk),
✓

(Nk)2/3

◆

 G(N, ✓, �),

where

G(N, ✓, �) := ✓1/2 max
1lN�1

(

✓ � 3⇡2�2

S

2�2

,
✓

N
� �

✓

1� 1

N

◆

1/3

,

✓(l + 1)

N
� �

✓

1� l + 1

N

◆

1/3

� 3⇡2�2

S

2�2

N1/3 � (N � l)1/3

N1/3

)

.

Here, �
S

stands for the variance of S, which equals (1 + p)2|�00(p)|. We immediately
deduce that for all ✓ > 0 and N 2 N, we have

lim sup
k!1

✓1/2

(Nk)1/3
log ⇢

✓

✓(Nk)�2/3

1 + p

◆

 G(N, ✓, �).

On the other hand, regardless of the values of ✓ and N , the left-hand side of the
inequality above is equal to

lim sup
✏#0

✏1/2 log ⇢

✓

✏

1 + p

◆

,
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because ✏ 7! ⇢(✏) is a monotone function. Altogether we deduce that

lim sup
✏#0

✏1/2 log ⇢

✓

✏

1 + p

◆

 G(N, ✓, �)

for all N 2 N and ✓, � > 0. Now set

✓ := ✓
0

(�) :=
⇡2�2

2�2

� �

3
.

Then

lim sup
✏#0

✏1/2 log ⇢

✓

✏

1 + p

◆

 lim
�#0

lim sup
N!1

G(N, ✓
0

(�), �).

But, according to [25], we have

lim
�#0

lim sup
N!1

G(N, ✓
0

(�), �)  �
r

⇡2�2

S

2
= �

r

⇡2(1 + p)2|�00(p)|
2

.

So

lim sup
✏#0

✏1/2 log ⇢

✓

✏

1 + p

◆

 �
r

⇡2(1 + p)2|�00(p)|
2

.

The required result follows immediately.

4.2 Proof of the lower bound

In this section we will show that

lim inf
✏#0

✏1/2 log ⇢(✏) � �
r

⇡2(1 + p)|�00(p)|
2

. (4.3)

First we note that the method of the previous section is not applicable. The reason
why is essentially contained in the inequality “J (n)

j

� I(n)
j

” that we used there. Prob-
abilities of the form Q(f(s)  ⇣

s

 g(s) 8s 2 [0, t]) are dominated by probabilities
of the form Q(f(s)  ⇣

s

 g(s) 8s 2 [0, t]\N), but not vice versa. It is also unclear
how to apply the discretization scheme of Bertoin and Rouault [15], for the reasons
briefly outlined at the end of the introduction. With these comments in mind, we
will now proceed to prove (4.3) from scratch, though our proof is still based on the
one contained in [25].

The central idea, as in [25], is to construct a Galton-Watson process whose survival
probability is dominated by ⇢(✏). Galton-Watson processes being easier to study than
fragmentation processes, this represents a significant reduction of our problem. The
method of constructing the appropriate Galton-Watson process used in [25] will not
work for us; the interested reader is referred to the first infimum in display (4.3) of
that paper, which in the fragmentation case equals zero, no matter how large their
M is.
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4.2.1 Constructing the Galton-Watson tree

For 0  u < v  t, we say a particle Ix

t

alive at time t remained �–low on [u, v] if

⇣x
s

 ⇣x
u

+ �(s� u) for all s 2 [u, v].

We say a particle Ix

t

alive at time t was a–good on [u, v] if

for all integers 0  i  dv � ue � 1 and for all ✓ 2 [0, 1], ⇣y
u+i+✓

 ⇣y
u+i

+ a✓.

Now we fix constants ✏,M,↵ > 0 and integers n > L � 1. Write G
1

(✏,M,↵, n, L) for
the set of all particles alive at time n which remained (↵✏)–low on [0, L], and were
M–good on [L, n] (see Figure 4.1, page 71 ).

We iterate this definition relative to birth position to form a set of particles G
k

=
G
k

(✏,M,↵, n, L) alive at time kn for each k 2 N. To be precise, for k � 1 let
G
k+1

denote the set particles alive at time (k + 1)n which descend from particles in
G
k

, remained (↵✏)–low on [kn, kn + L], and were M–good on [kn + L, kn]. Clearly,
the fragmentation property implies that G

k

:= #G
k

defines a Galton-Watson pro-
cess (G

k

: k 2 N). We will write G = G(✏,M,↵, n, L) for the Galton-Watson tree
generated by discarding spatial information contained in the collection of particles
(G

k

: k 2 N).

Before studying the Galton-Watson tree G, we introduce a little bit more notation.
We let X

M

denote the descendants of the initial particle (0, 1) which are alive at time
1 and which were M–good on [0, 1]. That is,

X
M

:= #{Ix

1

: ⇣x
s

 Ms 8s 2 (0, 1]}.

We then use X
M

as an o↵spring distribution to generate another Galton-Watson pro-
cess, independent of the fragmentation process, and defined on the same probability
space. We call this process ⇥

M

, and write ZM

k

for the size of its k’th generation.
The point is this. Fix j > i � 0 and a particle Ix

i

alive at time i. The number of
descendants (alive at time j) of Ix

i

which wereM–good on [i, j] is equal in law to ZM

j�i

.

For ✏,↵ > 0 and L 2 N, we let A(✏,↵, L) stand for the set of particles alive at time
L which remained (↵✏)–low on [0, L]:

A(✏,↵, L) :=
�Ix

L

: ⇣x
s

 ↵✏s 8s 2 [0, L]
 

.

The following lemma is a simple consequence of the construction of G
1

, but will be
very useful; see Figure 4.2, page 72, for an illustration.

Lemma 4.1. G
1

= #G
1

is equal in law to the sum of #A(✏,↵, L) independent copies
of ZM

n�L

.

Now we turn to studying the properties of G, and its relationship to the original
problem of estimating ⇢(✏) from below. Let us write S(✏) for the event that the
(c

p

+ ✏)–killed fragmentation process survives. We have the following:
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`1

L

n

`2

Figure 4.1. Symbolic sketch of a sample path t 7! ⇣

x

t

for x 2 (0, 1) such that

Ix

n

2 G1. The line `1 is the graph of t 7! ✏↵t. The vertical dotted lines are one

unit of time apart. The line `2 has gradient M , as do the similar lines following

it. The circle is located at (n, ⇣

x

n

).

Lemma 4.2. Fix constants M, ✏ > 0, ↵ 2 (0, 1) and integers n > L � 1 satisfying
the inequality

(n� L)M  (1� ↵)✏L. (4.4)

The following inclusion then holds:

S(✏) � �

G(✏,M,↵, n, L) survives
 

.

Of course, this inclusion implies that ⇢(✏) dominates the survival probability of
G(✏,M,↵, n, L), provided the parameters satisfy the conditions in the statement of
the lemma.

Proof. By induction it su�ces to show that, whenever Ix

n

2 G
1

, the inequality ⇣x
t

 ✏t
holds for all t 2 [0, n]. For t 2 [0, L] we know that ⇣x

t

 ↵✏t  ✏t, since ↵ 2 (0, 1).
For t 2 [L, n], we know that

⇣x
t

 ↵✏L+ (t� L)M  ↵✏L+ (n� L)M  ↵✏L+ (1� ↵)✏L = ✏L  ✏t.

In the first inequality we use the definition of the set G
1

; in the second we use the
fact that n exceeds t; in the third we use (4.4); and in the final inequality we use the
fact that t exceeds L.

Now we define, for b 2 R and t � 0, the probability

⇢(b, t) := P(9x 2 (0, 1) : ⇣x
s

 bs 8s 2 [0, t]).

The following lemma is the result of a simple application of the fragmentation prop-
erty at time L:
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`1

`2

L

n

⇥
⇥
⇥
⇥

⇥
⇥
⇥

⇥
⇥

⇥
⇥
⇥
⇥
⇥

Figure 4.2. The ancestries of particles in G1. The circles at time L are the ⇣–

values of particles in A(✏,↵, L). The curves illustrate their genealogical lines of

⇣–descent, which always lie beneath the line `1 : s 7! ↵✏s. We have omitted the

necessary discontinuities at fragmentation events, where the curves branch. The

arrow emanating from a given circle points to the collection of its its descendants

alive at time n which were M–good on [L, n]—these descendants are represented

by ⇥–marks. When the parameters ✏,M,↵, n and L satisfy certain conditions,

the ⇣–history of all ⇥–marked particles lies below the line `2 : s 7! ✏s, as we

show in Lemma 4.2.

Lemma 4.3. For any M, ✏,↵ > 0, and integers n > L � 1,

P
⇣

G
1

(✏,M,↵, n, L) 6= ;
⌘

� p
M

⇢(↵✏, L),

where p
M

denotes the survival probability of the Galton-Watson process ⇥
M

.

Of course, this lemma is useless to us unless p
M

> 0, so we now show that we can
pick M large enough to ensure the supercriticality of ⇥

M

.

Lemma 4.4. The Galton-Watson process ⇥
M

is supercritical whenever M is large
enough.

Proof. We note that for any n 2 {1, 2, ...} we have

EX
M

=
X

[x]1

1
(⇣

x

s

Ms 8s2[0,1])

� Q
�

e(1+p)⇣1 ; ⇣
s

< 0 on (0, 1

n

], ⇣
s

 M

n

on [ 1
n

, 1]
�

.

Sending M ! 1, we deduce that for any n 2 {1, 2, ...}
lim

M!1
EX

M

� Q
�

e(1+p)⇣1 ; ⇣
s

< 0 on (0, 1

n

]
�

.
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Taking limits in n, and using the fact that 0 is irregular for [0,1) relative to ⇣, we
conclude that

lim
M!1

EX
M

� Q
�

e(1+p)⇣1
�

= E
X

[x]1:(0,1)

1 2 (1,1],

completing the proof.

In order to prove our next result about G, we will need the following result of McDi-
armid [39], quoted here as it appears in [25]:

Lemma 4.5. Whenever M is so large that ⇥
M

is supercritical, there exists q
M

> 1
such that

P
�

ZM

n

 qn
M

| ZM

n

> 0
�  q�n

M

, 8n � 1.

Now we use this lemma to provide some information about the size of the first gen-
eration of G:

Lemma 4.6. Whenever M is so large that ⇥
M

is supercritical, there exists a constant
K

M

such that for all ✏,↵ > 0 and integers n > L � 1, we have

P
�

1  G
1

 qn�L

M

�  K
M

qn�L

M

,

where q
M

> 1 is the constant from Lemma 4.5.

Proof. In the notation of Lemma 4.1 and the discussion preceding it, we define
A := A(✏,↵, L), and Z := ZM

n�L

. We write A for the collection of midpoints of
the intervals in A. Finally, we define a := qn�L

M

.

According to Lemma 4.1, G
1

is equal in law to the sum of #A independent copies of
Z. For the inequality 1  G

1

 a to obtain, none of these copies can exceed a, and
at least one must exceed zero; of course, G

1

� 1 forces A 6= ;. First conditioning on
F

L

, these observations lead to the inequality

P
�

1  G
1

 a
�

 E

✓

1
(#A�1)

EF
L

⇣

9x 2 A such that Zx > 0, and Zx  a 8x 2 A
⌘

◆

,

where, given A, (Zx : x 2 A) are independent copies of Z. The following calculation
is elementary: we have

EF
L

⇣

9x 2 A such that Zx > 0, and Zx  a 8x 2 A
⌘

 #A · P(Z  a)#A�1 ·P(1  Z  a).

Consequently,

P
�

1  G
1

 a
�  P(1  Z  a)E

⇣

1
(#A�1)

#A · P(Z  a)#A�1

⌘

. (4.5)
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Now we need to make sure that P(Z  a) = P(ZM

n�L

 a) can be bounded away
from one, in a manner independent of n and L. But for all integers n > L � 1,

P(Z > a) = P(Z > 0)P(Z > a
�

�Z > 0)

� p
M

⇣

1� q�(n�L)

M

⌘

� p
M

�

1� q�1

M

�

> 0,

where in the second line we use Lemma 4.5 (also recall that p
M

stands for the survival
probability of ⇥

M

, which we are assuming to be positive). Let us write 
M

:=
1� p

M

�

1� q�1

M

�

< 1. Using the previous display, we can now write

E
⇣

1
(#A�1)

#A · P(ZM

n�L

 a)#A�1

⌘

 E
⇣

1
(#A�1)

#A · #A�1

M

⌘

for all integers n > L � 1. Noting that the function x 7! x�x�1 is bounded on [1,1)
whenever � 2 [0, 1), the previous display allows us to bound the second factor in
(4.5) by a constant depending only on M . Applying Lemma 4.5 to the first factor
finishes the proof.

By fixing M so large that ⇥
M

is supercritical, we arrive at the following summary of
what we have shown so far:

Proposition 4.7. There exist constants M,K, � > 0 and a constant q > 1 such
that for all ✏ > 0, all ↵ 2 (0, 1) and all integers n > L � 1 collectively satisfying
the inequality (n � L)M  (1 � ↵)✏L, we can construct a super-critical Galton-
Watson tree G = G(✏,M,↵, n, L), with first generation size G, that has the following
properties:

1. P
�

G survives
�  ⇢(✏).

2. P(G � 1) � � ⇢(✏↵, L).

3. P
�

1  G  qn�L

�  K

qn�L

.

4.2.2 Survival below the ray t 7! bt over finite time horizons

In light of Proposition 4.7, it shouldn’t be too surprising that the next step in the
proof of (4.3) is to provide quantitative information about the behaviour of ⇢(·, ·).
Proving the following proposition is the most technically challenging part of the proof
of Theorem 1.15.

Proposition 4.8. For any ✓ > 0 we have

lim inf
t!1

1

t1/3
log ⇢(✓t�2/3, t) � �

r

⇡2(1 + p)|�00(p)|
2✓

.
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The proof of this proposition is long, so we break it up into several steps.

Step 1: Preliminaries. First we move the killing barrier s 7! ✓t�2/3s (for s 2 [0, t])
implicit in the definition of ⇢(✓t�2/3, t) up a little, by the amount ✏t1/3. To be precise,
Corollary 2.11 yields the following statement: there exists ⌘ > 0 such that for all
✏, ✓ > 0 and t � 0, we have

⇢(✓t�2/3, t) � p↵ · P�9x 2 (0, 1) : ⇣x
s

 ✓t�2/3s+ ✏t1/3 8s 2 [0, t]
�

, (4.6)

where ↵ = ↵(t, ✏, ⌘) := d ✏t

1/3

⌘

e. Since

lim
t!1

1

t1/3
log p↵ = o

✏

(1) as ✏ # 0,

we can focus on the second factor in (4.6) from now on. We define, for b 2 R, ✏ > 0
and t � 0,

⇢
✏

(b, t) := P
�9x 2 (0, 1) : ⇣x

s

 bs+ ✏t1/3 8s 2 [0, t]
�

,

so that the second factor can be written as ⇢
✏

(✓t�2/3, t). The remainder of the proof
will consist in estimating this quantity from below using a second moment argument.

We define, for any � > 0, t � 0 and s 2 [0, t] the intervals

I
s

(t) :=
h

✓
s

t2/3
� �t1/3, ✓

s

t2/3
+ ✏t1/3

i

.

We note that I
s

(t) has nothing to do with the length of the randomly tagged fragment
(which we called I(t))—this length does not feature in what follows, so there is no
opportunity for confusion.

Next we count those fragments that have remained inside these intervals until time
t � 0:

Z
t

:=
X

[x]

t

1
(⇣

x

s

2I
s

(t) 8s2[0,t]).

Then ⇢
✏

(✓t�2/3, t) � P(Z
t

> 0), and the Paley-Zygmund inequality tells us that

P(Z
t

> 0) � (EZ
t

)2

E(Z2

t

)
.

We now rewrite the first and second moments of Z
t

in terms of the spine (⇣,Q).
Using the Many-to-One Lemma, we have

E
t

:= EZ
t

= Q
�

e(1+p)⇣

t1
(⇣

s

2I
s

(t) 8s2[0,t])
�

= Q
�

e(1+p)⇣

t1
A[0,t]

�

where for 0  v  w  t we write A
[v,w]

for the event that ⇣
s

2 I
s

(t) for all v  s  w.
By Corollary 2.7 we have

E(Z2

t

) = E
t

+ ⇤
t

,

where
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⇤
t

:=

Z

t

0

dr · Q
✓

e(1+p)⇣

r1
A[0,r]

Z

U
G(⇣

r

, u)⌫(du)

◆

,

with
G(↵, u) :=

X

i 6=j

F (↵� log |u
i

|)F (↵� log |u
j

|),

and
F (↵) := Q e⇣t�r

(p+1)1�
↵+⇣

s

2I
s+r

(t) 8s2[0,t�r]

�.

For future reference, we rewrite our application of the Paley-Zygmund inequality in
these terms:

⇢
✏

(✓t�2/3, t) � E2

t

E
t

+ ⇤
t

. (4.7)

Our task now is to find upper and lower bounds on E
t

and an upper bound on ⇤
t

.
Unsurprisingly, the first two bounds are very easy; the third is where the di�culty
lies.

Step 2: Bounding E
t

from above and below. For the lower bound on E
t

, we start
with the following calculation:

E
t

� Q
⇣

e(1+p)⇣

t ; ⇣
s

2 I
s

(t) 8s 2 [0, t], ⇣
t

� ✓t1/3
⌘

� e(1+p)✓t

1/3
Q
⇣

⇣
s

2 I
s

(t) 8s 2 [0, t], ⇣
t

� ✓t1/3
⌘

. (4.8)

In the first inequality we have added the extra condition ⇣
t

� ✓t1/3, and in the second
we have used this condition to bound the exponential factor. Now we apply the
second part of our version of Mogulskii’s Theorem, Lemma 2.14, by noting that

Q
⇣

⇣
s

2 I
s

(t) 8s 2 [0, t], ⇣
t

� ✓t1/3
⌘

= Q

✓

✓
s

t
� �  ⇣

t

t1/3
 ✓

s

t
+ ✏ 8s 2 [0, t],

⇣
t

t1/3
� ✓

◆

so that

lim
t!1

1

t1/3
log Q

⇣

⇣
s

2 I
s

(t) 8s 2 [0, t], ⇣
t

� ✓t1/3
⌘

= � ⇡2�2

2(�+ ✏)2
� �⇡2�2

2�2

.

Returning to (4.8), we deduce that

lim inf
t!1

1

t1/3
logE

t

� (1 + p)✓ � ⇡2�2

2�2

.

Now we bound E
t

from above in a similar fashion. We have

E
t

 e(1+p)(✓+✏)t

1/3
Q
⇣

⇣
s

2 I
s

(t) 8s 2 [0, t]
⌘

= e(1+p)(✓+✏)t

1/3
Q

✓

✓
s

t
� �  ⇣

t

t1/3
 ✓

s

t
+ ✏ 8s 2 [0, t]

◆

.
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Mogulskii’s Theorem then allows us to deduce that

lim sup
t!1

1

t1/3
logE

t

 (1 + p)(✓ + ✏)� ⇡2�2

2(�+ ✏)2
.

Step 3: A preliminary upper bound on ⇤
t

. We claim that for all t � 0, we have

⇤
t

 � t e(1+p)(✓+✏)t

1/3
sup
r2[0,t]

h
r,t

· sup
r2[0,t]

g
r,t

(4.9)

where � is a positive constant,

h
r,t

:= e(1+p)[✓(t�r)t

�2/3
+(�+✏)t

1/3] sup
0x(�+✏)t

1/3

Q
�

⇣
s

2 x+ J
s

(t) 8s 2 [0, t� r]
�

and

g
r,t

:= Q (⇣
s

2 I
s

(t) 8s 2 [0, r]) sup
0x(�+✏)t

1/3

Q
�

⇣
s

2 x+ J
s

(t) 8s 2 [0, t� r]
�

,

with
J
s

(t) :=
h

✓
s

t2/3
� (�+ 2✏)t1/3, ✓

s

t2/3
+ ✏t1/3

i

.

Before proving this claim we make two remarks. First, the second factors in the
definitions of h

r,t

and g
r,t

are the same, which will allow us to recycle some work
when estimating them from above. Second, the interval J

s

(t) arises from widening the
interval I

s

(t) by ✏t1/3 at both endpoints. The reason for doing this will be explained
during the proof.

Proof. We fix r 2 [0, t] and start by estimating the integrand in the definition of
⇤

t

at this value. First we estimate away the sum in u
j

in the definition of G(↵, u)
(explanations follow the calculation):

X

i 6=j

F (↵� log |u
j

|)

=
X

i 6=j

|u
j

|p+1Q
⇣

e(1+p)(⇣

t�r

�log |u
j

|) ; ↵� log |u
j

|+ ⇣
s

2 I
s+r

(t) 8s 2 [0, t� r]
⌘

 e(1+p)(✓+✏)t

1/3�↵(1+p) sup
�2I

r

(t)

Q
�

� + ⇣
s

2 I
s+r

(t) 8s 2 [0, t� r]
�

X

i 6=j

|u
j

|p+1

 (1� |u
i

|)1+pe(1+p)(✓+✏)t

1/3�↵(1+p) sup
�2I

r

(t)

Q
�

� + ⇣
s

2 I
s+r

(t) 8s 2 [0, t� r]
�

.

In the first line we introduce and remove the multiplicative term |u
j

|p+1. In the
second we bound the exponential factor using information following the semicolon.
More precisely, on the event

�

↵� log |u
j

|+ ⇣
s

2 I
s+r

(t) 8s 2 [0, t� r]
 

(4.10)

we know that (by setting s = t� r)

⇣
t�r

� log |u
j

| 2 I
t

(t)� ↵ =
⇥

(✓ � �)t1/3, (✓ + ✏)t1/3
⇤� ↵,
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yielding the upper bound that we used in the calculation. We also know that un-
less ↵ � log |u

j

| 2 I
r

(t), the event in (4.10) is null (this comes from setting s = 0
in the definition of the event). This explains the presence of the uniform bound
sup

�2I
r

(t)

Q(· · · ) appearing above.

In the third line we use the elementary inequality
P

ap
i

 (
P

a
i

)p for non-negative se-
quences (a

i

) and p > 1, and the fact that, ⌫–almost everywhere, we have
P

i 6=j

|u
j

| =
1� |u

i

|.

So far we have shown that, for r � 0 and u 2 U , G(⇣
r

, u) is bounded above, almost
surely, by

e(1+p)(✓+✏)t

1/3�(1+p)⇣

r sup
�2I

r

(t)

Q
�

� + ⇣
s

2 I
s+r

(t) 8s 2 [0, t� r]
�·

X

i

(1� |u
i

|)1+pF (⇣
r

� log |u
i

|). (4.11)

But we are working on the event that ⇣
s

2 I
s

(t) for all s 2 [0, r] (note the indicator
1
A[0,r]

in the definition of ⇤
t

). On this event, in particular, ⇣
r

� ✓ r

t

2/3 � �t1/3. This
means that we can bound the exponent in the previous display from above by

(1+p)(✓+✏)t1/3�
⇣

✓
r

t2/3
� �t1/3

⌘

(1+p) = (1+p)
h

✓(t�r)t�2/3+(�+✏)t1/3
i

. (4.12)

By shifting the origin to the coordinate (r, right endpoint of I
r

(t)) and using the fact
that the intervals I

r

(t) have constant width L
t

:= |I
r

(t)| = (�+ ✏)t1/3 (for fixed t � 0
and varying r 2 [0, t]), we note that

sup
�2I

r

(t)

Q
�

� + ⇣
s

2 I
s+r

(t) 8s 2 [0, t� r]
�

= sup
0xL

t

Q
⇣

⇣
s

2 x+
h

✓
s

t2/3
� (�+ ✏)t1/3, ✓

s

t2/3

i

8s 2 [0, t� r]
⌘

. (4.13)

When x = 0, the right endpoint of the interval corresponding to s = 0 in the right-
hand side of the previous display equals 0. Similarly, when x = L

t

, the left endpoint of
the interval corresponding to s = 0 equals 0. In order to be able to apply Mogulskii’s
Theorem in one fell swoop, therefore, we widen all the intervals by the amount ✏t1/3.
That is, we introduce the intervals

J
s

(t) :=
h

✓
s

t2/3
� (�+ 2✏)t1/3, ✓

s

t2/3
+ ✏t1/3

i

,

for t � 0 and s 2 [0, t], and make the trivial observation that, by (4.13), we have

sup
�2I

r

(t)

Q
�

� + ⇣
s

2 I
s+r

(t) 8s 2 [0, t� r]
�

 sup
0xL

t

Q
�

⇣
s

2 x+ J
s

(t) 8s 2 [0, t� r]
�

.

Putting this estimate, and the estimate (4.12), into (4.11), we conclude that, on the
event A

[0,r]

,

G(⇣
r

, u)  h
r,t

X

i

(1� |u
i

|)1+pF (⇣
r

� log |u
i

|) (4.14)
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where

h
r,t

:= e(1+p)[✓(t�r)t

�2/3
+(�+✏)t

1/3] sup
0xL

t

Q
�

⇣
s

2 x+ J
s

(t) 8s 2 [0, t� r]
�

.

The t–dependence on the right-hand side of (4.14) looks a bit odd at first glance, but
this is because the event A

[0,r]

where the estimate is valid depends on t. Now we use
our bound on G to make the following estimate (with the obvious interpretation in
case h

r,t

= 0):

h�1

r,t

Z

U
G(⇣

r

, u)⌫(du) 
Z

U
⌫(du) ·

X

i

(1� |u
i

|)1+pF (⇣
r

� log |u
i

|).

By the definition of F , the right-hand side of this inequality is equal to

Z

U
⌫(du) ·

X

i

(1� |u
i

|)1+p

✓

Q e⇣t�r

(p+1)1�
↵�log |u

i

|+⇣

s

2I
s+r

(t) 8s2[0,t�r]

�

◆

�

�

�

�

↵=⇣

r

.

Next we introduce and remove the factor |u
i

|1+p: the expression in the previous
display is equal to

Z

U
⌫(du) ·

X

i

(1�|u
i

|)1+p|u
i

|1+p ·

·
✓

Q e(⇣t�r

�log |u
i

|)(p+1)1�
↵�log |u

i

|+⇣

s

2I
s+r

(t) 8s2[0,t�r]

�

◆

�

�

�

�

↵=⇣

r

.

Now we apply Corollary 2.9 to deduce that this expression is equal to

Z 1

0

⇧(dx) · (1� e�x)1+p

✓

Q e(⇣t�r

+x)(p+1)1�
↵+x+⇣

s

2I
s+r

(t) 8s2[0,t�r]

�

◆

�

�

�

�

↵=⇣

r

,

which, by the elementary inequality 1� exp(�x)  1^x for x � 0, and the fact that
p > 0, is bounded above by

Z 1

0

⇧(dx) · (1 ^ x)

✓

Q e(⇣t�r

+x)(p+1)1�
↵+x+⇣

s

2I
s+r

(t) 8s2[0,t�r]

�

◆

�

�

�

�

↵=⇣

r

.

Substituting this bound into the definition of ⇤
t

, we deduce that

⇤
t


Z

t

0

dr · h
r,t

Z 1

0

⇧(dx) · (1 ^ x) f(t, r, x) (4.15)

where, for t � 0, r 2 [0, t] and x � 0,

f(t, r, x) := Q

0

@e(1+p)⇣

r1
A[0,r]



Qe(1+p)(⇣

t�r

+x)1�
↵+x+⇣

s

2I
s+r

(t) 8s2[0,t�r]

�

�

�

�

�

�

�

↵=⇣

r

1

A .
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Clearly, f(t, r, x) is ripe for simplification via the Markov property at time r (expla-
nations follow the calculation):

f(t,r, x)

= Q

✓

e(1+p)⇣

r1
A[0,r]



QG
r

e(1+p)(⇣

t

�⇣

r

+x)1�
⇣

r

+x+⇣

s+r

�⇣

r

2I
s+r

(t) 8s2[0,t�r]

�

�◆

= Q

✓

e(1+p)(⇣

t

+x)1
A[0,r]

1�
x+⇣

s+r

2I
s+r

(t) 8s2[0,t�r]

�

◆

= Q

✓

e(1+p)(⇣

t

+x)1
A[0,r]

1�
x+⇣

s

2I
s

(t) 8s2[r,t]
�

◆

 e(1+p)(✓+✏)t

1/3
Q (⇣

s

2 I
s

(t) 8s 2 [0, r], x+ ⇣
s

2 I
s

(t) 8s 2 [r, t])

 e(1+p)(✓+✏)t

1/3
Q (⇣

s

2 I
s

(t) 8s 2 [0, r]) sup
0xL

t

Q
�

⇣
s

2 x+ J
s

(t) 8s 2 [0, t� r]
�

=: e(1+p)(✓+✏)t

1/3
g
r,t

.

The first line is an application of the Markov property; in the second step, we bring
the G

r

–measurable expression inside the conditional expectation, and simplify the
resulting integrand; in the third equality we simplify the qualification in time; in the
first inequality we bound the exponential factor using the condition x + ⇣

t

2 I
t

(t).
The second inequality is obtained by using the Markov property at time r, and taking
a supremum in x.

Returning to (4.15), we deduce, after taking suprema in r, that

⇤
t

 � t e(1+p)(✓+✏)t

1/3
sup
r2[0,t]

h
r,t

· sup
r2[0,t]

g
r,t

where � :=
R1
0

(1 ^ x)⇧(dx) < 1, completing the proof.

To obtain an upper bound on ⇤
t

, we now estimate sup
r2[0,t] hr,t

and sup
r2[0,t] gr,t.

Step 4: Bounding sup
r2[0,t] hr,t

from above. We remind the reader that

h
r,t

:= e(1+p)[✓(t�r)t

�2/3
+(�+✏)t

1/3] sup
0xL

t

Q
�

⇣
s

2 x+ J
s

(t) 8s 2 [0, t� r]
�

where L
t

:= |I
r

(t)| = (�+ ✏)t1/3.

Let N, k � 1 be integers, and set t := Nk. We split the time interval [0, t] in the
supremum sup

r2[0,t] hr,t

into intervals of the form [(l�1)k, lk] for 1  l  N . Then we
replace all occurrences of r 2 [(l� 1)k, lk] in the definition of h

r,t

with either (l� 1)k
or lk as appropriate, to deduce that
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sup
0rt

h
r,t

= max
1lN

sup
(l�1)krlk

e(1+p)[✓(t�r)t

�2/3
+(�+✏)t

1/3]

· sup
0xL

t

Q
�

⇣
s

2 x+ J
s

(t) 8s 2 [0, t� r]
�

 max
1lN

e(1+p)[✓(N�l+1)N

�2/3
k

1/3
+(�+✏)N

1/3
k

1/3]

· sup
0xL

Nk

Q
�

⇣
s

2 x+ J
s

(Nk) 8s 2 [0, (N � l)k]
�

 max
1lN

e(1+p)[✓(N�l+1)N

�2/3
k

1/3
+(�+✏)N

1/3
k

1/3]

· sup
0xL

Nk

Q
�

⇣
i

2 x+ J
i

(Nk) 81  i  (N � l)k
�

. (4.16)

In the first inequality, for instance, we note that r 2 [(l � 1)k, lk] ) t � r �
(N � l)k , so the qualification 8s 2 [0, t� r] is more stringent than the qualification
8s 2 [0, (N � l)k]. In the second inequality we have done nothing but throw away
qualification over non-integers.

We have now discretized time; the next step is to discretize space, partitioning [0, L
Nk

]
into the intervals [ (m�1)L

Nk

N

, mL

Nk

N

] for 1  m  N . It will also be convenient to write
the interval J

i

(Nk) as [a
i,N,k

, b
i,N,k

]. This leads to the following inequality:

sup
0xL

Nk

Q
�

⇣
i

2 x+ J
i

(Nk) 81  i  (N � l)k
� 

max
1mN

Q

✓

⇣
i

2


a
i,N,k

+
(m� 1)L

Nk

N
, b

i,N,k

+
mL

Nk

N

�

, 81  i  (N � l)k

◆

.

(4.17)

Now we perform some rather ugly algebra. Let’s write c
N,l

:=
�

N

N�l

�

1/3

. Then
the probability indexed by m on the right-hand side of the previous display can be
rewritten as follows:

Q

✓

✓ c�2

N,l

i

(N � l)k
� (�+ 2✏)c

N,l

+
m� 1

N
(�+ ✏)c

N,l

 ⇣
i

(N � l)1/3k1/3

 ✓ c�2

N,l

i

(N � l)k
+ ✏c

N,l

+
m

N
(�+ ✏)c

N,l

81  i  (N � l)k

◆

=: Q(N, l,m, k).

The good news is we are now ready to apply Mogulskii’s Theorem to these probabil-
ities. The appropriate functions are

gN,l,m

1

(t) := ✓ c�2

N,l

t� (�+ 2✏)c
N,l

+
m� 1

N
(�+ ✏)c

N,l

and

gN,l,m

2

(t) := ✓ c�2

N,l

t+ ✏c
N,l

+
m

N
(�+ ✏)c

N,l

.

First note that

gN,l,m

2

(t)� gN,l,m

1

(t) =

✓

�+ 3✏+
1

N
(�+ ✏)

◆

c
N,l

 (�+ 4✏)c
N,l
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whenever N is bigger than some N
1

(✏,�). Note that the m–dependence has been
eradicated; all further estimates are therefore true uniformly in 1  m  N . We now
apply Mogulskii’s Theorem to arrive at the following conclusion:

For all ✏,� > 0 there exists N
1

(✏,�) 2 N such that, whenever N � N
1

, we have

lim sup
k!1

1

(N � l)1/3k1/3

logQ(N, l,m, k)  � ⇡2�2

2(�+ 4✏)2

✓

N � l

N

◆

2/3

,

for all 1  m  N , which we rewrite as

lim sup
k!1

1

N1/3k1/3

logQ(N, l,m, k)  � ⇡2�2

2(�+ 4✏)2
N � l

N
.

Putting this estimate into (4.16), we deduce that, whenever N � N
1

,

lim sup
k!1

1

N1/3k1/3

log sup
0rNk

h
r,Nk

 max
1lN

⇢

(1 + p)✓
N � l + 1

N
+ (1 + p)(�+ ✏)� ⇡2�2

2(�+ 4✏)2
N � l

N

�

= (1 + p)✓
N + 1

N
+ (�+ ✏)(1 + p)� ⇡2�2

2(�+ 4✏)2

+ max
1lN

l

N

✓

⇡2�2

2(�+ 4✏)2
� (1 + p)✓

◆

.

Henceforth we assume that

� � ⇡�

[2(1 + p)✓]1/2
=: �

0

(✓).

This inequality implies that the final maximum in the previous display is non-positive,
which results in the following summary of what we have shown in this step:

For all ✏, ✓ > 0, for all N 2 N, and for all � � �
0

(✓), there exists N
1

= N
1

(✏,�) 2 N
such that whenever N � N

1

, the following inequality obtains:

lim sup
k!1

1

N1/3k1/3

log sup
0rNk

h
r,Nk

 (1 + p)✓
N + 1

N
+ (�+ ✏)(1 + p)� ⇡2�2

2(�+ 4✏)2
.

Step 5: Bounding sup
r2[0,t] gr,t from above. We remind the reader that

g
r,t

:= Q (⇣
s

2 I
s

(t) 8s 2 [0, r]) sup
0xL

t

Q
�

⇣
s

2 x+ J
s

(t) 8s 2 [0, t� r]
�

=: a
r,t

· b
r,t

.

where L
t

:= |I
r

(t)| = (�+ ✏)t1/3.
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Again we fix integers N, k � 1 and set t := Nk. For r 2 [(l�1)k, lk] (with 1  l  N),
we have

b
r,Nk

 sup
0xL

Nk

Q
�

⇣
s

2 x+ J
s

(Nk) 8s 2 [0, (N � l)k]
�

 sup
0xL

Nk

Q
�

⇣
i

2 x+ J
i

(Nk) 81  i  (N � l)k
�

.

The final expression above is the same as the left-hand side of (4.17). Recycling the
work from Step 4, we conclude that for r 2 [(l � 1)k, lk], we have

lim sup
k!1

1

N1/3k1/3

log b
r,Nk

 � ⇡2�2

2(�+ 4✏)2
N � l

N

whenever N � N
1

. Now we turn to a
r,t

. For r 2 [(l � 1)k, lk] we have

a
r,Nk

 Q (⇣
i

2 I
i

(Nk) 81  i  (l � 1)k)

= Q

✓

✓k�2
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i
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� �k
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 ⇣
i

(l � 1)1/3k1/3

 ✓k�2

N,l

i

(l � 1)k
+ ✏k

N,l

81  i  (l � 1)k

◆

,

where k
N,l

:=
�

N

l�1

�

1/3

.

We now use Mogulskii’s Theorem to deduce that, for r 2 [(l � 1)k, lk],

lim sup
k!1

1

N1/3k1/3

log a
r,Nk

 � ⇡2�2

2(�+ ✏)2
l � 1

N
 � ⇡2�2

2(�+ 4✏)2
l � 1

N
.

Now note that sup
(l�1)krlk

g
r,Nk

 a
(l�1)k,Nk

· b
lk,Nk

since a
r,t

decreases in r and b
r,t

increases in r. Putting together our estimates for a
r,t

and b
r,t

, we deduce that for all
N � N

1

,

lim sup
k!1

1

N1/3k1/3

log sup
(l�1)krlk

g
r,Nk

 � ⇡2�2

2(�+ 4✏)2
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N
� ⇡2�2

2(�+ 4✏)2
N � l

N

= � ⇡2�2

2(�+ 4✏)2
N � 1

N
.

The rightmost expression doesn’t depend on l, so we arrive at the following summary
of what we have shown in this step:

For all ✏, ✓ > 0, for all k,N 2 N, and for all � > 0, there exists N
1

= N
1

(✏,�) 2 N
such that whenever N � N

1

, the following inequality obtains:

lim sup
k!1

1

N1/3k1/3

log sup
0rNk

g
r,Nk

 � ⇡2�2

2(�+ 4✏)2
N � 1

N

whenever N � N
1

.

83



We note that although ✓ and � don’t feature explicitly in this inequality, they do
appear in the definition of g

r,Nk

, via the definition of the intervals J
r

(Nk).

Step 6: Completing the argument. Now we return to (4.9). Using the estimates we
obtained in the last two steps, we conclude that, whenever N � N

1

(✏,�),

lim sup
k!1

1

N1/3k1/3

log⇤
Nk

 (1 + p)(✓ + ✏) + (1 + p)✓
N + 1

N
+ (�+ ✏)(1 + p)

� ⇡2�2

2(�+ 4✏)2
� ⇡2�2

2(�+ 4✏)2
N � 1

N
. (4.18)

In Step 2, we showed that

lim inf
k!1

1

N1/3k1/3

logE
Nk

� (1 + p)✓ � ⇡2�2

2�2

(4.19)

and

lim sup
k!1

1

N1/3k1/3

logE
Nk

 (1 + p)(✓ + ✏)� ⇡2�2

2(�+ ✏)2
. (4.20)

Using the monotonicity of t 7! ⇢
✏

(✓t�2/3, t) together with our Paley-Zygmund state-
ment, (4.7), we deduce that for all N � N

1

,

lim inf
t!1

1

t1/3
log ⇢

✏

(✓t�2/3, t)

= lim inf
k!1

1

N1/3k1/3

log ⇢
✏

(✓(Nk)�2/3, Nk)

� 2 lim inf
k!1

1

N1/3k1/3

logE
Nk

�max

⇢

lim sup
k!1

1

N1/3k1/3

logE
Nk

, lim sup
k!1

1

N1/3k1/3

log⇤
Nk

�

. (4.21)

Using (4.20) we find that

lim
✏#0

lim sup
k!1

1

N1/3k1/3

logE
Nk

 (1 + p)✓ � ⇡2�2

2�2

. (4.22)

Using (4.18), we conclude that

lim
✏#0

lim
N!1

lim sup
k!1

1

N1/3k1/3

log⇤
Nk

 2

✓

(1 + p)✓ � ⇡2�2

2�2

◆

+ (1 + p)�. (4.23)

Remember that we are working under the hypothesis that

� � �
0

=
⇡�

[2(1 + p)✓]1/2

which is equivalent to

(1 + p)✓ � ⇡2�2

2�2

� 0.
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In consequence, the right-hand side of (4.23) is greater than the right-hand side of
(4.22).

Now we return to (4.21). Using the fact that (a, b) 7! max(a, b) is continuous (al-
lowing us to take the limits in N and ✏ inside the maximum), together with the
calculations we’ve just made, and also (4.19), we conclude that

lim inf
✏#0

lim inf
t!1

1

t1/3
log ⇢

✏

(✓t�2/3, t) � �(1 + p)�.

The conclusion follows by setting � = �
0

and using (4.6).

4.2.3 Completing the proof

We are now in a position to prove the lower bound, (4.3). In fact, the only properties
of ⇢(✏) we will need are those contained in Proposition 4.7 and Proposition 4.8,
and two further simple analytic properties. The probability content to follow solely
concerns the Galton-Watson tree G. To emphasize this fact, we state the final step in
the following way. Let  be a real valued function defined on (0, a)⇥ [0,1), for some
a > 0, with the further property that the limit (✏,1) exists for all ✏ 2 (0, a). We
will say that  “satisfies Proposition 4.7” if Proposition 4.7 holds with occurrences
of ⇢(·, ·) replaced with , and occurrences of ⇢(·) replaced with (·,1).

Proposition 4.9. Fix a function  : (0, a) ⇥ [0,1) ! [0, 1], for some a > 0.
Suppose that  increases in the first co-ordinate, decreases in the second, and that
lim

✏#0 (✏,1) = 0. Suppose that  satisfies Proposition 4.7, and that

lim inf
t!1

1

t1/3
log (✓t�2/3, t) � �� ✓�1/2 (4.24)

for some � > 0 and all ✓ > 0. Then

lim inf
✏#0

✏1/2 log (✏,1) � ��.

This is essentially what the authors of [25] show on pages 18–19 of their paper.
We emphasize that the proof to follow is identical to theirs; we make no claim to
originality in this step. Since it is short and simple, we include it to keep this half
of the proof self-contained. We remind the reader that M,K, � and q are constants
whose values are fixed by Proposition 4.7.

Proof. We start by fixing constants ↵ 2 (0, 1) and b > max
n

M

1�↵

, (3�)

2

↵(log q)

2

o

. Let

n > 1, and let

✏ = ✏(n) :=
b

n2/3

, and L = L(n) := n� bn1/3c.

Note, in particular, that for all su�ciently large n, the hypothesis (n � L)M 
(1� ↵)✏L of Proposition 4.7 is met, since b > M

1�↵

.
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We are going now going to use the Galton-Watson tree discussed in Proposition 4.7.
As ↵ and b are fixed, ✏ is defined in terms of b and n, and L is defined in terms of
n, we can write G

n

for G(✏,↵, n, L). Let p
n

denote the extinction probability of G
n

,
and write f

n

for the generating function of G
n

, which denotes the size of the first
generation of G

n

. That is,

f
n

(s) := E(sGn) for s 2 [0, 1].

Elementary theory tells us that p
n

is the smallest non-negative fixed point of f
n

, so
for all r 2 (0, p

n

) we can write

p
n

= f
n

(0) +

Z

p

n

�r

0

f 0
n

(s) ds+

Z

p

n

p

n

�r

f 0
n

(s) ds.

We also know that f
n

is an increasing, convex function. Consequently, f 0
n

increases,
and f 0

n

(p
n

)  1. This allows us to write

Z

p

n

�r

0

f 0
n

(s) ds  (p
n

� r)f 0
n

(p
n

� r)  f 0
n

(1� r)

and
Z

p

n

p

n

�r

f 0
n

(s) ds  rf 0
n

(p
n

)  r.

We deduce that
p
n

 f
n

(0) + f 0
n

(1� r) + r, (4.25)

provided that 0 < r < p
n

. Next we use the inequality 1� u  e�u for u � 0 to write

f 0
n

(1� r) =
1

1� r
E(G

n

(1� r)Gn)  1

1� r
E(G

n

e�rG

n).

Further insisting that r < 1/2, we arrive at the following conclusion (deduced from
(4.25)):

1� p
n

� P(G
n

� 1)� 2E(G
n

e�rG

n)� r

whenever 0 < r < p
n

^ 1

2

. Since  satisfies Proposition 4.7, we know that P(G
n

�
1) � �(↵✏, L) � �(↵✏, n) ; the second inequality holds because  decreases in its
second argument. Since the function u 7! ue�ru decreases on [1

r

,1), we can write

E(G
n

e�rG

n)  E(G
n

e�rG

n ; 1  G
n

 r�2) + r�2e�
1
r

 r�2 P(1  G
n

 r�2) + r�2e�
1
r .

Elementary calculations tell us that x 7! x3 e�x decreases on [3,1). Consequently,
sup{x�16} x

3 e�x = (16)3 e�16 < 1

2

, so that sup{0<r 1
16}

r�3e�
1
r < 1

2

. Altogether, we
deduce that

1� p
n

� �(↵✏, n)� 2r�2 P(1  G
n

 r�2)� 2r (4.26)

whenever 0 < r < p
n

^ 1

16

.

Now we claim that whenever (a
n

) is a non-negative sequence decreasing to zero,
lim

n

(a
n

, n) goes to zero too. Indeed, fix ✏ > 0. Then for all large n, (a
n

, n) 
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(✏, n) since  decreases in its first argument. We deduce that lim sup
n!1 (a

n

, n) 
(✏,1). Sending ✏ to zero gives the required conclusion. On the other hand, we
are assuming that (✏

n

,1) � 1 � p
n

for all n 2 N. Since lim
n

(✏
n

,1) = 0, we
deduce that lim

n

p
n

= 1. Putting these two statements together, we deduce that
�

8

(↵✏
n

, n) < p
n

^ 1

16

for all su�ciently large n, since the left-hand side goes to 0 and
the right-hand side goes to 1/16. We can therefore use the values r = r

n

:= �

8

(↵✏
n

, n)
in the work above.

Now we claim that K qL�n  r3
n

whenever n is su�ciently large. This is equivalent
to showing that qn�L (↵bn�2/3, n)3 � K (8/�)3 whenever n is large. In fact, the
left-hand side of this inequality goes to infinity in n, because

lim inf
n!1

1

n1/3

log (↵bn�2/3, n) > �1

3
log q.

To see why this inequality holds, note that the left-hand side exceeds ��(↵b)�1/2 by

our hypothesis (4.24). Our assumption that b > (3�)

2

↵(log q)

2 does the rest.

Since r
n

! 0 in n, we deduce from the result of the last paragraph that r2
n

� qL�n

for all large n. We can therefore write

P(1  G
n

 r�2

n

)  P(1  G
n

 qn�L)  K

qn�L

 r3
n

for all su�ciently large n. The second inequality uses point 3 of Proposition 4.7.
Going back to (4.26), we conclude that for all su�ciently large n,

1� p
n

� �(↵✏
n

, n)� 2r
n

� 2r
n

� �

2
(↵✏

n

, n).

Recalling that (✏
n

,1) � 1� p
n

, we deduce that

(bn�2/3,1) � �

2
(↵bn�2/3, n)

for all su�ciently large n. Using (4.24), we deduce that

lim inf
n!1

1

n1/3

log (bn�2/3,1) � ��(↵b)�1/2.

Since ✏ 7! (✏,1) decreases as ✏ does, we conclude that

lim inf
✏!0

✏1/2 log (✏,1) � ��↵�1/2.

The argument is concluded by sending ↵ ! 1.

To complete the proof of Theorem 1.15, it remains to note that the function (✏, t) 7!
⇢(✏, t) satisfies the additional hypotheses of Proposition 4.9. Indeed, survival becomes
increasingly di�cult as ✏ decreases (with t fixed), and as t increases (with ✏ fixed).
This means that ⇢ increases in its first argument and decreases in its second. The
fact that lim

✏#0 ⇢(✏,1) = 0 is a simple consequence of the upper bound proved
in 4.1. Finally, assumption (4.24) is satisfied (for the appropriate value of �) by
Proposition 4.8.
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CHAPTER 5

SURVIVAL OF CRITICALLY KILLED
FRAGMENTATION PROCESSES

In this chapter we will prove Theorem 1.16, which concerns the asymptotic behaviour
of the probability that a c

p

–killed fragmentation process survives until large times.

Let’s state Theorem 1.16 again:

Theorem. The probability (t) that the critically killed fragmentation process sur-
vives until time t satisfies the following asymptotic identity:

lim
t!1

1

t1/3
log (t) = �

✓

3⇡2(1 + p)2|�00(p)|
2

◆

1/3

.

The structure of this chapter has much in common with that of Chapter 4. Again our
proof will be based on a paper which addresses the corresponding branching random
walk question, in this case Aı̈dékon and Ja↵uel [2]. We will use the work in this paper
to prove the upper bound using Lemma 2.1, and will prove the lower bound from
scratch using the second moment method in combination with Mogulskii’s Theorem,
Lemma 2.14.

The proof of the lower bound in this chapter has a few qualitative di↵erences to the
proof of the lower bound of Theorem 1.15. The reason for this essentially derives
from the fact that the intervals we will use in when applying Mogulskii’s Theorem
in this chapter do not have constant width. In [2], the authors deal with this issue
by proving a series of sophisticated corollaries of Mogulskii’s Theorem; the reader is
referred to section 4 of that paper. We prefer to avoid using these corollaries, and
instead adopt a bare-hands approach. The resulting calculations are consequently
quite messy, but rely only on our simple version of Mogulskii’s Theorem.
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5.1 Proof of the upper bound

As in the proof of the upper bound in Chapter 4, we can use Lemma 2.1 (taking
g = 0 there) to arrive at the following conclusion:

For any array (b(n)
i

: 1  i  n)
n2N satisfying b(n)

i

 b(n)
j

whenever i > j, and any
n 2 N, we have

(n)  I(n)
n

+
n�1

X

j=0

e�b

(n)
j+1(1+p)I(n)

j

(5.1)

where I(n)
0

:= 1 for all n 2 N, and

S
j

:= �⇣
j

, 8j 2 N,
I(n)
j

:= Q
�

0  S
i

 b(n)
i

8i  j
�

, 1  j  n.

For any centred random walk Y with finite variance �2

Y

, any ⌫ > 0, and any array

(b(n)
i

: 1  i  n)
n2N, we define

F Y (n, b(n), ⌫) := I(n)
Y,n

+
n�1

X

j=0

e�⌫ b

(n)
j+1I(n)

Y,j

where I(n)
Y,0

:= 1 for all n 2 N, and where

I(n)
Y,j

:= Q
�

0  Y
i

 b(n)
i

8i  j
�

, 1  j  n.

The right-hand side of (5.1) can then be written as F S(n, b(n), 1 + p).

Now let us fix b(n)
j

:= d(n� j)1/3, where d :=
⇣

3⇡

2
�

2
Y

2(1+p)

⌘

1/3

. The authors of [2] show on

page 1931 of their paper that for any ⌫ > 0,

lim sup
N3n!1

1

n1/3

logF Y (n, b(n), ⌫)  �
✓

3⇡2⌫2�2

Y

2

◆

1/3

.

For our embedded random walk S, �2

S

= ��00(p). Using the monotonicity of t 7! (t),
and taking ⌫ = 1 + p, we deduce that

lim sup
t!1

1

t1/3
log (t)  �

✓

3⇡2(1 + p)2|�00(p)|
2

◆

1/3

,

completing the proof of the upper bound.

5.2 Proof of the lower bound

In this section we will prove that

lim inf
t!1

1

t1/3
log (t) � �

✓

3⇡2(1 + p)2|�00(p)|
2

◆

1/3

.
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We split the proof into several steps, which replicate those used in the proof of
Proposition 4.8.

Step 1: Preliminaries. This step is formally identical to the first step in the proof
of Proposition 4.8, with only the definitions of the intervals I

s

(t) di↵ering. We will
repeat it anyway, to fix notation.

First note that
(t) = P(9x 2 (0, 1) : ⇣x

s

 0 8s 2 [0, t] ).

First we move the killing barrier s 7! 0 on [0, t] up by the amount ✏t1/3: by Corol-
lary 2.11 and the fragmentation property, there exist ⌘, p > 0 such that, for all t � 0
and ✏ > 0, we can write

(t) � p↵ · P�9x 2 (0, 1) : ⇣x
s

 ✏t1/3 8s 2 [0, t]
�

, (5.2)

where ↵ = ↵(t, ✏, ⌘) := d ✏t

1/3

⌘

e. Since

lim
t!1

1

t1/3
log p↵ = o

✏

(1),

we can focus on the second factor in (5.2) from now on. We will estimate this factor
by using the Paley-Zygmund inequality. To this end, we define, for t � 0, the random
variable

Z
t

:=
X

[x]

t

1{⇣x
s

2 I
s

(t) 8s 2 [0, t]}

where this time

I
s

(t) := [�d(t� s)1/3, ✏t1/3] with d :=

✓

3⇡2�2

2(1 + p)

◆

1/3

.

Using the Paley-Zygmund inequality, we have

P(9x 2 (0, 1) : ⇣x
s

 ✏t1/3 8s 2 [0, t]) � P(Z
t

> 0) � (EZ
t

)2

EZ2

t

,

and we now proceed to write the first and second moments of Z
t

in terms of the spine
(⇣,Q).

Using the Many-to-One Lemma, we have

E
t

:= EZ
t

= Q(e(1+p)⇣

t1
(⇣

s

2I
s

(t) 8s2[0,t])) = Q(e(1+p)⇣

t1
A[0,t]

)

where for 0  v  w  t we write A
[v,w]

for the event that ⇣
s

2 I
s

(t) for all v  s  w.

By Corollary 2.7,
E(Z2

t

) = E
t

+ ⇤
t

,

where

⇤
t

:=

Z

t

0

dr · Q
✓

e(1+p)⇣

r1
A[0,r]

Z

U
G(⇣

r

, u)⌫(du)

◆

,
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with
G(↵, u) :=

X

a

u

6=b

u

F (↵� log |a
u

|)F (↵� log |b
u

|),

and
F (↵) := Q e⇣t�r

(p+1)1�
↵+⇣

s

2I
s+r

(t) 8s2[0,t�r]

�.

For future reference, we rewrite our application of the Paley-Zygmund inequality in
these terms: for all t � 0, we have

P
t

:= P(9x 2 (0, 1) : ⇣x
s

 ✏t1/3 8s 2 [0, t]) � E2

t

E
t

+ ⇤
t

. (5.3)

We now proceed to find upper and lower bounds on E
t

, and an upper bound on ⇤
t

.

Step 2: Bounding E
t

from above and below. We start by using the bounds 0  ⇣
t


✏t1/3 on A

[0,t]

to write

Q
�

A
[0,t]

�  E
t

 e✏(1+p)t

1/3
Q
�

A
[0,t]

�

.

Now,

Q
�

A
[0,t]

�

= Q

✓

�d
⇣

1� s

t

⌘

1/3

 ⇣
s

t1/3
 ✏ 8s 2 [0, t]

◆

,

so that, by Lemma 2.14, we deduce that

lim
t!1

1

t1/3
logQ

�

A
[0,t]

�

= �⇡2�2

2

Z

1

0

�

✏+ d(1� s)1/3
��2

ds

=: �3⇡2�2

2d2
+ �

1

(✏).

By the dominated convergence theorem, �
1

(✏) = o(1) as ✏ # 0, since the integral in
the previous display approaches 3d�2 as ✏ # 0. Returning to the first display of this
step, we deduce that

lim inf
t!1

1

t1/3
logE

t

� �3⇡2�2

2d2
+ �

1

(✏)

and that

lim sup
t!1

1

t1/3
logE

t

 �3⇡2�2

2d2
+ �

1

(✏) + (1 + p)✏ =: �3⇡2�2

2d2
+ �

2

(✏).

Step 3: A preliminary upper bound on ⇤
t

. Let us widen the intervals I
s

(t) by ✏t1/3

on either side, by defining

J
s

(t) := [�d(t� s)1/3 � ✏t1/3, 2✏t1/3].

We also define
L
s,t

:= |I
s

(t)| = d(t� s)1/3 + ✏t1/3

and let � :=
R1
0

(1 ^ x)⇧(dx) < 1.

91



We claim that
⇤

t

 � t e2✏(1+p)t

1/3
sup
r2[0,t]

h
r,t

· sup
r2[0,t]

g
r,t

(5.4)

where

h
r,t

:= ed(1+p)(t�r)

1/3
sup

0xL

r,t

Q
�

⇣
s

2 x+ J
s+r

(t) 8s 2 [0, t� r]
�

and

g
r,t

:= Q (⇣
s

2 I
s

(t) 8s 2 [0, r]) sup
0xL

r,t

Q
�

⇣
s

2 x+ J
s+r

(t) 8s 2 [0, t� r]
�

.

The proof of (5.4) is formally the same as the one contained in Step 2 of the proof of
Proposition 4.8. The only di↵erences arise when estimating terms of the form e(1+p)⇣

s

on the event A
[0,t]

, as we are using di↵erent intervals I
s

(t) in this section. For this
reason, we feel it’s safe to omit the details, and proceed to bounding sup

r2[0,t] hr,t

and
sup

r2[0,t] gr,t from above.

Step 4: Bounding sup
r2[0,t] hr,t

from above. We start by fixing integers N, k � 1. We
then set t = Nk, and split the time interval [0, t] into intervals of the form [(l�1)k, lk]
for 1  l  N . For r 2 [(l � 1)k, lk], we have (N � l)k  t � r  (N � 1 + 1)k.
We also note that s 7! L

s,t

is a decreasing map and that J
v

(t) ⇢ J
u

(t) whenever
0  u  v  t. These observations allow us to make the following estimate:

sup
r2[0,t]

h
r,t

= max
1lN

sup
(l�1)krlk

ed(1+p)(t�r)

1/3

· sup
0xL

r,t

Q
�

⇣
s

2 x+ J
s+r

(t) 8s 2 [0, t� r]
�

 max
1lN

ed(1+p)(N�l+1)

1/3
k

1/3

· sup
0xL(l�1)k,Nk

Q
�

⇣
s

2 x+ J
s+(l�1)k

(Nk) 8s 2 [0, (N � l)k]
�

.

Discretizing in s, we deduce that

sup
r2[0,t]

h
r,t

 max
1lN

ed(1+p)(N�l+1)

1/3
k

1/3
H

l,N,k

(5.5)

where

H
l,N,k

:= sup
0xL(l�1)k,Nk

Q
�

⇣
i

2 x+ J
i+(l�1)k

(Nk) 81  i  (N � l)k
�

.

Let’s write L
l,N,k

for L
(l�1)k,Nk

. The next step is to split the x-values in the supremum
over x 2 [0, L

l,N,k

] in the definition of H
l,N,k

into intervals of the form


(m� 1)L
l,N,k

N
,

mL
l,N,k

N

�

, 1  m  N.

Write J
i+(l�1)k

(Nk) as [a
i,l,k

, b
i,l,k

]. Then H
l,N,k

is bounded above by

max
1mN

Q

✓

⇣
i

2


a
i,l,k

+
(m� 1)L

l,N,k

N
, b

i,l,k

+
mL

l,N,k

N

�

, 81  i  (N � l)k

◆

.
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The probability indexed by m in the previous display can be rewritten as

Q

 

�d



N � l + 1

N � l
� i

(N � l)k

�

1/3

� ✏



N

N � l

�

1/3

+
m� 1

N
↵
N,l,✏

 ⇣
i

(N � l)1/3k1/3

 2✏



N

N � l

�

1/3

+
m

N
↵
N,l,✏

, 81  i  (N � l)k

!

, (5.6)

where

↵
N,l,✏

:= ✏



N

N � l

�

1/3

+ d



N � l + 1

N � l

�

1/3

.

We want to apply Mogulskii’s Theorem (sending k to infinity) to estimate these prob-
abilities, for each pair 1  m, l  N . For minor technical reasons, we treat pairs with
1  l  N �N1/3 and pairs with N �N1/3 < l  N separately.

Let’s start with the more di�cult case, fixing 1  m  l and 1  l  N � N1/3.
The appropriate functions for applying Mogulskii’s Theorem, Lemma 2.14, to the
probabilities in (5.6) are

gm,l

1

(t) := �d



N � l + 1

N � l
� t

�

1/3

� ✏



N

N � l

�

1/3

+
m� 1

N
↵
N,l,✏

and

gm,l

2

(t) := 2✏



N

N � l

�

1/3

+
m

N
↵
N,l,✏

for t 2 [0, 1]. We have

gm,l

2

(t)� gm,l

1

(t) = 3✏



N

N � l

�

1/3

+ d



N � l + 1

N � l
� t

�

1/3

+
↵
N,l,✏

N
=: G

N,l

(t).

Note that them–dependence has disappeared; all the following estimates are therefore
true uniformly in m. Applying Lemma 2.14 to our work above, we find that

lim sup
k!1

1

(N � l)1/3k1/3

logH
l,N,k

 �⇡2�2

2

Z

1

0

G�2

N,l

(t)dt. (5.7)

We want to bound this expression above, which is equivalent to bounding G
N,l

above;
this is where we use our restriction l  N �N1/3. For all such l,

N � l + 1

N � l
= 1 +

1

N � l
 1 +

1

N1/3

.

Uniformly in 1  l  N �N1/3, we can therefore use the bound

N � l + 1

N � l
 1 + ✏

for all su�ciently large N . We remark, in particular, that it will therefore be impor-
tant to take N to infinity before ✏ is sent to zero when concluding the argument.
The term ↵

N,l,✏

N

is O(N�2/3), uniformly in 1  l < N , so this term can be bounded
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above by ✏ for all large N . These observations lead to the following bound, valid for
all large N and all 1  l  N �N1/3:

G
N,l

(t)  3✏



N

N � l

�

1/3

+ d(1 + ✏� t)1/3 + ✏

 4✏



N

N � l

�

1/3

+ d(1 + ✏� t)1/3.

Returning to (5.7), we conclude that for all large N (and uniformly in l) we have

lim sup
k!1

1

(Nk)1/3
logH

l,N,k

 �⇡2�2

2

✓

N � l

N

◆

1/3

Z

1

0

dt
h

d(1 + ✏� t)1/3 + 4✏
⇥

N

N�l

⇤

1/3

i

2

. (5.8)

Returning to (5.5), with the restriction 1  l  N � N1/3, we conclude that for all
large enough N ,

lim sup
k!1

1

(Nk)1/3
log max

1lN�N

1/3
ed(1+p)(N�l+1)

1/3
k

1/3
H

l,N,k

is bounded above by the maximum over 1  l  N �N1/3 of

d(1+p)

✓

N � l + 1

N

◆

1/3

� ⇡2�2

2d2

✓

N � l

N

◆

1/3

Z

1

0

dt
h

(1 + ✏� t)1/3 + ✏0
⇥

N

N�l

⇤

1/3

i

2

(5.9)

where ✏0 := 4✏/d. We want to replace the term
�

N�l+1

N

�

1/3

with
�

N�l

N

�

1/3

. But this
can easily be done at ✏–expense, uniformly in l, because

max
1lN�N

1/3

(

✓

N � l + 1

N

◆

1/3

�
✓

N � l

N

◆

1/3

)

 sup
x2[N�1

,1]

n

x1/3 � �x�N�1

�

1/3

o

which goes to zero in N by the uniform continuity of the map x 7! x1/3 on [0, 1]. As
a result, we can bound (5.9) above by

✏+d(1+p)

✓

N � l

N

◆

1/3

�⇡2�2

2d2

✓

N � l

N

◆

1/3

Z

1

0

dt
h

(1 + ✏� t)1/3 + ✏0
⇥

N

N�l

⇤

1/3

i

2

(5.10)

for all su�ciently large N . Now note that

(1 + p)d = (1 + p)

✓

3⇡2�2

2(1 + p)

◆

1/3

=

✓

3⇡2�2(1 + p)2

2

◆

1/3

and that

3⇡2�2

2d2
=

3⇡2�2

2

✓

22(1 + p)2

32⇡4�4

◆

1/3

=

✓

3⇡2�2(1 + p)2

2

◆

1/3

,
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so that in fact ↵ := (1 + p)d = 3⇡

2
�

2

2d

2 . Our upper bound now reads as the maximum
over 1  l  N �N1/3 of

✏+ ↵

8

>

<

>

:

✓

N � l

N

◆

1/3

� 1

3

✓

N � l

N

◆

1/3

Z

1

0

dt
h

(1 + ✏� t)1/3 + ✏0
⇥

N

N�l

⇤

1/3

i

2

9

>

=

>

;

.

Now we need to study the expression in the curly brackets, which is bounded above
by

sup
x2[0,1]

x(1� I
✏

(x)),

where

I
✏

(x) : =
1

3

Z

1

0

dt
⇥

(1 + ✏� t)1/3 + ✏

0

x

⇤

2

= x2

Z

(1+✏)

1/3

✏

1/3

t2

(xt+ ✏0)2
dt.

We state the next part of the proof as a lemma:

Lemma 5.1. The function x 7! x(1� I
✏

(x)) is increasing on [0,1).

Proof. Define f(x) := x(1 � I
✏

(x)). Then f 0(x) = 1 � I
✏

(x) � xI 0
✏

(x). Elementary
calculations show that f 0(x) � 0 if and only if

Z

(1+✏)

1/3

✏

1/3

x3t+ 3✏0x2

(xt+ ✏0)3
t2dt  1,

for all x 2 [0,1). Now we note that

@

@x

x3t+ 3✏0x2

(xt+ ✏0)3
=

6(✏0)2x

(xt+ ✏0)4

which is positive for x, t � 0. In other words, for fixed t, the integrand of the previous
display is increasing in x, and so we obtain an upper bound for the integral by sending
x ! 1 there. But then the integral equals (1+ ✏)1/3� ✏1/3 which is strictly less than
one by the concavity of the function x 7! x1/3.

Using the previous lemma, we deduce that sup
x2[0,1] f(x) = f(1). Consequently, the

maximum of (5.10) over 1  l  N �N1/3 is bounded above, for all large N , by

✏+ ↵

(

1� 1

3

Z

1

0

dt

[(1 + ✏� t)1/3 + ✏0]2

)

. (5.11)

To be precise, we have shown so far that: for all ✏ > 0 there exists N
0

(✏) 2 N such
that for all N � N

0

the following expression is bounded above by (5.11):

lim sup
k!1

1

(Nk)1/3
log max

1lN�N

1/3
ed(1+p)(N�l+1)

1/3
k

1/3
H

l,N,k

.
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It is very easy to deal with the values N �N1/3 < l  N . Simply note that, since all
the H

N,l,k

are bounded above by 1, we have

max
N�N

1/3
<lN

ed(1+p)(N�l+1)

1/3
k

1/3
H

l,N,k

 ed(1+p)(N

1/3
+1)

1/3
k

1/3  ecN
1/9

k

1/3

for all N � 1, where c := 21/3d(1 + p). We conclude that for all N � 1 we have

lim sup
k!1

1

(Nk)1/3
log max

N�N

1/3
<lN

ed(1+p)(N�l+1)

1/3
k

1/3
H

l,N,k

 cN�2/9.

Returning to (5.5), we conclude that for all N � N
0

(✏), we have

lim sup
k!1

1

N1/3k1/3

log sup
0rNk

h
r,Nk

 ✏+ cN�2/9 + ↵

(

1� 1

3

Z

1

0

dt

[(1 + ✏� t)1/3 + ✏0]2

)

=: �(N, ✏).

We remark that upon letting N ! 1 and then ✏ ! 0, �(N, ✏) goes to zero; we’ll use
this at the end of the argument.

Step 5: Bounding sup
r2[0,t] gr,t from above. We recall that

g
r,t

:= Q (⇣
s

2 I
s

(t) 8s 2 [0, r]) sup
0xL

r,t

Q
�

⇣
s

2 x+ J
s+r

(t) 8s 2 [0, t� r]
�

=: a
r,t

· b
r,t

where
J
s

(t) := [�d(t� s)1/3 � ✏t1/3, 2✏t1/3]

and
L
s,t

:= |I
s

(t)| = d(t� s)1/3 + ✏t1/3.

As before, we set t = Nk for integers N, k � 1. We have already shown (see (5.8))
that there exists N

0

(✏) 2 N such that for all N � N
0

and 1  l  N �N1/3 we have

lim sup
k!1

1

(Nk)1/3
log sup

(l�1)krlk

b
r,Nk

 � ⇡2�2

2d2

✓

N � l

N

◆

1/3

Z

1

0

dt
h

(1 + ✏� t)1/3 + ✏0
⇥

N

N�l

⇤

1/3

i

2

.

Now let’s use Mogulskii’s Theorem to treat the factor a
r,t

in a similar way. For
r 2 [(l � 1)k, lk], a

r,Nk

is bounded above by

A
N,l,k

:= Q

 

�d



N

l � 1
� i

(l � 1)k

�

1/3

 ⇣
i

(l � 1)1/3k1/3

 ✏



N

l � 1

�

1/3

, 81  i  (l � 1)k

!

.
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By Mogulskii’s Theorem we have

lim
k!1

1

(l � 1)1/3k1/3

logA
N,l,k

= �⇡2�2

2d2

Z

1

0

dt
h

�

N

l�1

� t
�

1/3

+ ✏00
⇥

N

l�1

⇤

1/3

i

2

where ✏00 := ✏/d, so that

lim
k!1

1

N1/3k1/3

logA
N,l,k

= �⇡2�2

2d2

✓

l � 1

N

◆

1/3

Z

1

0

dt
h

�

N

l�1

� t
�

1/3

+ ✏00
⇥

N

l�1

⇤

1/3

i

2

.

Now we combine our estimates for a
r,t

and b
r,t

to deduce that, for N � N
0

(✏) and
1  l  N �N1/3, we have

� 2d2

3⇡2�2

lim sup
k!1

1

N1/3k1/3

log sup
(l�1)krlk

g
r,Nk

�
✓

N � l

N

◆

1/3

I
N,l,✏

+

✓

l � 1

N

◆

1/3

J
N,l,✏

(5.12)

where

I
N,l,✏

:=
1

3

Z

1

0

dt
h

(1 + ✏� t)1/3 + ✏0
⇥

N

N�l

⇤

1/3

i

2

and

J
N,l,✏

:=
1

3

Z

1

0

dt
h

�

N

l�1

� t
�

1/3

+ ✏00
⇥

N

l�1

⇤

1/3

i

2

.

We now work on estimating the right-hand side of (5.12) from below. The right-hand
side of (5.12) trivially equals

✓

N � l

N

◆

1/3

I
N,l,0

+

✓

N � l

N

◆

1/3

(I
N,l,✏

� I
N,l,0

)

+

✓

l � 1

N

◆

1/3

J
N,l,0

+

✓

l � 1

N

◆

1/3

(J
N,l,✏

� J
N,l,0

).

Now we make the explicit evaluations I
N,l,0

= 1 and J
N,l,0

=
�

N

l�1

�

1/3 � �N�l+1

l�1

�

1/3

,
which we substitute into the previous display; after rearrangement, we obtain

1�
(

✓

N � l + 1

N

◆

1/3

�
✓

N � l

N

◆

1/3

)

+

✓

N � l

N

◆

1/3

(I
N,l,✏

� 1)

+

✓

l � 1

N

◆

1/3

(

J
N,l,✏

�
"

✓

N

l � 1

◆

1/3

�
✓

N � l + 1

l � 1

◆

1/3

#)

. (5.13)
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Note that
✓

N � 1 + 1

N

◆

1/3

�
✓

N � l

N

◆

1/3

=

✓

1� l

N
+

1

N

◆

1/3

�
✓

1� l

N

◆

1/3

 sup
x2[0,1]

(

✓

x+
1

N

◆

1/3

� x1/3

)

= N�1/3,

where the second equality follows from the concavity of the function x 7! x1/3. So,
uniformly in l, we obtain the following lower bound on the first line of (5.13):

1�
(

✓

N � 1 + 1

N

◆

1/3

�
✓

N � l

N

◆

1/3

)

� 1�N�1/3.

For the second line of (5.13), we can recycle some of the work we did in Step 4.
Indeed, in the notation used there, the second line of (5.13) is bounded below by

inf
x2[0,1]

x(I
✏

(x)� 1) = � sup
x2[0,1]

x(1� I
✏

(x)).

But in Step 4 we showed that x 7! x(1� I
✏

(x)) increases, so

sup
x2[0,1]

x(1� I
✏

(x)) = 1� I
✏

(1).

It remains to deal with the third line of (5.13), which has the lower bound

inf
x2[0,1]

x1/3

8

>

<

>

:

1

3

Z

1

0

dt
h

(x�1 � t)1/3 + ✏00x�1/3

i

2

�
✓

x�1/3 � (x�1 � 1)1/3
◆

9

>

=

>

;

,

which equals

inf
x2[0,1]

8

>

<

>

:

1

3

Z

1

0

x
h

(1� xt)1/3 + ✏00
i

2

dt�
✓

1� (1� x)1/3
◆

9

>

=

>

;

.

We state the next part of the proof as a lemma:

Lemma 5.2. The function

F : x 7! 1

3

Z

1

0

x
h

(1� xt)1/3 + c
i

2

dt�
✓

1� (1� x)1/3
◆

decreases on [0, 1] for all c � 0.

Proof. The derivative of F evalulated at x 2 [0, 1] equals

1

3

Z

1

0

(1� xt)1/3 + c+ 2xt

3

(1� xt)�2/3

h

(1� xt)1/3 + c
i

3

dt� 1

3
(1� x)�2/3
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which is less than or equal to zero precisely when

(1� x)2/3
Z

1

0

(1� xt)1/3 + c+ 2xt

3

(1� xt)�2/3

h

(1� xt)1/3 + c
i

3

dt  1.

First we make the change of variable s := 1� xt, to transform this inequality into

(1� x)2/3

x

Z

1

1�x

s1/3 + c+ 2

3

(1� s)s�2/3

[s1/3 + c]3
ds  1.

Then we make the change of variable w := s1/3, which results in the equivalent
inequality

(1� x)2/3

x

Z

1

(1�x)

1/3

3w2(w + c) + 2(1� w3)

(w + c)3
dw  1. (5.14)

Call the integrand B(w, c). We have

@

@c
B(w, c) = �6

1 + cw2

(w + c)4
 0.

The left-hand side of (5.14) is therefore bounded above by

(1� x)2/3

x

Z

1

(1�x)

1/3

B(w, 0) dw =
(1� x)2/3

x

Z

1

(1�x)

1/3

1 +
2

w3

dw = 1.

as required.

In consequence,

inf
x2[0,1]

F (x) = F (1) =
1

3

Z

1

0

dt
h

(1� t)1/3 + ✏00
i

2

� 1.

Let us summarize what we have shown so far: there exists N
0

(✏) 2 N such that
whenever N � N

0

we have

� 2d2

3⇡2�2

lim sup
k!1

1

N1/3k1/3

log sup
0r(N�N

1/3
)k

g
r,Nk

� 1�N�1/3 �
"

1� 1

3

Z

1

0

dt

[(1 + ✏� t)1/3 + ✏0]2

#

+

2

6

4

1

3

Z

1

0

dt
h

(1� t)1/3 + ✏00
i

2

� 1

3

7

5

=: �
1

(N, ✏). (5.15)

It remains to estimate g
r,t

for values r 2 [(N �N1/3)k,Nk], which is easy. We start
with the trivial inequalities

g
r,Nk

 Q (⇣
s

2 I
s

(t) 8s 2 [0, r])  Q
�

⇣
i

2 I
i

(Nk) 81  i  (N �N1/3)k
�

.
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The probability on the right-hand side is equal to

Q

 

� d



N

N �N1/3

� i

(N �N1/3)k

�

1/3

 ⇣
i

(N �N1/3)1/3k1/3

 ✏



N

N �N1/3

�

1/3

, 81  i  (N �N1/3)k

!

which in turn is bounded above by

Q

 

� d



1 + ✏� i

(N �N1/3)k

�

1/3

 ⇣
i

(N �N1/3)1/3k1/3

 2✏, 81  i  (N �N1/3)k

!

for all N � N
1

(✏), for some N
1

(✏) 2 N. Using Mogulskii’s Theorem, we conclude that

lim sup
k!1

1

N1/3k1/3

log sup
(N�N

1/3
)krNk

g
r,Nk

 �3⇡2�2

2d2
· (N �N1/3)1/3

N1/3

· 1
3

Z

1

0

dt

[(1 + ✏� t)1/3 + ✏0]2

=: �3⇡2�2

2d2
�
2

(N, ✏) (5.16)

where, as before, ✏0 := 4✏/d.

Now we combine our estimates (5.15) and (5.16). Writing N
2

(✏) = N
0

_ N
1

, we
conclude that whenever N � N

2

, we have

lim sup
k!1

1

N1/3k1/3

log sup
0rNk

g
r,Nk

 �3⇡2�2

2d2
�

�
1

(N, ✏) ^ �
2

(N, ✏)
�

.

We now have all the ingredients required to complete the proof.

Step 6: Completing the argument. Combining Steps 3, 4 and 5 we deduce that for
any ✏ > 0 and any N � N

2

(✏) we have

lim sup
k!1

1

N1/3k1/3

log ⇤
Nk

 2(1 + p)✏+ �(N, ✏)� 3⇡2�2
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.

Our statement of the Paley-Zygmund inequality, (5.3), implies that
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1

t1/3
logP

t

� 2 lim inf
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⇢
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t
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log⇤
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.
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Applying this inequality along the sequence (Nk : k 2 N), and using the first display
of this step along with the results of Step 2, we deduce that

lim inf
k!1

1

(Nk)1/3
logP

Nk

is bounded from below by

2
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2d2
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for any ✏ > 0 and N � N
2

(✏). Now we note that �
1

(✏) and �
2

(✏) are o(1) as ✏ # 0;
that lim

✏#0 limN!1 �(N, ✏) = 0; and that lim
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i

(N, ✏) = 1 for i = 1 and 2.
Consequently, the expression in the previous display goes to �3⇡

2
�

2
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2 upon sending
N ! 1 and then ✏ # 0.

On the other hand, by the monotonicity of the function t 7! P
t

,

lim inf
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for any N � 1.

We deduce that
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The lower bound then follows from (5.2), and the fact that

3⇡2�2

2d2
=

✓

3⇡2(1 + p)2|�00(p)|
2

◆

1/3

,

completing the proof of Theorem 1.16.
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