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Abstract

We study the mass of a d-dimensional super-Brownian motion as it first exits an increasing sequence of
balls. The mass process is a time-inhomogeneous continuous-state branching process, where the increasing
radii of the balls are taken as the time-parameter. We characterise its time-dependent branching mechanism
and show that it converges, as time goes to infinity, towards the branching mechanism of the mass of a
one-dimensional super-Brownian motion as it first crosses above an increasing sequence of levels.

Our results identify the compact support criterion in Sheu (1994) as Grey’s condition (1974) for the
aforementioned limiting branching mechanism.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction and main results

Suppose that X = (X t , t ≥ 0) is a super-Brownian motion in Rd , d ≥ 1, with general
branching mechanism ψ of the form

ψ(λ) = −αλ+ βλ2
+


(0,∞)

(e−λx
− 1 + λx)Π (dx), λ ≥ 0, (1)
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where α = −ψ ′(0+) ∈ (−∞,∞), β ≥ 0 and Π is a measure concentrated on (0,∞) which
satisfies


(0,∞)

(x ∧ x2)Π (dx) < ∞. Assume ψ(∞) = ∞. Denote by Pµ the law of X with

initial configuration according toµ ∈ M F (Rd), the space of finite measures on Rd with compact
support. We write M F (D) for the space of finite measures supported on D ⊂ Rd .

A construction of superprocesses with a general branching mechanism ψ as in (1) can be
found in Fitzsimmons [8], see also Section 2.3 in Li [14] which provides a comprehensive
account on the theory of superprocesses.

We call X (sub)critical if ψ ′(0+) ≥ 0 and supercritical if ψ ′(0+) < 0. Denote the root of ψ
by λ∗

:= inf{λ ≥ 0 : ψ(λ) > 0}. In the (sub)critical case, we have λ∗
= 0. In the supercritical

case, convexity of ψ and the condition ψ(∞) = ∞ ensure that there is a unique and finite
λ∗ > 0. In both cases,

Pµ( lim
t→∞

∥X t∥ = 0) = e−λ∗
∥µ∥,

where ∥µ∥ denotes the total mass of the measure µ ∈ M F (Rd).
We want to study the mass of the super-Brownian motion X upon its first exit from an

increasing sequence of balls. Fix an initial radius r > 0 and let Ds := {x ∈ Rd
: ∥x∥ < s} be the

open ball of radius s ≥ r around the origin. According to Dynkin’s theory of exit measures [4],
we can describe the mass of X as it first exits the growing sequence of balls (Ds, s ≥ r) as a
sequence of random measures on Rd , known as branching Markov exit measures. We denote
this sequence of branching Markov exit measures by {X Ds , s ≥ r}. Informally, the measure X Ds

is supported on the boundary ∂Ds and it is obtained by ‘freezing’ mass of the super-Brownian
motion when it first hits ∂Ds .

Formally, {X Ds , s ≥ r} is characterised by the following branching Markov property, see for
instance Section 1.1 in Dynkin and Kuznetsov [6]. Let µ ∈ M F (Dr ) and, for z ≥ r , define
F Dz := σ(X Dz′

, r ≤ z′
≤ z). For any positive, bounded, continuous function f on ∂Ds ,

Eµ[e−⟨ f,X Ds ⟩
|F Dz ] = e−⟨v f (·,s),X Dz ⟩, 0 < r ≤ z ≤ s, (2)

where the Laplace functional v f is the unique non-negative solution to

v f (x, s) = Ex [ f (ξTs )] − Ex

 Ts

0
ψ(v f (ξz, s)) dz


, (3)

and ((ξz, z ≥ 0),Px ) is an Rd -Brownian motion with ξ0 = x and with Ts := inf{z > 0 :

ξz ∉ Ds} denoting its first exit time from Ds . In (2), we have used the inner product notation
⟨ f, µ⟩ =


Rd f (x)µ(dx).

For s ≥ r , let Zs := ∥X Ds ∥ denote the mass that is ‘frozen’ when it first hits the boundary
of the ball Ds . We can then define the mass process (Zs, s ≥ r) which uses the radius s as its
time-parameter. Let us write Pr , for the law of the process (Zs, s ≥ r) starting at time r > 0
with unit initial mass. In case we start with non-unit initial mass a > 0 we shall use the notation
Pa,r for its law.

It is not difficult to see that Z is a time-inhomogeneous continuous-state branching process
and we can characterise it as follows.

Theorem 1. (i) Let r > 0. The process Z = (Zs, s ≥ r) is a time-inhomogeneous continuous-
state branching process. This is to say it is a [0,∞]-valued strong Markov process with
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càdlàg paths satisfying the branching property

E(a+a′),r [e
−θ Zs ] = Ea,r [e

−θ Zs ]Ea′,r [e
−θ Zs ],

for all a, a′ > 0, θ ≥ 0 and s ≥ r .
(ii) Let r > 0 and µ ∈ M F (∂Dr ) with ∥µ∥ = a. Then, for s ≥ r , we have

Ea,r [e
−θ Zs ] = e−u(r,s,θ)a, θ ≥ 0, (4)

where the Laplace functional u(r, s, θ) satisfies

u(r, s, θ) = θ −

 s

r
Ψ(z, u(z, s, θ)) dz, (5)

for a family of branching mechanisms (Ψ(r, ·), r > 0) of the form

Ψ(r, θ) = −qr + arθ + brθ
2
+


(0,∞)

(e−θx
− 1 + θx1(x<1))Λr (dx), (6)

for θ ≥ 0, and for each r > 0 we have qr ≥ 0, ar ∈ R, br ≥ 0 and Λr is a measure
concentrated on (0,∞) satisfying


(0,∞)

(1 ∧ x2)Λr (dx) < ∞.
(iii) The branching mechanism Ψ satisfies the PDE

∂

∂r
Ψ(r, θ)+

1
2
∂

∂θ
Ψ2(r, θ)+

d − 1
r

Ψ(r, θ) = 2ψ(θ) r > 0, θ ∈ (0,∞)

Ψ(r, λ∗) = 0, r > 0. (7)

The authors are not aware of a result in the literature which states that the definition of the
time-dependent CSBP in (i) implies the characterisation in (ii). It is therefore outlined in the
proof of Theorem 1(ii) in Section 2.1 how this implication can be derived as a generalisation of
the equivalent result for standard CSBPs in Silverstein [18].

As part of Theorem 1, we later prove that the root λ∗ of ψ is also the root for each
Ψ(r, ·), r > 0, cf. Lemma 6. This will be a key property for the forthcoming analysis of the
family of branching mechanisms (Ψ(r, ·), r > 0).

Let us now describe how Ψ changes as r increases. We observe the following change in the
shape of the branching mechanism, see Fig. 1.

Proposition 2. (i) For (sub)critical ψ , we have, for 0 < r ≤ s,

Ψ(r, θ) ≤ Ψ(s, θ) for all θ ≥ 0.

(ii) For supercritical ψ , we have, for 0 < r ≤ s,

Ψ(r, θ) ≥ Ψ(s, θ) for all θ ≤ λ∗

Ψ(r, θ) ≤ Ψ(s, θ) for all θ ≥ λ∗.

This result suggests that there is a limiting branching mechanism Ψ∞(·) := limr→∞ Ψ(r, ·).
Intuitively speaking, in the case where the initial mass is supported on a large ball, the local
behaviour of the super-Brownian motion when exiting increasingly larger balls should look like
a one-dimensional super-Brownian upon crossing levels. This idea is supported by the following
result.

Theorem 3. For each θ ≥ 0, the limit limr↑∞ Ψ(r, θ) = Ψ∞(θ) is finite and the convergence
holds uniformly in θ on any bounded, closed subset of R+.
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Fig. 1. Shape of the branching mechanism Ψ(r, ·) as r → ∞ in the supercritical case.

(i) For any θ ≥ 0, we have

Ψ∞(θ) = 2sgn(ψ(θ))

 θ

λ∗

ψ(λ) dλ, (8)

with λ∗
= 0 in the (sub)critical case.

(ii) Denote by ((Z∞s , s ≥ 0), P∞) the standard CSBP associated with the limiting branching
mechanism Ψ∞, with unit initial mass at time 0.

Then, (Z∞s , s ≥ 0) is the mass of the process of branching Markov exit measures of a
one-dimensional super-Brownian motion with unit initial mass at the origin at time zero as
it first exits the family of intervals ((−∞, s), s ≥ 0).

Further, for any s > 0, θ ≥ 0,

lim
r→∞

Er [e
−θ Zr+s ] = E∞

[e−θ Z∞s
]. (9)

Let us remark that, in the supercritical case, the limiting branching mechanism Ψ∞ is critical
and possesses an explosion coefficient, that is Ψ ′

∞(0+) = 0 and Ψ∞(0) < 0. Thanks to the
uniform continuity in θ , this implies that Ψ(t, 0) < 0 for all sufficiently large t .

The limiting process Z∞ in Theorem 3 has already been studied in Theorem 3.1 in Kyprianou
et al. [13]. Note that therein the underlying Brownian motion has a positive drift which is
chosen such that the resulting branching mechanism is conservative. The characterisation can
easily be adapted to the driftless case as in Theorem 3(ii). Kaj and Salminen [10,11] studied
the analogous process in the setting of branching particle diffusions, that is the process of the
number of particles of a one-dimensional branching Brownian motion stopped upon exiting the
interval ((−∞, s), s ≥ 0). They discover in the supercritical case [10] that the resulting offspring
distribution is degenerate, meaning that

i≥0

pi < 1, (10)
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where pi is the probability of having i offspring, i ≥ 0. In particular, the probability of a birth
event with an infinite number of offsprings is strictly positive. In this view, (10) is the analogue
of Ψ∞(0) < 0.

In Sheu [16,17], asymptotics of the process Z are studied in order to obtain a compact
support criterion for the super-Brownian motion X . It is found that the event of extinction
of Z , i.e. {∃s > 0 : Zs = 0}, and the event {X has a compact support} agree Pµ-a.s., c.f.
[17, Theorem 4.1].

The following result on the asymptotic behaviour of Z is given by Sheu [16].

Theorem (Sheu [16, Theorems 1.1, 1.2, Corollary 1.1]). Let µ ∈ M F (Rd). The event
{∃s > 0 : Zs = 0} agrees Pµ-a.s. with the event {lims→∞ Zs = 0} if ψ satisfies

∞ 1 λ
λ∗ ψ(θ) dθ

dλ < ∞. (11)

Otherwise, {∃s > 0 : Zs = 0} has probability 0.

In short, the event of extinction of Z agrees with the event of extinguishing of Z , denoted by
E(Z) := {lims→∞ Zs = 0}, if and only if (11) holds, and it has zero probability otherwise. We
have stated the theorem slightly differently from its original version in which, in the supercritical
case, condition (11) reads


∞

s
1 λ

0 φ(θ) dθ
dλ < ∞, for φ(s) := ψ(s) − αs. The equivalence of

these two conditions was already pointed out in [13].
The unusual condition (11) corresponds to Grey’s condition in [9] for extinction vs.

extinguishing in the following sense. Recall that Grey’s condition says that, for a standard
CSBP with branching mechanism F , the event of extinction agrees with the event of becoming
extinguished if and only if


∞ F(θ)−1 dθ < ∞, and has probability zero otherwise. The

following interpretation of (11) is an immediate consequence of Theorem 3(i).

Corollary 4. Sheu’s compact support condition (11) is Grey’s condition for the limiting standard
CSBP Z∞ with branching mechanism Ψ∞ in (8).

Sheu’s compact support condition (11) plays an important role when studying the radial speed
of the support of supercritical Super-Brownian motion. In the one-dimensional case, assuming
(11), Kyprianou et al. [13, Corollary 3.2], show that, on the event of non-extinction of X ,

lim
t→∞

Rt

t
=


−2ψ ′(0+), Pµ-a.s, µ ∈ M F (R), (12)

where Rt := sup{r > 0 : X t (r,∞) > 0} is the right-most point of the support of X t . A key step
in the proof is to study the mass of the process of branching exit measures of a one-dimensional
super-Brownian motion with drift c := −

√
−2ψ ′(0+) upon exiting the increasing sequence of

intervals ((−∞, s), s ≥ 0), which we denote here by Z c
= (Z c

s , s ≥ 0). It is proved in Theorem
3.1 in [13] that Z c is a subcritical standard CSBP. Now condition (11) comes in. Corollary 4
interprets (11) as Grey’s condition for the standard CSBP Z∞. The CSBPs Z∞ and Z c only
differ in that the underlying Brownian motion of the latter has drift c and it is not difficult to
convince ourselves that the drift term is irrelevant when studying the extinction vs. extinguishing
problem, see (29) in [13] for a rigorous argument. Therefore condition (11) is also equivalent to
Grey’s condition for the subcritical CSBP Z c and hence ensures that Z c becomes extinct Pµ-a.s.
This now implies that the right-most point of the support cannot travel at a speed faster than
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√
−2ψ ′(0+). In order to make this last conclusion, extinguishing of Z c is clearly not sufficient

and it remains an open question whether a strong law for (Rt , t ≥ 0) can exist when (11) fails.
In the d-dimensional case, d ≥ 1, and with a quadratic branching mechanism of the form

ψ(λ) = −αλ + βλ2, for α, β ≥ 0, Kyprianou [12] shows that (12) holds, where Rt is now
replaced by R̃t := sup{r > 0 : X t (Rd

\ Dr ) > 0}, the radius of the support of X t . It can be
checked that condition (11) is satisfied for this choice of ψ . It is possible to adapt the higher-
dimensional result in [12] to hold for general branching mechanisms provided (11) holds.

The remainder of the paper is organised as follows. In Section 2 we prove Theorem 1 which
is followed by the proof of Proposition 2 and Theorem 3 in Section 3.

2. Characterising the process Z—Proof of Theorem 1

2.1. Proof of Theorem 1(i) and (ii)

Proof of Theorem 1(i). Take a look at Eq. (2) which characterises the sequence of branching
exit measures (X Ds , s ≥ r). For any measure µ ∈ M F (∂Dr ) and ∥µ∥ = a, we can write

Ea,r [e
−θ Zs ] = Eµ[e−θ∥X Ds ∥

] = e−⟨vθ (·,s),µ⟩
= e−vθ (x,s)a,

for any x ∈ ∂Dr , by radial symmetry. The branching property of Z now follows easily from the
branching property of (X Ds , s > r) in (2) since, for a, a′ > 0, 0 < r ≤ s,

E(a+a′),r [e
−θ Zs ] = Eµ+µ′ [e−θ∥X Ds ∥

]

= e−vθ (x,s)(a+a′)

= Eµ[e−θ∥X Ds ∥
]Eµ′ [e−θ∥X Ds ∥

] = Ea,r [e
−θ Zs ]Ea′,r [e

−θ Zs ],

for measures µ,µ′
∈ M F (∂Dr ) with ∥µ∥ = a, ∥µ′

∥ = a′. The Markov property is also an
immediate consequence of (2). �

Proof of Theorem 1(ii). First note that, by radial symmetry as seen in the proof of Theorem 1(i),
(4) holds with u(r, s, θ) = vθ (x, s) for x ∈ ∂Dr where r = ∥x∥. It remains to show that (5) and
(6) are satisfied.

For any 0 < r ≤ z ≤ s, θ ≥ 0,

Er [e
−θ Zs ] = Er [EZz ,z[e

−θ Zs ]] = Er [e
−u(z,s,θ)Zz ] = e−u(r,z,u(z,s,θ)),

which shows that the Laplace functional satisfies the composition property

u(r, s, θ) = u(r, z, u(z, s, θ)) for 0 < r ≤ z ≤ s, θ ≥ 0. (13)

The branching property of Z implies that, for any fixed 0 < r ≤ s, the law of (Zs, Pr ) is an
infinitely divisible distribution on [0,∞]. It follows from the Lévy–Khintchin formula that, for
fixed r and s, u(r, s, θ) is a non-negative, completely concave function as considered in Section
4 in Silverstein [18]. The process Z thus has the properties of the time-dependent version of the
CSBP considered in Definition 4 in [18]. We can then adapt the proof of Theorem 4 in [18] to
show that there exists a branching mechanism Ψ of the form (6) such that

∂

∂r
u(r, s, θ)


r=s

= Ψ(s, θ), for s > 0, θ ≥ 0.

With the composition property (13), we then get

∂

∂r
u(r, s, θ) = Ψ(r, u(r, s, θ)), for 0 < r ≤ s, θ ≥ 0.
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Indeed it was already discussed at the end of Section 4 in [18] that it is possible to allow time-
dependence in Theorem 4 in [18].

Together with the initial condition u(r, r, θ) = θ , we obtain Eq. (5). �

From (5), we get an alternative characterisation of the relation between the Laplace functional
u and the branching mechanism Ψ as

∂

∂s
u(r, s, θ) = −Ψ(s, θ)

∂

∂θ
u(r, s, θ) (14)

∂

∂r
u(r, s, θ) = Ψ(r, u(r, s, θ)) (15)

u(r, r, θ) = θ,

for any s > r > 0 and θ ≥ 0. To see where Eq. (14) comes from, compare the derivatives of (5)
in s and θ , that is

∂

∂s
u(r, s, θ) = −Ψ(s, θ)−

 s

r

∂

∂u
Ψ(z, u(z, s, θ))

∂

∂s
u(z, s, θ) dz

∂

∂θ
u(r, s, θ) = 1 −

 s

r

∂

∂u
Ψ(z, u(z, s, θ))

∂

∂θ
u(z, s, θ) dz,

where ∂Ψ(·, ·)/∂u denotes the derivative in the second component of Ψ . We see that ∂
∂s u(r, s, θ)

and −Ψ(s, θ) ∂
∂θ

u(r, s, θ) are solutions to the same integral equation. With an application of
Gronwall’s inequality it can be shown that this integral equation has a unique solution.

2.2. Proof of Theorem 1(iii)

We have already seen in the previous section that, for any measure µ ∈ M F (∂Dr ) with
∥µ∥ = a, we can write

Ea,r [e
−θ Zs ] = Eµ[e−θ∥X Ds ∥

] = e−⟨vθ (·,s),µ⟩
= e−vθ (x,s)a,

for any x ∈ ∂Dr , by radial symmetry. In particular, we saw that u(r, s, θ) = vθ (x, s) for any
x ∈ ∂Dr . From the semi-group equation for v in (3), we thus get a semi-group representation of
u, alternative to the representation in (5), as the unique non-negative solution to

u(r, s, θ) = θ − ER
r

 τs

0
ψ(u(Rz, s, θ)) dz


, (16)

where (R,PR
r ) is a d-dimensional Bessel process and τs := inf{z > 0 : Rz > s} its first passage

time above level s.
Eq. (16) tells us that the process Z can be viewed as the mass process of the branching exit

measures of a d-dimensional super-Bessel process with branching mechanism ψ as it first exits
the intervals (0, s), s ≥ r .

Equivalently to the characterisation of u(r, s, θ) as the unique non-negative solution to
the integral equation (16), we can characterise it as the unique non-negative solution to the
differential equation

1
2
∂2

∂r2 u(r, s, θ)+
d − 1

2r

∂

∂r
u(r, s, θ) = ψ(u(r, s, θ)), 0 < r < s, θ ≥ 0,

u(r, r, θ) = θ. (17)
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We will show this equivalence in Appendix A. In the following section, we will use the
differential equation (17) to prove the PDE characterisation of the branching mechanism Ψ in
Theorem 1(iii).

We prove Theorem 1(iii) in two parts. In Lemma 5 we show that Ψ satisfies the PDE in (7)
before we prove that Ψ(r, λ∗) = 0, for all r > 0, in Lemma 6 below.

Lemma 5. The branching mechanism Ψ satisfies the PDE (7), i.e.

∂

∂r
Ψ(r, θ)+

1
2
∂

∂θ
Ψ2(r, θ)+

d − 1
r

Ψ(r, θ) = 2ψ(θ) r > 0, θ ∈ (0,∞).

Proof of Lemma 5. Using (15), the left-hand side of (17) becomes

∂2

∂r2 u(r, s, θ)+
d − 1

r

∂

∂r
u(r, s, θ) =

∂

∂r
Ψ(r, u(r, s, θ))+

d − 1
r

Ψ(r, u(r, s, θ))

=
∂

∂y
Ψ(y, u(r, s, θ))


y=r

+
∂

∂u
Ψ(r, u(r, s, θ)) Ψ(r, u(r, s, θ))

+
d − 1

r
Ψ(r, u(r, s, θ))

=
∂

∂y
Ψ(y, u(r, s, θ))


y=r

+
1
2
∂

∂u
Ψ2(r, u(r, s, θ))+

d − 1
r

Ψ(r, u(r, s, θ)),

where ∂Ψ(·, ·)/∂u denotes the derivative with respect to the second argument. Note that this
equation holds for all s > r and θ ≥ 0. Since u(r, s, θ) → θ as s ↓ r , we see that, for fixed r ,
the range of u(r, s, θ) is (0,∞) as we vary s ∈ (r,∞) and θ ∈ [0,∞). Hence, we can replace
u(r, s, θ) above by an arbitrary θ ∈ (0,∞) and conclude that the PDE (7) holds true. �

Recall that λ∗
= inf{λ ≥ 0 : ψ(λ) > 0} denotes the root of ψ and define λ∗(r) := inf{λ ≥

0 : Ψ(r, λ) > 0}, for r > 0.

Lemma 6. (i) In the (sub)critical case, for all r > 0, we have λ∗(r) = 0. In particular,
Ψ(r, θ) ≥ 0 for all θ ≥ 0.

(ii) In the supercritical case, for all r > 0, we have λ∗(r) = λ∗. In particular, Ψ(r, θ) ≤ 0 for
θ ≤ λ∗, while Ψ(r, θ) ≥ 0 for θ ≥ λ∗.

Proof of Lemma 6(i). As we are in the (sub)critical case we have ψ(θ) ≥ 0 for all θ ≥ 0. For
r < z < s, (16) yields

u(r, s, θ) = θ − ER
r

 τs

0
ψ(u(Rv, s, θ)) dv

= θ − ER
r

 τz

0
ψ(u(Rv, s, θ)) dv − ER

z

 τs

0
ψ(u(Rv, s, θ)) dv

≤ θ − ER
z

 τs

0
ψ(u(Rv, s, θ)) dv

= u(z, s, θ).
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Hence, u(r, s, θ) is non-decreasing in r . With (15) we thus see that, for all 0 < r < s, θ ≥ 0,

Ψ(r, u(r, s, θ)) =
∂

∂r
u(r, s, θ) ≥ 0. (18)

As we take s ↓ r , we get u(r, s, θ) → θ and hence Ψ(r, θ) ≥ 0 for all θ > 0, r > 0. Continuity
of Ψ ensures Ψ(r, 0) = 0 and, in particular, λ∗(r) = 0 for all r > 0. �

The key to the proof of part (ii) of Lemma 6 is the following lemma.

Lemma 7. Fix r > 0.

(i) For any λ > 0, the process

Mλ
s = e−λZs −

 s

r
Ψ(v, λ)Zve−λZv1{Zv<∞}dv, s ≥ r, (19)

is a Pr -martingale.
(ii) The process (e−λ∗ Zs , s ≥ r) is a Pr -martingale.

Here we use the convention e−λZs 1{Zs=∞} = 0, for any λ > 0.

Proof of part (i). Taking expectations in (19) and interchanging expectation and integral gives

Er [Mλ
s ] = e−u(r,s,λ)

−

 s

r
Ψ(v, λ)

∂

∂λ
u(r, v, λ) e−u(r,v,λ)dv.

Differentiating in s, together with (14), gives

∂

∂s
Er [Mλ

s ] =


−
∂

∂s
u(r, s, λ)− Ψ(s, λ)

∂

∂λ
u(r, s, λ)


e−u(r,s,λ)

= 0.

Hence, Er [Mλ
s ] is constant for all s ≥ r and in particular, taking s = r , equal to e−λ. Note that

the same computation gives that Ea,v[Mλ
s ] = e−λa , for a > 0 and 0 < r ≤ v ≤ s. An application

of the Markov property then shows that (Mλs , s ≥ r) is a martingale for any λ > 0. �

The proof of Lemma 7(ii) relies on the following idea. Since (∥X t∥, t ≥ 0) is a CSBP with
branching mechanism ψ it is well-known that the process (e−λ∗

∥X t ∥, t ≥ 0) is a martingale with
respect to the filtration (Ft , t ≥ 0)where Ft = σ(∥Xu∥, u ≤ t). The martingale property follows
on account of the fact that

Eµ[1{∥Xu∥→0}|Ft ] = e−λ∗
∥X t ∥, t ≥ 0,

by a simple application of the tower property. Now, fix r > 0, and consider the filtration
(Gs, s ≥ r) where Gs = σ(∥X Dv∥, r ≤ v ≤ s) = σ(Zv, r ≤ v ≤ s) instead. If we can
show that, for µ ∈ M F (∂Dr ),

Eµ[1{∥Xu∥→0}|Gs] = e−λ∗
∥X Ds ∥

= e−λ∗ Zs ,

holds, then we can deduce in the same way that the process (e−λ∗
∥X Ds ∥, s ≥ r) is a martingale

with respect to the filtration (Gs, s ≥ r). The proof is slightly cumbersome and therefore
postponed to the end of this section.

The proof of Lemma 6(ii) is now a simple consequence of Lemma 7.

Proof of Lemma 6(ii). By Lemma 7, the process

e−λ∗ Zs − Mλ∗

s =

 s

r
Ψ(v, λ∗)Zve−λ∗ Zv1{Zv<∞} dv, s ≥ r,
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must be a Pr -martingale. However this is only possible if the expectation of the Lebesgue-integral
above is constant in s which requires Ψ(s, λ∗) = 0 on {0 < Zs < ∞} for all s ≥ r . Since the
event {0 < Zs < ∞} has a positive probability under Pr , we reason that Ψ(s, λ∗) = 0 for all
s ≥ r . Choosing r > 0 arbitrarily small yields Ψ(s, λ∗) = 0 for all s > 0. Convexity of Ψ(s, θ)
immediately implies that Ψ(s, θ) ≥ 0 for θ ≥ λ∗ and, further noting that Ψ(s, 0) ≤ 0, that
Ψ(s, θ) ≤ 0 for θ ≤ λ∗. �

Proof of Theorem 1(iii). Combine Lemmas 5 and 6. �

Let us now come to the proof of Lemma 7(ii). For r > 0, t ≥ 0, define the space–time domain
Dt

r as

Dt
r = {(x, u) : ∥x∥ < r, u < t} ⊂ Rd

× [0,∞).

Let (X Dt
r
, t ≥ 0, r > 0) be the system of branching Markov exit measures describing the mass

of X as it first exits the space–time domains Dt
r , see again Dynkin [4].

For the proof of Lemma 7(ii), we will need the following result which seems rather obvious
but nevertheless needs a careful proof.

Lemma 8. Let r > 0. For any µ ∈ M F (Dr ), we have Pµ-a.s.,

lim
t→∞

∥X Dt
r
∥ = ∥X Dr ∥ = Zr .

Proof. For r > 0, t ≥ 0, denote by ∂Dt
r the boundary of the set Dt

r , i.e.

∂Dt
r = ({x : ∥x∥ = r} × [0, t)) ∪ ({x : ∥x∥ < r} × {t})

=: ∂Dt−
r ∪ ∂Dt

r−.

By monotonicity, we have limt→∞ ∥X Dt
r
|∂Dt−

r
∥ = ∥X Dr ∥ = Zr ,Pµ-a.s. Next, define the event

that X becomes extinguished within Dr , i.e.

E(X, Dr ) := { lim
t→∞

∥X Dt
r
|∂Dt

r−
∥ = 0}.

On the complement of E(X, Dr ), we have

lim
t→∞

∥X Dt
r
|∂Dt

r−
∥ = ∞, Pµ-a.s.

This is to say that, on E(X, Dr )
c, the total mass within the open ball Dr at time t tends

to infinity as t tends to infinity. This follows from Proposition 7 in [7] which says that
lim supt→∞ ∥X Dt

r
|B×{t}∥ ∈ {0,∞}, Pµ-a.s. for any nonempty open set B ⊂ Dr (noting that

Proposition 7 in [7] indeed holds for the general branching mechanism we are considering here).
Hence, we have shown so far that

lim
t→∞

∥X Dt
r
∥ = Zr + ∞1E(X,Dr )c .

Thus it remains to prove that, on E(X, Dr )
c, Zr is also infinite. Fix a K > 0. Thanks to

Proposition 7 of [7], on E(X, Dr )
c, we can define an infinite sequence of stopping times

T0 = inf{t > 0 : ∥X Dt
r
|∂Dt

r−
∥ ≥ K }

Ti+1 = inf{t > Ti + 1 : ∥X Dt
r
|∂Dt

r−
∥ ≥ K }, i = 1, 2, . . . .
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At times Ti , i ≥ 0, the total mass within the open ball Dr is greater than or equal to K . Fix an
M > 0 and define the event

Ai = {∥X
D

Ti
r

|[Ti−1,Ti )×∂Dr ∥ > M}, i = 1, 2, . . .

which is the event that the mass that exits Dr during the time interval [Ti−1, Ti ) exceeds M . Note
that there exists a strictly positive constant ϵ(M, K ), such that

PX
D

Ti
r

(Ai+1) ≥ PK δ0(A1)

≥ PK δ0(∥X D1
r
|[0,1)×∂Dr ∥ > M) > ϵ(M, K ). (20)

Thus, we can partition time into infinitely many intervals [Ti , Ti+1), i ≥ 0, of length at least 1.
During each time interval the mass that exits Dr , and thus contributes to Zr , exceeds M with
positive probability. These probabilities are uniformly bounded from below by ϵ(M, K ) > 0
in (20). Therefore ∥X Dr ∥ = Zr = ∞,Pµ-a.s on the event E(X, Dr )

c. This completes the
proof. �

Proof of Lemma 7(ii). For s > 0, t ≥ 0, define F Dt
s

= σ(X Dt ′
s′
, s′

≤ s, t ′ ≤ t). Fix r > 0. The

characterising branching Markov property for exit measures, see for instance Section 1.1 in [6],
yields that, for µ ∈ M F (Dr ), s ≥ r and u ≥ t ≥ 0, we have

Eµ[e−θ∥Xu∥
|F Dt

s
] = exp{−⟨wθ (u − ·), X Dt

s
⟩} (21)

where wθ is the Laplace functional of the standard CSBP (∥Xu∥, u ≥ 0) with branching
mechanism ψ . Taking θ = λ∗, it is well known that wλ∗(t) = λ∗ for all t ≥ 0. Therefore
(21), with θ replaced by λ∗, turns into

Eµ[e−λ∗
∥Xu∥

|F Dt
s
] = exp


−


wλ∗(u − t ′) dX Dt

s
(x, t ′)


= e

−λ∗
∥X Dt

s
∥
.

Taking u → ∞, we conclude

Eµ[1{∥Xu∥→0}|F Dt
s
] = lim

u→∞
Eµ[e−λ∗

∥Xu∥
|F Dt

s
] = e

−λ∗
∥X Dt

s
∥
. (22)

Now, we want to take the limit in t . By Lemma 8, we have ∥X Dt
s
∥ → Zs as t → ∞ and thus the

right-hand side of (22) tends to exp{−λ∗Zs},Pµ-a.s. For the left-hand side, by the strong Markov
property, we can replace F Dt

s
by σ(X Dt

s
). Further, note that Pµ(∥Xu∥ → 0) = e−λ∗

∥µ∥ for any
µ ∈ M F (Ds), with Pµ(∥Xu∥ → 0) = 0 if µ has infinite mass. Thus, the event {∥Xu∥ → 0}

only depends on the total mass of µ. Therefore we can replace σ(X Dt
s
) by σ(∥X Dt

s
∥) on the

left-hand side in (22). To sum up, we get

Eµ[1{∥Xu∥→0}|F Dt
s
] = Eµ[1{∥Xu∥→0}|σ(X Dt

s
)] = Eµ[1{∥Xu∥→0}|σ(∥X Dt

s
∥)].

By Lemma 8, we have limt→∞ ∥X Dt
s
∥ = Zs , with the possibility of the limit being infinite.

Hence,

lim
t→∞

Eµ[1{∥Xu∥→0}|σ(∥X Dt
s
∥)] = Eµ[1{∥Xu∥→0}|σ(Zs)].
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Fig. 2. Shifting the balls Dr and Dr+h by a distance r ′
− r .

Putting the pieces together, we get

Eµ[1{∥Xu∥→0}|σ(Zs)] = lim
t→∞

Eµ[1{∥Xu∥→0}|F Dt
s
] = lim

t→∞
e
−λ∗

∥X Dt
s
∥

= e−λ∗ Zs .

Finally take µ ∈ M F (∂Dr ) and let r ≤ s′
≤ s. Then conditioning on σ(Zs) and using the tower

property, gives

e−λ∗ Zs′ = Eµ[1{∥Xu∥→0}|σ(Zs′)]

= Eµ[E[1{∥Xu∥→0}|σ(Zs)]|σ(Zs′)] = Er [e
−λ∗ Zs |σ(Zs′)],

from which we conclude that (e−λ∗ Zs , s ≥ r) is a Pr -martingale. �

3. The limiting branching mechanism—Proof of Proposition 2 and Theorem 3

3.1. Changing shape—Proof of Proposition 2

Proof of Proposition 2. (i) Fix 0 < r ≤ r ′, h > 0 and θ ≥ 0. The first step is to show that
u(r, r + h, θ) ≥ u(r ′, r ′

+ h, θ). Said another way, we want to show that

Er ′ [e−θ Zr ′+h ] ≥ Er [e
−θ Zr+h ]. (23)

Recall that (Zr+h, Pr ) is the mass of X as it first exists the ball Dr+h , when X is initiated from
one unit of mass distributed on ∂Dr . By radial symmetry of X , we may assume that the initial
mass is concentrated in a point xr ∈ ∂Dr , i.e. Er [e−θ Zr+h ] = Eδxr

[e−θ∥X Dr+h ∥
].

Now we shift the point xr to the point xr ′ ∈ ∂Dr ′ where ∥xr ′ − xr∥ = r ′
− r . We also shift

the ball Dr+h in the same direction and by the same distance r ′
− r and denote its new centre by

xr ′−r , see Fig. 2. By translation invariance of X we then have

Er [e
−θ Zr+h ] = Eδxr


e−θ∥X Dr+h ∥


= Eδxr ′


e
−θ∥X D(xr ′−r ,r+h)∥


,
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where D(xr ′−r , r + h) is the open ball centred at xr ′−r with radius r + h. We can then write (23)
as

Eδxr ′


e−θ∥X Dr ′+h

∥


≥ Eδxr ′


e
−θ∥X D(xr ′−r ,r+h)∥


. (24)

Recall that Eq. (2) shows that the process of branching exit measure X Ds indexed by the
increasing sequence of balls (Ds, s ≥ r) has the strong Markov property. By Dynkin [4], the
strong Markov property holds more generally for any increasing sequence of open Borel subsets
of Rd . In particular,

Eδxr ′


e−θ∥X Dr ′+h

∥
 F D(xr ′−r ,r+h)


= EX D(xr ′−r ,r+h)


e−θ∥X Dr ′+h

∥

, (25)

where F D(xr ′−r ,r+h) = σ(X D(xr ′−r ,s), s ≤ r + h). Hence, assuming that

EX D(xr ′−r ,r+h)


e−θ∥X Dr ′+h

∥


≥ e
−θ∥X D(xr ′−r ,r+h)∥ (26)

holds true, we get, together with (25), that

Eδxr ′


e−θ∥X Dr ′+h

∥


= Eδxr ′


Eδxr ′


e−θ∥X Dr ′+h

∥
 σ(X D(xr ′−r ,r+h))


= Eδxr ′


EX D(xr ′−r ,r+h)


e−θ∥X Dr ′+h

∥
≥ Eδxr ′


e
−θ∥X D(xr ′−r ,r+h)∥


,

which is the desired inequality (24). Thanks to the branching Markov property for exit measures,
for (26) to hold it suffices to show that

Eδx


e−θ∥X Dr ′+h

∥


≥ e−θ , for any x ∈ ∂D(xr ′−r , r + h). (27)

For fixed x ∈ ∂D(xr ′−r , r + h), set s = ∥x∥ and note that s ≤ r ′
+ h. By (18), u(s, r ′

+ h, θ) is
increasing in s and bounded from above by u(r ′

+ h, r ′
+ h, θ) = θ . Hence we obtain

Eδx [e
−θ∥X Dr ′+h

∥
] = Es[e

−θ Zr ′+h ] = e−u(s,r ′
+h,θ)

≥ e−θ ,

which is (27). This means we have proved (23) and thus u(r, r + h, θ) ≥ u(r ′, r ′
+ h, θ). The

latter yields that, for all θ ≥ 0,

∂

∂s
u(r, s, θ)


s=r

= lim
h↓0

u(r, r + h, θ)− u(r, r, θ)

h

≥ lim
h↓0

u(r ′, r ′
+ h, θ)− u(r ′, r ′, θ)

h
=

∂

∂s
u(r ′, s, θ)


s=r ′

. (28)

Now we apply (14) to get

∂

∂s
u(r, s, θ) |s=r =


−Ψ(s, θ)

∂

∂θ
u(r, s, θ)


|s=r = −Ψ(r, θ) · 1, (29)

where we used that lims↓r
∂
∂θ

u(r, s, θ) = 1 which can be seen as follows. By dominated
convergence, we have

lim
s↓r

∂

∂θ
e−u(r,s,θ)

= lim
s↓r

∂

∂θ
Er [e

−θ Zs 1{Zs<∞}] = lim
s↓r

Er [−Zse−θ Zs 1{Zs<∞}] = −e−θ .
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On the other hand,

lim
s↓r

∂

∂θ
e−u(r,s,θ)

= − lim
s↓r

∂

∂θ
u(r, s, θ) e−u(r,s,θ)

= − lim
s↓r

∂

∂θ
u(r, s, θ) e−θ

and we may conclude that lims↓r
∂
∂θ

u(r, s, θ) = 1 as claimed.
Combining (28) with (29) gives Ψ(r, θ) ≤ Ψ(r ′, θ) for θ ≥ 0 and r ≤ r ′, which completes

the proof.
(ii) Define Ψ∗(r, θ) := Ψ(r, λ∗

+θ) for θ ≥ 0. Then (Ψ∗(r, ·), r > 0) is a family of subcritical
branching mechanisms which, by part (i), has the property that Ψ∗(r, θ) ≤ Ψ∗(r ′, θ) for r ≤ r ′

and all θ ≥ 0. Clearly this gives Ψ(r, θ) ≤ Ψ(r ′, θ) for r ≤ r ′ and θ ≥ λ∗.
Let θ ≤ λ∗. First, note that u(r, s, λ∗) = − log Er [e−λ∗ Zs ] = λ∗, which is a consequence of

Lemma 7(ii). Thus, u(r, s, θ) ≤ u(r, s, λ∗) = λ∗ for all θ ≤ λ∗, 0 < r ≤ s, and in particular
ψ(u(r, s, θ)) ≤ 0. We therefore get

u(r, s, θ) = θ − ER
r

 τz

0
ψ(u(Rv, s, θ)) dv − ER

z

 τs

0
ψ(u(Rv, s, θ)) dv

≥ θ − ER
z

 τs

0
ψ(u(Rv, s, θ)) dv

= u(z, s, θ)

for any 0 < r ≤ z ≤ s, θ ≤ λ∗. We can then use ∂
∂r u(r, s, θ) ≤ 0 in place of the inequality (18)

in the proof of part (i). Thus, following the same arguments as in the proof of part (i) with all
inequalities reversed, we see that Ψ(r, θ) ≥ Ψ(r ′, θ) for r ≤ r ′ and all θ ≤ λ∗. �

3.2. Limiting branching mechanism—Proof of Theorem 3

To begin with, we show the existence and finiteness of the limiting branching mechanism Ψ∞

and derive a PDE characterisation.

Proposition 9. For each θ ≥ 0, the limit limr↑∞ Ψ(r, θ) = Ψ∞(θ) is finite and the convergence
holds uniformly in θ on any bounded, closed subset of R+.

(i) In the (sub)critical case, Ψ∞ satisfies the equation

1
2
∂

∂θ
Ψ2

∞(θ) = 2ψ(θ), θ ≥ 0, (30)

Ψ∞(0) = 0.

(ii) In the supercritical case, Ψ∞ satisfies (30) with the initial condition at 0 replaced by

Ψ∞(0) = −2

 λ∗

0
|ψ(θ)| dθ

and Ψ∞(λ
∗) = 0.

Proof. From the monotonicity in Proposition 2, we conclude that the pointwise limit Ψ∞(θ) :=

limr↑∞ Ψ(r, θ) exists. We will have to show that |Ψ∞(θ)| is finite for each θ ≥ 0. Uniform
convergence on any bounded, closed subset of R will then follow by convexity, see for example
Theorem 10.8 in [15]. We consider the (sub)critical case and the supercritical case separately.
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(i) Suppose we are in the (sub)critical case. We have Ψ(r, 0) = 0 for all r > 0 and hence
Ψ∞(0) = 0. For θ > 0, recall the PDE (7), which can be written slightly differently as

∂

∂r
Ψ(r, θ)+ Ψ(r, θ)

∂

∂θ
Ψ(r, θ)+

d − 1
r

Ψ(r, θ) = 2ψ(θ), r > 0, θ > 0. (31)

By Proposition 2(i), ∂
∂r Ψ(r, θ) ≥ 0 and, by Lemma 6(i), Ψ(r, θ) ≥ 0. Thus,

Ψ(r, θ)
∂

∂θ
Ψ(r, θ) ≤ 2ψ(θ), for all r > 0 and θ ≥ 0. (32)

Fix a θ0 > 0. Suppose for contradiction that Ψ(r, θ0) ↑ ∞ as r → ∞. For any K > 0, we can
find an r0 large enough such that

Ψ(r0, θ0) > 2Kψ(θ0). (33)

By (32), this implies that ∂
∂θ

Ψ(r0, θ0) <
1
K . As Ψ is convex in θ with Ψ(r0, 0) = 0, we get that

Ψ(r0, θ0) ≤
θ0

K
.

Now we can choose K large enough such that θ0/K < 2Kψ(θ0), which then contradicts (33).
Hence, limr→∞ Ψ(r, θ) = Ψ∞(θ) < ∞ for all θ ≥ 0.

Note that lim supr→∞
∂
∂θ

Ψ(r, θ) is also finite for each θ ≥ 0. Indeed, if we supposed the
contrary for some θ > 0, that is, lim supr→∞

∂
∂θ

Ψ(r, θ) = ∞, then (32) would imply that
lim infr→∞ Ψ(r, θ) = 0, which contradicts Lemma 6(i). By convexity, we can pick any θ > 0 to
get lim supr→∞

∂
∂θ

Ψ(r, 0+) ≤ lim supr→∞
∂
∂θ

Ψ(r, θ) < ∞.
Next, we want to take r → ∞ in (31) and we know that the limit of the left-hand side exists

since the right-hand side does not depend on r . We keep θ0 > 0 fixed and consider each term on
the left-hand side of (31) separately.

We have just seen that limr→∞ Ψ(r, θ0) < ∞ which implies that the third term on the left-
hand side of (31), namely d−1

r Ψ(r, θ0), vanishes as r → ∞.
Consider the term Ψ(r, θ0)

∂
∂θ

Ψ(r, θ0) next. Since Ψ(r, ·) is a sequence of continuous, convex
functions, the pointwise limit Ψ∞ is also continuous and convex in θ , cf. Theorem 10.8 in
Rockafellar [15]. The convexity ensures that the set of points at which Ψ∞ is not differentiable
is at most countable. If Ψ∞ is differentiable at θ0, then by Theorem 25.7 in [15], it follows that
limr→∞

∂
∂θ

Ψ(r, θ0) =
∂
∂θ

Ψ∞(θ0) and hence

lim
r→∞

Ψ(r, θ0)
∂

∂θ
Ψ(r, θ0) = Ψ∞(θ0)

∂

∂θ
Ψ∞(θ0). (34)

So far we have seen that, for all θ ≥ 0 at which Ψ∞ is differentiable, the second and third terms
on the left-hand side of (31) converge to a finite limit as r → ∞ which implies that the limit of
the first term, that is limr→∞

∂
∂r Ψ(r, θ), also exists and is finite. With limr→∞ Ψ(r, θ) < ∞ it

thus follows that ∂
∂r Ψ(r, θ) tends to 0 as r → ∞, for all θ ≥ 0 at which Ψ∞ is differentiable.

In conclusion, for any θ at which Ψ∞ is differentiable, the first and third term on the left-hand
side of (31) vanish as r → ∞ and with (34) we get

Ψ∞(θ)
∂

∂θ
Ψ∞(θ) = 2ψ(θ). (35)

For θ > 0, we have Ψ∞(θ) > 0 and we can write (35) as

∂

∂θ
Ψ∞(θ) = 2

ψ(θ)

Ψ∞(θ)
, (36)
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which again holds for all θ > 0 at which Ψ∞ is differentiable. By convexity, Ψ∞ admits left
and right derivatives for every θ > 0. Since the right-hand side of (36) is continuous and (36)
holds true for all but countably many θ > 0, we conclude that the left and the right derivative of
Ψ∞(θ) agree for every θ > 0. Thus (36), and equivalently (30), holds in fact for every θ > 0.
By convexity, for any θ > 0, we get

∂

∂θ
Ψ∞(0+) ≤

∂

∂θ
Ψ∞(θ) = 2

ψ(θ)

Ψ∞(θ)
< ∞,

which shows that (30) holds true for θ = 0 with both sides being equal to 0.
(ii) We consider the supercritical case now. Again we first have to show that Ψ∞(θ) is finite

for each θ ≥ 0.
Let us begin with the case θ ∈ [λ∗,∞). We can consider the (sub)critical branching

mechanisms Ψ∗(r, λ) := Ψ(r, λ + λ∗) for λ ≥ 0. Then part (i) applies to the (sub)critical
Ψ∗ and we conclude that, for any θ ≥ λ∗,

Ψ∞(θ) = lim
r→∞

Ψ(r, θ) = lim
r→∞

Ψ∗(r, θ − λ∗) = Ψ∗
∞(θ − λ∗) < ∞.

In particular, Eq. (30) holds for all θ ≥ λ∗ and Ψ∞(λ
∗) = Ψ∗

∞(0) = 0.
Further, it follows from the monotonicity in Proposition 2 that ∂

∂θ
Ψ∗(r, 0+) ≤

∂
∂θ

Ψ∗
∞(0+).

The latter derivative was shown to be finite in the proof of part (i). Thus, for any r > 0,

∂

∂θ
Ψ(r, θ)


θ=λ∗

=
∂

∂θ
Ψ∗(r, 0+) ≤

∂

∂θ
Ψ∗

∞(0+) < ∞.

Hence, we have a uniform upper bound for the θ -derivative of Ψ(r, ·) at λ∗. Recalling that
Ψ(r, λ∗) = 0, convexity ensures that Ψ(r, ·) is uniformly bounded from below by the function
∂
∂θ

Ψ∗
∞(0+)(· − λ∗). This implies already that limr→∞ |Ψ(r, θ)| < ∞ for all θ ∈ [0, λ∗

].
To show that Eq. (30) holds for all θ ≤ λ∗ we can now simply repeat the argument given in

the proof of part (i). Finally, with Ψ∞(λ
∗) = 0, we can derive the initial condition for Ψ∞(0) by

integrating (30) from 0 to λ∗. �

Proof of Theorem 3. Proposition 9 guarantees the existence and finiteness of Ψ∞. If we
integrate (30) from λ∗ to θ , and note that Ψ∞(θ) and ψ(θ) are negative if and only if θ ≤ λ∗, we
obtain the expression in (8). It thus remains to show (ii).

It follows from an obvious adaptation of the proof of Theorem 3.1 in Kyprianou et al. [13]
that Z∞ is the process of the mass of the branching Markov exit measures of a one-dimensional
super-Brownian as it first exits the family of intervals ((−∞, s), s ≥ 0) as claimed.

Concerning the convergence in (9), we will show that, for s ≥ 0 and θ ≥ 0, u∞(s, θ) :=

limr→∞ u(r, s + r, θ) exists and solves

u∞(s, θ) = θ −

 s

0
Ψ∞(u

∞(s − v, θ)) dv, (37)

which is the characterising equation for the Laplace functional of Z∞.
This is trivially satisfied for s = 0. Henceforth, let s > 0 and θ ≥ 0 be fixed. Recall that

u(r, s + r, θ) solves equation (5), which can be written as

u(r, s + r, θ) = θ −

 s

0
Ψ(v + r, u(v + r, s + r, θ)) dv, r > 0.

Note that the convergence of the convex functions Ψ(r, ·) to Ψ∞(·) in Theorem 3 holds uniformly
in θ on each bounded closed subset of R+. Therefore, for fixed ϵ > 0, we can choose r large
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enough such that |Ψ(s + r, λ) − Ψ∞(λ)| < ϵ for all λ ∈ {u(v + r, s + r, θ), 0 ≤ v ≤ s}. Thus,
for large r ,u(r, s + r, θ)−


θ −

 s

0
Ψ∞(u(v + r, s + r, θ)) dv


=

 s

0
Ψ(v + r, u(v + r, s + r, θ)) dv −

 s

0
Ψ∞(u(v + r, s + r, θ)) dv


≤ ϵ s. (38)

Now assume for a contradiction that lim supr→∞ u(r, s + r, θ) = +∞. Since Ψ∞ is convex and
Ψ ′

∞(0+) ≥ 0 (with Ψ ′
∞(0+) = 0 in the supercritical case), the integrand in the first line of (38)

is bounded from below by Ψ∞(0). Therefore, the expression in the first line of (38) tends to ∞

along a subsequence of r which is an obvious contradiction.
Hence, u(r, s + r, θ) is bounded as a sequence in r . It therefore contains a convergent

subsequence, say u(rn, s + rn, θ) where (rn, n ≥ 1) is a strictly monotone sequence which
tends to ∞.

Let us show that every subsequence converges to the same limit. Let (r ′
n, n ≥ 1) be another

strictly monotone sequence which tends to ∞. To begin with we note that supn∈N{u(v + rn, v +

rn, θ)} < ∞ by boundedness. Then we set

ū = sup
v∈(0,s)

sup
n∈N

{u(v + rn, v + rn, θ)} < ∞

and define ū′ accordingly using the sequence (r ′
n, n ≥ 1) in place of (rn, n ≥ 1).

By (38), for any ϵ > 0, we can find an N ∈ N large enough such that for all n ≥ N

|u(rn, s + rn, θ)− u(r ′
n, s + r ′

n, θ)|

≤ 2ϵs +

 s

0

Ψ∞(u(v + rn, s + rn, θ))− Ψ∞(u(v + r ′
n, s + r ′

n, θ))

 dv

≤ 2ϵs +

 s

0
M |u(v + rn, s + rn, θ)− u(v + r ′

n, s + r ′
n, θ)| dv (39)

where M := sup{Ψ ′
∞(w) : w ∈ (0,max{ū, ū′

})} < ∞. Set

Fn(s
′) = M

 s′

0
|u(v + rn, s + rn, θ)− u(v + r ′

n, s + r ′
n, θ)| dv, for 0 ≤ s′

≤ s,

and note that ∂Fn(s′)/∂s′
= M |u(s′

+ rn, s + rn, θ)− u(s′
+ r ′

n, s + r ′
n, θ)|. By (39),

∂

∂s′
Fn(s

′)− 2ϵM(s − s′)− M(Fn(s)− Fn(s
′)) ≤ 0.

Multiplying by eMs′

, we derive ∂[

Fn(s)− Fn(s′)+ 2ϵ(s − s′)+

2ϵ
M


eMs′

]/∂s′
≥ 0. Therefore,

Fn(s)− Fn(s
′)+ 2ϵ(s − s′)+

2ϵ
M


eMs′

≤
2ϵ
M

eMs, for any 0 ≤ s′
≤ s.

Hence, Fn(s) − Fn(s′) ≤ 2ϵ
 1

M (e
M(s−s′)

− 1) − (s − s′)

, for 0 ≤ s′

≤ s. Since ϵ > 0
can be chosen arbitrarily small, we conclude from the definition of Fn(s′) that u(r ′

n, s′
+ r ′

n, θ)

converges to the same limit as u(rn, s′
+ rn, θ) as n → ∞. We have thus shown that, considered

as a sequence in r , all subsequences of u(r, s + r, θ) converge to the same limit. Therefore
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u∞(s, θ) = limr→∞ u(r, s + r, θ) exists and, with (38), it satisfies (37). By uniqueness of
solutions to (37), u∞(s, θ) agrees with the Laplace functional associated with Z∞ which in
turn implies the desired convergence. �
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Appendix. Derivation of the differential equation (17) corresponding to the semi-group
equation (16)

The reader familiar with the superprocess literature will readily believe that any solution
to the differential equation (17) also solves the semi-group equation (16) and conversely that
solutions to (16) also solve (17). Results of this fashion can be found for instance in the work
of Dynkin, see [2], Section 3 in [3] or Section 5.2 in [5]. However, in these references only
(sub)critical branching mechanisms are allowed and the authors are unaware of a rigorous proof
in the literature for the case of a supercritical branching mechanism. Although it seems possible
to adapt Dynkin’s arguments to the supercritical case, we will offer a self-contained proof here
instead.

Recall that the Laplace functional u of Z , defined in (4), is the unique non-negative solution
to the equation

u(r, s, θ) = θ − ER
r

 τs

0
ψ(u(Rl , s, θ)) dl, 0 < r ≤ s, θ ≥ 0, (A.1)

where (R,PR) is a d-dimensional Bessel process and τs := inf{l > 0 : Rl > s} its first passage
time above level s, see (16).

Fix 0 < r ≤ s and θ ≥ 0 from now on. Let us apply a Lamperti transform to the d-Bessel

process R in the integral on the right-hand side of (A.1). Define ϕ(s) =
 r2s

0 R−2
l dl, s ≥ 0, then

Bs = log(r−1 Rr2ϕ−1(s)), s ≥ 0,

is a one-dimensional Brownian motion with drift d
2 − 1 starting from 0. Let us denote the law of

B by P0. Thus we get

ER
r

 τs

0
ψ(u(Rl , s, θ)) dl = ER

r

 ϕ(r−2τs )

0
ψ(u(Rr2ϕ−1(l), s, θ))R2

r2ϕ−1(l) dl

= E0

 Tlog(s/r)

0
ψ(u(eBl+log r , s, θ))e2(Bl+log r) dl

= Elog r

 Tlog s

0
ψ(u(eBl , s, θ))e2Bl dl,

where Tlog s is the first time B crosses level log s. Eq. (A.1) becomes

u(r, s, θ) = θ − Elog r

 Tlog s

0
ψ(u(eBl , s, θ))e2Bl dl. (A.2)



M. Hesse, A.E. Kyprianou / Stochastic Processes and their Applications 124 (2014) 2003–2022 2021

We split the integral on the right hand side into its excursions away from the maximum. This
gives

Elog r

 Tlog s

0
ψ(u(eBl , s, θ))e2Bl dl

= Elog r


log r≤u≤log s

 ζ (u)

0
ψ(u(eu−eu(l), s, θ))e2(u−eu(l)) dl,

where eu is an excursion away from the maximum with lifetime ζ (u) and the sum is taken over
all left end-points u of the excursion intervals in (Tlog r , Tlog s). It follows from the Compensation
formula for excursions (Bertoin [1, Corollary 11, p. 110]) that

Elog r


log r≤u≤log s

 ζ (u)

0
ψ(u(eu−eu(l), s, θ))e2(u−eu(l)) dl

=

 log s

log r
η

 ζ

0
ψ(u(eu−e(l), s, θ))e2(u−e(l)) dl


du,

where η denotes the excursion measure and e is a generic excursion with length ζ . Then we apply
Exercise 5, chapter VI, [1], to get log s

log r
η

 ζ

0
ψ(u(eu−e(s), s, θ))e2(u−e(l)) dl


du

=

 log s

log r


∞

0
ψ(u(eu−y, s, θ))e2(u−y) V̂ (dy) du,

where V̂ is the renewal function of the dual ladder height process (the dual process is here
simply Brownian motion with drift −( d

2 − 1)). We see from Eq. (4), p. 196 in [1] that V̂ (dy) =

2e−2( d
2 −1)ydy and obtain log s

log r


∞

0
ψ(u(eu−y, s, θ))e2(u−y) V̂ (dy) du

= 2
 log s

log r
e2u


∞

0
ψ(u(eu−y, s, θ)) e−dy dy du

z=eu−y

= −2
 log s

log r
e2u

 0

eu
ψ(u(z, s, θ))zde−du z−1 dz du

v=eu

= −2
 s

r
v2

 0

v

ψ(u(z, s, θ)) zd−1v−d dz v−1 dv

= 2
 s

r
v1−d

 v

0
ψ(u(z, s, θ)) zd−1 dz dv.

Thus the characterising semi-group equation (A.1) resp. (A.2) becomes

u(r, s, θ) = θ − 2
 s

r
v1−d

 v

0
ψ(u(z, s, θ)) zd−1 dz dv.
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Differentiation in r gives

∂

∂r
u(r, s, θ) = 2r1−d

 r

0
ψ(u(z, s, θ))zd−1 dz,

∂2

∂r2 u(r, s, θ) = 2(1 − d)r−d
 r

0
ψ(u(z, s, θ))zd−1 dz + 2ψ(u(r, s, θ)).

Hence, we obtain the differential equation in (17), i.e. for θ ≥ 0,

1
2
∂2

∂r2 u(r, s, θ)+
d − 1

2r

∂

∂r
u(r, s, θ) = ψ(u(r, s, θ)) 0 < r ≤ s,

u(r, r, θ) = θ.
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