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SUMMARY

A cornerstone in the theory of optimal stopping for the maximum process is a result

known as Peskir’s maximality principle. It has proved to be a powerful tool to solve

optimal stopping problems involving the maximum process under the assumption that

the driving process X is a time-homogeneous diffusion. In this thesis we adapt Peskir’s

maximality principle to allow for X a spectrally negative Lévy processes, thereby pro-

viding a general method to approach optimal stopping problems for the maximum

process driven by spectrally negative Lévy processes. We showcase this by explicitly

solving three optimal stopping problems and the capped versions thereof. Here capped

version means a modification of the original optimal stopping problem in the sense that

the payoff is bounded from above by some constant. Moreover, we discuss applications

of the aforementioned optimal stopping problems in option pricing in financial mar-

kets whose price process is driven by an exponential spectrally negative Lévy process.

Finally, to further highlight the applicability of our general method, we present the

solution to the problem of predicting the time at which a positive self-similar Markov

process with one-sided jumps attains its maximum or minimum.
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CHAPTER 1

INTRODUCTION

This thesis is concerned with optimal stopping problems for the maximum process

driven by spectrally negative Lévy processes or positive self-similar Markov processes

with one-sided jumps. Generally, the area of optimal stopping considers problems of

the following form. One observes a random evolution whose future cannot be predicted

and the aim is to stop it in a certain “optimal” way. For instance, imagine an in-

vestor holding a financial product which, when sold, pays a certain monetary amount

depending on the performance of a stock. It is then their goal to choose the optimal

moment to sell it in order to maximise the expected profit. This type of problem and

similar ones are usually found in the area of mathematical finance [13, 33, 41]. Another

example arises in mathematical statistics and goes by the name of quickest detection

problem [33]. A system with potentially hazardous outcome (for instance seismic waves

which indicate when an earthquake is about to occur) is observed and a decision when

to send out an alarm has to be made. In this case the task is to minimise the ex-

pectation of a function of the decision error and/or observation time. Other areas of

application include financial engineering or stochastic analysis [33].

The mathematical theory of optimal stopping is vast and has been developed by

many people. Some of the major contributions/ideas to form the theory can be found

in [12, 28, 31, 32, 33, 42, 43, 44] to name but a few. For a recent and excellent account

of the general theory of optimal stopping and for applications in the aforementioned

areas we recommend [33]. The latter (see at the end of Section 2) also contains a more

detailed historic account of the different contributions over the past seventy years.

1.1 Outline of thesis and main results

This thesis consists of four self-contained chapters (excluding the introduction) and as

a result there is some overlap between the different chapters. The second chapter has

1



Chapter 1. Introduction

been accepted for publication in the Annals of Applied Probability as [29] and the third

one, which is joint work with A. E. Kyprianou, has been accepted for publication in

Acta Applicandae Mathematicae as [23]. The fourth chapter has been submitted and

the fifth, which is joint work with A. E. Kyprianou and E. Baurdoux, presents some

recent work.

As indicated above, this thesis consists of four chapters each of which deals with a

different optimal stopping problem. Although they seem to be different, they are all

connected in the sense that the same approach (except for Chapter 5) was used to solve

them. It is a “guess and verify” approach, that is, one guesses a candidate solution

and then verifies that it is indeed a solution. Typically, the verification part is quite

long and involves a careful analysis of an ordinary differential equation as well as some

tools from stochastic calculus. The tools from stochastic analysis are readily available,

whereas the ordinary differential equations we will encounter have to be treated sepa-

rately from case to case. A common feature, however, is that they all involve so-called

scale functions, a special family of functions associated with spectrally negative Lévy

processes [6, 20, 21]. This might seem unpleasant at a first glance as most scale func-

tions are not known explicitly. Nevertheless, in recent years, enough of their analytical

properties have been established (see [20] for an excellent summary) so that we can

actually analyse ordinary differential equations involving them with the help of some

phase plane analysis. Moreover, on the positive side, the use of scale functions allows

us to formulate most of our results in a very neat and compact way.

The main contribution of this thesis lies in the “guess” part which is based on a

good understanding of the problem at an intuitive level as well as results from the gen-

eral theory of optimal stopping [33]. More precisely, we will provide a general method

which allows us to derive candidate solutions for a certain class of optimal stopping

problems. It is essentially an adaptation of Peskir’s famous maximality principle [31]

to our setting; see Subsection 1.2.1.

Let us spend some time describing the content of each of the chapters in more detail.

To this end, let X = {Xt : t ≥ 0} be a spectrally negative Lévy process adapted to a

filtration F; that is to say, a one-dimensional process which has stationary and indepen-

dent increments, and càdlàg paths with only negative discontinuities, but which does

not have monotone paths. Associate with X the maximum process X = {X t : t ≥ 0},
where Xt := sup0≤u≤tXu, t ≥ 0. Denote by Ex,s the expectation given that the two-

dimensional strong Markov process (X,X) starts at x ≤ s. Furthermore, introduce

the constant ǫ ∈ R ∪ {∞} which will be referred to as “cap”. The special role it plays

throughout this thesis should become clear in due course. Finally, let q > 0 be a dis-

count factor and M the set of (possibly infinite) F-stopping times. We are now in a

position to describe the content of each chapter.

2



Chapter 1. Introduction

Chapter 2

In this chapter we solve the optimal stopping problem

V (x, s) = sup
τ∈M

Ex,s[e
−qτ+Xτ∧ǫ]. (1.1)

This problem was introduced and studied in [38, 39] under the assumption that ǫ = ∞
and X is a linear Brownian motion. Their results were then extended to allow for

X a spectrally negative Lévy process in [2]. Due to its connection to pricing Russian

options, problem (1.1) is sometimes referred to as “Russian” optimal stopping prob-

lem [33, 41]. Here, we generalise the aforementioned results by additionally introducing

a cap ǫ ∈ R ∪ {∞} which bounds the payoff from above, and hence the name “cap”.

At least when ǫ = ∞, one possible technique to solve (1.1) is a reduction to a one-

dimensional problem for the process X − X via an exponential change of measure;

see [2, 39]. This is not possible when ǫ ∈ R and therefore (1.1) has to be treated as a

genuine two-dimensional optimal stopping problem for the pair (X,X).

Moreover, we are interested in a “barrier version” of (1.1), that is, (1.1) but

with M replaced by the set of all stopping times τ ∈ M such that τ ≤ τ−ǫ̃ , where

τ−ǫ̃ := inf{t ≥ 0 : Xt ≤ ǫ̃} for some ǫ̃. This means that the decision to stop has to be

made before X drops below level ǫ̃ – in some sense this captures the idea of a “lower”

cap. This problem was proposed and solved in [40] again assuming that ǫ = ∞ and

X is a linear Brownian motion. We extend this to allow for an “upper” cap ǫ ∈ R

and X a spectrally negative Lévy process. Our main contribution here is an excursion

theoretic calculation to obtain the solution in closed form.

Chapter 3

The focus of this chapter is on the optimal stopping problem

V (x, s) = sup
τ∈M

Ex,s[e
−qτ (eXτ∧ǫ −K)+], (1.2)

whereK > 0 and ǫ > log(K). For ǫ = ∞ and X a linear Brownian motion, the problem

was solved in [17, 30] and for ǫ = ∞ and X a jump-diffusion it was solved in [14]. Our

contribution here is an extension of these results to allow for X a spectrally negative

Lévy process X and a cap ǫ. Furthermore, (1.2) constitutes a specific example of an

optimal stopping problem for the maximum process where the analogue of Peskir’s

maximality principle is verified in a spectrally negative Lévy setting.

3



Chapter 1. Introduction

Chapter 4

In this chapter we study the optimal stopping problem

V (x, s) = sup
τ∈M

Ex,s[e
−qτ (eXτ∧ǫ −KeXτ )+], (1.3)

where K > 0. Again, provided ǫ = ∞, it has been considered in [5] when X is a linear

Brownian motion and in [14] when X is a jump-diffusion. We extend these results to

allow for X a spectrally negative Lévy process as well as a cap ǫ. Note that in contrast

to (1.1) and (1.2), the payoff in (1.3) does not only depend on the maximum process X ,

but also on X itself. Similarly to (1.1), one may reduce (1.3) to a one-dimensional prob-

lem for the process X −X via an exponential change of measure provided that ǫ = ∞.

If ǫ ∈ R this is not possible and one has to treat it as a two-dimensional problem for

the pair (X,X).

At this point it is worth mentioning that all the stopping problems (1.1)–(1.3) have

applications in mathematical finance in the area of pricing American type options in

financial markets where the underlying price process is an exponential spectrally nega-

tive Lévy process. In particular, the cap ǫ can be interpreted as a means of moderating

the payoff of such an option. We will not go into details here, this connection is dis-

cussed at the beginning of Chapters 2–4.

Finally, let us summarise the content of the last chapter which treats an optimal

stopping problem for the class of positive self-similar Markov processes with one-sided

jumps.

Chapter 5

Imagine a transient diffusion process X in (0,∞) such that Xt → ∞ as t → ∞ and

denote by θ̂ the time at which X attains its pathwise global infimum. Can we stop “as

close as possible” to θ̂, that is, can we find a stopping time τ that minimises E[|θ̂−τ |−θ̂]
amongst all X-stopping times? This problem, which belongs to the class of prediction

problems within optimal stopping, was recently solved in [15], and in the special case

when X is a d-dimensional Bessel process for d > 2, the optimal stopping time is given

by

τ∗ = inf{t ≥ 0 : Xt ≥ λ∗Xt}, (1.4)

where λ∗ > 0 is a solution of some polynomial and X t := inf0≤u≤tXu, t ≥ 0. The

family of d-dimensional Bessel processes for d > 2 also belongs to the class of positive

self-similar Markov processes, and hence (1.4) can (up to a time-change) be expressed

as the first upcrossing time above a certain level of the Lamperti representation ξ (a

Lévy process) of X reflected at its infimum. This suggests that the prediction problem

can be solved for the class of positive self-similar Markov processes drifting to infinity

4



Chapter 1. Introduction

and that its solution can be reduced to a one-dimensional optimal stopping problem

for a reflected Lévy process via the Lamperti transformation. The aim of this chapter

is to show that this is indeed possible. Moreover, we will formulate and solve the ana-

logue of the prediction problem above for positive self-similar Markov processes which

continuously approach zero or jump onto zero. All of this is done under the assumption

that the positive self-similar Markov process only has one-sided jumps, but we discuss

at the end how one might get rid of this assumption.

The remainder of this introductory chapter is devoted to explaining the common

technique used to solve (1.1)–(1.3). When doing so, we try to be as general as we

can, since we believe that the computations presented below might be useful in the

future to solve optimal stopping problems that are similar to the ones considered in

this thesis. In addition, we will clarify the special role of the cap ǫ. At this point we

should also say that at the time of writing the paper that constitutes Chapter 2, most

of the connections explained in Subsections 1.2.1 and 1.2.2 were not known to us. One

may therefore see Subsections 1.2.1 and 1.2.2 as a complement to Chapters 2–4 as well

as a summary of the method applied in Chapters 2–4. We recommend to read the

remainder of this chapter after Chapters 2–4.

1.2 The guessing method

The goal of this section is to present an adaptation of Peskir’s maximality principle [31]

to our setting. Consider the optimal stopping problem

V (x, s) = sup
τ∈M

Ex,s[e
−qτf(Xτ )−

∫ τ

0
e−qtc(Xt,X t) dt]. (1.5)

Here f : R → (0,∞) is a continuously differentiable and strictly increasing func-

tion such that lims→∞ f(s) = ∞ and lims→−∞ f(s) = 0 (the “payoff” function) and

c : R2 → [0,∞) is a continuous function (the “cost” function). Moreover, we will tem-

porarily abuse the notation and use M for the set of all F-stopping times such that

Ex,s[
∫ τ
0 e

−qtc(Xt,X t) dt] <∞. Originally the maximality principle [31] was established

for (1.5) under the assumption that X is a time-homogeneous diffusion, f(s) = s and

c(x, s) = c(x). The key observation in this thesis is that the steps that led to the

maximality principle can be carried over to our setting when X is a spectrally negative

Lévy process. The reason why this is possible becomes apparent when looking at [31]

more closely. The two crucial facts used in [31] were continuity of the paths of the

maximum process X and the solvability of the two-sided exit problem in terms of scale

functions (for diffusions); cf. Chapter VII in [37]. Now for a spectrally negative Lévy

process it is still true that the process X is continuous and the two-sided exit problem

5



Chapter 1. Introduction

is also solvable in terms of scale functions (for spectrally negative Lévy processes);

cf. [6, 20, 21].

1.2.1 An adaptation of Peskir’s maximality principle

The aim is to derive a candidate solution for (1.5) by adapting the method described

in [31] to our setting. We will make use of the general theory of optimal stopping and

the notion of scale functions for spectrally negative Lévy processes. For background

reading on the former we refer to [33], for the latter we suggest [6, 20, 21].

We begin by heuristically motivating a class of stopping times in which we will look

for the optimal stopping time. To this end, note that the process (X,X) can only

move upwards by climbing up the diagonal in the (x, s)-plane; see Figure 1.1. The

dynamics of (X,X) are such that X remains constant at times when X is undertaking

an excursion below X. During such periods the discounting in the payoff as well as the

penalisation by the cost function (if c(x, s) > 0) is detrimental. One should therefore

not allow X to drop too far below X in value as otherwise the time it will take X to

recover to the value of its previous maximum will prove to be costly in terms of the

gain. More specifically, given a current value s of X , there should be a point g(s) > 0

such that if the process (X,X) reaches or jumps over the point (s− g(s), s) we should

stop instantly; see Figure 1.1. In more mathematical terms, we expect an optimal

stopping time of the form

τg := inf{t ≥ 0 : Xt −Xt ≥ g(X t)} (1.6)

for some function g : R → (0,∞). This qualitative guess can be turned into a quan-

x

s

Fig. 1.1 An illustration of a potential optimal stopping boundary s 7→ s − g(s) (dashed line).
The horizontal lines (and the dot) are meant to schematically indicate the trace of an excursion
of X away from the running maximum. The candidate optimal strategy τg then consists of
continuing if the height of the excursion away from the running maximum s does not exceed
g(s); otherwise we stop.

6



Chapter 1. Introduction

titative guess. To this end, assume that X is of unbounded variation. We will deal

with the bounded variation case later; see page 8. From the general theory of optimal

stopping (cf. Section 13 in [33]) we informally expect the value function

Vg(x, s) = Ex,s
[

e−qτgf(Xτg )−
∫ τg

0
e−qtc(Xt,X t) dt

]

(1.7)

to satisfy the system

ΓVg(x, s) = qVg(x, s) + c(x, s) for s− g(s) < x < s with s fixed,

∂Vg
∂s (x, s)

∣

∣

x=s−
= 0 (normal reflection), (1.8)

Vg(x, s)|x=(s−g(s))+ = f(s) (instantaneous stopping),

where Γ is the infinitesimal generator of the processX under P0. Moreover, the principle

of smooth fit [28, 33] suggests that this system should be complemented by

∂Vg
∂x

(x, s)
∣

∣

x=(s−g(s))+
= 0 (smooth fit). (1.9)

Note that, although the smooth fit condition is not necessarily part of the general

theory, it is imposed since by the “rule of thumb” outlined in Section 7 in [1] it should

hold in this setting because of path regularity. Applying the strong Markov property

at τ+s := inf{t > 0 : Xt > s} and using that (Xτ+s
,Xτ+s

) = (s, s) due to the spectral

negativity of X yields

Vg(x, s) = f(s)Ex,s
[

e
−qτ−

s−g(s)1{τ−
s−g(s)

<τ+s }

]

− Ex,s[

∫ τg

0
e−qtc(Xt,Xt) dt1{τ−

s−g(s)
<τ+s }]

+Ex,s[e
−qτ+s 1{τ−

s−g(s)
>τ+s }]Es,s[e

−qτgf(Xτg )]

−Ex,s[

∫ τg

0
e−qtc(Xt,X t) dt1{τ−

s−g(s)
>τ+s }]

= f(s)Ex,s
[

e
−qτ−

s−g(s)1{τ−
s−gǫ(s)

<τ+s }

]

+ Ex,s[e
−qτ+s 1{τ−

s−g(s)
>τ+s }]Vg(s, s)

−Ex[

∫ τ−
s−g(s)

∧τ+s

0
e−qtc(Xt, s) dt].

Denoting by W (q) and Z(q) the q-scale functions associated with X (cf. [6, 20, 21]), it

is possible to rewrite the previous equation. Specifically, using (iii) of Theorem 8.1 and

Theorem 8.7 in [21] gives

Vg(x, s) = f(s)

(

Z(q)(x− s+ g(s))−W (q)(x− s+ g(s))
Z(q)(g(s))

W (q)(g(s))

)

+
W (q)(x− s+ g(s))

W (q)(g(s))
Vg(s, s)

7



Chapter 1. Introduction

−
∫ g(s)

0
c(y + s− g(s), s)u(q)(x− s+ g(s), y) dy,

where u(q)(·, ·) is the q-resolvent density of X upon leaving [0, g(s)] so that

u(q)(x− s+ g(s), y) =
W (q)(x− s+ g(s))W (q)(g(s) − y)

W (q)(g(s))
−W (q)(x− s+ g(s)− y).

Now using the principle of smooth fit (1.9) and the fact thatW (q)(0+) = 0 (cf. Lemma

3.1 in [20]) gives

0 = lim
x↓s−g(s)

∂Vg
∂x

(x, s) = lim
x↓s−g(s)

W (q)′(x− s+ g(s))

W (q)(g(s))
I(s), (1.10)

where

I(s) = Vg(s, s)− f(s)Z(q)(g(s)) −
∫ g(s)

0
c(y + s− g(s), s)W (q)(g(s) − y) dy.

It is known from Lemma 3.2 in [20] that the first factor on the right-hand side of (1.10)

tends to a strictly positive value or infinity which shows that

Vg(s, s) = f(s)Z(q)(g(s)) +

∫ g(s)

0
c(y + s− g(s), s)W (q)(g(s)− y) dy.

This would mean that s− g(s) < x < s we have

Vg(x, s) = f(s)Z(q)(x− s+ g(s)) +

∫ x

s−g(s)
c(y, s)W (q)(x− y) dy. (1.11)

Note that in order to obtain the previous equality we have used that W (q)(z) = 0 for

z < 0. Having derived the form of a candidate optimal value function for (1.5), we still

need to do the same for g. Using the normal reflection condition in (1.8) shows that

our candidate function g should satisfy the first order non-linear differential equation

g′(s) = 1− f ′(s)Z(q)(g(s)) +
∫ g(s)
0 c2(s− y, s)W (q)(y) dy

(

f(s)q + c(s− g(s), s)
)

W (q)(g(s))
, (1.12)

where the subscript two in c2(·, ·) means the derivative with respect to the second

argument.

If X is of bounded variation, we informally expect from the general theory that

Vg satisfies the first two equations of (1.8). Additionally, the principle of continuous

fit [1, 32] suggests that the system should be complemented by

Vg(x, s)|x=(s−g(s))+ = f(s) (continuous fit).

8



Chapter 1. Introduction

So far we have derived a candidate solution of (1.5) up to choosing a solution

of (1.12). Note that equation (1.12) comes with no initial or boundary condition and

hence might have many solutions. Thus, a-priori it is not clear which solution to choose.

In order to resolve this issue, one may first perform a phase plane analysis of (1.12) to

obtain an overview of the different solutions of (1.12) and then apply Peskir’s famous

maximality principle [31] which tells us which solution is the “right” one to choose.

Note that Peskir’s result was established in a different setting, however, an inspection

of the arguments in [31] reveals that, at least formally, an analogue of the maximality

principle should hold here too. We say that a solution s 7→ g∗(s) of (1.12) is the opti-

mal stopping boundary for (1.5) if the stopping time τg associated with it [see (1.6)] is

optimal for (1.5).

Minimality principle: The optimal stopping boundary s 7→ g∗(s) for (1.5) is the mini-

mal solution of (1.12) satisfying g∗(s) > 0 for all s ∈ R.

Remark 1.1. Note that the functions g here would correspond to s−g(s) in [31]. This

is the reason why we obtain a minimality principle rather than a maximality principle

as in [31].

Remark 1.2. In Chapter 3 we explicitly verify that the minimality principle holds in

a specific example, and, although we do not prove it, it is clear that it also holds for

the optimal stopping problems considered in Chapters 2 and 4.

Remark 1.3. In Chapters 2 and 4 we do not carry out a phase plane analysis as the

ordinary differential equation turns out to be autonomous and we are able to construct

the desired solutions explicitly. However, in Chapter 3 the ordinary differential equation

is not autonomous anymore and the phase plane analysis is an essential tool on the

way to the solution of the optimal stopping problem.

Remark 1.4. From an analytical point of view the procedure above is nothing else

than a probabilistic method to derive a candidate solution of the free-boundary prob-

lem (1.8). It seems reasonable to ask why one does not try to solve (1.8) directly. In

some cases this is possible and, for instance, done in [17, 30, 38]. The reason why this

works in the latter is the fact that they consider problems of the form (1.5) under the

assumption that X is a linear Brownian motion and c ≡ 0. In this case Γ is a well known

second-order differential operator and it is possible to make an ansatz for the general

solution of the first equation in (1.8). However, when X is a spectrally negative Lévy

process Γ becomes a nonlocal integro-differential operator and it is difficult to make an

ansatz, especially if additionally c(x, s) > 0. In some sense the probabilistic approach

above avoids pre-knowledge of the general solution of the first equation of (1.8).

Summing up, we have derived a candidate value function of the form (1.11) and

a candidate optimal stopping time of the form (1.6), where g should be the minimal

9



Chapter 1. Introduction

solution of (1.12) that never hits zero. Now if one wants to solve (1.1) explicitly (at

least in some specific cases) it is important to construct the minimal solution of (1.12).

This is possible via a limiting procedure and leads us to the special role of the cap ǫ

which is discussed in the next subsection.

1.2.2 The special role of the cap ǫ

In this subsection we investigate the role of the cap ǫ and the capped version of (1.5),

that is,

Vǫ(x, s) = sup
τ∈M

Ex,s[e
−qτf(Xτ ∧ ǫ)−

∫ τ

0
e−qtc(Xt,X t) dt], (1.13)

where ǫ ∈ R ∪ {∞}. This is nothing else than (1.5) with f(s) replaced by f(s ∧ ǫ) and
for ǫ = ∞ they coincide. At a first glance, guessing the solution for (1.13) seems more

difficult due to the additional cap ǫ, but a moment of thought reveals that this is not

true. The only difference to (1.5) is that once the process X has reached level ǫ, it is

necessary to stop immediately because of the exponential discounting (q > 0) and the

penalisation due the cost function (if c(x, s) > 0). However, the rest of the argument

in Subsection 1.6 still goes through and hence one expects a candidate optimal value

function Vgǫ(x, s) of the form (1.11) and the candidate optimal stopping time τgǫ of the

form (1.6), where gǫ : (−∞, ǫ) → (0,∞) is solution to (1.12) with lims↑ǫ gǫ(s) = 0 and

gǫ(s) = 0 for s > ǫ. This last requirement, which reflects the fact that once the process

X has reached level ǫ it is necessary to stop, is a boundary condition which tells us

which solution of (1.5) to choose. In this case the minimality principle is not necessary.

It seems that (1.5) can be obtained by letting ǫ ↑ ∞ in (1.13). This raises the

following question: Can we obtain the solution of (1.5) from the solutions of (1.13)

by some kind of limiting procedure? The answer is affirmative and in order to explain

this, assume temporarily that we have solved (1.13) for every ǫ ∈ R. These solutions

are denoted (as in the previous paragraph) by Vgǫ and τgǫ . Now, informally, one would

expect that the solution of (1.5) is given by Vg∞(x, s) := limǫ↑∞ Vgǫ(x, s) for x ≤ s and

τg∞ of the form (1.6) with g∞(s) := lims↑ǫ gǫ(s) for s ∈ R. But if g∞ is indeed the so-

lution of (1.5), does it coincide with the minimal solution mentioned in the minimality

principle above? We show in Chapter 3 that the limiting procedure can be made rigor-

ous and that the resulting solution g∞ is indeed the minimal one as in the minimality

principle. Moreover, although we do not prove it, these observations should generally

be true for (1.5) and (1.13). Hence, the capped problems (1.13) can be interpreted as

“building blocks” for the uncapped problem (1.5).

This idea of obtaining the minimal solution of (1.12) by approximating it with so-

lutions gǫ that hit zero was already implicitly contained in part (II) of the proof of

Theorem 3.1 in [31], but the difference is that in [31] the sequence of solutions of (1.12)

was chosen differently (they used an initial condition instead of a boundary condition).

10
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In Peskir’s language, our solutions gǫ correspond in [31] to the so-called “bad-good”

solutions, “bad” because they are not the optimal boundary for the uncapped prob-

lem (1.5), “good” as they can be used to approximate the optimal boundary of the lat-

ter. The advantage of choosing the solution of (1.12) according to a boundary condition

is that it gives a probabilistic interpretation of the “bad-good” solutions, namely that

they correspond to an optimal stopping boundary, not for the uncapped problem (1.5),

but the capped version of it. Finally, it is worth noting that this was already observed

in [10] in a slightly different context; see the remark just after Proposition 3.1 in [10].

1.2.3 Limitations of the method

A natural question is to ask how important it was to work with a spectrally negative

Lévy process. Replacing the spectrally negative Lévy processes with a general Lévy

process should, in principle, not change the solutions qualitatively. For instance, it still

seems reasonable that the optimal stopping time is of the form (1.6). However, when

it comes down to computing things more explicitly it seems unclear how to proceed.

Naively, one could assume that the optimal stopping time is of the form (1.6) and define

Vg as in (1.7) and try to replicate the argument in Subsection 1.2.1. Unfortunately,

this does not go very far and stops with the expression

Vg(x, s) = f(s)Ex,s
[

e
−qτ−

s−g(s)1{τ−
s−gǫ(s)

<τ+s }

]

+ Ex,s[e
−qτ+s 1{τ−

s−g(s)
>τ+s }Vg(Xτ+s

,Xτ+s
)]

−Ex[

∫ τ−
s−g(s)

∧τ+s

0
e−qtc(Xt, s) dt].

Unless one can now express the quantities on the right-hand side more explicitly for

a general Lévy process it seems not possible to continue with the method in Subsec-

tion 1.2.1. Of course, this should by no means imply that it cannot be done using a

different approach.
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CHAPTER 2

RUSSIAN OPTION

This paper concerns optimal stopping problems driven by the running

maximum of a spectrally negative Lévy process X. More precisely, we

are interested in modifications of the Shepp–Shiryaev optimal stopping

problem [2, 38, 39]. First, we consider a capped version of the Shepp–

Shiryaev optimal stopping problem and provide the solution explicitly

in terms of scale functions. In particular, the optimal stopping bound-

ary is characterised by an ordinary differential equation involving scale

functions and changes according to the path variation of X. Secondly,

in the spirit of [40], we consider a modification of the capped version

of the Shepp–Shiryaev optimal stopping problem in the sense that the

decision to stop has to be made before the process X falls below a given

level.

2.1 Introduction

Let X = {Xt : t ≥ 0} be a spectrally negative Lévy process defined on a filtered

probability space (Ω,F ,F = {Ft : t ≥ 0},P) satisfying the natural conditions; cf. [7],

Section 1.3, page 39. For x ∈ R, denote by Px the probability measure under which X

starts at x and for simplicity write P0 = P. We associate with X the maximum process

X = {X t : t ≥ 0} given by X t := s ∨ sup0≤u≤tXu for t ≥ 0, s ≥ x. The law under

which (X,X) starts at (x, s) is denoted by Px,s.

In this paper we are mainly interested in the following optimal stopping problem:

V ∗
ǫ (x, s) = sup

τ∈M
Ex,s

[

e−qτ+Xτ∧ǫ
]

, (2.1)

where ǫ ∈ R, q > 0, (x, s) ∈ E := {(x1, s1) ∈ R2 |x1 ≤ s1}, and M is the set of all finite

F-stopping times. Since the constant ǫ bounds the process X from above, we refer to it

12



Chapter 2. Russian Option

as the upper cap. Due to the fact that the pair (X,X) is a strong Markov process, (2.1)

has also a Markovian structure and hence the general theory of optimal stopping [33]

suggests that the optimal stopping time is the first entry time of the process (X,X)

into some subset of E. Indeed, it turns out that under some assumptions on q and

ψ(1), where ψ is the Laplace exponent of X (see (∗), page 16, for a formal definition),

the solution of (2.1) is given by

τ∗ǫ = inf{t ≥ 0 : X t −Xt ≥ gǫ(X t)}

for some function gǫ which is characterised as a solution to a certain ordinary differential

equation involving scale functions. The function s 7→ s− gǫ(s) is sometimes referred to

as the optimal stopping boundary. We will show that the shape of the optimal boundary

has different characteristics according to the path variation of X. The solution of

problem (2.1) is closely related to the solution of the Shepp–Shiryaev optimal stopping

problem

V ∗(x, s) = sup
τ∈M

Ex,s
[

e−qτ+Xτ
]

, (2.2)

which was first studied by Shepp and Shiryaev [38, 39] for the case when X is a linear

Brownian motion and later by Avram, Kyprianou and Pistorius [2] for the case when X

is a spectrally negative Lévy process. Shepp and Shiryaev [38] introduced the problem

as a means to pricing Russian options. In the latter context the solution of (2.2) can

be viewed as the fair price of such an option. If we introduce a cap ǫ, an analogous in-

terpretation of the solution of (2.1) applies, but for a Russian option whose payoff was

moderated by capping it at a certain level (a fuller description is given in Section 2.2).

Our method for solving (2.1) consists of a verification technique, that is, we heuris-

tically derive a candidate solution and then verify that it is indeed a solution. In

particular, we will make use of the principle of smooth or continuous fit [1, 28, 32, 33]

in a similar way to [31, 38].

It is also natural to ask for a modification of (2.1) with a lower cap. Whilst this is

already included in the starting point of the maximum process X, there is a stopping

problem that captures this idea of lower cap in the sense that the decision to exercise

has to be made before X drops below a certain level. Specifically, consider

V ∗
ǫ1,ǫ2(x, s) = sup

τ∈Mǫ1

Ex,s
[

e−qτ+Xτ∧ǫ2
]

, (2.3)

where ǫ1, ǫ2 ∈ R such that ǫ1 < ǫ2, q > 0,Mǫ1 := {τ ∈ M| τ ≤ Tǫ1} and Tǫ1 is given by

Tǫ1 := inf{t ≥ 0 : Xt ≤ ǫ1}. In the special case of no cap (ǫ2 = ∞), this problem was

considered by Shepp, Shiryaev and Sulem [40] for the case where X is a linear Brownian

motion. Inspired by their result we expect the optimal stopping time to be of the form

Tǫ1 ∧ τ∗ǫ2 , where τ∗ǫ2 is the optimal stopping time in (2.1). Our main contribution here is

13
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that, with the help of excursion theory (cf. [6, 21]), we find a closed form expression for

the value function associated with the strategy Tǫ1 ∧ τ∗ǫ2 , thereby allowing us to verify

that it is indeed an optimal strategy.

This paper is organised as follows. In Section 2.2 we provide some motivation for

studying (2.1) and (2.3). Then we introduce some more notation and collect some

auxiliary results in Section 2.3. Our main results are presented in Section 2.4, followed

by their proofs in Sections 2.5 and 2.6. Finally, some numerical examples are given in

Section 2.7.

2.2 Application to pricing capped Russian options

The aim of this section is to give some motivation for studying (2.1) and (2.3).

Consider a financial market consisting of a riskless bond and a risky asset. The

value of the bond B = {Bt : t ≥ 0} evolves deterministically such that

Bt = B0e
rt, B0 > 0, r ≥ 0, t ≥ 0. (2.4)

The price of the risky asset is modelled as the exponential spectrally negative Lévy

process

St = S0e
Xt , S0 > 0, t ≥ 0. (2.5)

In order to guarantee that our model is free of arbitrage we will assume that ψ(1) = r.

If Xt = µt+ σWt, where W = {Wt : t ≥ 0} is a standard Brownian motion, we get the

standard Black–Scholes model for the price of the asset. Extensive empirical research

has shown that this (Gaussian) model is not capable of capturing certain features (such

as skewness and heavy tails) which are commonly encountered in financial data, for

example, returns on stocks. To accommodate for these problems, an idea, going back

to [27], is to replace the Brownian motion as the model for the log-price by a general

Lévy process X; cf. [9]. Here we will restrict ourselves to the model where X is given by

a spectrally negative Lévy process. This restriction is mainly motivated by analytical

tractability. It is worth mentioning, however, that Carr and Wu [8] as well as Madan

and Schoutens [25] have offered empirical evidence to support the case of a model in

which the risky asset is driven by a spectrally negative Lévy process for appropriate

market scenarios.

A capped Russian option is an option which gives the holder the right to exercise

at any almost surely finite stopping time τ yielding payouts

e−ατ
(

M0 ∨ sup
0≤u≤τ

Su ∧ C
)

, C > M0 ≥ S0, α > 0.
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The constant M0 can be viewed as representing the “starting” maximum of the stock

price (say, over some previous period (−t0, 0]). The constant C can be interpreted

as cap and moderates the payoff of the option. The value C = ∞ is also allowed and

corresponds to no moderation at all. In this case we just get the normal Russian option.

Finally, when C = ∞ it is necessary to choose α strictly positive to guarantee that it

is optimal to stop in finite time and that the value is finite; cf. Proposition 2.1.

Standard theory of pricing American-type options [41] directs one to solving the

optimal stopping problem

Vr(M0, S0, C) = B0 sup
τ

E

[

B−1
τ e−ατ

(

M0 ∨ sup
0≤u≤τ

Su ∧ C
)]

(2.6)

where the supremum is taken over all [0,∞)-valued F-stopping times. In other words,

we want to find a stopping time which optimises the expected discounted claim. The

right-hand side of (2.6) may be rewritten as

Vr(M0, S0, C) = V ∗
ǫ (x, s) = sup

τ∈M
Ex,s

[

e−qτ+Xτ∧ǫ],

where q = r + α, x = log(S0), s = log(M0) and ǫ = log(C).

In (2.6) one might only allow stopping times that are smaller or equal than the

first time the risky asset S drops below a certain barrier. From a financial point

of view this corresponds to a default time after which all economic activity stops;

cf. [40]. Including this additional feature leads in an analogous way to the above

optimal stopping problem (2.3).

2.3 Notation and auxiliary results

The purpose of this section is to introduce some notation and collect some known

results about spectrally negative Lévy processes. Moreover, we state the solution of

the Shepp–Shiryaev optimal stopping problem (2.2) which will play an important role

throughout this paper.

2.3.1 Spectrally negative Lévy processes

It is well known that a spectrally negative Lévy process X is characterised by its Lévy

triplet (γ, σ,Π), where σ ≥ 0, γ ∈ R and Π is a measure on (−∞, 0) satisfying the

condition
∫

(−∞,0)(1 ∧ x2)Π(dx) < ∞. By the Lévy–Itô decomposition, X may be

represented in the form

Xt = σBt − γt+X
(1)
t +X

(2)
t , (2.7)

where {Bt : t ≥ 0} is a standard Brownian motion, {X(1)
t : t ≥ 0} is a compound Poisson

process with discontinuities of magnitude bigger than or equal to one and {X(2)
t : t ≥ 0}
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is a square integrable martingale with discontinuities of magnitude strictly smaller than

one and the three processes are mutually independent. In particular, if X is of bounded

variation, the decomposition reduces to

Xt = dt− ηt (2.8)

where d > 0, and {ηt : t ≥ 0} is a driftless subordinator. Further, the spectral negativity
of X ensures existence of the Laplace exponent ψ of X, that is, E[eθX1 ] = eψ(θ) for

θ ≥ 0, which is known to take the form

ψ(θ) = −γθ + 1

2
σ2θ2 +

∫

(−∞,0)

(

eθx − 1− θx1{x>−1}

)

Π(dx). (∗)

Its right-inverse is defined by

Φ(q) := sup{λ ≥ 0 : ψ(λ) = q}

for q ≥ 0.

For any spectrally negative Lévy process having X0 = 0 we introduce the family of

martingales

exp(cXt − ψ(c)t),

defined for any c ∈ R for which ψ(c) = logE[exp(cX1)] < ∞, and further the corre-

sponding family of measures {Pc} with Radon–Nikodym derivatives

dPc

dP

∣

∣

∣

∣

Ft

= exp(cXt − ψ(c)t). (2.9)

For all such c the measure Pcx will denote the translation of Pc under which X0 = x.

In particular, under Pcx the process X is still a spectrally negative Lévy process; cf.

Theorem 3.9 in [21].

2.3.2 Scale functions

A special family of functions associated with spectrally negative Lévy processes is that

of scale functions (cf. [21]) which are defined as follows. For q ≥ 0, the q-scale function

W (q) : R −→ [0,∞) is the unique function whose restriction to (0,∞) is continuous

and has Laplace transform

∫ ∞

0
e−θxW (q)(x) dx =

1

ψ(θ)− q
, θ > Φ(q),
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and is defined to be identically zero for x ≤ 0. Equally important is the scale function

Z(q) : R −→ [1,∞) defined by

Z(q)(x) = 1 + q

∫ x

0
W (q)(z) dz.

The passage times of X below and above k ∈ R are denoted by

τ−k = inf{t > 0 : Xt ≤ k} and τ+k = inf{t > 0 : Xt ≥ k}.

We will make use of the following four identities. For q ≥ 0 and x ∈ (a, b) it holds that

Ex
[

e−qτ
+
b 1{τ+b <τ

−

a }

]

=
W (q)(x− a)

W (q)(b− a)
, (2.10)

Ex
[

e−qτ
−

a 1{τ+
b
>τ−a }

]

= Z(q)(x− a)−W (q)(x− a)
Z(q)(b− a)

W (q)(b− a)
, (2.11)

for q > 0 and x ∈ R it holds that

Ex
[

e−qτ
−

0 1{τ−0 <∞}

]

= Z(q)(x)− q

Φ(q)
W (q)(x), (2.12)

and finally for q > 0 we have

lim
x→∞

Z(q)(x)

W (q)(x)
=

q

Φ(q)
. (2.13)

Identities (2.10)–(2.12) can be found in Theorem 8.1 of [21] and identity (2.13) is

Lemma 3.3 of [20]. For each c ≥ 0 we denote by W
(q)
c the q-scale function with respect

to the measure Pc. A useful formula (cf. Lemma 8.4 of [21]) linking scale functions

under different measures is given by

W (q)(x) = eΦ(q)xWΦ(q)(x) (2.14)

for q ≥ 0 and x ≥ 0.

We conclude this subsection by stating some known regularity properties of scale

functions; cf. Lemma 2.4, Corollary 2.5, Theorem 3.10, Lemma 3.1 and Lemma 3.2

of [20].

Smoothness: For all q ≥ 0,

W (q)|(0,∞) ∈



















C1(0,∞), if X is of bounded variation and Π has no atoms,

C1(0,∞), if X is of unbounded variation and σ = 0,

C2(0,∞), σ > 0.
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Continuity at the origin: For all q ≥ 0,

W (q)(0+) =







d−1, if X is of bounded variation,

0, if X is of unbounded variation.
(2.15)

Right-derivative at the origin: For all q ≥ 0,

W
(q)′
+ (0+) =







q+Π(−∞,0)
d2

, if σ = 0 and Π(−∞, 0) <∞,

2
σ2
, if σ > 0 or Π(−∞, 0) = ∞,

(2.16)

where we understand the second case to be +∞ when σ = 0.

For technical reasons, we require for the rest of the paper that W (q) is in C1(0,∞)

[and hence Z(q) ∈ C2(0,∞)]. This is ensured by henceforth assuming that Π is atomless

whenever X has paths of bounded variation.

2.3.3 Solution to the Shepp–Shiryaev optimal stopping problem

In order to state the solution of the Shepp–Shiryaev optimal stopping problem, we

introduce the function f : [0,∞) → R which is defined as

f(z) = Z(q)(z)− qW (q)(z).

It can be shown (cf. page 6 of [3]) that, when q > ψ(1), the function f is strictly

decreasing to −∞ and hence within this regime

k∗ := inf{z ≥ 0 : Z(q)(z) ≤ qW (q)(z)} ∈ [0,∞).

In particular, when q > ψ(1), then k∗ = 0 if and only if W (q)(0+) ≥ q−1. Also,

note that the requirement W (q)(0+) ≥ q−1 implies q ≥ d > ψ(1). We now give a

reformulation of a part of Theorem 1 in [3].

Proposition 2.1.

(a) Suppose that q > ψ(1) and W (q)(0+) < q−1. Then the solution of (2.2) is given

by

V ∗(x, s) = esZ(q)(x− s+ k∗)

with optimal strategy

τ∗ := inf{t ≥ 0 : X t −Xt ≥ k∗}.

(b) If W (q)(0+) ≥ q−1 (and hence q > ψ(1)), then the solution of (2.2) is given by

V ∗(x, s) = es and optimal strategy τ∗ = 0.
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(c) If q ≤ ψ(1), then V ∗(x, s) = ∞.

The result in part (b) of Proposition 2.1 is not surprising. If W (q)(0+) ≥ q−1, then

X is necessarily of bounded variation with d ≤ q which implies that the process

e−qt+Xt , t ≥ 0, is pathwise decreasing. As a result we have for τ ∈ M the inequal-

ity Ex,s
[

e−qτ+Xτ
]

≤ es and hence (b) follows. An analogous argument shows that

V ∗
ǫ (x, s) = es∧ǫ for (x, s) ∈ E with optimal strategy τ∗ǫ = 0 and V ∗

ǫ1,ǫ2(x, s) = es∧ǫ2 for

(x, s) ∈ E with optimal strategy τ∗ǫ1,ǫ2 = 0. Therefore, we will not consider the regime

W (q)(0+) ≥ q−1 in what follows. Note, however, that the parameter regime q ≤ ψ(1)

will not be degenerate for (2.1) and (2.3) due to the upper cap which prevents the value

function from exploding.

2.4 Main results

2.4.1 Maximum process with upper cap

The first result ensures existence of a function gǫ which, as will follow in due course,

describes the optimal stopping boundary in (2.1).

Lemma 2.2. Let ǫ ∈ R be given.

a) If q > ψ(1) and W (q)(0+) < q−1, then k∗ ∈ (0,∞).

b) If q ≤ ψ(1), then k∗ = ∞.

c) Under the assumptions in (a) or (b) stated above, there exists a unique solution

gǫ : (−∞, ǫ) → (0, k∗) of the ordinary differential equation

g′ǫ(s) = 1− Z(q)(gǫ(s))

qW (q)(gǫ(s))
on (−∞, ǫ) (2.17)

satisfying lims↑ǫ gǫ(s) = 0 and lims↓−∞ gǫ(s) = k∗.

Next, extend gǫ to the whole real line by setting gǫ(s) = 0 for s ≥ ǫ. We now present

the solution of (2.1).

Theorem 2.3. Let ǫ ∈ R be given and suppose that q > ψ(1) and W (q)(0+) < q−1 or

q ≤ ψ(1). Then the solution of (2.1) is given by

V ∗
ǫ (x, s) = es∧ǫZ(q)(x− s+ gǫ(s))

with corresponding optimal strategy

τ∗ǫ := inf{t ≥ 0 : X t −Xt ≥ gǫ(Xt)},

where gǫ is given in Lemma 2.2.
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Define the continuation region

C∗
ǫ = C∗ := {(x, s) ∈ E | s < ǫ, s− gǫ(s) < x ≤ s}

and the stopping region D∗
ǫ = D∗ := E \ C∗. The shape of the boundary separating

them, that is, the optimal stopping boundary, is of particular interest. Theorem 2.3

together with (2.15) and (2.17) shows that

lim
s↑ǫ

g′ǫ(s) =







−∞, if X is of unbounded variation,

1− d/q, if X is of bounded variation.

Also, using (2.13) we see that

lim
s→−∞

g′ǫ(s) =







0, if q > ψ(1) and W (q)(0+) < q−1,

1− Φ(q)−1, if q ≤ ψ(1).

This (qualitative) behaviour of gǫ and the resulting shape of the continuation and

stopping region are illustrated in Figure 2.1. Note in particular that the shape of gǫ

at ǫ (and consequently the optimal boundary) changes according to the path variation

of X. The horizontal and vertical lines in Figure 2.1 are meant to schematically indicate

sǫ

k∗

gǫ(s)

sǫ

gǫ(s)

x

s

ǫ

k∗

D∗

C∗

x

s

ǫ

D∗

C∗

Fig. 2.1 For the two pictures on the left it is assumed that q > ψ(1) and W (q)(0+) = 0, whereas
on the right it is assumed that q ≤ ψ(1).

the trace of the excursions of X away from the running maximum. We thus see that

the optimal strategy consists of continuing if the height of the excursion away from the

running supremum s does not exceed gǫ(s); otherwise we stop.
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2.4.2 Maximum process with upper and lower cap

Inspired by the result in [40], we expect the strategy Tǫ1 ∧ τ∗ǫ2 to be optimal, where τ∗ǫ2
is given in Theorem 2.3 and Tǫ1 = inf{t ≥ 0 : Xt ≤ ǫ1}. This means that the

optimal boundary is expected to be a vertical line at ǫ1 combined with the curve

described by gǫ2 characterised in Lemma 2.2. Before we can proceed, we need to

introduce an auxiliary quantity, namely the point on the s-axis where the vertical

line at ǫ1 and the optimal boundary corresponding to gǫ2 intersect; see Figure 2.2. If

q > ψ(1) and W (q)(0+) < q−1 or q ≤ ψ(1) define the map aǫ2 : (−∞, ǫ2) → (0, k∗)

by aǫ2(s) := s − gǫ2(s). It follows by definition of gǫ2 that aǫ2 is continuous, strictly

increasing and satisfies lims↑ǫ2 aǫ2(s) = ǫ2 and lims↓−∞ aǫ2(s) = −∞. Therefore the

intermediate value theorem guarantees existence of a unique Aǫ1,ǫ2 = A ∈ (−∞, ǫ2)

such that A − gǫ2(A) = ǫ1. Our candidate optimal strategy Tǫ1 ∧ τ∗ǫ2 splits the set E

into the continuation regions

C∗
I,ǫ1,ǫ2 = C∗

I := {(x, s) ∈ E : ǫ1 < x ≤ s, ǫ1 < s < A},
C∗
II,ǫ1,ǫ2 = C∗

II := {(x, s) ∈ E : s− gǫ2(s) < x ≤ s,A ≤ s < ǫ2}

and the stopping region E\(C∗
I ∪C∗

II). Additionally, define Eǫ1 := {(x, s) ∈ E : x > ǫ1}.

x

s

k∗
C∗

I

C∗

II

ǫ1 ǫ2

A

Fig. 2.2 A qualitative picture of the continuation and stopping region under the assumption
that q > ψ(1) and W (q)(0+) = 0; cf. Theorem 2.5.

Clearly, if (x, s) ∈ E \ Eǫ1 , then the only stopping time in Mǫ1 is τ = 0 and hence

the optimal value function is given by es∧ǫ2 . Furthermore, when (x, s) ∈ E such that

s ≥ A and x > ǫ1, we have τ∗ǫ2 ≤ Tǫ1 , so that the optimality of τ∗ǫ2 in (2.1) implies

V ∗
ǫ1,ǫ2(x, s) = V ∗

ǫ2(x, s). Consequently, the interesting case is really (x, s) ∈ C∗
I . The key

to verifying that Tǫ1 ∧ τ∗ǫ2 is optimal, is to find the value function associated with it.

Lemma 2.4. Let ǫ1 < ǫ2 be given, and suppose that q > ψ(1) and W (q)(0+) < q−1 or
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q ≤ ψ(1). Define

Vǫ1,ǫ2(x, s) :=



















V ∗
ǫ2(x, s), (x, s) ∈ C∗

II ,

Uǫ1,ǫ2(x, s), (x, s) ∈ C∗
I ,

es∧ǫ2 , otherwise,

where V ∗
ǫ2 is given in Theorem 2.3,

Uǫ1,ǫ2(x, s) := esZ(q)(x− ǫ1) + eǫ1W (q)(x− ǫ1)

∫ gǫ2(A)

s−ǫ1

et
Z(q)(t)

W (q)(t)
dt

and A ∈ (−∞, ǫ2) is the unique constant such that A− gǫ2(A) = ǫ1. We then have, for

(x, s) ∈ E,

Ex,s

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2

∧ǫ2
]

= Vǫ1,ǫ2(x, s).

Our main contribution here is the expression for Uǫ1,ǫ2 , thereby allowing us to verify

that the strategy Tǫ1 ∧ τ∗ǫ2 is still optimal. In fact, this is the content of the next result.

Theorem 2.5. Let ǫ1 < ǫ2 be given and suppose that q > ψ(1) and W (q)(0+) < q−1

or q ≤ ψ(1). Then the solution to (2.3) is given by V ∗
ǫ1,ǫ2 = Vǫ1,ǫ2 with corresponding

optimal strategy τ∗ǫ1,ǫ2 = Tǫ1 ∧ τ∗ǫ2, where τ∗ǫ2 is given in Theorem 2.3.

It is also possible to obtain the solution of (2.3) with lower cap only. To this end,

define when q > ψ(1) and W (q)(0+) < q−1 the constant function g∞(s) := k∗ and

Aǫ1,∞ := ǫ1 + k∗.

Corollary 2.6. Let ǫ1 ∈ R and suppose that ǫ2 = ∞, that is, there is no upper cap.

(a) Assume that q > ψ(1) and that W (q)(0+) < q−1. Then the solution to (2.3) is

given by

V ∗
ǫ1,∞(x, s) =



















V ∗(x, s), (x, s) ∈ C∗
II,ǫ1,∞

,

Uǫ1,∞(x, s), (x, s) ∈ C∗
I,ǫ1,∞

,

es, otherwise,

(2.18)

where V ∗ is given in Proposition 2.1 and

Uǫ1,∞(x, s) = esZ(q)(x− ǫ1) + eǫ1W (q)(x− ǫ1)

∫ k∗

s−ǫ1

et
Z(q)(t)

W (q)(t)
dt.

The corresponding optimal strategy is given by τ∗ǫ1,∞ = Tǫ1 ∧ τ∗, where τ∗ is given

in Proposition 2.1.

(b) If q ≤ ψ(1), then V ∗
ǫ1,∞(x, s) = ∞ for (x, s) ∈ Eǫ1 and V ∗

ǫ1,∞(x, s) = es otherwise.

Remark 2.7. In Theorem 2.3 there is no lower cap, and hence it seems natural to

obtain Theorem 2.3 as a corollary to Theorem 2.5. This would be possible if one
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merged the proofs of Theorem 2.3 and Theorem 2.5 appropriately. However, a merged

proof would still contain the main arguments of both the proof of Theorem 2.3 and the

proof of Theorem 2.5 (note that the proof of Theorem 2.5 makes use of Theorem 2.3).

Therefore, and also for presentation purposes, we choose to present them separately.

Finally, if Xt = (µ − 1
2σ

2)t + σWt, t ≥ 0, where µ ∈ R, σ > 0 and Wt, t ≥ 0, is a

standard Brownian motion, then Corollary 2.6 is nothing else than Theorem 3.1 in [40].

However, this is not immediately clear and requires a simple but lengthy computation

which is provided in Section 2.7.

2.5 Guess and verify via principle of smooth or continuous

fit

Let us consider the solution to (2.1) from an intuitive point of view. We shall restrict

ourselves to the case where q > ψ(1) and W (q)(0+) < q−1. It follows from what was

said at the beginning of Subsection 2.3.3 that k∗ ∈ (0,∞).

It is clear that if (x, s) ∈ E such that x ≥ ǫ, then it is optimal to stop immediately

since one cannot obtain a higher payoff than ǫ, and waiting is penalised by exponential

discounting. If x is much smaller than ǫ, then the cap ǫ should not have too much

influence, and one expects that the optimal value function V ∗
ǫ and the corresponding

optimal strategy τ∗ǫ look similar to the optimal value function V ∗ and optimal strategy

τ∗ of problem (2.2). On the other hand, if x is close to the cap, then the process X

should be stopped “before” it is a distance k∗ away from its running maximum. This

can be explained as follows: The constant k∗ in the solution to problem (2.2) quantifies

the acceptable “waiting time” for a possibly much higher running supremum at a later

point in time. But if we impose a cap, there is no hope for a much higher supremum

and therefore “waiting the acceptable time” for problem (2.2) does not pay off in the

situation with cap. With exponential discounting we would therefore expect to exercise

earlier. In other words, we expect an optimal strategy of the form

τgǫ = inf{t ≥ 0 : X t −Xt ≥ gǫ(X)}

for some function gǫ satisfying lims→−∞ gǫ(s) = k∗ and lims→ǫ gǫ(s) = 0.

This qualitative guess can be turned into a quantitative guess by an adaptation

of the argument in Section 3 of [31] to our setting. To this end, assume that X is of

unbounded variation (W (q)(0+) = 0). We will deal with the bounded variation case

later. From the general theory of optimal stopping (cf. [33], Section 13) we informally

expect the value function

Vgǫ(x, s) = Ex,s
[

e−qτgǫ+Xτgǫ

]
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to satisfy the system

ΓVgǫ(x, s) = qVgǫ(x, s) for s− gǫ(s) < x < s with s fixed,

∂Vgǫ
∂s (x, s)

∣

∣

x=s−
= 0 (normal reflection), (2.19)

Vgǫ(x, s)|x=(s−gǫ(s))+ = es (instantaneous stopping),

where Γ is the infinitesimal generator of the processX under P0. Moreover, the principle

of smooth fit [28, 33] suggests that this system should be complemented by

∂Vgǫ
∂x

(x, s)
∣

∣

x=(s−gǫ(s))+
= 0 (smooth fit). (2.20)

Note that, although the smooth fit condition is not necessarily part of the general

theory, it is imposed since by the “rule of thumb” outlined in Section 7 in [1] it should

hold in this setting because of path regularity. This belief will be vindicated when we

show that system (2.19) with (2.20) leads to the solution of problem (2.1). Applying

the strong Markov property at τ+s and using (2.10) and (2.11) shows that

Vgǫ(x, s) = esEx,s
[

e
−qτ−

s−gǫ(s)1{τ−
s−gǫ(s)

<τ+s }

]

+Ex,s
[

e−qτ
+
s 1{τ−

s−gǫ(s)
>τ+s }

]

Es,s
[

e−qτgǫ+Xτgǫ

]

= es
(

Z(q)(x− s+ gǫ(s))−W (q)(x− s+ gǫ(s))
Z(q)(gǫ(s))

W (q)(gǫ(s))

)

+
W (q)(x− s+ gǫ(s))

W (q)(gǫ(s))
Vgǫ(s, s).

Furthermore, the smooth fit condition implies

0 = lim
x↓s−gǫ(s)

∂Vgǫ
∂x

(x, s) = lim
x↓s−gǫ(s)

W (q)′(x− s+ gǫ(s))

W (q)(gǫ(s))

(

Vgǫ(s, s)− esZ(q)(gǫ(s))
)

.

By (2.16) the first factor tends to a strictly positive value or infinity which shows that

Vgǫ(s, s) = esZ(q)(gǫ(s)). This means that for (x, s) ∈ E such that s − gǫ(s) < x < s

we have

Vgǫ(x, s) = esZ(q)(x− s+ gǫ(s)). (2.21)

Having derived the form of a candidate optimal value function Vgǫ , we still need to

do the same for gǫ. Using the normal reflection condition in (2.19) shows that our

candidate function gǫ should satisfy the ordinary differential equation

Z(q)(gǫ(s)) + qW (q)(gǫ(s))(g
′
ǫ(s)− 1) = 0.

If X is of bounded variation [W (q)(0+) ∈ (0, q−1)], we informally expect from the
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general theory that Vgǫ satisfies the first two equations of (2.19). Additionally, the

principle of continuous fit [1, 32] suggests that the system should be complemented by

Vgǫ(x, s)|x=(s−gǫ(s))+ = es (continuous fit).

A very similar argument as above produces the same candidate value function and the

same ordinary differential equation for gǫ.

2.6 Proofs of main results

Proof of Lemma 2.2. The idea is to define a suitable bijection H from (0, k∗) to (−∞, ǫ)

whose inverse satisfies the differential equation and the boundary conditions.

First consider the case q > ψ(1) andW (q)(0+) < q−1. It follows from the discussion

at the beginning of Subsection 2.3.3 that k∗ ∈ (0,∞) and that the function

s 7→ h(s) := 1− Z(q)(s)

qW (q)(s)

is negative on (0, k∗). Moreover, lims↓0 h(s) ∈ [−∞, 0) and lims↑k∗ h(s) = 0. These

properties imply that the function H : (0, k∗) → (−∞, ǫ) defined by

H(s) := ǫ+

∫ s

0

(

1− Z(q)(η)

qW (q)(η)

)−1

dη = ǫ+

∫ s

0

qW (q)(η)

qW (q)(η) − Z(q)(η)
dη (2.22)

is strictly decreasing. If we can also show that the integral tends to −∞ as s approa-

ches k∗, we could deduce thatH is a bijection from (0, k∗) to (−∞, ǫ). Indeed, appealing

to l’Hôpital’s rule and using (2.14) we obtain

lim
z↑k∗

qW (q)(z) − Z(q)(z)

k∗ − z
= lim

z↑k∗
qW (q)(z) − qW (q)′(z)

= lim
z↑k∗

qeΦ(q)z
(

(1−Φ(q))WΦ(q)(z)−W ′
Φ(q)(z)

)

= qeΦ(q)k∗
(

(1− Φ(q))WΦ(q)(k
∗)−W ′

Φ(q)(k
∗)
)

.

Denote the term on the right-hand side by c, and note that c < 0 due to the fact that

WΦ(q) is strictly positive and increasing on (0,∞) and since Φ(q) > 1 for q > ψ(1).

Hence there exists a δ > 0 and 0 < z0 < k∗ such that c − δ < qW (q)(z)−Z(q)(z)
k∗−z for all

z0 < z < k∗. Thus

1

qW (q)(z) − Z(q)(z)
<

1

(c− δ)(k∗ − z)
< 0 for z0 < z < k∗.
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This shows that

lim
s↑k∗

H(s) ≤ ǫ+ lim
s↑k∗

∫ s

z0

qW (q)(η)

(c− δ)(k∗ − η)
dη = −∞.

The discussion above permits us to define gǫ := H−1 ∈ C1((−∞, ǫ); (0, k∗)). In

particular, differentiating gǫ gives

g′ǫ(s) =
1

H ′(gǫ(s))
= 1− Z(q)(gǫ(s))

qW (q)(gǫ(s))

for s ∈ (−∞, ǫ), and gǫ satisfies lims→−∞ gǫ(s) = k∗ and lims↑ǫ gǫ(s) = 0 by construc-

tion.

As for the case q ≤ ψ(1), note that by (2.12) we have

Z(q)(x)− qW (q)(x) ≥ Z(q)(x)− q

Φ(q)
W (q)(x) > 0 (2.23)

for x ≥ 0 which shows that k∗ = ∞. Moreover, (2.23) together with (2.13) implies that

the map s 7→ h(s) is negative on (0,∞), satisfies lims↑∞ h(s) = 1− Φ(q)−1 ≤ 0 and

lim
s↓0

h(s) =







−∞, if X is of unbounded variation,

1− d

q , if X is of bounded variation.

Since q ≤ ψ(1) implies that q < d whenever X is of bounded variation, we conclude

that lims↓0 h(s) ∈ [−∞, 0). Defining H : (0,∞) → (−∞, ǫ) as in (2.22), one deduces

similarly as above thatH is a continuously differentiable bijection whose inverse satisfies

the requirements.

We finish the proof by addressing the question of uniqueness. To this end, assume

that there is another solution g̃. In particular, g̃′(s) = h(g̃(s)) for s ∈ (s1, ǫ) ⊂ (−∞, ǫ)

and hence

s1 = ǫ−
∫

(s1,ǫ)
dη = ǫ+

∫

(s1,ǫ)

|g̃′(s)|
h(g̃(s))

ds = ǫ+

∫ g̃(s1)

0

1

h(s)
ds = H(g̃(s1))

which implies that g̃ = H−1 = gǫ.

Proof of Theorem 2.3. Define the function

Vǫ(x, s) := es∧ǫZ(q)(x− s+ gǫ(s))

for (x, s) ∈ E and let τgǫ := inf{t ≥ 0 : Xt−Xt ≥ gǫ(X t)}, where gǫ is as in Lemma 2.2.

Because of the infinite horizon and Markovian claim structure of problem (2.1) it is

enough to check the following conditions:
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(i) Vǫ(x, s) ≥ es∧ǫ for all (x, s) ∈ E;

(ii) the process e−qtVǫ(Xt,X t), t ≥ 0, is a right-continuous Px,s-supermartingale

for (x, s) ∈ E;

(iii) Vǫ(x, s) = Ex,s
[

e−qτgǫ+Xτgǫ
∧ǫ
]

for all (x, s) ∈ E.

To see why these are sufficient conditions, note that (i) and (ii) together with Fatou’s

lemma in the second inequality and Doob’s stopping theorem in the third inequality

show that for τ ∈ M,

Ex,s
[

e−qτ+Xτ∧ǫ
]

≤ Ex,s
[

e−qτVǫ(Xτ ,Xτ )
]

≤ lim inf
t→∞

Ex,s
[

e−q(t∧τ)Vǫ(Xt∧τ ,X t∧τ )
]

≤ Vǫ(x, s),

which in view of (iii) implies V ∗
ǫ = Vǫ and τ

∗
ǫ = τgǫ .

The remainder of this proof is devoted to checking conditions (i)–(iii). Condition (i)

is clearly satisfied since Z(q) is bigger or equal to one by definition.

Supermartingale property (ii): Given the inequality

Ex,s
[

e−qtVǫ(Xt,Xt)
]

≤ Vǫ(x, s), (x, s) ∈ E, (2.24)

the supermartingale property is a consequence of the Markov property of the process

(X,X). Indeed, for u ≤ t we have

Ex,s
[

e−qtVǫ(Xt,X t)
∣

∣Fu
]

= e−quEXu,Xu

[

e−q(t−u)Vǫ(Xt−u,X t−u)
]

≤ e−quVǫ(Xu,Xu).

We now prove (2.24), first under the assumption that W (q)(0+) = 0, that is, X is

of unbounded variation. Let Γ be the infinitesimal generator of X and formally define

the function ΓZ(q) : R \ {0} → R by

ΓZ(q)(x) := −γZ(q)′(x) +
σ2

2
Z(q)′′(x)

+

∫

(−∞,0)

(

Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)1{y≥−1}

)

Π(dy).

For x < 0 the quantity ΓZ(q)(x) is well defined and ΓZ(q)(x) = 0. However, for x > 0

one needs to check whether the integral part of ΓZ(q)(x) is well defined. This is done

in Lemma 2.9 (see Section 2.8) which shows that this is indeed the case. Moreover, as
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shown in Section 3.2 of [34], it holds that

ΓZ(q)(x) = qZ(q)(x), x ∈ (0,∞).

Now fix (x, s) ∈ E and define the semimartingale Yt := Xt − Xt + gǫ(X t), t ≥ 0.

Applying an appropriate version of the Itô–Meyer formula (cf. Theorem 71, Chapter IV

of [36]) to Z(q)(Yt) yields Px,s-a.s.

Z(q)(Yt) = Z(q)(x− s+ gǫ(s)) +mt +

∫ t

0
ΓZ(q)(Yu) du (2.25)

+

∫ t

0
Z(q)′(Yu)(g

′
ǫ(Xu)− 1) dXu,

where

mt =

∫ t

0+
σZ(q)′(Yu−)dBu +

∫ t

0+
Z(q)′(Yu−)dX

(2)
u

+
∑

0<u≤t

(

∆Z(q)(Yu)−∆XuZ
(q)′(Yu−)1{∆Xu≥−1}

)

−
∫ t

0

∫

(−∞,0)

(

Z(q)(Yu− + y)− Z(q)(Yu−)− yZ(q)′(Yu−)1{y≥−1}

)

Π(dy)du

and ∆Xu = Xu −Xu−, ∆Z
(q)(Yu) = Z(q)(Yu)− Z(q)(Yu−). The fact that ΓZ(q) is not

defined at zero is not a problem as the time Y spends at zero has Lebesgue measure zero

anyway. By the boundedness of Z(q)′ on (−∞, gǫ(s)] the first two stochastic integrals

in the expression for mt are zero-mean martingales and by the compensation formula

(cf. Corollary 4.6 of [21]) the third and fourth term constitute a zero-mean martingale.

Next, recall that Vǫ(x, s) = es∧ǫZ(q)(x − s + gǫ(s)) and use stochastic integration by

parts for semimartingales (cf. Corollary 2 of Theorem 22, Chapter II of [36]) to deduce

that

e−qtVǫ(Xt,Xt) = Vǫ(x, s) +Mt +

∫ t

0
e−qu+Xu∧ǫ(ΓZ(q)(Yu)− qZ(q)(Yu)) du (2.26)

+

∫ t

0
e−qu+Xu∧ǫ

(

Z(q)(Yu)1{Xu≤ǫ}
+ Z(q)′(Yu)(g

′
ǫ(Xu)− 1)

)

dXu

where Mt =
∫ t
0+ e

−qu+Xu∧ǫdmu is a zero-mean martingale. The first integral is non-

positive since ΓZ(q)(y) − qZ(q)(y) ≤ 0 for all y ∈ R \ {0}. The last integral vanishes

since the process Xu only increments when Xu = Xu and by definition of gǫ. Thus,

taking expectations on both sides yields

Ex,s

[

e−qtVǫ(Xt,X t)
]

≤ Vǫ(x, s).
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If W (q)(0+) ∈ (0, q−1) (X has bounded variation), then the Itô–Meyer formula is

nothing more than an appropriate version of the change of variable formula for Stieltjes

integrals and the rest of the proof follows the same line of reasoning as above. The only

change worth mentioning is that the generator of X takes a different form. Specifically,

one has to work with

ΓZ(q)(x) = dZ(q)′(x) +

∫

(−∞,0)

(

Z(q)(x+ y)− Z(q)(x)
)

Π(dy)

which satisfies all the required properties by Lemma 2.9 (see Section 2.8) and Section 3.2

in [34].

This completes the proof of the supermartingale property.

Verification of condition (iii): The assertion is clear for (x, s) ∈ D∗. Hence, suppose

that (x, s) ∈ C∗. The assertion now follows from the proof of the supermartingale

property (ii). More precisely, replacing t by t∧ τgǫ in (2.26) and recalling that we have

(Γ− q)Z(q)(y) = 0 for y > 0 shows that

Ex,s
[

e−q(t∧τgǫ )Vǫ(Xt∧τgǫ ,X t∧τgǫ )
]

= Vǫ(x, s).

Using that τgǫ < ∞ a.s. and dominated convergence, one obtains the desired equality.

Proof of Lemma 2.4. For (x, s) ∈ C∗
I , write

Ex,s
[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2

∧ǫ2]
= Ex,s

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2 1{Tǫ1>τ

+
A }

]

+Ex,s

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2 1{Tǫ1<τ

+
A }

]

and denote the first expectation on the right by I1 and the second expectation by I2.

An application of the strong Markov property at τ+A and the definition of V ∗
ǫ2 (see

Theorem 2.3) give

I1 = Ex,s

[

e−qτ
+
A 1{Tǫ1>τ

+
A
}

]

EA,A

[

e
−qτ∗ǫ2+Xτ∗ǫ2

]

=
W (q)(x− ǫ1)

W (q)(A− ǫ1)
eAZ(q)(gǫ2(A)).

Recalling that s < A and using the strong Markov property at τ+s yields

I2 = esEx,s

[

e−qTǫ11{Tǫ1<τ
+
s }

]

+Ex,s

[

e−qτ
+
s 1{Tǫ1>τ

+
s }

]

Es,s

[

e−qTǫ1+XTǫ1 1{Tǫ1<τ
+
A }

]

= es
(

Z(q)(x− ǫ1)−W (q)(x− ǫ1)
Z(q)(s− ǫ1)

W (q)(s− ǫ1)

)
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+
W (q)(x− ǫ1)

W (q)(s− ǫ1)
Es,s

[

e−qTǫ1+XTǫ1 1{Tǫ1<τ
+
A }

]

= es
(

Z(q)(x− ǫ1)−W (q)(x− ǫ1)
Z(q)(s− ǫ1)

W (q)(s− ǫ1)

)

+
W (q)(x− ǫ1)

W (q)(s− ǫ1)
esE0,0

[

e
−qτ−ǫ1−s+Xτ

−

ǫ1−s1{τ−ǫ1−s<τ
+
A−s}

]

. (2.27)

Next, we compute the expectation on the right-hand side of (2.27) by excursion

theory. To be more precise, we are going to make use of the compensation formula

of excursion theory, and hence we shall spend a moment setting up some necessary

notation. In doing so, we closely follow pages 221–223 in [2] and refer the reader to

Chapters 6 and 7 in [6] for background reading. The process Lt := Xt serves as local

time at 0 for the Markov process X −X under P0,0. Write L−1 := {L−1
t : t ≥ 0} for

the right-continuous inverse of L. The Poisson point process of excursions indexed by

local time shall be denoted by {(t, εt) : t ≥ 0}, where

εt = {εt(s) := XL−1
t

−XL−1
t−+s : 0 < s < L−1

t − L−1
t− }

whenever L−1
t −L−1

t− > 0. Accordingly, we refer to a generic excursion as ε(·) (or just ε
for short as appropriate) belonging to the space E of canonical excursions. The intensity

measure of the process {(t, εt) : t ≥ 0} is given by dt× dn, where n is a measure on the

space of excursions (the excursion measure). A functional of the canonical excursion

that will be of interest is ε = sups<ζ ε(s), where ζ(ε) = ζ is the length of an excursion.

A useful formula for this functional that we shall make use of is the following [cf. [21],

equation (8.26)]:

n(ε > x) =
W ′(x)

W (x)
(2.28)

provided that x is not a discontinuity point in the derivative of W [which is only a

concern when X is of bounded variation, but we have assumed that in this case Π is

atomless and hence W is continuously differentiable on (0,∞)]. Another functional

that we will also use is ρa := inf{s > 0 : ε(s) > a}, the first passage time above a

of the canonical excursion ε. We now proceed with the promised calculation involving

excursion theory. Specifically, an application of the compensation formula in the second

equality and using Fubini’s theorem in the third equality gives

E
[

e
−qτ−ǫ1−s+Lτ

−

ǫ1−s1{τ−ǫ1−s<τ
+
A−s}

]

= E

[

∑

0<t<∞

e−qL
−1
t−+t1{εu≤u−ǫ1+s∀u<t

t<A−s

}1{εt>t−ǫ1+s}e
−qρt−ǫ1+s(εt)

]

= E

[
∫ A−s

0
dt e−qL

−1
t +t1{εu≤u−ǫ1+s∀u<t}

∫

E
1{ε>t−ǫ1+s}e

−qρt−ǫ1+s(ε)n(dε)

]
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=

∫ A−s

0
et−Φ(q)tE

[

e−qL
−1
t +Φ(q)t1{εu≤u−ǫ1+s ∀u<t}

]

f̂(t− ǫ1 + s) dt,

where in the first equality the time index runs over local times and the sum is the usual

shorthand for integration with respect to the Poisson counting measure of excursions,

and f̂(u) = Z(q)(u)W (q)′(u)

W (q)(u)
− qW (q)(u) is an expression taken from Theorem 1 in [2].

Next, note that L−1
t is a stopping time and hence a change of measure according

to (2.9) shows that the expectation inside the integral can be written as

PΦ(q)
[

εu ≤ u− ǫ1 + s for all u < t
]

.

Using the properties of the Poisson point process of excursions (indexed by local time)

and with the help of (2.28) and (2.14) we may deduce

PΦ(q)
[

εu ≤ u− ǫ1 + s for all u < t
]

= exp

(

−
∫ t

0
nΦ(q)(ε > u− ǫ1 + s) du

)

= eΦ(q)t W (q)(s− ǫ1)

W (q)(t− ǫ1 + s)
,

where nΦ(q) denotes the excursion measure associated with X under PΦ(q). By a change

of variables and the fact that A− ǫ1 = gǫ2(A) we further obtain

E0,0

[

e
−qτ−ǫ1−s+Lτ

−

ǫ1−s1{τ−ǫ1−s<τ
+
A−s}

]

= W (q)(s− ǫ1)e
ǫ1−s

∫ gǫ2 (A)

s−ǫ1

et
f̂(t)

W (q)(t)
dt

= −W (q)(s− ǫ1)e
ǫ1−s

∫ gǫ2(A)

s−ǫ1

et
(

Z(q)

W (q)

)′

(t)dt.

Integrating by parts on the right-hand side, plugging the resulting expression into (2.27)

and finally adding I1 and I2 gives the result.

Proof of Theorem 2.5. Recall that Tǫ1 = inf{t ≥ 0 : Xt ≤ ǫ1} and from Lemma 2.4

that, for (x, s) ∈ E,

Vǫ1,ǫ2(x, s) = Ex,s
[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2

∧ǫ2]
. (2.29)

Similarly to the proof of Theorem 2.3, it is now enough to prove that:

(i) Vǫ1,ǫ2(x, s) ≥ es∧ǫ2 for all (x, s) ∈ Eǫ1 ;

(ii) e−q(t∧Tǫ1 )Vǫ1,ǫ2(Xt∧Tǫ1
,X t∧Tǫ1

), t ≥ 0, is a right-continuous Px,s-supermartingale

for all (x, s) ∈ Eǫ1 .

Condition (i) is clearly satisfied, so we devote the remainder of this proof to checking

condition (ii).
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Supermartingale property (ii): Throughout this proof, let

Ẽ := {(x, s) ∈ E : x > ǫ1 and s ≥ A}.

Let Yt := e−qtVǫ1,ǫ2(Xt,X t) for t ≥ 0. Analogously to the proof of Theorem 2.3, it

suffices to show that for (x, s) ∈ Eǫ1 we have the inequality

Ex,s
[

Yt∧Tǫ1
]

≤ Vǫ1,ǫ2(x, s). (2.30)

For (x, s) ∈ Ẽ inequality (2.30) can be extracted from the proof of Theorem 2.3 where

it is shown that the process e−qtV ∗
ǫ2(Xt,X t), t ≥ 0, is a Px,s-supermartinagle for all

(x, s) ∈ E. In particular, the process Yt, t ≥ 0, is a Px,s-supermartingale for (x, s) ∈ Ẽ.

The supermartingale property is preserved when stopping at Tǫ1 and therefore we

obtain, for (x, s) ∈ Ẽ,

Ex,s
[

Yt∧Tǫ1
]

≤ Vǫ1,ǫ2(x, s). (2.31)

Thus, it remains to establish (2.30) for (x, s) ∈ C∗
I . To this end, we first prove that the

process Yt∧Tǫ1∧τ∗ǫ2
, t ≥ 0, is a Px,s-martingale. The strong Markov property gives

Ex,s
[

YTǫ1∧τ∗ǫ2

∣

∣Ft
]

= YTǫ1∧τ∗ǫ2
1{Tǫ1∧τ∗ǫ2≤t}

+ e−qtEXt,Xt

[

YTǫ1∧τ∗ǫ2

]

1{Tǫ1∧τ∗ǫ2>t}
. (2.32)

By definition of Vǫ1,ǫ2 we see that

YTǫ1∧τ∗ǫ2 =







exp
(

− qTǫ1 +XTǫ1

)

, on {Tǫ1 ≤ τ∗ǫ2},
exp(−qτ∗ǫ2 +Xτ∗ǫ2

), on {Tǫ1 > τ∗ǫ2},

which shows that the second term on the right-hand side of (2.32) equals

e−qtEXt,Xt

[

e
−q(Tǫ1∧τ

∗

ǫ2
)+XTǫ1∧τ∗ǫ2

]

(1{t≤τ+A } + 1{t>τ+A })1{Tǫ1∧τ∗ǫ2>t}

=
(

e−qtUǫ1,ǫ2(Xt,X t)1{t≤τ+A } + e−qtV ∗
ǫ2(Xt,X t)1{t>τ+A }

)

1{Tǫ1∧τ∗ǫ2>t}

= e−qtVǫ1,ǫ2(Xt,X t)1{Tǫ1∧τ∗ǫ2>t}

= Yt1{Tǫ1∧τ∗ǫ2>t}
.

Thus, Ex,s
[

YTǫ1∧τ∗ǫ2

∣

∣Ft
]

= Yt∧Tǫ1∧τ∗ǫ2
which implies that Yt∧Tǫ1∧τ∗ǫ2

, t ≥ 0, is a martin-

gale. Again using the strong Markov property we further obtain for (x, s) ∈ C∗
I ,

Ex,s
[

Yt∧Tǫ1

∣

∣Fτ∗ǫ2
]

= Yt∧Tǫ11{t∧Tǫ1≤τ∗ǫ2}

+e−qτ
∗

ǫ2EXτ∗ǫ2
,Xτ∗ǫ2

[

Y(t−u)∧Tǫ1

]

∣

∣

∣

u=τ∗ǫ2

1{t∧Tǫ1>τ∗ǫ2}

≤ Yt∧Tǫ11{t∧Tǫ1≤τ∗ǫ2}
+ e−qτ

∗

ǫ2Vǫ1,ǫ2(Xτ∗ǫ2
,Xτ∗ǫ2

)1{t∧Tǫ1>τ∗ǫ2}

= Yt∧Tǫ1∧τ∗ǫ2
,
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where the inequality follows from (2.31) and the fact that (Xτ∗ǫ2
Xτ∗ǫ2

) ∈ Ẽ on the set

{t ∧ Tǫ1 > τ∗ǫ2}. Thus, Ex,s
[

Yt∧Tǫ1
]

≤ Uǫ1,ǫ2(x, s) = Vǫ1,ǫ2(x, s) for (x, s) ∈ C∗
I .

Proof of Corollary 2.6. Part (a) follows from the proof of Theorem 2.5 by replacing gǫ

with g∞(s) = k∗ and A by ǫ1 + k∗. For part (b), let ǫ1 ∈ R be given and recall that

due to the assumption q ≤ ψ(1) we have lims↓−∞ gǫ1(s) = ∞. For an arbitrary δ > ǫ1,

the uniqueness in Lemma 2.2 implies that

gδ(s) = gǫ1(s− δ + ǫ1), s ∈ (−∞, δ).

It follows that limδ↑∞ gδ(s) = ∞ for s ∈ R and that limδ↑∞ gδ(Aδ) = ∞. Hence, for

(x, s) ∈ Eǫ1 , we have

V ∗
ǫ1,∞(x, s) := sup

τ∈Mǫ1

Ex,s
[

e−q(Tǫ1∧τ)+XTǫ1∧τ
]

≥ lim
δ↑∞

V ∗
ǫ1,δ(x, s) = ∞.

On the other hand, if (x, s) ∈ E \ Eǫ1 , then clearly V ∗
ǫ1,∞(x, s) = es. This completes

the proof.

2.7 Examples

The solutions of (2.1) and (2.3) are given semi-explicitly in terms of scale functions and

a specific solution gǫ and gǫ2 respectively of the ordinary differential equation (2.17).

The aim of this section is to look at some examples where the solutions of (2.1) and (2.3)

can be computed more explicitly. For simplicity, we will assume from now on that

every spectrally negative Lévy process X considered below is such that q > ψ(1) and

W (q)(0+) < q−1. Also assume to begin with that there is an upper cap ǫ only.

A first step towards more explicit solutions of (2.1) is looking at processes X where

explicit expressions for W (q) and Z(q) are available. In recent years various authors

have found several processes whose scale functions are explicitly known (Example 1.3,

Chapter 4 and Section 5.5 in [20], for instance). Here, however, we would additionally

like to find gǫ explicitly. To the best of our knowledge, we do not know of any examples

where this is possible. One might instead try to solve (2.17) numerically, but this is

not straightforward as there is no initial point to start a numerical scheme from and,

moreover, the possibility of gǫ having infinite gradient at ǫ might lead to inaccuracies

in the numerical scheme. Therefore, we follow a different route which avoids these

difficulties. Instead of looking at gǫ, we rather focus on its inverse

H(s) = ǫ+

∫ s

0

(

1− Z(q)(η)

qW (q)(η)

)−1

dη, s ∈ (0, k∗), (2.33)
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where k∗ ∈ (0,∞) is the unique root of Z(q)(z)− qW (q)(z) = 0. In fact, passing to the

inverse is a standard trick in this setting and, for instance, used in [33]. It turns out

that in some cases (including the Black–Scholes model) H can be computed explicitly.

Since H is the inverse of gǫ, plotting (H(y), y) for y ∈ (0, k∗), yields visualisations of

s 7→ gǫ(s) for s ∈ (−∞, ǫ); see Figures 2.3–2.5. Similarly, plotting (H(y) − y,H(y))

for y ∈ (0, k∗), produces graphical representations of the optimal stopping boundary

in the (x, s)-plane; see Figures 2.3–2.5. Unfortunately, it is often the case that we

cannot compute the integral in (2.33) explicitly in which case one might use numerical

integration in Matlab to obtain an approximation of the integral. The procedure just

described is carried out below for different examples of X.

2.7.1 Brownian motion with drift and compound Poisson jumps

Consider the process

Xt = σWt + µt−
Nt
∑

i=1

ξi, t ≥ 0,

where σ > 0, µ ∈ R, Wt, t ≥ 0, is a standard Brownian motion, Nt, t ≥ 0, is a

Poisson process with intensity a > 0 and ξi, i ∈ N, are i.i.d. random variables which

are exponentially distributed with parameter ρ > 0. The processes W and N as well

as the sequence ξi are assumed to be mutually independent. The Laplace exponent of

X is given by

ψ(θ) =
σ2

2
θ2 + µθ − aθ

ρ+ θ
, θ ≥ 0.

It is known (cf. Example 1.3 in [20] and Subsection 8.2 of [2]) that

W (q)(x) =
eΦ(q)x

ψ′(Φ(q))
+

e−ζ1x

ψ′(−ζ1)
+

e−ζ2x

ψ′(−ζ2)
, x ≥ 0, (2.34)

where −ζ2 < −ρ < −ζ1 < 0 < Φ(q) are the three real solutions of the equation

ψ(θ) = q, and that, for x ≥ 0,

Z(q)(x) = D1e
Φ(q)x +D2e

−ζ1x +D3e
−ζ2x, (2.35)

where D1 =
q

Φ(q)ψ′(Φ(q)) , D2 =
q

−ζ1ψ′(−ζ1)
and D3 =

q
−ζ2ψ′(−ζ2)

.

As a first example consider σ = 0. In this case ψ(θ) = q reduces to a quadratic

equation, and one can calculate explicitly

ζ1 =
1

2µ

(

√

(a+ q − µρ)2 + 4µqρ− (a+ q − µρ)
)

,

Φ(q) =
1

2µ

(

√

(a+ q − µρ)2 + 4µqρ+ (a+ q − µρ)
)

.
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Moreover, it follows that

k∗ =
1

ζ1 + φ(q)
log

(

Φ(q)ψ′(Φ(q))(ζ1 + 1)

ζ1ψ′(−ζ1)(1− Φ(q))

)

.

Using elementary algebra and integration one finds, for s ∈ (0, k∗),

H(s) = ǫ+

∫ s

0

(

D1Φ(q)e
(Φ(q)+ζ1)x

D1(Φ(q)− 1)e(Φ(q)+ζ1)x −D2(ζ1 + 1)

)

dx

−
∫ s

0

D2ζ1e
−(ζ1+Φ(q))x

D1(Φ(q)− 1)−D2(ζ1 + 1)e−(ζ1+Φ(q))x
dx

= ǫ+

∫ s

0

(

Φ(q)eAx

BeAx − CD
− ζ1e

−Ax

C−1B −De−Ax

)

dx

= ǫ+
Φ(q)

AB
log

∣

∣

∣

∣

BeAs − CD

B − CD

∣

∣

∣

∣

− ζ1
AD

log

∣

∣

∣

∣

B − CDe−As

B − CD

∣

∣

∣

∣

,

where A := ζ1 + Φ(q), B := Φ(q) − 1, C := Φ(q)ψ′(Φ(q))
−ζ1ψ′(−ζ1)

and D := ζ1 + 1. An example

for a certain choice of parameters is given in Figure 2.3.
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Fig. 2.3 An illustration of s 7→ gǫ(s) and the corresponding optimal boundary for q = 1.6,
ǫ = 2, σ = 0, µ = 3, a = 3 and ρ = 0.1.

Next, assume σ > 0 and ρ = ∞; that is, X is a linear Brownian motion. In

particular, this includes the Black–Scholes model. Again, as explained in Example 1.3

of [20], the equation ψ(θ) = q reduces to a quadratic equation and ζ1 = δ − γ and

Φ(q) = δ + γ, where

γ := − µ

σ2
and δ :=

1

σ2

√

µ2 + 2qσ2.

Furthermore, (2.34) and (2.35) may be rewritten on x ≥ 0 as

W (q)(x) =
2

σ2δ
eγx sinh(δx) and Z(q)(x) = eγx cosh(δx) − γ

δ
eγx sinh(δx), (2.36)
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and one can compute

k∗ =
1

Φ(q) + ζ1
log
( 1 + ζ−1

1

1− Φ(q)−1

)

. (2.37)

Using elementary algebra in the first and formula 2.447.1 of [16] in the second equality

one obtains, for s ∈ (0, k∗),

H(s) = ǫ+
2q

σ2δ

∫ sδ

0

sinh(x)

(2q/σ2 + γ) cosh(x)− δ sinh(x)
dx

= ǫ+
2q

σ2δ
(

F 2 − δ2
)

(

Fδs − δ log

∣

∣

∣

∣

∣

sinh
(

tanh−1(−δF−1)
)

sinh
(

δs+ tanh−1(−δF−1)
)

∣

∣

∣

∣

∣

)

,

where F := 2q/σ2 + γ. An example for a certain parameter choice is provided in

Figure 2.4.

In the next example we combine the first example with the second one. More

precisely, suppose that σ > and ρ ∈ (0,∞), that is, a linear Brownian motion with

exponential jumps. In this case we are unable to compute k∗ and H explicitly. We

therefore find k∗ numerically and use numerical integration to obtain an approximation

of k∗ and H respectively; see Figure 2.4.
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Fig. 2.4 Left: A visualisation of s 7→ gǫ(s) for when q = 3, ǫ = 2, σ = 1 and µ = 2 (red)
and q = 3, ǫ = 2, σ = 1, µ = 2, a = 3 and ρ = 0.1 (blue). Right: An illustration of the
corresponding optimal stopping boundaries.

2.7.2 Stable jumps

Suppose that X is an α-stable process, α ∈ (1, 2], with Laplace exponent ψ(θ) = θα,

θ ≥ 0. It is known (cf. Example 4.17 of [20] and Subsection 8.3 of [2]) that, for x ≥ 0,

W (q)(x) = xα−1Eα,α(qx
α) and Z(q)(x) = Eα,1(qx

α),
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where Eα,β is the two-parameter Mittag–Leffler function which is defined for α, β > 0

as

Eα,β(x) =

∞
∑

n=0

xn

Γ(αn+ β)
.

Again, using numerical integration and a Matlab function that computes the Mittag–

Leffler function (cf. [35]) one may approximate k∗ and H respectively; see Figure 2.5.

Additionally, we have computed the value function for a choice of parameters (Fig-

ure 2.6).
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Fig. 2.5 Left: A visualisation of s 7→ gǫ(s) when q = 2 and ǫ = 2 and X is either a linear
Brownian motion (blue curve, σ =

√
2, µ = 0) or an α-stable process (red curve, α = 1.6).

If one considers a lower cap ǫ1 and an upper cap ǫ2, then the only thing that changes

for the optimal boundary is that one has to include an additional vertical line at the

value of the lower cap ǫ1. However, introducing a lower cap will make a difference, that

is, the value functions V ∗
ǫ2(x, s) and V

∗
ǫ1,ǫ2(x, s) will be different for (x, s) ∈ C∗

I,ǫ1,ǫ2
; see

Theorems 2.3 and 2.5. Exploiting the fact that H is the inverse of gǫ2 in a similar way

as above, one may also obtain numerical approximations of the value functions V ∗
ǫ2(x, s)

and V ∗
ǫ1,ǫ2(x, s); see Figure 2.6.
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Fig. 2.6 Left: A visualisation of V ∗

ǫ (x, s) when X is α-stable with parameter choice q = 3,
ǫ = 2 and α = 1.6. Right: An illustration of the difference between V ∗

ǫ2
(x, s) (darker surface)

and V ∗

ǫ1,ǫ2
(x, s) (lighter surface) on C∗

I,ǫ1,ǫ2
for the same X and same parameters as on the

left except that ǫ1 = 1.5 and ǫ2 = ǫ. In this case A ≈ 1.63, where A is formally defined in
Subsection 2.4.2.
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2.7.3 Maximum process with lower cap only

Assume the same setting as in the second example above, that is, Xt = σWt+µt, t ≥ 0.

The scale functions and k∗ are given by (2.36) and (2.37) respectively. If we suppose

that there is a lower cap ǫ1 ∈ R and no upper cap (ǫ2 = ∞), then Corollary 2.6 can be

rewritten more explicitly as follows.

Lemma 2.8. The V ∗ and Uǫ1,∞ part of the optimal value function V ∗
ǫ1,∞ are given by

V ∗(x, s) =
1

Φ(q) + ζ1

(

Φ(q)

(

ex

es−k∗

)−ζ1

+ ζ1

(

ex

es−k∗

)Φ(q))

and

Uǫ1,∞(x, s) =

(

ex

eǫ1

)−ζ1[

− eǫ1

β

(
∫ βk∗

β(s−ǫ1)

eu(1+y)

eu − 1
du− ek

∗Φ(q)

)]

+

(

ex

eǫ1

)Φ(q)[eǫ1

β

(
∫ βk∗

β(s−ǫ1)

euy

eu − 1
du− e−k

∗ζ1

)]

.

where β = Φ(q) + ζ1 = 2δ and y = β−1.

The proof of this result is a lengthy computation provided in Subsection 2.8.2.

Finally, if we set ǫ1 = ǫ, µ = r − σ2/2 for some r ≥ 0 and q = λ+ r for some λ > 0 we

recover Theorem 3.1 of [40].

2.8 Appendix

2.8.1 Complementary Results on the Infinitesimal Generator of X

In this section we provide some results concerning the infinitesimal generator of X

when applied to the scale function Z(q).

First assume that X is of unbounded variation, and define an operator (Γ,D(Γ))

as follows. D(Γ) stands for the family of functions f ∈ C2(0,∞) such that the integral

∫

(−∞,0)

(

f(x+ y)− f(x)− yf ′(x)1{y≥−1}

)

Π(dy)

is absolutely convergent for all x > 0. For any f ∈ D(Γ), we define the function

Γf : (0,∞) → R by

Γf(x) = −γf ′(x) + σ2

2
f ′′(x) +

∫

(−∞,0)

(

f(x+ y)− f(x)− yf ′(x)1{y≥−1}

)

Π(dy).

Similarly, if X is of bounded variation, then D(Γ) stands for the family of f ∈ C1(0,∞)
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such that the integral
∫

(−∞,0)

(

f(x+ y)− f(x)
)

Π(dy)

is absolutely convergent for all x > 0, and for f ∈ D(Γ), we define the function

Γf : (0,∞) → R by

Γf(x) = df ′(x) +

∫

(−∞,0)

(

f(x+ y)− f(x)
)

Π(dy).

In the sequel it should always be clear from the context in which of the two cases we

are and therefore there should be no ambiguity when writing D(Γ) and Γ.

Lemma 2.9. We have that Z(q) ∈ D(Γ) and the function x 7→ ΓZ(q)(x) is continuous

on (0,∞).

Proof. We prove the unbounded and bounded variation case separately.

Unbounded variation: To show that Z(q) ∈ D(Γ) it is enough to check that the

integral part of ΓZ(q) is absolutely convergent since Z(q) ∈ C2(0,∞). Fix x > 0 and

write the integral part of ΓZ(q) as

∫

(−∞,−δ)

∣

∣Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)1{y≥−1}

∣

∣Π(dy)

+

∫

(−δ,0)

∣

∣Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)1{y≥−1}

∣

∣Π(dy)

where the value δ = δ(x) ∈ (0, 1) is chosen such that x− δ > 0. For y ∈ (−∞,−δ) the
monotonicity of Z(q) implies

∣

∣Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)1{y≥−1}

∣

∣ ≤ 2Z(q)(x) + Z(q)′(x) (2.38)

and for y ∈ (−δ, 0), using the mean value theorem, we have

|Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)|
= q|y||W (q)(ξ(y))−W (q)(x)| where ξ(y) ∈ (x+ y, x)

= q|y|
∣

∣

∣

∣

∫ x

ξ(y)
W (q)′(z) dz

∣

∣

∣

∣

≤ qy2 sup
z∈[x−δ,x]

W (q)′(z). (2.39)

Using these two estimates and defining C(δ) =
∫

(−δ,0) y
2Π(dy) <∞, we see that

∫

(−∞,0)

∣

∣Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)1{y≥−1}

∣

∣Π(dy)

≤
(

2Z(q)(x) + Z(q)′(x)
)

Π(−∞,−δ) + qC(δ) sup
z∈[x−δ,x]

W (q)′(z) <∞.
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For continuity, let x > 0 and choose δ = δ(x) ∈ (0, 1) such that x− 2δ > 0 as well

as a sequence (xn)n∈N converging to x. Moreover, let n0 ∈ N such that for all n ≥ n0

we have |xn − x| < δ. In particular, it holds that xn − δ > 0 for n ≥ n0 and hence,

using the estimates in (2.38) and (2.39), we have for all n ≥ n0

|Z(q)(xn + y)− Z(q)(xn)− yZ(q)′(xn)1{y≥−1}|
≤ qy2 sup

z∈[xn−δ,xn]
W (q)′(z)1{y≥−δ} +

(

2Z(q)(xn) + Z(q)′(xn)
)

1{y<−δ}

≤ qy2 sup
z∈[x−2δ,x+δ]

W (q)′(z)1{y≥−δ} +
(

2Z(q)(x+ δ) + Z(q)′(x+ δ)
)

1{y<−δ}.

Since the last term is Π-integrable, the continuity assertion follows by dominated con-

vergence and the fact that Z(q) ∈ C2(0,∞).

Bounded variation: To show that Z(q) ∈ D(Γ) it is enough to show that the

integral part of ΓZ(q) is absolutely convergent since Z(q) ∈ C1(0,∞). Using the mono-

tonicity and the definition of Z(q), it is easy to see that for fixed x > 0,

∫

(−∞,0)
|Z(q)(x+ y)− Z(q)(x)|Π(dy)

≤ 2Z(q)(x)Π(−∞,−1) + qW (q)(x)

∫

(−1,0)
|y|Π(dy) <∞.

The continuity assertion follows in a straightforward manner from dominated conver-

gence and the fact that Z(q) ∈ C1(0,∞).

2.8.2 A lengthy computation

Proof of Lemma 2.8. The first part is a short calculation using the definition of γ, δ,

ζ1, Φ(q) and that cosh(z) = ez+e−z

2 and sinh(z) = ez−e−z

2 . As for the second part, recall

that, for (x, s) ∈ C∗
I ∪D∗

I ,

Uǫ1,∞(x, s) = esZ(q)(x− ǫ1) + eǫ1W (q)(x− ǫ1)

∫ k∗

s−ǫ1

et
Z(q)(t)

W (q)(t)
dt.

It is easy to see that

et
Z(q)(t)

W (q)(t)
= et

δσ2

2

(

1

1− e−2δt
+

1

e2δt − 1

)

− et
γσ2

2

which, after a change of variables, gives

∫ k∗

s−ǫ1

et
Z(q)(t)

W (q)(t)
dt =

σ2

4

(
∫ βk∗

β(s−ǫ1)

eu(1+y)

eu − 1
du+

∫ βk∗

β(s−ǫ1)

euy

eu − 1
du

)

+
γσ2

2
(es−ǫ1 − ek

∗

),
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where β = Φ(q) + ζ1 = 2δ and y = β−1. Denote the first integral on the right-hand

side I1 and the second integral I2. After some algebra one obtains

Uǫ1,∞(x, s) =
es

2

(

eΦ(q)(x−ǫ1) + e−ζ1(x−ǫ1)
)

− eǫ1+k
∗

γ

β

(

eΦ(q)(x−ǫ1) − e−ζ(x−ǫ1)
)

−e
ǫ1

2β
e−ζ1(x−ǫ1)I1 +

eǫ1

2β
eΦ(q)(x−ǫ1)I2 (2.40)

+
eǫ1

2β
eΦ(q)(x−ǫ1)I1 −

eǫ1

2β
e−ζ1(x−ǫ1)I2.

Next, note that the last two terms on the right-hand side of (2.40) can be rewritten as

eǫ1

2β

(

eΦ(q)(x−ǫ1) + e−ζ1(x−ǫ1)
)

(I1 − I2)−
eǫ1

2β
e−ζ1(x−ǫ1)I1 +

eǫ1

2β
eΦ(q)(x−ǫ1)I2

=
eǫ1

2

(

eΦ(q)(x−ǫ1) + e−ζ1(x−ǫ1)
)

(ek
∗ − es−ǫ1)− eǫ1

2β
e−ζ1(x−ǫ1)I1 +

eǫ1

2β
eΦ(q)(x−ǫ1)I2

where the equality follows from evaluating I1 − I2. Plugging this into (2.40) and sim-

plifying yields

Uǫ1,∞(x, s) = −e−ζ1(x−ǫ1)eǫ1β−1I1 + eΦ(q)(x−ǫ1)eǫ1β−1I2 + eǫ1+Φ(q)(x−ǫ1)ek
∗

β−1ζ1

+eǫ1−ζ1(x−ǫ1)ek
∗

β−1Φ(q).

Rearranging the terms completes the proof.
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CHAPTER 3

AMERICAN LOOKBACK OPTION

This paper concerns an optimal stopping problem driven by the run-

ning maximum of a spectrally negative Lévy process X. More precisely,

we are interested in capped versions of the American lookback optimal

stopping problem [14, 17, 30], which has its origins in mathematical fi-

nance, and provide semi-explicit solutions in terms of scale functions.

The optimal stopping boundary is characterised by an ordinary first-

order differential equation involving scale functions and, in particular,

changes according to the path variation of X. Furthermore, we will link

these capped problems to Peskir’s maximality principle [31].

3.1 Introduction

Let X = {Xt : t ≥ 0} be a spectrally negative Lévy process defined on a filtered

probability space (Ω,F ,F = {Ft : t ≥ 0},P) satisfying the natural conditions; cf. [7],

Section 1.3, page 39. For x ∈ R, denote by Px the probability measure under which X

starts at x and for simplicity write P0 = P. We associate with X the maximum process

X = {Xt : t ≥ 0} where X t := s ∨ sup0≤u≤tXu for t ≥ 0, x ≤ s. The law under which

(X,X) starts at (x, s) is denoted by Px,s.

We are interested in the following optimal stopping problem:

V ∗
ǫ (x, s) := sup

τ∈M
Ex,s

[

e−qτ (eXτ∧ǫ −K)+
]

, (3.1)

where q ≥ 0,K ≥ 0, ǫ ∈ (log(K),∞], (x, s) ∈ E := {(x1, s1) ∈ R2 |x1 ≤ s1}, and M is

the set of all F-stopping times (not necessarily finite). In particular, on {τ = ∞} we

set e−qτ (eXτ∧ǫ−K)+ := lim supt→∞ e−qt(eXt∧ǫ−K)+. This problem is, at least in the

case ǫ = ∞, classically associated with mathematical finance. It arises in the context

of pricing American lookback options [14, 17, 30] and its solution may be viewed as the
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fair price for such an option. If ǫ ∈ (log(K),∞), an analogous interpretation applies

for an American lookback option whose payoff is moderated by capping it at a certain

level (a fuller description is given in Section 3.2).

When K = 0 and ǫ = ∞, (3.1) is known as the Shepp–Shiryaev optimal stopping

problem which was first studied by Shepp and Shiryaev [38, 39] for the case when X is

a linear Brownian motion and later by Avram, Kyprianou and Pistorius [2] for the case

when X is a spectrally negative Lévy process. If K = 0 and ǫ ∈ R then the problem is

a capped version of the Shepp–Shiryaev optimal stopping problem and was considered

by Ott [29]. Therefore, our main focus in this paper will be the case K > 0 which we

henceforth assume.

Our objective is to solve (3.1) for ǫ = (log(K),∞) by a “guess and verify” technique

and to use this to obtain the solution to (3.1) when ǫ = ∞ via a limiting procedure.

Our work extends and complements results by Conze and Viswanathan [11], Guo and

Shepp [17], Pedersen [30] and Gapeev [14] all of which solve (3.1) for ǫ = ∞ and X a

linear Brownian motion or a jump-diffusion.

As we shall see, the general theory of optimal stopping [33, 42] and the principle

of smooth or continuous fit [1, 28, 32, 33] (and the results in [14, 17, 29, 30]) strongly

suggest that under some assumptions on q and ψ(1), where ψ is the Laplace exponent

of X, the optimal strategy for (3.1) is of the form

τ∗ǫ = inf{t ≥ 0 : Xt −Xt ≥ gǫ(X t) and X t > log(K)} (3.2)

for some strictly positive solution gǫ of the differential equation

g′ǫ(s) = 1− esZ(q)(gǫ(s))

(es −K)qW (q)(gǫ(s))
on (log(K), ǫ), (3.3)

where W (q) and Z(q) are the so-called q-scale functions associated with X; see Sec-

tion 3.3. In particular, we will find that the optimal stopping boundary s 7→ s− gǫ(s)

changes shape according to the path variation of X. This has already been observed

in [29] in the case of the capped version of the Shepp–Shiryaev optimal stopping prob-

lem. It will also turn out that our solutions exhibit a pattern suggested by Peskir’s

maximality principle [31]. In fact, we will be able to give a reformulation of our main

results in terms of Peskir’s maximality principle.

We conclude this section with an overview of the paper. In Section 3.2 we give

an application of our results in the context or pricing capped American lookback op-

tions. Section 3.3 is an auxiliary section introducing some necessary notation, followed

by Section 3.4 which gives an overview of the different parameter regimes considered.

Sections 3.5 and 3.7 deal with the “guess” part of our “guess and verify” technique and

our main results, which correspond to the “verify” part, are presented in Section 3.6.
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The proofs of our main results can then be found in Section 3.9. Finally, Section 3.8

provides an explicit example where X is a linear Brownian motion.

3.2 Application to pricing capped American lookback op-

tions

The aim of this section is to give some motivation for studying (3.1).

Consider a financial market consisting of a riskless bond and a risky asset. The

value of the bond B = {Bt : t ≥ 0} evolves deterministically such that

Bt = B0e
rt, B0 > 0, r ≥ 0, t ≥ 0. (3.4)

The price of the risky asset is modelled as the exponential spectrally negative Lévy

process

St = S0e
Xt , S0 > 0, t ≥ 0. (3.5)

In order to guarantee that our model is free of arbitrage we will assume that ψ(1) = r.

If Xt = µt+ σWt, where W = {Wt : t ≥ 0} is a standard Brownian motion, we get the

standard Black–Scholes model for the price of the asset. Extensive empirical research

has shown that this (Gaussian) model is not capable of capturing certain features (such

as skewness and heavy tails) which are commonly encountered in financial data, for

example, returns on stocks. To accommodate for these problems, an idea, going back

to [27], is to replace the Brownian motion as the model for the log-price by a general

Lévy process X; cf. [9]. Here we will restrict ourselves to the model where X is given by

a spectrally negative Lévy process. This restriction is mainly motivated by analytical

tractability. It is worth mentioning, however, that Carr and Wu [8] as well as Madan

and Schoutens [25] have offered empirical evidence to support the case of a model in

which the risky asset is driven by a spectrally negative Lévy process for appropriate

market scenarios.

A capped American lookback option is an option which gives the holder the right

to exercise at any stopping time τ yielding payouts

Lτ := e−ατ
[(

M0 ∨ sup
0≤u≤τ

Su ∧ C
)

−K

]+

, C > M0 ≥ S0, α ≥ 0.

The constant M0 can be viewed as representing the “starting” maximum of the stock

price (say, over some previous period (−t0, 0]). The constant C can be interpreted as

cap and moderates the payoff of the option. The value C = ∞ is also allowed and cor-

responds to no moderation at all. In this case we just get a normal American lookback

option. Finally, when C = ∞ it is necessary to choose α strictly positive to guarantee

that it is optimal to stop in finite time and that the value is finite; cf. Section 3.6.
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Standard theory of pricing American-type options [41] directs one to solving the

optimal stopping problem

Vr(M0, S0, C) := B0 sup
τ

E
[

B−1
τ Lτ ] (3.6)

where the supremum is taken over all F-stopping times. In other words, we want to

find a stopping time which optimises the expected discounted claim. The right-hand

side of (3.6) may be rewritten as

sup
τ

Ex,s
[

e−qτ (eXτ∧ǫ −K)+],

where q = r + α, x = log(S0), s = log(M0) and ǫ = log(C). Hence, we recognise (3.1)

which is the problem of interest in this article.

3.3 Preliminaries

It is well known that a spectrally negative Lévy process X is characterised by its Lévy

triplet (γ, σ,Π), where σ ≥ 0, γ ∈ R and Π is a measure on (−∞, 0) satisfying the

condition
∫

(−∞,0)(1 ∧ x2)Π(dx) < ∞. By the Lévy–Itô decomposition, the latter may

be represented in the form

Xt = σBt − γt+X
(1)
t +X

(2)
t , (3.7)

where {Bt : t ≥ 0} is a standard Brownian motion, {X(1)
t : t ≥ 0} is a compound Poisson

process with discontinuities of magnitude bigger than or equal to one and {X(2)
t : t ≥ 0}

is a square integrable martingale with discontinuities of magnitude strictly smaller than

one and the three processes are mutually independent. In particular, if X is of bounded

variation, the decomposition reduces to

Xt = dt− ηt (3.8)

where d > 0, and {ηt : t ≥ 0} is a driftless subordinator. Further let

ψ(θ) := E
[

eθX1
]

, θ ≥ 0,

be the Laplace exponent of X which is known to take the form

ψ(θ) = −γθ + 1

2
σ2θ2 +

∫

(−∞,0)

(

eθx − 1− θx1{x>−1}

)

Π(dx).

Moreover, ψ is strictly convex and infinitely differentiable and its derivative at zero

characterises the asymptotic behaviour of X. Specifically, X drifts to ±∞ or oscillates
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according to whether ±ψ′(0+) > 0 or, respectively, ψ′(0+) = 0. The right-inverse of ψ

is defined by

Φ(q) := sup{λ ≥ 0 : ψ(λ) = q}

for q ≥ 0.

For any spectrally negative Lévy process having X0 = 0 we introduce the family of

martingales

exp(cXt − ψ(c)t), (3.9)

defined for any c ∈ R for which ψ(c) = logE[exp(cX1)] < ∞, and further the corre-

sponding family of measures {Pc} with Radon–Nikodym derivatives

dPc

dP

∣

∣

∣

∣

Ft

= exp(cXt − ψ(c)t). (3.10)

For all such c the measure Pcx will denote the translation of Pc under which X0 = x. In

particular, under Pcx the process X is still a spectrally negative Lévy process; cf. The-

orem 3.9 in [21].

A special family of functions associated with spectrally negative Lévy processes is

that of scale functions (cf. [21]) which are defined as follows. For q ≥ 0, the q-scale

function W (q) : R −→ [0,∞) is the unique function whose restriction to (0,∞) is

continuous and has Laplace transform

∫ ∞

0
e−θxW (q)(x) dx =

1

ψ(θ)− q
, θ > Φ(q),

and is defined to be identically zero for x ≤ 0. Equally important is the scale function

Z(q) : R −→ [1,∞) defined by

Z(q)(x) = 1 + q

∫ x

0
W (q)(z) dz.

The passage times of X below and above k ∈ R are denoted by

τ−k = inf{t > 0 : Xt ≤ k} and τ+k = inf{t > 0 : Xt ≥ k}.

We will make use of the following two identities; cf. [2]. For q ≥ 0 and x ∈ (a, b) it

holds that

Ex
[

e−qτ
+
b I{τ+

b
<τ−a }

]

=
W (q)(x− a)

W (q)(b− a)
, (3.11)

Ex
[

e−qτ
−

a I{τ+b >τ
−

a }

]

= Z(q)(x− a)−W (q)(x− a)
Z(q)(b− a)

W (q)(b− a)
. (3.12)

For each c ≥ 0 we denote byW
(q)
c the q-scale function with respect to the measure Pc. A
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useful formula (cf. Lemma 8.4 of [21]) linking scale functions under different measures

is given by

W (q)(x) = eΦ(q)xWΦ(q)(x) (3.13)

for q ≥ 0 and x ≥ 0.

We conclude this section by stating some known regularity properties of scale func-

tions; cf. [20].

Smoothness: For all q ≥ 0,

W (q)|(0,∞) ∈



















C1(0,∞), if X is of bounded variation and Π has no atoms,

C1(0,∞), if X is of unbounded variation and σ = 0,

C2(0,∞), σ > 0.

Continuity at the origin: For all q ≥ 0,

W (q)(0+) =







d−1, if X is of bounded variation,

0, if X is of unbounded variation.
(3.14)

Right-derivative at the origin: For all q ≥ 0,

W
(q)′
+ (0+) =







q+Π(−∞,0)
d2

, if σ = 0 and Π(−∞, 0) <∞,

2
σ2
, if σ > 0 or Π(−∞, 0) = ∞,

(3.15)

where we understand the second case to be +∞ when σ = 0.

For technical reasons, we require for the rest of the paper that W (q) is in C1(0,∞)

[and hence Z(q) ∈ C2(0,∞)]. This is ensured by henceforth assuming that Π is atomless

whenever X is of bounded variation.

3.4 The different parameter regimes

Our analysis distinguishes between the following parameter regimes.

Main cases:

• q > 0 and ǫ ∈ (log(K),∞);

• q > 0 ∨ ψ(1) and ǫ = ∞.

Special cases:

• q = 0 and ǫ ∈ (log(K),∞);

• q = 0 and ǫ = ∞;
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• 0 < q ≤ ψ(1) and ǫ = ∞.

3.5 Candidate solution for the main cases

The aim of this section is to derive a candidate solution to (3.1) for the main cases via

the principle of smooth or continuous fit [1, 28, 32, 33].

We begin by heuristically motivating a class of stopping times in which we will look

for the optimal stopping time under the assumption that q > 0 and ǫ ∈ (log(K),∞).

Because e−qt(eXt∧ǫ −K)+ = 0 as long as (X,X) is in the set

C∗
II := {(x, s) ∈ E : s ≤ log(K)},

it is intuitively clear that it is never optimal to stop the process (X,X) in C∗
II . More-

over, as the process (X,X) can only move upwards by climbing up the diagonal in

the (x, s)-plane (Figure 3.1), it can only leave C∗
II through the point (log(K), log(K)).

Therefore, one should not exercise until the process (X,X) has hit (log(K), log(K)).

It is possible that this never happens as X might escape to −∞ before reaching level

log(K). On the other hand, if the process (X,X) is in {(x, s) ∈ E : s ≥ ǫ}, it should

sǫ0

log(K)

gǫ(s)

x

s

ǫ

C∗

II

log(K)

Fig. 3.1 An illustration of a possible function gǫ and the corresponding stopping boundary
s 7→ s− gǫ(s). The vertical and horizontal lines are meant to schematically indicate the trace of
an excursion of X away from the running maximum. The candidate optimal strategy τgǫ then
consists of continuing if the height of the excursion away from the running maximum s does
not exceed gǫ(s); otherwise we stop.

be stopped immediately due to the discounting as the spatial part of the payout is

deterministic and fixed at eǫ − K in value. The remaining case is when (X,X) is in

{(x, s) ∈ E : log(K) < s < ǫ} in which case we can argue in the same way as described

in [31], Section 3, page 6: The dynamics of the process (X,X) are such that X remains

constant at times when X is undertaking an excursion below X . During such periods

the discounting in the payoff is detrimental. One should therefore not allow X to drop

too far below X in value as otherwise the time it will take X to recover to the value

of its previous maximum will prove to be costly in terms of the gain on account of

exponential discounting. More specifically, given a current value s, s ∈ (log(K), ǫ), of

48



Chapter 3. American Lookback Option

X, there should be a point gǫ(s) > 0 such that if the process X reaches or jumps below

the value s − gǫ(s) we should stop instantly; see Figure 3.1. In more mathematical

terms, we expect an optimal stopping time of the form

τgǫ := inf{t ≥ 0 : Xt −Xt ≥ gǫ(X t) and Xt > log(K)} (3.16)

for some function gǫ : (log(K), ǫ) → (0,∞) such that lims↑ǫ gǫ(s) = 0 and gǫ(s) = 0 for

s > ǫ. This is illustrated in Figure 3.1. For (x, s) ∈ E, we define the value function

associated with τgǫ by

Vgǫ(x, s) := Ex,s
[

e−qτgǫ (eXτgǫ
∧ǫ −K)+

]

. (3.17)

Now suppose for the moment that we have chosen a function gǫ. The strong Markov

property and Theorem 3.12 of [21] then imply that, for (x, s) ∈ C∗
II ,

Vgǫ(x, s) = e−Φ(q)(log(K)−x)Elog(K),log(K)

[

e−qτgǫ (eXτgǫ
∧ǫ −K)

]

= e−Φ(q)(log(K)−x) lim
s↓log(K)

Vgǫ(s, s).

This means that Vgǫ is determined on C∗
II as soon as Vgǫ is known on

E1 := {(x, s) ∈ E : s > log(K)}.

This leaves us with two key questions:

• How should one choose gǫ?

• Given gǫ, what does Vgǫ(x, s) look like for (x, s) ∈ E1?

These questions can be answered heuristically in the spirit of the method applied in

Section 3 of [31], but adapted to the case whenX is a spectrally negative Lévy processes

(rather than a diffusion). More precisely, as we shall see in more detail in Section 3.7,

the general theory of optimal stopping [33, 42] together with the principle of smooth

or continuous fit [1, 28, 32, 33] suggest that gǫ should be a solution to the ordinary

differential equation

g′ǫ(s) = 1− esZ(q)(gǫ(s))

(es −K)qW (q)(gǫ(s))
on (log(K), ǫ), (3.18)

and that

Vgǫ(x, s) = (es∧ǫ −K)Z(q)(x− s+ gǫ(s)), (x, s) ∈ E1.

Note that there might be many solutions to (3.18) without an initial/boundary condi-

tion. However, we are specifically looking for the solution satisfying lims↑ǫ gǫ(s) = 0.

Summing up, we have suggested/found a candidate stopping time τgǫ and candidate
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value function Vgǫ .

As for the case q > 0 ∨ ψ(1) and ǫ = ∞, one might let ǫ tend to infinity which

informally yields a candidate stopping time of the form (3.16) with gǫ replaced with g∞,

where g∞ should satisfy (3.18), but on (log(K),∞) instead of (log(K), ǫ). The corre-

sponding value function Vg∞ is then expected to be of the form

Vg∞(x, s) = (es −K)Z(q)(x− s+ g∞(s)), (x, s) ∈ E1.

If we are to identify g∞ as a solution to (3.18), we need an initial/boundary condition

which in this case can be found as follows. For s≫ K the payoff in (3.1) resembles the

payoff of the Shepp–Shiryaev optimal stopping problem [2, 21, 29, 38] and hence we

expect s 7→ s − g∞(s) to look similar to the optimal boundary of the Shepp–Shiryaev

optimal stopping problem for s ≫ K. Therefore, we expect that lims↑∞ g∞(s) = k∗,

where k∗ > 0 is the unique root of the equation Z(q)(s)− qW (q)(s) = 0; cf. [2, 29].

These heuristic arguments are made rigorous in the next section.

3.6 Main results

3.6.1 The different solutions of the ODE

In this subsection we investigate, for q > 0, the solutions of the ordinary differential

equation

g′(s) = 1− esZ(q)(g(s))

(es −K)qW (q)(g(s))
(3.19)

whose graph lies in

U := {(s,H) ∈ R2 : s > log(K),H > 0}.

As already hinted in the previous section, these solutions will play an important role.

But before we analyse (3.19), recall that the requirement W (q)(0+) < q−1 is the same

as asking that either X is of unbounded variation or X is of bounded variation with

d > q. Similarly, the condition W (q)(0+) ≥ q−1 means that X is of bounded variation

with 0 < d ≤ q. Also note that W (q)(0+) ≥ q−1 implies q ≥ d > ψ(1).

The existence of solutions to (3.19) and their behaviour under the different para-

meter regimes is summarised in the next result.

Lemma 3.1. Assume that q > 0. For ǫ ∈ (log(K),∞), we have the following.

(a) If q > ψ(1) and W (q)(0+) < q−1, then there exists a unique solution

gǫ : (log(K), ǫ) → (0,∞) to (3.19) such that lims↑ǫ gǫ(s) = 0.

(b) If W (q)(0+) ≥ q−1 [and hence q > ψ(1)], then there exists a unique solution
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gǫ : (log(K), ǫ ∧ β) → (0,∞) to (3.19) such that lims↑ǫ∧β gǫ(s) = 0. Here, the

constant β is given by β := log
(

K(1− d/q)−1
)

∈ (0,∞].

(c) If q ≤ ψ(1), then there exists a unique solution gǫ : (log(K), ǫ) → (0,∞) to (3.19)

such that lims↑ǫ gǫ(s) = 0.

For ǫ = ∞, we have in particular:

(d) If q > ψ(1) and W (q)(0+) < q−1, then there exists a unique solution

g∞ : (log(K),∞) → (0,∞) to (3.19) such that lims↑∞ g∞(s) = k∗, where the

constant k∗ ∈ (0,∞) is the unique root of Z(q)(s)− qW (q)(s) = 0.

(e) If W (q)(0+) ≥ q−1 [and hence q > ψ(1)], then there exists a unique solution

g∞ : (log(K), β) → (0,∞) to (3.19) such that lims↑β g∞(s) = 0. The constant β

is as in (b).

Moreover, all the solutions mentioned in (a)–(e) tend to +∞ as s ↓ log(K). Also

note that if β ≤ ǫ then the solutions in (b) and (e) coincide. Finally, the qualitative

behaviour of the solutions of (3.19) is displayed in Figures 3.2–3.4.

We will henceforth use the following convention: If a solution to (3.19) is not defined

for all s ∈ (log(K),∞), we extend it to (log(K),∞) by setting it equal to zero wherever

it is not defined (typically s ≥ ǫ).

sǫ
0

log(K)

k∗

gǫ(s)

g∞(s)

Fig. 3.2 A schematic illustration of the solutions of (3.19) when q > ψ(1) and W (q)(0+) = 0.
If q > ψ(1) and W (q)(0+) ∈ (0, q−1), then the solutions look the same except that they hit zero
with finite gradient (since W (q)(0+) > 0).

3.6.2 Verification of the case q > 0 and ǫ ∈ (log(K),∞)

We are now in a position to state our first main result.

Theorem 3.2. Suppose that q > 0 and ǫ ∈ (log(K),∞). Then the solution to (3.1) is

given by

V ∗
ǫ (x, s) =







(es∧ǫ −K)Z(q)(x− s+ gǫ(s)), (x, s) ∈ E1,

e−Φ(q)(log(K)−x)Aǫ, (x, s) ∈ C∗
II ,

(3.20)
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sǫ
0

log(K)
β

gǫ(s)

g∞(s)

Fig. 3.3 A schematic illustration of the solutions of (3.19) when W (q)(0+) ≥ q−1 and ǫ < β.

sǫ
0

log(K)

gǫ(s)

Fig. 3.4 A schematic illustration of the solutions of (3.19) when q ≤ ψ(1) and W (q)(0+) = 0.
If q ≤ ψ(1) and W (q)(0+) ∈ (0, q−1), then the solutions look the same except that they hit zero
with finite gradient (since W (q)(0+) > 0).

with value Aǫ ∈ (0,∞) given by

Aǫ := Elog(K),log(K)

[

e−qτ
∗

ǫ (eXτ∗ǫ
∧ǫ −K)

]

= lim
s↓log(K)

(es −K)Z(q)(gǫ(s)),

and optimal stopping time

τ∗ǫ = inf{t ≥ 0 : X t −Xt ≥ gǫ(X t) and Xt > log(K)}, (3.21)

where gǫ is given in Lemma 3.1. Moreover,

Px,s[τ
∗
ǫ <∞] =







1, if ψ′(0+) ≥ 0,

e−Φ(q)(log(K)−x), if ψ′(0+) < 0.

Remark 3.3. With the help of excursion theory, it is possible to obtain an alternative

representation for V ∗
ǫ (s, s) for log(K) ≤ s < ǫ∧β; see Subsection 3.10.2 for the relevant

computations. Specifically, under the same assumptions as in Theorem 3.2, we have

V ∗
ǫ (s, s) =

∫ ǫ∧β

s
(et −K)f̂(gǫ(t)) exp

(

−
∫ t

s

W (q)′(gǫ(u))

W (q)(gǫ(u))
du

)

dt (3.22)
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+(eǫ∧β −K) exp

(

−
∫ ǫ∧β

s

W (q)′(gǫ(u))

W (q)(gǫ(u))
du

)

where f̂(u) = Z(q)(u)W (q)′(u)

W (q)(u)
− qW (q)(u) and we set β = ∞ unless W (q)(0+) ≥ q−1, in

which case we take β = log
(

K(1 − d/q)−1
)

as before. In particular, we can identify

the value Aǫ as the above expression, setting s = log(K).

Remark 3.4. Assume that (x, s) ∈ E such that log(K) < s < ǫ ∧ β and set β = ∞
unless W (q)(0+) ≥ q−1. The excursion theoretic calculation that led to (3.22) contains

an additional result, namely that Px,s[τ
∗
ǫ = τ+ǫ∧β] ∈ (0, 1). To see this, note that it

follows from the computation in Subsection 3.10.2 that

Ex,s[e
−qτ∗ǫ 1{τ∗ǫ =τ

+
ǫ∧β}

] = exp

(

−
∫ ǫ∧β

s

W (q)′(gǫ(u))

W (q)(gǫ(u))
du

)

.

Hence, the claim follows provided the integral on the right-hand side is strictly positive

and finite. Indeed, changing variables according to v = gǫ(u) and using the explicit

form of g′ǫ gives
∫ ǫ∧β

s

W (q)′(gǫ(u))

W (q)(gǫ(u))
du =

∫ gǫ(s)

0

W (q)′(v)

y(v)
dv,

where y(v) := eg
−1
ǫ (v)

q(eg
−1
ǫ (v)−K)

Z(q)(v) −W (q)(v) and g−1
ǫ is the inverse of gǫ. Using (3.14)

one may then deduce that y(v) is bounded on (0, gǫ(s)] by a constant, say C > 0, and

that

∫ gǫ(s)

0

W (q)′(v)

y(v)
dv ≤ C−1

∫ gǫ(s)

0
W (q)′(v) dv = C−1(W (q)(gǫ(s))−W (q)(0)).

This proves the claim. A similar phenomenon in a different context has been observed

in [22].

Let us now discuss some consequences of Theorem 3.2. Firstly, it shows that if

ψ′(0+) ≥ 0 the stopping problem has an optimal solution in the smaller class of [0,∞)-

valued F-stopping times. On the other hand, if there is a possibility that the process

X drifts to −∞ before reaching log(K), which occurs exactly when ψ′(0+) < 0, then

the probability that τ∗ǫ is infinite is strictly positive and τ∗ǫ is only optimal in the class

of [0,∞]-valued F-stopping times.

Secondly, when W (q)(0+) ≥ q−1 or, equivalently, X is of bounded variation with

q ≥ d, the result shows that gǫ(s) hits the origin at ǫ∧β, where β = log
(

K(1−d/q)−1
)

;

see Figure 3.5. Intuitively speaking, if β < ǫ, the discounting is so strong that it is best

to stop even before reaching level ǫ. On the other hand, if β ≥ ǫ, it would be better to

wait longer, but as there is a cap we are forced to stop as soon as we have reached it.

As already observed in [29], it is also the case in our setting that, ifW (q)(0+) < q−1,

the slope of gǫ at ǫ [and hence the shape of the optimal boundary s 7→ s−gǫ(s)] changes
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according to the path variation of X. Specifically, it holds that

lim
s↑ǫ

g′ǫ(s) =







−∞, if X is of unbounded variation,

1− eǫd
(eǫ−K)q , if X is of bounded variation.

Next, introduce the sets

C∗
I = C∗

I,ǫ := {(x, s) ∈ E : s > log(K), x > s− gǫ(s)}, (3.23)

D∗ = D∗
ǫ := {(x, s) ∈ E : s > log(K), x ≤ s− gǫ(s)}.

Two examples of gǫ and the corresponding continuation region C∗
I ∪C∗

II and stopping

region D∗ are pictorially displayed in Figure 3.5.

sǫ

V ∗
ǫ

0

log(K)

k∗

gǫ(s)

sǫ
0

log(K)
β

gǫ(s)

x

s

ǫ

D∗

C∗

I

C∗

II

log(K)

x

s

ǫ

D∗

C∗

I

C∗

II

log(K)

β

Fig. 3.5 For the two pictures on the left-hand side it is assumed that q > 0 and W (q)(0+) = 0,
whereas on the right-hand side it is assumed that q > 0, W (q)(0+) ≥ q−1 and ǫ < β.

3.6.3 Verification of the case q > 0 ∨ ψ(1) and ǫ = ∞

The analogous result to Theorem 3.2 reads as follows.

Theorem 3.5. Suppose that q > 0 ∨ ψ(1) and ǫ = ∞. Then the solution to (3.1) is

given by

V ∗
∞(x, s) =







(es −K)Z(q)(x− s+ g∞(s)), (x, s) ∈ E1,

e−Φ(q)(log(K)−x)A∞, (x, s) ∈ C∗
II ,

(3.24)
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with value A∞ ∈ (0,∞) given by

A∞ := Elog(K),log(K)

[

e−qτ
∗

∞(eXτ∗∞ −K)
]

= lim
s↓log(K)

(es −K)Z(q)(g∞(s)),

and optimal stopping time

τ∗∞ = inf{t ≥ 0 : Xt −Xt ≥ g∞(X t) and X t > log(K)}, (3.25)

where g∞ is given in Lemma 3.1. Moreover,

Px,s[τ
∗
∞ <∞] =







1, if ψ′(0+) ≥ 0,

e−Φ(q)(log(K)−x), if ψ′(0+) < 0.

Remark 3.6. As in Remark 3.3, V ∗
∞(s, s) can be identified as the integral in (3.22)

with ǫ = ∞ for log(K) ≤ s < β in the case W (q)(0+) ≥ q−1. Otherwise it is identified

as

V ∗
∞(s, s) =

∫ ∞

s
(et −K)f̂(g∞(t)) exp

(

−
∫ t

s

W (q)′(g∞(u))

W (q)(g∞(u))
du

)

dt,

where f̂(u) = Z(q)(u)W (q)′(u)

W (q)(u)
− qW (q)(u) as before; see again the computations in Sub-

section 3.10.2. In particular, one obtains an alternative expression for A∞.

Similarly to Theorem 3.2 one sees again that if ψ′(0+) ≥ 0 there is an optimal

stopping time in the class of all [0,∞)-valued F-stopping times. Furthermore, let

C∗
I = C∗

I,∞ and D∗ = D∗
∞ denote the same sets as in (3.23), but with g∞ instead of gǫ.

The (qualitative) behaviour of g∞ and the resulting shape of the continuation region

C∗
I ∪ C∗

II and stopping region D∗ are illustrated in Figure 3.6.

3.6.4 The special cases

In this subsection we deal with the cases that have not been considered yet, that is,

the special cases; see Section 3.4.

Lemma 3.7. Suppose that q = 0 and ǫ ∈ (log(K),∞).

(a) When ψ′(0+) < 0 and Φ(0) 6= 1, then the solution to (3.1) is given by

V ∗
ǫ (x, s) =



















eǫ −K, s ≥ ǫ,

es −K + exΦ(0)

Φ(0)−1

(

es(1−Φ(0)) − eǫ(1−Φ(0))
)

, log(K) ≤ s < ǫ,

e−Φ(0)(log(K)−x)Aǫ, s < log(K),

where Aǫ :=
KΦ(0)(K1−Φ(0)−eǫ(1−Φ(0)))

Φ(0)−1 , and τ∗ǫ = τ+ǫ . If Φ(0) = 1, then the middle

term on the right-hand side in the expression for V ∗
ǫ (x, s) has to be replaced by
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s
0

log(K)

k∗

g∞(s)

s
0

log(K)
β

g∞(s)

x

s

D∗

C∗

I

C∗

II

k∗

log(K)

x

s

D∗

C∗

I

C∗

II

log(K)

β

Fig. 3.6 For the two pictures on the left it is assumed that q > 0 ∨ ψ(1) and W (q)(0+) < q−1,
whereas on the right it is assumed that q > 0 ∨ ψ(1) and W (q)(0+) ≥ q−1.

es −K + ex(ǫ− s) and Aǫ by K(ǫ− log(K)).

(b) When ψ′(0+) ≥ 0, then solution to (3.1) is given by V ∗
ǫ ≡ eǫ −K and τ∗ǫ = τ+ǫ .

Note that although the optimal stopping time is the same in both parts of Lemma 3.7,

in (a) it attains the value infinity with positive probability, whereas in (b) this happens

with probability zero. Hence, in (b) there is actually an optimal stopping time in the

class of [0,∞)-valued F-stopping times.

Lemma 3.8. Suppose that ǫ = ∞.

(a) Assume that q = 0. If ψ′(0+) < 0 and Φ(0) > 1, we have

V ∗
∞(x, s) =







es −K + exΦ(0)+s(1−Φ(0))

Φ(0)−1 , s ≥ log(K),

e−Φ(0)(log(K)−x) K
Φ(0)−1 , s < log(K),

(3.26)

and the optimal stopping time is given by τ∗∞ = ∞. On the other hand, if either

ψ′(0+) < 0 and Φ(0) ≤ 1 or ψ′(0+) ≥ 0, then V ∗
∞(x, s) ≡ ∞ and τ∗∞ = ∞.

(b) When 0 < q ≤ ψ(1), we have V ∗
∞(x, s) ≡ ∞.

The second part in the Lemma 3.8 is intuitively clear. If 0 < q ≤ ψ(1), then the

average upwards motion of X (and hence X) is stronger than the discounting. On the

other hand, ψ′(0+) < 0 means that X will drift to −∞ and thus X will eventually
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attain its maximum (in the pathwise sense). Of course, we do not know when this

happens, but since there is no discounting we do not mind waiting forever. The other

cases in Lemma 3.8 have a similar interpretation.

3.6.5 The maximality principle

The maximality principle was understood as a powerful tool to solve a class of stopping

problems for the maximum process associated with a one-dimensional time-homoge-

neous diffusion [31]. Although we work with a different class of processes, our main

results [Lemma 3.1, Theorem 3.2, Theorem 3.5 and Lemma 3.8(b)] can be reformulated

through the maximality principle.

Lemma 3.9. Suppose that q > 0 and ǫ ∈ (log(K),∞). Define the set

S :=
{

g|(log(K),ǫ)

∣

∣ g is a solution to (3.19) defined at least on (log(K), ǫ)
}

.

Let g∗ǫ be the minimal solution in S. Then the solution to (3.1) is given by (3.20)

and (3.21) with gǫ replaced by g∗ǫ .

In the case that there is a cap, it cannot happen that the value function becomes

infinite. This changes when there is no cap.

Lemma 3.10. Let q > 0 and ǫ = ∞.

1. Let g∗∞ denote the minimal solution to (3.19) which does not hit zero (whenever

such a solution exists). Then the solution to (3.1) is given by (3.24) and (3.25)

with g∞ replaced by g∗∞.

2. If every solution to (3.19) hits zero, then the value function in (3.1) is given by

V ∗
∞(x, s) ≡ ∞.

Remark 3.11.

1. We select the minimal solution rather than the maximal one as in [31], since our

functions gǫ(s) are the analogue of s− gǫ(s) in [31].

2. The “right” boundary conditions which were used to select gǫ and g∞ from the

class of solutions of (3.19) (see Section 3.5) are not used in the formulation of

Lemmas 3.9 and 3.10. In fact, by choosing the minimal solution, it follows as a

consequence that g∗ǫ and g∗∞ have exactly the “right” boundary conditions. Put

differently, the “minimality principle” is a means of selecting the “good” solution

from the class of all solutions of (3.19). This is a reformulation of [31] in our

specific setting.

3. A similar observation is contained in [10], but in a slightly different setting.
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4. If ǫ = ∞, the solutions to (3.19) that hit zero correspond to the so-called “bad-

good” solutions in [31]; “bad” since they do not give the optimal boundary,

“good” as they can be used to approximate the optimal boundary.

3.7 Guess via principle of smooth or continuous fit

Our proofs are essentially based on a “guess and verify” technique. Here we provide the

missing details from Section 3.5 on how to “guess” a candidate solution. The following

presentation is an adaptation of the argument of Section 3 of [31] to our setting.

Assume that q > 0 and ǫ ∈ (log(K), ǫ). Let gǫ : (log(K), ǫ) → (0,∞) be contin-

uously differentiable and define the stopping time τgǫ as in (3.16) and let Vgǫ be as

in (3.17). For simplicity assume from now on that X is of unbounded variation (if

X is of bounded variation a similar argument based on the principle of continuous fit

applies, see [1, 32, 33]). From the general theory of optimal stopping, [33, 42], we would

expect that Vgǫ satisfies for (x, s) ∈ E such that log(K) < s < ǫ the system

ΓVgǫ(x, s) = qVgǫ(x, s) for s− gǫ(s) < x < s with s fixed,

∂Vgǫ
∂s (x, s)

∣

∣

x=s−
= 0 (normal reflection), (3.27)

Vgǫ(x, s)|x=(s−gǫ(s))+ = es −K (instantaneous stopping),

where Γ is the infinitesimal generator of the processX under P. For functions h ∈ C∞
0 (R)

and z ∈ R, it is given by

Γh(z) = −γh′(z) + σ2

2
h′′(z) (3.28)

+

∫

(−∞,0)

(

h(z + y)− h(z)− yh′(z)1{y≥−1}

)

Π(dy).

Here C∞
0 (R) denotes the class of infinitely differentiable functions h on R such that h

and its derivatives vanish at infinity. In addition, the principle of smooth fit (cf. [28, 33])

suggests that the system above should be complemented by

∂Vgǫ
∂x

(x, s)
∣

∣

x=(s−gǫ(s))+
= 0 (smooth fit). (3.29)

Note that the smooth fit condition is not necessarily part of the general theory, it is

imposed since by the “rule of thumb” outlined in Section 7 in [1] one suspects it should

hold in this setting because of path regularity. This belief will be vindicated when we

show that system (3.27) and (3.29) leads to the desired solution. Applying the strong

Markov property at τ+s and using (3.11) and (3.12) shows that

Vgǫ(x, s) = (es −K)

(

Z(q)(x− s+ gǫ(s))−W (q)(x− s+ gǫ(s))
Z(q)(gǫ(s))

W (q)(gǫ(s))

)
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+
W (q)(x− s+ gǫ(s))

W (q)(gǫ(s))
Vgǫ(s, s).

Furthermore, the smooth fit condition (3.29) implies

0 = lim
x↓s−gǫ(s)

∂Vgǫ
∂x

(x, s)

= lim
x↓s−gǫ(s)

W (q)′(x− s+ gǫ(s))

W (q)(gǫ(s))

(

Vgǫ(s, s)− (es −K)Z(q)(gǫ(s))
)

.

By (3.15) the first factor tends to a strictly positive value or infinity which shows that

Vgǫ(s, s) = (es − K)Z(q)(gǫ(s)). This would mean that for all (x, s) ∈ E such that

log(K) < s < ǫ we have

Vgǫ(x, s) = (es −K)Z(q)(x− s+ gǫ(s)). (3.30)

Finally, using the normal reflection condition shows that our candidate function gǫ

should satisfy the first-order differential equation

g′ǫ(s) = 1− esZ(q)(gǫ(s))

(es −K)qW (q)(gǫ(s))
on (log(K), ǫ). (3.31)

3.8 Example

Suppose that Xt = (µ − 1
2σ

2)t + σWt, t ≥ 0, where µ ∈ R, σ > 0 and Wt, t ≥ 0, is a

standard Brownian motion. It is well known that in this case the scale functions are

given by

W (q)(x) =
2

σ2δ
eγx sinh(δx) and Z(q)(x) = eγx cosh(δx) − γ

δ
eγx sinh(δx),

on x ≥ 0, where δ(q) = δ =
√

( µ
σ2

− 1
2 )

2 + 2q
σ2

and γ = 1
2 − µ

σ2
. Additionally,

let γ1 := γ − δ and γ2 := γ + δ = Φ(q) both of which are the roots of the quadratic

equation σ2

2 θ
2 + (µ − σ2

2 )θ − q = 0 and satisfy γ2 > 0 > γ1. Using the specific form of

Z(q) and W (q) it is straightforward to obtain the following result.

Lemma 3.12. Let ǫ = ∞ and assume that q > ψ(1) or, equivalently, q > µ. Then the

solution to (3.1) is given by

V ∗
∞(x, s) =



















es −K, (x, s) ∈ D∗,

es−K
γ2−γ1

(

γ2e
γ1(x−s+g∞(s)) − γ1e

γ2(x−s+g∞(s))
)

, (x, s) ∈ C∗
I ,

e−γ2(log(K)−x) γ1
γ1−γ2

A∞, (x, s) ∈ C∗
II ,

where A∞ = lims↓log(K)(e
s −K)eγ2g∞(s). The corresponding optimal strategy is given
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by τ∗∞ := inf{t ≥ 0 : X t − Xt ≥ g∞(Xt) and Xt > log(K)}, where g∞ is the unique

strictly positive solution to the differential equation

g′∞(s) = 1− es

es −K

(

γ−1
2 eγ2g∞(s) − γ−1

1 eγ1g∞(s)

eγ2g∞(s) − eγ1g∞(s)

)

on (log(K),∞)

such that lims↑∞ g∞(s) = k∗, where the constant k∗ ∈ (0,∞) is given by

k∗ =
1

γ2 − γ1
log

(

1− γ−1
1

1− γ−1
2

)

.

Lemma 3.12 is nothing else than Theorem 2.5 of [30] or Theorem 1 of [17] which shows

that our results are consistent with the existing literature.

3.9 Proof of main results

Proof of Lemma 3.1. Recall that q > 0. We distinguish three cases:

• q > ψ(1) and W (q)(0+) < q−1;

• W (q)(0+) ≥ q−1 (and hence q > ψ(1), see beginning of Subsection 3.6.1);

• ψ(1) ≥ q.

The case q > ψ(1) and W (q)(0+) < q−1: The assumptions imply that the func-

tion H 7→ Z(q)(H) − qW (q)(H) is strictly decreasing on (0,∞) and has a unique root

k∗ ∈ (0,∞); cf. Proposition 2.1 of [29]. In particular, Z(q)(H)

qW (q)(H)
> 1 for H < k∗,

Z(q)(H)

qW (q)(H)
< 1 for H > k∗ and Z(q)(k∗)

qW (q)(k∗)
= 1. It is also known that the mapping

H 7→ Z(q)(H)

qW (q)(H)
is strictly decreasing on (0,∞) (cf. first remark in Section 3 of [34])

and that limH→∞
Z(q)(H)

qW (q)(H)
= Φ(q)−1; cf. Lemma 1 of [2]. We will make use of these

properties below.

The ordinary differential equation (3.19) has, at least locally, a unique solution for

every starting point (s0,H0) ∈ U by the Picard–Lindelöf theorem (cf. Theorem 1.1

in [18]), on account of local Lipschitz continuity of the field. It is well known that

these unique local solutions can be extended to their maximal interval of existence;

cf. Theorem 3.1 of [18]. Hence, whenever we speak of a solution to (3.19) from now on,

we implicitly mean the unique maximal one. In order to analyse (3.19), we sketch its

direction field based on various qualitative features of the ordinary differential equa-

tion. The 0-isocline, that is, the points (s,H) in U satisfying 1− esZ(q)(H)

(es−K)qW (q)(H)
= 0,

is given by the graph of

f(H) = log

(

K

(

1− Z(q)(H)

qW (q)(H)

)−1)

, H ∈ (k∗,∞). (3.32)
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Using the analytical properties of the map H 7→ Z(q)(H)/(qW (q)(H)) given at the

beginning of the paragraph above, one deduces that f is strictly decreasing on (k∗,∞)

and that η := limH↑∞ f(H) = log(K(1−Φ(q)−1)−1) and limH↓k∗ f(H) = ∞. Moreover,

the inverse of f , which exists due to the strict monotonicity of f , will be denoted by f−1.

Using the 0-isocline and what was said in the paragraph above, we obtain qualitatively

the direction field shown in Figure 3.7.

s
0

log(K)

k∗

H H 7→ f(H)

η

Fig. 3.7 A qualitative picture of the direction field when q > ψ(1) and W (q)(0+) = 0. The case
when W (q)(0+) ∈ (0, q−1) is similar except that the solutions (finer line) hit zero with finite
slope instead of infinite slope (since W (q)(0+) > 0).

We continue by investigating two types of solutions. Let s0 > log(K) and let

g(s) be the solution such that g(s0) = k∗ which is defined on the maximal interval

of existence, say Ig, of g. From the specific form of the direction field and the fact

that solutions tend to the boundary of U (cf. Theorem 3.1 of [18]), we infer that

Ig = (log(K), s̃) for some s̃ > s0, lims↑s̃ g(s) = 0 and lims↓log(K) g(s) = ∞. In other

words, the solutions of (3.19) which intersect the horizontal line H = k∗ come from

infinity and eventually hit zero [with infinite gradient if W (q)(0+) = 0 and with finite

gradient if W (q)(0+) ∈ (0, q−1)]. Next, suppose that s0 > η and let g(s) be the solution

such that g(s0) = f−1(s0). Similarly to above, we conclude that Ig = (log(K),∞),

lims↑∞ g(s) = ∞ and lims↓log(K) g(s) = ∞. Put differently, every solution that inter-

sects the 0-isocline comes from infinity and tends to infinity.

Let S− be the set of solutions of (3.19) whose range contains the value k∗ and

S+ the set of solutions of (3.19) whose graph s 7→ g(s) intersects the 0-isocline; see

Figure 3.7. Both these sets are nonempty as explained in the previous paragraph. For

fixed s∗ > η define

H∗
− := sup{H ∈ (0,∞) | there exists g ∈ S− such that g(s∗) = H},

H∗
+ := inf{H ∈ (0,∞) | there exists g ∈ S+ such that g(s∗) = H}.

It follows that k∗ ≤ H∗
− ≤ H∗

+ ≤ f−1(s∗) and we claim that H∗
− = H∗

+. Suppose

this was false and choose H1,H2 such that H∗
− < H1 < H2 < H∗

+. Denote by g1 the

solution to (3.19) such that g1(s
∗) = H1 and by g2 the solutions of (3.19) such that

g(s∗) = H2. Both these solutions must lie between the 0-isocline and the horizontal
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line H = k∗. In particular, it holds that Ig1 = Ig2 = (log(K),∞) and

lim
s→∞

g1(s) = lim
s→∞

g2(s) = k∗. (3.33)

Furthermore, set F (s,H) := 1 − esZ(q)(H)

(es−K)qW (q)(H)
for (s,H) ∈ U and observe that, from

earlier remarks, for fixed s, it is an increasing function in H. Using this and the fact

that g1(s) < g2(s) for all s > log(K) we may write [using the equivalent integral

formulation of (3.19)]

g2(s)− g1(s) = H2 −H1 +

∫ s

s∗
F (u, g2(u)) − F (u, g1(u)) du ≥ H2 −H1 > 0

for s > log(K). This contradicts (3.33) and hence H∗
− = H∗

+. Denote by g∞ be the

solution to (3.19) such that g∞(s∗) = H∗
−. By construction, g∞ lies above all the

solutions in S− and below all the solutions in S+. In particular, Ig∞ = (log(K),∞)

and lims→∞ g∞(s) = k∗.

So far we have found that there are (at least) three types of solutions of (3.19)

and, in fact, there are no more; that is, any solution to (3.19) either lies in S− ∪ S+

or coincides with g∞. To see this, note that the graph of g∞ splits U into two disjoint

sets. If (s,H) ∈ U lies above the graph of g∞, then the specific form of the field implies

that the solution, g say, through (s,H) must intersect the vertical line s = s∗ and

g(s∗) > H∗
+; thus g ∈ S+. Similarly, one may deduce that the solution through a point

lying below the graph of g∞ must intersect the horizontal line H = k∗ and therefore

lies in S−.

Finally, we claim that given ǫ > log(K), there exists a unique solution gǫ of (3.19)

such that Igǫ = (log(K), ǫ) and lims↑ǫ gǫ(s) = 0. Indeed, define the sets

s+ǫ := sup{s ∈ (log(K),∞) | ∃ g ∈ S− s.t. Ig ( (log(K), ǫ) and g(s) = k∗},
s−ǫ := inf{s ∈ (log(K),∞) | ∃ g ∈ S− s.t. (log(K), ǫ) ( Ig and g(s) = k∗}.

One can then show by a similar argument as above that s−ǫ = s+ǫ . The solution through

s∗+, denoted gǫ, is then the desired one.

This whole discussion is summarised pictorially in Figure 3.2.

The case W (q)(0+) ≥ q−1: Similarly to the first case, one sees that under the current

assumptions it is still true that f is strictly decreasing on (0,∞) and

η := lim
H↑∞

f(H) = log(K(1− Φ(q)−1)−1).
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Moreover, recalling that W (q)(0+) = d−1, one deduces that limH↓0 f(H) = β, where

β := log(K(1− d/q)−1) ∈ (0,∞].

Analogously to the first case, one may use this information to qualitatively draw the

direction field which is shown in Figure 3.8.

s0

log(K)

H H 7→ f(H)

g(s)

η β

Fig. 3.8 A qualitative picture of the direction field when W (q)(0+) ≥ q−1. The constants η
and β are given by η = log(K(1− 1/Φ(q))−1) and β = log(K(1− d/q)−1).

As in the first case, one may show that there are again three types of solutions;

the ones that intersect the 0-isocline [H 7→ f(H)] and never hit zero, the ones that

hit zero before β and the one which lies in between the other two types. One may

also show that for a given ǫ ∈ (log(K),∞) there exists a unique solution gǫ such that

Igǫ = (log(K), ǫ∧β) and lims→ǫ∧β gǫ(s) = 0. This is pictorially displayed in Figure 3.3.

The case ψ(1) ≥ q: Under this assumption it holds that Φ(q) ≤ 1 which together with

equation (8.9) of [21] implies that

Z(q)(H)− qW (q)(H) ≥ Z(q)(H)− q

Φ(q)
W (q)(H) > 0

for H > 0. This in turn means that Z(q)(H)/qW (q)(H) > 1 for H > 0. One may

again draw the direction field and argue along the same line as above to deduce that all

solutions of (3.19) are strictly decreasing, escape to infinity and hit zero [with infinite

gradient if W (q)(0+) = 0 and with finite gradient if W (q)(0+) ∈ (0, q−1)]. Again,

an argument as in the first case shows that for a given ǫ > log(K) there exists a

unique solution gǫ such that Igǫ = (log(K), ǫ) and lims→ǫ gǫ(s) = 0. This was already

pictorially displayed in Figure 3.4.

Proof of Theorem 3.2. The proof consists of five steps (i)–(v) which will imply the

result. Before we go through these steps, recall that

lim sup
t→∞

e−qt(eXt∧ǫ −K) = 0 Px,s-a.s. (3.34)
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for (x, s) ∈ E and let τ∗ǫ be given as in (3.21). Moreover, define the function

Vǫ(x, s) := (es∧ǫ −K)Z(q)(x− s+ gǫ(s))

for (x, s) ∈ E1 = {(x, s) ∈ E : s > log(K)}. We claim that

(i) Ex,s[e
−qtVǫ(Xt,X t)] ≤ Vǫ(x, s) for (x, s) ∈ E1;

(ii) Vǫ(x, s) = Ex,s
[

e−qτ
∗

ǫ (eXτ∗ǫ
∧ǫ −K)

]

for (x, s) ∈ E1.

Verification of (i): We first prove (i) under the assumption that X is of unbounded

variation, that is, W (q)(0+) = 0. To this end, let Γ be the infinitesimal generator of X

defined in (3.28). Although the function Z(q) is only in C1(R) ∩ C2(R \ {0}) and it is

a-priori not clear whether Γ applied to Z(q) is well defined, one may, at least formally,

define ΓZ(q) : R \ {0} → R by

ΓZ(q)(x) := −γZ(q)′(x) +
σ2

2
Z(q)′′(x)

+

∫

(−∞,0)

(

Z(q)(x+ y)− Z(q)(x)− yZ(q)′(x)1{y≥−1}

)

Π(dy).

For x < 0 the quantity ΓZ(q)(x) is well defined and ΓZ(q)(x) = 0. On the other hand,

for x > 0 one needs to check whether the integral part in ΓZ(q)(x) is well defined. This

is done in Lemma A.1 of [29], which shows that this is indeed the case. Moreover, as

shown in Section 3.2 of [34], it holds that

ΓZ(q)(x) = qZ(q)(x), x ∈ (0,∞).

Now fix (x, s) ∈ E1 and define the semimartingale Yt := Xt −X t + gǫ(X t), t ≥ 0.

Applying an appropriate version of the Itô–Meyer formula (cf. Theorem 71, Chapter VI

of [36]) to Z(q)(Yt) yields Px,s-a.s.

Z(q)(Yt) = Z(q)(x− s+ gǫ(s)) +mt +

∫ t

0
ΓZ(q)(Yu) du

+

∫ t

0
Z(q)′(Yu)(g

′
ǫ(Xu)− 1) dXu,

where

mt =

∫ t

0+
σZ(q)′(Yu−)dBu +

∫ t

0+
Z(q)′(Yu−)dX

(2)
u

+
∑

0<u≤t

∆Z(q)(Yu)−∆XuZ
(q)′(Yu−)1{∆Xu≥−1}

−
∫ t

0

∫

(−∞,0)
Z(q)(Yu− + y)− Z(q)(Yu−)− yZ(q)′(Yu−)1{y≥−1} Π(dy)du
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and ∆Xu = Xu − Xu−, ∆Z
(q)(Yu) = Z(q)(Yu) − Z(q)(Yu−). The fact that ΓZ(q) is

not defined at zero is not a problem as the time Y spends at zero has zero Lebesgue

measure anyway. By the boundedness of Z(q)′ on (−∞, gǫ(s)] the first two stochastic

integrals in the expression for mt are zero-mean martingales and by the compensation

formula (cf. Corollary 4.6 of [21]) the third and fourth term constitute a zero-mean

martingale. Next, use stochastic integration by parts for semimartingales (cf. Corollary

2 of Theorem 22, Chapter II of [36]) to deduce that Px,s-a.s.

e−qtVǫ(Xt,X t) = Vǫ(x, s) +Mt +

∫ t

0
e−qu(eXu∧ǫ −K)(Γ− q)Z(q)(Yu) du

+

∫ t

0
e−qu(eXu∧ǫ −K)Z(q)′(Yu)(g

′
ǫ(Xu)− 1) dXu (3.35)

+

∫ t

0
e−qu+XuZ(q)(Yu)1{Xu≤ǫ}

dXu

where Mt =
∫ t
0+ e

−qu(eXu∧ǫ −K) dmu is a zero-mean martingale. The first integral is

nonpositive since (Γ− q)Z(q)(y) ≤ 0 for all y ∈ R \ {0}. The last two integrals vanish

since the process Xu only increments when Xu = Xu and by definition of gǫ. Thus,

taking expectations on both sides of (3.35) gives (i) if X is of unbounded variation.

If W (q)(0+) ∈ (0, q−1) or W (q)(0+) ≥ q−1 (X has bounded variation), then the Itô–

Meyer formula is nothing more than an appropriate version of the change of variable

formula for Stieltjes integrals and one may obtain (i) in the same way as above. The only

change worth mentioning is that the generator of X takes a different form. Specifically,

for h ∈ C∞
0 (R) and z ∈ R it is given by

Γh(z) = dh′(z) +

∫

(−∞,0)

(

h(z + y)− h(z)
)

Π(dy).

As above, we want to apply Γ to Z(q) which is only in C1(R \ {0}). However, at least

formally, we may define ΓZ(q) : R \ {0} → R by

ΓZ(q)(x) = dZ(q)′(x) +

∫

(−∞,0)

(

Z(q)(x+ y)− Z(q)(x)
)

Π(dy).

This expression is well defined and ΓZ(q) satisfies all the properties required in the

proof by Lemma A.1 of [29]. This completes the proof of (i).

Verification of (ii): Recalling that (Γ − q)Z(q)(y) = 0 for y > 0, we see from (3.35)

that Ex,s
[

e−q(t∧τ
∗

ǫ )V (Xt∧τ∗ǫ ,Xt∧τ∗ǫ )
]

= Vǫ(x, s) and hence (ii) follows by dominated con-

vergence.
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Next, recall that Aǫ := Elog(K),log(K)[e
−qτ∗ǫ (eXτ∗ǫ

∧ǫ −K)] and note that

Aǫ = lim
s↓log(K)

Es,s[e
−qτ∗ǫ (eXτ∗ǫ

∧ǫ −K)] = lim
s↓log(K)

(es −K)Z(q)(gǫ(s)),

where in the second equality we have used (ii) on page 64. Now extend the definition

of the function Vǫ to

Vǫ(x, s) =







(es∧ǫ −K)Z(q)(x− s+ gǫ(s)), (x, s) ∈ E1,

e−Φ(q)(log(K)−x)Aǫ, (x, s) ∈ C∗
II .

(3.36)

We claim that:

(iii) Vǫ(x, s) ≥ (es∧ǫ −K)+ for (x, s) ∈ E;

(iv) Ex,s[e
−qtVǫ(Xt,X t)] ≤ Vǫ(x, s) for (x, s) ∈ E;

(v) Vǫ(x, s) = Ex,s
[

e−qτ
∗

ǫ (eXτ∗ǫ
∧ǫ −K)

]

for (x, s) ∈ E.

Condition (iii) is clear from the definition of Z(q) and Vǫ.

Verification of condition (iv): In view of (i), it is enough to show (iv) for (x, s) ∈ C∗
II .

In order to prove this, set Yt = e−qtVǫ(Xt,Xt), t ≥ 0, and observe that

Elog(K),log(K)[Yt] = lim
s↓log(K)

Es,s[Yt] ≤ lim
s↓log(K)

Vǫ(s, s),

where in the inequality we have used (i). Combining this with the strong Markov

property, we obtain on {τ+log(K) <∞} for (x, s) ∈ C∗
II ,

Ex,s

[

Yt

∣

∣

∣
Fτ+

log(K)

]

= Yt1{t≤τ+
log(K)

} + e
−qτ+

log(K)Elog(K),log(K)[Yt−u]
∣

∣

u=τ+
log(K)

1{t>τ+
log(K)

}

≤ Yt1{t≤τ+
log(K)

} + Yτ+
log(K)

1{t>τ+
log(K)

}

= Yt∧τ+
log(K)

.

Hence, taking expectations on both sides and using (3.34) shows that, for (x, s) ∈ C∗
II ,

we have Ex,s[Yt] ≤ Ex,s
[

Yt∧τ+
log(K)

]

. Since Yt∧τ+
log(K)

is a Px,s-martingale for (x, s) ∈ C∗
II

[see (3.9)] the inequality in (iv) follows.

Verification of condition (v): By the strong Markov property, Theorem 3.12 of [21]

and the definition of Aǫ and Vǫ we have

Ex,s
[

e−qτ
∗

ǫ (eXτ∗ǫ
∧ǫ −K)+

]

= e−Φ(q)(log(K)−x)Aǫ = Vǫ(x, s)

for (x, s) ∈ C∗
II . This together with (iii) gives assertion (v).
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We are now in a position to prove Theorem 3.2. Inequality (iv) and the Markov

property of (X,X) imply that the process e−qtVǫ(Xt,X t), t ≥ 0, is a Px,s-supermar-

tingale for (x, s) ∈ E. Using (3.34), (iii), Fatou’s lemma in the second inequality and

the supermartingale property of e−qtVǫ(Xt,X t), t ≥ 0, and Doob’s optional stopping

theorem in the third inequality shows that for τ ∈ M,

Ex,s
[

e−qτ (eXτ∧ǫ −K)
]

= Ex,s
[

e−qτ (eXτ∧ǫ −K)1{τ<∞}

]

≤ Ex,s
[

e−qτVǫ(Xτ ,Xτ )1{τ<∞}

]

≤ lim inf
t→∞

Ex,s
[

e−q(t∧τ)Vǫ(Xt∧τ ,X t∧τ )
]

≤ Vǫ(x, s).

This together with (v) shows that V ∗
ǫ = Vǫ and that τ∗ǫ is optimal.

Proof of Theorem 3.5. Recall that under the current assumptions Lemma 3.14 in Sec-

tion 3.10 implies that

lim sup
t→∞

e−qt(eXt −K)+ = 0 Px,s-a.s. (3.37)

Ex,s

[

sup
0≤t<∞

e−qt+Xt

]

<∞ (3.38)

for (x, s) ∈ E, from which it follows that

sup
τ∈M

Ex,s
[

e−qτ (eXτ −K)+
]

<∞

for (x, s) ∈ E. Also, for ǫ ∈ (log(K),∞), let V ∗
ǫ ,Aǫ, τ

∗
ǫ and gǫ be as in Theorem 3.2

and g∞, τ
∗
∞ as stated in Theorem 3.5. An inspection of the proof of Lemma 3.1 and

Theorem 3.2 of [18] show that g∞(s) = limǫ↑∞ gǫ(s) for s > log(K) which in turn

implies that limǫ↑∞ τ∗ǫ = τ∗∞ Px,s-a.s. for all (x, s) ∈ E. Furthermore, recall that

A∞ := Elog(K),log(K)[e
−qτ∗

∞(eXτ∗∞ −K)] and define

V∞(x, s) :=







(es −K)Z(q)(x− s+ g∞(s)), (x, s) ∈ E1,

e−Φ(q)(log(K)−x)A∞, (x, s) ∈ C∗
II .

Now, using (3.37), (3.38) and dominated convergence, we see that

lim
ǫ→∞

Aǫ = lim
ǫ→∞

Elog(K),log(K)

[

e−qτ
∗

ǫ
(

eXτ∗ǫ
∧ǫ −K

)]

= A∞

and

A∞ = lim
s↓log(K)

Es,s
[

e−qτ
∗

∞

(

eXτ∗∞ −K
)]
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= lim
s↓log(K)

lim
ǫ→∞

Es,s
[

e−qτ
∗

ǫ
(

eXτ∗ǫ −K
)]

= lim
s↓log(K)

(es −K)Z(q)(g∞(s)).

It follows in particular that V∞(x, s) = limǫ↑∞ V ∗
ǫ (x, s) for (x, s) ∈ E. Next, we claim

that:

(i) V∞(x, s) ≥ (es −K)+ for (x, s) ∈ E;

(ii) Ex,s[e
−qtV∞(Xt,X t)] ≤ V∞(x, s) for (x, s) ∈ E;

(iii) V∞(x, s) = Ex,s
[

e−qτ
∗

∞(eXτ∗∞ −K)
]

for (x, s) ∈ E.

Condition (i) is clear from the definition of Z(q) and V∞. To prove (ii), use Fatou’s

lemma and (i) of the proof of Theorem 3.2 to show that

Ex,s[e
−qtV∞(Xt,X t)] ≤ lim inf

ǫ→∞
Ex,s[e

−qtV ∗
ǫ (Xt,X t)]

≤ lim inf
ǫ→∞

V ∗
ǫ (x, s)

= V∞(x, s)

for (x, s) ∈ E. As for (iii), using (3.37), (3.38) and dominated convergence we deduce

that

V∞(x, s) = lim
ǫ→∞

V ∗
ǫ (x, s)

= lim
ǫ→∞

Ex,s
[

e−qτ
∗

ǫ (eXτ∗ǫ
∧ǫ −K)

]

= Ex,s
[

e−qτ
∗

∞(eXτ∗∞ −K)
]

for (x, s) ∈ E. The proof of the theorem is now completed by using (i)–(iii) in the same

way as in the proof of Theorem 3.2 to show that V ∗
∞ = V∞ and that τ∗∞ is optimal.

Remark 3.13. Instead of proving Theorem 3.5 via a limiting procedure, it would

be possible to prove it analogously to Theorem 3.2 by going through the Itô–Meyer

formula. We chose to present the proof above as it emphasises that the capped version

of (3.1) [ǫ ∈ (log(K),∞)], is a building block for the uncapped version of (3.1) (ǫ = ∞)

rather than an isolated problem in itself.

Proof of Lemma 3.7. First assume that ψ′(0+) < 0 and fix (x, s) ∈ E such that

log(K) ≤ s ≤ ǫ. Since the supremum process X is increasing and there is no dis-

counting, it follows that

V ∗
∞(x, s) = Ex,s

[

e
X

τ
+
ǫ

]

−K = Ex,s[e
X∞∧ǫ]−K = exE0,s−x[e

X∞∧(ǫ−x)]−K.
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The fact that ψ′(0+) < 0 implies that sup0≤u<∞Xu is exponentially distributed with

parameter Φ(0) > 0 under P0; see equation (8.4) in [21]. Thus, if Φ(0) 6= 1, one

calculates

V ∗
∞(x, s) = es +

exΦ(0)

Φ(0)− 1

(

es(1−Φ(0)) − eǫ(1−Φ(0))
)

−K.

Similarly, if Φ(0) = 1, we have V ∗
ǫ (x, s) = es −K + ex(ǫ− s).

On the other hand, if (x, s) ∈ E such that s < log(K) then an application of the

strong Markov property at τ+log(K) and Theorem 3.12 of [21] gives

V ∗
∞(x, s) = Ex,s

[(

e
X

τ
+
ǫ −K

)+]

= e−Φ(0)(log(K)−x)Elog(K),log(K)

[

e
X

τ
+
ǫ −K

]

.

The last expression on the right-hand side is known from the computations above and

hence the first part of the proof follows.

As for the second part, it is known that ψ′(0+) ≥ 0 implies that Px,s[τ
+
ǫ <∞] = 1

for (x, s) ∈ E and since there is no discounting the claim follows.

Proof of Lemma 3.8. The first part follows by taking limits in Lemma 3.7, since by

monotone convergence we have

V ∗
∞(x, s) = Ex,s

[

(eX∞ −K)+
]

= lim
ǫ↑∞

Ex,s
[

(e
X

τ
+
ǫ
∧ǫ −K)+

]

= lim
ǫ↑∞

V ∗
ǫ (x, s).

As for the second part, note that V ∗
∞(x, s) ≥ limǫ↑∞ V ∗

ǫ (x, s) and hence it is enough

to show that the limit equals infinity. To this end, observe that under the current

assumptions we have limǫ↑∞ gǫ(s) = ∞ for s > log(K); see Lemma 3.1(c). This in

conjunction with the fact that limz→∞Z(q)(z) = ∞ shows that, for (x, s) ∈ E such

that s > log(K),

lim
ǫ→∞

V ∗
ǫ (x, s) = lim

ǫ→∞
(es∧ǫ −K)Z(q)(x− s+ gǫ(s)) = ∞.

On the other hand, if (x, s) ∈ E such that s ≤ log(K), the claim follows provided that

limǫ→∞Aǫ = ∞. Indeed, using the strong Markov property and Theorem 3.12 of [21]

one may deduce that

Aǫ ≥ Elog(K),log(K)

[

e−qτ
+
s 1{τ+s <τ∗ǫ }

]

V ∗
ǫ (s, s).

The second factor on the right-hand side increases to +∞ as ǫ ↑ ∞ by the first part of

the proof and thus the proof is complete.
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3.10 Appendix

3.10.1 An auxiliary result

Lemma 3.14. If q > ψ(1) we have for (x, s) ∈ E that

Ex,s

[

sup
0≤t<∞

e−qt+Xt

]

<∞.

In particular, lim supt→∞ e−qt+Xt = 0 Px,s-a.s. for (x, s) ∈ E.

Proof of Lemma 3.14. We want to show that

∫ ∞

0
Px,s

[

sup
0≤t<∞

e−qt+Xt > y

]

dy <∞. (3.39)

First note that it is enough to consider the above integral over the interval (es,∞),

since for y < es the probability inside the integral is equal to one. Next, for y > es

define γ = log(y)− x > 0 and write

Px,s

[

sup
0≤t<∞

e−qt+Xt > y

]

= P

[

sup
0≤t<∞

((

sup
0≤u≤t

Xu ∨ (s− x)

)

− γ − qt

)

> 0

]

≤ P[Xt − qt > γ for some t].

The term on the right-hand side is the probability that the spectrally negative Lévy

process X̃t := Xt− qt, t ≥ 0, with Laplace exponent ψX̃(θ) = ψ(θ)− qθ, θ ≥ 0, reaches

level γ. Thus,

Px,s

[

sup
0≤t<∞

e−qt+Xt > y

]

≤ e−Φ
X̃
(0)γ = eΦX̃

(0)xy−Φ
X̃
(0),

where ΦX̃ is the right-inverse of ψX̃ . Hence, the integral (3.39) converges provided

ΦX̃(0) > 1. This is indeed satisfied because ψX̃ is convex and ψX̃(1) = ψ(1) − q < 0

by assumption.

As for the second assertion, let δ > 0 such that q − δ > ψ(1). By the first part we

may now, for (x, s) ∈ E, infer that sup0≤t<∞ e−(q−δ)t+X t <∞ Px,s-a.s. and hence

lim sup
t→∞

e−qt+Xt = lim sup
t→∞

e−δte−(q−δ)t+Xt = 0. (3.40)

This completes the proof.

3.10.2 An excursion theoretic calculation

Our aim is to compute the value Es,s
[

e−qτ
∗

ǫ
(

eXτ∗ǫ
∧ǫ −K

)]

for s ∈ [log(K), ǫ) with the

help of excursion theory; see Remark 3.3. We shall spend a moment setting up some
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necessary notation. In doing so, we closely follow pages 221–223 in [2] and refer the

reader to Chapters 6 and 7 in [6] for background reading. The process Lt := Xt serves

as local time at 0 for the Markov process X−X under P0,0. Write L−1 := {L−1
t : t ≥ 0}

for the right-continuous inverse of L. The Poisson point process of excursions indexed

by local time shall be denoted by {(t, εt) : t ≥ 0}, where

εt = {εt(s) := XL−1
t

−XL−1
t−+s : 0 < s < L−1

t − L−1
t− }

whenever L−1
t −L−1

t− > 0. Accordingly, we refer to a generic excursion as ε(·) (or just ε
for short as appropriate) belonging to the space E of canonical excursions. The intensity

measure of the process {(t, εt) : t ≥ 0} is given by dt× dn, where n is a measure on the

space of excursions (the excursion measure). A functional of the canonical excursion

that will be of interest is ε = sups<ζ ε(s), where ζ(ε) = ζ is the length of an excursion.

A useful formula for this functional that we shall make use of is the following [cf. [21],

equation (8.26)]:

n(ε > x) =
W ′(x)

W (x)
(3.41)

provided that x is not a discontinuity point in the derivative of W [which is only a

concern when X is of bounded variation, but we have assumed that in this case Π is

atomless and hence W is continuously differentiable on (0,∞)]. Another functional

that we will also use is ρa := inf{s > 0 : ε(s) > a}, the first passage time above a of

the canonical excursion ε.

We now proceed with the promised calculation involving excursion theory. First,

assume that log(K) < ǫ <∞ and β = ∞. Note that for log(K) ≤ s < ǫ,

Es,s
[

e−qτ
∗

ǫ
(

eXτ∗ǫ
∧ǫ −K

)]

= Es,s
[

e−qτ
∗

ǫ
(

eXτ∗ǫ
∧ǫ −K

)

1{τ∗ǫ <τ
+
ǫ }

]

(3.42)

+Es,s
[

e−qτ
∗

ǫ
(

eXτ∗ǫ
∧ǫ −K

)

1{τ∗ǫ =τ
+
ǫ }

]

.

We compute the two terms on the right-hand side separately. An application of the

compensation formula in the second equality and using Fubini’s theorem in the third

equality gives for log(K) ≤ s < ǫ,

Es,s
[

e−qτ
∗

ǫ
(

eXτ∗ǫ
∧ǫ −K

)

1{τ∗ǫ <τ
+
ǫ }

]

= E

[

∑

0<t<ǫ−s

e−qL
−1
t− (et+s −K)1{εu≤gǫ(u+s)∀u<t}1{εt>gǫ(t+s)}e

−qρgǫ(s+t)(εt)

]

= E

[
∫ ǫ−s

0
dt e−qL

−1
t (es+t −K)1{εu≤gǫ(u+s) ∀u<t}

∫

E
1{ε>gǫ(t+s)}e

−qρgǫ(s+t)(ε)n(dε)

]

=

∫ ǫ−s

0
(es+t −K)e−Φ(q)tE

[

e−qL
−1
t +Φ(q)t1{εu≤gǫ(u+s)∀u<t}

]

f̂(gǫ(t+ s)) dt,
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where in the first equality the time index runs over local times and the sum is the usual

shorthand for integration with respect to the Poisson counting measure of excursions,

and f̂(u) = Z(q)(u)W (q)′(u)

W (q)(u)
− qW (q)(u) is an expression taken from Theorem 1 in [2].

Next, note that L−1
t is a stopping time and hence a change of measure according

to (3.10) shows that the expectation inside the integral can be written as

PΦ(q)
[

εu ≤ gǫ(u+ s) for all u < t
]

.

Using the properties of the Poisson point process of excursions (indexed by local time)

and with the help of (3.41) and (3.13) we may deduce

PΦ(q)
[

εu ≤ gǫ(u+ s) for all u < t
]

= exp

(

−
∫ t

0
nΦ(q)(ε > gǫ(u+ s)) du

)

= exp

(

Φ(q)t−
∫ t

0

W (q)′(gǫ(u+ s))

W (q)(gǫ(u+ s))
du

)

,

where nΦ(q) denotes the excursion measure associated with X under PΦ(q). By a change

of variables we finally get for log(K) ≤ s < ǫ,

Es,s
[

e−qτ
∗

ǫ
(

eXτ∗ǫ
∧ǫ −K

)

1{τ∗ǫ <τ
+
ǫ }

]

=

∫ ǫ

s
(et −K)f̂(gǫ(t)) exp

(

−
∫ t

s

W (q)′(gǫ(u))

W (q)(gǫ(u))
du

)

dt.

As for the second term in (3.42), similarly to the computation of the first term, we

obtain for log(K) ≤ s < ǫ,

Es,s
[

e−qτ
∗

ǫ
(

eXτ∗ǫ
∧ǫ −K

)

1{τ∗ǫ =τ
+
ǫ }

]

= (eǫ −K)E
[

e−qL
−1
ǫ−s1{εt≤gǫ(t+s) ∀ t<ǫ−s}

]

= (eǫ −K)e−Φ(q)(ǫ−s)PΦ(q)
[

εt ≤ gǫ(t+ s)∀ t < ǫ− s
]

= (eǫ −K) exp

(

−
∫ ǫ

s

W (q)′(gǫ(u))

W (q)(gǫ(u))
du

)

.

Adding the two terms up gives the expression in Remark 3.3.

In the case that ǫ = β = ∞ the second term on the right-hand side of (3.42) is

not needed. In the case that β = log
(

K(1− d/q)−1
)

< ǫ, the cap ǫ may effectively be

replaced by β in (3.42).

Acknowledgements

We would like to thank an anonymous referee for their valuable comments.

72



CHAPTER 4

BOTTLENECK OPTION

In the spirit of [23, 29], we consider an option whose payoff corresponds

to a capped American lookback option with floating-strike and solve the

associated pricing problem (an optimal stopping problem) in a financial

market whose price process is modelled by an exponential spectrally

negative Lévy process. Despite the simple interpretation of the cap

as a moderation of the payoff, it turns out that the optimal strategy

to exercise the option looks very different compared to the situation

without a cap. In fact, we show that the continuation region has a

feature that resembles a bottleneck and hence the name “Bottleneck

option”.

4.1 Introduction

Consider a financial market consisting of a riskless bond and a risky asset whose price

is modelled by a strictly positive stochastic process S = {St : t ≥ 0}. A “Bottleneck

option” (the name will be justified in due course) gives the holder the right to exercise

at any finite time τ (a stopping time) yielding payouts

e−ατ
(

M0 ∨ sup
0≤u≤τ

Su ∧C −KSτ

)+

, C > M0 ≥ S0, α > 0. (4.1)

The constant M0 can be viewed as representing the “starting” maximum of the stock

price (say, over some previous period (−t0, 0]), K > 0 is referred to as strike, α is a

discount factor and C is the cap. This type of payoff belongs to the class of so-called

perpetual “lookback” options – “lookback” because it involves the term sup0≤u≤τ Su

and thus the holder of such an option has to look back in time in order to determine

the payoff at time τ . The simplest example is a Russian option which was introduced

by Shepp and Shiryaev [38, 39] and corresponds to setting K = 0 and C = ∞ above.
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Another example would be an American lookback option with fixed strike which is (4.1)

with C = ∞ and the term KSτ replaced by K; cf. [14, 17, 30].

Assuming that C = ∞ and taking into account the particular form of the payoff

in (4.1), one sees that it is positive at time t provided the quantity St−St is sufficiently

large, where S = {Su : u ≥ 0} is given by Su := M0 ∨ sup0≤v≤u Sv, u ≥ 0. We will

refer to the quantity St − St as the depth of the excursion of S away from its running

maximum. In view of the discounting in (4.1), this suggests that it is worth exercising

the option as soon as S undertakes an excursion away from its running maximum that

is deep enough. Thus a payoff of the form (4.1) could be particularly interesting for

an investor interested in exploiting instances when S drops significantly after reaching

new maxima. Payoffs of type (4.1) with C = ∞ have been known before and are

sometimes called American lookback options with floating-strike, cf. [11, 14]. One

additional feature here is that we allow C < ∞ which corresponds to a moderation of

the payoff in the sense that it is bounded from above by C. We therefore refer to C as

the cap. The case when C = ∞ simply means no moderation at all. Alternatively, the

cap can be viewed as a means to limit the downside risk for an issuer of a payoff of the

form (4.1).

Apart from the simple economic interpretation of the cap mentioned in the previous

paragraph, we will show that its presence has a surprising effect on the optimal exercise

strategy. Here optimal is understood in the sense that the expected discounted payoff

is maximised. As informally described above, if C = ∞, it is plausible that the optimal

strategy to exercise (4.1) is to wait until S undertakes an excursion away from its

running maximum that is deep enough. In fact, this was proved rigorously for a Black–

Scholes model in [11, 30]. Their result can be visualised by drawing the trace of a

realisation of the process t 7→ (St, St) in the positive quadrant; see Figure 4.1. The grey

area corresponds to the continuation region, that is, the region where one continues to

observe the evolution of (S, S) and does not exercise the option. Note that the dynamics

of (S, S) are such that it can only climb upwards along the diagonal. The horizontal

lines in Figure 4.1 are meant to schematically indicate the trace of the excursions of S

away from its running maximum.

St

St

C

St

St

C

St

St

Fig. 4.1 The expected continuation region (grey) and stopping region for the cases when C = ∞,
C <∞ and K > 1, and C <∞ and K is small enough.
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On the other hand, if C < ∞ and K > 1, we will show that in a specific model,

which includes the Black-Scholes model, the optimal strategy to exercise (4.1) is of the

following form: As long as the second component of (St, St) lies below C, one waits

until S undergoes an excursion away from its running maximum of depth at least g(St)

for some function g. Once the level C is reached, the strategy consists of stopping as

soon as St drops below a fixed value. Pictorially displaying this (see Figure 4.1), one

sees that the continuation region shows a feature that resembles a bottleneck and hence

the name “Bottleneck” option. Furthermore, it turns out that as one decreases K, the

bottleneck becomes smaller and smaller and eventually vanishes once K drops below a

critical value. The resulting continuation region then consists of two disjoint regions;

see Figure 4.1.

In order to make things more rigorous, let us specify the underlying model. Suppose

that X = {Xt : t ≥ 0} is a spectrally negative Lévy process defined on a filtered

probability space (Ω,F ,F = {Ft : t ≥ 0},P) satisfying the natural conditions; cf. [7],

Section 1.3, page 39. For x ∈ R, denote by Px the probability measure under which X

starts at x and for simplicity write P0 = P. The value of the bond B = {Bt : t ≥ 0}
evolves deterministically such that

Bt = B0e
rt, B0 > 0, r ≥ 0, t ≥ 0, (4.2)

and the price of the risky asset is modeled as the exponential spectrally negative Lévy

process

St = S0e
Xt , S0 > 0, t ≥ 0. (4.3)

In order to guarantee that our model is free of arbitrage we will assume that ψ(1) = r,

where ψ is the Laplace exponent of X. If Xt = µt+ σWt, where W = {Wt : t ≥ 0} is

a standard Brownian motion, we get the standard Black–Scholes model for the price

of the asset. Of course, it is an important question whether this model of a financial

market is appropriate, but we will not discuss this issue here. Nevertheless, it is worth

mentioning that Carr and Wu [8] as well as Madan and Schoutens [25] offered empir-

ical evidence to support this model in which the risky asset is driven by a spectrally

negative Lévy process for appropriate market scenarios.

Finding the optimal time to exercise (4.1) and the corresponding expected pay-

off leads by the standard theory of pricing American-type options [41] to solving the

optimal stopping problem

Vr(M0, S0, C) := B0 sup
τ

E

[

B−1
τ e−ατ

(

M0 ∨ sup
0≤u≤τ

Su ∧C −KSτ

)+]

, (4.4)

where the supremum is taken over all [0,∞)-valued stopping times. In other words, we

want to find a stopping time which optimises the expected discounted claim. It will be
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convenient to rewrite (4.4) in a slightly different way. Specifically, we associate with X

the maximum process X = {X t : t ≥ 0}, where Xt := s∨ sup0≤u≤tXu for t ≥ 0, s ≥ x.

The law under which (X,X) starts at (x, s) is denoted by Px,s. Thus, summing up,

the aim of this article is to solve the optimal stopping problem

V ∗
ǫ (x, s) = sup

τ∈M
Ex,s

[

e−qτ
(

eXτ∧ǫ −KeXτ
)+]

, (4.5)

where q > 0, K > 0, ǫ ∈ R ∪ {∞}, (x, s) ∈ E := {(x1, s1) ∈ R2 |x1 ≤ s1}
and M is the set of all [0,∞)-valued F-stopping times. In particular, note that

Vr(M0, S0, C) = V ∗
ǫ (x, s) with x = log(S0), s = log(M0), ǫ = log(C), q = α + r

and ψ(1) = r. When ǫ = ∞ this problem was solved in [11, 30] for the case when X is

a linear Brownian motion and in [14] for the case when X is a jump-diffusion. In the

case when ǫ = ∞ and K = 0 this problem is known as the Russian optimal stopping

problem [2, 14, 38, 39].

Our method for solving (4.5) consists of a verification technique, that is, we heuristi-

cally derive a candidate solution and then verify that it is indeed a solution. In particu-

lar, we will establish a link to the so-called McKean optimal stopping problem [1, 26] as

well as make use of the principle of smooth or continuous fit [28, 32, 33] in a similar way

to [23, 29]. As one would expect from the general theory of optimal stopping [33, 42],

the optimal stopping time is the first entry time of the two-dimensional Markov process

(X,X) into a certain subset (the stopping region) of E. Interestingly, and as already

alluded to above, it turns out that depending on the different parameters, the contin-

uation region (the complement of the stopping region) is a connected set or consists

of two disjoint components. In fact, in the former case it has a feature that resembles

a bottleneck; see Theorem 4.5 and Figure 4.4. Furthermore, it will also be interesting

from a technical point of view to see how the fact that the payoff depends not only on

X but also on X (compare with [23, 29] where the payoff only depends on X) enters

the solution of the optimal stopping problem.

One of the assumptions above is that the underlying Lévy process is spectrally

negative, that is, a Lévy process whose trajectories have only negative discontinuities.

This restriction, which can be justified from a modelling point of view [8, 25], opens

the door to the theory of scale functions for spectrally negative Lévy processes [20, 21]

and essentially allows us to obtain the results in the form in which we are going to

present them below. However, we believe that from a qualitative point of view the

results should still hold even if one allowed X to be a general Lévy process. This would

lead to an interesting phenomena where the process (S, S) jumps from one component

of the continuation region to the other one in the case when the continuation region

consists of two parts.

We conclude this section with a brief overview of this article. In Section 4.2 we
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introduce some more notation and provide some necessary background. In Sections 4.3

and 4.6 we explain how to heuristically derive a candidate solution for (4.5). Our main

results are presented in Section 4.4 and their proofs are given in Section 4.7. Finally,

some examples are considered in Section 4.5.

4.2 Preliminaries

4.2.1 Spectrally negative Lévy processes

It is well known that a spectrally negative Lévy process X is characterised by its Lévy

triplet (γ, σ,Π), where σ ≥ 0, γ ∈ R and Π is a measure on (−∞, 0) satisfying the

condition
∫

(−∞,0)(1 ∧ x2)Π(dx) < ∞. By the Lévy–Itô decomposition, the latter may

be represented in the form

Xt = σBt − γt+X
(1)
t +X

(2)
t , (4.6)

where {Bt : t ≥ 0} is a standard Brownian motion, {X(1)
t : t ≥ 0} is a compound Poisson

process with discontinuities of magnitude bigger than or equal to one and {X(2)
t : t ≥ 0}

is a square integrable martingale with discontinuities of magnitude strictly smaller than

one and the three processes are mutually independent. In particular, if X is of bounded

variation, the decomposition reduces to

Xt = dt− χt (4.7)

where d := −γ−
∫

(−1,0) xΠ(dx) > 0 and {χt : t ≥ 0} is a driftless subordinator. Further

let

ψ(θ) := E
[

eθX1
]

be the Laplace exponent of X for all θ ∈ R such that the expectation exists. Since X

is spectrally negative this is at least the case for θ ≥ 0. It is known that ψ takes the

form

ψ(θ) = −γθ + 1

2
σ2θ2 +

∫

(−∞,0)

(

eθx − 1− θx1{x>−1}

)

Π(dx), θ ≥ 0.

When X has bounded variation, that is, σ = 0 and
∫

(−1,0) |x|Π(dx) < ∞, we may

always write

ψ(θ) = dθ −
∫

(−∞,0)
(1− eθx)Π(dx), θ ≥ 0. (4.8)

The right-inverse of ψ is defined by

Φ(q) := sup{λ ≥ 0 : ψ(λ) = q}
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for q ≥ 0.

For any spectrally negative Lévy process having X0 = 0 we introduce the family of

martingales

exp(vXt − ψ(v)t),

defined for any v ∈ R for which ψ(v) < ∞, and further the corresponding family of

measures {Pv} with Radon–Nikodym derivatives

dPv

dP

∣

∣

∣

∣

Ft

= exp(vXt − ψ(v)t). (4.9)

For all such v the measure Pvx will denote the translation of Pv under which X0 = x.

In particular, under Pvx the process X is still a spectrally negative Lévy process; cf.

Theorem 3.9 in [21].

Finally, introduce the first passage times of X below and above k ∈ R,

τ−k := inf{t > 0 : Xt ≤ k} and τ+k := inf{t > 0 : Xt ≥ k}.

4.2.2 Scale functions

A special family of functions associated with spectrally negative Lévy processes is that

of scale functions (cf. [20, 21]) which are defined as follows. For q ≥ 0, the q-scale

function W (q) : R −→ [0,∞) is the unique function whose restriction to (0,∞) is

continuous and has Laplace transform

∫ ∞

0
e−θxW (q)(x) dx =

1

ψ(θ)− q
, θ > Φ(q),

and is defined to be identically zero for x ≤ 0. Further, we shall use the notation

W
(q)
v (x) to mean the q-scale function associated to X under Pv. It is possible for fixed

x ≥ 0 to extend the mapping q 7→W
(q)
v (x) to the complex plane (cf. Lemma 3.6 in [20])

and we have the following relationship

W (q)(x) = evxW (q−ψ(v))
v (x) (4.10)

for v ∈ R such that ψ(v) < ∞ and q ∈ C; cf. Lemma 3.7 in [20]. Moreover, the fol-

lowing regularity properties of scale functions are known; cf. Sections 2.3 and 3.1 of [20].

Smoothness: For all q ≥ 0,

W (q)|(0,∞) ∈



















C1(0,∞), if X is of bounded variation and Π has no atoms,

C1(0,∞), if X is of unbounded variation and σ = 0,

C2(0,∞), σ > 0.
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Continuity at the origin: For all q ≥ 0,

W (q)(0+) =







d−1, if X is of bounded variation,

0, if X is of unbounded variation.
(4.11)

Right-derivative at the origin: For all q ≥ 0,

W
(q)′
+ (0+) =







q+Π(−∞,0)
d2

, if σ = 0 and Π(−∞, 0) <∞,

2
σ2
, if σ > 0 or Π(−∞, 0) = ∞,

(4.12)

where we understand the second case to be +∞ when σ = 0.

The second scale function is Z
(q)
v which is defined as follows. For v ∈ R such that

ψ(v) <∞ and q ≥ 0 we define Z
(q)
v : R −→ [1,∞) by

Z(q)
v (x) = 1 + q

∫ x

0
W (q)
v (z) dz. (4.13)

This function can also be extended to q ∈ C for fixed x ≥ 0.

For technical reasons, we require for the rest of the paper that W (q) is in C1(0,∞)

[and hence Z(q) ∈ C2(0,∞)]. This is ensured by henceforth assuming that Π is atomless

whenever X is of bounded variation.

4.3 First observations and candidate solution

The overall strategy to solve (4.5) is “guess and verify”, that is, we try to “guess” the

solution of (4.5) and once we have a candidate solution we verify that it is indeed a

solution. This section is concerned with the guessing part of our approach. We will

link (4.5) to the McKean optimal stopping problem (cf. [1, 26] and Section 11.2 of [21])

as well as to the general theory of optimally stopping a maximum process [31, 33]

which will provide us with a candidate solution for (4.5). Assume throughout this

section that ǫ ∈ R.

First of all, observe that if s ≥ ǫ, then then the process X t ∧ ǫ equals ǫ for all t ≥ 0

and (4.5) becomes

V ∗
ǫ (x, s) = sup

τ∈M
Ex,s[e

−qτ (eǫ −KeXτ )+] = K sup
τ∈M

Ex,s[e
−qτ (K−1eǫ − eXτ )+].

Up to the factor K in front of the supremum, this is nothing else than the McKean

optimal stopping problem with strike K−1eǫ. The following result then follows directly

from Corollary 11.3 in [21].
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Proposition 4.1. Fix ǫ ∈ R and assume that s ≥ ǫ. The solution of (4.5) is given by

V ∗
ǫ (x, s) = eǫZ(q)(x− x∗ǫ)−KexZ

(q−ψ(1))
1 (x− x∗ǫ),

where

x∗ǫ := ǫ+







log
(

K−1 q
Φ(q)

Φ(q)−1
q−ψ(1)

)

, q 6= ψ(1),

log
(

K−1 q
ψ′(1)

)

, q = ψ(1),

and corresponding optimal stopping time τ∗ǫ := inf{t ≥ 0 : Xt < x∗ǫ}.

Next, define the quantity

η :=







log
(

K Φ(q)
q

q−ψ(1)
Φ(q)−1

)

, q 6= ψ(1),

log
(

K ψ′(1)
q

)

, q = ψ(1),
(4.14)

and note that ǫ− x∗ǫ = η. Moreover, equation (8.4) in [21] states that

E[e
X

eq ] =







q
Φ(q)

Φ(q)−1
q−ψ(1) , q 6= ψ(1),

q
ψ′(1) , q = ψ(1),

(4.15)

where eq is an exponential random variable with parameter q > 0 independent of X.

In particular, the terms on the right-hand side of (4.15) are smaller or equal than one.

Now we want to investigate the solution of (4.5) for s < ǫ. To this end, assume

temporarily that ǫ < x∗ǫ or, equivalently, η < 0, and hence K < 1 which implies that

e−qt(eXt∧ǫ − KeXt)+ = e−qt(eXt∧ǫ − KeXt) as long as Xt ≤ ǫ. We are now going to

argue in the same way as described in [31], Section 3, page 6: The dynamics of (X,X)

are such that X remains constant at times when X is undertaking an excursion away

from X. Although eXt∧ǫ −KeXt increases with the depth of the excursion, the payoff

during an excursion is bounded above by es, where s is the current value of X during

the excursion. Due to the exponential discounting one should therefore not allow X to

drop too far below X as otherwise the time it will take X to recover and reach value s

will prove costly in terms of gain. Hence, given that X is at level s, there should be a

point gǫ(s) > 0 such that if the process X reaches or jumps below the value s − gǫ(s)

we should stop. In more mathematical terms, we expect, as long as X < ǫ, an optimal

strategy of the form

inf{t ≥ 0 : Xt −Xt ≥ gǫ(X t)} (4.16)

for some decreasing function gǫ : (−∞, ǫ) → [0,∞). Once X reaches level ǫ, Proposi-

tion 4.1 says that one should stop immediately as ǫ < x∗ǫ . This means that gǫ has to

satisfy the additional requirement lims↑ǫ gǫ(s) = 0. Summing up, we expect an optimal
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x

s

ǫ

C1

C2

x∗

ǫ

log(k)

x

s

ǫ

C4

x∗

ǫ

log(k)

x

s

ǫ

C5

x∗

ǫ

Fig. 4.2 Left: expected continuation and stopping region when ǫ < x∗ǫ . Middle: the set C4

which is necessarily contained in the continuation region when ǫ ≥ x∗ǫ and K > 1. Right: The
expected continuation and stopping region when ǫ ≥ x∗ǫ and K > 1.

stopping time of the form

ρǫ = inf{t ≥ 0 : (Xt,X t) /∈ C1 ∪ C2}, (4.17)

where C1 := {(x, s) ∈ E : x ≥ x∗ǫ} and C2 := {(x, s) ∈ E : s − x ≥ gǫ(s)}. The set

C1 ∪ C2 is usually called continuation region and it is shown in the drawing on the

left-hand side in Figure 4.2.

Now assume that ǫ ≥ x∗ǫ or, equivalently, η ≥ 0, and that K > 1. Under

these assumptions the situation looks quite different. Because K > 1 we see that

e−qt(eXt −KeXt)+ = 0 whenever (X,X) lies in in the strip

C3 := {(x, s) ∈ E : s− log(K) ≤ x}

and therefore it is never optimal to stop as long as the process (X,X) lies in C3.

Combining this with Proposition 4.1, we see that the continuation region must at least

contain the set C4 := C3∪{(x, s) ∈ E : x ≥ x∗ǫ}; see middle drawing in Figure 4.2. The

whole discussion in the previous paragraph applies here as well, except that one has to

take into account the strip C3. In other words, we look again for stopping strategies of

the form (4.16) as long as X < ǫ, but the boundary condition lims↑ǫ gǫ(s) = 0 should

be replaced by lims↑ǫ gǫ(s) = η = ǫ− x∗ǫ ≥ 0. The expected continuation region

C5 := {(x, s) ∈ E | s ≤ ǫ and s− gǫ(s) < x or x ≥ x∗ǫ}

is pictorially displayed on the right-hand side in Figure 4.2. Finally, if ǫ ≥ x∗ǫ and

K ≤ 1 a similar reasoning applies except that there will be no strip C3.

The discussion so far leaves us with two questions:

• How to choose gǫ?

• Given gǫ, what is Ex,s
[

e−qρǫ
(

eXρǫ∧ǫ −KeXρǫ
)+]

, where ρǫ is either as in (4.17)

or ρǫ = inf{t ≥ 0 : (Xt,X t) /∈ C5}?
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These questions can be answered with the help of the so-called principle of smooth or

continuous fit [28, 32, 33] which will provide an ordinary differential equation charac-

terising gǫ and a candidate value function. The details are given in Section 4.6.

4.4 Main results

This section is the verification part of our “guess and verify” approach. Given the

candidate solution derived in Sections 4.3 and 4.6, we now verify that it is indeed a so-

lution. The proofs of all the results presented in this section are deferred to Section 4.7.

We begin by introducing an auxiliary function f : (0,∞) → R which is defined by

f(z) := Z(q)(z)−
(

q −K(q − ψ(1))e−z
)

W (q)(z).

This function will play an important role throughout the remainder of this article and

hence we spend some time investigating some of its properties.

Lemma 4.2. Suppose that q > ψ(1).

(a) If 0 < K < q/(q − ψ(1)), then f is strictly decreasing on (0,∞).

(b) If K ≥ q/(q−ψ(1)), then f is strictly increasing on (0, β0] and strictly decreasing

on (β0,∞), where β0 := log(K(q − ψ(1))/q) ≥ 0.

In both cases f tends to −∞ as z → ∞.

Next, denote by G be the general class of spectrally negative Lévy processes and define

the subclass

Hq,K := {X ∈ G : X is of unbounded variation or X is

of bounded variation with d > q −K(q − ψ(1))}.

Furthermore, define the quantity

k∗ := inf{z > η ∨ 0 : f(z) ≤ 0} ∈ [0,∞], (4.18)

where η was defined in (4.14) and we understand inf ∅ = ∞.

Lemma 4.3.

(a) If q > ψ(1) and X ∈ Hq,K , then k
∗ ∈ (η ∨ 0,∞).

(b) If q > ψ(1) and X ∈ G \ Hq,K , then k
∗ = 0.

(c) If q ≤ ψ(1), then k∗ = ∞.
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We are now in a position to define the function gǫ which will, as we will see in due

course, describe the optimal boundary of (4.5).

Lemma 4.4. Fix ǫ ∈ R. Moreover, suppose that q > ψ(1) and X ∈ Hq,K or q ≤ ψ(1).

Then there exists a unique solution gǫ : (−∞, ǫ) → (η∨0, k∗) of the differential equation

g′ǫ(s) = 1− Z(q)(gǫ(s))

W (q)(gǫ(s))(q −K(q − ψ(1))e−gǫ(s))
on (−∞, ǫ) (4.19)

satisfying lims↑ǫ gǫ(s) = η ∨ 0. In particular, lims↓−∞ gǫ(s) = k∗.

On the other hand, when q > ψ(1) and X ∈ G \Hq,K , we will adopt the convention

that gǫ(s) = k∗ = 0 for s ∈ (−∞, ǫ).

It is possible to say a bit more about the function gǫ in the case when q > ψ(1) and

X ∈ Hq,K or q ≤ ψ(1). Specifically, with the help of (4.11) and Lemma 3.3 in [20] one

obtains

lim
s↑ǫ

g′ǫ(s) = 1− Z(q)(η ∨ 0)

W (q)(η ∨ 0)(q −K(q − ψ(1))e−(η∨0))

and

lim
s↓−∞

g′ǫ(s) =







0, if q > ψ(1) and X ∈ Hq,K ,

1− Φ(q)−1, if q ≤ ψ(1).

Note in particular that lims↑ǫ g
′
ǫ(s) = −∞ whenever η ≤ 0 and X is of unbounded

variation and that this cannot happen when X is of bounded variation as W (q)(0) > 0.

Put differently, the shape of gǫ at ǫ may change according to the path variation of X.

A similar observation has already been made in [29] which treats (4.5) for K = 0. The

differences in the behaviour of gǫ are illustrated in Figure 4.3.

sǫ

k∗

gǫ(s)

(0, 0) sǫ

gǫ(s)

(0, η)

Fig. 4.3 In both pictures it is supposed that X is of unbounded variation. However, on the
left-hand side we additionally assume that q > ψ(1) [and hence k∗ ∈ (η ∨ 0,∞)] and η < 0,
whereas on the right-hand side it is assumed that q ≤ ψ(1) (and hence k∗ = ∞) and η > 0.

In order to state the main result, we need some more notation. Define the continu-

ation regions

C∗
I = C∗

I,gǫ := {(x, s) ∈ E | s ≤ ǫ and s− gǫ(s) < x ≤ s},
C∗
II = C∗

II,ǫ := {(x, s) ∈ E |x > x∗ǫ}

83



Chapter 4. Bottleneck Option

and the stopping region D∗ = D∗
gǫ = E \ (C∗

I ∪ C∗
II). Note that if q > ψ(1) and

X ∈ G \ Hq,K, then C
∗
I = ∅.

Theorem 4.5. Fix ǫ ∈ R. The solution of (4.5) is given by

V ∗
ǫ (x, s) =







eǫZ(q)(x− x∗ǫ)−KexZ
(q−ψ(1))
1 (x− x∗ǫ), s ≥ ǫ,

esZ(q)(x− s+ gǫ(s))−KexZ
(q−ψ(1))
1 (x− s+ gǫ(s)), s < ǫ,

with corresponding optimal strategy ρ∗ǫ := inf{t ≥ 0 : (Xt,Xt) ∈ D∗
gǫ} and gǫ as in

Lemma 4.4.

Remark 4.6. Let ǫ ∈ R and suppose that q > ψ(1) and X ∈ Hq,K or q ≤ ψ(1).

Similarly to Remark 3.4 one can show that whenever η ≤ 0 we have Px,s[τ
∗
ǫ = τ+ǫ ] > 0

for (x, s) ∈ E such that s < ǫ. We omit the details.

Some examples for the stopping and continuation region are pictorially displayed

in Figure 4.4. In particular, let us emphasise that the continuation region is connected

if and only if ǫ > x∗ǫ or, equivalently, η > 0; otherwise it consists of two disjoint

components. Moreover, in the case when ǫ > x∗ǫ , one sees that the process (X,X) has

to squeeze through a “bottleneck” to get into the region where the second component

of (X,X) is larger or equal to ǫ. It is this “special” feature of the continuation region

that has motivated the name “Bottleneck option” for payoffs of type (4.1). Also note

that provided X ∈ Hq,K it follows from the definition of η in (4.14) that the critical

value in order to see a bottleneck or not is given by K = q(Φ(q)−1)
Φ(q)(q−ψ(1)) if q 6= ψ(1) and

K = q
ψ′(1) if q = ψ(1).

x

s

ǫ

D∗

C∗

I

C∗

II

x∗

ǫ

k∗

x

s

ǫ

D∗

C∗

x∗

ǫ

k∗

Fig. 4.4 In both pictures it is supposed that X is of unbounded variation and q > ψ(1). The
difference is that on the left-hand side we have ǫ < x∗ǫ which leads to a continuation region
consisting of two components, whereas on the right-hand side we have ǫ > x∗ǫ resulting in a
connected continuation region.

It is also interesting to investigate what happens if no cap is present; that is, ǫ = ∞.

In this case, problem (4.5) reads

V ∗
∞(x, s) = sup

τ∈M
Ex,s[e

−qτ (eXτ −KeXτ )+]. (4.20)
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By a change of measure according to (4.9) one could now reduce this problem to a one-

dimensional optimal stopping problem for the reflected process Y = {Yt : t ≥ 0}, where
Yt = Xt −Xt; see [2] for a very similar argument in the case when K = 0 in (4.20). In

this case the general theory of optimal stopping [33] suggests that the optimal stopping

time is an upcrossing time of the process Y at a certain constant level. This is indeed

the case and one could in principle prove this by actually solving the resulting one-

dimensional optimal stopping problem for Y . Here, however, we will solve (4.20) with

the help of the work already done in Theorem 4.5 and a simple limiting procedure.

Corollary 4.7. Assume that ǫ = ∞.

i) Suppose that q > ψ(1). The solution of (4.5) is given by

V ∗
∞(x, s) = esZ(q)(x− s+ k∗)−KexZ

(q−ψ(1))
1 (x− s+ k∗)

with corresponding optimal strategy ρ∗∞ := inf{t ≥ 0 : Xt − Xt ≥ k∗}, where

k∗ ∈ [0,∞) is defined in (4.18).

ii) If q ≤ ψ(1), then there is no solution to (4.5) and V ∗
∞(x, s) ≡ ∞.

Observe that if q ≤ ψ(1) then the value function is equal to infinity. Of course, this

is not possible in the presence of a cap ǫ ∈ R.

4.5 Example

The solution of (4.5) in Theorems 4.5 and 4.7 is given semi-explicitly in terms of

scale functions and a specific solution gǫ of the ordinary differential equation (4.19).

A first step towards more explicit solutions of (4.5) is looking at processes X where

explicit expressions for W (q) and Z(q) are available. In recent years various authors

have found several processes whose scale functions are explicitly known; for instance,

see Example 1.3 as well as Chapters 4 and 5 in [20]. Here we will consider one example

whereX has jumps. Specifically, suppose that X is an α-stable process, where α ∈ (1, 2]

with Laplace exponent ψ(θ) = θα, θ ≥ 0. Moreover, suppose that q > ψ(1) which in

this case means that q > 1. It is known from Example 4.17 of [20] and Subsection 8.3

of [2] that, for x ≥ 0,

W (q)(x) = xα−1Eα,α(qx
α) and Z(q)(x) = Eα,1(qx

α),

where Eα,β is the two-parameter Mittag–Leffler function which is defined for α, β > 0

as

Eα,β(x) =
∞
∑

n=0

xn

Γ(αn+ β)
.
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By definition of Z
(q)
1 [see (4.13)] and (4.10) we obtain

Z
(q−ψ(1))
1 (x) = 1 + (q − ψ(1))

∫ x

0
e−yW (q)(y) dy, x ≥ 0.

In order to compute the boundary one might try to solve (4.19) numerically, but this

is not straightforward as there might be no initial point to start a numerical scheme

from and, moreover, the possibility of gǫ having infinite gradient at ǫ might lead to

inaccuracies in the numerical scheme. Therefore, we follow a different route which

avoids these difficulties. Instead of looking at gǫ, we rather focus on its inverse

H(s) = ǫ−
∫ s

η∨0

(q −K(q − ψ(1))e−u)W (q)(u)

Z(q)(u)− (q −K(q − ψ(1))e−u)W (q)(u)
du, s ∈ (η ∨ 0, k∗), (4.21)

where k∗ ∈ (0,∞) is the unique root of

Z(q)(z)− (q −K(q − ψ(1))e−z)W (q)(z) = 0.

In fact, passing to the inverse is a standard trick in this setting and, for instance,

used in [33]. As H is the inverse of gǫ, plotting (H(y), y) for y ∈ (η ∨ 0, k∗) gives

graphical representations of s 7→ gǫ(s), s ∈ (−∞, ǫ); see Figure 4.5. Similarly, plotting

(H(y) − y,H(y)) for y ∈ (η ∨ 0, k∗) produces visualisations of the optimal stopping

boundary in the (x, s)-plane; see Figure 4.5. Further, in order to obtain the continuation

and stopping region for the original problem involving the processes S and S, one only

needs to plot
(

exp(H(y) − y), exp(H(y))
)

for y ∈ (η ∨ 0, k∗); see Figure 4.5. Because

we are unable to compute the integral in (4.21) explicitly, we use numerical integration

in Matlab to obtain an approximation of the integral. We also use Matlab to compute

the Mittag–Leffler function (cf. [35]) and to solve the equation for k∗.

Of course, once one starts to compute things numerically there are many more

examples that could be looked at. For instance, the case Black–Scholes case when X

corresponds to a linear Brownian motion or when X is jump-diffusion. Similar results

in this direction for a slightly different problem have been considered in [29] and could

be carried over to the setting here in a straightforward way.

4.6 Guess via principle of smooth or continuous fit

The goal of this section is to answer the two questions raised at the end of Section 4.3.

The argument presented here is an adaptation of [31] to our setting. It has already been

successfully applied in [23, 29] in similar/related situations. The difference to [23, 29],

however, is that here the payoff also depends on X and not only X. As we will see

in due course, this can be dealt with by a change of measure which essentially puts

oneself back into the situation where the payoff only depends on X . Throughout this
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Fig. 4.5 Top two pictures: A visualisation of s 7→ gǫ(s) and the resulting optimal boundary
when q = 3, ǫ = 1, K = 0.7 and α = 1.5. It follows that x∗ǫ ≈ 1.11, η ≈ −0.11 and k∗ ≈ 0.26.
Middle two pictures: A visualisation of s 7→ gǫ(s) and the resulting optimal boundary when
q = 3, ǫ = 1, K = 0.9 and α = 1.5. It follows that x∗ǫ ≈ 0.86, η ≈ 0.14 and k∗ ≈ 0.36. Bottom
two pictures: The corresponding continuation and stopping regions for the original problem for
(S, S) with C = e.
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section we will assume that s < ǫ. Moreover, for simplicity, suppose that q > ψ(1).

To begin with assume that X is of unbounded variation. We will deal with the

bounded variation case later; see page 89. From the general theory of optimal stopping

(cf. Section 13 of [33]) we informally expect the value function

Uǫ(x, s) := Ex,s
[

e−qρǫ
(

eXρǫ∧ǫ −KeXρǫ
)+]

,

where ρǫ was defined in Section 4.3, to satisfy the system

ΓUǫ(x, s) = qUǫ(x, s) for s− gǫ(s) < x < s with s fixed,

∂Uǫ

∂s (x, s)
∣

∣

x=s−
= 0 (normal reflection), (4.22)

Uǫ(x, s)|x=(s−gǫ(s))+ = es −Kes−gǫ(s) (instantaneous stopping),

where Γ is the infinitesimal generator of the processX under P0. Moreover, the principle

of smooth fit [28, 33] suggests that this system should be complemented by

lim
x↓s−gǫ(s)

∂Uǫ
∂x

(x, s) = −Kes−gǫ(s) (smooth fit). (4.23)

Note that, although the smooth fit condition is not necessarily part of the general

theory, it is imposed since by the “rule of thumb” outlined in Section 7 in [1] it should

hold in this setting because of path regularity. This belief will be vindicated when we

show that system (4.22) together with (4.23) leads to the solution of (4.5).

Next, splitting over the events {ρǫ < τ+s } and {ρǫ > τ+s } in the first equality and

applying the strong Markov property at τ+s and a change of measure according to (4.9)

in the second equality gives

Uǫ(x, s) = esEx,s
[

e
−qτ−

s−gǫ(s)1{τ−
s−gǫ(s)

<τ+s }

]

−KEx,s
[

e
−qτ−

s−gǫ(s)
+X

τ
−

s−g(s)1{τ−
s−gǫ(s)

<τ+s }

]

+Ex,s
[

e−qρǫ
(

eXρǫ∧ǫ −KeXρǫ
)+

1{τ−
s−g(s)

>τ+s }

]

= esEx,s
[

e
−qτ−

s−gǫ(s)1{τ−
s−gǫ(s)

<τ+s }

]

−KexE1
x,s

[

e
−(q−ψ(1))τ−

s−gǫ(s)1{τ−
s−gǫ(s)

<τ+s }

]

+Ex,s
[

e−qτ
+
s 1{τ−

s−gǫ(s)
>τ+s }

]

Uǫ(s, s).

Furthermore, using Proposition 1 of [2] and rearranging terms in the first equality and

applying (4.10) in the second equality shows that

Uǫ(x, s) = esZ(q)(x− s+ gǫ(s))−KexZ
(q−ψ(1))
1 (x− s+ gǫ(s))

−esW (q)(x− s+ gǫ(s))
Z(q)(gǫ(s))

W (q)(gǫ(s))
+
W (q)(x− s+ gǫ(s))

W (q)(gǫ(s))
Uǫ(s, s)
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+KexW
(q−ψ(1))
1 (x− s+ gǫ(s))

Z
(q−ψ(1))
1 (gǫ(s))

W
(q−ψ(1))
1 (gǫ(s))

= esZ(q)(x− s+ gǫ(s))−KexZ
(q−ψ(1))
1 (x− s+ gǫ(s))

−esW (q)(x− s+ gǫ(s))
Z(q)(gǫ(s))

W (q)(gǫ(s))
+
W (q)(x− s+ gǫ(s))

W (q)(gǫ(s))
Uǫ(s, s)

+KesW (q)(x− s+ gǫ(s))
Z

(q−ψ(1))
1 (gǫ(s))

W (q)(gǫ(s))
.

The smooth fit condition in (4.23) now implies that

W (q)′(x− s+ gǫ(s))

W (q)(gǫ(s))

[

esZ(q)(gǫ(s))− Uǫ(s, s)−KesZ
(q−ψ(1))
1 (gǫ(s))

]

→ 0

as x ↓ s− gǫ(s). However, by (4.12) the first factor tends to a strictly positive value or

infinity which shows that

Uǫ(s, s) = esZ(q)(gǫ(s))−KesZ
(q−ψ(1))
1 (gǫ(s)).

This would mean that for (x, s) ∈ E such that s− gǫ(s) < x < s we have

Uǫ(x, s) = esZ(q)(x− s+ gǫ(s))−KexZ
(q−ψ(1))
1 (x− s+ gǫ(s)). (4.24)

Having derived the form of a candidate optimal value function Uǫ, we still need to do

the same for gǫ. Using the normal reflection condition (4.22) shows that our candidate

function gǫ should satisfy the differential equation

g′ǫ(s) = 1− Z(q)(gǫ(s))

W (q)(gǫ(s))(q −K(q − ψ(1))e−gǫ(s))
on (−∞, ǫ) (4.25)

If X is of bounded variation, we informally expect from the general theory that

Uǫ satisfies the first two equations of (4.22). Additionally, the principle of continuous

fit [1, 32] suggests that the system should be complemented by

lim
x↓s−gǫ(s)

Uǫ(x, s) = es −Kes−gǫ(s) (continuous fit).

A very similar argument as above produces the same candidate value function and the

same ordinary differential equation for gǫ.

It remains to check that the heuristic argument presented above leads to the solution

of (4.5) – this is essentially the content of Theorem 4.5.
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4.7 Proofs

Proof of Lemma 4.2. Using the assumed regularity of W (q) and relation (4.10) in the

second equality one sees that

f ′(z) = (q −K(q − ψ(1))e−z)(W (q)(z)−W (q)′(z))

=
(

q −K(q − ψ(1))e−z
)

eΦ(q)z
(

WΦ(q)(z)(1 − Φ(q))−W ′
Φ(q)(z)

)

.

Since Φ(q) > 1, it holds that WΦ(q)(z)(1 − Φ(q)) −W ′
Φ(q)(z) < 0 for z > 0 and hence

the stated monotonicity properties of f follow from the monotonicity properties of the

map z 7→ q −K(q − ψ(1))e−z . As for the behaviour of f(z) for large z, we infer from

Lemma 3.3 in [20] that

lim
z→∞

f(z)/(qW (q)(z)) = Φ(q)−1 − 1. (4.26)

Again using (4.10), we haveW (q)(z) = eΦ(q)zWΦ(q)(z) which tends to infinity as z → ∞.

As Φ(q) > 1, we conclude that limz→∞ f(z) = −∞.

Proof of Lemma 4.3.

(a) First suppose that X has paths of unbounded variation. By (4.11) this neces-

sarily means that W (q)(0+) = 0. Thus we see that f(0+) = 1 and the existence of a

unique root k∗ > 0 of f(z) = 0 is guaranteed by Lemma 4.2 and the intermediate value

theorem. Moreover, one needs to check whether k∗ > η whenever η > 0. Since k∗ is a

root of f(z) = 0, we have

Z(q)(k∗)

W (q)(k∗)
= q −K(q − ψ(1))e−k

∗

. (4.27)

Since the map z 7→ Z(q)(z)/W (q)(z), z > 0, is decreasing (cf. equation (45) of [20]) and

because of Lemma 3.3 in [20], the left-hand side of (4.27) is (strictly) bounded below

by q/Φ(q). Hence, after some algebra, one sees that

k∗ > log

(

K
Φ(q)

q

q − ψ(1)

Φ(q)− 1

)

= η.

Now suppose that X has paths of finite variation and d > q −K(q −ψ(1)). In this

case we see that f(0+) > 0. Using Lemma 4.2 in conjunction with the intermediate

value theorem shows again that there exists a unique root k∗ > 0 of f(z) = 0. The fact

that k∗ > η whenever η > 0 follows as above.

(b) The fact that 0 < d ≤ q−K(q−ψ(1)) implies on the one hand that f(0+) ≤ 0

and on the other hand that K < q/(q − ψ(1)). By Lemma 4.2 we therefore have

f(z) < 0 for z > 0. To conclude that k∗ = 0 it remains to check that η ≤ 0. Since
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d ≤ q −K(q − ψ(1)) we have K ≤ (q − d)/(q − ψ(1)). Combining this with ψ(1) < d

[see (4.8)] we get

η = log
(

K
Φ(q)

q

q − ψ(1)

Φ(q)− 1

)

≤ log
(Φ(q)

q

q − d

Φ(q)− 1

)

≤ log
(Φ(q)

q

q − ψ(1)

Φ(q)− 1

)

.

It now follows by (4.15) that η ≤ 0.

(c) First assume that q < ψ(1) and assume for a contradiction that there exists a

z0 > η ∨ 0 such that f(z0) ≤ 0. Since Z(q)(z0)/W
(q)(z0) is bounded below by q/Φ(q)

[as explained in (a)], it follows that

q

Φ(q)
< q −K(q − ψ(1))e−z0

or, after some straightforward algebra and using that q < ψ(1),

z0 < log

(

K
Φ(q)

q

q − ψ(1)

Φ(q)− 1

)

= η.

This is a contraction to z0 ≥ η ∨ 0 and hence f(z) > 0 for z > η ∨ 0. In other words,

k∗ = ∞. Finally, if q = ψ(1), we have f(z) = Z(q)(z) − qW (q)(z) > 0 for z > 0 by

equation (42) of [20] and hence again k∗ = ∞.

Proof of Lemma 4.4. The proof is very similar to the proof of Lemma 4.1 in [29]. The

idea is to construct the solution gǫ by defining a suitable bijection from (η ∨ 0, k∗) to

(−∞, ǫ) whose inverse satisfies the differential equation and the boundary conditions.

We will present the case when q > ψ(1) and X ∈ Hq,K . The case when q ≤ ψ(1) follows

analogously to the proof of Lemma 4.1 in [29].

Assume that q > ψ(1) and X ∈ Hq,K. It follows from Lemma 4.2 and 4.3 that

k∗ ∈ (η ∨ 0,∞) and that the function

s 7→ h(s) := 1− Z(q)(s)

W (q)(s)(q −K(q − ψ(1))e−s)

is strictly negative on (η∨0, k∗). Moreover, lims↓η∨0 h(s) ∈ [−∞, 0) and lims↑k∗ h(s) = 0.

These properties imply that the function H : (η ∨ 0, k∗) → (−∞, ǫ) defined by

H(s) := ǫ+

∫ s

η∨0

1

h(u)
du = ǫ−

∫ s

η∨0

W (q)(u)(q −K(q − ψ(1))e−u)

f(u)
du

is strictly decreasing. If we can show that the integral tends to ∞ as s approaches k∗,

we could deduce that H is a bijection from (η∨0, k∗) to (−∞, ǫ). Indeed, by l’Hôspital’s

rule and due to the fact that f ′(k∗) < 0 we have

lim
s↑k∗

k∗ − s

f(s)
=

−1

f ′(k∗)
=: c > 0.
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Hence there exists a δ > 0 and s0 > η ∨ 0 such that c− δ > 0 and

1

f(s)
>

c− δ

k∗ − s
for s0 < s < k∗.

Thus it follows that

lim
s↑k∗

H(s) ≤ ǫ− (c− δ) lim
s↑k∗

∫ s

s0

W (q)(u)(q −K(q − ψ(1))e−u)

k∗ − u
du = −∞.

The discussion above permits us to define gǫ := H−1 ∈ C1((−∞, ǫ); (η ∨ 0, k∗)). In

particular, differentiating gǫ gives

g′ǫ(s) =
1

H ′(gǫ(s))
= 1− Z(q)(gǫ(s))

qW (q)(gǫ(s))(q −K(q − ψ(1))e−gǫ(s))

for s ∈ (−∞, ǫ), and gǫ satisfies lims→−∞ gǫ(s) = k∗ and lims↑ǫ gǫ(s) = η ∨ 0 by

construction. Finally, uniqueness follows as in the last part of the proof of Lemma 4.1

in [29].

Proof of Theorem 4.5. Define for (x, s) ∈ E the function

Vǫ(x, s) :=







eǫZ(q)(x− x∗ǫ)−KexZ
(q−ψ(1))
1 (x− x∗ǫ ), s ≥ ǫ,

esZ(q)(x− s+ gǫ(s))−KexZ
(q−ψ(1))
1 (x− s+ gǫ(s)), s < ǫ.

Because of the infinite horizon and Markovian claim structure of (4.5) it is enough to

establish the following three results whose proofs are given below:

Lemma 4.8. We have Vǫ(x, s) ≥ (es∧ǫ −Kex)+ for all (x, s) ∈ E.

Lemma 4.9. The process e−qtVǫ(Xt,Xt), t ≥ 0, is a right-continuous Px,s-supermar-

tingale for (x, s) ∈ E.

Lemma 4.10. We have Vǫ(x, s) = Ex,s
[

e−qρ
∗

ǫ
(

eXρ∗ǫ
∧ǫ −KeXρ∗ǫ

)+]
for all (x, s) ∈ E.

To see why these three results suffice, note that Lemmas 4.8 and 4.9 together with

Fatou’s lemma in the second inequality and Doob’s stopping theorem in the third

inequality show that for τ ∈ M and (x, s) ∈ E,

Ex,s
[

e−qτ
(

eXτ∧ǫ −KeXτ
)+] ≤ Ex,s

[

e−qτVǫ(Xτ ,Xτ )
]

≤ lim inf
t→∞

Ex,s
[

e−q(t∧τ)Vǫ(Xt∧τ ,X t∧τ )
]

≤ Vǫ(x, s).

In view of Lemma 4.10 this implies V ∗
ǫ = Vǫ and that ρ∗ǫ is optimal.
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Proof of Lemma 4.8. Choosing τ = 0 in Proposition 4.1 shows that

Vǫ(x, s) ≥ (eǫ −Kex)+

for (x, s) ∈ E such that s ≥ ǫ. Hence, we can restrict ourselves to proving the assertion

for x ≤ s < ǫ.

As for a first step, we claim that

gǫ(s) ≥ η ∨ 0 ≥ log(K) ∨ 0, s ∈ (−∞, ǫ). (4.28)

If q > ψ(1) and X ∈ Hq,K or q ≤ ψ(1) then the first inequality in (4.28) holds by

construction of gǫ; see Lemma 4.4. On the other hand, if q > ψ(1) and X ∈ G \ Hq,K ,

we need to show that η ≤ 0 for the first inequality to be true, and this was done in

the proof of part (b) of Lemma 4.3. The second inequality follows by definition of η

and (4.15).

Next, using (4.10) in the first equality and a change of variables in the second

equality, we may rewrite Vǫ(x, s) as

esZ(q)(x− s+ gǫ(s))−KexZ
(q−ψ(1))
1 (x− s+ gǫ(s)) (4.29)

= es −Kex + qes
∫ x−s+gǫ(s)

0
W (q)(y) dy

−Kex(q − ψ(1))

∫ x−s+gǫ(s)

0
e−yW (q)(y) dy

= es −Kex + es
∫ gǫ(s)

s−x
W (q)(y + x− s)

(

q −K(q − ψ(1))e−y
)

dy,

where we understand the integral on the right-hand side not to be present whenever

s − x ≥ gǫ(x). In order to prove the assertion, we need some more preparation. The

function y 7→ q −K(q − ψ(1))e−y , y ≥ 0, is strictly negative on [0, z∗ ∨ 0) and positive

on [z∗ ∨ 0,∞), where

z∗ = log(K) + log

(

(q − ψ(1)) ∨ 0

q

)

.

Here we understand log(0) = −∞. Moreover, observe that

z∗ ∨ 0 ≤ η ∨ 0. (4.30)

This is clear if q ≤ ψ(1), and if q > ψ(1) we need to show that z∗ ≥ 0 implies η ≥ z∗.

Indeed, by definition of η, we have

q −K(q − ψ(1))e−η = q/Φ(q) > 0
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and therefore, by definition of z∗, it follows that η > z∗.

We can finally prove the statement of the lemma, namely that the right-hand side

of (4.29) is greater or equal to (es −Kex)+. If η ∨ 0 ≤ s − x, we see from (4.28) that

s− x ≥ log(K) ∨ 0 which together with (4.30) implies that

Vǫ(x, s) ≥ es −Kex = (es −Kex)+.

On the other hand, if 0 ≤ s − x < η (whenever η > 0), the situation is slightly more

complicated as the integrand on the right-hand side of (4.29) might change sign (if

0 < z∗ < η) and it is not clear how much the negative and positive parts contribute.

To resolve this difficulty, we reduce the problem to an estimate obtained from Propo-

sition 4.1. Specifically, it follows from Proposition 4.1 that

V ∗
ǫ (x̂, ǫ) = eǫZ(q)(x̂− x∗ǫ )−Kex̂Z

(q−ψ(1))
1 (x̂− x∗ǫ)

= eǫ −Kex̂ + eǫ
∫ x̂−x∗ǫ

0
W (q)(y)(q −K(q − ψ(1))ex̂−ǫ−y dy (4.31)

≥ (eǫ −Kex̂)+

for x∗ǫ ≤ x̂ ≤ ǫ. Now define δ := ǫ − s and x̃ := x + δ. In particular, note that

0 ≤ s−x < η = ǫ−x∗ǫ implies x∗ǫ < x̃ ≤ ǫ. Then, using the fact that gǫ(s) ≥ η ≥ z∗ ∨ 0

in the first and (4.31) with x̂ = x̃ in the second inequality we obtain

Vǫ(x, s)

= es −Kex + es
∫ x−s+gǫ(s)

0
W (q)(y)

(

q −K(q − ψ(1))ex−s−y
)

dy

= e−δ

(

eǫ −Kex̃ + eǫ
∫ x̃−ǫ+gǫ(s)

0
W (q)(y)

(

q −K(q − ψ(1))ex̃−ǫ−y
)

dy

)

≥ e−δ

(

eǫ −Kex̃ + eǫ
∫ x̃−ǫ+η

0
W (q)(y)

(

q −K(q − ψ(1))ex̃−ǫ−y
)

dy

)

= e−δ

(

eǫ −Kex̃ + eǫ
∫ x̃−x∗ǫ

0
W (q)(y)

(

q −K(q − ψ(1))ex̃−ǫ−y
)

dy

)

≥ e−δ(eǫ −Kex̃)+ = (es −Kex)+.

This completes the proof.

Proof of Lemma 4.9. We only prove the result in detail whenX has paths of unbounded

variation. If it has paths of bounded variation the proof is similar and we restrict our-

selves to only pointing out major changes.
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Unbounded variation case: As a first step we prove that

e−q(t∧τ
+
ǫ )Vǫ(Xt∧τ+ǫ

,X t∧τ+ǫ
), t ≥ 0, (4.32)

is a right-continuous Px,s-supermartingale for all (x, s) ∈ E such that s < ǫ. Note that

in this case Z(q) ∈ C1(R) ∩ C2(R \ {0}) and hence

hv(x) := evxZ(q−ψ(v))
v (x)

is in C1(R) ∩C2(R \ {0}), where v ≥ 0. Now let Γ be the infinitesimal generator of X

under P0 and formally define the function Γhv : R \ {0} → R by

Γhv(x) := −γh′v(x) +
σ2

2
h′′v(x)

+

∫

(−∞,0)

(

hv(x+ y)− hv(x)− yh′v(x)1{y≥−1}

)

Π(dy).

The regularity of hv together with Taylor’s theorem allows one to show that the quantity

Γhv(x) is well defined for x > 0. Moreover, for x < 0, we have hv(x) = evx and hence

Γhv(x) is well defined too. Applying an appropriate version of the Itô–Meyer formula

(cf. Theorem 71, Chapter IV of [36]) to e−qthv(Xt), we find that

e−q(t∧τ
−

0 ∧τ+
b
)hv(Xt∧τ−0 ∧τ+

b
)−

∫ t∧τ−0 ∧τ+
b

0
e−qu(Γ− q)hv(Xu) du

is a Px-martingale for x ∈ (0, b). The martingale property of the first term (see Sec-

tion 4.8) then implies that

(Γ− q)hv(x) = 0, x ∈ (0, b).

Moreover, one may show that Γevy = ψ(v)evy for y ∈ R by taking Laplace transforms

on both sides. Hence it follows for x < 0 that

(Γ− q)hv(x) = (Γ− q + ψ(v) − ψ(v))evx = −(q − ψ(v))evx.

Next, fix (x, s) ∈ E such that x ≤ s < ǫ and define Yt := Xt −X t + gǫ(X t), t ≥ 0,

which is a semimartingale. We then have

e−q(t∧τ
+
ǫ )Vǫ(Xt∧τ+ǫ

,X t∧τ+ǫ
)

= e−q(t∧τ
+
ǫ )

(

e
X

t∧τ
+
ǫ h0(Yt∧τ+ǫ )−Ke

X
t∧τ

+
ǫ
−gǫ(X

t∧τ
+
ǫ
)
h1(Yt∧τ+ǫ )

)

Applying an appropriate version of the Itô–Meyer formula (cf. Theorem 71, Chapter IV

of [36]) to h0(Yt∧τ+ǫ ) and h1(Yt∧τ+ǫ ) (see [23, 29] for a similar argument) and then using
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stochastic integration by parts for semimartingales (cf. Corollary 2 of Theorem 22,

Chapter II of [36]) one obtains, Px,s-a.s.,

e−q(t∧τ
+
ǫ )Vǫ(Xt∧τ+ǫ

,Xt∧τ+ǫ
) = Vǫ(x, s) + M̃t∧τ+ǫ

+

∫ t∧τ+ǫ

0
e−qu+Xu ×

(

Γh0(Yu)− qh0(Yu)−Ke−gǫ(Xu)
(

Γh1(Yu)− qh1(Yu)
)

)

du (4.33)

+

∫ t∧τ+ǫ

0
e−qu+Xu

[

h0(Yu) + h′0(Yu)(g
′
ǫ(Xu)− 1)

−Ke−gǫ(Xu)
(

− h1(Yu) + h′1(Yu)
)

(g′ǫ(Xu)− 1)

]

dXu,

for some martingale M̃ whose specific form is irrelevant. We claim that the first integral

in (4.33) is a decreasing process. Indeed, for x > 0 we have Γh0(x) − qh0(x) = 0 and

Γh1(x) − qh1(x) = 0. Moreover, for x < 0, it holds Γh0(x) − qh0(x) = −q and

Γh1(x)− qh1(x) = −(q−ψ(1))ex. Hence the first integral is nonpositive provided that

−q +Ke−gǫ(Xt)(q − ψ(1))eYt ≤ 0 on {Yt ≤ 0}.

This is clear if q ≤ ψ(1). When q > ψ(1), recall from (4.28) that gǫ(s) ≥ η∨ 0 and thus

−q +Ke−gǫ(Xt)(q − ψ(1))eYt ≤ −q +Ke−(0∨η)(q − ψ(1)).

By (4.30) the right-hand side is smaller than zero and hence the first integral in (4.33)

is a decreasing process.

The second integral in (4.33) vanishes since the process Xu only increments when

Xu = Xu and by definition of gǫ. Thus, the process e−q(t∧τ
+
ǫ )Vǫ(Xt∧τ+ǫ

,X t∧τ+ǫ
), t ≥ 0,

can be written as the sum of an initial value, a martingale and a decreasing process.

In other words, it is a Px,s-supermartingale.

Finally, with all the preparation done, we can now prove the assertion, that is, show

that the process e−qtVǫ(Xt,X t), t ≥ 0, is a right-continuous Px,s-supermartingale for

(x, s) ∈ E. In view of Proposition 4.1 it suffices to assume that (x, s) ∈ E such that

s < ǫ. Moreover, by the Markov property (see [23, 29] for a similar argument) it is

enough to show that

Ex,s[e
−qtVǫ(Xt,X t)] ≤ Vǫ(x, s). (4.34)

Using the strong Markov property and Proposition 4.1 we now obtain

Ex,s
[

e−qtVǫ(Xt,X t)
∣

∣Fτ+ǫ
]

= e−qtVǫ(Xt,X t)1{t<τ+ǫ }

+Ex,s
[

e−qtVǫ(Xt,X t)
∣

∣Fτ+ǫ
]

1{t≥τ+ǫ }
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= e−qtVǫ(Xt,X t)1{t<τ+ǫ }

+e−qτ
+
ǫ Eǫ,ǫ

[

e−qtVǫ(Xt,X t)
]

1{t≥τ+ǫ }

≤ e−q(t∧τ
+
ǫ )Vǫ(Xt∧τ+ǫ

,Xt∧τ+ǫ
).

Taking expectations on both sides and using that the process in (4.32) is a Px,s- super-

martingale we get

Ex,s[e
−qtVǫ(Xt,X t)] ≤ Ex,s

[

e−q(t∧τ
+
ǫ )Vǫ(Xt∧τ+ǫ

,X t∧τ+ǫ
)
]

≤ Vǫ(x, s).

This completes the proof in the unbounded variation case.

Bounded variation case: If X has bounded variation, then the Itô–Meyer formula is

nothing more than an appropriate version of the change of variable formula for Stieltjes

integrals and the rest of the proof follows the same line of reasoning as above. The only

change worth mentioning is that the generator of X takes a different form. Specifically,

one has to work with

Γf̃(x) = df̃ ′(x) +

∫

(−∞,0)

(

f̃(x+ y)− f̃(x)
)

Π(dy)

for appropriate f̃ .

Proof of Lemma 4.10. The assertion is again true for (x, s) ∈ E such that s ≥ ǫ by

Proposition 4.1. Thus, let (x, s) ∈ E such that s < ǫ. The assertion is clear if

x− s+ gǫ(s) ≤ 0. Hence, suppose that s < ǫ and x− s+ gǫ(s) > 0. Replacing t∧ τ+ǫ by

t∧ τ+ǫ ∧ ρ∗ǫ in (4.33) and recalling that Γh0(y) = qh0(y) and Γh1(y) = qh1(y) for y > 0

shows that

Ex,s
[

e−q(t∧τ
+
ǫ ∧ρ∗ǫ )Vǫ(Xt∧τ+ǫ ∧ρ∗ǫ

,X t∧τ+ǫ ∧ρ∗ǫ
)
]

= Vǫ(x, s)

and hence by dominated convergence

Ex,s
[

e−q(τ
+
ǫ ∧ρ∗ǫ )Vǫ(Xτ+ǫ ∧ρ∗ǫ

,Xτ+ǫ ∧ρ∗ǫ
)
]

= Vǫ(x, s). (4.35)

Using the strong Markov property one may now deduce that

Ex,s
[

e−qρ
∗

ǫVǫ(Xρ∗ǫ ,Xρ∗ǫ )
∣

∣Fτ+ǫ
]

= e−q(τ
+
ǫ ∧ρ∗ǫ )Vǫ(Xτ+ǫ ∧ρ∗ǫ

,Xτ+ǫ ∧ρ∗ǫ
)

and thus taking expectations on both sides and using (4.35) gives the desired result.

Proof of Corollary 4.7.
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(i) Since q > ψ(1), Lemma A.1 of [23] implies that

Ex,s

[

sup
0≤t<∞

e−qt
(

eXt −KeXt
)+
]

≤ Ex,s

[

sup
0≤t<∞

e−qt+Xt

]

<∞ (4.36)

for (x, s) ∈ E.

For ǫ ∈ R, let V ∗
ǫ , ρ

∗
ǫ and gǫ be as in Theorem 4.5 and V ∗

∞ and ρ∗∞ as stated in

Corollary 4.7. It follows by construction of gǫ that limǫ↑∞ gǫ(s) = k∗ ∈ [0,∞) for s ∈ R

which in turn implies that limǫ↑∞ ρ∗ǫ = ρ∗∞, Px,s-a.s., for all (x, s) ∈ E. Moreover, it

is clear that limǫ↑∞ V ∗
ǫ (x, s) = V ∗

∞(x, s) due to the continuity of scale functions. Next,

we claim that:

(i) V ∗
∞(x, s) ≥ (es −Kex)+ for (x, s) ∈ E;

(ii) e−qtV ∗
∞(Xt,X t), t ≥ 0, is a Px,s-supermartingale for (x, s) ∈ E;

(iii) V ∗
∞(x, s) = Ex,s

[

e−qρ
∗

∞

(

eXρ∗∞ −KeXρ∗∞

)+]
for (x, s) ∈ E.

Condition (i) is satisfied since V ∗
ǫ (x, s) ≥ (es −Kex)+ for (x, s) ∈ E by Theorem 4.5

and the inequality remains valid in the limit. To prove (ii), use Fatou’s lemma and

Lemma 4.9 to show that

Ex,s[e
−qtV ∗

∞(Xt,X t)] ≤ lim inf
ǫ→∞

[e−qtV ∗
ǫ (Xt,X t)]

≤ lim inf
ǫ→∞

V ∗
ǫ (x, s)

= V ∗
∞(x, s)

for (x, s) ∈ E. By the Markov property, this inequality implies the desired Px,s-

supermartingale property (see [23, 29] for a similar argument). As for (iii), using (4.36)

and dominated convergence we deduce that

V ∗
∞(x, s) = lim

ǫ→∞
V ∗
ǫ (x, s)

= lim
ǫ→∞

Ex,s
[

e−qρ
∗

ǫ
(

eXρ∗ǫ
∧ǫ −KeXρ∗ǫ

)+]

= Ex,s
[

e−qρ
∗

∞

(

eXρ∗∞ −KeXρ∗∞

)+]

for (x, s) ∈ E. The proof of the corollary is now completed by using (i)–(iii) in the

same way as in the proof of Theorem 4.5.

(ii) For ǫ ∈ R, let V ∗
ǫ , ρ

∗
ǫ and gǫ be as in Theorem 4.5. It follows by construction of

gǫ that limǫ↑∞ gǫ(s) = ∞ and limǫ↑∞ V ∗
ǫ (x, s) = ∞ for x ≤ s and hence

lim
ǫ↑∞

Ex,s
[

e−qτ
∗

ǫ
(

eXτ∗ǫ −KeXτ∗ǫ

)]

= lim
ǫ↑∞

Vǫ(x, s) = ∞.

This completes the proof.
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4.8 Appendix

The goal of this section is to prove an auxiliary result that was used in the proof of

Lemma 4.9. More precisely, for q, v ≥ 0, we claim that the process

e−q(t∧τ
−

0 ∧τ+b )hv(Xt∧τ−0 ∧τ+
b
), t ≥ 0,

is a Px-martingale for x ∈ (0, b). To see this, we need to recall from Section 3.3. of [20]

the identity

f1(x) := Ex
[

e
−qτ−0 +vX

τ
−

0 1{τ−0 <∞}

]

= evx
(

Z(q−ψ(v))
v (x)− q − ψ(v)

Φ(q)− v
W (q−ψ(v))
v (x)

)

,

where x ∈ R. Applying the same technique (analytic extension) as in Section 3.3 of [20],

one may also show that, for q, v ≥ 0 and x ∈ (0, b),

f2(x) := Ex
[

e
−qτ+

b
+vX

τ
+
b 1{τ+

b
<τ−0 }

]

= evx
W

(q−ψ(v))
v (x)

W
(q−ψ(v))
v (b)

.

An application of the Markov property yields for t ≥ 0,

Ex
[

e−qτ
−

0 f1(Xτ−0
)1{τ−0 <∞}|Ft

]

= e−qτ
−

0 f1(Xτ−0
)1{τ−0 <t}

+e−qtEXt

[

e−qτ
−

0 f1(Xτ−0
)1{τ−0 <∞}]1{τ−0 >t}

= e−qτ
−

0 f1(Xτ−0
)1{τ−0 <t}

+e−qtEXt

[

e
−qτ−0 +vX

τ
−

0 1{τ−0 <∞}]1{τ−0 >t}

= e−q(t∧τ
−

0 )f1(Xt∧τ−0
),

which shows that the process e−q(t∧τ
−

0 )f1(Xt∧τ−0
), t ≥ 0, is a Px-martingale for x > 0.

By Doob’s optional stopping theorem it then follows that e−q(t∧τ
−

0 ∧τ+
b
)f1(Xt∧τ−0 ∧τ+

b
),

t ≥ 0, is a Px-martingale for x ∈ (0, b). A similar argument as above shows that

e−q(t∧τ
−

0 ∧τ+
b
)f2(Xt∧τ−0 ∧τ+

b
), t ≥ 0, is a Px-martingale for x ∈ (0, b) as well and hence

appropriately combining the two martingales completes the proof.
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CHAPTER 5

PREDICTION OF GLOBAL EXTREMA

Motivated by the recent results in [15], we study the problem of predict-

ing the time at which a positive self-similar Markov process X attains

its pathwise global supremum or infimum. In particular, we show that

the simple solution of the prediction problem found in [15] for the case

when X is a d-dimensional Bessel process for d > 2 can be seen as a

consequence of the self-similarity of X.

5.1 Introduction

This chapter addresses the question of predicting the time when a positive self-similar

Markov process (pssMp) attains its pathwise global supremum or infimum. We shall

spend some time to set up some notation in order to formulate the problem rigorously.

A positive self-similar Markov process X = {Xt : t ≥ 0} with self-similarity index

α > 0 is a [0,∞)-valued standard Markov process defined on a filtered probability

space (Ω,G,G := {Gt : t ≥ 0}, {Px : x > 0}), which has 0 as an absorbing state and

which satisfies the scaling property: for every x, c > 0,

the law of {cXc−αt : t ≥ 0} under Px is equal to the law of X under Pcx.

Here, we mean “standard” in the sense that G satisfies the natural conditions (cf. [7],

Section 1.3, page 39) and X is strong Markov with càdlàg and quasi-left-continuous

paths. Lamperti [24] proved in a seminal paper that the set of pssMps splits into

three exhaustive classes which can be distinguished from each other by comparing

their hitting time of 0, that is, ζ := inf{t > 0 : Xt = 0}. The classification reads as

follows:

(i) Px[ζ = ∞] = 1 for all starting points x > 0,
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(ii) Px[ζ <∞,Xζ− = 0] = 1 for all starting points x > 0,

(iii) Px[ζ <∞,Xζ− > 0] = 1 for all starting points x > 0.

In other words, a pssMp X starting at x > 0 either never hits zero, hits zero continu-

ously or hits zero by jumping onto it. The two subclasses of pssMps that are used here

are

C+ :=
{

X is spectrally negative with non-monotone paths and

either of type (ii) or (iii)
}

,

C− :=
{

X is spectrally positive with non-monotone paths and

either of type (i) and drifting to ∞ or of type (iii)
}

.

By spectrally negative and spectrally positive we mean that the trajectories of X only

have downward or upward jumps respectively.

One of the aims here is to answer the following question: Given X ∈ C+, is it

possible to stop “as close as possible” to the time at which X “attains” its supremum?

In more mathematical terms, define

Θ := sup{t ≥ 0 : Xt = X∞} = sup{0 ≤ t < ζ : Xt = X∞},

where X = {X t : t ≥ 0} is the running maximum process X t := sup0≤u≤tXu, t ≥ 0.

By definition of C+, it follows that the set {t ≥ 0 : Xt = X∞} is a singleton; see

Subsection 5.2.3 for details. We are interested in the optimal stopping problem

inf
τ
Ex[|Θ − τ | −Θ], (5.1)

where x > 0 and the infimum is taken over a certain set of G-stopping times τ which

is specified later. The term “attains” is used in a loose sense here. Indeed, if X has

negative jumps it might happen that the supremum is never attained. However, the

above definition ensures that we have XΘ = Xζ on the event {XΘ ≥ XΘ−} while

XΘ− = Xζ on the event {XΘ < XΘ−}.
Analogously, one may try to stop “as close as possible” to the time at which a

process X ∈ C− “attains” its infimum before hitting zero (if at all). To this end, let

Θ̂ := sup{0 ≤ t < ζ : Xt = Xt},

where X = {X t : t ≥ 0} the running minimum process Xt := inf0≤u≤tXu, t ≥ 0.

Again, by definition of C−, the set {0 ≤ t < ζ : Xt = X t} a singleton; see Subsec-

tion 5.2.3 for details. If X has positive jumps, the word “attains” is used in a loose

sense analogously to above. Stopping as close as possible to Θ̂ then leads to solving
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the optimal stopping problem

inf
τ
Ex[|Θ̂ − τ | − Θ̂], (5.2)

where x > 0 and the infimum is taken over a certain set of G-stopping times τ which

is specified later.

Our interest in (5.1) and (5.2) was raised due to [15] in which the authors solve (5.2)

under the assumption that X is a diffusion in (0,∞) such that limt→∞Xt = ∞. Their

result states that the optimal stopping time is given by

ρ∗1 = inf{t ≥ 0 : Xt ≥ f∗(Xt)}, (5.3)

where f∗ is the minimal solution to a certain differential equation. In particular, when

X is a d-dimensional Bessel process with d > 2, it is shown that f∗(z) = λ∗1z, z ≥ 0,

for some constant λ∗1 > 1, which is a root of some polynomial. Due to the fact that

the class of Bessel processes for d > 2 belongs to the class of pssMps with α = 2, it is

possible to express the optimal stopping time (5.3) (up to a time-change) in terms of

the underlying Lamperti representation ξ (of X) reflected at its infimum. This raises

the suspicion that the simple form of (5.3) in the Bessel case could be a consequence of

the self-similarity of X and suggests that (5.2) (or an analogue of it) can also be solved

for the class of pssMps.

In this chapter we show that the speculations in the previous paragraph are indeed

true. Specifically, we prove that the optimal stopping times in (5.1) and (5.2) are of

the simple form

τ∗ = inf{t ≥ 0 : Xt ≥ K∗X t} and τ̂∗ = inf{t ≥ 0 : Xt ≤ K̂∗X t}

for some constants 0 < K∗ < 1 and K̂∗ > 1 respectively. As alluded to above, the

key step is to reduce (5.1) and (5.2) to a one-dimensional problem with the help of the

so-called Lamperti transformation [24] which links pssMps to Lévy processes.

Finally, to conclude we discuss two issues. Firstly, how one might get rid of the

assumption of one-sided jumps (see Section 5.8) and, secondly, we explain how the two

prediction problems fit into the general context of this thesis; see Section 5.9.

5.2 Preliminaries

5.2.1 Killed Lévy processes

A process ξ with values in R ∪ {−∞} is called a Lévy process killed at rate q ≥ 0 if ξ

starts at 0, has stationary and independent increments and k := inf{t > 0 : ξt = −∞}
has an exponential distribution with parameter q ≥ 0. In the case q = 0 it is understood
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that P[k = ∞] = 1, that is, no killing. It is well known that a Lévy process X killed

at rate q is characterised by its Lévy triplet (γ, σ,Π) and the killing rate q, where

σ ≥ 0, γ ∈ R and Π is a measure on R satisfying the condition
∫

R
(1 ∧ x2)Π(dx) < ∞.

The Laplace exponent of ξ under P is defined by

ψ(θ) := log(E[eθξ1 ])

for any θ ∈ R such that ψ(θ) <∞. It is known that (cf. Theorem 3.6 in [21]), for θ ∈ R,

E[eθξt ] <∞ for all t ≥ 0 ⇐⇒
∫

|x|≥1
eθxΠ(dx) <∞, (5.4)

and in this case we have

ψ(θ) = −q − γθ +
1

2
σ2θ2 +

∫

R

(

eθx − 1− θx1{|x|<1}

)

Π(dx). (5.5)

In particular, if ξ is of bounded variation, (5.5) may be written as

ψ(θ) = dθ −
∫

R

(1− eθx)Π(dx)

for some d ∈ R.

Finally, for any killed Lévy process (starting at zero) and any v ∈ R with ψ(v) <∞
the process

exp(vξt − ψ(v)t)1{t<k} , t ≥ 0,

is a P-martingale. Hence, we may further define the family of measures {Pv} with

Radon-Nikodym derivatives

dPv

dP

∣

∣

∣

∣

Ft

= exp(vξt − ψ(v)t)1{t<k}. (5.6)

In particular, under Pv the process ξ is a Lévy process and its Laplace exponent is given

by ψv(θ) = ψ(v + θ)− ψ(v) and infinite lifetime, that is, Pv[k = ∞] = 1; cf. Theorem

3.9 in [21].

5.2.2 Scale functions

Suppose throughout this subsection that ξ is an unkilled spectrally negative Lévy pro-

cess (q = 0). Spectrally negative means that Π is concentrated on (−∞, 0) and thus ξ

only exhibits downward jumps. Observe that in this case, the Laplace exponent ψ(θ)

exists at least for θ ≥ 0 by (5.4). Its right-inverse is defined by

Φ(λ) := sup{θ ≥ 0 : ψ(θ) = λ}, λ ≥ 0.
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A special family of functions associated with unkilled spectrally negative Lévy processes

is that of scale functions (cf. [20, 21]) which are defined as follows. For η ≥ 0, the η-

scale function W (η) : R → [0,∞) is the unique function whose restriction to (0,∞) is

continuous and has Laplace transform

∫ ∞

0
e−θxW (η)(x) dx =

1

ψ(θ)− η
, θ > Φ(η),

and is defined to be identically zero for x ≤ 0. Further, we shall use the notation

W
(η)
v (x) to mean the η-scale function associated to X under Pv. For fixed x ≥ 0, it is

also possible to analytically extend η 7→W (η)(x) to η ∈ C. A useful relation that links

the different scale functions is (cf. Lemma 3.7 in [20])

W (η)(x) = evxW (η−ψ(v))
v (x) (5.7)

for v ∈ R such that ψ(v) <∞ and η ∈ C. Moreover, the following regularity properties

of scale functions are known; cf. Sections 2.3 and 3.1 of [20].

Smoothness: For all η ≥ 0,

W (η)|(0,∞) ∈



















C1(0,∞), if X is of bounded variation and Π has no atoms,

C1(0,∞), if X is of unbounded variation and σ = 0,

C2(0,∞), σ > 0.

(5.8)

Continuity at the origin: For all η ≥ 0,

W (q)(0+) =







d−1, if X is of bounded variation,

0, if X is of unbounded variation.
(5.9)

Right-derivative at the origin: For all q ≥ 0,

W
(q)′
+ (0+) =







q+Π(−∞,0)
d2

, if σ = 0 and Π(−∞, 0) <∞,

2
σ2
, if σ > 0 or Π(−∞, 0) = ∞,

(5.10)

where we understand the second case to be +∞ when σ = 0.

The second scale function is Z
(η)
v and defined as follows. For v ∈ R such that

ψ(v) <∞ and η ≥ 0 we define Z
(η)
v : R −→ [1,∞) by

Z(η)
v (x) = 1 + η

∫ x

0
W (η)
v (z) dz. (5.11)
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5.2.3 The Lamperti transformation

Lamperti’s main result in [24] asserts that any pssMp X may, up to its first hitting time

of zero, be expressed as the exponential of a time-changed Lévy process. We will now

explain this in more detail. Instead of writing (X,Px) to denote the positive self-similar

Markov process starting at x > 0, we shall sometimes write X(x) = {X(x)
t : t ≥ 0}.

Similarly, we write ζ(x) = inf{t > 0 : X
(x)
t = 0}.

For fixed x > 0 define

ϕ(t) :=

∫ xαt

0
(X(x)

s )−α ds, t < x−αζ(x).

It will be important to understand the behaviour of ϕ(x−αζ−) := limt↑ζ ϕ(x
−αt). In

particular, note that the distribution of ϕ(x−αζ−) does not depend on x > 0. Moreover,

the following result is known; see Lemma 13.3 in [21].

Lemma 5.1. In the case that ζ = ∞ or that {ζ < ∞ and Xζ− = 0}, we have

Px[ϕ(x
−αζ−) = ∞] = 1, for all x > 0. In the case that ζ < ∞ and Xζ− > 0, we

have that, under Px, ϕ(x
−αζ−) is exponentially distributed with a parameter that does

not depend on the value of x > 0.

As the distribution of ϕ(x−αζ(x)−) is independent of x, we will rename it e. When

e = ∞ almost surely we interpret it as an exponential distribution with parameter

zero. Now define the right-inverse of ϕ,

Iu := inf{0 < t < x−αζ(x) : ϕ(t) > u}, u ≥ 0.

Moreover, define the process ξ := {ξt : t ≥ 0} by setting, for x > 0,

ξt := log(XxαIt/x), 0 ≤ t < e

and ξt = −∞ for t ≥ e (in the case that e <∞). The main result in [24] states that a

pssMp is nothing else than a space and time-changed killed Lévy process.

Proposition 5.2 (Lamperti transformation). If X(x), x > 0, is a positive self-similar

Markov process with index of self-similarity α > 0, then it can be represented as

X
(x)
t = x exp(ξϕ(x−αt)), t ≥ 0,

and either

(i) ζ(x) = ∞ almost surely for all x > 0, in which case ξ is an unkilled Lévy process

satisfying lim supt↑∞ ξt = ∞, or

(ii) ζ(x) < ∞,X
(x)

ζ(x)−
= 0 almost surely for all x > 0, in which case ξ is an unkilled

Lévy process satisfying limt↑∞ ξt = −∞, or
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(iii) ζ(x) <∞,X
(x)

ζ(x)−
> 0 almost surely for all x > 0, in which case ξ is a killed Lévy

process.

Also note that we may identify

It =

∫ t

0
eαξs ds, t < e.

The version of the Lamperti transformation we have just given is Theorem 13.1

in [21], where one can also find a proof of it.

We conclude this subsection by explaining why the sets {t ≥ 0 : Xt = X∞} and

{0 ≤ t < ζ : Xt = Xt} mentioned in the introduction are singletons. By definition

of C+ and C− it is clear that both sets are non-empty, but they could potentially

contain more than one element. In view of the Lamperti transformation we see that

the aforementioned sets contain only a single element provided the same is true for

the sets {t ≥ 0 : ξt = sup0≤u<∞ ξu} and {0 ≤ t < e : ξt = inf0≤u<t ξu}, where ξ is

the underlying Lamperti representation of X in C+ and C− respectively. However, it

is known that local extrema (and hence global extrema) of Lévy processes are distinct

except for compound Poisson processes, see Proposition 4 in [6]. But for X in C+ or

C− the Lamperti transformation can never be a compound Poisson process and thus

the assertion follows.

5.3 Reformulation of problems and main results

5.3.1 Predicting the time at which the maximum is attained

Suppose throughout this subsection that X ∈ C+ with parameter of self-similarity

α > 0 and let ξ be its Lamperti representation which is a spectrally negative Lévy

process killed at some rate q ≥ 0 satisfying limt↑∞ ξt = −∞ whenever q = 0. For θ ≥ 0,

let ψ(θ) be the Laplace exponent of ξ and φ(θ) = q + ψ(θ) the Laplace exponent of ξ

unkilled. Denote by Φ the right-inverse of φ and note that Φ(q) > 0.

We begin our analysis with two steps that are almost identical to Lemmas 1 and 2

of [15].

Lemma 5.3. For any G-stopping time τ we have

|Θ− τ | = Θ+

∫ τ

0

(

21{Θ≤t} − 1
)

dt.

Lemma 5.4. For x > 0 and any G-stopping time τ with finite mean we have

Ex[|Θ− τ | −Θ] = Ex
[

∫ τ∧ζ

0
F (X t/Xt) dt] + Ex[(τ − ζ)1{τ>ζ}], (5.12)
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where F (y) = 1− 2y−Φ(q), y ≥ 1.

We are interested in minimising the expectation on the left-hand side of (5.12) over

the set M of all integrable G-stopping times τ . The requirement that τ is integrable

ensures that (5.12) is well defined. Taking into account the specific form of the right-

hand side of (5.12), one sees that for x > 0,

inf
τ∈M

Ex[|Θ − τ | −Θ] = inf
τ∈M

Ex
[

∫ τ∧ζ

0
F (X t/Xt) dt].

Although the stopping time ζ, which corresponds to waiting until X hits zero, might

not be optimal, it is a very natural stopping strategy and should belong toM. However,

not every X ∈ C+ is such that Ex[ζ] <∞. To see this, use the Lamperti transformation

together with Fubini’s theorem to obtain

Ex[ζ] = xαEx[

∫

e

0
eαξt dt]

= xα
∫ ∞

0
Ex[e

αξt1{t<e}] dt

= xα
∫ ∞

0
eψ(α)t dt

= xα
∫ ∞

0
e−qt+φ(α)t dt.

Hence X ∈ C+ satisfies Ex[ζ] <∞ if and only if the underlying Lamperti representation

ξ of X is such that ψ(α) < 0 or, equivalently, q > φ(α). Consequently, we need to

adapt C+ and define

C1
+ := {X is spectrally negative with non-monotone paths, and

either of type (ii) or (iii) and such that ζ is integrable}.

The criterion in terms of the Lamperti transformation above will be useful at a later

point when we consider examples and it is necessary to check whether a specific X

actually lies in C1
+ or not; see Section 5.6.

Remark 5.5. At this point one might wonder why we try to minimise E[|Θ− τ | −Θ]

rather than E[|Θ − τ |]. As our assumptions require ζ to be integrable, it follows that

Θ ≤ ζ is also integrable. Hence it does not really depend which of the two quantities

above we minimise. However, in order to be consistent with what follows in Subsec-

tion 5.3.2, we chose to minimise E[|Θ− τ | −Θ].

Summing up, for X ∈ C1
+ we are led to the optimal stopping problem

v(x, s) = inf
τ
Ex
[

∫ τ∧ζ

0
F ((s ∨Xt)/Xt) dt], 0 < x ≤ s, (5.13)
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where the infimum is taken over all G-stopping times τ . We are now in a position to

state our first main result.

Theorem 5.6. Let X ∈ C1
+ with index of self-similarity α > 0, in which case its

Lamperti representation ξ is a spectrally negative Lévy process killed at rate q ≥ 0.

Assume that ξ is such that the Lévy measure associated with it has no atoms whenever

ξ is of bounded variation. Moreover, recall that φ is the Laplace exponent of ξ unkilled

and Φ its right-inverse. Let W (·)(z) be the scale function associated with φ. Then the

solution of (5.13) is given by

v(x, s) = −
∫ x

K∗s
zα−1

(

1− 2
(z

s

)Φ(q)
)

W (q)(log(x/z)) dz

and τ∗ := inf{t ≥ 0 : Xt ≤ K∗(s ∨X t)}, where K∗ ∈ (0, 2
− 1

Φ(q) ) is the unique solution

to the equation (in K)

∫ log(1/K)

0
(1− 2e−Φ(q)z)W (q−φ(α))′

α (z) dz =W (q)(0) on (0, 1). (5.14)

Remark 5.7.

i) The right-hand side of (5.14) is equal to zero unless ξ is of bounded variation;

see (5.9).

ii) The assumption on the Lévy measure of ξ is purely technical and ensures that

the scale functions associated with ξ are continuously differentiable on (0,∞);

see (5.8).

This result is a consequence of the analysis in Sections 5.4 and 5.5. An explicit example

is provided in Section 5.6.

5.3.2 Predicting the time at which the minimum is attained

Suppose throughout this subsection that X ∈ C− with parameter of self-similarity

α > 0 and let ξ again be its Lamperti representation which is a spectrally positive

Lévy process killed at rate q ≥ 0 satisfying limt↑∞ ξt = ∞ whenever q = 0. Introduce

the dual ξ̂ = {ξ̂t : t ≥ 0} of ξ which is defined as

ξ̂t :=







−ξt, t < e,

−∞, t ≥ e,

where e = inf{t > 0 : ξt = −∞}. It follows that ξ̂ is a spectrally negative Lévy process

killed at rate q ≥ 0 satisfying limt↑∞ ξ̂t = −∞ whenever q = 0. For θ ≥ 0, let ψ̂ be the

Laplace exponent of ξ̂ and φ̂(θ) = q+ ψ̂(θ) the Laplace exponent of ξ̂ unkilled. Finally,
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denote by Φ̂ the right-inverse of φ̂ and note that Φ̂(q) > 0.

Analogously to Lemma 5.3 and 5.4, one can prove the following result.

Lemma 5.8. For x > 0 and any G-stopping time τ with finite mean we have

Ex[|Θ̂− τ | − Θ̂] = Ex
[

∫ τ∧ζ

0
F̂ (Xt/X t) dt] + Ex[(τ − ζ)1{τ>ζ}], (5.15)

where F̂ (y) := 1− 2y−Φ̂(q), y ≥ 1.

Now assume temporarily that X is of type (iii). In this case, the specific form of

the right-hand side of (5.15) shows again that for x > 0,

inf
τ∈M

Ex[|Θ̂ − τ | − Θ̂] = inf
τ∈M

Ex
[

∫ τ∧ζ

0
F̂ (Xt/X t) dt],

where M is the set of all integrable G-stopping times τ . As in Subsection 5.3.1, it

is natural to require that ζ ∈ M and we have a criterion in terms of the dual of

the Lamperti representation to check whether ζ ∈ M. Specifically, by the Lamperti

transformation and Fubini’s theorem we have

Ex[ζ] = xα
∫ ∞

0
Ex[e

αξt1{t<e}] dt = xα
∫ ∞

0
Ex[e

−αξ̂t1{t<e}] dt.

It follows that X ∈ C− satisfies Ex[ζ] <∞ if and only if the Laplace exponent ψ̂ exists

at −α and ψ̂(−α) < 0. This in turn is equivalent to saying that φ̂ exists at −α and

q > φ̂(−α).

Remark 5.9. Note that in Subsection 5.3.1 the integrability condition was used to

deduce that ψ(α) < 0, but existence of ψ(α) was not an issue as ξ was spectrally

negative and α > 0. Here, however, the integrability condition implies existence of ψ̂

at −α and ψ̂(−α) < 0.

On the other hand, if X is of type (i) with limt↑∞Xt = ∞, then ζ = ∞ and the

integrability condition makes no sense. In this case we understand the minimisation

of (5.15) over integrable τ ∈ M. Further, it is necessary to impose an additional con-

dition on X, namely that it is such that Laplace exponent of ξ̂ at −α exists. However,

note that in contrast to all the other cases ψ̂(−α) = φ̂(−α) > 0.

Following the discussion in the previous two paragraphs, we need to adapt C− and

define

C1
− := {X is spectrally positive and of type (i) with lim

t↑∞
Xt = ∞ such

that ψ̂ exists at −α or of type (iii) such that ζ is integrable}.
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Remark 5.10. In contrast to Subsection 5.3.1, if X ∈ C1
− of type (i) such that

limt↑∞Xt = ∞, it is not necessarily the case that Θ̂ is integrable; see [15]. In that

case E[|Θ̂− τ |] = ∞ for all integrable G-stopping times τ and hence in order to obtain

a sensible problem one has to consider E[|Θ̂− τ | − Θ̂].

For X ∈ C1
−, we are led to the optimal stopping problem

v̂(x, i) := inf
τ
Ex[

∫ τ∧ζ

0
F̂ (Xt/(i ∧X t)) dt], 0 < i ≤ x, (5.16)

where the infimum is taken respectively with the two cases over all G-stopping times τ

or all integrable G-stopping times τ . We can now state the analogue of Theorem 5.6.

Theorem 5.11. Assume that X ∈ C1
− with index of self-similarity α > 0, in which

case the dual ξ̂ of the Lamperti representation of X is a spectrally negative Lévy process

killed at rate q ≥ 0. Assume that the Lévy measure associated with ξ̂ has no atoms

whenever ξ̂ is of bounded variation. Moreover, recall that φ̂ is the Laplace exponent of

the dual ξ̂ unkilled and Φ̂ its right-inverse. Let Ŵ (·)(z) be the scale function associated

with φ̂. Then the solution of (5.16) is given by

v̂(x, i) = −
∫ K̂∗i

x
zα−1

(

1− 2
( i

z

)Φ̂(q)
)

Ŵ (q)(log(z/x)) dz

and τ̂∗ := inf{t ≥ 0 : Xt ≥ K̂∗(i ∧Xt)}, where K̂∗ > 21/Φ̂(q) is the unique solution to

the equation (in K)

∫ log(K)

0
(1− 2e−Φ̂(q)z)Ŵ

(q−φ̂(−α))′
−α (z) dz = Ŵ (q)(0) on (1,∞). (5.17)

This result is again a consequence of the analysis of Sections 5.4 and 5.5 and the

analogue of Remark 5.7 applies here as well. An example including the case when X

is a d-dimensional Bessel process for d > 2 is provided in Section 5.6.

5.4 Reduction to a one-dimensional problem

5.4.1 Reduction of problem (5.13)

The aim in this subsection is to reduce (5.13) to a one-dimensional optimal stopping

problem.

We begin by reducing (5.13) to an optimal stopping problem in which X starts at

one. More precisely, the self-similarity of X implies that the process

∫ t∧ζ(x)

0
F ((s ∨X(x)

u )/X(x)
u ) du, t ≥ 0, (5.18)
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is equal in law to the process

xα
∫ (x−αt)∧ζ(1)

0
F (((s/x) ∨X(1)

u )/X(1)
u ) du, t ≥ 0. (5.19)

Note that the process in (5.18) is adapted to G, whereas the process in (5.19) is adapted

to G̃(x) = {G̃(x)
u : u ≥ 0}, where G̃(x)

u := Gx−αu. Using the general theory of optimal

stopping [to deduce that the optimal time is the first hitting time of a closed set (we

omit the details)] and this equality in law, we conclude that for 0 < x ≤ s,

v(x, s) = inf
τ
Ex[

∫ τ∧ζ

0
F ((s ∨X t)/Xt) dt]

= xα inf
τ ′
E1[

∫ (x−ατ ′)∧ζ

0
F (((s/x) ∨Xt)/Xt) dt],

where the first infimum is taken over G-stopping times τ and the second over G̃(x)-

stopping times τ ′. Before we can continue with the reduction of (5.13), we need to

introduce a new filtration H := {Ht : t ≥ 0} in G. Recall that the process

ϕ(t) =

∫ t

0
(X(1)

u )−α du, t < ζ(1),

is right-continuous and adapted to G. Then

Iu = inf{0 < t < ζ(1) : ϕ(t) > u}, u ≥ 0,

is a right-continuous process which is strictly increasing on [0, ϕ(ζ(1)−)). In particular,

Iu is a G-stopping time for each u ≥ 0. We now use Iu, u ≥ 0, to time-change the

filtration G according to

Hu := GIu , u ≥ 0. (5.20)

By Lemma 7.3 in [19] it follows that H is right-continuous. Also observe that the

Lamperti representation ξ is adapted to H. Finally, denote by M(x)
1 the set of all G̃(x)-

stopping times and by M2 the set of all H-stopping times. We can now formulate the

main result of this subsection.

Lemma 5.12. Let f(z) = 1− 2e−Φ(q)z, z ≥ 0, where Φ and q are as at the beginning

of Subsection 5.3.1. Moreover, define the measure Pα by

dPα

dP1

∣

∣

∣

∣

Ht

= eαξt−ψ(α)t1{t<e}. (5.21)
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For 0 < x ≤ s, we have

v(x, s) = xα inf
τ ′∈M

(x)
1

E1[

∫ (x−ατ ′)∧ζ

0
F (((s/x) ∨Xt)/Xt) dt] (5.22)

≥ xα inf
ν∈M2

Eα[

∫ ν

0
eψ(α)uf(Y log(y)

u ) du], (5.23)

where y = s/x, Y
log(y)
u := log(y)∨ξu−ξu and ξu := sup0≤t≤u ξt for u ≥ 0. In particular,

under Pα the spectrally negative Lévy process ξ is not killed.

Despite the inequality in (5.23), it will be enough to deduce the solution of (5.13).

To see why, suppose that the optimal stopping time for (5.23) is given by

ν∗ = inf{t ≥ 0 : Y
log(y)
t ≥ k∗}

for some k∗ > 0. Additionally, setting K∗ := e−k
∗

, define

τ∗ = inf{t ≥ 0 : Xt ≤ K∗(s ∨X t)},
τ ′ = inf{t ≥ 0 : Xx−αt ≤ K∗((s/x) ∨Xx−αt)}.

It then holds that

Ex

∫ τ∗

0
F ((s ∨Xt)/Xt) dt] = xαE1[

∫ x−ατ ′

0
F (((s/x) ∨Xt)/Xt) dt]

= xαEα[

∫ ν∗

0
eψ(α)tf(Y

log(s/x)
t ) dt]

and thus τ∗ is optimal for (5.13). Hence it remains to show that the optimal stopping

time for (5.23) is indeed of the assumed form. This is done in Section 5.5.

5.4.2 Reduction of problem (5.16)

Analogously to the previous subsection, we want to reduce (5.16) to a one-dimensional

optimal stopping problem.

Let M(x)
1 be the set of all G̃(x)-stopping times and M2 the set of all H-stopping

times whenever X ∈ C1
− is of type (iii). On the other hand, if X ∈ C1

− is of type (i),

then denote by M(x)
1 the set of all integrable G̃(x)-stopping times and by M2 the set

of all H-stopping times ν such that

Ê−α[

∫ ν

0
eψ̂(−α)t dt] <∞,

where the precise definition of P̂−α and Ê−α respectively is given in Lemma 5.13

below. Following the same line of reasoning as in Subsection 5.4.1, one may obtain the
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analogue of Lemma 5.12; see Lemma 5.13 below. The only difference is that we express

all in terms of the dual process ξ̂ so that we obtain a one-dimensional optimal stopping

problem in (5.26) that is of the same type as in (5.23) (a one-dimensional optimal

stopping problem for a spectrally negative Lévy process reflected at its supremum).

The advantage of this is that once the one-dimensional problem is solved, we can deduce

the solution for both (5.13) and (5.16). Moreover, the fact that (5.23) and (5.26) only

differ by switching to the dual essentially says that the problem of predicting the time

at which the maximum or minimum is attained is, at least on the level of Lamperti

representations, essentially the same.

Lemma 5.13. Let f̂(z) = 1− 2e−Φ̂(q)z, z ≥ 0, where Φ̂ and q are as at the beginning

of Subsection 5.3.2. Moreover, define the measure P̂−α by

dP̂−α

dP1

∣

∣

∣

∣

Ht

= e−αξ̂t−ψ̂(−α)t1{t<e}. (5.24)

For 0 < i ≤x, we have

v̂(x, i) = xα inf
τ ′∈M

(x)
1

E1[

∫ x−ατ ′∧ζ

0
F̂ (Xt/(i ∧X t)) dt] (5.25)

≥ xα inf
ν∈M2

Ê−α[

∫ ν

0
eψ̂(−α)uf̂(Ŷ

log(ŷ)
t ) du], (5.26)

where ŷ = x/i, Ŷ
log(y)
u := log(y)∨ ξ̂u− ξ̂u and ξ̂u := sup0≤t≤u ξ̂t for u ≥ 0. In particular,

under P̂−α the spectrally negative Lévy process ξ̂ is not killed.

Analogously to Subsection 5.4.1, it follows that if the optimal stopping time for (5.26)

is given by ν∗ = inf{t ≥ 0 : Y
log(y)
t ≥ k̂∗} for some k̂∗ > 0, then

τ̂∗ = inf{t ≥ 0 : Xt ≥ K̂∗(i ∧Xt)}

is optimal in (5.16), where K̂∗ := ek̂
∗

. The remaining task is again to solve (5.26) and

show that the optimal stopping time is indeed given by ν∗. This is done in Section 5.5.

5.5 The one-dimensional optimal stopping problem

In this section we solve a separate optimal stopping problem which is set up in such

a way that once it is solved one can use it to deduce the solution of (5.23) and (5.26)

and hence the solution of (5.13) and (5.16) respectively. This section is self-contained

and can be read completely independently of Sections 5.3 and 5.4. Therefore, for

convenience we will reuse some of the notation – there should be no confusion.
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5.5.1 Setting and formulation of one-dimensional problem

Let us spend some time introducing the notation and formulating the problem. Suppose

that Ξ = {Ξt : t ≥ 0} is an (unkilled) spectrally negative Lévy process defined on a

filtered probability space (Ω,F ,F := {Ft : t ≥ 0}, P̃) satisfying the natural conditions;

cf. [7], Section 1.3, p.39. For convenience we will assume without loss of generality that

(Ω,F) = (R[0,∞),B[0,∞)), where B is the Borel-σ-field on R. The coordinate process

on (Ω,F) is denoted by Y = {Yt : t ≥ 0}. Further, let q ≥ 0 and suppose that Ξ

under P̃ is such that limt↑∞ Ξt = −∞ whenever q = 0. Also assume that the Lévy

measure associated with Ξ has no atoms whenever Ξ is of bounded variation. This is

a purely technical condition which ensures that the q-scale functions W (q) associated

with Ξ are continuously differentiable on (0,∞); see (5.8). Next, let β ∈ R \ {0} such

that Ẽ[eβΞ1 ] <∞. This condition is automatically satisfied if β > 0 due to the spectral

negativity of Ξ and hence it is only an additional assumption when β < 0. The Laplace

exponent is given by

φ(θ) := log(Ẽ[eθΞ1 ]), θ ≥ 0 ∧ β,

and its right-inverse is defined as

Φ(λ) := sup{θ ≥ 0 : φ(θ) = λ}, λ ≥ 0.

In particular, note that Φ(q) > 0 and define

f(y) := 1− 2e−Φ(q)y , y ≥ 0.

Moreover, denote by P̃β the measure obtained by the change of measure

dP̃β

dP̃

∣

∣

∣

∣

Ft

= eβΞt−φ(β)t, t ≥ 0.

Finally, for y ≥ 0, let Pβy be the law of

y ∨ sup
0≤u≤t

Ξu − Ξt, t ≥ 0,

under P̃β.

We are interested in the optimal stopping problem

V ∗(y) := inf
τ∈M

Eβy [

∫ τ

0
e−qt+φ(β)tf(Yt) dt] (5.27)

for y ≥ 0 and (q, β) ∈ A, where

A := {(q, β) ∈ [0,∞)× R \ {0} : q > φ(β) or q = 0 and β < 0},
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and the set M denotes the set of F-stopping times such that

Eβy [

∫ τ

0
e−qt+φ(β)t dt] <∞. (5.28)

Note that M is the set of all F-stopping times except when q = 0 and β < 0 in

which case (5.28) is indeed a restriction because φ(β) > 0 due to the assumption that

limt↑∞ Ξt = −∞.

5.5.2 Solution of one-dimensional problem

Given the underlying Markovian structure of (5.27), it is reasonable to look for an

optimal stopping time of the form

τk = inf{t ≥ 0 : Yt ≥ k}, k > 0.

However, when q = 0 and β < 0, we need to check whether τk ∈ M.

Lemma 5.14. Let k > 0. If q = 0 and β < 0 (and hence φ(β) > 0), it holds that

E
β
y [
∫ τk
0 eφ(β)t dt] <∞ for all y ≥ 0.

The next question we address is what the value function associated with the stop-

ping times τk looks like. To this end, introduce the quantity

Vk(y) := Eβy [

∫ τk

0
e−qt+φ(β)tf(Yt) dt], y ≥ 0.

The next result gives an expression for Vk in terms of scale functions.

Lemma 5.15. For k ≥ 0, we have

Vk(y) = −
∫ k

y
f(z)W

(q−φ(β))
β (z − y) dz

+
W

(q−φ(β))
β (k − y)

W
(q−ψ(β))′
β (k)

(
∫ k

0
f(z)W

(q−φ(β))′
β (z) dz −W

(q−φ(β))
β (0)

)

.(5.29)

Having this semi-explicit form for Vk, the next step is to find the “good” threshold

k > 0. This is done using the principle of smooth or continuous fit (cf. [28, 32, 33])

which suggests to choose k such that limy↑k V
′
k(y) = 0 if Ξ is of unbounded variation

and limy↑k Vk(y) = 0 if Ξ is of bounded variation. Note that, although the smooth or

continuous fit condition is not necessarily part of the general theory of optimal stopping,

it is imposed by the “rule of thumb” outlined in Section 7 of [1].

First assume that Ξ is of unbounded variation. Using (5.7) and (5.9), it follows
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that

V ′
k(y) =

∫ k

y
f(z)W

(q−φ(β))′
β (z − y) dz −

W
(q−φ(β))′
β (k − y)

W
(q−φ(β))′
β (k)

∫ k

0
f(z)W (q−φ(β))′

α (z) dz.

Letting y tend to k yields

0 = lim
y↑k

W
(q−φ(β))′
β (k − y)

W
(q−φ(β))′
β (k)

∫ k

0
f(z)W

(q−φ(β))′
β (z) dz. (5.30)

Now note that by (5.7) and (5.10) we have

lim
y↑k

W
(q−φ(β))′
β (k − y) = lim

y↑k
e−β(k−y)(W (q)′(k − y)− βW (q)(k − y)) ∈ (0,∞].

Similarly, W
(q−φ(β))′
β (k) = e−βk(W (q)′(k)−βW (q)(k)) which is clearly positive if β < 0.

If β > 0, this is still true because W (q)′(z)/W (q)(z) > Φ(q) for z > 0 and Φ(q) > β. In

view of (5.30), we are forced to conclude that

∫ k

0
f(z)W

(q−φ(β))′
β (z) dz = 0.

Similarly, if Ξ is of bounded variation, we get

0 =
W

(q−φ(β))
β (0)

W
(q−φ(β))′
β (k)

(
∫ k

0
f(z)W

(q−φ(β))′
β (z) dz −W

(q−φ(β))
β (0)

)

and hence, using (5.7) and (5.9), we infer

∫ k

0
f(z)W

(q−φ(β))′
β (z) dz =W (q)(0). (5.31)

Summing up, irrespective of the path variation of Ξ, we expect the optimal k > 0 to

solve (5.31) and therefore we need to investigate the equation more closely.

Lemma 5.16. The equation

h(k) :=

∫ k

0
f(z)W

(q−φ(β))′
β (z) dz −W (q)(0) = 0 (5.32)

has a unique solution k∗ on (0,∞). In particular, k∗ > log(2)/Φ(q).

We are now in a position to formulate our main result of this section.
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Theorem 5.17. The solution to (5.27) is given by

V ∗(y) = −
∫ k∗

y
f(z)e−β(z−y)W (q)(z − y) dz, y ≥ 0, (5.33)

with optimal stopping time τk∗, where k
∗ is as in Lemma 5.16.

5.6 Examples

In this section we present two examples, one of which shows that our results are con-

sistent with the existing literature.

Corollary 5.18. Let X be a pssMp with index of self-similarity α > 0 such that its

Lamperti representation is given by ξt = σWt − µt, t ≥ 0, where σ > 0, µ > 0 and

Wt, t ≥ 0, is a standard Brownian motion. In other words, X is of type (ii) such

that limt↑∞Xt = −∞. Moreover, suppose that α < 2µ/σ2 (this ensures that X ∈ C1
+).

Then we have

v(x, s) =
1

µ

[

xα
(

1−
(

K∗s

x

)α)( 1

α
+

2

α

(

x

s

)Φ(0))

− xα

α− Φ(0)

(

1−
(

K∗s

x

)α−Φ(0))

+
2sα(K∗)α+Φ(0)

α+Φ(0)

(

1−
(

K∗s

x

)−Φ(0)−α)
]

,

where Φ(0) = 2µ/σ2, and K∗ is the unique solution to

Kα−Φ(0) +
2Φ(0) − 3α

α
Kα +

2α

α+Φ(0)
Kα+Φ(0) − 2Φ(0)2

α(α+Φ(0))
= 0

on (0, 1). In particular, K∗ ∈ (0, 2−1/Φ(0)).

Corollary 5.19. Let X be a pssMp with index of self-similarity α > 0 such that its

Lamperti representation is given by ξt = σWt + µt, t ≥ 0, where σ > 0, µ > 0 and

Wt, t ≥ 0, is a standard Brownian motion. In other words, X is of type (i) such that

limt↑∞Xt = ∞.

1. If α 6= 2µ/σ2, we have

v̂(x, i) =
1

µ

[

xα
((

K̂∗i

x

)α

− 1

)(

1

α
+

2

α

(

i

x

)Φ̂(0))

− xα

α+ Φ̂(0)

((

K̂∗i

x

)α+Φ̂(0)

− 1

)

− 2iα(K̂∗)α−Φ̂(0)

Φ̂(0)− α

((

K̂∗i

x

)Φ̂(0)−α

− 1

)

]

,
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where Φ̂(0) = 2µ/σ2, and K̂∗ is the unique solution to

KΦ̂(0)+α − 3α+ 2Φ̂(0)

α
Kα +

2α

α− Φ̂(0)
Kα−Φ̂(0) − 2Φ̂(0)2

α(α − Φ̂(0))
= 0

on (1,∞). In particular, K̂∗ > 21/Φ̂(0).

2. If α = 2µ/σ2, we have

v̂(x, i) =
1

µ

[

xα
(

1

α
+

2

α

(

i

x

)α)((K̂∗i

x

)α

− 1

)

− x2

2α

((

K̂∗i

x

)2α

− 1

)

− 2iα log(K̂∗i/x)

]

,

and K̂∗ is the unique solution to

K2α − 5Kα + 2α log(K) + 4 = 0

on (1,∞). In particular, K̂∗ > 21/Φ̂(0).

Remark 5.20. Note that in contrast to Corollary 5.18, in Corollary 5.19 there is no

condition required to ensure that X ∈ C1
−, since in this case X is of type (i) and then

the only requirement is that the Laplace exponent of the Lamperti transformation of

X exists. This is clearly the case in Corollary 5.19.

Remark 5.21. If X is a d-dimensional Bessel process with d > 2, then X is a pssMp

with index of self-similarity α = 2 and of type (i) with limt↑∞Xt = ∞. It is known that

its Lamperti representation is given by ξt = Wt +
(d−2)

2 t. Setting σ = 1 and µ = d−2
2

in Corollary 5.19, one recovers Theorem 4 of [15]. In particular, if d = 3 one sees that

K̂∗ is the unique solution to

K3 − 4K2 + 4K − 1 = (K − 1)(K2 − 3K + 1) = 0

on (1,∞). Solving this equation shows that K̂∗ = (3 +
√
5)/2. The corresponding

optimal stopping time can then be expressed as

τ̂∗ = inf{t ≥ 0 : Xt ≥ K̂∗(i ∧Xt)} = inf{t ≥ 0 : (Xt − (i ∧X t))/(i ∧X t) ≥ ϕ},

where ϕ := K̂∗ − 1 is the golden ratio. This was first observed and proved in [15].
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5.7 Proofs

Proof of Lemma 5.3. For any G-stopping time τ , we have

|Θ− τ | = (Θ− τ)+ + (τ −Θ)+

=

∫ Θ

0
1{τ≤t} dt+

∫ τ

0
1{Θ≤t} dt

=

∫ Θ

0

(

1− 1{τ>t}
)

dt+

∫ τ

0
1{Θ≤t} dt

= Θ−
∫ τ

0
1{Θ>t} dt+

∫ τ

0
1{Θ≤t} dt

= Θ−
∫ τ

0

(

1− 1{Θ≤t}

)

dt+

∫ τ

0
1{Θ≤t} dt

= Θ+

∫ τ

0

(

21{Θ≤t} − 1
)

dt.

Proof of Lemma 5.4. For any G-stopping time τ with finite mean we have by Fubini’s

theorem,

Ex
[

∫ τ

0
(21{Θ≤t} − 1) dt

]

= Ex
[

∫ ∞

0
(21{Θ≤t} − 1)1{t<τ} dt

]

=

∫ ∞

0
Ex
[

1{t<τ}Ex
[

21{Θ≤t} − 1|Gt
]]

dt

= Ex
[

∫ τ

0
(2Px[Θ ≤ t|Gt]− 1) dt

]

= Ex
[

∫ τ

0
(1− 2Px[Θ > t|Gt])1{t<ζ} dt

]

(5.34)

+Ex[(τ − ζ)1{τ>ζ}].

Using the strong Markov property of X we obtain on {t < ζ},

Px[Θ > t|Gt] = Px

[

Xt < sup
t≤u<ζ

Xu

∣

∣

∣
Gt
]

= Px

[

s < sup
t≤u<ζ

Xu

∣

∣

∣
Gt
]
∣

∣

∣

s=Xt

= PXt

[

s < sup
0≤u<ζ

Xu

]
∣

∣

∣

s=Xt

.

Hence, using the Lamperti transformation we obtain for 0 < x ≤ s,

Px

[

s < sup
0≤u<ζ

Xu

]

= Px

[

log(s/x) < sup
0≤u<e

ξu

]

= e−Φ(q) log(s/x).

Plugging this into (5.34) gives the result.
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Proof of Lemma 5.12. Using the fact that ϕ is strictly increasing on [0, ζ) and the

Lamperti transformation shows that for τ ′ ∈ M(x)
1 ,

E1[

∫ (x−ατ ′)∧ζ

0
F ((y ∨X t)/Xt) dt] (5.35)

= E1[

∫ (x−ατ ′)∧ζ

0
F ((y ∨X t)/Xt)1{t<ζ} dt]

= E1

[

∫ (x−ατ ′)∧ζ

0
f
(

log(y) ∨ ξϕ(t) − ξϕ(t)
)

1{ϕ(t)<ϕ(ζ)} dt
]

.

Next, note that ϕ′(t) = (X
(1)
t )−α = e−αξϕ(t) for t < ζ(1). Hence, changing variables

according to u = ϕ(t) shows that the right-hand side of (5.35) is equal to

E1[

∫ ϕ((x−ατ ′)∧ζ)

0
eαξuf

(

log(y) ∨ ξu − ξu
)

1{u<e} du].

As τ ′ ∈ M(x)
1 , it follows that ϕ((x−ατ ′) ∧ ζ) is a H-stopping time that is less or equal

than e, and hence we conclude that

v(x, s) ≥ x−α inf
ν∈M2

E1[

∫ ν

0
eαξuf

(

log(y) ∨ ξu − ξu
)

1{u<e} du]. (5.36)

In other words, we have found a lower bound for v(x, s) in terms of an optimal stopping

problem for the Lamperti representation ξ reflected at its maximum. Using Fubini’s

theorem and a change of measure according to (5.21) yields for ν ∈ M2,

E1[

∫ ν

0
eαξuf

(

log(y) ∨ ξu − ξu
)

1{u<e} du]

=

∫ ∞

0
E1[e

αξuf
(

log(y) ∨ ξu − ξu
)

1{u<e}1{u<ν}] du

=

∫ ∞

0
Eα[eψ(α)uf

(

log(y) ∨ ξu − ξu
)

1{u<ν}] du

= Eα[

∫ ν

0
eψ(α)uf(Y log(y)

u ) du].

Finally, note that the Laplace exponent of ξ under Pα is given by the expression

ψα(θ) = ψ(θ + α) − ψ(α), θ ≥ 0. In particular, ψα(0) = 0 and hence ξ is not killed

under Pα.

Proof of Lemma 5.14. Throughout this proof, let Ξt := sup0≤u≤t Ξu, t ≥ 0, and write

τk,y := inf{t ≥ 0 : y ∨ Ξt − Ξt ≥ k} for y ≥ 0. If y ≥ k the assertion is clearly true and

hence suppose that y < k. Using the fact that β < 0 in the second inequality, we have

Eβy [

∫ τk

0
eφ(β)t dt] = Eβy

[

eτkφ(β)

φ(β)

]

− 1

φ(β)
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≤ φ(β)−1Eβy [e
τkφ(β)]

= φ(β)−1Ẽ[eβΞτk,y ]

= φ(β)−1Ẽ
[

e−β(y∨Ξτk,y
−Ξτk,y)+β(y∨Ξτk,y

)]

≤ φ(β)−1Ẽ
[

e
−β(y∨Ξτk,y

−Ξτk,y
)]
.

It is now shown in Theorem 1 in [2] that the expression on the right-hand side is

finite.

Proof of Lemma 5.15. Define for η ≥ 0 the functions

Ṽk(y) := Eβy [

∫ τk

0
e−ηtf(Yt) dt].

Now recall from Theorem 8.11 in [21] that the density of the η-potential measure of Y

upon leaving [0, k) under Pβy is, for y, z ∈ [0, k], given by

U (η)(y, dz) =

(

W
(η)
β (k − y)

W
(η)′
β (z)

W
(η)′
β (k)

−W
(η)
β (z − y)

)

dz

+W
(η)
β (k − y)

W
(η)
β (0)

W
(η)′
β (k)

δ0(dz).

Using this expression, we see that for y ≥ 0,

Ṽk(y) =

∫ k

0
f(z)

(

W
(η)
β (k − y)

W
(η)′
β (z)

W
(η)′
β (k)

−W
(η)
β (z − y)

)

dz

−W (η)
β (k − y)

W
(η)
β (0)

W
(η)′
β (k)

. (5.37)

If (q, β) ∈ A is such that q > φ(β) the result follows by setting η = q − φ(β). Hence,

the remaining case is when q = 0 and β < 0 (and hence φ(β) > 0). In this case, note

that by Lemma 5.14 we have for any w ∈ U := {z ∈ C : Re(z) > −φ(β)},

|Eβy [
∫ τk

0
e−wtf(Yt) dt]| ≤ Eβy [

∫ τk

0
eφ(β)t dt] <∞.

Now define for w ∈ U the functions

g(w) := Eβy [

∫ τk

0
e−wtf(Yt) dt] and

gn(w) := Eβy [

∫ τk

0
e−wtf(Yt) dt1{τk≤n}], n ≥ 0.

The functions gn are analytic in U since one can differentiate under the integral sign.
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Moreover, for w ∈ U we have the estimate

|g(w) − gn(w)| ≤ Eβy [

∫ τk

0
eφ(β)t dt1{τk>n}]

which together with the fact that the right-hand side tends to zero as n ↑ ∞ implies that

gn converges uniformly to g in U . Thus, Weierstrass’ theorem shows that g is analytic

in U . Next, we deal with the right-hand side of (5.37). From the series representation

of W (q)(x) provided in the proof of Lemma 3.6 in [20], it is possible to show that (after

some work) the right-hand side of (5.37) is also analytic (on the whole of C). By the

identity theorem it then follows that (5.37) holds for η ∈ U , in particular for real η

such that η > −φ(β). Finally, to obtain the result for η = −φ(β), take limits on both

sides of (5.37) and use dominated convergence on the left-hand side and analyticity on

the right-hand side. This completes the proof.

Proof of Lemma 5.16. Using (5.7), it follows that

h′(k) = f(k)e−βk(W (q)′(k)− βW (q)(k))

for k > 0. If (q, β) ∈ A such that β > 0, then Φ(q) > β and, using (5.7),

W (q)′(z)

W (q)(z)
=
W ′

Φ(q)(z)

WΦ(q)(z)
+ Φ(q) > Φ(q) > β

for z > 0. Therefore, we see that h′(k) < 0 on (0, k0), h
′(k0) = 0 and h′(k) > 0 on

(k0,∞), where k0 = log(2)/Φ(q). The same is of course true if (q, β) ∈ A and β < 0.

Additionally, it holds that limk↑∞ h(k) > 0. Indeed, let z0 > k0 such that f(z) ≥ 1/2

for z ≥ z0 and hence for k > z0,

h(k) = h(k0) +

∫ k

k0

f(z)W
(q−φ(β))′
β (k) dz −W (q)(0)

≥ h(k0) +
1

2

∫ k

z0

W
(q−φ(β))′
β (z) dz −W (q)(0)

= h(k0) +
1

2
(e−βkW (q)(k) − e−βz0W (q)(z0))−W (q)(0),

where in the last equality we have used (5.7). Again by (5.7),W (q)(k) = eΦ(q)kWΦ(q)(k)

which together with the fact that Φ(q) > β implies that the right-hand side tends

to infinity as k ↑ ∞. Combining this with the fact that limk↓0 f(k) ≤ 0 and the

intermediate value theorem shows that there is a unique k∗ > k0 such that f(k∗) = 0.

This completes the proof.

Proof of Theorem 5.17. Let V be defined as the right-hand side of (5.33). It is enough

to check the following conditions:
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(i) V (y) ≤ 0 for all y ≥ 0;

(ii) the process

e−(q−φ(β))tV (Yt) +

∫ t

0
e−(q−φ(β))uf(Yu) du, t ≥ 0,

is a P
β
y -submartingale for all y ≥ 0.

To see why these are sufficient conditions, note that (i) and (ii) together with Fatou’s

lemma in the second inequality and Doob’s stopping theorem in the third inequality

show that for τ ∈ M,

Eβy [

∫ τ

0
e−(q−φ(β))tf(Yu) du] ≥ Eβy [V (Yτ ) +

∫ τ

0
e−(q−φ(β))tf(Yu) du]

≥ lim sup
t↑∞

Eβy [V (Yt∧τ ) +

∫ t∧τ

0
e−(q−φ(β))uf(Yu) du]

≥ V (y).

Since these inequalities are all equalities for τ = τk∗ the result follows.

The remainder of this proof is devoted to checking conditions (i) and (ii).

Verification of condition (i): Recall that k∗ > k0 = log(2)/Φ(q) and that f(z) ≤ 0

on (0, k0] and f(z) > 0 on (k0,∞). It follows that τk∗ ≥ τk0 and hence, using the strong

Markov property, we see that

V (y) = Eβy [

∫ τk0

0
e−(q−φ(β))tf(Yt) dt] + Eβy [

∫ τk∗

τk0

e−(q−φ(β))tf(Yt) dt]

= Eβy [

∫ τk0

0
e−(q−φ(β))tf(Yt) dt] + Eβy [e

−(q−φ(β))τk0V (Yτk0 )]

≤ 0,

where the last inequality follows from the fact that f(z) ≤ 0 on (0, k0] and V (y) ≤ 0

on [k0,∞). This completes the proof of (i).

Verification of condition (ii): The proof of this is similar to the previous chapters

when we established the supermartingale property of certain processes. Hence, we just

outline the main steps and omit the details.

As for a first step, one may use the Markov property to show that the process

Zt := e−(q−φ(β))(t∧τk∗ )V (Yt∧τk∗ ) +

∫ t∧τk∗

0
e−(q−φ(β))uf(Yu) du, t ≥ 0,
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is a P
β
y -martingale for 0 < y < k∗. Indeed, for t ≥ 0, the strong Markov property gives

Eβy [Zτk∗ |Ft] = Zτk∗1{τk∗<t} + Eβy [Zτk∗ |Ft]1{t≤τk∗}

= Zτk∗1{τk∗<t} +

∫ t

0
e−(q−φ(β))uf(Yu) du1{t≤τk∗ }

+e−(q−φ(β))tV (Yt)1{t≤τk∗}

= Zt∧τk∗

from which the desired martingale property follows.

As for a second step, use Doob’s optional stopping theorem to deduce that for

0 < k < k∗ the process e−(q−φ(β)t)(t∧τk )V (Yt∧τk), t ≥ 0, is a Pβy -martingale for 0 ≤ y < k.

Using this in conjunction with the appropriate version of Itô’s formula (cf. Theorem 71,

Chapter IV of [36]) implies that

(Γ̂βV )(y)− (q − φ(β))V (y) = −f(y), y ∈ [0, k∗), (5.38)

where Γ̂β is the generator of −Ξ under P̃β.

Finally, applying the appropriate version of Itô’s formula one more time to the

process e−(q−φ(β)t)V (Yt), t ≥ 0, and using (5.38) shows that

e−(q−φ(β))tV (Yt) +

∫ t

0
e−(q−φ(β))uf(Yu) du, t ≥ 0,

is a P
β
y -submartingale for all y ≥ 0. This finishes the sketch of the proof of (ii).

Proof of Theorem 5.6. The result follows by Lemma 5.12 (and what was said just after

it) and Theorem 5.17. Specifically, using Theorem 5.17 with Ξ equal to ξ unkilled,

β = α, y = log(s/x) and then setting K∗ := e−k
∗

gives

v(x, s) = −xα
∫ − log(K∗)

log(s/x)
(1− 2e−Φ(q)u)W (q−φ(α))

α (u− log(s/x)) du

= −xα
∫ x

K∗s
z−1(1− 2e−Φ(q) log(s/z))W (q−φ(α))

α (log(x/z)) dz,

where in the second equality we changed variables according to u = log(s/z). The

expression for v(x, s) in the theorem now follows after an application of (5.7). As for

the optimal constant K∗, we see that K∗ satisfies the equation

∫ log(1/K)

0
(1− 2e−Φ(q)z)W (q−φ(α))′

α (z) dz =W (q)(0) on (0, 1).

Proof of Theorem 5.11. The result follows by Lemma 5.13 (and what was said just
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after it) and Theorem 5.17 with Ξ. Specifically, using Theorem 5.17 with Ξ equal to ξ̂

unkilled, β = −α, y = log(x/i) and then setting K̂∗ := ek
∗

gives

v̂(x, i) = −xα
∫ log(K̂∗)

log(x/i)
(1− 2e−Φ̂(q)u)Ŵ

(q−φ̂(−α))
−α (u− log(x/i)) du

= −xα
∫ K̂∗i

x
z−1(1− 2e−Φ̂(q) log(z/i))W

(q−φ̂(−α))
−α (log(z/x)) dz,

where in the second equality we changed variables according to u = log(z/i). The

expression for v̂(x, i) in the theorem now follows after an application of (5.7). As for

the optimal constant K̂∗, we see that K̂∗ satisfies the equation

∫ log(K)

0
(1− 2e−Φ̂(q)z)Ŵ

(q−φ̂(−α))′

−α (z) dz = Ŵ (q)(0) on (1,∞).

Proof of Corollary 5.18. It is easy to check that ψ(θ) = σ2

2 θ
2 − µθ, Φ(0) = 2µ

σ2
and

W (0)(x) = exΦ(0)−1
µ . Also note that α < Φ(0) by assumption. For convenience, write

k = K∗. It now follows from Theorem 5.6 that

v(x, s) = −
∫ x

ks

(

1− 2(z/s)Φ(0)
)

zα−1 (x/z)
Φ(0) − 1

µ
dz

=
1

µ

[

− xΦ(0)

∫ x

ks
zα−1−Φ(0) dz +

∫ x

ks
zα−1 dz

+2(x/s)Φ(0)

∫ x

ks
zα−1 dz − 2s−Φ(0)

∫ x

ks
zα−1+Φ(0) dz

]

=
1

µ

[

− xΦ(0)

(

xα−Φ(0)

α− Φ(0)
− (ks)α−Φ(0)

α− Φ(0)

)

+
xα

α
− (ks)α

α

+2(x/s)Φ(0)

(

xα

α
− (ks)α

α

)

− 2s−Φ(0)

(

xα+Φ(0)

α+Φ(0)
− (ks)α+Φ(0)

α+Φ(0)

)

]

=
1

µ

[

xα

α− Φ(0)

((

ks

x

)α−Φ(0)

− 1

)

− xα

α

((

ks

x

)α

− 1

)

−2s−Φ(0)xα+Φ(0)

α

((

ks

x

)α

− 1

)

− 2sαkα+Φ(0)

α+Φ(0)

((

ks

x

)−Φ(0)−α

− 1

)

]

.

Adding the second and third term gives

v(x, s) =
1

µ

[

xα
(

1−
(

ks

x

)α)( 1

α
+

2

α

(

x

s

)Φ(0))
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− xα

α− Φ(0)

(

1−
(

ks

x

)α−Φ(0))

+
2sαkα+Φ(0)

α+Φ(0)

(

1−
(

ks

x

)−Φ(0)−α)
]

.

Next, let us derive the equation for K∗. Using (5.7) and changing variables according

to u = ez shows that K∗ is the unique root of

∫ 1/K

1
u−α−1(1− 2u−Φ(0))(Φ(0)uΦ(0) − αuΦ(0) + α) du = 0 on (0, 1). (5.39)

Solving the integral and rearranging gives the claim.

Proof of Corollary 5.19. Clearly, −ξt = σWt − µt and it is straightforward to check

that ψ̂(θ) = σ2

2 θ
2 − µθ, Φ̂(0) = 2µ

σ2
and Ŵ (0)(x) = exΦ̂(0)−1

µ . We derive the result for

α 6= Φ̂(0), the case when α = Φ̂(0) is similar and we omit the details. For convenience,

write k = K̂∗. By Theorem 5.11 we have

v̂(x, i) = −
∫ ki

x

(

1− 2(i/z)Φ̂(0)
)

zα−1 (z/x)
Φ̂(0) − 1

µ
dz

=
1

µ

[

− x−Φ̂(0)

∫ ki

x
zα−1+Φ̂(0) dz +

∫ ki

x
zα−1 dz

+2(i/x)Φ̂(0)

∫ ki

x
zα−1 dz − 2iΦ̂(0)

∫ ki

x
zα−1−Φ̂(0) dz

]

=
1

µ

[

− x−Φ̂(0)

(

(ki)α+Φ̂(0)

α+ Φ̂(0)
− xα+Φ̂(0)

α+ Φ̂(0)

)

+
(ki)α

α
− xα

α

+2(i/x)Φ̂(0)

(

(ki)α

α
− xα

α

)

− 2iΦ̂(0)

(

(ki)α−Φ̂(0)

α− Φ̂(0)
− xα−Φ̂(0)

α− Φ̂(0)

)

]

=
1

µ

[

−xα
α+ Φ̂(0)

((

ki

x

)α+Φ̂(0)

− 1

)

+
xα

α

((

ki

x

)α

− 1

)

+
2iΦ̂(0)xα−Φ̂(0)

α

((

ki

x

)α

− 1

)

− 2iαkα−Φ̂(0)

Φ̂(0)− α

((

ki

x

)Φ̂(0)−α

− 1

)

]

.

Adding the second and third term gives

v̂(x, i) =
1

µ

[

xα
((

ki

x

)α

− 1

)(

1

α
+

2

α

(

i

x

)Φ̂(0))

− xα

α+ Φ̂(0)

((

ki

x

)α+Φ̂(0)

− 1

)

− 2iαkα−Φ̂(0)

Φ̂(0)− α

((

ki

x

)Φ̂(0)−α

− 1

)

]

.

Next, let us derive the equation for K̂∗. Using (5.7) and changing variables according
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to u = ez shows that K̂∗ has to satisfy the equation

∫ K

1
uα−1(1− 2u−Φ̂(0))(αuΦ̂(0) − α+ Φ̂(0)uΦ̂(0)) du = 0 on (1,∞).

Solving the integral and rearranging gives the claim.

5.8 Outlook/Future work

Making assumptions to obtain certain results leads naturally to the question whether

one could weaken or remove them. Looking at the assumptions we made to obtain our

main results in this chapter, two questions arise immediately:

• What happens if one drops the assumption on one-sided jumps?

• Can we remove the assumption on the integrability of ζ?

Let us begin with the first question and assume that we are given an X in C+ or C−,
but without the restriction of one-sided jumps. Provided the Lamperti representation

ξ of X is not a compound Poisson process and provided that the Laplace exponent

of ξ exists where necessary, one sees that all the arguments up to Section 5.5 still go

through and as a result one is led to solving (5.27), but with Y being the reflection

of a general Lévy process Ξ. One special case of this, namely when q = φ(β) and Ξ

drifts to −∞ under P̃β (and hence β < 0), is treated in [4]. Moreover, when q > φ(β),

then (5.27) for a general Ξ is nothing else than a killed version of the problem studied

in [4] and therefore one should in principle be able to solve the prediction problem

under the assumption that q > φ(β) and with no restrictions on the jumps other than

that the Laplace exponent has to exist where necessary. On the other hand, when

q ≥ φ(β), then it is not yet clear whether the proof in [4] can be modified to also

provide a solution in this case.

As for the second question, suppose for simplicity that X ∈ C1
+ of type (ii) such that

ζ is not integrable. In this case one can still formulate the corresponding prediction

problem except that one cannot allow ζ as a potential stopping strategy in (5.13).

In particular, it follows that the Laplace exponent of the Lamperti representation

satisfies ψ(α) ≥ 0. As a result, one is led to (5.27), but with q = 0 and φ(β) > 0.

Analysing (5.27) carefully then suggests that it becomes degenerate in the sense that

the value function can be made arbitrarily small. There is numerical evidence for this,

but unfortunately we have so far not been able to prove this rigorously.

Finally, let us conclude this section with a further issue that could be improved.

In Section 5.6 we provide two explicitly solvable examples, but the processes X we

consider have continuous paths. Of course, it would be desirable to have explicitly
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solvable examples with discontinuous X, but, although many scale functions are known

explicitly (cf. [20]), it seems difficult to find tractable examples.

5.9 Connection to previous chapters

The aim of this section is to briefly explain how the prediction problem studied in this

chapter fits into the general context described in Chapter 1.

The reasoning in Subsection 5.4.1 up to equation (5.36) shows that solving (5.13)

essentially means solving

u(x, s) := x−α inf
ν
E1[

∫ ν

0
eαξuf

(

log(s/x) ∨ ξu − ξu
)

1{u<e} du], (5.40)

where 0 < x ≤ s and the infimum is taken over all H-stopping times. Instead of

continuing with a change of measure that reduces (5.40) to a one-dimensional prob-

lem, one could stay in this two-dimensional setting. In order to reflect this, we may

rewrite (5.40) as

u(x, s) = xα inf
ν
E1[

∫ ν

0
c̃(ξu, log(s/x) ∨ ξu)1{u<e} du], (5.41)

where c̃(x̃, s̃) = eαx̃f(s̃ − x̃) for 0 < x̃ ≤ s̃. Since e is exponentially distributed with

some parameter q ≥ 0, we may change measure according to

dQ

dP1

∣

∣

∣

∣

Ht

= eqt1{t<e},

which allows us to write

u(x, s) = xα inf
ν
EQ[

∫ ν

0
e−quc̃(ξu, log(s/x) ∨ ξu) du].

The process ξ under PQ is an unkilled spectrally negative Lévy process satisfying

limt↑∞ ξt = ∞ whenever q = 0. The Laplace exponent of ξ (under PQ) is denoted

by φ. Setting f ≡ 0 and c = c̃ in (1.5) gives that

u(x, s) = −xαV (0, log(s/x)).

Note that here the function c = c̃ is not positive as assumed in (1.5). However, it is

clear that the method in Subsection 1.2.1 still works. Hence, denoting by W (q) the

q-scale function associated with ξ under PQ, one expects

u(x, s) = xα
∫ 0

log(s/x)−g(log(s/x))
eαyf(log(s/x)− y)W (q)(−y) dy,
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where g is the maximal solution of

g′(s) = 1−
∫ g(s)
0 eα(s−y)f ′(y)W (q)(y) dy

eα(s−g(s))f(g(s))W (q)(g(s))
.

Making use of (5.7), the equation for g may be written as

(1− g′(s))f(g(s))W (q−φ(α))
α (g(s)) =

∫ g(s)

0
f ′(y)W (q−φ(α))

α (y) dy.

Further, integration by parts and rearranging gives

g′(s)f(g(s))W (q−φ(α))
α (g(s)) = −W (q−φ(α))

α (0) +

∫ g(s)

0
f(y)W (q−φ(α))′

α (y) dy.

We are now interested in the maximal solution g of this equation. However, seeing

what the maximal solution is seems difficult. Naively, one could try a straight line

as it is a simple choice and it has proved to be the maximal solution on a couple of

occasions; see in [38] for instance. Thus, we set g(s) ≡ k∗ for some 0 < k∗ < 1. Using

the explicit form of g and changing variables according to y = log(z/x) yields

u(x, s) = −
∫ x

se−k∗
zα−1f(log(s/z))W (q)(log(x/z)) dz. (5.42)

Hence, we have found a candidate value function for (5.40) and a candidate optimal

stopping time of the form inf{t ≥ 0 : ξt − ξt ≥ k∗}. One could now proceed with

a classical verification argument and prove that this is indeed the solution and hence

obtain Theorem 5.6. However, we did not do so because the reduction to one-dimension

reveals why the solutions (the optimal stopping times) are of such a simple form.

Of course, a very similar argument could also be used to obtain Theorem 5.11. In

fact, this was the original method which was used to derive Theorem 3 in [15].

To conclude, let us emphasise that problems (5.1) and (5.2) are of type (1.5) (mo-

dulo an application of the Lamperti transformation) and in this sense Chapter 5 is

related to the other chapters in this thesis.

129



BIBLIOGRAPHY

[1] Alili, L. and Kyprianou, A. E. (2005). Some remarks on first passage of Lévy
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functions for spectrally negative Lévy processes. Lévy Matters II, Springer Lecture

Notes in Mathematics. Springer, Berlin.

[21] Kyprianou, A. E. (2013). Fluctuations of Lévy Processes with Applications, 2nd

ed. Springer, Berlin.

[22] Kyprianou, A.E., and Ott, C. (2012). Spectrally negative Lévy processes per-
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