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Preface

There have been a number of developments in the theory of @-stable Lévy
processes in recent years. This is largely thanks to a better understanding of
their connection to self-similar Markov processes, in conjunction with a re-
vised view on the complex analysis that can subsequently be brought into play.
We mention in this respect the paper of Caballero and Chaumont [43]] as well as
the work of Kuznetsov [[115,[116], both of which present seminal perspectives
in terms of the underlying Wiener—Hopf theory that has stimulated a large base
of literature. Among this literature, the PhD theses of Alex Watson in 2013 and
Weerapat Satitkanitkul in 2018 stand out.

The basic idea of this book is to give an introductory account of these de-
velopments and, accordingly, expose the new techniques that have appeared
in the literature since the mid 2000s. The majority of the mathematical com-
putations that are developed in the following chapters either pertain to recent
material or to a new approach for classical results. At the end of each chapter, a
section is devoted to referencing all material presented in the main body of the
chapter. An Appendix is also included, and referred to throughout the text, to
record some of the more specialist facts from complex analysis and the theory
of Markov processes that are used in the text.

We hope that this text will serve as a standard reference for those interested
in the modern theory of a-stable Lévy processes as well as suitable material
for a graduate course. Indeed, some of the material in this text has been used
in conjunction with lectures given by AEK at the University of Zurich, the
National Technical University of Athens, University of Jyvéskyld, The Chinese
Academy of Sciences and at Prob-L@B in Bath, as well as by JCP at UNAM
in Mexico City, CIMAT in Guanajuato and Kyoto University.

We were inspired to write this text by our mutual friend and collaborator
Alexey Kuznetsov, many of whose contributions to the theory of stable pro-
cesses can be found in this book. During the writing of this book JCP and
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AEK were in receipt of a Royal Society Advanced Newton International Fel-
lowship, JCP was in receipt of supporting CONACYT grant 250590 and AEK
in receipt of supporting EPSRC grants EP/M001784/1 and EP/L002442/1, as
well as a Royal Society Wolfson Merit Award. Both authors are grateful for
this support, some of which assisted with visits between the UK and Mexico.
JCP would especially like to thank the University of Bath for hosting him as
David Parkin Visiting Professor for the 2018/19 academic year.

In the final stages of writing, we sent a draft of the manuscript to several
people who agreed to act as proofreaders. Predictably, we obtained a shameful
amount of corrections. We are immeasurably grateful to the following people
in equal measure: Larbi Alili, Sam Baguley, Gabriel Berzunza, Natalia Car-
dona, Hector Chang, Loic Chaumont, Benjamin Dadoun, Niklas Dexheimer,
Ron Doney, Dorottya Fekete, Diana Gillooly, Camilo Gonzélez, Emma Hor-
ton, Sara Klein, Takis Konstantopoulos, Alexey Kuznetsov, Sandra Palau, Hel-
mut Pitters, Tsogzolmaa Saizmaa, Weerapat (Pite) Satitkanitkul, Quan Shi,
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mann. The final year of writing took place during the 2020-2021 pandemic
lockdown period and we learned the robustness of virtual communication as
need dictated.

Finally, and most importantly, we would like to thank our families for their
understanding and patience during the writing of this text.

Andreas E. Kyprianou Juan Carlos Pardo
Bath, UK Guanajuato, Mexico

March 2021



Notation

Below are some of the more commonly used notation that appears throughout
the text, which has been thematically grouped for convenience. Reference page
numbers are presented on the right-hand column.

Stable distributions

a stability index
p positivity index
A parameter set (a, p) for stable distributions
p(x, a,p) pdf of stable distribution with parameters (a, p)
M(2) Mellin transform of p(x, a, p)
Lévy processes
(Y,P) general Lévy process
(¥,P), (¥, f’) dual of Lévy process (Y, P)
II(dx) Lévy measure
(x) Lévy density
N(dt,dx) Poisson point process of jumps
L infinitesimal generator
a natural filtration
P, semigroup
4 characteristic exponent
W Laplace exponent
Y, Y ; running supremum and running infimum
‘I’;, ‘I’q‘ Wiener—Hopf factors
H, H ascending and descending ladder height process
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Notation

lifetime of ascending and descending ladder height
processes

ascending and descending ladder height Laplace
exponents

g-resolvent

density of g-resolvent

subordinator resolvent

first passage time of a Lévy process into B

first passage times below and above x

lifetime of killed process

exponential martingale

variables characterising asymptotic overshoot of a
Lévy process at first passage over a threshold tend-
ing to infinity

parametric classes of hypergeometric Lévy pro-
cesses

Lévy process underlying stable process killed on
entering (—oo, 0) and its characteristic exponent
Lévy process underlying stable process condi-
tioned to stay positive and its characteristic expo-
nent

Lévy process underlying stable process condi-
tioned to limit to O from above and its characteristic
exponent

Lévy process underlying censored stable process
and its characteristic exponent

Lévy process underlying the radial part of a stable
process and its characteristic exponent

a constant defined from the hypergeometric Lévy
process parameters, equalto 1 =8+ 7y + 3+ %
Cramér number

integrated exponential functional of Y

shorthand for 1/6

pdf of 1(6,Y)

Mellin transform of 1(6, Y)

Stable processes

stable process
parameter set («, p) for stable processes
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density of stable process issued from 0
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law of stable process conditioned to stay positive
law of stable process conditioned to limit to 0 from
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first passage time over threshold a of reflected pro- |179

cess
running supremum of reflected process 181
future infimum of stable process

pdf of the maximum at time 1

Mellin transform of the maximum at time 1

time change in Riesz—Bogdan—Zak transformation
time of closest radial reach to the origin

time of furthest radial reach from the origin before
hitting the origin

first hitting of sphere of radius a

last passage time of radial distance below a

first entry into the sphere of radius a

first exit from the sphere of radius a
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Markov additive processes

statespace of modulator

MAP with discrete Markov modulator

MAP with general Markov modulator (usually a
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MAP filtration 302
law of MAP with discrete modulator 289
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intensity matrix of discrete modulator
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stationary distribution of Q

diagonal matrix populated with 7

matrix exponent of MAP and MAP dual

last at which MAP ordinate last visits its past max-
imum before time ¢

ascending ladder MAP

matrix of exponent of space-time ascending ladder
MAP

space-time Laplace exponents of pure subordinator
states of ascending ladder MAP

eigenvalue and right eigenvector of matrix expo-
nent of ¥(z)

matrix exponent of ascending ladder MAP
ascending and descending ladder MAP resolvent
for discrete modulator

MAP resolvent

ascending and descending ladder MAP resolvent
for continuous modulator

Self-similar Markov processes

integrated exponential Lévy process underlying a
self-similar Markov process

right inverse of integrated exponential Lévy pro-
cess

self-similar Markov process

lifetime of process

Lévy process underlying a positive self-similar
Markov process

last passage time below x

time reversed process from last passage time

first passage time below y of reversed pssMp

first passage time of pssMp above y
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future infimum of pssMp after time ¢

scaled left limit of positive self-similar Markov
process at last passage at any level

density of distribution of 1°I(5, E)

right tail distribution of integrated exponential and
partially integrated exponential dual Lévy process
left tail distribution of Y1,

left tail distribution of S; under P

Excursions

local time

canonical excursion at local time ¢

canonical radial excursion at local time ¢
excursion lifetime

space of excursion paths of Lévy process from
from maximum and minimum

space of MAP excursions from ordinate maximum
space of MAP excursions from ordinate minimum
excursion measure of a Lévy process from its max-
imum resp. minimum

MAP excursion measure when left end point be-
gins with modulator in state i

radial excursion measure when left end point be-
gins with modulator in state 6

Other notation

independent and exponentially distributed random
variable

gamma function
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Stable distributions

The starting point of this monograph is the notion of distributional stability and
infinite divisibility. Stable distributions are the celebrated class which exhibit
both of the aforesaid properties and, accordingly, offer a number of remarkably
explicit formulae and identities. We therefore begin our journey by addressing
the robust mathematical theory that supports the characterisation of stable dis-
tributions in preparation for later chapters.

1.1 One-dimensional stable distributions

We begin our discussion by first restricting ourselves to the one-dimensional

. . . . d o
setting. The following definition, for which we use 9 {0 mean equality in dis-
tribution, is key to the notion of distributional stability.

Definition 1.1. A non-degenerate random variable X has a stable distribution
if, for any @ > 0 and b > 0, there exists ¢ > 0 such that

aX, + X, 2 ex, (1.1)
where X; and X, are independent and X; @ X @ X. We exclude from this
definition the possibility that X = 0.

The experienced reader will immediately spot that the above definition per-
tains to what is more broadly known in the literature as a strictly stable ran-
dom variable, The notion of a stable random variable is reserved for a slightly
broader concept. Since we will never have occasion in this book to distinguish
the difference, we will depart from the traditional convention and refer only
stable random variables for those defined above.



2 Stable distributions

Observe that (I.T) implies

X+ X
X(g) 1 2’
d>

for some constant d, > 0. By induction, it is easy to see that, for any n > 0,
there exists a constant d,, > 0 and n independent random variables X;, 1 <i <
n, with the same distribution as X, such that

@ X1 +Xo+--+ X,

x < 7 . (1.2)

Said another way, any stable random variable X is infinitely divisible.

For convenience, let us recall the so-called Lévy—Khintchine representation,
which provides a complete characterisation of infinitely divisible distributions.
We first introduce some notation. Let y be the probability distribution of a
real-valued random variable and define its characteristic function by

Qz) = f e udy), zeR
R

If p is an infinitely divisible distribution, then it is known that its characteristic
function never vanishes. As a consequence, there exists a continuous function
Y: R — C, called the characteristic exponent of u, such that ¥(0) = 0, and

exp{—-¥(2)} := ((z), forzeR. (1.3)

Theorem 1.2 (Lévy—Khintchine representation). A function ¥': R +— C is the
characteristic exponent of an infinitely divisible random variable if and only
if there exists a triple (a,o,11), where a € R, o > 0 and 11 is a measure
concentrated on R \ {0} satisfying ﬁz(l A x2)TI(dx) < oo, such that

1 .
Y(2) = iaz + §a2z,2 + f (1= & + izxl ey TI(d), (1.4)
R

for every z € R. Moreover, the triple (a, 2, TI) is unique within the given ar-
rangement on the right-hand side of (1.4).

The measure II is called the Lévy measure of the distribution u and o its
Gaussian coefficient. Whilst the triple (a, o, I1) defining ¥(z) is unique as de-
scribed, in various situations one may prefer to use a different regularising
function A(x), in which case (T.4)) is written as

1 .
Y(z) = idz + 50'212 + f (1 —e¥ 4 izh(x)) I(dx), z€R, (1.5)
R



1.1 One-dimensional stable distributions 3

where
a=a-— f (h(x) — x1y<1)) TI(dx),
R

which is finite.

In this chapter, we shall interchange between the two equivalent representa-
tions given by (T-4) and (I.5). For example, when the measure IT satisfies the
stronger condition

f(l A |x) TI(dx) < oo,
R

we may choose i(x) = 0. If the distribution p has finite mean, we may choose
h(x) = x. In some cases, it will be convenient to choose h(x) = sin(x) or
h(x) = x/(1+x2). Everywhere in this book, when we say that the distribution u
has characteristic triple (a, o, IT) without specifying the regularising function 4,
we assume that the characteristic exponent is given via (T.4), otherwise we will
say that the distribution u has characteristic triple (a, o, IT) with the regularising
function £, in which case ¥ will be given by (I.3).

The following main result provides the explicit characteristic exponent of
stable distributions. As part of its proof, which will be provided in the next
section, we will also be obliged to understand the structure of the underlying
triple (a, o, I) in the associated Lévy—Khintchine formula.

Theorem 1.3. A stable random variable X has a characteristic exponent sat-

isfying
W(2) = clI*(1 - iBtan (/2)sgn(z)),  z€R, (1.6)
where
ae0,1)U(1,2,c>0 and PBe[-1,1]
or

a=1,8=0 andwe understand [tan(na/2) := 0.
The latter case is known as the symmetric Cauchy distribution.

Remark 1.4. Note that the symmetric Cauchy distribution with drift 6 € R,
ie.
Y(2) = clzl + 6z, Z€R,

also belongs to the class of one-dimensional stable distributions. Nonetheless,
we will henceforth only deal with the case that 6 = 0 when a = 1.



4 Stable distributions

Remark 1.5. We also note that the case @ = 2 corresponds to the case where
X has a Gaussian distribution. As we shall see in Chapters 2] associated to each
of the distributions discussed in this chapter is a Lévy process. As one might
expect, the case @ = 2 leads to Brownian motion. For other values of @, we
will find an association with Lévy processes that do not have continuous paths,
the so-called a-stable processes (also referred to as just stable processes). It is
the case of processes with path discontinuities that forms the primary concern
of this book. For this reason, the overwhelming majority of this text will be
restricted our to the setting that a € (0, 2).

1.2 Characteristic exponent of a one-dimensional stable law

We dedicate this section entirely to the proof of Theorem As part of this
process, we need to establish two key intermediary results.

Lemma 1.6. The sequence (dy)i>1 defined by is strictly increasing and
satisfies di = k' for some a > 0, k > 1.

Proof Recall that i denotes the characteristic function of a stable distribution
X and, thanks to the infinite divisibility of X, fi(z) # O for z € R. From the
definition of the sequence (di)i>1, the scaling property in (I.2) can be reworded
to say

P(dz) = kP(z), z€R, k> 1. (1.7)

In turn, this implies |fi(di+12)| = |2(2D)||i(drz)| < |i(drz)| and hence

N .
1% d

We are now forced to conclude that d;.; > dy, for k > 1. To see why, note that

~ dk+l nz
1% dr
with (dy,1/d;)" — 0 as n — oo, which would imply that 1 < |@(z)], leading to

a contradiction.
Next, we observe that for all m,n > 1 and z € R,

< la)l, k=1

< @), forany n>1,

(2] = mAlP(@)] = ¥ Q)| = [1¥(dn2)| = [¥(dudn2),

implying that d,,, = d,d,,. In particular, for any positive integer j, d,,; = d;ﬁl. It



1.2 Characteristic exponent of a one-dimensional stable law 5

1 < n < m, there is a positive integer p such that m/ < n” < m/*!. Using these
inequalities and the established monotonicity of (dy);>; we have that

j logd, < logd, It 1logd,

j+1logm =~ logn = j logm’
Hence, taking j — oo, we get

logd,, logd, 1

logm logn o’

for some strictly positive constant a. Therefore logd, = logn'/? or equiva-

lently d, = n'/%, forn > 1 and & > 0. O

Our second intermediary result characterises the form of the underlying
Lévy measure of any stable distribution.

Proposition 1.7. If X is a stable random variable then necessarily a € (0,2].
In the case that @ = 2, X is Gaussian distributed. Otherwise when a € (0,2),
then there exist c1,¢y > 0 such that ¢; + ¢o > 0 and the underlying Lévy
measure 11 satisfies

T(dx) = ™" (c1ls0) + 2leg))dx,  x€R. (1.8)

Proof Recall that identity (1.7) and Lemma|[L.6]imply k'P(z) = WP(k'/z), for
z€ Rand k > 1. More precisely, we observe

ikaz + 2ko?2 + f (1= & +izxl gy k TI(dx)
2 R
. 1 ey . (1.9
= iak!"z+ 0?2 + f (1= ™" +igk!/7x1 1)) TI(dx),
R
forany £ > 1 and z € R. Hence if o > 0, we are forced to take @ = 2. Moreover,
still in the setting a = 2, if we then let k tend to oo, the latter identity implies
a = 0, IT = 0. In conclusion, the case that @ = 2 corresponds to a Gaussian
random variable.
Next, we assume o = 0. Again from identity (I.9), by changing variables in
the integral on the right-hand side, we deduce

kII(dx) = TI(k~"/dx), x#0.

Therefore, for the functions I (x) := II([x,)), x > 0, and 17 (x) :=
II((—o0, x)), x < 0, we have

T (x) = %ﬁ“) (k'ex)  and ﬁ<->(x)=%ﬁ<—> (kVex).



6 Stable distributions

From the first of these two, we have, for all k,n > 1,

1=, (K%)= 1—
O = (e = ZH
ot (nl/a) = (k/7) = 21 (1),
Since {(k/n)"/*; k,n € N} is dense in [0, o) and the function II**) is nonincreas-
ing, we deduce IV (x) = x°II™¥(1), for x > 0. Similarly, we may deduce
IO (x) = |x|"*TI)(1), for x < 0.

Now taking ¢; := aII™”(1) and ¢, := oI1(1), we obtain

T(dx) = " (c1 o) + C2lier))dx, X €ER,

as required. As I is a Lévy measure, in particular, it must satisfy the integral
condition

f (1 A [x*) (dx) < 0.
R
We thus deduce that a € (0, 2). ]

Finally, we are ready to compute the characteristic exponent ¥ as stated in
Theorem [L.3]

Proof of Theorem[I.3] Since the case @ = 2 has already been characterised as
Gaussian in the proof of Proposition we set o = 0 and focus on the case
a € (0,2).

We first observe that, when a € (0, 1) the function x + |x{~@*1 is integrable
near 0 and hence we may take the regularising function in (I.3)) to satisfy h(x) =
0. From identity (I.7), we deduce that @ = 0 in (I.5)), or in other words,

a= —f xTI(dx).
(Ixl<1)

Using the well-known integral identity for the gamma function, see for instance
(A7) in the Appendix, we have

f eizxxsfl dx = Z*Sr(s)e"is/z, 7> O, O0<s< 1, (110)
0
and, appealing to integration by parts, we find that
f (eizx _ 1)x—1—a dx = 7% ™2 (—q), z>0. (1.11)
0

Making the change of variable x — —x and taking the complex conjugate of
both sides we find

izx _ -l-a — ~ —izx _ ~l-a — @ama/2r
f(e‘z 1) ™ dx fo(e 1) dx = 2 T (=), (1.12)
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for z > 0. Note also that when z takes negative values we can similarly make
use of the computations leading to (T.12). Then, we apply the following simple
identity

Cl1 —

-mia/2 = (c1 + c2)cos(ma/2)[1 -1 - tan(ra/2)),
[ )

mia/2

ci€e + Cp€

and observe that
c=—(c; + c)I'(—a)cos(na/2) > 0,

since —I'(—a) is positive for @ € (0, 1). This completes the proof of the case
a € (0,1).

When « € (1,2), the function x > |x|~@*D integrates x* in a neighbourhood
of 0 and hence we may take the regularising function in (I.5) as h(x) = x.
Again identity (T.7) implies @ = 0 in (I.5) and therefore

a= f x TI(dx).
(JxI>1)
Similarly, we use (I.I0) and apply integration by parts twice to find
f (ei” —1- izx) x 7 dx = 2% P (—a), (1.13)
0

for z > 0, and the rest of the proof proceeds in the same way as in the case
a € (0,1).

Finally, the case @ = 1 must be treated differently. In this case, we observe

0 < : dx 0 dx
f (1 -+ 1ZX1(Ix\<1)) =z - f (1 = cos(zx)) =
0 0
N b dx
—i (sin(zx) — zx1y<1)) = (1.14)
0

A change of variables followed by integration by parts gives us

00 d 00 . 00 00
f (1 - cos(zx) = = I f LG f f sin(0e™ dudx.
0 X 0 X 0 0

Since

00 1
f e ™ gin(x)dx = ——, (1.15)
0 Mz +1

we get

0 dx |zgn
fo (1 = cos(zx)) peilr et (1.16)
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Next, for simplicity, we assume that z > 0. Observe that

o dx
fo (sin(zx) — zx1gy<1)) 2

1/z d
= f (sin(zx) — zx) —;C
0 X
0 d
+ f sin(zx)—); —zlogz
1/z X

1 0o
=Z(f (sin(x)—x)d—f +f sin(x)d—f)—zlogz. (1.17)
0 X 1 X

Hence by defining

1 00
d d
K = f (sin(x) — x) —f + f sin(x) —f,
0 X 1 X
and putting all the pieces in (I.16)) and (T.17) back into (T.14), we deduce

® i dx lzlr . .
f (1 el 1zx1(|x‘<1)) poi % —iKz+izloglzl, zeR\{0}.
0

Therefore, from Proposition |'1;7| and the above reasoning, the characteristic
exponent ¥ satisfies

W(z) = iaz + (c1 — c2)iKz + (c1 + Cz)IZI%r +(c) —ep)izloglel,  ze R\ {0}

As we must have WY(k'/%7) = k¥(2), z € R, k € N, albeit now a = 1, from
Lemma|T.6] we deduce that ¢; = ¢, and then

. m
Y(z) =iaz+ (c; + 02)|Z|§» zeR.
Taking note of Remark [T-4] by taking a = 0, we get the desired result. m|

Reviewing the proof above, we also get some information about the con-
stants ¢; and ¢, appearing in Proposition [I.7] in relation to the parameters ¢

and B in (T.6).
Corollary 1.8. When a € (0,2) the constants cy,c, appearing in the Lévy

measure (I8) satisfy
¢

¢ = —(c) + e (=) cos(na/2) and B = % (1.18)
1 2

when a € (0,1) U (1,2). Moreover, c; = ¢» with ¢ = ¢y, when a = 1.
We also get from the proof of Theorem [I.3] the values of a in the Lévy—

Khintchine triple[T.4] As such, the following corollary completes the statement
of Proposition[I.7}



1.3 Moments 9

Corollary 1.9. When a € (0, 1), the constant a in the Lévy—Khintchine triple
is equal to — f(|x|<1) xI(dx), when a € (1,2) we have a = f(\xl>l) xI1(dx) and
when @ = 1 we have a = 0.

1.3 Moments

An important feature of stable distributions when « € (0, 2), which is one of
their signature properties that differs from the setting that @ = 2, is that they
do not possess second moments (and hence no other greater moments). The
precise cut-off where positive moments exist is the concern of the next main
result.

Theorem 1.10. Suppose that X is a stable distribution with index a € (0,2).
Then E[|X|#] < oo, for 0 < B < a, and for B > a, we have E[|X|?] = .

Proof We start by noting that, irrespective of the symmetry in the distribution
of X, thanks to the shape of IT given in Theorem[I.7| we have that

f x| TI (dx) < oo,
(Jx=1)

for B8 € [0, @) and infinite for 8 € [, o).
Next note that the Lévy—Khintchine exponent (I.4), written here as ¥, has
o = 0 and can be decomposed in the form ¥ = ¥ + ¥ where

‘I’(l)(z) =iaz + f (1 — eizx) TI(dx), Z€R,
(Ix1=1)

and

¥2(z) = f (1 —el¥ 4 izx) (dx), Z€R,
(Ixl<1)

with

- f(lx\<l) xH(dx) if ae (O’ 1)’
0 if a=1,
f(|x|21) xl(dy) if @ €(1,2).

a

For the first of these two, we note that it corresponds to the characteristic
exponent of a compound Poisson random variable, say

N
XV =-a+ ' 5,
i=1

where N is an independent Poisson distributed random variable with rate I1(|x| >
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1) and (5;,i > 1), are i.i.d. with distribution IT(|x| > 1)‘1H(dx)1(‘x|21). (We use
the usual convention that 3\ := 0.) We want to consider the moments of X
It is already clear from the tail of I1 that =, has a finite S-moment if 8 € [0, @)
and infinite S-moment if 8 > . In particular, Z; has a first moment (and hence
all smaller positive moments) if and only @ € (1, 2).

When Z; has a first moment, i.e. @ € (1,2), we observe that X\ can be

rewritten as
N
1 =
xW = Z =i,
i=1

where each of the Z; has zero mean. In that case, we may appeal to an in-
equality for martingale differences, which states that, for 8 € [l,@) and n > 1,

E[|§Ei|ﬁ] < zﬁZE[EM]. (1.19)

As the right-hand side is equal to 28nB[|2,|#], it follows by an independent
randomisation of n by the Poisson distribution of N that E[|[XV|8] < co.
When XV has no first moment, i.e. & € (0, 1], we can use the inequality

n

(Zui)qﬁzn:u?, Uy, up =0, (1.20)
1 p

i=

for g € (0, 1], to deduce that

n n n
E[| > si|ﬁ] <B|(>] |Ei|)ﬁ} < > E[EIF] = nE|IE1)7] < o,
i=1 i=1 1

P
for B8 € [0, @). Hence, again following an independent randomisation of n by
the distribution of N, E[|X(V|#] < oo for 8 € [0, @).

Next, we want to show that E[|[X®|#] < oo for 8 € [0,@) and @ € (0,2),
where X® is the random variable whose characteristic exponent is given by
Y To this end, we write

: k+2
Y (g) = — f G2 . 121
@) (M; 2 1@ (1.21)

The sum and the integral may be exchanged using Fubini’s Theorem and the
estimate

> f e I (dx) < I f T (dx) < oo
(ni<1y (k+2)! a = (k+2)! Jx<) ’

k>0

Hence, the right-hand side of (1.21) can be written as a power series for all
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z € C and is thus entire. In turn this guarantees that 2 (z) := exp{—¥?(z)}
is also an entire function. Note that ¥ (z) is nothing more than the Fourier
transform of the measure u®(dx) = P(X® € dx), for x € R. Since ®(z) is an
entire function, it follows that all the moments of ‘¥, and hence of X, exist.

To complete the proof for the case 8 € [0, @), we can appeal again to (T.19),
when a € (1,2) and (T.20) when « € (0, 1] to ensure that X = X + X has
the required moment structure.

For the case 8 > «, suppose that X has S-moments. Without loss of gener-
ality we may assume that 8 € (0,2) as we will shortly rule out any moments
for 8 > a. Recalling that X® always has finite moments, using the inequalities
(T.19), when B8 > 1 and (T.20) when S € (0, 1] together with the simple relation
XD = X — X@ we have that the S-moment of X! exists. As X! > Z, on
the event {N > 1}, it follows that =; has S-moments. We have already con-
cluded that this can happen when 8 € [0, @) and hence the required condition
follows. O

1.4 Normalised one-dimensional stable distributions

In the sequel, we denote by S(a,p,c) a stable distribution, meaning that its
characteristic exponent satisfies (I.6). It appears that there are three parameters
naturally associated with stable distributions. However, we want to work with
a normalised version of such distributions, reducing the number of parameters
from three down to two.

Definition 1.11. Let X be distributed according to S(«, 3, ). Define

b :=c+/1 + B2 tan(na/2)?, p = % + % tan~! (Btan(na/2)), (1.22)

where tan™! () denotes the inverse function of tan(-) restricted to its principal
branch (—x/2,7/2). Then we say that the random variable X := b=+ X is dis-
tributed as a normalised stable distribution with parameters (e, p) or simply
X~ Snorm((lsp)o

Observe from (I.22) that 3, and hence b can be written in terms of p as
follows
1 c

o) ey

2

B= cot(%)tan(ﬂa(p— (1.23)

When a € (0, 1), by varying 8 € [—1, 1], the parameter p ranges over [0, 1],
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where the boundary points p = 0 and p = 1 correspond to the cases 8 = —1
and 8 = 1, respectively.

The case a € (1,2) is slightly different. In order to deduce the range of p,
we first recall the following trigonometric identity

cor (%) = an(Z - 22)
2/ 2 2)

which implies that, by varying 8 € [—1, 1], the range of p is [1 — 1/a, 1/a].
Note that the boundary points p = 1 —1/@ and p = 1/ correspond to the cases
B =1and B = —1, respectively.

When a = 1, we know that X is symmetric and hence p = 1/2. Therefore,
we introduce the set of admissible parameters

A:={ae(0,1), pel0,1]}
Ule=1, p=1/2)
Ulee (1,2, peli-a™0™'}. (1.24)

Proposition 1.12. Let (a, p) € A and assume that X is distributed as Snorm(a, p).
Then its characteristic exponent is given by

W) =l (P gy + e P 1)) (1.25)

The Lévy measure of X satisfies (I.8) with

ci =r(1+a)%’m’)), ¢ =F(1+0)@, (1.26)

where p =1 — p.
Proof We first prove identity (1.25)). In order to do so, we take X with the
same distribution as S(«, S, ¢) and define X = b‘i)?, where b was defined in

(1.22). We also let ¥ and ¥ denote their respective characteristic exponents. It
is then clear that

W) =P i) =b (), zeR.
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Using (T.23), we note that

c(l — iftan (ra/2) sgn(z))

_ c(l “itan (m (p - %)) Sgn(z))

c 1 .. 1
= —F——|cos|ma|p - —)) —1isin (ﬂa (p - —)) sgn(z))
cos(ﬂ'a'(p—%))( ( ( 2 2
_ c (eni(y(%—p)l(po) + e—nia(%—p)l(KO)) )
cos (na (p - %))
Using and (T.23) again, we deduce that ¥(z) is given in the form of (T.23)),
up to a multiplicative constant.

For the given expressions of ¢; and ¢, in (T.26), using standard trigonomet-
ric identities and the reflection formula for the gamma function (see identity
(A.T2) in the Appendix), we obtain that 8 and ¢, defined in (T.I8)), satisfy

c1—¢Ca T 1
= ——= =cot|—|t -=1],
B . co ( 3 ) an(ﬂa/(p 2))
and

c=—(c1 + c)I'(—a)cos(ma/2) = cos (na (p - %)) (1.27)

as required. With the choices of ¢; and ¢; in (T.26), it is obvious that the first
equation in (I.22) gives us b = 1, while the second equation in (I.22)) becomes
an identity, i.e. both the left- and right-hand sides are equal to p. In conclusion,
the choices in (T.26) necessarily hold if Spomm(a, p). O

1.5 Distributional identities

We now consider the probability distribution of stable random variables. This
includes understanding where the distribution is supported for the different
parameter regimes of « and p.

Let p(x, @, p) denote the density of Spom(a, o), where x belongs to its sup-
port. Note that, because stable random variables are infinitely divisible but do
not belong to the class of compound Poisson distributions, their support is ei-
ther in the positive half-line, the negative half-line or in the whole real line.
Moreover, it is easy to verify that the density p(x,a,p) exists and that it is
infinitely differentiable. Indeed, observe e.g. from (I.27) that for all values of
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admissible parameters (@, p), we have

o

Since for z € R, we necessarily have that

1
<=
2

Re(¥(z)) = cos (my (% - p)) 2|,

one can deduce that the function exp{—¥(z)} is integrable and decays to zero
faster than |z|™ for any n > 2. Therefore, the inverse Fourier transform, which
gives p(:, @, p), is well defined as follows

1 : 1 © .
p(x,a,p) = = f e PO gz = —Re [ f e @i dz], (1.28)
21 R T 0

for x in the support of the distribution of X. Moreover, with the given decay
of exp{—¥(z)}, one can similarly write the derivatives of p as inverse Fourier
transforms. The next theorem provides the Mellin transform of the positive
part of a stable random variable. This identity will be very useful in the sequel.

Theorem 1.13. Assume that X ~ Sporm(a, p). Then for all s € C in the strip
—1 < Re(s) < a, we have

sin(zmps) ['(1 — s/a)
sin(rs) T(1-1s) °

E[X1xs0] = (1.29)

Proof Assume that —1 < Re(s) < 0 and & # 1. Using (I.28)) we obtain

f x*p(x)dx

0

lRe ( f x° f e V@i g, dx)
T 0 0

_ I'(s+ I)Re (e—ni(s+1)/2 foo e V@, dz)
Tt 0

s+ D (—E)Re (e_g(ﬁnm(%-p)s)
@ a

E[X"1(x>0)]

= A Chs 1)1“(—5) sin(rps).
T a

The last expression is equivalent to the right-hand side of (T.29), after applying
the recursion formulae (equation in the Appendix) and the reflection for-
mula for the gamma function (see identity (A.12) in the Appendix). We have
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proved (1.29) for Re(s) € (—1,0) and now we need to use an analytic contin-
uation argument to ensure that it holds for Re(s) € [0, @). To this end, we first
observe from Theorem [[.10] that

E[IX]'] < o0 when 0<s<a.

This implies that E [X*1x-0,] is analytic in the strip —1 < Re(s) < a. It is not
difficult to see that the right-hand side of (T.29) is also an analytic function in
the aforesaid domain. The identity thus holds by a standard analytic continua-
tion argument. The case @ = 1 also follows from continuity properties of both
sides of (I.29) in the parameters a and p. ]

Remark 1.14. As there is explosion on the right-hand side of (T.29) at the
critical values s = @ and s = —1, the above result, in fact, gives us necessary
and sufficient conditions for the existence of finite absolute moments. Indeed,
E[IX]°] < o if and only if —1 < s < «a. This extends the result of Theorem
[LI10

The following corollary to Theorem determines whether the support is
the negative or positive half-line or the whole real line.

Corollary 1.15. Assume that X has the same distribution as Sporn(@, p). Then
P(X >0) =p.

In particular, if @ € (0,1) and p = 1 (resp. p = 0), the support of X is the
positive half-line (resp. negative half-line) and, in any other case, the support
of any stable law is R.

Proof The first conclusion follows by taking limits, as s goes to 0, in (T.29).
Combining it with the comments before Proposition[I.12] the remaining state-
ment in the corollary follows. O

The following result, known as Zolotarev’s duality, relates the density of a
stable distribution with parameters (a, p) to the density of a stable distribution
with parameters (1/a, ap) whenever they are admissible; cf. (T.24).

Theorem 1.16 (Zolotarev’s duality). Assume that both pairs (a, p) and (1/a, ap)
are admissible. Then for X and X which are distributed as Snorm(@, p) and
Snorn(1/@, ap), respectively, we have

1. By
P(X™eB,X>0)=—-P(XeB,X>0), (1.30)
a

for all Borel sets B.
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Proof Let us denote the function on the right-hand side of (I.29) by m(s; @, p).
By applying the reflection formula and the recursion formula for
the gamma function, it is easy to see that, for all s in the strip —1 < Re(s) < «,
we have

1

m(—as;a,p) = a_lm(s; a ,ap),

which implies the statement of the Theorem. O

The result of Theorem [I.16] can also be expressed in terms of the density
functions as follows

Z_ip(z_%,a,p) =Zp(z,é,ap), (1.31)

for z in the support of X.
Next, observe that, if the support of the distribution Syom(1/@, @p) is the
real line, then

p(_x’aap) = p(-x’alvl _p)7

thus it is enough to study this function for x > 0 in this case. Below we give
expressions for the density p(x, @, p). We start by treating the case of @ = 1,
the Cauchy distribution, separately.

Theorem 1.17. When a = 1 and p = 1/2, we have

1
,1,1/2) = ——, eR.
p(x,1,1/2) A1) X

Proof Recalling that the distribution is symmetric, we can appeal to Theorem
@] and check that the Mellin transform of p(x, 1, 1/2) on the positive half-
line is equal to sin(rrs/2)/ sin(xs), for —1 < s < 1. To this end, we note that,
for-1<s<1,
sin(zs/2) ) T($)(—s)
sin(7rs) I'(s/2)I'(-s/2)

Lr(l+£)r(l_£)
w \272) (272
1 0 y%_% d
Efo Al +y) >

00 x_)‘
:fo L

where the first equality uses the recursion formula (A8)) and the reflection
formula for gamma functions (A.12), the second follows from the duplication
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formula for gamma functions (A:14), the third uses the definition of the beta
function in (AZT8) (all of the last four identities found in the Appendix) and the
final equality is the result of a change of variables. |

In all other cases we have a convergent power series representation, as de-
scribed in the next theorem.

Theorem 1.18. Ifa € (0, 1), then

1 rda
p(x,a,p) = — Z(—l)’H Id +an) sin(nmap)x !, x>0, (1.32)
i n!

and if a € (1,2) then

1 ra+
p(x,a,p) = — Z(—l)’HM sin(nmp)x™!, x>0, (1.33)
m n!
Moreover, when a € (0,1) (resp. a € (1,2)) and |B| # 1 (i.e. 0 < ap,ap < 1)
formula (I.33)) (resp. (I.32))) provides complete asymptotic expansion as x goes
to 0* (resp. as x goes to ).

Remark 1.19. Before passing to the proof, it is worth emphasising to the un-
familiar reader that the statement above for the asymptotic expansions in the
two regimes « € (0, 1) and a € (1,2) do indeed rely in the series expansion for
the opposite regime.

Proof of Theorem[I.18§] According to Theorem[T.13] the Mellin transform of
p(x, @, p) on (0, o), satisfies
sin(mp(z—= 1) T'(1 = (z— 1/a)

_ ~ —1 —
M(z) .—j(: p(x,a,p)x dx = S0z — 1) T2 -2 . (1.34)

Observe that this function has simple poles at points z = 1 + ne, n > 1, and
z=—m, m > 0. Then by applying Proposition[AT|and identity (A-TT)) (both in
the Appendix), we find that

sin(mp(z — 1))
sin(z(z = DIFQ2 = 2) | _14 00
xRes(I'(1 = (z— D)/a),z = 1 + na)
sin(nrrap) @

= snemard - XV G

Res(M, 1 + na) = [

Finally using the reflection formula for the gamma function (A:12)) and simpli-
fying the result, we arrive at

y- I'(l +an)

sin(nrap).
n!

1
Res(M, 1 + na) = —— (-1
b
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On the other hand, from (A.I6), we deduce

| sin(x + iy)| ~ _expz{lyl}’ as y — oo,
and
I'((x +1iy)/a) m(l (L-1) -2+l
o ——|l=-=1 e aT2 —
' Tt iy) expy =5 (5 Iyl Iyl @ e, as y— oo,

uniformly in any finite interval —co < a < x < b < oco. This gives us the
estimate

IM(x +iy)| < ClyG™D exp {—g (é +1- Zp) Iyl} , (1.35)

as for all y sufficiently large, where C > 0 is an unimportant constant. Note
that, when @ € (0, 1), the exponential term in (I.33)) is decreasing on account
of the fact that 1/a@ > 1 > p. Moreover, when « € (1,2), the exponential term
is again decreasing on account of the fact that ¢p < 1, in which case

1 1
—+1-20>21-—->0.
a @

As such, M(z) is absolutely integrable on the vertical line ¢ + iR, where c is
a constant in (0, 1 + «), therefore we may use the Mellin transform inversion
formula
1
px,a,p) = 5= M(z)x™* dz.
2711 Jerir
Let us define by = 1 + a(2k + 1)/2 and set £ to be an integer. We also consider
the contour L = L; U L, U L3 U Ly, defined as
Ly :={Re(z) = ¢, —€ < Im(z) < ¢},
L, := {Im(z) = ¢, ¢ < Re(2) < by},
L; := {Re(z) = by, —¢ < Im(z) < ¢},
Ly :={Im(z) = ¢, ¢ < Re(z) < by}
It is clear that L is the rectangle bounded by vertical lines Re(z) = ¢, Re(z) = by
and by horizontal lines Im(z) = €. We assume that L is oriented counter-
clockwise; see Figure[I.1}
The function M(z) is analytic in the interior of L, except for simple poles at

s;j=1+aj,for 1 < j < k and is continuous on L. Using the residue theorem
we find

k
1 _ s
ﬁfLM(z)x Zdz=;Res(M,sj)><x 7,
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ot ¢
L,
1+ 2a by
c
-2 -1
R
1+a
Ji l\/ L N
Ly
—rt >

Figure 1.1 The contour L = Ly U Ly U L3 U Ly.

Next, we estimate the integrals over the horizontal side L, as follows

M(z)x *dz

‘ < (bx — ¢) X x> max |M(z)|.
L, zely

When ¢ increases, we have max,cz, [M(z)| goes to 0. Therefore
f M()x*dz—> 0 as ¢ — oo.
L,

Similarly, we deduce that the integral on the contour L4 goes to 0 as £ goes to
oo. Thus putting all the pieces together, we have

k

1 1

- f M()x*dz + — M()x*dz = Res(M, s;) x x7%.
271 Jeriv 271 Jp+iv P '

In other words, we have deduced

k
1
p(x,a,p) = — Z Res(M, 1 + na)x~1em 4 M()xdz.  (1.36)

P 211 Jp,+iv

Now suppose that @ € (0, 1). Our aim is to prove that as k goes to oo, the
integral of the right-hand side of (T.36) converges to 0 for x > 0. Intuitively
this is clear, since the Mellin transform (T.34)) can be rewritten with the help of
the reflection formula (A:T2) as

_sin(mp(z=1))  T(z-1)
sin(mz-=1D)/a)T((z-1/a)

Noting that, for z = by + iu, u € R, the ratio of sine functions above, say H(z),
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is periodic and uniformly bounded in u and by as k — oo. The integral in the
right-hand side of (1.36) can thus be estimated as follows

< b f I'(by — 1 +1u)
R

I((by — 1 +iw)/@)
To see why the integral on the right-hand side of (1.37) is finite, we can appeal
to (A.15) and deduce

I'(z) 1 (1 -« ) 4 }
= ——expl -z In(z) —A|+ O(z , |z = oo,Re(z) = 0,
rz/a) - a P{ " (@) (z™) |2l (2)
where A = (1 + In(@) + @)/a, which is negative as we have assumed « € (0, 1).
This implies that the right-hand side of (I1.37) is finite. Observe, moreover, that
I'(z)/T'(z/@) is continuous in the half-plane Re(z) > 0, thus

T(by — 1 +iu)
T((b - | +iu)/a)

converges to 0 as k goes to co (uniformly in # € R), implying that the inte-
gral in the right-hand side of vanishes as k goes to co and the series
representation in (1.32) for the case a € (0, 1) follows.

We can also pick out elements of the previous arguments to help us prove
the asymptotic expansion for @ € (1,2), as x goes to co. More precisely, we
take x € (1, o) and observe that the integral in the right-hand side in (T.36)) can
be estimated as follows

< x ™ f
R

where the integral on the right-hand side of (I.38) is finite thanks to the esti-
mate (1.35).

The series representation in (T.33) follows from (T.31)) (Zolotarev’s duality)
and (I.32)). The asymptotic expansion (I.33) for @ € (0, 1), as x goes to 0 fol-
lows from similar arguments for the case @ € (1,2) as x — co. Indeed, one has
an identity in the spirit of (T.36)), which is constructed from a rectangular con-
tour integral which contains e.g. the first k negative poles. Then an argument
similar to (T.38)) provides the desired asymptotic. O

M(z)x *dz
b +HR

Hby -1 +iu)du. (1.37)

by,

dr=0(x") as x— oo, (1.38)

M(z)x *dz
bR

M(bk + 1r)

1.6 Stable distributions in higher dimensions

Similarly to the one-dimensional case, one can define infinitely divisible dis-
tributions in R?. Just as in one dimension, the characteristic exponent of an
R infinitely divisible distribution also has a Lévy—Khintchine representation.
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Replacing scalar products by Euclidean inner products and understanding | - |
as the associated norm, we have, for z € RY,

. 1 _—
P(z)=ia-z+ =z -0z + f (1= e + iz x1gyen)) TI(d), (1.39)
2 R"

where a € R?, Q is a symmetric nonnegative-definite d X d matrix and IT is a
measure on RY satisfying

o) =0  and f (1 A [P T(dx) < 0.
R4

We say that X is a d-dimensional stable distribution if it takes values on R¢
and satisfies (I.T)), where addition is understood in the vectorial sense. For the
same reason as in the one-dimensional setting, stable distributions on R are
also infinitely divisible distributions. The following theorem identifies them in
terms of a polar decomposition of their Lévy measure.

Theorem 1.20. An infinitely divisible R?-valued distribution is a stable dis-
tribution if and only if the Lévy—Khintchine representation of its characteristic
exponent satisfies either

(i) Q#0,I1=0and a=0, where @ =2, or
(ii) Q = 0 and there is a finite measure A on S = {x € R? : |x| = 1} such
that

d
I(B) = Ld-l A(de) 15(r¢) r"_L’ for Be BRY\{0}), (1.40)

(0,00)

where B(RY \ {0}) denotes the Borel o-algebra ofRd \ {0} and a € (0,2).
Ifa € (0,1)U(1,2), then a=0.

Proof We first observe that Lemma [I.6]also holds in this case, implying that
fora>0and k > 1,

k¥(z) = W(k'7), for zeR% (1.41)

The above identity and similar arguments to those used in the proof of Propo-
sition|1.7|imply that if Q # 0O, then necessarily @ = 2,11 =0 and a = 0.
If we assume Q = 0, then identity (1.41)) implies that

KII(B) = II(k""/*B) ~ for B e BR?\ {0})).

In particular for Iy = {x € R? : |x| > € x/|x| € D}, where £ > O and D €
B(S* 1), we deduce

KTI(T,) = TI(k™"T) = TI(Cgg110),
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and by taking ¢ = (k/n)!/®, we obtain
1 n
I (T e ) = LT, = ST,

Since the mapping y +— II(I'y) is monotone decreasing, an argument appealing
to denseness of the rational numbers again (see the proof of Proposition
allows us to obtain

I(T,) = x°TI(T;),  for x> 0. (1.42)
Next, we introduce a finite measure on S?! as follows
A(D) = oII(T'y),  for DeBE),
and define I';, ¢, = {x € R : £, < |x| < £, x/|x| € D}. Therefore, by identity

(T.42), we have
H(T, ¢,) = H(Tg,) = I, )

—-a _

g —a
= —2AD)
04

{r d
- [ [ Sace
pJe T

dr
_ fS A@9) L I8

Since the sets I';, ¢, fulfill the conditions of Dynkin’s Lemma (or 7—A Theorem)
then (1.40) holds for any Borel set of R? \ {0}.
Finally, we observe

1
f x> TI(dx) = A(S*1) f ri=edr.
(Jxl<1) 0

Since IT is a Lévy measure, we necessarily have in addition to @ > O that
a <2 O

Remark 1.21. As in the one-dimensional case, we will proceed ignoring the
Gaussian setting in part (i) of Theorem|[I.20] allowing us to focus on the regime
a € (0,2).

Appealing to equation (I.40) and undertaking computations similar in spirit
to those done in the proof of Theorem |1.3] one readily finds that the charac-
teristic exponent of a stable distribution on R¢ can be written as follows, for
z€RY,

(@) = ~T-a)cos( ) fs lear (1-ian(5)sente- ) A,
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fora # 1, and
. T .
Y(z)=iz-a+ 3 f (Iz ¢l +iz- ¢log(z- ¢)) A(dg),
2 Sd—l
for @ = 1, where a € R? and A satisfies

¢ A(dg) = 0.

S{I*l
The isotropic case will be of particular interest in what follows. Recall that a
measure u on R? is symmetric if u(B) = u(-B) for B € B(RY) and isotropic if
u(B) = u(U™' B) for every orthogonal matrix U. Observe that when d = 1, the
notion of isotropy is equivalent to symmetry.

Definition 1.22. We say that X is a symmetric stable random variable if it is
stable distributed and its law is symmetric.

In particular, if X is symmetric we have that its characteristic function is
equal to that of —X i.e. ¥(z) = W(~z) for z € R?. By considering the real and
imaginary parts of ¥, the latter clearly implies that

¥(2) = f lz- " Ao(dp)  for a€(0,2), (1.43)
Sd-1
where
Aoty = | TTCe0s(5) AW ifat L.

Using the double angle trigonometric identity and Euler’s reflection formula
(A12), we have for a # 1

Ta\ sin(rra)
“I'(~a)cos (7) - —r(—a)m

_ T(=a)T(@/2)T(1 - a/2)
T2 T@rd-a)
_ T(a/2)(1 - a/2)

- 2L+ 1)

It is important to note that the right-hand side in the third equality is equal
to 7/2 when @ = 1 thanks to the special values I'(1/2) = +/mr and ['(2) = 1.
Therefore, in the sequel we define

T(a/2)T(1 — a/2)

Ao(dg) = 2M(a + 1)

A(d¢)

for a € (0,2).
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Definition 1.23. We say that X is an isotropic stable random variable if it is
stable distributed and, for all orthogonal transforms B: R? — R?, BX is equal
in law to X.

Observe that if X belongs to this class then X is also symmetric and, con-
sequently, its characteristic function satisfies (I.43) and it can be written as
follows

(@) = " fg lel™2 - 61 Aode).

Since the law of X is isotropic then ¥(z) = ¥(Uz), for any orthogonal matrix,
U, and therefore, without loss of generality, we may take A equal to Lebesgue
(surface) measure on S9! and, thanks to symmetry,

c= f 21~z - 91 Ao(dgp),
Sdfl
should be a positive constant, i.e. for a € (0,2), we have
¥(z) = clz|* for zeR (1.44)

Similarly as in the one dimensional case, the explicit computation of the con-
stant ¢ is important for our purposes. In that case, we may take

c= fS 1191 Aot

where 1 = (1,0, ---,0) € R? is the ‘North Pole’ on S¢!. Hence, using skew
product coordinates (also called generalised polar coordinates) in R, we de-
duce

. C(@/2)T( - af2) 27@-D2 o«
fsd_l 1l Roldd) = = T T@=1/2) Jo
(/2T - a/2) a4 D2 72
- Ta+1l) T(@d-1/2) Jo
_ L@/ 20 —a/2) T + 1)/2)
Ta+l) T(d+a)2)
o apT1=0/2)  T(@
T+ 1) I(d+a)2)
o T =a/2)
=2 ol((d + @)/2)
IC(-a/2)|
I[((d+a)/2)

where, from the Appendix, we have used (A.T9) in the third equality and the

sin®2(9)| cos(0)|* d

sin?2(0) cos® () d0

—arn,d/2
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duplication formula (A.T4) in the fourth equality. We thus have
I'(d+a)/2)

We may now say the isotropic d-dimensional stable process to be normalised
if

c=2 (1.45)

Y(z) = |2|%, zeRY.

This corresponds to setting
1 0 dr d
NB) =~ | Adp) | 150¢) .  for Be BRI\ (0D,
C Jgd-1 0 r

where A(dg) is the surface measure on S% .

It is also worth noting for later that the Lévy measure can be written as
absolutely continuous with respect to d-dimensional Lebesgue measure as well
as with respect to the skew product measure o (dq&)rd‘l dr, where o1 (d¢) is the
surface measure on S%~! normalised to have unit mass.

Theorem 1.24. For a normalised isotropic stable distribution, i.e. having char-
acteristic exponent ¥ (z) = |7|, z € R, we have

2 T((d+ @)/2) dz

(B) = 2°x~
B = a2 sl

(1.46)

and in (generalised) polar coordinates,
—al'(d + a)/2)(d/2)

II(B) = 20—1
(B) n IF(—a//2)| »

°° 1
o1(dg) fo Lp(rd)— 5 dr. (147)

where B is a Borel set in R?.

Remark 1.25. Also taking inspiration from the one-dimensional case, in par-
ticular the computations in the proof of Theorem (1.3} and the statement in
Corollary we note that, the value of a in (T.39) can be identified explic-
itly within the choice of normalisation in Theorem Specifically, when
a € (0,1) we have a = —fRd x1y<II(dx); when o € (1,2) we have a =
fRd x1 (> 1yI1(dx); and when o = 1, we have a = 0.

1.7 Comments

The class of stable distributions appeared for the first time in the celebrated
monograph of Paul Lévy [143]] Calcul de probabilités. They were introduced
by Lévy as limits for normalised sums of independent identically distributed
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random variables that do not satisfied a finite second moment condition. The
concept of stable distributions was fully developed in 1937 with the appearance
of the monographs of Lévy [144] and Khintchine [106]. Both authors charac-
terised them as a class of infinitely divisible distributions. Since their debut,
stable distributions have has appeared in a vast array of probabilistic models
motivated by physics, biology and economics, to name but some of the many
areas of influence.

There are several monographs where stable distributions are treated in de-
tail, see for instance Gnedenko and Kolmogorov [80], Linde [[146], Sato [190]
and Uchaikin and Zolotarev [208]. There are also other monographs that deal
specifically with stable distributions or stochastic processes which are asso-
ciated to them, such as Samorodnitsky and Taqqu [[189] and Zolotarev [220].
Zolotarev (see also Uchaikin and Zolotarev [208]) gave a complete treatment
to real valued stable distributions and in particular the series representation and
asymptotic expansions of their densities were described in a concise way for
the first time. The multidimensional case is treated in Chapter 2 of Samorod-
nitsky and Taqqu [189] and in Uchaikin and Zolotarev [208]. In Chapter 1 of
[189], the one-dimensional case is also treated.

The explicit form of the characteristic exponent of stable distributions (The-
orem [[.3) was first treated by Lévy [142] and by Khintchine and Lévy [107].
The formulation of Theorem@]follows Gnedenko and Kolmogorov [80] with
the corrections of Hall [86]]. We stress that the article of Hall corrected a num-
ber of different derivations of Theorem I.3]that have appeared in the literature
up to the beginning of the 1980’s. Lemma [I.6]is based on similar arguments
used in Pitman and Pitman [169]. The proof of Proposition and Theo-
rem [[.20] follows from Kuelbs [114]], where stable distributions are defined on
Hilbert spaces. Theorem [I.10]is based on a more general result for moments
of infinitely divisible random variables found in Section 25 of Sato [[190]. The
moment inequality (I.T9) is taken from Lemma 1 of Biggins [30].

The existence of a distributional density thanks to infinite divisibility (that
predicates Section can be found in Section 24 of Sato [190]. All the re-
sults that appear in Section can be found in the monographs of Uchaikin
and Zolotarev [208]] and Zolotarev [220] and we adopt a similar approach, for
example in Theorem On a final note, we mention that it was shown in
Hoffmann-Jgrgensen [[108] that the densities derived in Theorem [I.18]can be
expressed in terms of incomplete hypergeometric functions.



2

Lévy processes

As a precursor to our introduction to stable Lévy processes in the next chapter,
as well as a point of reference for our future treatment of self-similar Markov
processes, we shall spend some time in this chapter reviewing standard path
properties of one- and higher-dimensional Lévy processes.

Lévy processes can be seen as the natural continuous-time analogue of ran-
dom walks in the sense that they have stationary and independent increments.
They are formally defined as follows.

Definition 2.1 (Lévy process). A stochastic process ¥ = (¥;,t > 0) val-
ued in R? and defined on a probability space (2, F,P), is said to be a (one-
dimensional) Lévy process issued from the origin if it possesses the following
properties:

(i) The paths of Y are P-almost surely right-continuous with left limits;
(i) P(Yo=0) =1,
(iii) For 0 < s <t, Y; — Y, is equal in distribution to Y;_g;
@iv) For0 < s <t Y; — Y, is independent of (¥, u < s).

With the exception of Section[2.18] we will concentrate on the one-dimensional
case for the rest of this chapter.

2.1 Lévy-Ito decomposition

Thanks to stationary and independent increments and right-continuity, any
Lévy process has the property that, for all 7 > 0,

E[e? ] =@ zeR, 2.1)

where ¥ (z) := ¥ (z) is the characteristic exponent of Y, in the sense of (I.4).

27
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It turns out that the converse is also true; that is to say, given any infinitely di-
visible distribution with characteristic exponent ¥, there exists a Lévy process
Y which satisfies (2.1)). The conclusion of the previous paragraph and its con-
verse, together give us the following Lévy—Khintchine formula for processes
with stationary and independent increments.

Theorem 2.2 (Lévy—Khintchine formula for Lévy processes). Suppose that
a € R, 02 > 0 and Il is a measure concentrated on R\{0} satisfying fR(l A
xH)II(dx) < co. From this triple, define for each z € R

1 .
¥ (2) = iaz + 50'2z2 + f (1 = ™ +izxl gy<1y) TI(dx). (2.2)
R

If'V is the characteristic exponent of a Lévy process in the sense of (2.1)), then
it necessarily satisfies ([2.2). Conversely, given (2.2), there exists a probabil-
ity space, (Q,F,P), on which a Lévy process is defined having characteristic
exponent ¥ in the sense of (2.1).

Remark 2.3. It is important to note that a given Lévy processes is identified by
its characteristic exponent only up to a linear dilation in time. If X := (X}, 1 > 0)
is a Lévy process with characteristic exponent ¥ then, if ¢ > 0 is a constant, the
process X := (X, t > 0) is the Lévy process with exponent ¢'¥'. The processes
X and X° have trajectories which differ only by a linear scaling in time, but are
fundamentally the same as they almost surely have the same range.

Two important examples of Lévy processes which help us understand the
structure of general Lévy processes are linear Brownian motion and compound
Poisson processes with drift. For the first of these two cases, suppose 0> >
0 and a € R. If we write B = (B;,t > 0) for a standard one-dimensional
Brownian motion, then the linear Brownian motion, B, —at, t > 0, is a process
issued from the origin with stationary and independent increments, continuous
paths and Gaussian distributed at each fixed time. Taking account of the Fourier
transform of a Gaussian distribution, it is easily verified that the associated
characteristic exponent is given by

1
22, z€R.

iaz + EO-
For the case of a compound Poisson process with drift, suppose that N(dz, dx)
is a Poisson random measure on [0, c0) X R with intensity Ad¢ X F(dx), where
F is a probability distribution concentrated on R\{0}. Recall that this means N
is a random counting measure on [0, co) X R such that, for all pairwise disjoint
Borel sets By, ...,B,,n € N, in [0, c0) X R, the counts N(B,), ..., N(B,) are in-
dependent. Moreover they are Poisson distributed with parameter f& AdtF(dx),
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i = 1,...,N, respectively. (See Appendix [A.T3] for further details.) A com-
pound Poisson process with arrival rate A, jump distribution F and drift c € R
can be written in terms of the counting process N via

!
f fo(ds, dx) — ct, t>0.
0 Jr

The associated characteristic exponent is then easily computed with the help
of Campbell’s formula for Poisson random measures and is given by

1 f (1-e*)F(dx)+icz zeR. (2.3)
R

Taking account of the previous two examples, the Lévy—Khintchine formula
gives some insight into the path structure of a general Lévy process. Indeed,
after some simple reorganisation, we can write the general Lévy—Khintchine
exponent in the form

Y(2) = {iaz + %o-zz}

) _ i H(dx)
+ {H(x eR:|x>1) ”M}a e )—H(x TR L3> 1)}
+ { f (1 - e +izx) H(dx)}, z€R. (2.4)
{lx<1}

Note that the integrability condition on IT appearing in Theorem implies
that II(A) < oo for all Borel A C R such that O is in the interior of A°. In
particular, it also implies that II(x € R : |x| > 1) € [0, o). In the case that
II(x € R : |x| > 1) = 0, one should think of the second set of curly brackets
in as absent. Let us name contents of the three sets of curly brackets in
as Y(z), Y@ (z) and ¥P)(z), respectively. The essence of this decompo-
sition revolves around showing that ¥(z), ¥ (z) and ¥®(z) correspond to
the characteristic exponents of three different types of Lévy processes. In this
way, ¥ is the characteristic exponent of the independent sum of these three
Lévy processes, which is again a Lévy process. Indeed, it is an easy exercise
to verify that the characteristic exponent of the sum of independent Lévy pro-
cesses is equal to the sum of their individual exponents; moreover that, up to
a multiplicative constant, Lévy processes are uniquely identified by their char-
acteristic exponents.

It is already clear that ¥V and ¥® correspond, respectively, to a linear
Brownian motion, say, Y (which is entirely deterministic if o = 0) and an
independent compound Poisson process, say Y, with arrival rate II(x € R :
|x| > 1), jump distribution F(dx) = I1(dx)/II(x € R : |x| > 1) concentrated on
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{x:|x] = 1} (unless II(x € R : |x| > 1) = 0 in which case Y is the process
which is identically zero).

The existence of a Lévy process with characteristic exponent given by
thus boils down to showing the existence of a Lévy process, Y®, whose charac-
teristic exponent is given by ¥, This can be seen by considering the Poisson
random measure, N(dz, dx), on [0, 00) X {x € R : |x| < 1} with intensity measure
dt X TI(dx)|(xer:x<1}- From our computations in (2.3), we can deduce that, for
each € > 0, the process

f f xN(ds,dx)—( f xH(dx))t, t>0, 2.5)
[0,¢] JH{e<|xl<1} {e<|xl<1}

is a compound Poisson process with drift (in fact the drift is the mean of the
compound Poisson part), whose characteristic exponent is given by

f (1 — &' + izx) TI(dx).
{e<|x|<1}

It is straightforward to show that (2.5) is also a square integrable martingale.
The process Y should be thought of as the limit, in an appropriate sense, of
the compound Poisson process with drift in (2.3) as & | 0. Despite the fact
that the drift coefficient f{a<|x|< 1 xI1(dx) may explode, it turns out that the limit
does exist and the resulting process remains in the class of Lévy processes.
The mathematical sense of the limit requires some care, using the machin-
ery of L? convergence in an appropriate Hilbert space of martingales. This
L? convergence also motivates the necessary and sufficient requirement that
flxl<l X2 TI(dx) < oo.

The identification of a general Lévy process, Y, as the independent sum of
processes YV, Y@ and Y® is known as the Lévy—It6 decomposition.

2.2 Killing

When discussing the theory of Lévy processes, in particular in the application
to self-similar Markov processes later on in this text, we will need to consider
Lévy processes with (exponential) killing. Suppose that ¥ is a given Lévy pro-
cess, then we can additionally define the Lévy process Y killed via

y - Y, ift<¢
71 8 otherwise,
where 0 is an cemetery state annexed to R. As we will discuss below, a special
form of killing corresponds to the case that we take { = e,, an independent
and exponentially distributed random variable with rate ¢ > 0. Note that the
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definition still makes sense when g = 0 providing we agree with the definition
e, := o0, 5o that we understand this case as corresponding to no killing at all.

The lack of memory property of the exponential distribution means that the
new process Y = (Y, t < ) still has stationary and independent increments in
R on survival. Indeed one can easy verify that Definition [2.1]is still valid, pro-
viding we understand (iii) and (iv) to occur on the event {s < e,}. As such, it is
not unnatural to think of the definition of a Lévy process in this slightly broader
sense. Accordingly, the characteristic exponent for a general Lévy process in
this sense needs to be identified in a slightly more general sense.

Suppose we write ¥ for the characteristic exponent of ¥. Then

B[ 1)) = E[e 1ce)] = @ 120

Accordingly ¥ = ¢ + \P.

For the most part, in this book, the meaning of Lévy process will conform to
Definition 2.1] however, there are occasions when we will need to understand
a Lévy process in the killed sense. The context should always be clear in order
to distinguish the two scenarios. That said, for the remainder of this chapter,
unless otherwise stated, we continue our discussion of Lévy processes without
killing.

2.3 Path variation and asymmetry

It is clear from the Lévy-Itd decomposition that the presence of the linear
Brownian motion Y! would imply that paths of the Lévy process have un-
bounded variation. On the other hand, should it be the case that oo = 0, then the
Lévy process may or may not have unbounded variation. The term Y®, being
a compound Poisson process, has only bounded variation. Hence, in the case
o = 0, understanding whether the Lévy process has unbounded variation is an
issue determined by the limiting process Y.

Reconsidering the definition of Y’ ® it is natural to ask: Under what circum-

stances does
limf f xN(ds, dx)
el0 J10.1 Je<ixi<1}

exist almost surely without the need for compensation by its mean as in (2.5))?
The answer to this question boils down to an analysis of compound Poisson
sums through Campbell’s formula and it turns out that

f f |x| N(ds, dx) < 00 = [x| TI(dx) < oo.
[0,e] J{lx|<1} {lxl<1}
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In that case, we may identify Y® directly via

YtG) = f f xN(ds,dx) — tf xII(dx), t > 0.
[0,6] J{lx|<1} {lxl<1}

This also tells us that Y& will be of bounded variation if and only if f{ <1} [x[II(dx) <

oo. Note that this is a stronger integrability condition than f{|x|<1} x*TI(dx) < oco.
In conclusion, we get the following lemma.

Lemma 2.4. A Lévy process with Lévy—Khintchine exponent corresponding to
the triple (a, o, I1) has paths of bounded variation if and only if

o =0and f(l A |x]) II(dx) < oo. (2.6)
R

Note that the finiteness of the integral in also allows for the Lévy—
Khintchine exponent of any such bounded variation process to be rewritten in
the form

¥(z) = —ibz + f (1 - e¥) TI(dx), 2.7)
R

where b € R relates to a and II via

b:—(a+f xH(dx)).
{IxI<1}

In this case, we may write the Lévy process in the form

Y, =bt+ f fo(ds, dx), t>0. (2.8)
[0,1] JR

The constant b is referred to as the drift coefficient. (The reader should note that
the word ‘drift’ here makes sense because the process has paths of bounded
variation and the linear term can be uniquely distinguished from the ‘pure
jump’ component. For other Lévy processes which e.g. have paths of un-
bounded variation, it is less clear what ‘drift’ should mean.)
When VY is that of a bounded variation Lévy process, to detect the presence
of a drift term, it is a straightforward exercise to show that
. Y@
lim — =

2= Z

—ib. (2.9)

The following lemma is now obvious.

Lemma 2.5. A Lévy process is a compound Poisson process with linear drift
if and only if o = 0 and TI(R) < co.
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Let us now consider the case of total asymmetry in the Lévy measure and
suppose that II(—co,0) = 0. From the proof of the Lévy—Itd decomposition,
we see that the corresponding Lévy process has no negative jumps. If further
we have that f(o’m)(l A x)II(dx) < oo, oo = 0 and, in the representatio
of the characteristic exponent, b > 0, then from the representation (2.8) it
becomes clear that the Lévy process has non-decreasing paths. In that case, the
Lévy process is referred to as a subordinator. Conversely, if a Lévy process
is a subordinator, then necessarily it has bounded variation. Hence f(o,oo (1A
x)II(dx) < oo, oo = 0 and then it is easy to see that in the representation of
the characteristic exponent, we necessarily have b > 0. Summarising, we have
the following.

Lemma 2.6. A Lévy process is a subordinator if and only if TI(—c0,0) = 0,
Joo (1 A DTI(AX) < 00, o = 0 and b = —(a+ Jo xTI(dx)) 2 0.

For the sake of clarity, we note that, when Y is a subordinator, further to
(2.7), its Lévy—Khintchine formula may be written as

Y(z) = —ibz + f (1 — ¥ I1(dx), z€R.
(0,00)

Reconsidering the role of the characteristic exponent ¥ and its analytical
representation through infinite divisibility and the Lévy—It6 decomposition, re-
spectively, in the case of a subordinator, it is not difficult to see that one may
also work with the Laplace exponent

1
k() := - log E[e™""], 1>0. (2.10)

Indeed, one easily verifies that

k(1) =¥(@{1) =bad + f (1 — e TI(dx), 1>0. (2.11)
(0,00)

In general, we say that a Lévy process is spectrally positive if I1(—c0,0) = 0
and it does not have monotone paths. A Lévy process, Y, will then be referred
to as a spectrally negative if —Y is spectrally positive. Together, these two
classes of processes are called spectrally one-sided. Spectrally one-sided Lévy
processes may be of bounded or unbounded variation and, in the latter case,
may or may not possess a Gaussian component. Note in particular that when
o = 0, it is still possible to have paths of unbounded variation. If a spectrally
positive Lévy process has bounded variation, then it must take the form

Y, =-bt+S;,, t>0, (2.12)
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where (S;,t > 0) is a pure jump subordinator and, necessarily, b > 0. Note
that if b < 0, then Y would conform to the definition of a subordinator. The
decomposition (Z.12)) implies that if E[Y;] < 0, then E[S ] < oo, as opposed to
the case that E[Y;] > 0, where it is possible that E[S {] = co.

A special feature of spectrally positive processes is that, if

7. :=inf{t >0:Y, < x}, (2.13)

X

where x < 0, then P(1 < o0) > 0. Roughly speaking, this probability is strictly
positive because, in the setting of bounded variation, the structure @I) en-
sures that there is the possibility of downward movement, whereas, in the set-
ting of unbounded variation, it is the fluctuations of the martingale component
of Y the ensures the possibility of downward movement. As there are no down-
wards jumps,

P(Yr; = x|t <o0) =1, (2.14)

with a similar property for first passage upwards being true for spectrally neg-
ative processes.

2.4 Feller and strong Markov property

Lévy processes fit nicely into the class of Feller processes, which, in turn,
ensures that they possess the strong Markov property. See the discussion in
Section[A.TT]for a reminder of what these things mean.

It is easy to see that the Markov property is satisfied for all Lévy processes.
Indeed, Lévy processes satisfy the stronger condition that the law of Y, ;- Y, is
independent of F; := o(Y,, s < 1), for all 5,7 > 0. As such, we work the family
of probability measures P,, x € R, where P,(-) = P(-| Yy = x). In the special
case of Lévy processes, because of their stationary independent increments,
for each x € R, we can also define P, to be the law of x + Y under P.

Next, we introduce the semigroup (P;,¢t > 0) for Y. For each ¢t > 0, P;
operates on bounded measurable functions f such that P,[f](x) = E,[f(Y))],
x € R. Let Cy(R) be the space of bounded measurable functions which de-
cay to 0 as [x] — oo. By appealing to the simple fact that, for f € Cy(R),
P.[f1(x) = E[f(x + Y,)], together with dominated convergence, it is not diffi-
cult to show that the semigroup associated to a Lévy process respects the Feller
property (see Definition in the Appendix). As such, Lévy processes are
Feller processes and hence strong Markov processes. In fact, Lévy processes
satisfy the stronger condition that they preserve the property of stationary and
independent increments over stopping times.



2.5 Infinitesimal generator 35

Theorem 2.7. Suppose that T is a stopping time. On {T < oo}, define the pro-
cess Y = {Y;,t > 0} where

Y, =Y = Ye, 12 0.

Then, on the event {T < oo}, the process Y is independent of F, has the same
law as Y and hence in particular is a Lévy process.

In this text, we are largely (but not exclusively) concerned with two types
of stopping times for use in conjunction with the strong Markov property. The
first type are those taking the form

™ =inf{t > 0:Y, € D},

where D is either an open or closed set in R. The second will be stopping times
of the form

T, =inf{r>0: f f(¥o)ds > ul, (2.15)
0

where f : R — (0, o) is measurable and u# > 0. In both cases, we always work
with the standard notion that inf @ = co. For example, in (2.15)), it may happen
that fom f(Ys)ds < oo, in which case, 7, = oo for all u > fow f(Yy)ds.

2.5 Infinitesimal generator

On account of it being a Feller process, a Lévy process is also in possession
of an infinitesimal generator. That is to say, for f belonging to an appropriate
class of functions, there exists

P f1(x) = f(x)

; xeR. (2.16)

Lf(x) = l,ifél

The form of the generator can be closely matched to the characteristic expo-
nent, ¥, of the Lévy process. In particular, if

1 .
¥ (z) = iaz + 5022 + f (1 — e +izxly<)I(dx),  z€R,
R

then, for all twice continuously differentiable and compactly supported f :
R R,

1
Lf0) = ~af @) + 30" + fR LG+ 9) = £G) = yf ()L gyeny] TICy),

for x € R.



36 Lévy processes
2.6 Drifting and oscillating

Thanks to the Lévy-Khintchine formula for Lévy processes, it is straightfor-
ward to see that, when W' (0) := lim,o ¥'(z) is well defined, by straightfor-
ward differentiation of (2.T)), it follows that

E[Y,] =i¥O) = E[Y;]t, t>0. (2.17)

When it exists, we call E[Y,] the mean of the Lévy process as it characterises
E[Y;] for all + > 0. When the mean of the Lévy process is well defined and fi-
nite, together with the stationary and independent increments, provides
compelling evidence that one should expect to see a strong law of large num-
bers for Y. In turn, this would provide some information about the large-time
behaviour of Y. The following theorem gives a relatively complete picture in
this respect. In particular it shows that there is a strict trichotomy. Either Y
drifts to oo (limy_,e Yy = 00), Y drifts to —oo (limy_,o, Yy = —00) or Y oscillates
(limsup,_,, Y5 = —liminf,_, ¥ = 00).

Theorem 2.8. Suppose that Y is a one-dimensional Lévy process with charac-
teristic measure 11

(i) IfE[Y1] is defined and valued in [—0,0), or if E[Y1] is undefined and

I1(d
f e, (2.18)
(o) [ TI(=00, —y) dy
then lim,,, Y;/t = y_, where y_ = E[Y|] in the first case and y_ = —oo

in the second case. In particular, in both cases,

lim Y, = —co.

1—00
(ii) If E[Y1] is defined and valued in (0, oo], or if E[Y|] is undefined and
11
LN 2
(=o0,=1) j(‘) H(y, OO) dy

then limpo Y;/t = y4, where vy, = E[Y1] in the first case and y, = oo in
the second case. In particular, in both cases,

lim Y; = oo.

t—o00

(iii) If E[Y1] is defined and equal to zero, or if E[Y1] is undefined and both of
the integral tests in part (i) and (ii) fail, then lim,_, Y;/t = O in the first
case and limsup,_,, Y;/t = —liminf, o Y;/t = oo in the second case.
Moreover, in both cases,

limsup Y; = —liminf ¥; = oo.
t—o0

t—00



2.7 Moments 37

2.7 Moments

We will occasionally be interested to know whether moments of a Lévy process
exist. Specifically, if g is a measurable function on R, when can we say that
E[g(Y;)] < c0? More generally, when can we say that E[g(sup,, |Y;)] < c0?

An appropriate class of measurable functions to work with are called sub-
multiplicative. Specifically, a non-negative measurable function g on R is sub-
multiplicative if

glx+y) < g0g®), x,y €R.

The class of submultiplicative functions is relatively rich containing some key
examples such as g(x) = |x| V 1, and g(x) = exp{x}. More generally, suppose
that g is a submultiplicative function, then so is g(cx + b)? where ¢, b € R and
6> 0.

Theorem 2.9. Suppose that g is a locally bounded, submultiplicative function
then E[g(Y;)] < oo for some t > 0 if and only if E[g(Y;)] < oo forall t > 0 if
and only if

f g TI(dx) < oo,
{lx>1}

Moreover, E[g(sup,, |Y,|)] < oo for some t > 0 if and only if E[g(sup, |Y,])] <
oo for all t > 0 if and only if

f g(|x)) II(dx) < oo.
{Ix>1)

2.8 Exponential change of measure

Theorem [2.9] gives us a criterion under which we can perform an exponential
change of measure, even in the setting of a killed Lévy process. Define the
Laplace exponent

1
U(B) =~ log El 1 cp)] = ~¥(-if) (2.20)

whenever it exists. Theorem [2.9] tells us that the Laplace exponent is finite if
and only if

¥ I(dx) < 0. (2.21)
{lx>1}
Define

E(B) = eﬁYz*l//(ﬁ)l’ 0<t<{. (2.22)
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under the assumption (2.21)), appealing to stationary and independent incre-
ments and (2.20), we have that, for all x € R, on {r < {}

ELfErs (W50 |F7] = E(BE, [ ST | 7|
= E(B)E, [V oy
= &(B).
Hence, under 2.21)), E(B) = {&E,(B): t > 0} is a martingale and it may be used
to perform a change of measure via

dp’
dP, F

=ePE(B) <o), t>0,xeR. (2.23)

The change of measure above is known as an exponential change of measure.
As the next theorem shows, it has the important property that the (killed) pro-
cess Y under P# is still a Lévy process. More importantly, if ¥ has killing, then,
under the change of measure, it will never experience killing.

Theorem 2.10. Suppose that Y is a (killed) Lévy process with characteristic
triple (a,o,11) and killing rate q > 0. Moreover, suppose that B € R is such
that

A TI(dx) < oo.

{Ix=1}

Under the exponential change of measure PP, the process Y is still a Lévy
process with characteristic triple (a*, o*,I1*) and killing rate g* = 0, where

a'=a-Bo’ + f (1 = fxI(dx), o* = o and IT*(dx) = ¥ TI(dx).
{lxl<1}

A compact way of characterising the effect on Y of the exponential change
of measure is to consider the characteristic exponent of (¥, P?), denoted
here by 3. In light of the first part of the above theorem, it is straightforward
to see that

Ys(z) .= ¥(z - 1B) - ¥(-ip), z € R. (2.24)
Equivalently, suppose its its Laplace exponent ¢ is well defined in the interval

(a, b). Then under the Esscher transform described in the previous theorem (for
which necessarily 8 € (a, b)), it maps to

Yp(6) = y(6 +B) — ¥(B), (2.25)

for 6 + B € (a,b). The transformations in (16.18)) and (2.25) are commonly
referred to as the Esscher transform. Recall from Section [2.2)that the presence
of killing is detected by a constant term in the characteristic exponent. It is
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clear from the difference of the exponents in (2.24) and (2.25) why the effect
of killing disappears.

2.9 Donsker-type convergence

Donsker’s Theorem tells us that one may perform a scaling on the paths of
random walks in such a way that there is weak convergence on the Skorokhod
space D([0, c0), R) to Brownian motion (see Section[A.10]of the Appendix for
details on the Skorokhod space). Similar results may also be obtained for Lévy
processes. For example, Lévy processes with second moments can be similarly
scaled to limit to Brownian motion on the Skorokhod space.

The following result tells us that controlling convergence on the Skorokhod
space for a Lévy process is tantamount to controlling the behaviour of the
Lévy—Khintchine exponent.

Theorem 2.11. Suppose that ¥, is a sequence of characteristic exponents of
Lévy processes, say Y™. Suppose that ¥,(z) — Y(2), for all z € R, where
Y is the characteristic exponent of a Lévy process, say Y, then (Y,("),t > 0)
converges weakly on the Skorokhod space, as n — oo, to (Y;,t > 0).

To return to the example of scaling Lévy processes in spirit of Donsker’s
Theorem, suppose that Y is a Lévy process with zero mean and finite second
moments. From Section to ensure second moments, it is necessary and
sufficient to ask that fl\Xl>1) x*TI(dx) < oo, where II is the Lévy measure of Y.
Now note that, for each r > 0, (r~'/2Y,;,t > 0) is a Lévy process with char-
acteristic exponent *¥(r~1/2z), P is the characteristic exponent of Y. Because
Y has zero first moment, it is a straightforward exercise to check that we may
write its characteristic exponent in the form

1 .
¥(@) = 5072 + f (1 - +izx)[I(dx), zeR.
R
Hence, by dominated convergence,

1 .
lim PP %) = 50'212 + lim f r(1 = e 4 iz 23 TI(dx)
R

r—o00 r—00

Zz(z 2
=—|o +fx H(dx)).
2 R

Theorem now tells us that (+~'/2Y,,,t > 0) converges weakly on the Sko-
rokhod space, as r — oo, to a Brownian motion with variance o+ fR X% TI(dx).
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2.10 Transience and recurrence

As a class of R-valued Markov processes, it is also natural to look at the tran-
sience and recurrence properties of Lévy processes. A Lévy process, Y, is said
to be transient if, for all a > 0,

P(f 1(|Y,|<a) dr < 00) =1,
0

and recurrent if, for all a > 0,

P(f 1(|Y,|<a) dr = 00) =1.
0

In the previous definitions, the requirements for transience and recurrence
may appear quite strong as, in principle, the relevant probabilities could be
valued in (0, 1). However, the events in the definition belong to the tail sigma-
algebra (,conjo,0) 0(Ys @ s = ). Hence, according to Kolmogorov’s zero-
one law, they cannot have probabilities valued in (0, 1). Nonetheless, we could
argue that P( fooo 1¢y,1<a)dt = 00) = 0 for small a, but P( fom 1y <pdt = 00) = 1
for large a. It turns out that Lévy processes always adhere to one of the two
cases given in the definition above, as is confirmed by the following classic
analytic dichotomy.

Theorem 2.12. Suppose that Y is a Lévy process with characteristic exponent
Y. Then it is transient if and only if, for some sufficiently small & > 0,

1
Re|——] dz < o, 2.26
szg, e(‘P(z)) i (2:20)

and otherwise it is recurrent.

Straightforward probabilistic reasoning also leads to the following interpre-
tation of the dichotomy.

Theorem 2.13. Let Y be any Lévy process.
(i) We have transience if and only if
Hm Y] = oo
almost surely.

(ii) If Y is not a compound Poisson process, then we have recurrence if and
only if, for all x € R,

liminf|Y; — x| =0 2.27)
1—00

almost surely.
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The notion of recurrence thus allows, for each x € R, the possibility of
visiting any arbitrarily small interval around x, say (x — &, x + €), almost surely
infinitely often. The reason for the exclusion of compound Poisson processes
in part (ii) of Theorem can be seen when one considers the following
example. Take Y to be a one-dimensional compound Poisson process, where
the jump distribution is supported on a lattice, say 6Z for some ¢ > 0. In that
case, it is clear that the set of points visited will be a subset of 6Z and
is no longer valid for e.g. x ¢ 6Z. This example also explains why compound
Poisson processes are excluded in other forthcoming results.

2.11 Duality

On account of the fact that a given Lévy process, Y, has stationary indepen-
dent increments with right-continuous paths having left-limits, it is easy to
justify that when it is time-reversed, the resulting process still has stationary
independent increments with paths that are left-continuous having right-limits.
The following Duality Lemma states that if one adjusts continuity at the jumps
of the time-reversed process so that the time reversed path is right-continuous
with left limits, then it is easy to identify the resulting object as equal in law to
-Y.

Lemma 2.14 (Duality Lemma). For each fixed t > 0, define the reversed pro-
cess

(Y(I—S)— - Y[,O S N S t)
and the dual process,

(=Y, 0<s<0).
Then the two processes have the same law under P.

It is a straightforward consequence of the Duality Lemma that, when con-
sidering deterministic time horizons, the running supremum Y, := sup, ¥
and running infimum Y,, = inf,, ¥ are closely related to one another.

Lemma 2.15. For each fixed t > 0, the pairs (I_/,, Y, - Y)and (Y, -Y, -Y)
have the same distribution under P.

Suppose we write P,, x € R, for the probabilities of ¥ := —Y. As we shall
shortly see, duality can be expressed analytically in terms of the semigroups
(Pt > 0)of Y and (IA’t,t > 0) of ¥, as well as their associated g-resolvents,
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U@ and U9, for g > 0. The latter are defined such that, for bounded measur-
able f,

UDLf100) = f " P (0 dr = E. [ f e gy, dr],
0 0

with the obvious definition holding for U@, When ¢ = 0, it is possible that the
integral in the first equality above is infinite because Y is recurrent.

We can use the language of semigroups to equivalently (and analytically)
describe the notion of duality in Lemma[2.13]

Lemma 2.16. Suppose that f and g are non-negative, bounded and measur-
able functions. Then

fR gOP[f1(x)dx = fR F(x)P,[gl(x)dx

and for g > 0 (as well as g = 0 with f and g compactly supported if X is
transient),

f OULLf1(x)dx = f F)OP[g1(x) dx.
R R

The Lemmas [2.15] and [2.16] scratch the surface of duality theory for semi-
groups of Lévy processes and their relation to time reversal. We return to this
topic for general Markov processes in the Appendix. For now, we mention that
the statement in Lemma [2.16] can be extended to the setting where there is
killing of the Lévy process on entering a domain.

Suppose that B is an open or closed set and recall that

8 .= inf{t >0:Y, € B).

The associated semigroup of Y killed on entering B, say (PtB ,t > 0), is defined
by PE[f1(x) = E,[f(Y,); t < 7B], for bounded and measurable f. The associ-
ated g-resolvents are written U g’), q = 0. We also use the obvious meaning for
(Isf, t > 0) and Ug’), q = 0. The following result gives what is known as Hunt’s

switching identity.

Lemma 2.17. Suppose that f and g are non-negative measurable functions
and B is an open or closed domain. Then

fR PP f1(x)dx = fR FOPP[g](x) dx

and for g > 0,

fR UL fI(x) dx = fR FDOP[g1(x) dx.
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2.12 Hitting points

In the Section[2.10] transience and recurrence can be seen as an issue pertaining
to the occupation of open intervals. The question of occupying (or, better said,
hitting) a single point can also be addressed.

We say that a Lévy process Y can hit a point x € R if

P(Y; = x for at least one > 0) > 0.
Let
C ={x e R :P(Y,; = x for at least one ¢t > 0) > 0}

be the set of points that a Lévy process can hit. We say that a Lévy process can
hit points if C # (0. We have the following classification.

Theorem 2.18. Suppose that Y is not a compound Poisson process. Then Y
can hit points if and only if

1

Denote by o the Gaussian coefficient of Y. Then we have, moreover, that

(i) If o > 0, then Y can hit points and C = R.
(ii) If o = 0 but Y is of unbounded variation and Y can hit points then C = R.
(iii) If Y is of bounded variation, then Y can hit points if and only if b #
0 where b is the drift in the representation of its Lévy-Khintchine
exponent Y. In that case C = R unless Y or =Y is a subordinator and
then C = (0, 00) or C = (-9, 0) respectively.

The case of a compound Poisson process is excluded above for the same rea-
sons that it was excluded in Theorem
We may be more specific about the hitting probabilities.

Lemma 2.19. Suppose that X is not a compound Poisson process and (2.28)
holds. Then the resolvent measure

wwmmzxf e ¥'P(Y, € dx)dr, x€R,
0

has a bounded density, say u?, and, moreover,

(@ (=
g0y uP(=x)
E; [e ! ] = u@(0)

where

7% = inf{r>0:v, =0}
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If, moreover, Y is transient, then the result is also valid for g = 0. In particular,
writing u = u®, we have

2.13 Regularity of the half-line

For a one-dimensional Lévy process Y (which starts at zero) we say that 0 is
regular for (0, ) (equiv. the upper half-line) if ¥ enters (0, co) immediately.
That is is to say, if

P(r{ =0)=1, where 7§ =inf{r>0:Y,>0}.

Because of the Blumenthal 0-1 law, the probability P(rj = 0) is necessarily
zero or one. When this probability is zero, we say that 0 is irregular for (0, co).
We also say that O is regular for (—co,0) (equiv. the lower half-line) if —Y is
regular for the upper half-line.

Theorem 2.20. For a Lévy process Y, the point O is regular for (0, 00) if and
only if one of the following three situations occurs:

(i) Y is a process of unbounded variation,
(ii) Y is a process of bounded variation and b > 0 where b is the drift in
representation (2.7) of its Lévy-Khintchine exponent ¥,
(iii) Y is a process of bounded variation, b = 0 (with b as in (ii)) and

xH(dx)
= oo, 2.29
f fo TI(—o0, —y) dy 229

2.14 Excursions and the Wiener-Hopf factorisation

From the preceding sections, it is apparent that the characteristic exponent, ‘P,
and the underlying triple, (a, o, IT), of any Lévy process encodes a significant
amount of information concerning its fine path properties. The Wiener—Hopf
factorisation is an analytic factorisation of ¥ underlines this principle. Through
the Wiener—Hopf factorisation, we will see that distributional information con-
cerning the local maxima and local minima of the associated Lévy process
trajectory can be obtained.
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Let us assume henceforth that neither Y nor —Y is a subordinator and not
killed. Define the running maximum and the running minimum processes by

)_’t =sup¥; and Y =infY,, t>0,

s<t - st
respectively. If we take, for example, the range of the process ¥ = (Y;,¢ > 0),
then it corresponds precisely to the range of the first passage points on (0, co)
given by {Y;+ : x > 0}. Therefore we can expect an understanding of how Lévy
processes undergo the process of first passage over a level to be closely related
to the distributional properties of Y and Y.

It can be shown that there exists a random measure L on [0, co) with the
property that its support agrees with the closure of the set {r > 0 : ¥, = Y}
and with the property that, if 7" is any F-stopping time such that Y7 = Y. on
{T < oo}, then (Yr4;—Yr, Ly4;—L7),t > 0) has the same law as (Y, L,),t > 0)
under P. Moreover, the complement of its support consists of a countable union
of open intervals, each one corresponding to an excursion of ¥ from its running
maximum.

It is a straightforward exercise to show that the reflected process ¥ — Y is a
strong Markov process. The process L, := L[0, 7], t > 0, is known as the local
time at zero for the reflected process, or equivalently the local time of Y at its
maximum. It has the special property that (L, !, ¢ > 0) is a subordinator, which
is killed if Lo, < oo, which, in turn, occurs precisely when lim,_,., ¥; = —oo.
Then for the countable set of times 7 > 0 such that AL;! := L7! — L' > 0, we
can identify the excursion of Y from its maximum:

&(s) = Y, = Y, 0<s<AL™

As alluded to above, there are a countable number of such excursions due to the
fact that there are a countable number of intervals making up the complement
of the support of L. The length of each such interval corresponds to a jump
of L', Together, the excursions (¢,¢ < L.) form a stopped Poisson point
process on [0, co0) X W(R), where TI(R) is the space of paths taking the form
(e(s) : s < ), where ( is the path lifetime, which are right-continuous with left
limits and which are strictly negative-valued on (0, {). Moreover, when { < oo,
€(¢) = 0. Accordingly ¢ = inf{r > 0 : €(r) > 0}. The intensity measure of
this Poisson point process takes the form df X dn, where 7 is a measure on the
Skorokhod space (see Section in the Appendix), which is concentrated
on UR). Itis a consequence of the regenerative nature of the point 0 for Y — ¥
that L., is exponentially distributed (with rate which may be zero, in which
case we understand it to be infinite valued with probability one). In the case
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that Lo, < oo, the excursion with local time index L., corresponds to the final
excursion from the last maximum which never ends as Y drifts to —oo.
We defined the process

H=Y., <L

and otherwise H, = oo, where oo can be considered as a cemetery state. The
need for a cemetery state appears if and only if the Lévy process drifts to —co,
ie. Yo := lim;e ¥; < oo almost surely or equivalently Lo, < co. The range
of the process H = (Hy,t > 0) in [0, co0) agrees with the range of Y. Moreover,
the regenerative property of the state 0 for the reflected process ¥ — Y ensures
that H is a subordinator, killed at a constant rate which may be zero (when
Lo = o0). Clearly the jumps of H correspond to the overshoot at the end of
each excursion, that is, the Lévy measure of H is given by n(e({) € dx), x > 0.
The process H may also possess a drift component, corresponding to there
being Lebesgue mass in the range of H. The cause of this is a rather subtle
issue and we make no attempt to discuss here.

Naturally, by considering the process —Y (which is still a Lévy process), it
is immediately obvious that everything we have described above can also be
constructed for the process reflected in its infimum, ¥ — Y. The range of Y, or
equivalently (Y- : x < 0), agrees with the range of —H, where H = (H,,1 > 0)
is a subordinator which is possibly killed at an independent and exponentially
distributed time (depending on whether —Y _ is almost surely finite or not) with
cemetery state {co}. We call H the ascending ladder height process and H the
descending ladder height process.

Suppose that we denote the Laplace exponent of H by «. To be precise,

1
k() =~ logE ],  nazo.
Referring to (2.11)), it is easy to deduce that

k() =qg+Dba+ f (1 —e™™) r(dx), 1>0, (2.30)
(0,00)

for some constants g,b > 0 and measure T’ concentrated on (0, o) satisfying

f(o Oo)(l A x)T(dx) < oo. The constant g corresponds to the exponential killing

rate when it is strictly positive in value. The Laplace exponent of A, which we
shall henceforth denote by &, is similarly described.

It is a remarkable fact that its characteristic exponent, ¥, factorises revealing
the two Laplace exponents « and k of the ascending and descending ladder
height processes respectively.
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Theorem 2.21. For z € R, we have
Y(z) = k(—iz)k(iz). (2.31)

Equality is what is commonly referred to as the Wiener-Hopf factori-
sation. What is interesting is that the factorisation still makes sense when we
consider the setting that the underlying Lévy process experiences killing with
rate p > 0 (the case p = 0 being the subject of Theorem[2.21). In such a setting
its characteristic exponent is given by

Y, =p+¥@, z€R, (2.32)

where W is the characteristic exponent of the underlying Lévy process without
killing. The factorisation still occurs in this more general setting, only
now, k and k are the Laplace exponents of subordinators which depend on the
value of p; accordingly we denote them «,, and &, respectively. In particular,
it must be the case that

Kp(0)R,(0) = p,  p>0. (2.33)

The associated subordinators H and H are thus both killed when p > 0. Their
ranges still correspond, respectively, to the range of the running maximum and
running minimum of the killed Lévy process.

Keeping with the case of a killed Lévy process, suppose we denote by e,
the independent and exponentially distributed random variable with rate p > 0
which corresponds to the time at which Y is sent to the cemetery state. With a
slight abuse of notation, let us write Y., in place of Ye,— with a similar meaning
for Xep and Y.,. As e, is independent of Y, it is almost surely not a jump time
of Y and hence e.g. Y, = Y.,-. A straightforward computation shows that

E[eizYe,,] = ‘I’f(z)’ zZ€R,

where, we recall, V), satisfies (2.32). The factorisation (2.31)), when brought
into the above setting, turns out to reveal another remarkable feature of Wiener-
Hopf theory for Lévy processes.

Theorem 2.22. We have that 7ep and Ye, — I_/ep are independent and hence,
thanks to duality,

B[] =E [ei%] xE[eLo],  zeR, (2.34)
where, additionally,
g 0 . k,(0
E[e‘ZY*n] L TCR E[eo] = %) (2.35)
Kkp(—iz) kp(iz)
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and the terms k, and k, are two killed subordinator exponents belong to the
factorisation

¥, (2) = kp(—i2)k,(i2), z€R. (2.36)

Strictly speaking, if p > 0, we call 2.36) the space-time Wiener—Hopf fac-
torisation. Otherwise, if p = 0, we call it the spatial Wiener—Hopf factorisa-
tion.

The reader should be careful not to confuse «, and &k, with versions of p + «
and p + R, respectively, where « and & belong to the factorisation in Theorem
[2.21] The correct relationship between the two pairs is a little more delicate.
Indeed, when « has the form (2.30), where necessarily T(dx) = n(e; € dx),
x > 0, (recall that 7 is the excursion measure of the process Y-Y ), then &,
takes the form

kp(A) =711 —e ) +bA + f (1-e™MaEe ;e edx), A120.
(0,00)

In, particular,

kp(0) =n(1 - e %) = n(l = 00) + f (1 —e™)n( € dx).
(0,00)

A similar identity will hold for k), albeit in terms of the excursion process of
Y — Y. It is worthy of note in this sense that «,(4) and &,(1) are nonetheless
Bernstein functions in A which are necessarily those of killed subordinators.
Moreover, k,(0) and &,(0) are Bernstein functions in p, which correspond to
the Laplace exponents of the inverse local time at the maximum and the same
quantity but for the dual, respectively. This makes the factorisation (2.33) all
the more remarkable, earning it the name fremporal Wiener—Hopf factorisation.

Whilst the independence of Vep and Y, —Yep is a consequence of the decom-
position of the path of (Y, < e,) over its excursions, the identities in
are a manifestation of the deeper fact that Y., and Y., — Y, are in fact in-
finitely divisible. The latter fact is again a consequence of the aforementioned
excursion decomposition.

2.15 Reflection

An immediate interesting application of the Wiener—Hopf factorisation is that
it allows us to deal with the asymptotic behaviour of the Lévy process reflected
in its running maximum. Recall that Y, = sup,., ¥y, t 2 0. In Sectionwe
remarked that Y — Y is a strong Markov process.

The trichotomy that all Lévy processes either almost surely drift to +co,
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—oo or oscillate between the two offers a relatively straightforward perspective
for the long term behaviour of the reflected process Y - Y, when combined
with (2.35). Indeed, when lim,_,«, ¥; = oo, the global infimum is almost surely
bounded away from —oco and hence k(0) > 0. Recalling that —Y, is equal in law
toY, - Y, monotonicity of the former ensures that the limit

lim E[e' ¥~ 130,

t—oo

always exists. If we write p~'e; in place of e, in (2.35) and appeal to an ana-
Iytic extension to identify the Laplace transform identity

7 R,(0
E[e g )| = kO 1>0

k(D' -

we can take limits as p — 0 and deduce that ¥ — ¥ convergences in distribution
at large times to a non-trivial and non-defective limit.

In contrast, if liminf,_,., ¥; = —oco (which covers the case of drifting to —oo
or oscillating), we see in a similar way from (2.33)) that the limiting distribution
of Y — Y is defective and concentrated on +co.

2.16 Creeping

In Section for one-dimensional processes, we considered the event that
a given point a € R lies in the range of a Lévy process, Y. We may consider
a refined version of this event in which the point a is visited when a Lévy
process, say Y, first enters (a, o), thatis {Y+ = a}. This event is called creeping
(upwards over a). Naturally the event of creeping is of no interest when —Y is
a subordinator. Let us, therefore, temporarily assume that this is not the case.

Creeping over any a € (0, o) is equivalent to requiring that a belongs to
the range of Y, which is equivalent to requiring that a belongs to the range
of H. (In the case that Y is a subordinator, we should understand H = Y.)
Theorem (iii) tells us that this happens if and only if the drift coefficient
of the ascending ladder height process, H is strictly positive and, moreover,
that creeping occurs for all a > 0 with positive probability. In that case, we say
simply that Y creeps upwards. A similar statement can be made for creeping
downwards over a € (—o0, 0).
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2.17 First passage problems

Understanding the event of creeping is but a part of understanding the big-
ger picture of the first passage problem for one-dimensional Lévy processes.
Roughly speaking, for a given a € R, one may think of the first passage prob-
lem at a as characterising the law of the so-called overshoot Y.+ — a, where

7r =inf{t > 0:Y, > a}. (2.37)

One can be more demanding in this respect and also look at the joint law of the
latter together with the so-called undershoot, a — Y-+_. In fact the results we
shall present will also include the law of the undershoot of the maximum prior
to first passage, a — I_/T;_. We also allow ourselves the luxury of interpreting
the Lévy process Y as having the possibility of being killed in the spirit of
Section [2.2] that is, being sent to a cemetery state after an independent and
exponentially distributed random time with rate p > 0.

Just as with the case of creeping, the Wiener-Hopf factorisation plays a cen-
tral role in the analysis of the more general first passage problem. Part of the
information we need to describe the joint law of the overshoots and under-
shoots described above is contained in the characteristics of the ascending and
descending ladder height processes, H and H.

We define the renewal measure associated to H by

U(dx) = f P(H; e dx, t < ¢)dt, x>0,
0

where we are using ¢ to denote the lifetime of H, which is necessarily killed if
Y is. It is a straightforward computation to deduce that its Laplace transform
satisfies

f e U(dx) = L, 1> 0. (2.38)

[0,00) k()

A similar renewal measure, denoted U, can be defined for the descending lad-
der height process H. If the Wiener-Hopf factorisation of a given Lévy process
can be identified explicitly and if, further, both U and U can be recovered
through the relevant inverse Laplace transform, then the following theorem
gives an explicit identity for the triple law of the overshoot, undershoot and
undershoot of the maximum at first passage over a > 0. As usual, the case of
compound Poisson processes is excluded to avoid complications in the case
that the jump distribution has a lattice support. We also exclude the case that
—Y is a subordinator (for obvious reasons) and that Y is a subordinator (which
is dealt with later).
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Theorem 2.23. Suppose that Y is a (killed) Lévy process, but not a compound
Poisson process, and neither Y nor —Y is a subordinator. Then, for each a > 0,
we haveonu>0,v>y,ye[0,a], s,t >0,

P(Y;:—a € du, a-Y_ € dv, a—?T;, edy; 7 <)
= U(a — dy)U(dv — y)II(du + v),
where 11 is the Lévy measure of Y and ( is its lifetime. Moreover, if Y creeps

upwards, then the renewal measure U has a strictly positive and continuous
density with respect to Lebesgue measure, say u(a), such that, for all a > 0,

P(Yyr=a, a=Y=_ €dv, a—)_/ﬁ, e dy; 7 < ) = bu(@)So(dv)do(dy),
where b is the drift coefficient of the ascending ladder height process.

Strictly speaking, the equalities in the theorem above are only valid up to a
multiplicative constant on account of the fact that the potentials, U and U are
dependent on the choice of constant that appears in the Wiener—Hopf factori-
sation (2.31). If this constant is normalised to unity (equivalently, the factori-
sation can be identified explicitly) then the aforesaid equalities are correct as
stated.

Let us also look at the first passage problem in the case that Y is a (killed)
subordinator. For this class of processes, it makes no sense to involve the quan-
tity Y as @ — Y.+_ = a — Y,+_. We can also understand the potential measure
U, defined in (2.38)), as now being that of ¥, which itself can be taken to be
identically equal to H. The relevant result for the first passage problem takes
the following form.

Theorem 2.24. Suppose that Y is a (killed) subordinator. Then for u > 0 and
y€1[0,a],

P(Y;: —a€du,a-Yr_edy; 7, <) = Ua—dy)I(y + du), (2.39)
where ( is the lifetime of Y. Moreover, if Y creeps then
P(Yy=a,a—Yr_ e dv; 1) <) =bu(a)do(dv),
where b is the drift coefficient of Y.
It is also worth recording a weaker version of this result for future use.

Corollary 2.25. Suppose that Y is a (killed) subordinator with Laplace expo-
nent k(0) := —log E[ exp{—0Y,}], 6 > 0. Then, for g > 0,

00 o B _ 9)
Ele qa H(YT:; a)l e da = K(q) K( )
fo [ <o (q - Ox(q)
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In theory we could marginalise the triple in Theorem [2.23] resp. [2.24] to
deduce an expression for P(r} < oo) in the case that lim,_,, ¥, = —oo, resp. Y is
a killed subordinator. However there is an alternative shortcut. Note that P(7} <
o) = P(H,,~ > a), where we should understand e, as the independent and
exponentially distributed random time at which the subordinator H is killed.
Considering it is straightforward to deduce the following lemma.

Lemma 2.26. Fora > 0,
P(r} < &) = k(0)U(a, ).

Clearly renewal measures play an important role in first passage problems,
both for subordinators and for non-monotone Lévy processes. To emphasise
this point, we conclude with one more theorem which gives us the resolvent of
a Lévy process killed on first passage below the origin.

Theorem 2.27. Suppose that Y is a Lévy process but neither Y nor =Y is a
subordinator. For x > 0,

E, [ f ’ f(Yy) dt} = f U(dy) U(dz) f(x+y—2), x20,
0 [0,00) [0,x]

where 7, = inf{t > 0: ¥; < 0}.

Finally, we note that, as many of the above expressions are formulated
as convolutions with respect to the renewal measure of the ascending ladder
height subordinator, we can appeal to classical renewal theory to obtain results
for asymptotic overshoot and undershoot distributions. For example, when Y
is a subordinator which is not arithmetic, i.e. that the paths of Y do not live in a
strict sub-group of [0, o0) and m := E[Y]] < oo, the basic conclusion of renewal
theory implies that for bounded measurable sets A, mU(x + A)/x converges to
the Lebesgue measure of A as x — oo. The following corollary to Theorem
2.24]is therefore not too surprising.

Corollary 2.28. Suppose that Y is a subordinator which is not arithmetic and
wtih finite mean, say m. Then, for u > 0 and y > 0, in the sense of weak
convergence,

1
lim P(Yr+ —a € du,a — Yr+_ € dy) = —dyII(y + du).
m

a—oo

Corollary 2.28]implies that the subordinator ¥ converges weakly towards a
random variable whose law can be determined explicitly, i.e.

Yir —a —— UW, (2.40)
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where « O means weak convergence and 2l and W are independent r.v.’s, U
is uniformly distributed over [0, 1] and the law of W is such that

1
P(W > u) = —f sTI(ds), for u>0. (2.41)
M J(u,00)

On a final note, there are a few facts that are worth mentioning for the set-
ting of spectrally negative Lévy processes. The fact that that ascending ladder
height process is continuous in the spectrally negative setting means that Y is
a continuous process. It is also easy to verify that Y fulfils the definition of the
local time of Y — Y at zero, described in Section Recalling the property
that inverse local time is a (killed) subordinator, and noting that we can also
write 77 = inf{r > 0 : Y, > a}, the result below follows immediately.

Lemma 2.29. IfY is a spectrally negative Lévy process, then (t};,a > 0) is a
(killed) subordinator.

It is also straightforward to verify the statement of the above lemma using
stationary and independent increments as well as the fact that Y+ = a on
{t} < oo} thanks to spectral negativity.

The identification of Y as a local time also allows for the simplification of
a number of calculations in terms of the underlying excursion process of ¥ —
Y from 0. In turn, this can be used to develop a number of calculations that
reformulate first passage problems in terms of the so called scale function. The
scale function W : [0, co) — [0, o0) is defined via the Laplace transform

0 1
fo e P*W(x)dx = m, B = Bo,

where

U(B) = %IOg E[e’"], B>0, (2.42)

is the Laplace exponent of Y and 3y is the largest root of the equation y/(8) = 0
(there are at most two roots as i is convex). The following is a well used
result which shows that the two sided exit problem has a convenient analytical
representation in terms of scale functions.

Lemma 2.30. For x € [0, a],

W(x)

PX(T; < Ta) = W’

x € [0,al. (2.43)
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2.18 Lévy processes in higher dimensions

The discussion above has focused predominantly on the case of one-dimensional
Lévy processes. Whilst some of the concepts, such as regularity for the half-
line, creeping and the Wiener-Hopf factorisation, no longer make sense in
higher dimensions, a number of the mathematical issues can still be discussed
in a meaningful way.

Characteristic exponent and the Lévy—Ité decomposition. Stationary and in-
dependent increments still implies that, if we consider E[e*¥], t > 0, where,
now, we take the parameter z € R? and the product z - ¥; as a Euclidian inner
product, then the distribution of Y; is still infinitely divisible for each ¢ > 0 and
holds. From the theory of infinitely divisible random variables in higher
dimensions, see (1.39), we recall

1 4
Y()=ia-z+ §z~ Oz + f (I —e®" +iz- x1gy<1y) I(dx), zeRY, (2.44)
R4

where a € R, Q is a d X d Gaussian covariance matrix and IT is a uniquely
determined measure concentrated on R?\{0} which satisfies

f (1 A Jx») TI(dx) < oo.
Rd

Just as in the one-dimensional setting, the structure of the d-dimensional
Lévy-Khintchine formula ([2.44) pertains to a Lévy-Itd path decomposition
which reads almost verbatim (with the obvious adjustments to notation) to the
one described in Section @ Note, in particular, that the term z - Qz/2 cor-
responds to the inclusion of an independent d-dimensional Brownian motion
with covariance matrix Q.

Bounded versus unbounded variation. Similar arguments to those given in
Lemma shows that a d-dimensional Lévy process has paths of bounded
variation if and only if oo = 0 and fRd(l A |x[) TI(dx) < co. Moreover, a simple
adaptation of the reasoning leading to Lemma shows that a Lévy process
is a compound Poisson process with drift if and only if o = 0 and II(R?) < co.

Feller property and infinitesimal generator. The notion of the Feller prop-
erty in Deﬁnitioncan easily be adapted to cover the case of R?-processes.
As such it is not surprising that Lévy processes remain in the class of Feller
processes in higher dimensions. As a consequence, each Lévy process is still
equipped with an infinitesimal generator in higher dimensions and the gener-
ator can be matched against the characteristic exponent (2.44) similarly as in
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one dimension. Indeed, for f in the class of continuously differentiable func-
tions with compact support, if ¥ in (2.44) is the exponent of a Lévy process,
then its generator is given by
1 o*f
=-a-V + = i ()+
Li@W=-a V@) +5 > s

i,je{l, -,
o [ 00 = £ =y T ). 245)
for x = (x1,--- ,x4) € R%

Duality. Duality as described in Section is still valid in higher dimen-
sions.

Moments. The notion of moments as discussed in Section[2.7)is equally valid
in higher dimensions. The definition of submultiplicative functions and the
conclusion of Theorem [2.9|reads verbatim the same in the higher dimensional
setting too.

Transience and recurrence. With the obvious interpretation of | - | for the
d-dimensional Euclidian norm, the definition of transience and recurrence re-
mains unchanged in higher dimensions. Moreover, Theorems[2.12]and 2.13]are
still valid without adjustment.

Polarity of points. In the case of one dimension, Theorem [2.18] explores
points which, with positive probability, are included in the range of a Lévy
process (not a compound Poisson process) issued from the origin. It turns out
that the set of such points was either @, (0, co), (—o0,0) or R.

In dimension d > 2, things are a little more subtle. A point y € R is polar if
for every x,

P,(Y; = y for some ¢t > 0) = 0.

We say that a point y € R is essentially polar if for Lebesgue almost every x,
P,(Y; = y for some ¢t > 0) = 0.

Theorem 2.31. For dimension d > 2, all points are essentially polar.

Obviously if a point is polar then it is essentially polar. It turns out that,
conversely, if the resolvent kernel is absolutely continuous, then any essen-
tially polar points are polar. There are nonetheless examples for which the two
classes differ. That said, this is a subtlety that we won’t have occasion to work
with in this book.
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2.19 Comments

The literature on Lévy processes is now vast. There are several books which
offer a solid introduction to the core theory of Lévy processes, both in one
dimension and higher dimensions. These include Applebaum [6], Bertoin [18]],
Doney [60], Kyprianou [123] and Sato [190]. There are many more standard
texts which contain a chapter or more devoted to introductory material on Lévy
processes as an exemplary or favourable stochastic or Markov process; see for
example [182, 183,77, 78.[79,!46] to name but a few.

Sections [2.T]until 2.5] follow a standard approach to be found in many of the
aforementioned texts. The complete dichotomy of drifting versus oscillating
in Theorem@]is due to Chung and Fuchs [50] and Erickson [67] for random
walks, see Bertoin [20] in the Lévy process setting. Section offers a short
summary of what is otherwise a more thorough handling of moments given in
Section 25 of Sato [190]. Theorem [2.T1]is a rather elementary application of
a classical result for convergence of a sequence of Feller processes to a Feller
process on the Skorokhod space. See, for example the original works of Sko-
rokhod [195! [194] as well as Theorem 2.5 in Ethier and Kurtz [68]]. In the case
of Lévy processes, the general theory translates directly into the convergence
of the characteristic exponents. The exponential change of measure in Section
is a classical topic rooted in the Esscher transform for random variables
and can be found in many texts. In Section for the formal definition of the
Skorokhod toplogy, the reader is referred to Chapter VI.1 of [95]]. Donsker’s
convergence is a classical result for random walks, which can be found in nu-
merous text books; we mention [32]] here as but one example.

The notion of transience versus recurrence in Section[2.10]is deeply embed-
ded in the theory of Markov processes. The setting of Lévy processes has been
treated by Kingman [T10] and Port and Stone [175]. Theorem [2.18]in Section
can be attributed to Kesten [[103]] and Bretagnolle [42]]. Regularity of the
half-line discussed in Theorem [2.20|can be attributed to the work of Rogozin
[184], Shtatland [202] and Bertoin [20]. The basic notion of duality for Lévy
processes is often treated via Lemma[2.14]thanks to a deceptively simple proof
which is little different from the analogous result for random walks. The bigger
picture when it comes to duality for stochastic processes is much more com-
plex. We have given all but a tiny snapshot in Section See the further
remarks and references therein.

The Wiener—Hopf factorisation has quite a substantial exposure in the his-
tory of Lévy processes and random walks. There are many different ways to
express the factorisation seen in (2.31) and (2.34)), both as an analytical decom-
position but also as a probabilistic decomposition. Some of the earliest work
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in this respect can be found in the setting of random walks from the work of
Baxter [13]] and Spitzer [197, 200l 201} [198]]. Other early contributions can be
found in Port [171], Feller [69], Borovkov [41], Percheskii and Rogozin [168]],
Gusak and Korolyuk [84]] and Fristedt [[74]. Bingham [35]] gives a comprehen-
sive account of the Wiener—Hopf factorisation for the spectrally one-sided set-
ting. An elegant derivation of the factorisations (2.31)) and (2.34) which makes
natural use of the underlying excursion theory can be found in the papers of
Pitman and Greenwood [83]. See also Chapters IV and VI of Bertoin [18]] or
Chapter 6 of [123].

Theorem [2.23]is a simpler version of the so-called quintuple law, proved in
Doney and Kyprianou [62]; see also Doney [60], Dusquene [65] and Winkel
[214]. Theorem is the simpler analogue for subordinators, which is fun-
damentally based on renewal theory. Together with its consequences in Corol-
lary[2.25]and Lemma[2.26] this result can be traced back to the work of Kesten
[L15], Bretagnolle [42]], Horowitz [88]], Bertoin [18]] and Andrew [S]]. Theorem
[2.27)is due to Silverstein [[193] and the asymptotic behaviour in Corollary 2.28]
although classical for renewal processes, was proved in the context of general
subordinators in Bertoin et al. [24]. Lemma@]is one of many identities for
spectrally negative Lévy processes that can be written in terms of scale func-
tions; see for example Chapter 8 of [123]]. This particular result is originally
due to Zolotarev [218] and Takacs [204]]. Finally the discussion on polarity
of points is lifted from Chapter II of Bertoin [18]. Whilst the original litera-
ture pertaining to polarity dates back to Orey [157] and Kanda [99] 100, [101].
Bertoin [18] offers a more thorough historical overview.
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Stable processes

We are now ready to introduce the family of Lévy processes which form the
main focus of this book: Stable processes. Our first goal in this chapter is to
look at the several equivalent definitions that are common in the literature, both
in one and higher dimensions, and to explain how one can switch between
different parameterisations therein. We will identify, for our own purposes, a
normalisation in the definition of the stable processes that will remain in effect
throughout the rest of the book. Thereafter we shall revisit the path properties
for general Lévy processes that were discussed in Chapter 2 but now within
the specific context of stable processes. This will be done first in the one-
dimensional setting and then in higher dimensions. In the latter case, we will
insist on isotropy just as in the case of stable distributions.

Throughout this and subsequent chapters, the notation X = (X;, ¢ > 0) with
probabilities Py, x € R?, for d > 1, will be reserved for the setting of stable
processes. As usual, we generally prefer to write P in place of Py.

3.1 One-dimensional stable processes

As we have seen in Chapter [T} stable distributions can be defined in a number
of different ways. Naturally, the same is true for stable processes. We give four
equivalent definitions here.

Definition 3.1 (Four definitions of a one-dimensional stable process).

(1) The first definition identifies a stable process in terms of its marginals. A
Lévy process is called a stable process if its marginal distributions at each
fixed time are non-Gaussian and stable in the sense of Definition [Tl

(2) The second definition identifies a stable process as a non-Gaussian Lévy

58
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process X = (X;,¢ > 0) for which there exists an @ > 0 such that, for all
¢ >0, (cX.,t > 0)is equal in law to X.

(3) The third definition of a stable process is via its characteristic triplet. A
stable process is a Lévy process whose characteristic triplet takes the form
(0, 0,II), where the measure I is given by

H(dx) = le_l_(’ (Cll(x>0) + 621(X<o)) dx, x€eR (31)

such that ¢; > 0, ¢, > 0 and @ € (0, 2). Moreover, for the triplet (0, 0, IT),
we understand there to be a regularisation function A(x) = 0 when @ €
(0,1), h(x) = x when @ € (1,2) and if @ = 1, then we take ¢; = ¢, and
h(x) = xl(‘x|<1).

(4) The fourth approach to defining a stable process is through its Lévy-Khintchine
exponent. A Lévy process is a stable process if its characteristic exponent
takes the form

Y(z) = clz|” (1 — iBtan (ra/2) sgn(z)), z€R, (3.2)

where

ae©,1)U(,2,c>0 and Be[-1,1]

or

a =1 and we understand Stan (ra/2) = 0.

Given the exploration of stable distributions in Chapter [I] the reader will
note that definitions (1), (3) and (4) are equivalent on account of the fact that
the distribution of X, entirely determines the law of the Lévy process.

We also note that for the scaling property given in definition (2), it is nec-
essary and sufficient that the scaling holds at time 1, again, on account of the
fact that X entirely determines the law of a Lévy process (X;, # > 0). This also
means that definitions (1) and (2) are equivalent. In particular, because of this
equivalence, definition (2) necessarily implies « € (0, 2).

For definitions (3) and (4), three parameters are needed to describe the pro-
cess. In (3), we used the triplet (a, ¢y, c2), in (4), we use the triplet (o, 5, ¢). As
noted in Proposition the parameters in this pair of triplets are related for
a € (0, 1)U (1,2) by the equalities

Cp—C

c=—(c1 +cy)cos(ma /2D (—a), B = m, (3.3)

and for @ = 1 by
c=(c;+cymf2, B=0. (3.4)

For all four definitions, the following fundamental scaling property emerges
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at the level of the process. We shall use it repeatedly throughout the course of
the remainder of this book.

Theorem 3.2. If X = (X;,t > 0) is a stable process with index « € (0,2), then
forallc >0and x € R,

the law of (cX -, t > 0) under P, is P,,. 3.5)

Proof As we have seen from Deﬁnition (2), the result is true when x = 0
simply by definition alone. Stationary and independent increments tells us that
(X,P,) is equal in law to (x + X, P). Hence, it follows that, for each ¢ > 0,
(X, t > 0) under P, is equal in law to (cx + cX ., t > 0) under P. Moreover
the latter is equal in law to (cx + X}, > 0) under P and hence X under P.,. O

As with the stable distribution, in the spirit of @, a density for the dis-
tribution of X, exists at all times ¢ > 0. As such, it is well known that the
transition semigroup of X has a density with respect to Lebesgue measure.
Taking account of stationary and independent increments, we can write

Py(X; € dy) = p,(y — x) dy, (3.6)

for all x,y € R and ¢ > 0, where

1 )
p,(x) := > f e e Y@ gz, xeR,t>0. (3.7)
T Jr

Remark 3.3. We conclude this section by noting that, just as in Chapter [I|
we have deliberately excluded the possibility that @ = 2 from the definitions
above. Taking account of the remarks at the end of Section|[I.T|regarding stable
distributions with index @ = 2, it is not difficult to see that the corresponding
Lévy process is a constant multiple of standard Brownian motion. Since our
objective in this book is to deal exclusively with jump processes, we will make
no attempt to address this setting.

3.2 Normalised one-dimensional stable processes

In accordance with what was done for one-dimensional stable distributions, we
introduce here a normalised version of the stable process. Henceforth, this will
be our preferred way of referring to one-dimensional stable processes through-
out the remainder of the book. One of the reasons for this is that it has the
advantage of reducing the number of parameters from three to two. In essence,
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this is done by pinning down a value for the constant ¢ in the case that the
process is parameterised by the triplet («, 3, ¢).

For any of the four equivalent definitions given in the previous section, let
us consider the scaled version of (b‘iXt,t > 0) or, equivalently thanks to The-
orem[3.2] (X, : t > 0), where

b = c+l1 + B%tan(na/2)%. (3.8)

This scaling results in a simple form of the characteristic exponent; see Propo-
sition [[.12] and the discussion around the normalised class of stable distribu-
tions Sporm(@, p). Specifically, for the aforesaid scaled version of X, we get

W) = [ (P g+ P L)), zeR, (39)
where
11
p==+—tan"' (Btan(na/2)), (3.10)
2 na

is called the positivity parameter and, from what we know of stable distribu-
tions, p = P(X; > 0) (and hence, thanks to scaling, p = P(X; > 0) for all # > 0).
As with the case of normalised stable distributions, with this parameterisation
the stable process is defined only by two parameters («, p), which belong to
the admissible set (T.24), which we reproduce here for convenience:

A:={ae(0,1), pel0,1])
Ufe=1, p=1/2}
Ulee(1,2), pell—a o]} (3.11)

The formulas in (3.3), (3.4) and (3.10) show how to obtain an (e, p) pa-
rameterisation starting from an («, ¢1,¢;) or an (@, f3, ¢) parameterisation. To
go in the opposite direction, suppose that X is chosen with normalisation in
its characteristic exponent such that (3.9) holds. From Proposition [I.12} the
coefficients c¢; and c¢; defining the Lévy measure must be given by

¢ =F(l+0)@, ¢ =r(1+a)%mm, (.12)

where p =1 — p.

In the one-dimensional setting, we will often find ourselves in future analy-
sis dealing with three different regimes of «; these are the obvious a € (0, 1),
@ = 1 and @ € (1,2). Indeed, we already see from (3.11) that the permissible
pairs (a, p) naturally divide into the aforesaid cases. We shall also repeatedly
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see this natural partitioning in the next two sections, where we shall review
some of the fundamental distributional and path properties introduced in Chap-
ter[2] albeit for the specific setting of stable processes.

3.3 Path variation, asymmetry and moments

Path variation. Referring to (3.1)), it is easy to check, using the simple integral,
that

f (I AX0)x " dx < o0
0

as long as @ € (0, 1), and otherwise the integral diverges. Hence a stable pro-
cess has paths of bounded variation if and only if @ € (0, 1).

Asymmetry. If ¢c; = 0, then the process has no negative jumps. Considering
@D, we see that if @ € (0, 1), then 8 = 1, which forces us to conclude in
(3:10) that p = 1. In turn this means that, when @ € (0, 1) and there are no
negative jumps, then the associated stable process must be a subordinator i.e.
a process with monotone increasing paths. Similarly, if ¢; = 0 and @ € (0, 1),
then —X is a subordinator. It is easy to check, for example using @]), that, in
these cases, the associated subordinator has zero drift coefficient.

For a stable subordinator, it is more common to deal with its Laplace ex-
ponent than its characteristic exponent. Recall that the Laplace exponent of a
subordinator takes the form

1
) =~ logE[e™™], for 1>0,120. (3.13)

An expression for x can be derived from first principles by returning to the
computation in (I.TT) and performing it again in the context of a positive-
valued random variable. One recovers the expression

KA =2%  A20. (3.14)

More generally, when @ € (0, 1) and p # {0, 1}, since the associated stable
process has paths of bounded variation, it can be written as the difference of
two independent subordinators. In this case, on account of the Lévy measure
on the positive and negative half-lines, they must be stable subordinators. It is
a straightforward exercise to show that

X, =b/"X; -b)°X;, 120, (3.15)

where by = sin(rap)/ sin(ra) and b, = sin(rap)/ sin(na); and X* and X~ are
independent (normalised) stable subordinators.
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To see why, note first from the scaling property that X, © X;] X,

,t2>0.
In that case, recalling that the characteristic exponent of X and X~ 1f)z(t)th take
the form
sin(ra) 1
xl+a

P2) = f (1-erd + ) :
0
the characteristic exponent of X as defined is equal to
Y(z) = P(2)b; + P(~2)bs

= fm(l — ™Mb I + )
0

sin(ra) 1

Vi x1+a/

i 1
sin(ma) dx

+ f 00(1 — e I (1 + @)
0

Ve .xl
= (1 — izx) L 1 + ; 1 d
€ C1 1o (x>0) C2| |1+0[ (x<0) | 4X,

where we recall that ¢; = I'(1 + @)sin(rap)/n and ¢; = I['(1 + @)sin(map)/n.
It follows from the discussion at the start of this section that the characteristic
exponent of X has the required normalised form.

When @ = 1, the stable process is symmetric, both in its Lévy measure as
well as its distribution at all times. One easily verifies from Theorem [I.T7]that,
forallt > 0and z € R,

t

T (3.16)

p,(2) =

When a € (1,2), as the associated stable process has paths of unbounded
variation and therefore the case of monotone paths is ruled out. Indeed, from
@]), we see that there is a restriction on the range of p. For example, at its
greatest value we have that p = @~!. From (3.10), noting that

tan_l(tan(ﬂa/Z)) =r- %,

this corresponds to the case that 8§ = —1, or equivalently ¢; = 0, making the
associated stable process spectrally negative. Similarly, at the other extreme
~1, 8 =1and ¢, = 0, making the associated stable process
spectrally positive. Spectrally one sided processes are sometimes described in
terms of their Laplace exponents. For example, it is traditional in the literature
to define the Laplace exponent of a spectrally positive Lévy process via the
relation

we havep =1 -«

exp{y( Dt} :=E [e”x’] , t>0,
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which is well defined for A > 0. Referring back to the derivation of the charac-
teristic exponent of a general stable process with stability index « € (1,2), the
computation leading to (T.13), when phrased in terms of a real-valued variable,
also delivers us the identity

YD) =21  A1>0.

What lies between the two parameter extremes for p, when « € (1,2), i.e.

1 1
l-—<p<—,
a a

must exhibit both positive and negative jumps.

Moments. It is straightforward to check with the help of Theorem [2.9] (see
also Theorem [I.10) that stable processes do not possess exponential moments.
Indeed, one easily verifies, by considering the integral flm x0~2=1 dx, that, for
6 >0,

E [sup |xs|9] < o0 (3.17)
s<t

if and only if 6 < @ and otherwise the above expectation is infinite. In particular
this means that stable processes have no moments when a € (0, 1], but a first
moment exists when a € (1, 2). Moreover, by differentiating the identity

exp(-P(Q)} =E[e™],  zeR.120,

at z = 0, we see that E[X;] = i¥/(0)¢r = 0 for all ¢ > 0. This means that, unlike
the regime « € (0, 1], the associated stable process is also a martingale.

We also learn from (3.17) that stable processes possess no second moments
for any @ € (0, 2).

3.4 Path properties in one dimension

Drifting and oscillating. As noted above, if @ € (0, 1) and either ¢, or ¢ is
equal to zero, equivalently p = 1 or O, then X is either a subordinator or the
negative of a subordinator. Hence, rather trivially, X drifts to +oco or to —oo,
respectively.

When a € (0, 1] and ¢y, ¢y > 0, because both positive and negative part of
the Lévy measure have a density which is proportional to 1/|x|'*?, it follows
that the integrals in and are either simultaneously finite or simul-
taneously infinite in value. As Theorem forbids them to be simultaneously
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finite, we are left with the conclusion that X must oscillate and we are forced
to conclude that

limsup X; = —liminf X; = co. (3.18)
00 t—o0

-

Finally, for the case that a € (1, 2), as we have already established in Section
[.3] that E[X,] = 0, Theorem [2.8] again tells us that (3.18) holds and we have
oscillatory behaviour.

index jumps path asymptotic behaviour
ae(0,1) transient

_ . Pt < 00) = 0,x € R,
p=0 - monotone decreasing lim,_,, X, = —o0

=1 + monotone increasin Pi(r!" <o) =0,x €R,
p= g lim,_,, X; = 00

o P71 < 0) = 0,x € R,

pe(0,1) +,— bounded variation lim, ., [X,] = oo
a=1 recurrent

P.(r'” < 00) = 0,x € R,
p= % +,— unbounded variation limsup,_,, |X;| = oo,
liminf, . |X,| =0

a€e(l,2) recurrent

P, < 0) =1,x R,
ap =1 - unbounded variation liminf,_,. X; = —co
limsup,_, . X, = oo

P.(r'” < 00) = 1,x € R,
ap=a-1 + unbounded variation liminf, ., X; = —oc0
limsup,_,,, X; = oo

Pt < 0) = 1, x € R,
ap€(@—-1,1) +,— unbounded variation liminf, e, X, = —00
limsup,_, X; = oo

Table 3.1 Path properties of stable processes according to the different
parameter regimes of @ and p
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Transience and recurrence. On account of the fact that, for £ sufficiently small,

s 1 |
Re|— | dz ~ —dgz,
Ig (‘P(Z)) _e 12l

where a = b means that a can be bounded from above and below by a multiple
of b, it follows from Theorem [2.12] that X is transient whenever @ € (0, 1) and
recurrent when «a € [1, 2).

Let us remark that a Lévy process which is recurrent cannot drift to co or
—oo, and therefore must oscillate and we see this consistently with stable pro-
cesses. On the other hand, an oscillating process is not necessarily recurrent.
A nice example of this phenomenon is provided by the case of a symmetric
stable process of index 0 < a < 1.

Hitting points. Straightforward computations also show that, for some constant
K > 0, the ratio of

1 1
Re| ——— dzandK+f —dz
fR (1 + 'P(Z)) R\-1,1) 12*

is bounded by a strictly positive constant if and only if @ € (1,2). Therefore,
referring to Theorem [2.18] the process X can hit points almost surely if and
only if @ € (1,2).

Regularity of the half line. Taking note of the structure of the Lévy measure for
a stable process, it is clear that the integral (2.29) is either finite or infinite for
both X and —X simultaneously. In that case, as X is not a compound Poisson
process, both integrals must be infinite and O is regular for both (—co,0) and
(0, c0).

3.5 Wiener—Hopf factorisation and the first passage problem

Wiener—Hopf factorisation. Recall from Theorem [2.21] that the Wiener—Hopf
factorisation takes the form

¥(2) = k(-ig)k(iz),  z€R,

up to a multiplicative constant, where « and & are the Laplace exponents of the
ascending and descending ladder processes. The Wiener—Hopf factorisation
only makes sense for Lévy processes that do not have monotone paths. To this
end, we assume in this section that p # {0, 1} if @ € (0, 1).

Stability tells us that, for all ¢ > O, (cxw,,t > 0) has the same law as
X = (Z,t > 0), where X = sup,, X, t > 0. In particular, for all ¢ > 0,
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the range of cX is equal in law to the range of X. If we write as usual H for
the ascending ladder height process, then, for all ¢ > 0, the range of cH is
equal in law to the range of H. The latter is equivalent to the condition that
the Laplace exponent of H is proportional to that of cH, i.e k(z) = k.«(cz), for
z > 0, where k. > 0 is a constant that only depends on c. Since «(1) must be
a constant, we see that x(z)/x(1) = k(cz)/«(c). Hence, as k is increasing, one
can easily deduce that k(1) = x(1)A*" for some «; € [0, 1]. In other words, H
is a stable subordinator with parameter a;. We exclude the case @; = 0 since
it corresponds to the setting where the range of H is the empty set. A similar
argument applied to —X shows that the descending ladder height process must
also belong to the class of stable subordinators.

We therefore assume that (up to multiplicative constants) x(z) = z*', z > 0,
and k(z) = 2%, z > 0, for some a;,a; € (0, 1]. Appealing to the normalised
form of the stable process, (3.9), we must choose the parameters @; and @
such that, for example, when z > 0,

@ ﬂid(%—p) _ —%nim @ . Lrias
Ze =z '€ Xz ez .

Matching radial and angular parts, this is only possible if @; and @, satisfy

+a =a,
{“1 n=a (3.19)

) —ap = —a(l - 2p),

which gives us a; = ap and @, = @p. Note from the discussion in Chapter|l]
as X does not have monotone paths, it is necessarily the case that 0 < ap < 1
and 0 < ap < 1. In conclusion, for 8 > 0,

k(0) = 6% and R(0) = 6°°.

When ap = 1, the ascending ladder height process is a pure linear drift. In
that case, the range of the maximum process X is [0, co). This is consistent with
our observations in Section that X is spectrally negative. Similarly, when
ap = 1, equivalently p = 1 — a~!, the Wiener—Hopf factorisation concurs with
the previous observation that X is spectrally positive.

Creeping. Stable subordinators and the negative thereof cannot creep because
they lack a drift component. This is clear in the case that X has monotone
paths. Indeed, recalling (2.9), one readily checks that the associated drift coef-
ficient in the decomposition (2.11) is zero. Otherwise, for stable processes with
a Wiener—Hopf factorisation, with the exception of the spectrally one-sided
setting, as both ascending and descending ladder subordinators are stable sub-
ordinators, creeping is not possible. If we take the case of spectrally negative
stable processes with a Wiener—Hopf factorisation, i.e. with @ € (1,2), as the
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ascending ladder subordinator is a linear drift but the descending ladder pro-
cess is a stable subordinator, creeping is possible upwards but not downwards.
A similar statement holds for the case of spectrally positive stable processes.

First passage problem. Let us first assume that X is a stable subordinator. Con-
sidering the Laplace transform in (2.38) it is straightforward to see, using the
expression for the gamma integral (A.7), that the associated renewal measure
U satisfies

U(dx) = %x"_l dx, (3.20)

for x > 0. Theorem [2.24] now tells us that
P(X;: —aedu,a— X, edy)=k-(a—y)* 'y +u)y®Vdudy, (321

for u > 0, y € [0,a] and some constant k > 0. On account of the fact that
its drift coefficient is zero, X cannot creep upwards. Hence the constant k can
be obtained by ensuring that the right-hand side of integrates to one.
Indeed, one readily checks that the following result holds.

Theorem 3.4. Suppose a € (0,1) and p = 1. For allu,a > 0 and y € [0, al,

P(XT;r —aedu,a-X i_ € dy) = M(a _y)(lfl(y + u)f((wrl) dudy.
T

It is interesting to note from this further that the distribution of the pair

Xip—a a— X (3.22)
a a ’

is independent of a. This is both clear from Theorem [3.4] as well as easily
verified from the scaling property of X. Indeed, for each ¢ > 0, suppose we
defined X} := cX.-, t > 0 and recall that under P, this scaled process is equal
in law to X. Then 7, := inf{s > 0 : X¢ > x} is equal in law to inf{s > O :
Xoog > x/c} = c"T;/c. Setting ¢ = 1/a, we thus have that e.g.

X+ —a

a

d d
=0 Kooy 19 X% 19 %0 -1,

a T1+,l/a

The following corollary is also worth recording as it requires a tricky marginal-
isation of the joint law in Theorem [3.4]

Corollary 3.5. Suppose @ € (0,1) and p = 1. For all u,a > 0,

P(X.. —a € du) = Sin;m) (f)_a( ! ) du

a a+u
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Proof 'We have
P(Xr —aedu) = a sin(ra) f (@=y*'+w @ dydu
n 0
- T [ 00
n 0

Setting w = (a + u — z)/z so that z = (a + u)/(1 + w), we have

00

i 1
a sin(rra) @D 4z du

P(X;+ —a € du) =
Xe; —a “) T (a+u) Jya

_sin(ra) (u\"* 1
oo (;) (a+u)du’

as required. O

In the case that X does not have monotone paths, and providing that X is not
spectrally negative, we can appeal to the Wiener—Hopf factorisation, to help
address the first passage problem. From (3:20) we have that U(da) « a®~'da
and U(da) « a®*'da, for a > 0. In that case, Theorem tells us that, for
yel0,al,v>yandu >0,

P(X;+ —a € du,a— X,r— € dv,a— Xp:_ € dy)

(a— WP (v =y
v+ u)l+e

=K dy dvdu,

where K is a strictly positive constant. Again taking account of the assump-
tion that X is not spectrally negative, which excludes the possibility that it can
creep upwards, the constant K can be chosen so that the right-hand side above
integrates to one. This gives us the following result.

Theorem 3.6. Suppose that either « € (0,1] and p # {0,1} or a € (1,2),
ap<landap < 1. Foralla,u >0,y e [0,a]l andv <Yy,

P(X;+ —ac€du,a—X_ €dv,a - YT;_ e dy)

sin(rap) T(@+1) (a—y)* (v —y)!
= ~ dydvdu.
r  T(ap)(ap) (v + u)l+e

Also, as before, one notes from this triple law, or indeed from the reasoning
provided in the discussion following Theorem [3.4] that the distribution of
Xee—a a—Xe_ a- ?T;_

s s

a a a

is independent of a. Moreover, below, we also have the easy following corol-
lary to Theorem [3.6] which also follows from Corollary [3.5] and the fact that
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the ascending ladder height process of X is a stable subordinator with index
ap.

Corollary 3.7. Fora,u > 0,

P(Xe: —a € du) = @ (E)M( 1 )du

a a+u

Finally we address the special case of the two-sided exit problem for the
spectrally negative stable process, i.e. the setting that @ € (1,2) and ap = 1.
The scale function in Lemma@]is easy to determine. Indeed, on account of
the fact that the Laplace exponent satisfies ¢(8) = log E[e"1] = B2, for 8 > 0,
it is straightforward to check using the definition of a standard gamma integral
that

v—1

b
W(x) = @, x> 0.

This gives us the simple identity from Lemma[2.30]

Lemma 3.8. For x € [0,a],

3 X a-1
Pyt < 75) = (5) .

3.6 Isotropic d-dimensional stable processes

Just as with the case of one-dimensional stable processes, it is possible to give
a number of equivalent definitions for higher-dimensional stable processes.
For example, we could work with the definition of d-dimensional Lévy pro-
cesses which are self-similar in the spirit of Definition [3.1] (2). The notion of
self-similarity here means precisely the same as (3.3]) except that the processes
concerned are understood in the vectorial sense. One problem with this def-
inition is that it allows for a large variety of directional dependency in the
Lévy measure. Mathematically speaking, it is more convenient (and challeng-
ing enough from the point of view of the problems we intend to attack) to con-
sider a smaller class, referred to as isotropic d-dimensional stable processes.
These are self-similar processes with stationary and independent increments
such that its law is invariant under any orthogonal transformation. Recall that
a measure u on R? is isotropic if for B € B(RY), u(B) = u(U™'B) for every
orthogonal d-dimensional matrix U. In one dimension, an isotropic stable pro-
cess is nothing more than a symmetric process. In other words, a stable process
whose positivity parameter satisfies p = 1/2. In higher dimensions we work
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with the following equivalent definitions, some of which mirror the equivalent
definitions we gave in one dimension.

Definition 3.9 (Four definitions of an isotropic d-dimensional stable process).

(1) A Lévy process, X, is called an isotropic d-dimensional stable process if
its marginal distributions at each fixed time are d-dimensional isotropic
stable in the sense of Definition (see Chapter 1).

(2) The second definition identifies a stable process as a non-Gaussian Lévy
process X = (X;,t > 0) such that there exists an @ > 0 such that, for all
¢ > 0, (cXier,t > 0) is equal in law to X. Moreover, for all orthogonal
transformations U on R¥, the process (UX;, ¢ > 0) is equal in law to X.

(3) An isotropic d-dimensional stable process is a Lévy process whose char-
acteristic triplet takes the form (0, 0, IT), where the measure I1 has the fol-
lowing polar decomposition

yo1 T + @)/2)T/2)

H =
® IC(=a/2)| 5~

a d
o1(dg) fo o).

for B € B(RY), where o ( d¢) is the surface measure on §4-1 = {x e R ;
|x| = 1}, normalised to have unit mass. Stated in Cartesian coordinates, this
is equivalent to

apld+a)/2) 1

, RY. 3.23
Far2)] @ 7€ (323

T(dz) = 2%~

Here again, the triplet (0,0,II) is based on the regularisation function
h(x) = 0for @ € (0,1), h(x) = x for @ € (1,2) and A(x) = x1gy«1) for
a=1.

(4) An isotropic d-dimensional Lévy process is a stable process if its charac-
teristic exponent takes the form

Y(z) = |2]%, zeRY.

for a € (0,2).

It is obvious from the proof in Theorem that isotropic d-dimensional
stable processes are also self-similar in the sense of Theorem [3.2] As with the
case of one-dimensional stable processes, we have again deliberately excluded
the case that @ = 2 as, in light of Section 1.1, this corresponds to the case of
a Brownian motion. There is however a connection between Brownian motion
and isotropic d-dimensional stable processes that we shall make use of later
on.
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Lemma 3.10. If B = (B;,t > 0) is a standard d-dimensional Brownian motion
and A = (A, t > 0) is an independent stable subordinator with index a € (0, 1),
then X; := \/EBA,, t > 0is an isotropic d-dimensional stable process with index
2a.

Proof Brownian motion is an isotropic process and hence, since A is inde-
pendent of B, it follows that X = (X;,¢ > 0) is an isotropic process. As B and
A are independent and both have stationary and independent increments, we
have, for s, > 0,

R
V2

where (B,,u > 0) is an independent copy of B and (A,, > 0) is an indepen-
dent copy of A. This shows that X has stationary and independent increments.
Moreover, as A has right-continuous paths with left limits and B has continu-
ous paths, X has right-continuous paths with left limits. We may now say that
X is a Lévy process. To identify X specifically as an isotropic d-dimensional
stable process with index 2e, it suffices to consider its characteristic exponent.
We have

B [eiz.x,] _E [E(eiz VEBy| A,)] -F [e—|z|2A,] —e b L eRe

(d ~
(XH"Y - XY) = BAH»S - BAI = BAHJ_AI = BA s

where we have used the fact that the characteristic exponent of a d-dimensional
Brownian motion is |z|?/2 and the Laplace exponent of a stable subordinator

with index « is given by (3.14). O

Just as for the case of one-dimensional Lévy processes, we can consider
some of the finer path properties of isotropic stable processes in higher dimen-
sions.

Transience and recurrence. Following the discussion in Section it still
makes sense to ask whether such processes are transient or recurrent and whether
they can hit points or not. For dimension d > 2, using polar coordinates, we
get for small &,

& 1 271.((1—1)/2 & 1
— dz =
LR T @ = 1)2) Jy e

|
= Cdfo rar—d+l dr’

where C, is a positive constant that only depends on d, which is proportional
to the volume of the d-dimensional sphere. Recalling the integral test (2.20), it
follows that there is transience if and only if @ < d.

T
f (sin®)“=2 dodr
0
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Polarity. Theorem[2.31]tells us that all points are essentially polar for dimen-
sion d > 2. In the next section we will show that the resolvent kernel of stable
processes are absolutely continuous. As such, from the remarks immediately
after Theorem we deduce that all points are polar.

3.7 Resolvent density

When @ € (1,2) and d = 1, Lemma|2.19|motivates us to look for the resolvent
measure

U9(dx) = f e "P(X, € dx)dr, x€R. (3.24)
0

In one dimension, by taking Fourier transforms, noting that (2.28) ensures all
integrals are well defined, we see that

f U@ (dx) = !
— — ,
R g+ 16" (Cm(i_p g50) + eGP )1(9<0))

for g > 0,0 € R. No inversion of this transform is known for the case that
q > 0. It is the case, however, that when g = 0, the transform can be inverted
giving the resolvent U := U” providing X is transient. The case that p = 1
has already been seen in (3.20). A resolvent cannot exist when X is recurrent
simply by the definition of recurrence alone; see Section [2.10] Indeed, this
is as much the case for d-dimensional isotropic stable processes as it is one-
dimensional processes with @ € (0, 1).

Theorem 3.11. When X is a transient stable process, i.e. @ < d, its resolvent
exists and is absolutely continuous with respect to Lebesgue measure; that is
to say U(dx) = u(x)dx, x € R. In particular we have the following explicit
identities for the resolvent density, u.

(i) Whend =1 and a € (0,1),

sin(mrap)

u(x) = T(1 - a/)(w

1) + ) !, (3.25)

for x € R. In particular, if p = 1 (the case of a subordinator), we have

u(x) = %x%l, x>0.

(ii) When d > 2, (and isotropic),

)2 I'i(d - a)/2)

a—d
T M

ux) =2
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Proof (i) Let x > 0. From the definition of U(:) on [0, co0), Fourier inversion
for the density of X, (see for instance (3.7)) together with (3.9) gives us, for
bounded measurable f : [0, o0) — [0, 00),

[ swwan= [ [ sweoe avar
0 o Jo
= iRe [fm f(x) fwfe’km)”i” dz dxdt]
2r 0 0 Jr
e—nia(%—p) 00 00 )
= Re(— f Flx)x*! f y %e ™V dy dx)
2 0 0

enia( % -p) 00 00 -
—Re f Flx)x*! f y eV dydx|.
2w 0 0

Using identity (I.I0) with s = 1 — @ and z = 1, the previous identity is reduced
to

~ e—n’i(%—afp) _ eﬂi(%—ap) 00
f f)U(dx) =T - CL’)RC( )f f()c)x"_1 dx
0 27 0

=Tl -a) —sin(;:ap) fo ) fx0)x* dx,

as required. Similar argument allow us to deduce the case when x < 0 which
gives the second term in (3.25).

When p = 1, we have that the coefficient for sin(rap) = 0 so that the poten-
tial measure is (somewhat obviously) concentrated on the non-negative half-
line. The reflection formula for the Gamma function (see (A.I2)) in the Ap-
pendix) now allows us to replace I'(1 — @) sin(na@) /7 by 1/T' ().

(ii) Suppose that (S,,¢ > 0) is a stable subordinator with index a/2. If we
write (B,,t > 0) for a standard d-dimensional Brownian motion, then from
Lemma we have that X, := \/QBS,, t > 0 s a stable process with index a.
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Now note that, for bounded and measurable f on R4, we have

E[foof(X,)dt] = E[foof(«/EBS,)dr]
0 0
=fm dtfoo]P’(S,e ds)f P(B, € dx)f(V2x)
0 0 R

1 o >
— d d —yI*/4s ~1+(a—d)/2
T(a/2)né?2d fR Y fo sem s Fo
1 00
- - d a—d due™ —1+(d-a/2)
3T (a2 jl; Cdybl j(: ue u F»
I((d - a)/2) —d
=— dy |y ,
2T @/ 2 s y y* ()

where in the third equality, we have used the potential for stable subordina-
tors as given in part (i) of this theorem and the standard expression for the
d-dimensional Gaussian distribution. This completes the proof. O

In the recurrent cases, thatis when d = 1 and « € [1, 2), although a resolvent
does not exist, it is still possible to construct an adjusted resolvent. Although
we will not use such adjusted resolvents in this book, some of the older lit-
erature for stable processes does. Hence we include the following theorem
nonetheless.

Theorem 3.12. Fora € (1,2)

fo (0,(x) = p,(0)) dr

=T -a) (Sm(;mp ) sin(rap )1<X<0) K, xeR

1s0) +
Moreover when a = 1,
0 1
(p,(x) —p(1))dt = — log [x], xeR.
0

Proof For the case a € (1,2), we can appeal to the inverse Fourier transform
representation of p,(x), x € R, r > 0. Assume without loss of generality that
x > 0. With the help of Fubini’s Theorem, using calculations similar to the
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derivation of (3.23)), we deduce

f oo(19,(16) - pA(0))dr = L f ) f (1 — e ™) Y@ dzdr
0 21 Jo R

—ria(}-p) 0o )
= —%xa_l f (1 -e™)y *dy
4 0
ema(3-p) 0o y
- x! f (1-eY)y dy. (3.26)
271' 0

The two integrals above are reminiscent of the characteristic exponent of a
stable subordinator with index @ — 1. Indeed, using identity (I.TT) we have

fo (P:(x) - py(0)) dt

a—1

=TIl -a xzﬂ (e—ﬂia(%—p)e%(a—l) _ eﬂia(%—p)e—’g(a—]))
e . »

=T -a) > (e—m(g—am _ eﬂ'l(j—ap))

Z (1 = a)x! sin(ﬂap).

A similar calculation when x < 0 completes the proof in the regime @ € (1, 2).
For the case @ = 1, recall from (3.16)) that

t
X)=——>, x€R.
Pi(x) a(x? + 1%)

Hence, using the above and partial fractions, we can evaluate

fo (p,(x) = p,(1))dr

Ot -
"_fo 7r(1+t2)(x2+t2)dt
1o 1 1 1 1
-1 f ( L ___1 . .)dt
)y \20—ix) " 20t +ix) 20t-i) 20 +1)

1
= ——log|x|,
T

for x € R. The proof is now complete. O

3.8 Comments

Around the beginning of the 1930s, Paul Lévy observed that any strictly sta-
ble law leads to a random function that can be obtained by an interpolation
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method, much in the same spirit that Brownian motion is obtained from the
Gaussian distribution. This fact motivated Paul Lévy to introduce the general
definition of processes with independent increments or additive processes and
in particular stable processes. The relevance of strictly stable processes arises
from the fact that, along with Brownian motion, they can be obtained as scal-
ing limits of random walks. Moreover, stable processes and Brownian motion
are the only Lévy processes satisfying the scaling property.

Similarly to the literature for stable distributions, there are several mono-
graphs where stable processes are treated, for instance we mention Samorod-
nitsky and Taqqu [187]], Bertoin [18]], Sato [190] and Uchaikin and Zolotarev
[208]]. The monograph of Janicki and Weron [96] describe approximation and
simulation methods for stable processes.

Sections 3.1 and 3.2 follow the same structure as in Chapter 1 where stable
distributions are treated. Most of the results presented in Sections 3.3, 3.4 and
3.6, where path properties of stable processes are studied, are simple appli-
cations of the general results presented in Chapter 2 to this particular setting.
Many of the identities concerning the range of a stable process that appear in
its fluctuation theory are analytically tractable since the spatial Wiener-Hopf
factorisation presented in Section 3.5 is explicit. This is not the case for the
space-time Wiener—Hopf factorisation, which is more more complicated to de-
rive. See for instance Doney [59] as well as Kuznetzov [116]], where recent
developments can be found on this topic (this will also be discussed at length
in Chapter([7]of this book). The space-time Wiener-Hopf factorisation for stable
processes will be treated later in Chapter 7. First passage problems for stable
processes were first studied by Zolotarev [219], who used analytic methods
to prove Corollaries [3.5] and The triple law that appears in Theorem [3.6]
is an easy corollary of the quintuple law given in Doney and Kyprianou [62].
Finally, the resolvent densities that appear in Theorem [3.11] were obtained by
Blumenthal et al. [39], who themselves refer to a method of [98]].
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Hypergeometric Lévy processes

Roughly speaking, hypergeometric Lévy processes are defined by choosing
their Wiener—Hopf factors from a special class of (killed) subordinators, called
B-subordinators. The consequence of having conveniently chosen Wiener—
Hopf factors in this way is that many important fluctuation identities become
analytically tractable.

It also turns out that different hypergeometric Lévy processes naturally ap-
pear through a variety of space-time transformations of the paths of a-stable
Lévy processes. In each case, the theory of so-called self-similar Markov pro-
cesses plays a fundamental role and this connection will play a dominating
role in the the overwhelming majority of forthcoming results for stable Lévy
processes. For this reason, we spend time in this chapter introducing the afore-
mentioned class hypergeometric Lévy processes in detail as well as studying a
number of the explicit identities that they offer by way of their path functionals.

4.1 B-subordinators

In Theorem[2.24] we worked with the notion of a killed subordinator. That is, a
subordinator that is sent to the cemetery state, {oo}, at an independent random
time which is exponentially distributed with parameter g > 0. Taking account
of the formula given in (2.11}), we recall that the Laplace exponent of a (killed)
subordinator is given by

k(1) = g+ A+ f (1 —e™)rdy. 130,
(0,00)

where ¢,b > 0 and f(o (LA DT(dx) < co.
Let us now introduce, by way of a proposition, the family of (killed) §-

78
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subordinators with parameters («, 3,7), which will ultimately be used to build
the class of hypergeometric Lévy processes.

Proposition 4.1. Assume that 0 < « < S+ vy andy € (0,1). Then there exists
a subordinator Y = (Y;,0 < t < (), where { denotes its lifetime and whose
Laplace exponent satisfies

IrA+p+

Ta+p+y 45, .1
ria+p+1)

In particular, Y has zero drift coefficient and a Lévy measure which has a
density with respect to Lebesgue measure given by

k() = (1 + a)

= e Ve Bx | Y
F(l—y)(l e ) e 1—e*x+ﬁ o, 4.2)

for x > 0. Moreover, Y has finite lifetime with rate k(0) = g = al' (B + y)/T (B +
1).

Proof Starting with the formula for the standard beta integral (cf. (A.I8) in
the Appendix), after a straightforward change of variables, we have

F(/1+ﬁ+}/) _ 1 * _ A= X\Y —(BHy)x —Ax
F(/l+,8+1)_F(1—y),f0 (1—e™) Ve ¥ e duy, 4.3)

where A > 0. Define w(x) = (1 —e )" e #%/I(1 — y), x > 0. Performing
an integration by parts in {.3) we get

u(x)

I 0

Ta+pry __ f W1 - e ) dx. 4.4)

ra+p+1) 0
Combining (.3)) and @.4) we see that

” - I'g+v
_ ’ A
k() = j(; (—aw(x) = w'(x)) (1 -e X) dx + am,

and it is easy to check that the density given in (.2)) is equal to —aw(x) — w’(x)
on (0, c0). m]

The Lévy density of the S-subordinator is a completely monotone function. To
see this, use the binomial expansion for (1—e™*)7” and (1 —e~*)""*?) and write
(4.2) in the form

1
ﬂ(ﬁ +k+7y—a)e Prhnx x>0, (4.5

T(1—y) &4 k!

u(x) =

where
e =yy+Dy+2)...(y +k-1)

denotes the Pochhammer symbol.
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Recall from the discussion in Section [2.17] that the renewal measure, U, of
the subordinator Y is defined by
U(dx) = f P(Y,edx,t <)dt, x>0,
0

and satisfies

1
—Ax
e U(dx) = —, 1> 0.
f[(loo) k()

As one might expect, given the straightforward nature of the formula for «
in (@.I), we should expect to obtain a closed form expression for the renewal
measure of Y.

Proposition 4.2. The renewal measure, U, of the S-subordinator satisfies U(dx) =
u(x)dx on [0, c0), where

_ e ™ -x\Y—1 —(1+B-a)x
u(x) = 1—e ™) e
I'(y) ( )
+—(B+y-a) f (1—e vy e Hpau gy, (4.6)
[(y) 0

for x> 0.

Proof We start with the identity

x _ L T@+B+1 B+y—«a
f[()’w)e U(dx)_K(/l)_F(/1+B+1+y)x(1+ A+a

). 4.7)

Again appealing to a straightforward change of variables in the classical beta-

integral, we see that (A + B8+ 1)/ T(A+B+1+7y) = f[o ) e *u;(dx), where

1 -
Hi(dx) = m (1- e™)” eI+ dx, x>0.
Y

Moreover, 1 + (B +7y —a)/(1 +a) = f[o ) e Y u,(dx), where
Ho(dx) = 6o(dx) + (B+y — @)e™ " dx, x>0.

Since the product of two Laplace transforms corresponds to the Laplace trans-
form of the convolution of the respective underlying measures, we find from
(@.7) that U = p; * p, on [0, o0), which is equivalent to ([#6). O

The following corollary is an easy consequence of the above propositions
and is worth recording for later.
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Corollary 4.3. In the special case that « = > 0 and y € (0,1), the Lévy
density of the B-subordinator takes the form

_ Y -x\~v=1 —(B+y)x
u(x) = l-e¢ e T, x>0,
I'(l-v) ( )

and the renewal measure of the B-subordinator has density given by

u(x) = %}/)e_ﬁx(l —e oyt x>0.

The B-subordinators described in Corollary {f.3]are also known as Lamperti-
stable subordinators.

4.2 Hypergeometric processes

As alluded to at the start of this chapter, the basic idea behind the definition of a
hypergeometric Lévy process is that they are defined by specifying a particular
pair of Wiener—Hopf factors. In order to do so, we want to know when we
have the freedom to pick the Laplace exponents of (killed) subordinators and
combine them together in the spirit of the formula (2.3T). To this end, we take
two subordinators H and H with lifetimes ¢ and &, respectively, and defined by
their characteristic exponents, which we assume to take the form

k() =q+bA+ f ) (1-e™) v dx, (4.8)
0

RA) =g +ba+ f ) (1-e™) 0 dx,
0

for 4 > 0, where, as usual, we must have that ¢, g, b,l; > 0 and fooo(l A
x)v(x)dx < oo and fom( 1 A x)P(x)dx < oo. We allow the possibility that one
of v and ¥ are identically zero and define V(x) = £ * v(y)dy, x > 0, and V(x),
x > 0 similarly.

Theorem 4.4. Assume that
E[H 1] <0, E[ATl1<q] < oo,

and that v(x), ¥(x) are decreasing functions. Define ¥(z) = k(—iz)k(iz), z € R.
Then Y(2) is the characteristic exponent of a Lévy process, say Y, with lifetime
£, whose parameter is Y(0) = g4, and characteristic triplet (qgb — §b, 2bb, ),



82 Hypergeometric Lévy processes
where

I(x, o) := f " Vu)v(x + u) du + bv(x) + §V(x), (4.9)
0

II(—c0, —x) := foo V(u)v(x + u) du + bv(x) + qV(x). (4.10)
0

Moreover, we have E[lelgkg,] < o0,
We need a preliminary result before proving the above theorem.

Lemma 4.5. A function ¥ : R + C is the characteristic exponent of a Lévy
process Y, with lifetime {, satisfying E[Y121H<4«}] < oo if and only if it can be
written in the form

1 .
Y(z) = p +iaz + EO'ZZZ +7 f e“n(x) dx, 4.11)
R

where p > 0, a € R, o > 0, n € L'(R) is an absolutely continuous function
such that its density can be taken as increasing on (—o0,0) and decreasing on

(0, c0).

Proof Consider the Lévy-Khintchine formula (I.5]) with the regularizing func-
tion A(x) = x, and after integrating by parts twice we can identify it in the form

@) with

n(x) = {fx IT(u, 00) du, if x > 0, @.12)

[ (=0, u)du,  if x<0.

This allows us to handle both directions of the proof, with (4.12)) acting as the
identification of 77 in one direction of the proof, and as a definition of the Lévy
measure I in the other direction of the proof. O

Proof of Theorem[{.4] The assumption E[H%llkg}] < oo implies (via integra-
tion by parts twice) that

fooxzv(x)dxz fm(fm V(y)dy) dx < oo,
0 0 x

and hence L ~ V(y)dy € L'(R,). In particular, we have
m:= f xv(x)dx = f V(y)dy < oo.
0 0
Similarly, we deduce that fx . V(y)dy € L'(R,) and

m:= f xP(x)dx < oo.
0
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Integrating by parts in (4.8) we obtain for z € R
k(=iz) = ¢ — ibz — iz fo ) eV (x) dx,
and similarly
k(i) = g +ibz + iz fo ) e P (x) dx.
Therefore
k(—12)k(iz)
= (q —ibz —iz jom e V(x) dx) (6] +ibz +iz j:o e PV (x) dx)
= qq + (g - §b)iz + bb7* + 7 ( fo () dx) ( fo ) dx)
+ (g — ib2)iz fo ) eV (x)dx — (§ + ib2)iz fo ) eV (x) dx.
Since m and 7/ are finite, we rewrite the latter identity as follows
k(—12)R(iz)

=qg+ (q(13 + ) — §(b + m))iz + bbz* + b f e PV (x) dx
0

+ b f e“V(x)dx + 22 ( f e V(x) dx) ( f e =V (x) dx) (4.13)
0 0 0

- giz f (1 - &™) V(x) dx + giz f (1-e=)V(x)dx.
0 0

Next, we integrate by parts and find that

f ) (1 - e-i”)f/(x) dx =iz f ) e i [ f B V(y) dy] dx, (4.14)
0 0 x

and similarly

f " (1-e™)V(x)dx = —iz f " i [ f ) V(y) dy] dx. (4.15)
0 0 X

Let us define the function

) {fo""V(u)V(x+u)du+i;v<x)+qfx"°\/(y)dy, if x>0,
n(x) :=

o . . - ~ 4.16
Jy V@ V(—x+uydu+bV(-x)+q [ V(y)dy, ifx<0, (416)

which, from our assumptions, belongs to L'(R). Since the product of Fourier
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transforms is the Fourier transform of the convolution, we see that formulas

@#13), @14), @13) and (@.16) imply that

k(—iz)k(iz) = qq + (q(B +m)—§b + m))iz +bb* + 7 f e“n(x) dx.
R
It is straightforward to see that 5 is absolutely continuous. To complete the
proof, we therefore need to show that the density of 1 has a version which is
increasing on (—oo, 0) and decreasing (0, co). If we take the derivative of both
sides in (@.16) and use the fact that the two functions V" () = v(u), V' (1) = $(u)
are decreasing, the required monotonicity property follows. O

Now we are ready to introduce the hypergeometric processes which we do
through the forthcoming theorem. To this end, we first define the set of admis-
sible parameters which will be used in the definition of hypergeometric Lévy
processes: H := H; U H,, where

Hi={B<1,ye©1),320,7€(0,1)} 4.17)
and

H, ::{ﬂE[l,Z],76(0,1),,86[—1,0], } 4.18)

€O, Dand 1 =B+B+(yA$) =0

It is important to note that the sets of parameters H; and #,, only coincide in
the case 3 = 0 and 8 = 1. As we will see below, each set of parameters codes
an individual hypergeometric Lévy process via its Wiener-Hopf factorisation.
For each set of parameters, hypergeometric Lévy processes can be killed at an
exponential random time, drift to oo, oscillate or drift to —co.

Theorem 4.6 (Definition of a hypergeometric Lévy process).

(i) For (B,v.B,%) € H there exists a Lévy process Y with lifetime ¢, which we
henceforth refer to as a hypergeometric Lévy process, having the charac-
teristic function

I(1-B+y—-iz)TB+% +iz)

YOt - 1@+

eR. (4.19)

(ii) The Lévy measure of Y has a density with respect to Lebesgue measure
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which is given by

150)

I Y Ca —(1-B+y)x . A —X .
- S e JFi(+y,mm—9;7%), if x>0,
T -5 ( )

m(x) =
LG B+9) N .
- PN (A + Y,y —y;eY), if x <0,
T -y 2 rrrry w0,
where
n=1-B+y+p+% 4.21)

and, for z € R such that |z] < 1,

(@)D &
(k! ™7

2Fi(a,b;c;z) = Z
k>0

is the hypergeometric function (see Section|A.6]of the Appendix).

(iii) For (B,7,B,%) € H, the ladder height process H (resp. H) is a -subordinator

with parameters (1 — B, 1 — B,y) (resp. (B, 3,%)).

(iv) For(B,v,B.%) € H, the ladder height process H (resp. H) is a -subordinator

with parameters (=8, 1 — B,y) (resp. (B — 1,3,%)).
(v) IfY is a hypergeometric Lévy process with parameters (B,y,3,%), its dual
process ¥ := =Y is also a hypergeometric Lévy process with parameters

(1-B.%.1-5,7)

Proof The proof of items (i), (iii) and (iv) follows directly from Theorem@
the fact that the Lévy density of the S-subordinators is a decreasing function
(see (@3)) and the identity

1"(1—[3+y—iz)xl"(,@+i/+iz)

by =
O="Ti-p-o *“ rg+i
. T(1-B+y-iz)  T(B+79+iz)
(P PV TR g iy PPV
B Tg o <6 +1Z)l"(l+[3+iz)

(The first multiplication sign above identifies the Wiener—Hopf factorisation
for the regime H; and the second for the regime H>.) Item (v) follows di-
rectly from the form of the characteristic exponent of hypergeometric Lévy
processes.

Let us now turn to computing the Lévy measure of Y. Consider first the case
when (8, y, [3, %) € H,. Then, according to @) we have

F(l Z (6203 (k+ ye —(k+1 By, x>0, 4.22)
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which also gives us an expression for V by integrating each term in the sum.
We can now use formula (@.9) to obtain

1 Yk —teriginr [ 1=yt
r(l — ) k’ (k + y) (k+1-B+y). e (k+1-B+y) V(u) du
V) > 0

TE+9) Ok kty  gurpon
r([g)r(l_y)kzo K k+1-B+y ’

TI(x, ) =

(4.23)

for x > 0. Recalling that A is a -subordinator with parameters (3, 3,%), from
formula (@.2)) we may compute

©a L[T@B+%+A) T@B+%
f ef/luv(u)duz - (ﬂ A’Y ) _ (B A’}’)
0 Al T@E+2 '
Plugging this into (@) we get, after a little algebra,

, 1>0.

T(x, co) Z (2] ek 1=B+p)x k+vy I'(n + k)A . (424
r(l N &k kK+1-B+yT(n+k—7%)
for x > 0. Using the fact that
1 1
_ k =—-——0 ,
= )(7)k><( +y) = e )( +

and taking derivatives of both sides in (#.24) we get @.20), for x > 0.

The formula for the Lévy density when x < O follows by considering the
dual process, which is also a hypergeometric process with parameters (1 —
B’ ’j\/» 1- ﬁ» 7) .

The case when (8,y,8,%) € H, follows from similar arguments as those
used in the previous case. More precisely, observe that, according to (.3), the
density of the Lévy measure associate to H satisfies

1 (7)k
(1 -

v(x) = ( -+ ke kP x x>0, (4.25)

)kO

which also gives us an expression for V. Again, we use formula (@.9) to obtain

1 0 N

I(x, c0) = (7)"( ¥ + ke kr1=Pmx f e~ K=y () du
I -y & k! 0

T'(B+7%) Z Mk n-ytk y+k o (k+1-BHy)x

HB-l )F(1+,8)F(1—y) L4 k! K+ 1-B+y

Recalling that A is a 8-subordinator with parameters (83— 1,3, %), from formula
(@2) we may compute

fme_ﬁuf/(u)duzi A+B- ])W+—M - (B- 1)M
0

L(1+B+2) ra+p|
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Plutting all the pieces together, we get

II(x, o0)

Z Yk o~k 1By k+y [(n+k)
F(l A~ k+1-B+yTm+k-%)’

which is the same expression as (4.24)), thus (4.20) also holds for x > 0, in the
regime H,. Similarly, the formula for the density for x < 0 follows by using
similar arguments as above. This completes the proof. O

Before moving on to analyse some interesting path functionals of hyper-
geometric Lévy processes, let us identify their long-term behaviour for the
different parts of the parameter regimes H; and H,.

More precisely, «(0) = O if and only if the range of Y is a.s. unbounded
above, and k(0) = O if and only if the range of Y is a.s. unbounded below.
Accordingly, the corollary below follows directly by examining the Wiener—
Hopf factorisation in Theorem 4.6

Corollary 4.7. Suppose that Y is a hypergeometric Lévy process. If B < 1 and
B>00rBe(1,2) andp € (—1,0), the process Y has finite lifetime ¢ with rate

T -B+NTBE+7%)
I(1-8 T@

Otherwise the process has an infinite lifetime and

(i) Y oscillates if B=0and B = 1,

(ii) Y drifts to oo, if either (B,y,B,9) € Hy with B = 1 and B > 0 or
B,7.B.9) € Hy with B = 0 and 8 € (1,2),

(iii) Y drifts to —co, if either (B,v.B3,9) € H, with B = 0 and B < 1 or
B,7.B3.%) € Hy with =1 and 8 < 0.

Another way of deriving (i) - (iii) is by differentiating (4.19) and taking

= 0. Since in any case i%’(0) = E[Y;] is always finite, we can appeal to
Theorem to conclude. For instance when (8,7,3,9) € H, with 8 = 0 and
B < 1, then

By - _TA=B+20G) o

I -p)

Similarly, when (8,.,9) € H, with g = 1 and 3 < 0, we have

w+w
E[Y,] =
[Y1] b’()( ﬁ)
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4.3 The subclass of Lamperti-stable processes

We continue our analysis of hypergeometric Lévy processes by outlining a
subclass of hypergeometric Lévy process which will be of particular interest
to us in the forthcoming chapters.

Definition 4.8. A Lamperti-stable Lévy process is a hypergeometric process
for which the parameters belong to H; and for which 8 = j3. Said another way,
a Lamperti-stable process has characteristic exponent given by

lIl()_1"(1—ﬁ+y—iz)1"(,8+i/+iz) cR
YT TT0 -1  TB+ir) LER

where 3,y and ¥ belong to
H; :={Bel0,1], ye 0,1, y€ (O, 1} (4.26)

Consider the formula for the Lévy density of a hypergeometric Lévy process
given in in the case that 8 = 3. Observe that in this case 7 = 1 +y + ¥.
From identity (A:34) (or from the series representation of the hypergeometric
function), for x > 0 we have

O 1
2B (M +y,mn—Fie™) = d—enmw’

Similarly, for x < 0 we have

1

K+ Fmn =y = g

Noting, in addition, that
FrA+y+9 T+y+9)
T +yI(=y) T -»)
with a similar result holding when the roles of y and ¥ are interchanged, we

draw the conclusion that the Lévy measure of a Lamperti-stable process takes
a more welcome compact form.

Lemma 4.9. The Lévy density of a Lamperti-stable process is given by

T(l+y+§) B T(l+y+9) e (B
m(x) = ~1(0) + == = ~1(1<0)
LA =) (e¥ — Dy IO =) (e — Dy
forx e R.

The reader will note that the hypergeometric class as well as the subclass
of Lamperti-stables do not include the spectrally one-sided cases. The omit-
ted cases are not so difficult to introduce. Indeed by taking y = lory = 1
in the definition of the hypergeometric class, we may obtain respectively the
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spectrally negative or positive cases. For our purposes, we only consider the
subclass of spectrally one-sided Lamperti-stables. Thus, a spectrally negative
Lamperti-stable has characteristic exponent given by

L
W) = (1-B- iz>%

where 8 € [0, 1] and ¥ € (0, 1). Moreover, its Lévy density is such that

rQ+49) e @Pm

") = FHINI - ) e = D 0

for x € R. The spectrally positive case can be introduced in the same way by
taking ¥ = 1, 8 € [0,1] and y € (0, 1), or by considering the negative of the
spectrally negative case.

Z€R,

4.4 The first passage problem

In this section, we derive the explicit form of the first passage problem for the
case of hypergeometric Lévy processes using Theorem This will be of
particular use at a number of points later on in this book.

Theorem 4.10. Suppose that Y is a hypergeometric Lévy process. If (B,v,3,%) €
H,, then for u >0

P(Yy+—a € du, 7} <)

_ sin 7y - (1-Brua) 1-e
T e~d — e—(u+a)

—a

Y
) (1 — e~ @y~ gy, 4.27)

I.f(ﬂs 7/7[;’ ’5/) € 7{2, l‘/’wnfor u> O
P(Yy:—a € du, 7} <)

' _ Y
_ sin Y o~ C-Bryuta) i (1 —e waylqy
_7-[ g4 — g—(uta)

sin 7
+ Y

(1= +B+y)re D1 -
X ( f ’ e VBB (] — ey dy) du.
0

Proof For the first statement, we start by recalling that the ascending ladder
height process, H, has Laplace exponent
Ir1-g+vy+4
k(1) = A-p+y+4)
Ia-g+2

T

, A1>0.
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Note that the distribution we want to compute is also the overshoot distribu-
tion of the (killed) subordinator H over level a. Appealing to Theorem [2.24]
together with (4.2) and Corollary [4.3] we have, for u > 0,

P(Yy:—a € du, 7, <{)
{ f a(1 — e @Iyl — e (HY) DTy dx} du
0

yerae-(-Bura)

rnrd -y
—(1-B+y)(u+a)
— ye Bryut {f(l _ e7W)y71(1 _ e—(u+a7w))f(y+1)eyw dW} du
rra -y \Jo
—(1-B+y)(u+a) e
_ e —(ura)\-1 -l g —(y+1)
= — (1-¢ ) f ST -7 ds ) du,
L(y)rd —vy) 0

where in the third integral we have used the change of variables s = (1 —

e™)/(1 — e~ ). From (A.35) and (A.34) in the Appendix, we can develop

the final integral as follows

1—e¢

Toe-@wra)
f 7711 = 5) 0D dss
0

1—e |’ R
1 — e—(u+a) 2F1 Vs 1+ v 1+ v 1 — e~wta)

1
Y
1{ 1—-e* Y 1-e“ \\77
= — 1 N
y 1 - e—(u+a) 1 - e—(u+a)
1 1—e@
- ,; e—d — g—(uta) .
In conclusion, we have, with the help of the reflection formula for the gamma
function, that, for u > 0,

P(Y:+—a € du, T;r <)
. - Y
_ sSin ﬂ)’e_(l_ﬁ+y)(u+a) (i) (1 — e_(u+a))—1 du.

T e—d — e—(u+a)

Next we turn our attention to the case of the parameter regime H,. We
start by recalling that in this case the ascending ladder height process, H, has
Laplace exponent

ri-g+y+2)
re-g+a4

k() = -pB) 1>0.

s

In order to compute the overshoot distribution, we will appeal to Corollary
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[2:23] Specifically, for g, 6 > 0,

¥ —gag [0 —a) . _ k(g) — «(0)
\ﬁ Bl ol da = UGG
I k6 TQ-B+q)

g-0 q-0TQ2-B+y+q)
1 1-B+B+y TQR-B+q)
- k(0) ~ .
q-0 g-p TQ-B+y+q
(4.28)

The first ratio of the right-hand side of the above identity can be easily inverted,

because
[emeas
e e dx = .
0 q—10

Elementary calculations give us that

1 TQ-B+9)
q-0TQ-B+y+q)

1 f"" —ox b
—_— e e Bi_ex(y,2 - B+ 0)dx =
L(y) Jo rex(%.2-5

where B, (y,2-8+6),y € [0, 1], 8 > 0, represents the incomplete Beta function,
i.e.

"y
By(y,z—ﬁw):fuy—'(l—u)"ﬁ“’du, y € [0, 1].
0

Similarly, we obtain

1 ) B N
F?’) fo‘ e (engl_e_x(y’ 2-p+0)- eﬁxB1—e-‘(% 2-p +,B)) dx
_( 1 TQ2-B+q) I T@-p+g) )

q-0TQ-B+y+q) ¢q-prR-B+y+q)
__8-B  TQ-B+q
G-0Gq-pT2-B+y+q)
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Performing the inversion in ¢ in @.28)), we get

oY e a . KO g 1-B+B+y
B[ i< = o - Fo5e! Bl‘e“(y’z_ﬁJre)(1+ 0-p
o) 1- B " R
" %%eﬁ“&_eam 2-B+p)

I AL AL N )
- ° Ir(yre-g+ 9)6 Bi_ca(y,2-8+6)
+F(l -B+vy+6)1 _'8+’8+7)eﬁa

TOTe 510 Bieo(y.2-B+p)

_ 6a 3 Ira-g+y+9
=e"e-a(y,2-B+0) + p(a)—r(2 5+ 0 4.29)
where
I(a,b) = ﬁ((;’)lf (Z)) 0) w1 = w du,
and

1- B A .
po) = BB Y g 2 g4 p).
I'(y)

To tackle the right-hand side of (@:29), the following Laplace transform will
be useful,

foo e_u(2—,8+9)(1 _ e—(a+u))7—1 dut = foo tl_ﬁ+9(1 B e_at)y_l N
0 0
= e"CPOB _(y,2 - B +6). (4.30)

where e™ = et was used in the second equatily. Let f(u) = e “? (1 —
e~(@myr-1 A straightforward integration by parts leads to

00 ) 00
f ey — De 2P (1 — e @) T du + (1 - ey f e " 8o(du)
0 0

=(1-B+y+0)eCPOB u(y,2-B+6). (4.31)

On the other hand, we also have
rA-g+y+0)
re-g+6  ra
For the first term on the right-hand side of @29) we will identify a con-
volution that is the result of the product of #3T) and [@#32). Performing the
changes of variables t = e™, s = t —e™ and r = s/(e* — e™), for the first,
second and third equalities below, we have

1 f e e 1B (1 — ™)™ du. (4.32)
=¥ Jo
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Y- f " e B _ g @ryr2- B (] _ =m0 gy
ra-yJo
1
Y- 1 —u(l—ﬁer)f —a\y-2 —U\—
=———7¢ A-eD)“(@t—-e™)7dt
-y -
Y=l —uapen —(atu)yy=2
=—_——¢ (1-e )
I'd-v)
l—e™ —a y-2
X f - — 2 s ds
0 1 - e—(a+u)
_)/—1 —u(1-p+y) —(a+u)\y=2/.a —uy1—
= e (1 e ) (e —e™) ™
ra-vy

J—e~H

x f - dr
0

1
=——— el Bt — )l = D)'TTA —e ) (4.33)
-y I

Bearing in mind that f &y = f for any function f, we can use (#33)) to decode
the product of Laplace transform in @37)) and {#.32). We get

" lea(y,2 —B+6)

B e CATA-B+vy+06) g
=T Ta-prg (ETyTOTTUBLQ 10y

—-a(2-p) aa 1—e¢@ y—1 00
€ e( e™) f e—uae—u(l—[)’)(eaeu _ 1)—1(eu _ 1)1—7 du
I'y) Td-v Jo
e—a(Z—ﬁ) (1 _ e—a)y—l 00
I'yy Td-v Jo

e—ué)e—u(l—ﬁ+y) ( 1 - e—u)—ydu'

Appealing to the reflection formula for the Gamma function (see (A:12)) in the

Appendix), together with (@.32)) we can complete the inversion of (4.29) and
get

P(Y;:—a e du, 1) <)
_ Sy ﬂye‘(“”xl_ﬁ)(e” - D' - ey et - 7!
T

+ sy e—Lt(l—ﬁ+7)(l _ e—u)—y{e—a(Z—ﬁ)(l _ e—a)y—l

+(1=B+p+y)™ f ’ e 2P| — ey dy}.
0
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Straightforward changes of variables in the integrals and the use of the reflec-
tion formula for gamma functions (cf. (A:12)) give us the desired result. O

We observe that in the spectrally positive case, i.e. when ¥ = 1, the first
passage problem is also given by the identity (@.27). The latter is justified by
the fact that the ascending ladder height of the spectrally one sided case is
exactly the same as the one treated in the above result when the parameters lie
in H;. We recall that in this case the parameters 8 and y are such that 8 € [0, 1]
and y € (0, 1).

4.5 Exponential functionals

The exponential of a Lévy process, Y, is defined as the random variable

4
1(6,Y) := f eids, (4.34)
0

for 6 > 0 and where we recall that  denotes the lifetime of Y. We conclude
this chapter by studying exponential functionals in the setting that ¥ belongs
to the class of hypergeometric Lévy processes. Moreover, for the remainder of
this section. we assume that parameters (8, y, 3, ) belong to

Hy=(Hi \{B=1HU(HNin-%>0}\ {5 =0}, (4.35)

or, according to Corollary that a corresponding hypergeometric Lévy pro-
cess Y either is killed or drift to —oo.

Under our assumptions, the exponential functional is always finite with prob-
ability one. Indeed, when Y is killed, the exponential functional is clearly
bounded a.s., and when Y drifts to —co, the claim follows from the Strong
Law of Large Numbers, i.e.

Y
lim = = E[Y;] <0,

t—oo

almost surely, which, in turn, comes from Theorem In order to study the
law of 1(6, Y), we introduce its Mellin transform

M(s) = M(s:8,8,.5.9) = E[1(6,¥)"""]. (4.36)

For convenience it will be better for us to work with the Laplace exponent of
Y, defined as

T(1-B+y-2T@B+9+2)
Fl-g-2 T@B+2)

Y(z) = -¥(-iz) = - ; (4.37)
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for Re(z) € (=B — 9,1 — B + 7). If we agree that the cemetery state is —co and
that exp(—o0) = 0, so that exp(zY;) is well defined for all ¢ > 0, specifically for
t >, then

Y(z) = logE[e™], 120, Re@)e(-B-#.1-B+y).
To ease the presentation, we also define
x = 1/6. (4.38)

Proposition 4.11. Let Y be a hypergeometric Lévy process with parameters
B, 7,,@, 9) € Hy. Then M(s) is well defined for Re(s) € (0,1 + 9)(), where

9:{ L-B f@r.pyHeH\B=1 4.39)
_ﬂ if(ﬂ,%ﬁ’f’)67‘{20{77—5’>0}\{,3=0}, '
Moreover,

Ms+1)= ——M(s), s e (0, (4.40)

Y(65)

Proof We recall that we have set the cemetery state to be —co and accordingly
are working with the definition exp(—oco) = 0. Recall that

Eilz) = V@ 1> 0,

is a positive martingale for any z that ¥(z) is well-defined and real valued. Note
that (0) < 0 and ¢ has roots at 1 — 8 and —8, hence y(6s) < 0 for s € (0, Hy).
From Doob’s L!-inequality and the Esscher transform (2.23)), we observe for

s> 0,
f N
E[( f e”udu)
0

<t'E [sup e‘m/”]

ust

<rE [sup 814(6s)]

u<t

< %t"(l +EP[S5Y,] - 14(S5))

- e%m + 05ty (55) — 1y (55s)),

which is finite for s € (0, fy).
Next, it is easy to see that forall s >0and 7 >0

00 A 00 s ! 00 N
(f e‘W“du) - (f e‘;Y“du) = sf eds¥u (f e‘s(Y“”’Y“)dv) du.
0 t 0 0
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We take expectations in both sides of the above identity and from the indepen-
dence of increments, we obtain

E[( f " e”udu) —( f " e‘mdu) } = sM(s) f eI dy, (4.41)
0 t 0

I — 1yt

Using

<|x-yP, for x,yeR,

when 0 < s < 6y, the estimate from the previous paragraph ensures that the
left-hand side of (@.41) is bounded by

([ d” <w.

It now follows that M(s) is also finite when 0 < s < @y. In turn, noting the
integral on the right-hand side of {@41)) converges as t — oo, this is sufficient
to ensure convergence on the left-hand side of (#.41)), giving the identity (.40).

Since the right-hand side of (#.40) is finite, this functional equation allows
us to conclude that M(s) is well defined for s € (0, 1 + 8y). It then follows from
the general properties of Mellin transforms that M(s) is finite and analytic for
all s € C such that Re(s) € (0, 1 + 0y). o

We want to identify the Mellin transform M explicitly. To this end, we must
first introduce some some special functions that will be of use. The double
gamma function is defined by an infinite product in Weierstrass’s form, i.e for
z € Cand |arg(7)| < 7,

z z _ -
Gz 1) = Selwtb /e 1_[ (1 + ) e QumTemz=D) 2?4 g0y

T mrt+n
m,n>0

m+n>0

Note that by definition G(z;7) is an entire function in z and if 7 ¢ Q it has
simple zeros on the lattice —m7 — n, form > 0, n > 0.

The following function additionally plays an important role in determining
M(s) explicitly and is given in terms of product of double gamma functions.

Definition 4.12. For s € C, we define

F(s) := F(5;6,5,7.5,%)

Cf(ﬁ)f +s3x)  GA-B+yx+1- s;)()7 cec (4.43)
G(B+9x +sx) G =Bx+1-s1x)
where the constant C is such that F(1) = 1. For simplicity, and as long as it is

clear, we use the notation F(s) instead of F(s; 6,8, v, ,@, %). Whenever the use of
the parameters is necessary, we then use the longer form.
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Our main result in this section is the following Theorem, which provides
an explicit expression for the Mellin transform of the exponential functional
1(6, Y) in terms of the double gamma function.

Theorem 4.13. Assume that § > 0 and (8,7, 3,%) € Ha.

(l) If(ﬂ”)/»ﬁ’il) € (}{1 \{ﬁ = 1}, then

M(s) = I'(s)F(s) forall seC,

(ii) If (B,7.5,9) € Han{n—% >0} \ {B = 0}, then

CB+79)+ C(—xB+1- .
M(s) = L XBFN TS T8 D Ws)  forall seC,
F'x@B-D+s) A -B+yx+1-3)
where M is the Mellin transform of 1(8,Y) such that Y is a hypergeomet-
ric process, whose parameters (8 — 1,7y, + 1,9) necessarily satisfy the

conditions in (i), and the constant c is such that M(1) = 1.

We only prove case (i), the proof of case (ii) follows using exactly the same
arguments. For the sake of brevity, we leave the proof of (ii) to the reader.
Before proceeding to the proof of Theorem [d.13] (i), we need two preparatory
auxiliary results concerning the analytical properties of F. The first pertains to
the asymptotic behaviour of F in C and the second to a recursive equation that
it satisfies.

Lemma 4.14. On the complex plane,
(i) for0 < € < arg(s) < m— €, we have as |s| — oo,
log(F(s)) = —(y + 9)slog s + s((1 + log x)(y + ¥) + niy) + O(log ), (4.44)
(ii) in a vertical strip —co < a < Re(s) < b < oo, we have as |s| — oo,
[F(s)| = exp (gw - Mm(s)| + Olog |Im<s>|>) . (4.45)

Proof Both asymptotic expansions (@.44) and (#.43)) follow from the defini-
tion of F and the asymptotic expansion of

G(z+a;7)

1 s
8 G(z;71)

as z — oo, in the domain arg(z) < 7 — € < &, which is provided in (A.24). O

Lemma 4.15. Write Y for the hypergeometric Lévy process with parameters
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B XY XB.XP), provided that this parameter set belongs to Hi\{B = 1}. In
particular, its Laplace exponent is given by

I -x(B-7) - FxB+9) +2)
I(1 = xB - 2T(xB +2)
forRe(z) € (=x(B + %), 1 — x(B —7y)) On the complex plane, we have that

U(z) = - (4.46)

(i) E(s) is a real meromorphic function which has zeros
By —my —nand 1 + (1 =B +y)y +my +n, (4.47)
for m,n > 0 and poles
Ty = —(B+ ¥ —my —nand Zn =1+ (=B +my +n, (448)

form,n > 0. All zeros/poles are simple if § ¢ Q.
(ii) Moreover, F(s) satisfies the following functional identities

1
F(s+1)= —mF(s), (4.49)
F(s+y) = —wF(s), (4.50)
w(s)
F(s:6.8.7.5.9) = 6™ VEGs x. xB.xy. xBox?). (451
where  was given in #37).

Proof Part (i) follows from the definition of F and fact that the double gamma
function G(z; 7) has simple zeros on the lattice mt + n, form,n < O0and 7 ¢ Q.
The functional identity (4.49) is a straightforward consequence of the quasi-
periodic property of period 1 of the double gamma function, see (A:2T).
In order to deduce {@.50), we first obtain the functional identity (.51). We
first use the transformation of the double gamma function (A:23)) and observe
that for all s and x

G(s+xx) G(S(s + x);6)
G D0 e — s 4.52
G(s;x) @) G(6s;0) ( )
where
C(6, %) = 2m)31-Dg =50+,
The identity #.52) implies that
GBy +s:x) G -B+y)x+1-sx)
G(B+9x+sx) GU=Py+1-sx)
~ A omstyepy OB + 653 1 - 5~ 5650
= Gy 3B oo GB105:0) GU-Bry+0-059) -, s

GB+%+6s;0) G —pB+6—05s,0)
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where C(6,7,%, B, B) is a constant that does not depend on s. Then, the equation
(@.33) allow us to deduce

_GB+x+1ip G -Brixn)
GPBy+ 1) GUU-=B+yx:ix)

B land GB+%+6,6) G(-p;6)
Cov 9B GB+60) GU-B+y0)
where C is the constant that appears in (#.43). Using the definition of (#.43)
and putting all pieces together, we deduce identity (@.51).

The functional identity [@.50) follows from (.51) and (#.49) but applied to
F(85; 0, XB. xV- XB, x?). Indeed, we observe form that

F(s + x) = 6" WUVEGs + 1 x, xB.x v XB.x ).

On the other hand, from identity (#.49), we deduce

1

F(0s + L. xB Xy XB: x3) = —WF(&;X,X@X%XRX@-

Using the last two identities together, we deduce (#.50) as expected. m|

C

Proof of Theorem (i). Letus introduce f(s) = I'(s)F(s), where we recall
that F(s) is defined by (#.43). From Lemma[.T5|part (i), we know that f(s) is
analytic and zero-free in the strip Re(s) € (0, 1 + (1 — 8)x). Moreover, from its
construction, we have f(1) = 1. From identity (#.49), we find that

Fs+1) = _mf(s) for s € (0,(1-pB)y).

On the other hand, recall from Proposition [4.11] that M(s), as the Mellin trans-
form of 1(8, Y), is well defined for Re(s) € (0, 1 + (1 — B)x) and satisfies

M(s+1) = —ﬁmm), s€0,(1=B)y).

Hence, we conclude that the function H(s) = M(s)/f(s) satisfies
H(s + 1) = H(s) forall s € (0,(1 —B)y).

The rest of the proof is now dedicated to proving that H(s) = 1.

Using the assumption that f(s) is analytic and zero-free we conclude that
H(s) is an analytic function in the strip Re(s) € (0,1 + (1 — 8)x). Since H(s)
is also periodic with period equal to one, it can be extended to an analytic and
periodic function in the entire complex plane.

Since H(s) is analytic and periodic in the entire complex plane, it can be
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represented as a Fourier series

H(S) — Z Cnebrins,
nez
where the series converges in the entire complex plane. This means that the
two functions

Hi(z) = ZCnZ", Hy(2) = Zc_,,z".

n>1 n>1

are analytic in the entire complex plane, and that for all s € C
H(s) = co + Hi(exp(2ris)) + Hy(exp(—2mis)). (4.54)

Next, Lemma [4.14] (iii) and the asymptotic for the gamma function given
in in the Appendix imply that, as s — oo, in the vertical strip Re(s) €
0,1+ (1 - pB)yx), we have

PO =exp(3 (1= +H)m(s)] + om(s)) = o (xptallm(s))) (4.55)

where in the last step we have also used the fact that both y and % belong to the
interval (0, 1).

The inequality [M(s)| < M(Re(s)) = E[1(6, )R], @33) and the periodic-
ity of H(s), allow us to conclude that uniformly in Re(s), a sufficiently strong
estimate of decay for H can be given by s

H(s) = o(exp(2n|Im(s)|)), as Im(s) — oo. (4.56)

In particular, when Im(s) — oo we have H,(exp(2nis)) — H;(0) = 0, there-
fore the estimates (4.54) and (4.56) imply that, writing z = exp(—2xis) so that
log|z| = 2nIm(s), we have

H(2) = co + Hi(1/2) = H(s) = o(|z])

as z — oo in the entire complex plane. Appealing to Cauchy’s estimates (see
Proposition[A.5]in Appendix), for any R > 0, we have that, for any z such that
|zl <R,
H™(0
Hy@)= ) e = ) B0 1 < wy D @Ry (4.57)

|
n>1 nx1 n: n>1

where My = max{|H»(z)| : |zl = R}. As H>(z) = o(|z]), it follows that M = o(R)
and hence, for each fixed z € C, by choosing R sufficiently large, we can make
the right-hand side of arbitrarily small. In conclusion, we deduce that
H;(z) = 0. Appealing to similar arguments in the setting that Im(s) — —oo, we
can verify that H,(z) = 0.

In summary, H(s) must be constant, and the value of this constant is equal



4.5 Exponential functionals 101

to one, since H(1) = M(1)/f(1) = 1. We thus conclude that M(s) = f(s), as
required. o

We close this section with the following corollary which computes the Mellin
transform 1(6, Y) for the particular case that y = ¥ = ¢ € (0, 1). Its proof fol-
lows directly from Theorem[d.13] the quasi-periodic property of period 1 of the
double gamma function (see (A.ZI))) and the reflection formula of the gamma
function (see[A.T2)). We leave the details of the proof to the reader.

Corollary 4.16. Assume that § € (0, 1) and (B, 6,8, 5) € Hi.

(i) If (B,6,B,6) € Hy \ {B = 1}, then

LB+ 6) T(s)[(1 - B+ 6(1 — 5))

ra-p LB+ 6s)

(ii) If B.y.B.9) € HyN{n =9 > O} \ {B = O}, then

sin(z(s + (B — 1)) T($I(1 = B + (1 — 5))
sin((yB + s)) (B + 6s)

where the constant c is such that M(1) = 1.

M(s) =

M(s)=c

Finally, let us consider the spectrally one-sided cases. We start with the spec-
trally negative case, i.e. when the parameters are such thaty = 1, 8 € [0, 1)
and ¥ € (0, 1). For this particular case, we have

FrB+y+z) TB+y+2)

rG+z) T@B-1+2)°
which is well defined for Re(z) € (—(8 + ¥), o0). Note that the same arguments
used in the proof of Proposition [4.1T] allow us to deduce that M(s) is well de-
fined for Re(s) € (0,1 + (1 — B)y) since y(ds) < 0, for s € (0,1 + (1 — B)y).
Moreover, the identity in (@.40) still holds in this case.

We also observe that the arguments used in the proof of Theorem [.13] are
also valid for this particular case and allow us to compute explicitly the Mellin
transform M. More precisely, in this setting, the function F is given by

GPBx +5:.x)
G(B+ P +s:x)
where c¢ is such that F(1) = 1. We also remark that the function F is meromor-
phic with zeros at —8y — my — n and poles

Y@)=@@-1+p)

(4.58)

F(s) = cx* 'T((1 =B + 1 - s) seC,

Zn =B+ —my—n and z;:=1+( =By +n,

for m,n > 0. As previously, all zeros/poles are simple if 6 ¢ Q. It is important
to note that Lemma and the identities in part (ii) of Lemma still
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hold in this case (replace y by 1) thanks to the quasi-periodic properties of the
double gamma function (see (A.2T)) in the Appendix). In other words, we may
deduce the following result.

Theorem 4.17. Let 6 > 0 and Y be a spectrally negative Lamperti-stable
process with parameters B € [0,1) and ¥ € (0, 1), then

GBx + s:x)

= , s €C,
G(B+ 9+ s5x)

M(s) = cx* ' TOI((1 =By + 1 - )

where c is such that M(1) = 1.

Finally, we consider the spectrally positive case, i.e. when ¥ = 1, 8 € [0, 1)
and y € (0, 1). As we will see below, this case is slightly different. Here, we
have

ri-pg+y-z TIA-B+y-2)
W@ =g+ Lrr=D 0P Ly
I'1-8-2 (-2
which is well defined for Re(z) € (=0, 1 — 8 + ). When the process drifts to
—0o0, i.e. B = 0, we observe that M(s) can be extended to Re(s) < 0.

, (4.59)

Proposition 4.18. Let 6 > 0 and Y be a spectrally positive Lamperti-stable
process with parameters 8 € [0,1) andy € (0, 1). If

i) B> 0, then M(s) is well defined for Re(s) € (0,1 + (1 — B)x) and satisfies

M(s+ 1) = —@M(s), s€0,(1-By).
ii) B =0, then M(s) is well defined for Re(s) € (oo, 1 + x) and satisfies
M(s+1) = —@M(s), 5 € (=00, ). (4.60)

Proof We observe that part (i) follows from the same arguments as in Propo-
sition .11} since y/(8s) < 0 for Re(s) € (0,1 + (1 — B)y). The same holds true
for part (ii) when Re(s) € (0, 1 + x). Thus, it is enough to prove the result for
part (ii) when Re(s) € (—o0,0].

Observe that, in this case, the process drifts to —co and recall that

Eiz) =@ >0,

is a positive martingale for z € (—o0, 0). Proceeding similarly as in the proof of
Proposition we observe that, for ¢ € (0, 1] and s > 0, Doob’s L!-inequality
and the Esscher transform (Z.23)) imply

; -5
E [(f e‘iy”du) < 1~V 9VOE [sup SM(—(SS)]
0

u<t

QU(=65)V0
-1

IA

51 = 65y’ (—65) — Y(=65)),
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which is clearly finite. The finiteness for ¢ > 1 follows from the fact that the
exponential functional ¢ fot e’Yudu is non-decreasing. In consequence, M is
also well defined on (—o0, 1).

Next, we deduce identity (@.60). Integration by parts gives us

0o K 0o K t 0o —s5—1
( f e‘sy“du) - ( f e‘W“du) =s f e ot ( f e‘y(y"*“_y")du) dv,
‘ 0 0 0

for all s > 0 and ¢ > 0. Hence we take expectations in both sides of the above

identity and, since
00 00
f gy = o f =Y gy
1 0

stationarity and independent increments imply

f
M(—s+1) (en//(—és) — 1) = _(_S)M(_S)f e”w(_55)du,
0

from where the identity (#.60) is deduced, for s € (—o0,0). To see that the
aforesaid identity holds for s = 0, we observe that

li Y(0s)
im—-——-
s

s—0

=T +y),

and, since M is finite in (—oo0,(0), we may apply the dominated convergence
theorem to dededuce that holds for s € (-0, 0].

Finally, we put all pieces together and use general properties of Mellin trans-
forms to get that M(s) is finite and analytic for all s € C such that Re(s) €
(=00, 1 + y). This completes the proof. |

Similarly to the spectrally negative case, the arguments used in the proof
of Theorem [4.13] still holds for the spectrally positive case and allow us to
compute explicitly M. In this case, the function F is given by

X' G -B+yx+1-sx)
LBy +s) G(A-B+)x+1-sx) "

where c is such that F(1) = 1. We observe that the function F is meromorphic
with zeros at -8y —n and 1 — (1 — 8 + y)y + my + n; and poles

F(s) =c¢

seC,

T =1+ (1 =By +my +n,
for m,n > 0. Again, all zeros/poles are simple if § ¢ Q. Moreover, Lemma4.14|
and the identities in part (ii) of Lemma[4.13]still hold in this case (replace ¥ by
1), again thanks to the quasi-periodic properties of the double gamma function.
In other words, we may deduce the following result.



104 Hypergeometric Lévy processes
Theorem 4.19. Let § > 0 and Y be a spectrally positive Lamperti-stable pro-
cess with parameters 8 € [0, 1) and y € (0, 1), then

c X'T(s) G(A-B+yx+1-sx)
IBy+s) GA-Bx+1-sx)

where the constant c is such that M(1) = 1.

M(s) = s € C,

4.6 Distributional densities of exponential functionals

Next, we are interested in inverting the Mellin transform M in order to deduce
an expression for the probability density function of 1(9, Y), henceforth denoted
by

p(x) = —P(I((S Y)<x), x20.

We are interested in a convergent series representation as well as a complete
asymptotic expansion of the density p(x) as x — 0% or x — .

For simplicity of exposition, we only deduce the form of the density p(x)
for the case when the parameters (8,7, 3,9) € H, \ {8 = 1}. The other case can
be derived using the same arguments.

Recall that w  and F denote the functions which were defined in ,

(4.46) and (4.43); the sequences z;, , and z;,,, represent the poles of F and were
defined in (4.48] i We also recall that 7 = 1 — 8+ 7y + 8 + %, see (@21), and that
=1/6, see (38)

Definition 4.20. Assume that (8,7,8,%) € H; \ {8 = 1}. We define the coeffi-
cients a,, n > 0, as

1 n
— 1_[ w(Sj), n=0. 4.61)
By

Note that if 3 = 0, we have ¥(0) = 0 which implies that a, = 0, for all n > 0.
The coefficients by, ,, m,n > 0, are defined recursively

T (=B + 9)x)

boo = x— ————""F(1 — (B + ),
R vy e B R

OZn
bm,n = _W( — )bm,n—l’ m>0,nx>1, (4.62)

Zm,n

I'(z,
—§YNy — bDpiny m>1,n2>0.
lﬁ( T F( z 1n) 1, m n
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Similarly, ¢, ,, m,n > 0, are defined recursively

1+ (1 =B -B+p)
I'(n-yI(y)

F((1=Bn)

€00 =X

+
Zm,n— 1

-——
vz, )
SO Tz )
l;(z:—n—l,n) r(Z;l—l,n

mn—1» m 2 07 n 2 1’ (4.63)

Cmn =

Cmn =

)cm_lyy,, m>1,n>0.

The next result looks at the residues of M. The reader will note that the result
excludes the cases that § € Q. This comes about from the fact that, for 6 € Q,
the Mellin transform M(s), and specifically the double gamma function G, has
poles of multiplicity greater than one, which makes the picture much more
complicated.

Proposition 4.21. Assume that (8,7,3,%) € Hi \ {8 = 1} and 6 ¢ Q. For all
m,n > 0, we have

Res(M(s) : s = —n) = a,, if f>0,
Res(M(s) : s = 2,,,,) = bunns
Res(M(s) : s =25 ) = —Cpn-

m,n

Proof We start by proving that the residue of M(s) at s = z,,, is equal to
by, . First, use Theorem@ and rearrange the terms in the functional identity
(@49), noting the expression for ¢ in #37) and the recursion formula for
gamma functions (A:8), to find that

YEGs+ DI()TA =B +y—6)(1 + B +% + &)
s+ B+ [(1-B-6s)[(B+6s) ’

The above identity and the definition (4.62) imply that as s — —(3 + %)y

M(s) =

b
M(s) = —2— + O(1),
s+ @B+
which means that the residue of M(s) at z;, = —(B + )y is equal to bg.
Next, we show that the residues satisfy the second recursive identity in

(@.62). To this end, rewrite (#.49) as

M(s) = —@M(s +1). (4.64)

We know that M(s) has a simple pole at s = z;, , and M(s + 1) has a simple pole
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atz,,+1 =z, ;. One can also check that the function ¢(ds) is analytic at
§ =z, , for n > 1. Therefore we have as s — z,, ,

M(s) = Res(M(2) : 2 = z,,,,,) +0(1),

m,n

M(s+ 1) =Res(M(z) : z = Z’;’”_l)s—;’ + O(1),

m,n

_Y(8s) _ ¥(9z,,)

+0(s—7,.)
. :

m,n

which, together with (#.64) imply that

W6z,

m,n

Res(M(s) : s = z,,,) = — X Res(M(s) : s = 2,,,_1)-

The proof of all remaining cases is very similar and we leave the details to
the reader. O

Proposition [4.2T] immediately gives us a complete asymptotic expansion of
p(x) as x — 0" and x — oo, which we present in the next Theorem.

Theorem 4.22. Assume that (8,7y,B,7) € Hi \ {8 = 1} and § ¢ Q. Then

P~ Y @l + 3N by x By 07, (4.65)
n>0 m>0 n>0

P(x) ~ Z Z Cm,nx_(m+l_ﬁ))(_n_l7 X — 0. (466)
m=0 n>0

Proof The basis of the proof is to identify p(x) as the inverse Mellin trans-
form

p(x) = L f M(s)x*ds, x> 0. (4.67)
271 Jiviv

In a similar spirit to the proof of (@.33)), we can use (A.16) in the Appendix
together with (4.45)) and the equality M = I'F from Theorem[d.13]to deduce that
that |M(x + iu)| decreases exponentially as u — oo (uniformly in x in any finite
interval). As a consequence, not only does its Fourier inverse exist, but so does
the Fourier inverse of its derivatives as well; therefore all exist as continuous
functions. As such, p(x) is a smooth function for x > 0.

Assume that ¢ < 0 satisfying that ¢ # z,,, and ¢ # —n for all m,n, and set £
to be an integer. We also consider the contour L = L; U L, U L3 U L4 which is
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defined as

L :={Re(z) =c¢, - <Im(z) < ¢},

L, .= {Im(z) = ¢, ¢ < Re(z) < 1},

L; :={Re(z) =1, =€ < Im(z) < ¢},

Ly :={Im(z) = —¢, ¢ < Re(z) < 1}.

It is clear that L is the rectangle bounded by vertical lines Re(z) = ¢, Re(z) = 1

and by horizontal lines Im(z) = +{. We assume that L is oriented counter-
clockwise; see Figure[7.1]

, 4
N

Ly

NL;
C
o |1
Ly

Ly

AN

4 —0

Figure 4.1 The contour L=L; UL, UL3 U Ly

The function M(s) is analytic in the interior of L, except for simple poles z,, ,
and —n which lie in (c, 1), and is continuous on L. Using the residue theorem
we find

1 —
27 fM(S)X_S ds = Z ResM(s) : s = z,,,,) X x Zman
L 0<l2ymyl<cl

+ Z Res(M(s) : s = —n) x x".

0<n<|c|

Next, we estimate the integrals over the horizontal side L, as follows

f M(s)x*ds
Ly

When ¢ increases, we have sup,;, [M(s)| goes to 0. Therefore

< (e = ¢) x x~" max [M(s)|.
sel,

f M(s)x*ds - 0 as { — oo.
Ly
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Similarly, we deduce that the integral on the contour L4 goes to 0 as £ goes to
oo. Thus putting all the pieces together, we have

1 ‘ 1 ,
- — M(s)xds + — M(s)x™¥dz
27 Jevin 21t Jisiv
= > Res(M(s):s5=2z,,)xx 7+ > ResM(s):s=-n)xx".
0<lzp,ul<lel 0<n<|c|

In other words, we have deduced

p(x) = Z Res(M(s) : s = Zr_n,n) Xy mn

0<lzp nl<lel
) X (4.68)
+ Z Res(M(s) : s = —n) X X' + — f M(s)x"*ds,
0<n<lc| N

Next, we perform a change of variables s = ¢ + iu and obtain the following

estimate
f M(s)x*ds f M(s)x "“du
c+R R

Note that [M(c + iu)| is integrable thanks to its previously observed exponential
decay in u (see remarks below (.67)). The asymptotic ([#.63)) now follows.

The proof of is identical, except that we have to perform the contour
of integration in the opposite direction. In particular, we can build a rectangular
anti-clockwise contour similar to the one in Figure albeit that the location
of left-hand side agrees with that of L3 in the figure and the other three sides
lie in the positive half of the complex plain, capturing the other poles on the
positive real line. O

=x¢

<x°€ f M(c + iu)|du = O(x™°).
R

It turns out that, for almost all parameters J, except for rational numbers
and for those real numbers which can be approximated by rational numbers
in a certain way, the asymptotic series (#.65) and (#.66) converge to p(x) for
all x > 0. Unfortunately the proof of such result is rather technical and goes
beyond the scope of this manuscript. For that reason, we just state the result
without a proof. Nonetheless, in order to state our result the following set of
real numbers is needed.

Definition 4.23. Let £ be the set of real irrational numbers x, for which there
exists a constant b > 1 such that the inequality

1
<o (4.69)

p

xX— =

q

is satisfied for infinitely many integers p and gq.
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The set L is a proper subset of so-called Liouville numbers and possesses
very interesting properties. For instance, as the set of Liouville numbers has
zero Hausdorff dimension and hence zero Lebesgue measure, the same is true
of L. Moreover, the structure of £ can be described in terms of a continued
fraction representation of real numbers and it is closed under addition and
multiplication by rational numbers, implying that it is dense in R. As with
Proposition and Theorem[4.22] and for the same reasons given there, the
following exact identity for the density p cannot accommodate for 6 € Q. Ad-
ditonally, it cannot accommodate for ¢ € £ for technical reasons that are also
beyond the scope of our exposition.

Theorem 4.24. Assume that (8,v,B,%) € Hi \ {8 = 1} and 6§ ¢ L U Q. Then
forall x > 0,

Zn20 @ + iz Tz bnax"FI if y 9 < 1,
px) =
L0 iz Cmnx” PR ify+y>1
For the case y = ¥ = ¢, there is a simpler representation for p(x) which
allows us to remove the assumption 6 ¢ £ U Q. This representation follows

from the fact that the Mellin transform of p(x) can be written exclusively in
terms of the gamma function; see Corollary #.16] noting the use of (A.12).

Theorem 4.25. Assume that (8,6,,6) € Hy \ {8 = 1}. If 26 < 1, then

B (B +06) I'(1 -6+6(1+n)) (—1)"xn

PO p 2 T w (4.70)
for x>0, and if 26 > 1, then
) 2 LB+ 0 TA-BHmx+ D) V" gty

T -p) ~LTr1-g+p+6+n) n!

for x > 0. Moreover, formula @.T0) (resp. (#-71)) provides complete asymp-
totic expansion as x goes to 0 (resp. as x goes to ).

Proof We give only a brief sketch of the proof. From Corollary {.16] (i), we
see that the Mellin transform M(z) of p(x) has simple poles at

z;=-n and z' =1+x(n+1-p), n 0.

The residues at these points provide the coefficients in (#.70) and @.71). Indeed
by applying Proposition and identity (A.TT) (both in the Appendix), we
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find that

LB +6rA -+ 61 +n)) (=1)"
T TA-pr@g-om  nl
Similarly, for the poles at z; = 1 + y(n + 1 — ), we get

TB+OTA +x(n+1-p) X
(1 =pBI(1 =B+ +6 +n)) n!’

The rest of the proof follows by using similar ideas to e.g. the proof of Theorem
[L.T8] (or Theorem [4.22). We first need to guarantee that the Mellin transform
inversion can be performed, i.e. we need to verify that M(z) is absolutely inte-
grable on a given vertical line where M is well-defined. The latter follows from
(A.16)), which in particular implies the following upper bound

Res(M(s), s = —n)

ResM(s):s=1+xy(n+1-p) =

[MCx+ )| < CemB AP0 gy o, (4.72)

uniformly in any finite interval —co < a < x < b < co, where C > 0 is an
unimportant constant. Thus, we can use an appropriate contour integral which
encloses an increasing number of poles as it expands. The poles are chosen in
such a way to ensure that one side of the path integral converges to the inverse
Mellin transform of M(z) and the remaining parts of the integral path tend to
zero as the contour grows larger. To ensure the latter, one must appeal to the
specific form of M(z) in terms of gamma functions. More precisely, in the spirit
of @]} albeit with with subtle differences in the estimates, the asymptotic
relations of the gamma function in (A-T3)) and the ratio of gamma functions in
provide an exponential decay for M(z) when Re(z) < 0 with 26 < 1 and
when Re(z) > 0 with 26 > 1, respectively. Hence, the Residue Theorem gives
the desired density as a sum of residues of the captured poles. We leave the
details to the interested reader. O

We conclude this section by computing the density of the exponential func-
tional of a hypergeometric Lévy process with a special choice of parameters,
which will be of particular interested later on in the book.

Theorem 4.26. Assume that (1,7,5,9) € HyN{n—% > 0}\ {8 =0}. If26 < 1,

then
p(x) = 6 Z(_])n—l sin(myB)I'(B + 5)1j(6(n +1)+0) B 4T3)
T I'(l +n+ xB)I'(-on)
for x >0, and if 26 > 1, then
p(x) = Z anx_”XB_” + Z by x 1™ (4.74)

n>0 m>1
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for x > 0, where

s sin(z(yB + 1)L(B + 6)['(B — 6n)

= =1y
T TB-nI@Gn+1)

n

and
sin(myB)L(B + 6) (="

b, = ~ =
sin(my (B + m)C(—yn)L'(B + 6 + m) m!

Moreover, formula @T3) (resp. ([#.74)) provides complete asymptotic expan-
sion as x goes to 0% (resp. as x goes to ).

Proof  As in Theorem [4#.25] we give only a brief sketch of the proof. From
Corollary 16| (ii), when 8 = 1, we have

sin(z(yB + 1)) T(B + OGS — 5))
sin(r(yB + 5)) T(1 — $)[(B+ 6s)

where we have used (A-10) to determine the normalisation M(1) = 1. We see
that the Mellin transform M(z) of p(x) thus has simple poles at

M(s) =06 s €C,

z,‘lz—n—)(B, forn > 1,

ol =n+1-yB, for n>0,

and
o2 =1+yn, for n>1.

Again, the residues at these points provide the coefficients in (#.73)) and [@.74).
Indeed, we apply Proposition [A-T] and identity (A-TT) (both in the Appendix)
to find

s sin(z(yB + D)CB + OGS + n) + )

Res(M(s) : s = —n — xf) = ~ -1
(M) ) T I'(1 +n+ xpB)I'(-on) .
For the poles at 7' = n + 1 — y, we get
o s B+ LB+ (B -6
Res(M(s) : 5 = n+ 1 — yfp = S SmEB+ DINB + OB = 0m) e,
T I'(yf—nI'(6(n+1))
Finally, for the poles at 12’2 =1+ yn, we have
1 i B+ D)CB+6
Res(M(s) : s = 1 +yn) = — sinx(gf + DB + 0) (—1y!

n! sin(r(y(B + n) + DI(—ny)T(B + 6 + n)

The rest of the proof follows by developing the appropriate contour integrals
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as in previous theorems and observing, using the asymptotic relations (A.15)

and (A.16), that
MCx+ i) < CemBPAHI2 gy oo,

uniformly in any finite interval —co < a < x < b < oo, where C > 0 is an
unimportant constant. Moreover, that M(z) has exponential decay when Re(z) <
0 with 26 < 1, and when Re(z) > 0 with 26 > 1. We leave the details to the
interested reader. O

4.7 Distributional tails of exponential functionals

As we will see for some of the applications later in this text, there are occasions
where it suffices to work with the asymptotic upper tail distribution of /(d, Y) in
place of its probability density. Although the former can be deduced from the
latter, it contains marginally less information about the distribution of 1(6, Y)
and so one may be able to derive it with fewer assumptions. A good example
of this pertains to one of the assumptions of Theorem [.24] specifically the
requirement there that § ¢ £ U Q. We present a different approach here for
studying the tail distribution of (8, Y), which will rule out any restriction on
6> 0.

Proposition 4.27. Let Y be an hypergeometric Lévy process with parameters
(B,v,B,%) € Hy or a spectrally one sided Lamperti-stable with parameters
Bel0,1),ye,1)orBel0,1),9 €(0,1). Then

lim P(1(5,Y) > 1) = qup(?g)) (4.75)

where y = 1/6 and 0 is defined in @F39) when (B,v,,%) € Hy and, otherwise,
0 is taken as (1 — B) in the spectrally one-sided cases.

Proof Let us start by recalling that, in the setting that Y is killed. Its cemetery
state is taken to be —oo and we work with the definition exp(—oc0) = 0. With
this in mind, we observe that the exponential functional 7(¢, ¥) satisfies

oo 1 0o
f CEY“ du = f eﬁy“du + eﬁy‘ f C(s(Y[‘+I7YI)dM.
0 0 0

Since Y possesses stationary and independent increments, the following iden-
tity in law follows

16,Y) 2 0+ VIS, Y,
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where
1 00
0= f eMedu, V=e", 16,Y) = f e?Vudu,
0 0

and Y’ is independent of (¥;,0 < s < 1), with the same law as Y. Therefore
1(6,Y”) is independent of the pair (Q, V) and has the same law as 1(6, Y). That
is to say, 1(6, Y) is a random recursive equation in the sense of (A.39) in the
Appendix. Hence, if Q and V fulfils the hypothesis of Theorem [A.TT] (see the
Appendix), the result will be follow.

Since Y is not arithmetic, the same property is inherited to the random vari-
able V. From the analytical expression for y given in (@.37), we not that the
quantity fy satisfies

E[v¥]=E[eM]=1.
Next we introduce

ﬁ.:{ y  if@Gy.hpeH\{B=1} A
' 77_5’ lf(ﬁvy’ﬂ’i/)67—[20{77_/)\/>0}\{ﬁ:0}

For the spectrally positive case we take ¢ = y and for the spectrally negative
case, ¥ can be taken as co. Thus, we observe, from {#.37), (#.38)) and (#.39)
that for € € (0, ) we have

E [Vé)‘ In"(V)| =E [eéYl Yy <E [e@*f)Y'] < o,

where y* = max{0,y}. Finally, from Doob’s L!-inequality and the Esscher
transform (2.23), we verify that

1 by
( f S du)
0

Therefore, Theorem guarantees that

E[0"]=E < E|sup&,(H)

u<l

< e%l(l +§E[69Y‘Y1+]) < oo.

lim P15, Y) > 1) = C.,

500
where
E[(Q + VI, Y')| - E[(VI(6, Y]
o 20! '
Now, we compute explicitly the constant C... Recall the identities in law from
the beginning of the proof. Then using integration by parts and the stationary
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and independent increment property of Y, we get

L E (57 e as) = (f e as)"|

T G

1 1 00 Oy—1
= 7 (9)E f oY (f e‘sy-"ds) du
’ 0 u
1 | 00 Oy-1
= —E f et (f e‘S(Y“‘*“_Y“)ds) du
v |Jo 0

1 : Q) ) Oy—1
= — “"du|E|1(6, V)X
we)(foe u|E[ 16,0
_ M@y
e’

as required. O

4.8 Comments

The first example of a S-subordinator appeared in Lamperti [139]. Since then,
hypergeometric Lévy processes can be found in a variety of different contexts,
too numerous to list here, however. The reader may wish to consult [131} 115}
20] to name but a few. Hypergeometric Lévy processes were first introduced
in Kuznetsov et al. [119] and later developed more thoroughly in Kuznetsov
and Pardo [121]], for the set of admisible parameters #, and then extended
by Kyprianou et al. [128] to the set H,. The basic idea of Hypergeometric
Lévy processes is to express them via a Wiener—Hopf factorisation consisting
of two S-subordinators, appealing to Vigon’s theory of philanthropy to justify
that the product of factors makes a Lévy—Khintchine exponent. The latter gives
conditions under which two subordinators may be associated as ascending and
descending ladder heights in the context of a Wiener—Hopf factorisation. In
this respect, Theorem .4]is a special version of a more general result given in
Vigon [211]], where as Theorem@]was proved in [121]] and [128]].

Hypergeometric Lévy processes have appeared consistently in various liter-
ature at the intersection of self-similar Markov processes and stable processes.
See for example [44, [129] and Chapter 13 of [123]. We note that hypergeo-
metric processes and extensions thereof belong to a larger family of Lévy pro-
cesses called meromorphic processes, which are described in [118]]; see also
[89, [130]. Meromorphic processes have the feature that their Wiener—Hopf
factors can be written as infinite products of rational functions.
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Exponential functionals of Lévy processes appear in various aspects of prob-
ability theory, see for instance the survey of Bertoin and Yor [28]], and has been
a very active topic of research in the last couple of decades. Indeed, determin-
ing distributional features of such functionals is still a very prolific research
topic; see for example [179, 180} 166k [165.1162,[148,70, 1188} 197,1203 145} 16,
1581 15} [14} 21 [163] to name but a few key articles. Proposition [#.11] holds for
a bigger class of Lévy process and its general form can be found in [[148 [180].
The hypergeometric class seems to be one of the very few examples of Lévy
processes with two sided jumps (outside of the class of stable processes and
Gaussian processes with compound Poisson, exponentially distributed jumps)
for which the law of its associated exponential functionals can be completely
characterised. Proposition and Theorem are taken from [121] (part
(1)) and [128]] (part(ii)); the results concerning the distribution of the integrated
exponential functional, for example, Theorem[4.24]can largely be derived from
[121], with e.g. versions of Proposotion appearing earlier in [[148]] and
[L80].
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Positive self-similar Markov processes

In this chapter we introduce one of the key mathematical tools that we shall use
to analyse stable processes: positive self-similar Markov processes. We shall
often denote this class by the shorthand pssMp. In the next section we give the
definition of these processes and their pathwise characterisation as space-time-
changed Lévy processes through the Lamperti transform. Thereafter, we spend
the rest of the chapter exploring a number of examples of pssMp which can be
constructed through path transformations of stable processes. Each of these
examples of pssMp turn out to be intimately connected, through the Lamperti
transform, to a different Lévy process belonging to the hypergeometric class.

5.1 The Lamperti transform

Let us begin with a definition of the fundamental class of processes that will
dominate our analysis. The reader may first find it useful to refer to Section

in the Appendix.

Definition 5.1. A (0, co)-valued regular Feller process, say Z = (Z;,t > 0), is
called a positive self-similar Markov process if there exists a constant @ > 0
such that, for any x > 0 and ¢ > 0,

the law of (¢Z-«;,t > 0) under P, is P,,, (5.1)

where P, is the law of Z when issued from x. In that case, we refer to « as the
index of self-similarity.

There is a natural bijection between the class of exponentially killed Lévy
processes and positive self-similar Markov processes, up to a naturally defined
lifetime,

¢ =1inf{t > 0: Z, = 0},

116
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i.e. the first moment it visits the origin. Roughly speaking, this bijection shows
that the property of self-similarity is interchangeable with the property of hav-
ing stationary and independent increments through an appropriate space-time
transformation. Below, we state this bijection as a theorem.

Let us first introduce some more notation. Throughout this section, we shall
use = := (E,, ¢ > 0) to denote a one-dimensional Lévy process (not necessarily
issued from the origin) which is killed and sent to the cemetery state —co at an
independent and exponentially distributed random time, e = inf{r > 0 : &, =
—oo}, with rate in [0, c0). As usual, we understand e as an exponential distribu-
tion in the broader sense, so that if its rate is O, then e = oo with probability
one, i.e. there is no killing.

We will be interested in applying a time change to the process Z by using its
integrated exponential process, I := (I;,¢ > 0), where

r
I, = f e ds, t>0. (5.2)
0

As the process [ is increasing, we may define its almost sure limit, I, :=
lim I;. We are also interested in the inverse process

@(t)=inf{s>0:1,>1}, t>0. (5.3)

As usual, we work with the convention inf () = oo.

The following decomposition describes the celebrated Lamperti transfor-
mation, we omit the proof here as it is long and a distraction from our main
objectives.

Theorem 5.2 (The Lamperti transform). Fix o > 0.

(i) If (Z, Py), x > 0, is a positive self-similar Markov process with index of
self-similarity a, then up to its first visit of the origin, it can be represented
as follows:

Z 1<) = exp{Egn} t>0, (5.4)

such that Z¢ = log x and either

(1) Py({ = o) =1 for all x > 0, in which case, 2 is a Lévy process
satisfying lim sup,,, E; = o,

(2) Py({ <ooand Z;- = 0) = 1 for all x > 0, in which case E is a Lévy
process satisfying limye Z; = —00, or

(3) Px({ < c0andZ;- > 0) = 1 for all x > 0, in which case Z is a
Lévy process killed at an independent and exponentially distributed
random time.

In all cases, we may identify { = I.
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(ii) Conversely, for each x > 0, suppose that E is a given (killed) Lévy process,
issued from log x. Define

Zl = exp{Etp(,)}l(K,w), t> 0

Then Z defines a positive self-similar Markov process up to its absorption
time { = I, which satisfies Zy = x and which has index a.

In the forthcoming sections, we shall identify a number of different pssMp,
all of which are derived from path transformations of the stable process, for
which we shall use the some notational conventions. We shall generally use a
modified version of the letter = to denote individual Lévy processes associated
to different pssMp. However, without confusion, ¢ and ¢ will always denote
the time change associated to the underlying Lévy process and the lifetime of
the particular pssMp at hand, respectively.

Before passing to the promised specific examples of pssMp, we will first
address one outstanding issue, namely whether it is possible to develop the
notion of a pssMp issued from the origin. That is to say, whether we can find a
candidate for Py that is consistent with the laws P = (P,, x > 0) described by
Theorem [5.2] for any given pssMp. The Lamperti transform cannot help us in
its given format. It would require the Lévy process = to be issued from —oo and
the associated time change to be appropriately well behaved in order for the
representation to correspond fo a pssMp process issued from the origin.
In the next section, we state without proof the main results in the literature,
which deal with entry from the origin.

5.2 Starting at the origin

Theorem[5.2] (i) indicates that positive self-similar Markov processes naturally
divide into two classes. Firstly, conservative processes, for which { = oo almost
surely, and, secondly, non-conservative processes, for which { < co almost
surely. Suppose that Z is a conservative positive self-similar Markov process.
As alluded to above, we want to find a way to give a meaning to Py (and even
better would be to give further meaning to this candidate as “Py := limy o Py”,
which would offer a sense of uniqueness). One way to do this is to look at the
behaviour of the transition semigroup of (Z, P) as its initial value tends to zero.
That is to say, to consider whether the weak limit

Pz €dy) =limPy(Z €dy). 1y >0, (5.5)
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exists. In that case, for any sequence of times 0 < #; <, < --- <1, < oo and
Y1, ,¥n € (0,00), n € N, the Markov property gives us

PO(Ztl € dyl"“ aZt” € dyn)
= 1ime(Zt| € dyl’ Tt ,Zt,, € dyn)
x10

= I:E)l Py (Z;, € dy )Py, (Zi,—1, €dyp, -+, Z; 1, € dyy)
= Po(Z;, € dyD)Py,(Zy—1, € Ay, -+, Zs, 1, € dyy).

The limit @, when it exists, thus implies the existence of Py as limit of P,
as x | 0, in the sense of convergence of finite-dimensional distributions. The
following result gives a stronger sense of convergence, which implies the latter,
as well as identifying the limiting law of (Z, Py) at fixed times.

Theorem 5.3. Assume that Z is a conservative positive self-similar Markov
process. Moreover, suppose that the Lévy process (E,P), associated with Z
through the Lamperti transform, is not a compound Poisson process and has
an ascending ladder height process H which satisfies E[H|] < co. Then Py :=
limy o Py exists, in the sense of convergence of on the Skorokhod space (see
Section in the Appendix). Moreover, under Py, the process Z leaves the
origin continuously. Conversely, if E[H|] = oo, then this limit does not exist.
Under the additional assumption that E[E,] € (0, o0), for any positive measur-
able function f and t > (),

|1
Eolf(Z)] = E —f((r/w”")}, (5.6)

aB[IZ)]] [Ioo
where I, = fom exp{aE;}ds and (B, P)is equal in law to (-E, P).

Remark 5.4. The reader will note that we could equally have phrased (5.6)) in
the form
1 1 1/a
Eolf(Z)] = —=—==E|+— ( /1 ) ,
o)) = s [wa (1/1.) ]
where I, = fom exp{—aZ,}ds. However, we have chosen the format as stated
in Theorem [3.3] so that, when the reader is confronted with entrance laws for

more general self-similar Markov processes later on in this text (see Theorem
[IT.16), the consistency will be clear.

The form of the entrance law (5.6) suggests that there must be a connec-
tion between (Z, Py) and the law of the positive self-similar Markov process
associated to (Z, f’), i.e. the dual of E. As we will see below, this connection
manifests through time reversal of the paths of (Z, Py).
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Let us assume that the Lévy process = satisfies
0<E[E|]] <> (5.7)

and consider the pssMp (Z, 13,5) with self-similar index @ > 0, which is associ-

ated to = = —Z. In other words, the Lamperti transform of (Z, st) is equal in
law to

xexp (Epen | Lycwiy 120, (5.8)

where i, = fot exp(aé,,)du, t > 0, and @ denotes the right-continuous inverse
process of I. Note, as = drifts to co (cf. Sect. , it follows that = drifts to
—co. This means that the process (Z, P) is continuously absorbed at the origin,
where P = (IA’X, x> 0).

We want to show that (Z, P) and (Z, P) are in duality with respect to a given
measure, in other words, the latter has the law of the former when time reversed
in an appropriate way. This will lead us to Proposition [5.5] below. In order to
do this, we will use Hunt-Nagasawa duality theory (see Section in the
Appendix), for which we must introduce the resolvent operators associated to
(Z, P) and (Z, 13), respectively. For every g > 0, and measurable f, g : (0, c0) —
[0, o), we introduce the resolvent operators of (Z, P,) and (Z, IA’X),

00 e
Vif(x):= E, [ f e f(Z,) dt], and Vig(x):=E, [ f e 'a(Z,) dt],
0 0

for x > 0, where ¢ denotes the absorption time of (Z, 13).

Proposition 5.5. Suppose (5.7) holds. The resolvent operators of (Z, P) and
(Z, P), are in duality with respect to the measure u(dx) = x*'dx. That is to
say, for every q > 0, and measurable functions f, g : (0, 00) — [0, 00), we have

f B gV f(x)x*dx = f B Fx)Vig(x)x* " dx. (5.9)
0 0

Proof Fix g > 0, and consider two measurable functions f,g : (0,00) —
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[0, o0). From the Lamperti transform, we have
f g(x)vqf(x)xa_l dx = f g(x)E [f e_q[f(x eXp{Eéﬁ(tx-O)}) d[:| x(l—] dx
0 0 o
=E [f dx x“_'g(x)f ds e—qx“llf(xeax)xaeaa]
0 0
=E [ f ds f dy e e =, g (ye‘E»“) Fy)yre! e—as\}
0 0

= jo“” dyy* ' f() fow dsE [efqyue_”ss lig (ye’a‘) y"e"’ES]

= fo ") fo ) dsE[e @ g (ye ™) y"e =],

where we have used the change of variable y = xexp(E;) in the third equality
and, in the final equality, 5/, = Z; - E,_,)-, for0 <u < s, and I}, = fos e Eudu.
By the duality Lemma for Lévy processes (see Lemma [2.14)), the processes

(B4, 0 <u<tand (5,0 < u < t) have the same law. In other words, we have
E [e_qy”’;g (ye—E;)y(ye—aE;] — E [e_qyrrlxg (yeEv)yaea/Ev] ,

where we recall that P denotes the law of Z. By using a similar change of
variables as above, we deduce

f gV f()x" dx = f F@Vg(0x " dx,
0 0
as required. .

The weak duality between the laws of (Z, P) and (Z, P), in the sense of (5.9),
together with Hunt-Nagasawa’s theory of time reversal (see Section[A.12]in the
Appendix), suggest that we can express the law of the time reversal of (Z, Py)
at some specific random times in terms of the law of (Z, P). Our aim is to study
the law of the time reversal of (Z, Py) from the last passage times

D, =sup{t>0:7 < x}, for x>0,

(with the definition sup @ := 0) and deduce that, under the event {Zp _ = z}, it
can be expressed in terms of the law of (Z, P.). As a consequence we obtain a
representation of the law of D, under Py, in terms of the law of the exponential
functional 7.

To simplify the notation, we denote by S, the support set of the law of Zp, _
. We also make the convention that Zy_ = Z;.

Proposition 5.6. Fix x > 0. Suppose (5.7) holds. The process (Z, P,) is equal
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in law to that of the process (Zgp -, 0 < t < Dy), under Py(-|Zp,- = z), for
z€ S,

Proof The result follows from Theorem[5.3] Proposition[5.5]and Hunt-Nagasawa’s
theory of time reversal for Markov processes (see Section in the Ap-
pendix), specifically Theorem

Let p;(dx) be the entrance law of (Z, Py) at time ¢ > 0. It follows from the
scaling property of Z that, for any ¢ > 0, p,(dx) = p;(#~“dx). The latter implies

00 00 1
f p(dx)dr = (f —Qpl(dy)) ax® ' dx, x> 0.
0 0oy

From Theorem[5.3] we deduce

| 1
L pi(dy) = .
fo ywp1( y) e ]

In other words, the resolvent measure f[o o) o (da)E, [ fow I(Z,de)dt]» x>0,is
proportional to the measure p(dx), i.e.

1 " f ]
E Zt . .1
E[é‘:l] \f(; ( ) 0 [ 0 f( ) ! ( )

Condition (A) of Nagasawa’s Theorem specifically (A43) and (A42),
are satisfied thanks to (5.9) and (5.10). Condition (B) of the same theorem can

is easily satisfied thanks to the Feller property of (Z, P). We may thus apply
Theorem [A-T5] with the last exit time D,, noting in particular that, thanks to
the assumed transience of (Z, Py) in , Po(0 < D, < o) = 1, and the
proposition is proved. O

Another way to state Proposition|5.6|is as follows. For any z € S, with x > z,
the time reversed process (Zes -, 0 < t < z%1,) under P, has the same law
as (Z;,0 < t < Dy), under Py(-| Zp,- = 2).

Now suppose that Z is a non-conservative positive self-similar Markov pro-
cess. If there is a way to describe how Z can be issued from the origin then, in
principle, one should be able to reissue it from the origin at all subsequent hit-
ting times of this point in such a way that the resulting process remains strong
Markov, thereby generating what is known as a recurrent extension. To be more
precise, we say that a regular Feller process on [0, o0), Z’" := (Z] : t > 0), with
probabilities (P’, x > 0), is a recurrent extension of Z if, for each x > 0, the ori-
gin is not an exit boundary (i.e. a killing state) P’-almost surely and (Z;,t < {’)
under P’ has the same law as (Z, P,), where

J =inf{t>0:2Z =0).
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Showing that a recurrent extension exists is a very technical task and re-
volves around the theory of excursions. Roughly speaking, instead of con-
structing an entrance law for the family (P,, x > 0), it turns out that the correct
mathematical procedure is to use (P, x > 0) to construct an entrance law for
an excursion measure that will describe the sojourns of Z’ away from zero.
Then with the help of what is known as It6 synthesis, one may piece together
excursions end to end in an appropriate way to generate the desired recurrent
extension.

In theory, one may approach the problem of constructing an excursion en-
trance law, and hence the problem of constructing a recurrent extension, in
two different ways. Either excursions start by leaving the origin with a jump,
or they leave the origin continuously. We focus on the case of recurrent ex-
tensions which leave the origin continuously, on account of the fact that the
construction is unique. Otherwise, in the case of processes which leave the
origin with a jump, there is no unique construction.

Theorem 5.7. Assume that Z is a non-conservative positive self-similar Markov
process. Suppose that (E,P) is the (killed) Lévy process associated with Z
through the Lamperti transform. Then there exists a unique recurrent extension
of Z which leaves O continuously if and only if there exists a Cramér number
B € (0,a) such

E[F] = 1. (5.11)

Here, as usual, « is the index of self-similarity.

5.3 Stable processes killed on entering (—oo, 0)

Excluding the case of subordinators, a stable process is not a positive-valued
process (albeit strong Markov and self-similar). However, by killing such pro-
cesses as they enter (—oo, 0) and sending them to the cemetery state {0}, we can
preserve the strong Markov, right-continuous and quasi-left-continuous prop-
erties, whilst introducing the property of positivity. Appealing to our previous
notation for positive self-similar Markov processes, let us define, for x > 0,

Z; = Xil(x 20), t>0, (5.12)

where X is a one-dimensional stable process. Our claim is that this process
is also self-similar. To this end we need some additional facts about the self-
similarity property of stable processes (which will also be of use in other ex-
amples).
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Lemma 5.8. Given any stable process X = (X;,t 2 0), the pair (X, X,),t = 0)
is a strong Markov process. Moreover, if we denote its probabilities by P, ),
—00 < x < 5 <00, then, forall c > 0 and —o00 < x < 5 < 00,

the law of (¢(Xc-o, X 0, t 2 0) under Py ) is Piexcs).-

Proof Note the statement of the theorem is trivial if X has monotone paths.
We may thus assume that this is not the case for the remainder of the proof.
Start by noticing that the process ((X;, X,),t > 0) under P, ) is equal in law to
the process

(x+ X, s A(x+ X)), t>0,

under P ). Now suppose that 7 is any stopping time with respect to the filtra-
tion (7;,¢ > 0) of X, which, by default, we take as naturally enlarged (see Re-
mark [A.T3]in the Appendix) so that it is right-continuous. Using the stationary
and independent increments of X, it follows that, for any bounded measurable
function f, we can write

B [f X, X, DIF]
=By [f(Xr + Yz s XA (X + Xt))

= E(XT,X,) [f(ir ’Xf):l

7

where, for t > 0, )~(f = Xoyr — Xoq, Xt = infy, )?S and the process ()?, X) is also
independent of 7. The strong Markov property now follows immediately.
To check self-similarity, we have that, for all # > 0 and ¢ > 0,

cX ., =c inf X;=infcX-o,,
s<ct ust

and hence, thanks to the self-similarity of X, it follows that (¢(Xos, X ), 1 >
0) under P(oyp) is equal in law to P). Next note that (¢(Xc-o, X ), = 0)
under Py, ) is equal in law to

((cx + X0, €S A (cx + CXC,H,)) ,1> O) under P,

which, in turn, is equal in law to P(cycs). O

Returning now to the claim that the process (5.12) is self-similar, we note
that, for x, ¢ > 0, under P, = P ),

CZCfn, = CXL"”ZI(XC%,ZO)’ t> 0,

and, thanks to Lemma[5.8] this is equal in law to (Z, P.,).

The process (5.12) is a particular example of a positive self-similar Markov
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process which falls into category (3) of Theorem [5.2] Its Lamperti transform
should therefore reveal a Lévy process which is killed at a strictly positive rate.
Let us now proceed to derive in explicit detail its Lamperti transform.

First, we turn our attention to computing the killing rate of the underlying
Lévy process, which we henceforth refer to as & = (£/,0 < t < /%), where
{* is its lifetime. At each moment in time ¢ > 0 such that {r < {}, given the
Poisson point process of jumps with intensity given by that govern the
movement of X, the process Z is killed and sent to the origin at a rate equal to
the rate of arrival of a negative jump of size Z,_ or greater. The rate at which Z
is killed at time ¢ on {f < £} is thus equal to

_ZI— Cz 62 o
H(-c0,-Z,-)dt = 7 de dr = —~Z dr.

00

Now suppose that g* is the rate at which the underlying process £* in the Lam-
perti transform is killed. On the probability space which supports the Lamperti
representation, we also have that the rate at which Z is killed and sent to the
origin is proportional to g* de(?). Noting, however,

O
fﬂ e%udy =1,
0

g dp(t) = g'e™™ w0 dt = q°Z7dr.

it follows that, on {r < Z},

Comparing these two rates, we come to rest at

q = @ _ r(a)w’ (5.13)
a T

where we have used (3.12). It is worth noting that, when X has only positive
jumps, the above calculation rightfully tells us that the process &* does not
experience killing.

Next, we turn our attention to computing the Lévy measure and the char-
acteristic exponent, respectively denoted by v* and W*, for the process £*. We
do this using a simple computation based on a fluctuation identity. Before pro-
ceeding thus, let us momentarily restrict ourselves to the setting that X experi-
ences two-sided jumps. From the definition of Z as a stable process killed on
first entering (—oo0, 0), we know that, on the one hand, Z,_ = XTG—’ where

T, =inf{t > 0: X, < 0}.

On the other hand, thanks to the Lamperti representation, we also know that



126 Positive self-similar Markov processes

Z;_ has Mellin transform which satisfies

s«

9
O -q)+q

which is the Fourier transform of the law of £* at the moment before it is killed
and sent to its cemetery state. Said another way, the right-hand side above is
the Fourier transform of the Lévy process &* stripped of its exponential killing
rate and sampled at an independent and exponentially distributed random time
with parameter g*. We thus have that

E: [(Z2:)"] = 0€R,

4.

‘I’*(é’)

Ei [(X; )] (5.14)

Setting
sin(apr) T(a+1)
C= —, 5.15
x T@plap) &1

we note, with the help of Theorem [3.6] that, for all v > 0,

Pi(X;-— € dv) = P(1 - Xrr_ € dv)

00 0o (1- y)af)—l(v _ y)apfl
= 1,
C( [ team S a)

c( ! )
=— ( f Lyeyy (1 =) (v - y)“p‘ldy) dv,
0

[0

where P is the law of —X and we recall that 77 =inf{r > 0 : X; > 1}. It is now
a straightforward argument to show that, appealing to (5.14), for all 6 € R,

Q i0—ap— Y ap=l
Ol f( )plf Lo (1= 1) vy

ap—1 19_0 F(CYP i) (ap)
f (= ” P dy I'(a - i6)
_ g I'(l —ap +i9)I(ap) ‘ I'(ap — i (ap)
T (1 +i6) T —-i0)

where in the first equality Fubini’s Theorem has been used, in the second equal-
ity a straightforward substitution w = y/v has been used for the inner integral
on the preceding line together with the classical Beta integral and, finally, in
the third equality, the Beta integral has been used for a second time. Insert-
ing the respective values for the constants ¢g* and C, we come to rest at the
following result.

Theorem 5.9. Suppose that X has two-sided jumps. For the pssMp constructed
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by killing a stable process on first entry to (—o0,0), the underlying Lévy pro-
cess, &, that appears through the Lamperti transform has characteristic expo-
nent given by

INae-iz) Td+iz)
Y (z) = , eR. 5.16
@ = repigTU-ap+i) ° ©-16)
In particular, the process & belongs to the class of Lamperti-stable processes

with parameters (B,7y,%) = (1 — ap, ap, ap).

Since ¥*(0) = I'(@)/(T'(@p)[(1 — ap)) > 0, we conclude that & is a killed
Lévy process. Note that, in this case, we have a non-conservative pssMp. From
(5.16), one easily verifies that W(—iap) = 0, (which means that holds
with @p < @) and hence, by Theorem [5.7)a recurrent extension at the origin is
possible. A little thought reveals that the recurrent extension is nothing more
than X — X.

Let us return to the setting of one-sided jumps, which we excluded in The-
orem We will shortly see that, in fact, the exponent correctly de-
scribes the underlying Lévy process &* even in the one-sided jump setting,
providing we take account of cancellations of the gamma functions when we
insert the special values of p corresponding to those cases.

Let us first consider the case that X has only negative jumps. This means
either @ € (0, 1) and p = 0, so that —X is a subordinator which may be started
from x > 0, or @ € (1,2) and ap = 1. The calculations preceding Theorem
@l, are still meaningful. Note, in the case that —X is a subordinator, then we
should appeal to Theorem [3.4]in place of Theorem [3.6]in order to develop the
right-hand side of (5.14). We leave the calculations to the reader. Summarising
we have the following result.

Theorem 5.10. Suppose that X has no positive jumps.
(i) If @ € (0,1) and p = O, then & is the negative of a B-subordinator, whose
Laplace exponent, in the sense of [2.10), satisfies

I'a+a
SR )
rd-a+2)
() Ifa € (1,2) and ap = 1, then & is a Lamperti-stable spectrally negative
Lévy process with parameters (B,y,y) = (2 — a,1,a — 1) and Laplace

() =

exponent, in the sense of [2.42), given by

(1 + 1
z//*(/l):(/l—a+l)r(2(_—;_’_)/l), 120.

As alluded to above, is still valid, providing one takes account of
the fact that, for the negative subordinator setting, the first ratio of gamma
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functions is unity and in the other setting the first ratio of gamma functions
is linear thanks to the recursion formula. Moreover, as with the setting of two
sided jumps, we note in both cases, £ experiences killing, which we can see
by setting the variable A = 0 in the two Laplace exponents.

When X has no negative jumps, then either @ € (0,1) and p = 1, in which
case X is a subordinator, or @ € (1,2) and @p = 1. In the first of these two
settings, it is clear that £&* is a pure jump subordinator. We can appeal to the
overshoot distribution of X past a threshold a, which, up to an exponential
change of spatial scale, must coincide with the equivalent overshoot distribu-
tion of &* over log a. More precisely, for a > 1

X —a y
—‘a = exp (fﬁo_;’ — log a) -1, 5.17)

where Tf(;;a = inf{t > 0 : & > loga}. Thanks to scaling, the law of the
left hand side of under P, as a — oo is the same as its law as x —
0. Moreover, from the discussion following Theorem [3.4] the left-hand side
of is invariant under P. Hence by setting @ = 1 in Corollary [3.5] and
recalling the asymptotic overshoot distribution given by Corollary 2.28 we see

that, for bounded measurable f on [0, o),

B/ (X - 1)] = fo fa ™D g,
=fwf(e-"—l)fm L*ﬂ*(y+z)dzdy, (5.18)
0 0o m

where 71 is the (preemptively) assumed density of the jump measure associated
to & and m* is its mean (which is necessarily finite given that a non-trivial limit
on the right-hand side of exists). By changing variables, setting u =
e” — 1 in the second integral of (5.18), its easy to deduce, up to a multiplicative
constant, that

sin wrar e’

(x)=a W

(5.19)

It is thus clear that £€* is a 8-subordinator which is characterised by the density
given in (5.19).

Let us now turn to the case that X is a spectrally positive stable process with
a € (1,2) and ap = 1. In this case, we may appeal to the two-sided exit formula

in Lemma [3.8]to deduce that, for x € (0, 1),
Pty <7h)=(1-x""

On the other hand, if we write P}, x € R, for the law of £&*, which is obviously
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a spectrally positive Lévy process, then from the two sided exit problem in
Lemma|2.30} we also have that

- - W*(-log x)
Pty <17) =P, (17" = 00) = W)

log x
where T(*)’+ =inf{r > 0 : & > 0} and W* is the scale function of —¢* (the neg-
ative sign makes it spectrally negative). In other words, up to a multiplicative
constant, we can identify

W) =>1-eM)*",  y>0. (5.20)

Now recall that the Laplace transform of W* is equal to the reciprocal of the
Laplace exponent of —£*, say ¢*, in the sense of (2.42), and hence the latter
is easy to deduce from (5.20). Summarising the case of no negative jumps, we
have the following result.

Theorem 5.11. Suppose that X has no negative jumps.

(i) Ifa € (0,1) and p = 1, then & is a B-subordinator, whose Laplace expo-
nent, in the sense of [2.10), satisfies

T+

K'(d) = A20.

l—‘(ﬁ) 9 =
() Ifae(1,2)and ap = 1, then —&* is a Lamperti-stable spectrally negative
Lévy process with (8,y,y) = (0,a — 1, 1). and Laplace exponent, in the
sense of 2.42), given by
A+ a)

Again, we see that, as predicted above, the identities we obtained for the
Laplace exponents in the conclusion of Theorem [5.11] are consistent with the
expression (3.16) when we plug in the relevant values of p, providing we allow
for cancellations of gamma functions in the latter. As one would expect, in both
cases, there is no killing. This is obvious in the setting that X is a subordinator.
For the case that @ € (1,2) and has no negative jumps, the process X reaches
the origin continuously and hence £ is a spectrally positive Lévy process that
drifts to —co.

5.4 Stable processes conditioned to stay positive

Suppose that X is a stable process which does not have monotone paths (this
is assumed throughout this section). Consider the process killed on first entry
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into (—o0, 0), that is to say (5.12). Writing ¢ for the lifetime of the stochastic
processes we consider, we have from the Lamperti transform that

-
(=1, :=f e dr,
0

where & has characteristic exponent given by (5.16). Noting that £ can other-
wise be understood as Ty if we are careful to take account of the point of issue
of X, then, with the help of Proposition #.27] we can establish the following
tail asymptotic.

Lemma 5.12. Fort,x >0,

Pty > 1) ~ Pyt 0. (5.21)

a
T+ ap)’
Proof From Theorem we note that (8, y,38,9) = (1-ap, ap, 1—ap, ap) and
hence &* belongs to the class Hy defined in (#33) (more precisely, it belongs
to Hi\{8 = 1}). When X experiences one-sided jumps, the process & is a
Lamperti-stable with parameters (8,y,%) = (2 — @, 1, — 1) in the spectrally
negative case (see Theorem m, or with parameters (3,v,%) = (0, — 1, 1),
in the spectrally positive case (see Theorem [5.11). As alluded to above, we
can appeal to Proposition with the observation that fy = p and 6 = ap,
where p = 1 — 1/« in the spectrally negative case and p = 1/« in the spectrally
positive case. In other words, we write

MO ap

Pty >0 =P({>t) =P (I, >1tx™%) ~ WY @p)

t — oo,

(5.22)
where P* is the law of £* when issued from the origin, M* denotes the Mellin
transform of I, and ¢*(z) := —¥*(—iz) is the Laplace transform of £*. More-
over, in this case M*(p) and (¢*)'(¢p) can be computed explicitly. The key in-
gredients are: The identities in Theorems 13| (i) and [5.9] for the two-sided
jump case, Theorems 4.17] and [5.10] (ii), for the spectrally negative case, and
Theorems [d.19]and [5.11] (ii), for the spectrally positive case; some straightfor-
ward manipulation using quasi-periodic properties of double gamma functions
(see Appendix [A-4); standard properties of gamma functions (see Appendix
[A.3). We find that

k)

wony _ al(ap) oA .
we) =P and @Y (@p) = Tap)T(1 +ap),
L(p)
thus concluding the proof. O

With this asymptotic, we can develop the notion of the stable process con-
ditioned to stay positive. For t > 0, x > 0 and A € 7, if we are permitted
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to exchange limits and expectations (something we will deal with later), then
with the help of the Markov property, we have,

PA, t <) = limPy(A, t < {|t+5 <) (5.23)
Py(s < 17)|y=x
= lim By | 1(ep ) —— 22 5.24
s [ <P+ s < 7y) (5.24)
X
=E, |:1(A,I<TO)W]~ (5.25)

As such, we can define the new probabilities PT = (Pl, x > 0) via the change
of measure

dp] X
dPx = #1(;@;), t>0. (526)
*lF

Note, at this stage, it is unclear whether (X, P") is conservative or not.

Remark 5.13. An alternative way to define the stable process X conditioned
to stay positive is to consider the limiting procedure

PIA, t <) = lim Py(A, t < AT TS < 0). (5.27)

forr > 0 and A € ¥,. Knowing an asymptotic for P,(7} < T,)asa — oo
is needed to compute the limit. This can be done, however, we first need to
develop an identity for P,(7} < 7,)- Independently of the calculations in this
section, this is done in the forthcoming Section We leave it as an exercise
for the reader to return to later and verify that it results in the exact same
change of measure as in (5.26). Note, this approach does not suffer the need for
a relatively delicate result of the form (T10.48), which is typically harder than
deriving the two-sided exit probability in the stable setting.

To know whether (X, P") is conservative is to know whether the right-hand
side of is a martingale or not. To this end, we can take advantage of the
Lamperti transform in Section[5.3]

Note from that W*(—iap) = 0, which implies that (exp(@p&r),t >
0) is a martingale, where it is understood that &* has cemetery state —co and
exp(—oo) := 0. In particular, if we write e for the lifetime of £*, then as the
time change in the Lamperti transform, ¢(t), is a stopping time (which may be
infinite with positive probability), it follows that

e"’f’f;(r) = 1(¢(1)<e)eaﬁf‘;(1) = e"f’f;(r) 1(f<l;,) = 1(1‘<T6)X;I/3, t> 0
It thus follows that, for x > 0, t > 0,

EulLier) X;71 = Ejyy [e0] = 0080 = 42,



132 Positive self-similar Markov processes

where (P;,x € R) are the probabilities of the killed Lévy process &*. The
martingale property now follows from the Markov Property as

ExLess<op X = Lgar By 5oy X 1yox, = Liary X7 (5.28)

Now that we know that x* is an invariant function in the above sense, we
can return to (5.23) and justify the limit. It is easy to deduce that the right-
hand side in (5.23) is a lower bound when the liminf is taken in (5.24) and
then moved inside the expectation, thanks to Fatou’s Lemma. On the other
hand, since the last statement is true for all A € ¥, we can use the martingale
property in (5.28) and deduce

limsupP,(A, t < |t + s <)

§—00

=1-liminf P,(AC, t < |t + s < ()

ap

ap ap
= ]EX |:1(Z<T)L} - Ex ll(AC t<T)X;A]
0’ yap 7

Xa[)
= Ex |:1(A,t<‘ro);:| .

X;*
< 1= Bl lueery p

L (5.29)

The equality in (5.23)) is thus justified.

Among those trajectories that remain positive, the change of measure (5.26))
rewards trajectories that move to large positive values and penalises trajectories
that visit close to the origin. Accordingly, we see heuristically that the resulting
process should be repelled from the origin. We can make this more precise by
examining our next claim that (]P’l,x > 0) describes a family of probability
measures that belong to a pssMp. Said another way, we claim that the stable
process conditioned to stay positive is a pssMp.

We observe, using Lemmal5.8] that for all positive, bounded and measurable
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functions f of (Xy, s < 1),

ENf(cXeog, 5 < D]
[ (x+ Xc'"t)aﬁ
xX®P
(cx + cXpo)®
(cx + X,)*P
(cx)®

=E! [f(X,,s < 1)), (5.30)

=E f(C()C + Xc"’s)’ s < t) 1(X+ch,20):|

=E|[f(c(x+ Xeog), s < 1) l(cx+6&_(,,>0)]

=E|f(cx+X,,5s<1) (L'x+&>0):|

for ¢, t > 0. It is automatic that (X, P") is a Markov process from the change
of measure. The remaining limiting properties of the semigroup associated to
P' that identify (X,PT) as a Feller process (see Definition in the Ap-
pendix) are easy to verify once using the change of measure and dominated
convergence. It follows that the stable process conditioned to stay positive is
yet another example of a pssMp.

Now suppose we denote by &7 = (f,T ,t > 0) the Lévy process associated
through the Lamperti transform to the conditioned stable process and write
(PI, x € R) for its probabilities (reserving, as usual, the special notation P'in
place of P(T)). We are again interested in computing the characteristic exponent
of £7, which we henceforth write PT.

Recalling the previously observed fact that, for each + > 0 and x > 0, the
quantity ¢(?) is a stopping time, we can use the change of measure at
this stopping time and write, for all bounded measurable function g,

T % VHE
Bl [g(X)] = El[g(e)] = B [g(e)e 01 )|

Recalling that W*(—iap) = 0, we can deduce that £T has the law of the process
&* under an Esscher transform and in particular that ¥1(z) = ¥*(z — iap), for
z € R; see Section and in particular. Note that we are applying
the Esscher transform to a Lévy process which is killed at an independent
and exponentially distributed random time. Nonetheless, Theorem [2.10] still
accommodates for this context.

The Lévy process £" experiences no killing as P'(0) = W*(—iap) and, since

PV (0) = ¥ (—iep) = —iT(ep)(1 + ap),

it follows that £ drifts to infinity at rate i¥1(0) = T'(qp)['(1 + ap) > 0. Re-
turning to (5.26), and recalling our earlier remarks that it rewards paths that
explore large values and penalises paths that remain close to the origin, we
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now see that the Lamperti representation and the fact that &7 drifts to co actu-
alises this heuristic. Summarising, we have the following result.

Theorem 5.14. Suppose that X is a stable process which does not have mono-
tone paths. The stable process conditioned to stay positive, defined by (5.23)
or equivalently (5.26), is a conservative positive self-similar Markov process
whose underlying Lévy process is given by

INap -ix) T(1 + ap + iz)
I'(—iz) I'(1 +1iz)

In particular, in the spectrally one-sided cases that @ € (1,2),ap = 1 and
a € (1,2),ap = 1, we interpret one of the two ratios of gamma functions
as linear. Moreover, the process &' belongs to the class of Lamperti-stable
processes with parameters (1, ap, ap).

¥l(z) =

z€eR. (5.31)

As the stable process conditioned to stay positive is a conservative process
we can verify whether we can include the probabilities P(T) in its definition or
not by appealing to Theorem[5.3] For convenience, we restrict ourselves to the
setting of two-sided jumps, the story for one-sided jumps is easily dealt with in
a similar fashion. Thanks to the Wiener-Hopf factorisation (5.31), the ascend-
ing ladder height process of ¢ is a B-subordinator with parameters (0, 0, ap);
cf. Proposition (#.I)). Suppose its Lévy density is denoted by v, then Corollary

[.3] gives us

o1 (x) = r(%pap) (1—e )y leos 15

Hence, frome.g. Theorem verifying directly that flm VT (x)dx < oo, we see
that the mean of the ascending ladder height is finite. Thus the conditions of
Theorem are met and we may include P(T) in the definition of the process
conditioned to stay non-negative. Moreover, we have all the ingredients to ex-
plicitly characterise P(T). More precisely, we can compute explicitly the Mellin
transform of X and therefore determine its density.

Recall P' is the law of £T. Corollary 4.7| (ii), tells us that ET [ff] € (0, ).
Hence from Theorem the Melin transform of the entrance law of (X, Pg) is
such that

s—1

s— I 7 %_

where [, = fow exp{—afl}ds. From the explicit form of the characteristic ex-
ponent of the process &7, see (5.31)), we deduce that

E' [¢]] = Tep)I(1 + ap).
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Moreover, from Theorem @] (i), the Mellin transform of the exponential
functional f, can be computed explicitly in terms of the double gamma func-
tion since —¢T is in the class H;. In other words, the entrance law of (X, IP’(T))
satisfies

1-s. 1 aptats, 1
Bl[x| = .. fa'r(l - s) G(=l) Gl ,Q)’
’ ' a G(p+ %,é) G(Q_ﬂ;l

[e2 (02

where the function G is the double gamma function introduced in (4.42)) and

1 Glp+1:L) G(L:1)
Cor = apT T ap) G(1:1) G(He Ly

5.5 Stable processes conditioned to limit to O from above

Let us again assume that X is a stable process which does not have monotone
paths. There is another type of conditioning for Lévy processes, which also
boils down to a change of measure, in the spirit of , which can be used
to identify a family of positive self-similar Markov processes in the special
setting that we work with @-stable processes. The conditioning of interest is
that of the stable process conditioned to limit continuously to the origin before
entering (—oo, 0). With this, we can immediately further exclude from interest
the setting that @ € (1,2) and ap = 1 (spectrally positive processes with non-
monotone paths) since they automatically exhibit this behaviour without the
need for conditioning.

As in the previous two sections, we work with ¢ as the generic notation
for the lifetime of the processes we consider so, e.g. { = 7, for (X,Py), x >
0. Define the family of probabilities (Pﬁ, x > 0) such that, for each A € ¥,
x,t,n >0,

PYA, 1<) = %Pw, 1<T1,) = 1%1 lgingx(A, t<t X <e), (532)
where X, = inf X;.

The limit can be computed once we recall the identity in Theorem [3.4] ap-
plied to the descending ladder subordinator of X, say H, (which is a stable

subordinator with index @p) at first passage time 7 = inf{r > 0 : H, > x}.
From this identity we can derive, for any 0 < € < x,

PuX, _ <) =Po(x— Hrr- < ¢)
0

_ sin(rap) fa(x_ u)aﬁflu—aﬁdu
T 0 '
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From the above equality, L’Hopital’s rule thus gives us that

lim 8t¥ﬁ—1px(XT__ <eg) = M ap-1
0

£>0 ol - ap)
With this in hand, again assuming that limits can be exchanged with expecta-
tions, we have with the help of L’Hopital’s rule that

PL(A limE, |1 Py = Oh=x 533
LE<T) = . ) ————— .
YA 1< 1)) lim @A, 1<7y) FX_<o) (5.33)
X
=E, [lm,z«n)w}

The conditioning (5.32)) thus corresponds to the change of measure

art] X!

&, |, = WI(KO’ t>0. (5.34)

Define P! = (Pi, x > 0). As in the previous section, we can verify, through
careful analysis of (5.34)), that the resulting process (X, P!) is both well defined
(in particular that the limit (5.33)) is justified) and that is is a pssMp. The key
detail is that the right-hand side of (5.34) is a martingale. Once again, this
a consequence of an exponential change of measure for the underlying Lévy
process &*. It is straightforward to observe that ¥*(—i(ap — 1)) = 0 from (5.16)
and hence exp((ap — 1)é )<z, t = 0, is a martingale. In a similar way to
the calculations in the previous section, this translates to the right-hand side of
(5.34) being a martingale as desired.

With our martingale in hand, we leave to the reader the details of the justifi-
cation of the limit in (5.33), as well as the fact that (X, P!) is a Feller process.
They are essentially the same as in the pervious section.

The process (X, P!) is referred to as the stable process conditioned to limit to
0 from above. Unlike the construction of the stable process conditioned to stay
positive, on account of the fact that @p < 1, amongst those paths that remain
positive, the change of measure in (5.34) rewards paths that pass close to the
origin and penalise those paths that explore large values.

Suppose now that we defined &' = (§,l ,t > 0) as the Lévy process associated
through the Lamperti transform to the stable process conditioned to limit to O
from above. Similarly to the case of &', it turns out relatively simple to compute
its characteristic exponent, which we shall henceforth denote by P!, Indeed,
as before, for all bounded measurable g, we have from and the Lamperti
transform that

Ef[s(X))] = B! [g(€))] = B (&) )e ™ ool
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where P! is the law of ¢! issued from the origin, ¢(?) is the time change in the
Lamperti transform. Note this also shows that the right-hand side of isa
martingale similarly to the setting for PT. In essence, & has the same law as &*
under an Esscher transform. More precisely, one easily sees that ¥4(z) = ¥*(z—
i(ep — 1)). The process & belongs to the class of Lamperti-stable processes
with parameters (3, y,y) = (0, ap, @p). Moreover, this process has no killing,
i.e. PL(0) = 0. Since

PV (0) = ¥ (=i(ep — 1)) = il(1 + ap)[(ap),

we have that §|l has mean rate of increment ¥V (0) = —I'(1 + ap)I'(ap), which
in turn ensures that & drifts to —co. Indeed, by comparing their characteristic
exponents, one may note that &' has the law of —¢! with the roles of p and p
interchanged. The long term drift of £ to —co also emphasises the heuristic
given earlier concerning the interpretation of the change of measure in
terms of how it rewards paths.

Theorem 5.15. Suppose that X is a stable process without monotone paths,
which has the possibility of negative jumps. The stable process conditioned
to limit to O from above, defined by B.32) or equivalently (5.34), is non-
conservative pssMp such that the underlying Lévy process, &, has charac-
teristic exponent given by

I'(1 +ap—iz) T'(iz + ap)

l _
YO =T T(iz)

z€eR.

In other words, & is a Lamperti-stable Lévy process with parameters (8,7, %) =
(0, ap, ap).

Clearly the stable process conditioned to conditioned to limit to O from
above is non-conservative. The only strictly positive Cramér number associ-
ated to & is given by 1, i.e. ¥(~i) = 0. It thus follows from Theorem |5.7|that
the condition is satisfied with 8 = 1, and thus a recurrent extension is
possible, if and only if @ € (1, 2).

5.6 Censored stable process

Suppose that X is a stable process which has two-sided jumps. Define the oc-
cupation time of (0, co) for X,

!
A[ = f 1(X;>0) dS, t> O,
0
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and let
y(@)=inf{s >0: A; > 1}, t>0, (5.35)

be its right-continuous inverse. Define a process (Z,t > 0) by setting Z, =
Xy, t 2 0. This is the process formed by erasing the negative components
of the space-time trajectory of X and shunting together the remaining positive
sections of path.

We now turn zero into a cemetery state. Define the stopping time

T, = inf{r > 0: Z, = 0}, (5.36)

and the process
Z; = Zzl(z<To), t>0,

which is killed and absorbed at its cemetery state zero. We call the process Z
the censored stable process. Our claim is that, up to its killing time T, this pro-
cess is a positive self-similar Markov process. It is perhaps worth noting that
we have a priori excluded the case that X has one-sided jumps as the result-
ing path description above produces the corresponding stable process killed on
entering the lower half-line.

We now consider the scaling property. For each ¢ > 0, define the rescaled
process (Z¢,¢ > 0) by Z¢ = ¢Z,-;, and, correspondingly, let y° be defined such

that
(1)
f'y x50 ds =1, (5.37)
0

where X{ = cX.a, t > 0. By changing variable with u = ¢ s in (5.37) and
noting that A,-«; = ¢”“t, a short calculation shows that

"y () = y(0).
For each x, ¢ > 0, we have under P,

CZC‘“Z‘ = CX}/(C‘”I) = CXC—n,yC([) = Xc t Z 0

¥
The right hand side above is equal in law to the process (Z, P.,), which estab-

lishes self-similarity of 7. Note, moreover, that, for all ¢ > 0, if T is the time
to absorption in {0} of 7, then

TS = inf{t > 0 : Zpo, = 0} = ¢"inf{s > 0 : Z; = 0} = ¢"T,. (5.38)

It follows that, for all x, ¢ > 0, under P,, cZ.-; = cZC—a,l(chTO), t > 0, which
is equal in law to Z under P,,.

It remains to show that Z has the Feller property. This is easily verified
through the Feller property of X and left as an exercise to the reader.
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We now consider the pssMp Z more closely for different values of @ € (0, 2).
Denote by E: (E,,t > 0) the Lévy process associated to the censored stable
process through the Lamperti transform. From the exposition in Chapter 3] we
know that, for a € (0, 1], the stable process X cannot hit points. This implies
that Ty = oo almost surely, and so, in this case, Z = 7 and 2 experiences
no killing. Moreover, when @ € (0, 1), the process X is transient, meaning
lim,—, |X;| = oo, which implies that Z has almost surely finite occupancy of
any bounded interval, and hence lim,_, E,z co. When @ = 1, the process
X is recurrent, meaning liminf,_, [X;| = O and limsup,_,, |X;| = oo, and so,
lim sup,_,, E,: —liminf, 2,: oo. Meanwhile, for @ € (1, 2), X can hit every
point. Hence, we have, in particular, that 7y < oo. However, on account of
the fact that creeping is not possible, the process X must make infinitely many
jumps across zero during any arbitrarily small period of time immediately prior
to hitting zero. Therefore, for @ € (1,2), Z approaches zero continuously.

Unlike the previous examples of pssMp, understanding the Lamperti trans-
form of the censored stable process is a much less straightforward procedure.
Nonetheless we shall proceed through a number of steps to achieve this goal.
We start with the following result.

Theorem 5.16. Suppose that X has two sided-jumps. The Lévy process 2 can
be identified as follows.

@) It is equal in law to the sum of two independent Lévy processes £ and
£,

(ii) The Lévy process £- has characteristic exponent
Y()-q, z€R,

where we recall that Y* is the characteristic exponent of the process &*
defined in Section[5.3|and q* = P*(0) is the killing rate of &, see (0.13).
Said another way, &- is formed by removing the effect of independent
killing from &*.

(iii) The process €' is a compound Poisson process with jump rate q* and
jump distribution, F€' on R, given by its characteristic function,

; sin
f e FCi(dx) = Mr(1—04)+ia)r(ap—i¢9)r(1+ie)r(a—ie), (5.39)
R ()

for@ eR.

Before beginning the proof, let us make some preparatory remarks. Recall
that 7; = inf{r > 0 : X; < 0} and let

o =inf{t > 75 : X, > 0}
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be the return time to (0, oo) for X. Note that, due to the continuous nature of
the time-change v,

Zfa = X(J' and ZTG_ = XT(;—-
In order to prove Theorem we require the following lemma.

Lemma 5.17. Suppose that X has two sided-jumps. For each x > 0, the joint
law of (XTa,XTa,,X(,) under P, is equal to the joint law of (xXT(;, xXTa,, xXs)
under Py.

Proof Recall that, for each ¢ > 0, we defined the rescaled process (X;,t > 0)
by X{ = cXca, t 2 0. Let 7y~ = inf{r > 0 : X; < 0} and 0 = inf{z > 7~ :
X{ > 0}. Then

c'ry = inf{c"t > 0: X, <0} = inf{s > 0 : cXoy <0} = 77",
and, similarly,
c%o = inf{c"t > 15 1 X; > 0} = inf{s > 777 : X0y < 0} = 0.

With the classical scaling property of X, this implies that for every ¢, x > 0,
under P,,

d
(CX‘ra > CXT6—9 cXy) = (CXC*“TS" > CXc*“‘rf)'f—, Xemage) = (XT(; > X‘r(;—a X,

under P,,. The claim follows by setting ¢ = 1/x. O

Proof of Theorem[5.16|(i) and (ii) Applying the strong Markov property at
the stopping time 7, it is sufficient to study the process (Z;,¢t < 7p). It is
clear that the path section (Z;,¢ < 1) (note the strict inequality) agrees with
Xt <73); however, rather than being killed at time Ty the process Z jumps
to a positive state. Recalling that £* is the Lévy process that describes, through
the Lamperti transform, the process X killed on entering (—oo, 0), it follows
that the dynamics of E agree with those of £* up to, but not including, the mo-
ment of killing of the latter. Instead of being killed at rate g*, the process E
experiences an additional jump at rate g*. This yields the decomposition of E
into the sum of & := (€&, 1 > 0) and £ := (£, 1 > 0), where £ is a process
which jumps at the times of a Poisson process with rate ¢*, but whose jumps
may depend on the position of z' prior to this jump. What remains to be shown
is that the value of the first jump (and hence all subsequent jumps) of £°' is
also independent of the previous path of &&.

Let T, be the time of the first jump of the process ¢°' and note from above
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that it is an independent exponentially distributed random variable with param-
eter ¢*. Using only the independence of the jump times of &~ and ¢!, we can
compute
AZTE = ZT(; — ZT&* = exp(flfl + fgl‘) - exp(flflf + §$1‘_)
= exp(£r,_)[exp(A&s)) — 1]
c

= Xo_[exp(Agh) - 1],
where AL = €61 — €51 Tt follows that
AZT(; -1+ Xo’ _X‘ra— _ Xg—

A =1+ )
exp( ‘le) X‘r(_)— X‘r(_)— X‘r(—)—

Hence, it is sufficient to show that X, /XT(;_ is independent of (X;,¢ < 7). To
this end, observe that one consequence of Lemma [5.17]is that, for a bounded
measurable function g and x > 0,

()=l

Now, fix n € N, take bounded, measurable functions f and gand 0 < 51 < 55 <
.-+ < 8, < t. Then, using the Markov property and the above equality,

E,

X,
E, [f(XS] ey Xsn)g(—X )1(t<r(;)]
-

_ El[f(xxl,...,Xsn)l(t«a)EXr[g( - )”

X
_ El[ X ,Xsn)l(,«(;)]]El[g(X )]
5 -
We have now shown that &~ and £ are independent. O

For the proof of Theorem (iii), we need to have some understanding of
the jump distribution of compound Poisson process ¢¢'. Let us introduce some
additional notation in order to meet this goal. Let X be an independent copy of
the dual process —X and let

#, = inf{t>0: X, <0}

Note that X is also a stable process. Furthermore, we shall denote by A¢C! a
random variable whose law is the same as the jump distribution of £¢'. Before
proving part (ii) of Theorem [5.16] we first need an intermediate lemma.
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Lemma 5.18. Suppose that X has two sided-jumps. The distribution of exp(A&C)
is equal to that of

Xes A
<_ X )(_Xﬁ? )
where X and X are taken to be independent, such that Xy = Xo=1.

Proof 1In the proof of Theorem we saw that

Xy
X,

0

exp(Aéy!) = (5.40)

Applying the Markov property at time 7;,, and then using Lemma but
applied to the stable process X , we obtain for bounded, measurable f,

Erlf (Xl Fe;] = By [f (=Xl

= Ei[f(Xs; )]iy:XT— .

Then, by disintegration,

2|z ==, (5

0
=E1f b
*J(0,00)

-l

The claim now follows. O

Proof of Theorem[5.16](iii) The jump rate being equal to ¢* has already been

established. The characteristic function of A" can be evaluated by using the

explicit distributional details of overshoots and undershoots of stable Lévy pro-

cesses in the context of Lemma[5.18] For this Theorem 3.6 will be essential.
Recall that, for a € R,

5 =inf{r > 0: X, > a,

and let 7 be defined similarly for X. We have with the help of the beta function
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and Theorem [3.6]
Ei[(—X+)"] = B[(X+: — )]
_ Sin(rap) f oo (1+n7"dr
n 0

@FU —ap+iOlap-i0), GeR.  (541)

Furthermore,

X, \if R — 1 \i6
0 1
X‘ra— 1 - X-}T_

_ sin(rap) I[(a+1)
- 1 T(epT(ep)

1 00 oo 16 ap—1 ap—1
1 = y)2P _ y)ap
xf f f u( AZ) (VI DY qudvdy.  (5.42)
0 Jy 0 Vil(y + u)l+e

For the innermost integral above, substituting w = v/u and appealing to the
integral representation of the beta function in Appendix (A:I8), we have

foo i e fw Wt a0+ D@ —i6)
0 0

% qu= —~ dw=
u+vyrra A +wyrre 7Y Ta+1)

Substituting z = v/y — 1, the next iterated integral in (5.42) becomes

” o [T ; T(@p)l(@p)
—ar, _ ap—1 dy =y < dz = yv% P r .
j; vy —-y) v=y j; a+or z=y (@)

Finally, it remains to calculate the resulting outer integral of (5.42),

1
f Yy (1 - )P dy = T(1 — ap)[(ap).
0

Multiplying together these expressions and using the reflection identity for
the gamma function, see (A.12) in the Appendix, we obtain

B, [(—i)w] _ [0+ DI - i6)

o o (5.43)

The result now follows from Lemma [5.18] by multiplying (5-41) and (5.43)
together. O

Finally we are ready to fulfil our objective of computing the characteristic

exponent ¥ of 2 First we compute W€ and \P*, the characteristic exponents of
&0 and £&. As £C1 is a compound Poisson process with jump rate g* given by
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(5-13) and jump distribution given by (5.39), we obtain, after re-writing with
the help of the reflection formula (c.f. in the Appendix),
. _ ')
© = Tapra —apy
that, for 0 € R,

‘“I’C' (9) —

I'(e) I'(l1 —ap +iO(ep —iOI'(1 + 1D (a — 16)
T'(ep)I'(1 - aﬁ)( - I'ep)'(1 - ap)l'(@) )
On the other hand, Theorem [5.9] provides an expression for the characteris-
tic exponent P of the Lamperti-stable process &£*, and removing the killing
constant g*, Theorem [5.16] (i) gives us

INe—-16) TI'(1+1i6) I'@)

L _ —
v = Tep—i0)T(1—ap+i6) TL@p)(l—ap)

Applying the reflection formula twice, we compute

¥ (6) = PE6) + ¥ (0)
= T(a -0 +i6)
o ( 1 T -ap+iO)l(ep —i6) )
T(@p — i1 —ap+i0) T(ep)l(1 — ap)(@p)(1 — ap)
= T(@ — i) +i0T(1 - ap + i) (ap — i)
y (sin(ﬂ(ozﬁ — i0)) sin(w(ap — i16)) B sin(zrap) sin(rap)

). (5.44)

2 2

Manipulations of the classical product and sum identities for trigonometric
functions give us

sin((ap — 10)) sin(m(ap — 1)) + sin(rib) sin(mr(a — 10)) = sin(wapP) sin(map).

Hence we can push (5.44) a little further and write

§ @@ — O+ — ap + O (ap — i) 21D Siig’r(“ — 1)

Again, using the reflection formula for gamma functions twice (see (A12) in
the Appendix), this leads to the following main result.

Theorem 5.19. Suppose that X has two sided-jumps. For the pssMp con-

structed by censoring the stable process in (—0,0), the underlying Lévy pro-

cess E that appears through the Lamperti transform has characteristic expo-
nent given by

¥ ()= I'(ap - i) T'(1 —ap +.iz)’

I'(-iz) T(-a+iz)

z€R. (5.45)
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In other words, the process E‘ belongs to the class of hypergeometric Lévy
processes with (B,v,8,9) = (1, ap, 1 — a, ap).

We may now directly from (5.43)) that E drifts to oo, oscillates, drifts to —co,
respectively, as @ € (0,1), @« = 1 and @ € (1,2), with two-sided jumps in all
cases. In other words, its associated pssMp Z is transient for @ € (0,1) and
recurrent for @ € [1,2). We also deduce that, in accordance with the behaviour
of X, the process Z drift to oo, oscillates or hits 0 continuously, respectively
whena € (0,1), @ = 1and a € (1,2).

In the conservative setting, i.e. if @ € (0, 1], from Theorem@]the ascending
ladder process is a 8-subordinator with Laplace exponent A — I'(ap + 1)/T'(1).
As in the setting of the stable process conditioned to stay positive, it is easy
to verify that the conditions of Theorem [5.3] are thus met and hence the cen-
sored stable process is well defined when issued from the origin. Moreover, we
can compute explicitly the Mellin transform of Z; and therefore determine its
density when @ € (0, 1).

Let us assume that @ € (0,1) and write P for the law of E Recall from
Corollary part (ii), that E [El] € (0, 0). Hence from Theorem the
Melin transform of the entrance law of (Z, Py) is such that

sl aéfz ] £l
1

where [ o= fow exp{—« g‘s}ds. From the explicity form of the characteristic

exponent of the process E’, see (5.43), we deduce that
E|& | = Tpra - ap).

Moreover, from Theorem [4.13] (i), the Mellin transform of the exponential
. ~T C
functional [, can be computed explicitly in terms of the double gamma func-

tion since — £ is in the class ;. In other words, the entrance law of (Z,Py)
satisfies

5— s-1 1-=s G(%,é) G($;é>
Bl = (1 )G(p+%;$) a(z1)

where the function G is the double gamma function introduced in (#.42)) and

i ) Glp+1:7) (15 1)
Cop = al(ap)T(1 — ap) G(l; %) G(ﬂ. 1).

a ’a
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In the non-conservative setting, i.e. when @ € (1,2), we note that the non-
negative Cramér number is equal to 0 < @ — 1 < 1 < . The conditions of
Theorem thus holds and a recurrent extension is possible. The recurrent
extension is, of course, the continued censoring of X.

5.7 Radial part of an isotropic stable process

In this section, we consider an isotropic d-dimensional stable process X with
index @ € (0,2). In particular, we are interested in the process defined by its
radial part, i.e. (|X;|, ¢ > 0), where | - | denotes the Euclidian norm.

Similarly to the case of the censored stable process, we turn zero into a
cemetery state since the process X may be recurrent and hit zero. Define the
stopping time

% =inf{r > 0: X, = 0}, (5.46)

and the process

Z; = X1 crony, 120, (5.47)

which is killed and absorbed at its cemetery state whenever X hits O for the
first time.

Recall that X is isotropic. That is to say, for any orthogonal matrix U on R¢,
the processes X and UX have the same law under Py. It follows that the process
Z = (Z;,t = 0) is Markovian. Indeed, suppose we identify (Xt(x), t > 0) as equal
in law to (X, P,). Distributional rotational invariance implies that

(X¥L > 0) 2 (xH), 1 > 0) (5.48)

where @ means equality in law and 1 = (1,0,---,0) € R is the ‘North Pole’
on S4°!. Moreover, for any bounded and measurable function g, appealing to
the Markov property of X and (5.48)), we have

X X 7 (;X) X
B[ g (X2 | X < ] = B[ (1% H)' LCANER]
|:g(|Xt(|X(sV>\1)|)‘ O'(lX,Sx)LM < S)]

("),

where X, t > 0 is an independent copy of (X,P,), y € R?. It follows that
|X| and hence Z is a Markov process. This argument can easily be developed
to deduce that Z is a Feller process (see Definition in the Appendix) by
using the Feller property of X and dominated convergence.

=E
=E
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The process Z also inherits the scaling property from X and the scaling of
710 similar in spirit to (5.38)). This implies that the radial part of an isotropic
stable process killed when it hits zero is a pssMp with index .

We now consider the process Z more closely for different values of @ and d,
and denote by & = (&, ¢ > 0) its associated Lévy process through the Lamperti
transform. From the exposition in Chapter 3 we know that, for d > «, the
stable process X cannot hit points. This implies that 7% = co almost surely,
and so, in this case, Z and & experience no killing. Moreover, when « < d, the
process X is transient implying that Z and & drift to co. When d = @ = 1, the
process X is recurrent which implies that the Lévy process & oscillates. In the
remaining case, i.e. d = 1 and a € (1,2), the process X is recurrent and can
hit every point, in other words, 7! < co almost surely. Since X must make
infinitely many jumps across zero during any arbitrarily small period of time
immediately prior to hitting zero, the process Z approaches zero continuously
implying that & drifts to —co.

Towards the goal of computing the characterisitic exponent of &, we first
show that in the one-dimensional setting there is a similar decomposition of
the Lévy process which is associated to the censored stable process. More
precisely, we have the following result.

Proposition 5.20. Assume that d = 1. The Lévy process & can be decomposed
as follows

(i) It is equal in law to the sum of two independent Lévy processes £ and
£,

(ii) The Lévy process £~ has characteristic exponent
\P*(Z)_C]*, ZER’

where we recall that Y* is the characteristic exponent of the process &*
defined in Section[5.3|and q* = W*(0) is the killing rate of &*, see (5.13).
Said another way, &- is formed by removing the effect of independent
killing from &*.

(iii) The process £ is a compound Poisson process with jump rate q* and
jump distribution, F©> on R, given by its characteristic function,

feiexFCZ(dx) - W (5.49)
R [(a)

Proof In order to prove this result, we use similar arguments as those used in
the censored stable process case that we repeat for the sake of completeness.
Recall that 7; = inf{r > 0 : X; < 0} and observe that it is almost surely
finite since the process X is symmetric. Again from symmetry and the strong
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Markov property at 7, one can deduce that it is sufficient to study the process
(Z;,t < 7). It is clear that the path section (Z;,7 < 7)) agrees with (Xt <
7,); however, rather than being killed at time 7, the process Z jumps to a
positive state. Recalling that £&* is the Lévy process that describes, through the
Lamperti transform, the process X killed on entering (—oo, 0), it follows that the
dynamics of ¢ agree with those of £ up to, but not including, the moment of
killing of the latter. Instead of being killed at rate g*, the process & experiences
an additional jump at rate ¢*. This yields the decomposition of ¢ into the sum
of & := (£-,1 > 0) and £ := (£, 1 > 0) a process which jumps at the times
of a Poisson process with rate g, but whose jumps may depend on the position
of & prior to this jump.

Let T} be the time of the first jump of the process &2 and note that it is
an independent exponentially distributed random variable with parameter g*.
Using only the independence of the jump times of £~ and £, we can compute

exp(&r, +£72) —exp(ér,_ +£77)
exp(ér,-)exp(A&;?) — 1]
Xe-_[exp(A&S?) — 1],

where A&S? = £ — £ Tt follows that

AZTa _ 1 + _XT(; - X-ra_ __ XT6
X X Xr-o ’

0 0

which is independent of (X;,¢ < 7;;) according to the proof of Theorem
thus implying that £~ and £ are independent. Moreover, from the proof of
Proposition[5.20]and (5.43), the characteristic function of the jump distribution
F© satisfies (5.49). O

We now proceed with the main result in this section which determines the
characteristics of &.

AZo =70 —Z:
0 0

0=

exp(A&;) = 1+

Theorem 5.21. For the pssMp constructed using the radial part of an isotropic
d-dimensional stable process, the underlying Lévy process, & that appears
through the Lamperti transform has characteristic exponent given by

F(3(-iz+a)) T3z +d))

W) =20 ,
© M-l T(Gz+d-a)

z€R. (5.50)
In other words, the process 2& belongs to the class of hypergeometric Lévy
processes with (5, y,B, ) =(,a/2,(d-a)/2,a/2).

Proof We need to appeal to two different tactics according to whether @ < d
or d < a. Note that the first case covers dimensions d > 2 and dimension
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d = 1 with a € (0, 1), whereas the second case covers the setting that o € [1, 2)
and d = 1. Essentially these cases distinguish the setting that X is transient
and recurrent, respectively. The methods for each of these settings are quite
different.

Assume that d > «, i.e. that the process X is transient. In this case, the
process & drifts towards oo since the process Z is also transient. Write (P, x €
R) for the probabilities of &, reserving, as usual, the notation P to mean Py. Our
strategy is to compute the integral

f E,[Z"]dt = f E[e“]dt = f E[e"* %] ds, (5.51)
0 0 0

where we have used the fact that
(1) do(t
f e®ds =1 and hence —"Si )eas’xem =1.
0

Once we have an identity for (5.51)), then it must be the case that this equals
1/y(a + u), where i is the Laplace exponent of &, given by

E[e%“] = /@', t>0,

for any z € R such that the right-hand side of is well defined. It will turn
out that this will restrict us to Re(z) € (—d, —a).

Recall from Lemma [3.10} that the process X can be seen as a subordinated
d-dimensional Brownian motion. This implies that the process Z starting from
1, has the same law as (\/ERX),I > 0), where v = (d/2) — 1, R™ denotes a
Bessel process of dimension v with RBV) =1/v2,and A = (A,,t > 0) is an
independent stable subordinator with index a/2. Thus,

f E,[Z"]dr = 22 f f E[(RY))"
0 0 0

Quiz [ u
= E|(R)
I'(@/2) Jo ( ‘ )
where in the last identity, in the spirit of (3:20), we have used that the renewal
measure for A satisfies

1
RY = —]]P’(A € ds)dt
0 \/§ t

1 a
RY = —] 5271 ds,
V2

1
U Z—Q/Z_ld, > 0.
(ds) F(Q/Z)S s s>

On the other hand, recall that Rgv) starting from x, has transition probability
density given by

1
]P’(R;V) edy | Rg’) = x) = ;x’vywrle’“‘zﬂz)/z’lv (x_ty) dy,
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where [, denotes the modified Bessel function of the first kind, which is given

by
B 2\ Ty +k+1)
L=y (5] = 2o
k=0
Hence,
sl |89 =] 27 [T ()
s 0 \/E B o \/zs
1"(Z +v+ 1) u
— e Aspqyu/2_\2 Fo(Y 1 1 —
M A VO T ‘(2+"+ VL)
where we have used the identity
r(/’zﬂ) p+v c?
v+ 1, —],
2 4p

* p—le—pyzl d :2—v—l v —(p+v)/2
fo y v(cy)dy cp o+

for ¢ > 0. The formula from above is valid for u/2 + v + 1 > 0, which is
equivalent to the condition u > —d. Now, applying the identity

e_XlFl(a7b7-x) = lFl(b_a7b7 _x)’

we observe, for u > —d
1 F(§+v+1) u 1
R(V)z_ = 2 uf2 F ) +15__ .
S rorn il 4s
0 5 (
Therefore, for u € (—d, —a), we deduce
o0 2”F(‘2—‘+v+1) 00 u 1\ o
EilZdt=————2 | |Fi|[-s,v+1,-—|s%"d
fo 1121 r(a/z)r(v+1)f0 ! 1( v 4s)s y
27T (5 +v+1 00 "
(2 )f IFI(—E,v+l,—x)x_T_ldx
0

" T@/2ro+1) 2
25 +v+1) | T +w/DT0+ DI @/2)
I'—u/2)T(v+ 1+ (@+u)/2)

E [(Rgﬂ)“

" T@/2r(v+ 1)
T(d+u)/2) T(=(a+u)/2)

T(d+a+uw/2) T(-u/2)

-

where we have used the following identity
') (a—-
_ Tl - b) for 0<b<a.

© b
X Fi(a,c,—x)dx = )
R =
We may now restate (5.51) more carefully and, with the addition of Fubini’s

(5.52)
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Theorem, we can conclude that, for u € (-d, —a),

00 00 1
u _ (u+a@)és e
fo El[z,]dz_EUO e ds]_ Taw (5.53)

Putting all the pieces together, we obtain that the Laplace exponent of & satis-

fies

JUa-2)/2) T(z+d)/2)
[(-z/2) T(z+d-a)/2)

A simple argument of analytic extension provides the characteristic exponent

of £ as stated in (3.50).

Next, assume that d = 1 and @ € [1,2), i.e. that the process X is recurrent.
In order to compute the characteristic exponent of &, we use the decomposi-
tion stated in Proposition Recall that the characteristic exponent £~ was
computed in the previous section and satisfies, for 6 € R,

INe-10) T +1i6) I'(e)
Iz - I - 3 +16) " T(a/2)T(1 - 2

Y(z) = -2 z € (=d, a).

wLg) =

In order to finish the proof, the computation of the characteristic exponent of
£C is needed. Since £ is a compound Poisson process with jump rate ¢* and
jump with characteristic function given by (5.49), we obtain

T(a) ( | T +ior@—i6)
T(a/2T(1 - 9) T(a)

Y& () = ) 0 eR.

Hence summing up the characteristic exponents of £~ and £°2, and applying
the reflection formula (A:12)), we deduce

. . 1 1
¥(6) =T+l (e - 1m(r(g —iOr( -2 +i6) T(a/2r( - g))
I'(l1 +i0O(a —1i6) ( . a . . (T
= (sm (n(E - 19)) - s1n(7)), (5.54)
for 0 € R.

Manipulations of the classical product and sum identities for trigonometric
functions and the reflection formula for the gamma function (A:12), give us

sin(ﬂ(% - iH)) - sin(%) = 2sin (—i%r)sin ((1 —a+ ie)g)
1 1
) 2ﬂ2f(—i9/2)F(1 + g) C((1-a+i0)/2)T((1 +a-i6)/2)

On the other hand from the duplication formula (A14), we see

1 . . 2i9
ra +ig) = | 9 (14 9) 2
2 2) Vr
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and

. a—1i0 1 +a—if) 201
F(a—le)—l"( 5 )F( > ) ﬁ

Finally putting all the pieces together in (5.34), we deduce
JGE0+a) TG0+ 1))
r(-1i0) TEG+1-a)’

PH) =2 g eR,

which completes the proof. O

As one might expect, there is no issue with defining | X| when issued from the
origin. We need only distinguish between the two cases of the representation
of |X| as a conservative pssMp or a recurrent extension of the pssMp (5.47).
Given the known behaviour of the stable process in one and higher dimensions
(cf. Chapter [3), it is straightforward to declare that recurrent extension occurs
when « € (1,2) and d = 1, whereas, in all other cases of (a, d), the point 0 is an
entrance boundary and is otherwise a conservative process on (0, o). In-
specting (5.50), the previous remarks correlate precisely with the conclusions
of Theorem [5.3] and Indeed, we note that, when « € (1,2) and d = 1,
Y(-i(a — 1)) = 0, i.e. there is a Cramér number 0 < @ — 1 < 1 < a, hence
Theorem [5.7] correctly predicts a recurrent extension of (5.47). Moreover, in
the other cases, when 0 < @ < d, we note that the ascending ladder process
is again a S-subordinator and hence has finite mean. Accordingly Theorem
correctly predicts entrance at 0.

Similarly to the case of the stable process conditioned to stay positive and
the censored stable process for @ € (0, 1), we have all the ingredients to com-
pute explicitly the Mellin transform of Z;, and therefore determine its density,
for the radial part of an isotropic stable process when d > a.

Let us assume that d > « and recall from Corollary [d.7] part (ii), that E[£,] €
(0, ). Hence from Theorem the Melin transform of the entrance law of
(Z,Pyp) is such that

s=1

Eo|z'| = a}«t:EgI]E[i‘?_l]’

where I, = fow exp{—aé&;}ds. From the explicit form of the characteristic ex-
ponent of the process &, see (5.50), we deduce that

r(e)r()

E[&]=2""

Moreover, from part (i) of Corollary@d.16] the Mellin transform of the exponen-
tial functional /,, can be computed explicitly in terms of the gamma function.
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In other words, the entrance law of (Z, Py) satisfies

ts F(l—s)r(%)

o (4) o JT=s)

Eo|z™'| =

5.8 Comments

The notion that a pssMp can be expressed as the exponential of a time changed
Lévy process was first described in the foundational work of Lamperti [139].
Section[5.T|summarises Lamperti’s main findings. The proof of Theorem|[5.2]is
due to Lamperti [139], however a more complete version of the proof is found
in Chapter 13 of [123]]. Also in [139], Lamperti computed the characteristics of
the underlying Lévy process embedded in the Lamperti transform of a stable
subordinator, which turned out to be an example of what we now refer to as a 8-
subordinator. Interest in positive self-similar Markov processes was rekindled
around the turn of the Millennium with various works concerning the problem
of the existence of an entrance law at the origin (cf. Bertoin and Caballero
[22], Bertoin and Yor [27], Caballero and Chaumont [44], Chaumont et al.
[47] and Bertoin and Savov [23]]). The conclusion of Theorem @] gives the
union of the aforesaid literature. Bertoin and Savov [23]] go further and give a
pathwise construction of the process (Z, Py). The duality property that appears
in Proposition [5.5] was studied by Bertoin and Yor [27]. The time-reversal
of (Z, Py) at last passage times of Proposition [5.6] is taken from Chaumont
and Pardo [49]]. The existence of a recurrent extension from the origin was
dealt with by Rivero [180, [181] and Fitzsimmons [71] and Theorem isa
summary of their work.

In this text, for any stable process, we always work with the natural enlarge-
ment of the filtration generated by the process itself; see Warning 1.3.39 of
Bichteler [29] for further elaboration on this issue. It was a landmark obser-
vation of in Caballero and Chaumont [43]], which noted that further concrete
examples of pssMp could be studied for which their Lamperti transform could
be characterised explicitly. Identification of the underlying Lévy processes that
Lamperti transform to the positive self-similar Markov processes described in
Sections [5.5] was undertaken in Caballero and Chaumont [43]] using a
method that examined their infinitesimal generators. A different approach that
uses fluctuation identities associated to the aforesaid pssMp was used in Chap-
ter 13 of Kyprianou [123] to identify the underlying Lévy processes using the
Wiener—Hopf factorisation. As alluded to in the latter, we take a more eco-
nomical approach, taking advantage of the fact that all three underlying Lévy
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processes are related by an Esscher transform. Lemma [5.12] that was used in
constructing the stable process to stay positive in Section was previously
known up to a constant, see for example Chapter XIII of Bertoin [18]. The
representation of the entrance law of P(T), discussed following Theorem is
implicit in existing results of [[121].

Section [5.6] is taken from the recent work of Kyprianou et al. [129]. The
entrance law discussed after Theorem [5.19]is presented here for the first time.
Some of the results in Section are to be found in Caballero et al. [45],
albeit, there, they used a different method, appealing infinitesimal generators.
More precisely, Theoremcan be found in [45]] in the case that @ < d and
@ = 1 = d. The approach we take to Theorem [5.7]is new and was suggested
to us by Alexey Kuznetsov. The characterisation of entrance law of the radial
part of a d-dimensional stable process given at the end of Section[5.7]is a new.
On a final note, the identity (5.52) for the hypergeometric function | F; is one
of the many identities that can be found for hypergeometric functions, see for
example, in formula 10, page 273 of the book of Bateman and Erdélyi [11].



6

Spatial fluctuations in one dimension

Having developed the relationship between several path functionals of stable
processes and pssMp, we shall go to work and show how an explicit under-
standing of each of their Lamperti transforms leads, in a relatively straightfor-
ward way, to a suite of fluctuation identities. In essence, we will see that all of
the identities we are interested in can be rephrased in terms of an underlying
hypergeometric Lévy process. The specific nature of the Wiener-Hopf factori-
sation for this class, together with the identities in Section[2.17)is what gives us
access to explicit results. Throughout this chapter, we keep to our usual nota-
tion that X = (X}, ¢ > 0) is a one-dimensional stable process with probabilities
P,, x € R (reserving the special notation P in place of Py).

6.1 First exit from an interval

Theorem [3.6] deals with the event of first exit of a stable process from the
interval (—oo, x), for some x > 0. A natural problem to consider thereafter is
the event of first exit of a stable process from an interval, say [0, a], for some
a > 0. To this end, let us write as usual

70 =inf{r>0:X,>a} and 7, =inf{r>0:X, <0},

where X is a stable process. As with many of the results in this chapter, we
must be careful on occasion to distinguish whether or not the process X is
spectrally negative. Recall that 0 < ap,@p < 1 if and only if X has jumps in
both directions. Moreover, when a € (1,2), p = 1, corresponds to the case
that X is spectrally negative without monotone paths and ap = 1 corresponds
to the case that X is spectrally positive without monotone paths. The reader
may also assume throughout that the setting of monotone paths, i.e. @ € (0, 1)
and p € {0, 1}, are always excluded.

155
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As a warm-up to the main result in this section, let us start by computing the
two-sided exit probabilities. The reader will note that the result is consistent
with Lemma|3.8] which deals with the case that @p = 1 (spectrally negativity).

Lemma 6.1. Suppose that a € (0,2) and 0 < ap < 1. Fora > 0 and x € [0, a],
() ¥
T(ep)(ap) Jo

Proof Recall that £* was defined in Section Denote by P* the law of &*
and, for b > 0, let

Pi(t} <1p) = 7711 =1 dr.

o =inf(t > 0: & > b).

Recalling that the range of the the stable process killed on exiting [0, co) agrees
with the range of the exponential of the process £, we have, with the help of

Lemma[2.26] Theorems[5.9)and [5.1T]as well as Proposition 4.3]

Pty <79) = P (1550 < )
(@) “ —apy nap-1
S - e (1 — ey dy
C(ap)T(@p) Jiog(asx
I'(a) xa

= taﬁ—l(l _ t)ozp—l d[,
Llep)(ap) Jo

where in the final equality we have applied the change of variable r = e™. O

Now we turn to a more general identity around the event of two-sided exit.
The reader will note that the above Lemma is, in principle, a corollary to the
following Theorem. However, as it will shortly become apparent, the marginal-
isation of the more general fluctuation identity in Theorem|[6.2]to derive Lemma
[6.1)is not necessarily the most convenient way of doing things. We also note
that we exclude the case of spectral negativity in the next theorem as the right
hand side of the identity would otherwise be zero.

Theorem 6.2. Suppose that @ € (0,2) and 0 < ap < 1. Fora,u > 0, x € [0, al],
ye[0,a—x]andv € [y,al,

P(Xr: —a€du,a—Xr:- €dv,a—Xpo €dy; 7, <71)
_ sin(rap) I(a+1) x%P(a — x =) (v — y)P 1 (a - v)
- 1 T(epl(ep) (@ y)(u+v)r!

dudvdy.

Proof The overshoot and undershoots at first passage over the level a for X
on the event {1} < 7,1 are, up to a logarithmic change of spatial variable,
equal to the overshoot and undershoots at first passage over the level loga

for £ on the event this first passage occurs before £* is killed. Note that, for
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u>0,y€[0,a—x]andv € [y, a], with the help of Theorem [2.23] up to a
multiplicative constant,

X X Xos- .
P, -1>u/a,1 - —— >v/a,l - —— >y/a, 1; <7,
a a a

- (e -t e “27)
og(a/x) a
> —log (?),

e A=Yy =
log(a/x) — & s > T log( ), ‘rlo;(a o < oo)

a
log(a/x) o o
= f f f u*(log(a/x) —r)
~log(3%) J-log(%*) Jiog(£2t)

X {*(z — r)ym*(w + 2)1 (> dwdzdr,

log(a/x) — &+

Tlng(a/x) -

where 71" is the Lévy density of £* and, moreover, u* and &* are the densities of
the renewal measures of the ascending and descending ladder height processes,
respectively. Taking derivatives, we get

Pi(Xr —aedu,a—Xp:_€dv, a— XT;_ edy, 7, <71,)
. a—=Y\\ s a—y\\ . a+u dudvdy
a2 (2 22 |
" (Og( X ) " Og(a—v) d Og(a—v) (a—y)a—-v)a+u)
Given that the Wiener-Hopf factorisation of £* has been described in explicit
detail in Theorem [5.9] we can now develop the right-hand side above further.
To this end, recall that the process £&* belongs to the class of Lamperti-stable

processes with characteristic exponent (and hence Wiener—Hopf factorisation)
given by

Ta—-i I'(1+1
prg= @i Tt o g
IN'ap-iz) T -ap+iz)
From Lemma4.9] we have
I+ *
7'(x) = U +a) © x>0,

- T(ep)(1 - ap) (e* = D+’

and from Corollary [4.3] the renewal measures of the ascending and descending
ladder height processes (which are clearly g-subordinators given the expres-
sion for W*) have densities given by

1 )
Wx)= ——e P (1 -eH*! x>0

L(ap)

and
1 R R
0" (x) = ——e 170x(] — g=¥)2P 1, x>0

[(ap)
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for x > 0, respectively. In the special case that X (and hence &) is spectrally
positive, the descending ladder height process of £* is a pure drift and hence
its potential measure is equal to Lebesgue measure restricted to [0, o). In this
sense we understand u*(x) = 1 when @p = 1. Putting everything together,
straightforward algebra yields the desired result. O

In principle, one can marginalise the identity in Theorem [6.2] to give both
the joint law of (X;+ — a,a — X;+_) and the law of X;+ — a on the event {1} <
7, }. Whilst possible, albeit clumsy, we approach the matter in a different way.
Below, we deal with the law of X+ —a on {7} < 7, } by noting that it is also the
law of the exponential of the overshoot of the ascending ladder height process
of £*. To establish the law of the pair (Xr+ —a,a — X:_) on {r} < 73}, we will
appeal to a method based around the compensation formula which involves
first computing the resolvent of X up to exiting [0, a]. Once again, spectral
negativity is excluded.

Corollary 6.3. Suppose that « € (0,2) and 0 < ap < 1. For x € [0,a] and
u>0,

Po(Xr: —a €du; 5 <715)

sin ma, . .
= —'D(a - 0)xPu™ (4 + a) P (u+a - x)" du.
T

Proof Inspired by the proof of Theorem[6.2] we note that

X+
Px( ;“ —1>u/a;‘r:j<75)

=P (ngégna/.v> ~ logla/x) > log (T); Tlég(“/x) << )’
where 4 > 0 and x € [0,a] and ¢ is the lifetime of £*. Note however, that
the law of the overshoot of ¢* above log(a/x) is also equal to the law of the
overshoot of its ascending ladder process over the same level. Accordingly, re-
ferring to Theorem[2.24 we have that, if v* is the Lévy density of the ascending
ladder height process of &, then

* * atu * *
P (§T . —log(a/x) > log(T); Tl(;;(a/x) </ )

*y
log(a/x)

log(a/x) co
= f u'(y)dy f v'(z) dy.
0 log(a/x)—y+log(“+)
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Taking derivatives give us

IP’X(XT;—aEdu;T;r <Ta)

loga/v a+u 1
= (fo‘ u (yw (log(T) —y) dy) @t du.

Now recall the expression for #* given in the proof of Theorem as well as
the identity for v* (taken from Corollary [4.3)), noting in particular that @p = 1
and ap = a — 1 in the spectrally positive setting. We have

]PX(XT;—LIEdu;T;r <T6)

o + —-ap log(a/x)
- % (f @ - D" (a+u-xe) e dy) .
- 0

apx®(a + u)~ ( ap B f(ax)/u . )
=———(xa+u—x) 6%~ do| du,
[(ap)I'(1 - ap) 0

where in the final equality, we have applied the change of variable

, (a+u-x) 6
-1=——
X 0+1

It is now a minor amount of algebra to establish the identity given in the state-
ment of the corollary. O

As promised, let us consider the resolvent of the stable process up to exiting
the interval [0, ],

uW@@FJ‘M&M%KiAWM
0

for y € [0, a].

Theorem 6.4. For 0 < x,y < a, the measure U'%%(x, dy) has a density with
respect to Lebesgue measure which is almost everywhere equal to

x(a-y)

S
T@pap) Jo

(s+ D 15?1 ds, x<y,

W®(x, y) =

-yt
F(ap)X'(@p) Jo
Proof We exclude from the proof the case of spectral negativity, that is ap =

1. This is not really a restriction as the spectrally negative case can be estab-
lished by applying it to the dual in the spectrally positive case.
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On account of the fact that X cannot creep upwards, it follows that, for u > 0,
vel[0,alandy e [vV x,al],

Py(Xr: —a € du, X, € dv, YT;_ <y T <TH)

= EX Z I(X,_Edv,i,_Sy, t<T§/\T6)1(X1—+AX1—a€ du) | > (6])

t<oco

where AX; = X;—X,_ and the sum is over the Poisson point process ((¢, AX;), t >
0 and AX, # 0) which has intensity dz x TI(dx) (cf. Appendix [A-T3), represent-
ing the arrival of jumps in the stable process, and II is the Lévy measure given
by (3.I). It follows from the classical compensation formula for Poisson inte-
grals of this type that

Py(X7+ —a € du, Xr+_ € dv, f,; <y, T < 7y)

=E, [f(; l(X,,e dv, X<y, t<TE ATy) dl] I(a — v + du)

3 sin(rap) e 1
=T +a)——E, [ fo Lixean X<y 1<t acs) d’] a—vrmre

sin(rap)

=T+ a)T U (x, dv) (6.2)

(a—v+u)+e !
From Theorem@ we also have that, foru > 0,v € [0,a] andy € [vV x, a],
P.(Xer —a € du, X €dv, Xero <y, 5 T4 < 75)

_sin(map) T+ 1) { fy X (z = )% (2 = )"y

n Dlap)(ap) (@ —v+u)l+e

(The reader will note that in the spectrally positive case, we simply interpret
the above expression with a¢p = 1.) The consequence of this last observation
isthat,forO <vvx <y U 031(x, dv) is absolutely continuous with respect to
Lebesgue measure and its density is given by

03] xap (Z_x)ap 1(Z v)ap 1
u M (x,v) = —r(ap)r(ap) { f = dz (6.3)

To evaluate the integral in (6.3) we must consider two cases according to the
value of x in relation to v. To this end, we first suppose that x < v. We have

e f (L ia CLiay

2 v(z —X) x(z—v) @l gy
Y f[z(v—x)} [z(v—x) 2%

x(y=v)
y(v=x)

dz} dudv.

(s + D=1 g,

=(v—x)"! f

0
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where in the final equality we have changed variables using s = x(z — v)/z(v — x).
To deal with the case x > v, one proceeds as above except that the lower de-
limiter on the integral in is equal to x, we multiply and divide through
by (x — v)*"2 and one makes the change of variable s = v(z — x)/z(x — v). This
completes the proof. [

By taking limits as @ — oo in the expression for the resolvent U4, one
can appeal to monotone convergence to obtain an expression for the resolvent
killed on exiting [0, co]. Note that this resolvent has a density with respect to
Lebesgue measure which we denote by u!*>!. The corollary below gives an ex-
pression for !>, Note, however, that the same result can also be derived from
Theorem by taking account of the fact that the ascending and descending
ladder height processes of a stable processes are both stable subordinators of
index ap and ap; see the discussion on the Wiener-Hopf factorisation in Sec-

tion 3.4
Corollary 6.5. For x,z >0,

— x)o-! (=) X
=07 (s+ Dl dg x<y,
L(ap)I'(ap) Jo
ul®I(x,z) =

[ :
—I“(();p){")(aﬁ) s®7 s+ D s, x> .
0

The computation of the resolvent in Theorem [6.4] allows us to write down
the joint law of (X;+ —a,a — Xx+_) on {1} < 7, } without having to perform a
marginalisation of the identity in Theorem|[6.2} Indeed, the aforesaid marginal-
isation has already implicitly taken place when computing the identity for the
resolvent in Theorem[6.4] Once again, spectral negativity is excluded to avoid
a trivial result.

Corollary 6.6. Suppose that a € (0,2) and0 < ap < 1. Fora,u > 0, x € [0, a]
and v € [0, a],

Pi(Xrs —aedu, Xy €dv; 1) <71)
_sin(rap) T'(1+a)
7 [lep)(ap)

x(a—v)

a(v—x) A
(v—x)*1 (f ( (s + 1)1 gop-1 ds] dudv, x<v,
0

Wa—x)

(x —v)*! (f() s (s + 1) ds] dudv, x>v.
0
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Proof Following the reasoning in Theorem [6.4] we can write the desired
probability in terms of the Poisson point process of jumps. In that case, the
compensation formula gives us that

Py(Xrr —a € du,Xr:_ edv; 1) <7p)

=E, [Z Lix,_+ax—aedipdix,_edv,i<tr /\TO):|

>0

=E, [f 1(X,,€dv, t<‘r,}'/\‘ro)dt:| Il(a -v+ dM)
0

= U (x, dn)l(a — v + du)

. 1
w M[O*“](x, V) ——————dvdu.

=T(1 +a) P

The result now follows. O

6.2 Hitting points in an interval

In the spirit of Lemma[2.19| we can develop an identity concerning the proba-
bility of hitting individual points in (0, a), for a > 0, before exiting the interval,
when « € (1,2). The restriction on @ ensures that points can be hit. To this end,
let us introduce the notation

™ =inf{t>0: X, =y},
fory e R.
Theorem 6.7. For a € (1,2) and x,y € (0, a),

P.(tY < 1F A 75)

aaf—l - X a—1 20— R
il Vi (s+ D¥ 1% ds, x<y,
0

yHa -y
=(a-1
Cyla—lg g"“f s s+ P Nds, x>y
- 0

Proof We appeal to a standard technique and note that, for x,y € (0, a),
W(x,y) = B < 7 A 7o)y, y),

where we may use L'Hopital’s rule to compute u!%?(y, y) = lim,q, ul®“(x, y).
The details are straightforward and left to the reader. O
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Corollary 6.8. Fora e (1,2)and0<ap<1l,u>0and0<y< x<a,

Pu(Xr: —a €du, 7, <15 A )
B {sinﬂa/p

(a—X0"xPuu+a)Pu+a-x)"

sin Tap

—(@-1) (a—y)'" Py %y~ + a)y P+ a—-y) ' du

ya-x)

a=1,__ _\a-1 ) ap—1 ap—1
Xa* (x—y) sP s+ 1) }du.
0

Proof The proof follows from the following observation which is the result
of counting paths. For u > 0,

Pi(Xrs —aedu, 7, <15 A 70
=P(Xpr —a €du, 1, <71;)
-P.(Y <7t AT)P(Xy: —a € du, T < 1p).

The result now follows using the conclusions in Corollary [6.3] and Theorem
6.7 O

A similar identity to the one in Corollary can be written in the case that
0 < x <y < a, we leave the details to the reader. Another exercise for the
reader is to consider the resolvent

Ul dy) = f Pu(X; €dy, t <T9IATIAT),  x,y € (0,a)\zhz € (0,a).
0

By the strong Markov property, it is not difficult to see that this resolvent has
a density with respect to Lebesgue measure, say u{[g}’“](x, ), x,y € (0,a)\{z},
z € (0, a), where

[0.a]

o0 y) = w0 y) = Po@ < 1 Az, y).

u

6.3 First entrance into a bounded interval

In Section [6.1] we looked at the law of the stable process as it first exits an
interval. In this section, we shall look at the law of the stable process as it first
enters a interval. Accordingly, we introduce the first hitting time of the interval
0, a),

709 = inf{r > 0 : X, € (0,a)}.
The next result provides the law of X;0.. Because of the issue of creeping

when X is spectrally one-sided, it is necessary to consider the cases of one-
sided and two-sided jumps separately when a € (1, 2). Recall that we exclude
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the setting of monotone paths. Our first result deals exclusively processes with
two-sided jumps.

Theorem 6.9. Let x > a > 0. Then, when a,p € (0,1) ora = 1,p = 1/2, then
PX(XT(U.M) c dy’ T(O,a) < oo)

sin(rap)
= ——X

Py (x = a)*(a—y)"P(x—y) ' dy, (6.4)
fory e (0,a). When a € (1,2) and 0 < ap, ap < 1,
Py(Xr00 € dy)

_ sin(;ra,[)) Y (a - y)—(yﬁ((x — @)X (x — !

a-1 =-1 .
—(a— 1)(%) 1]; (t— D%+ 1)w! dt) dy, (6.5)

fory € (0,a).

Proof Just as with the proof of Theorem the proof here relies on refor-
mulating the problem at hand in terms of an underlying positive self-similar
Markov process. In this case, we will appeal to the censored stable process
defined in Section[5.6] The key observation that drives the proof is that, when
Xo=x>a>0,on{t% < oo},

X000 = xeXp{EM—

T jog(a/x) ’
where E is the Lévy process described in Theorem and
?;)g(a/x)z inf{t > 0 : £,< log(a/x)}.

Note, moreover, that {t®? < oo} and {?;)g(u < oo} are corresponding events.

If we denote the law of ? when issued from the origin by ﬁ, then, for a € (0,2)
and y € (0, a),

P.(X 00 <y, 00 o)
=p (log(a/x)— E“ffog(a,x)z 108(a/Y), Tiogiarn < Oo),
and hence
P (X 00 € dy, 709 < co)

) (6.6)
z=log(a/y)

1 d- P> -
= ; o P (log(a/x)— o L7, Tioga/n< °°) dy

T log(a/x)

where we have pre-emptively assumed that the overshoot distribution of E has
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a density. Note that the dual of the process E has characteristic exponent given
by
' -ap—-iz) T(ap + iz)

eR
Tl e-inp Ta &= 5%

which is an (@, ap, 0, ap)-hypergeometric Lévy process.

We may now appeal to the two parts of Theorem accordingly as a €
(0,1] and @ € (1,2), to develop the right hand side of @) by considering
the first passage problem of the dual of E over the threshold log(x/a). After
a straightforward computation, the identity for @ € (0, 1] emerges from
the first part of Theorem[4.10] (in particular it becomes clear that the overshoot
distribution of 2 has a density as was assumed in the previous paragraph). The

case a € (1,2) requires the evaluation of an extra term. More precisely, from
the second part of Theorem[4.10] we get

P, (X000 € dy)

sin(map) _, —ab b oo _
= pr Pa-y) P((x— a)?x*y(x - y)™!

1-¢
—a"_l(ap—l)f 12711 = = dr | dy. (6.7)
0

By the substitution ¢ = (s — 1)/(s + 1), we deduce

1-4
f P11 =l dr
0

|

= zWU" (s = DP (s + 1) ds
1

-1 )
- f (s — D%P(s + D2 ds]|. (6.8)
1

Now evaluating the second term on the right hand side above via integration
by parts and substituting back into (6.7) yields the required law. O

Recall that the ascending ladder height of a stable process is a stable subor-
dinator with index @p. As one might expect, the analogue of the statement in
Theorem [6.9)] for the spectrally negative case agrees with (6.5) in the limit as
ap — 1, albeit that this does not constitute a proof. We take a more rigorous
approach below.

Proposition 6.10. Let o € (1,2), and suppose that X is spectrally negative,
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that is, ap = 1. Then, the hitting distribution of (0, a) is given by

P (X00 € dy) = w(x —a)* Na—-y)'"(x-y)dy

+M f T - dr @), (69)
0

for x > a, y € [0,al, where 6 is the unit point mass at 0.

Proof Since the process has only negative jumps, we have two possibilities:
either the process jumps below the level a and hits the interval (0, a) or the
process jumps below the level 0 and then hits O continuously. In other words,

Pr(Xr00 € dy) = Pu(Xy; € dy) + Pu(Xy; < 0)o(dy).
Now, we observe

PuXe; €dy) = B(Xey, - (x—a) € a - dy)

- M(X—a)"_l(a—y)l_“(x—Y)_ldy’ (6.10)

where P is the law of —X when issued from the origin and the second equality
above follows from Corollary Writing P,(X;- < 0) as an integral with
respect to the density in (6.10), after a change of variable similar to the one in

(6-8), the identity in (6.9) follows. o

We also have the following straightforward corollary that gives the probabil-
ity that the process never hits the interval (0, a), in the case when a € (0, 1) (but
X is not a subordinator). The result can be deduced from Theorem[6.9]by inte-
grating out y in expression (6.4), however, we present a more straightforward
proof.

Corollary 6.11. When a,p € (0, 1), for x > a,

0a) _ ooy = LU =) f -1
BT = o) = Pl = dr.

Proof From Theorem [5.19] we know that the descending ladder height pro-
cess has Laplace exponent given by I'(1 —ap + A)/T(1 —a+ 1), 4 > 0. By
Corollary 3] there is an associated potential density given by

—(1-a)x —x\ap—1
— € 1-e™) s x>0.
['(ap)
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Now appealing to Corollary [2.26] we have that

P, (7% = 00) =Pyog(/a) (To = )

_ Ir'a- a'p) * _ e—(l—a)y(l _ e—y)arﬁ—ldy
F(l - (l) log(x/a) F((IP)
I'(l —ap)

S e A 1711 - )7dy,

r(ap)r(l - (I) (x—a)/a
where in the last equality we have performed the change of variable r = 1 —e™.
The desired probability now follows as a straightforward consequence of the
beta integral. O

To remain consistent with the previous sections in this chapter, our next
point of interest is the resolvent

U9 (x,dy) = f P.(X, € dy, r < 799 ds, y € (0,a),
0

where a > 0. The theorem below gives us an identity for the above resolvent
in the case of two-sided jumps, i.e. for 0 < ap, ap < 1. We will have to defer
its proof however until we have built up more machinery. In particular, we will
have to wait until Chapter where we will introduce the Riesz—Bogdan—Zak
transform. This space-time transformation will play a crucial role as well as ex-
emplifying a methodology which is robust enough to develop related identities
in higher dimensions.

Theorem 6.12. Suppose that X has two sided jumps. For y > x > a, the
measure U (x, dy) has a density given by

u® (x,)

x+y—2xy/a

21—01 ( P R
= ———|ly— """ f (s+ D (s - 1) ' ds
Tap)L(@p)\” 1

a\e-1 (2x/a)-1 .
(a1t (-) f (s + 1) (s — )% ds
1

2
(2y/a)-1 .
X f (s + P (s = 1! ds).
1

where (@ — 1)* = max{0, @ — 1}. Moreover, if x > y > a then appealing to

duality (cf. Lemma[2.16)),

0,a)° 0,a)°
U (x,y) = u®Y (y, X)lperp-
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where p & p is understood to mean that the roles of p and p are interchanged.
If x>a,y<0, then

W (x, y)

x+y=2xy/a

_sin(ap) 2!
~ sin(ep) T(ep)I(ap)

(2x/a)—1 A
~(a- 1)+f (s + 1)1 (s — )P ds
1

I2y/a)-1] X
X f (s + D (s = 1)¥! ds).
1

Finally, if x <0,y < 0orx <0,y > a, then u®® (x,y) = u® (a-x, a=y)lpop-

(Iy—xl“1 f C D s D7 ds
1

6.4 Point of closest and furthest reach

We are interested in the ‘point of closest reach’ to the origin for stable pro-
cesses with index a € (0, 1). Recall that for this index range, the stable process
does not hit points and, moreover, liminf,_, |X;| = co. Hence, either on the
positive or negative side of the origin, the path of the stable process has a
minimal radial distance. Moreover, thanks to path regularity (as discussed in
Section , this distance is achieved at the unique time m such that |X;| > |X,,|
for all > 0. Note, uniqueness follows thanks to regularity of X for both (0, o)
and (-0, 0).

Theorem 6.13. Suppose that a,p € (0, 1), then for x > 0 and |z] < x,

I'a—-ap) x+z

- x = 2D (x + |z) ! dz.
(1 —al(ep) e &~ D

Pu(X,, €dz) =

Proof Following our standard notation, let 75D := inf{r > 0 : |X,| < 1}.
From Corollary [6.T1] after shifting and scaling, we have that, for x > 1,

(1 - (x=1)/(x+1)
M¢m=@=—é—%Lj‘ P11 - 1) dr.
Tap)I(1 - ) Jo

Now fix x > 0. Let m* be the unique time such that X+ > 0 and X; > X+
for all + > O such that X, > 0. Similarly let m~ be the unique time such that
X < 0and X; < X,,- for all ¢+ > 0 such that X; < 0. In words, m* and m~
are the times when X is at the closest point to the origin on the positive and
negative side of the origin, respectively. Consequently, we have that X,, > 0 if

and only if X+ < |X,-|.
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Define
1—* 1 _ (x—1)/(x+1) R
Glr) = 0P _ f @ pyod, x> L
Tlep)I'(1 - @) Jo
In fact G(x) = P.(t"""D = o0). We now have that
2x+u—
P X | >t Xppe > v) = Po(r") = 00) = G(M) u,v >0,
= = u+v

where, in the second equality, we have scaled space and used the self-similarity
of X.
Next we have that for z > 0,

d 0
—P.(X, <2) = —=—Pi(IX-| > 2 Xpr > V)
dz - Ov - -

V=
0 (2x+z-
_ __G(u)
ov z+v |-,
X+z X
=—G’ (—) 6.11
222 z .
The proposition for z > 0 now follows from an easy computation. The result
for z < 0 follows similarly. O

In the case that @ = 1, the stable process does not hit points and we have
that lim sup,_,, |X;| = oo and liminf,_,. |X;| = 0 and hence it is not possible to
produce a result in the spirit of Theorem However, when a € (1,2) and
there are two-sided jumps, the stable process will hit all points almost surely,
in particular % = inf{r > 0 : X, = 0} is P,-almost surely finite for all x € R.
This allows us to talk about the ‘point of furthest’ reach until first hitting the
origin. To this end, we define m to be the unique time such that |X;| < |Xj| for
all t < 7%, Once again, uniqueness follows by path regularity of X for both the
upper and lower half lines.

Theorem 6.14. Suppose that « € (1,2) and 0 < ap,ap < 1, then for each
x> 0and |z > x,

a—1

PTG 0% (el + x) P!

P.(Xm € dz) =

lzl/x
—(a-Dx f (t = D%+ )] dt) dz.
1

Proof The proof here is very similar to that of the case when a < 1, thus we
skip some of the details.

From the discussion following Theorem we know that the positively
censored (and similarly negatively) censored stable process must hit the origin
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continuously when @ € (1,2). Hence, without censoring, we also have that
7% = inf{t > 0 : X, = 0} < co and X,0_ = 0 almost surely.

From Theorem [6.7} after shifting and scaling, we have that, for every x €
O, andye(x,1),

1—xy
xX=y

a-1
h _ X — —
Px(rm<T;Ar_1)=(a—1)(1_yyz) G(

), (6.12)

where
"z
G2 = f (t= D N+ D dr.
1

In the spirit of the proof of Proposition[6.13] we apply a linear spatial transfor-
mation to the probability P, (r} A7Z, < 71%) and, using (6:12), write it in terms
of G. Similarly to the derivation of in the proof of Proposition for
each x > O and |z] > x,
P.(X5 € dz) = a-l (Ix +7|G’ (E) —(a - l)xé(@)) dz.
2x2-a|z|e x X

The result now follows from straight forward computations. O

6.5 First hitting of a two-point set

Let us define the hitting times
7 = inf{r > 0: X, = b},

for b € R, and consider the two point hitting problem of evaluating P, (r"*} <
7' for a, b, x € R with a < b. Naturally for this problem to be distinct from
other problems we have considered, we need to assume, as in the previous sec-
tion, that @ € (1,2) and 0 < ap, ap < 1. The requirement that @ € (1, 2) ensures
that points can be hit and the second requirement, i.e. that there are two-sided
jumps removes the reduction of the problem to existing exit problems in the
spectrally one-sided case. The two point hitting problem is a classical problem
for Brownian motion. However, for the case of a stable process, on account of
the fact that it may wander either side of the points a and b before hitting one
of them, the situation is significantly different.

It turns out that censoring the stable process is a useful way to analyse this

problem. Indeed if we write E for the Lévy process which drives the Lamperti
transformation of the censored stable process (cf. Section [5.6) and denote its
probabilities by P, x € R, then by choosinga = 0 < b and x > 0,

log b}

P(r? < 70 =Py, (7" < o0)

i
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where

7ol inf{z > 0 ::;:tz log b}.

According to Lemma [2.19] the previous probability can be written

_ i (=log(x/b))

P, (¢ < 701 = L7 O8D)) (6.13)
u (0)
where
f e Ui (x)dx = f B [ de
R 0
B 1
¥ (-iz)

_ I(=n) T -a+2)
T Tep-2TA—ap+2)°

(6.14)

for Re(z) € (0, — 1). More generally, @ (z) := — p (—iz) is well defined as a
Laplace exponent for Re(z) € (ep— 1, @p), having roots at 0 and @ — 1. As @ (2)
is convex for real z, recalling from the discussion following Theorem 5.19]that
E [El] < 0, we can deduce that Re(W(—iz)) > 0 for Re(z) € (0, — 1).

It turns out that the potential density # can be explicitly identified by invert-

ing (6.19).

Theorem 6.15. Suppose that @ € (1,2) and 0 < ap,ap < 1. For x > 0 we
have

~

9= ~T(1 - a)(—sm(:“p) 1

—(1- e—X)H—l] + we—(a—bx
7T b

and for x <0

i (x) = —;lrr(l - a)(Sin(Zap) + Sin(:;aﬁ) [1 -(1- ex)afl] e(al)x)‘

Moreover,

~

u (0) = —%F(l - a/)(

sin(rap) . sin(zrap)
s g '

Proof Appealing to (A7), we have that

= =z %(1 +o(1)), Im(z)— oo, (6.15)
¥ (-iz)

which is valid uniformly in any sector |Arg(z)| < m — €. This and the fact that
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there are no poles along the vertical line ¢ + iR, for ¢ € (0, @ — 1), allows us to
invert (6.14) via the integral

) = — f 1 =g (6.16)

270 Jeviv § (<ig)

We can give a concrete value to the above integral by appealing to a standard
contour integration argument in connection with Cauchy’s residue theory.
The function 1/¥ (—iz) has simple poles at the points

{0,1,2,...}Ufa-lL,a=2,a-3,...}.

Suppose that y is the contour described in Figure Thatis yg = {c +ix :
x| < Ry U {c + Rel : 6 € (—n/2,7/2)}, where we recall ¢ € (0, — 1).

0 3
a—2
—-R
Figure 6.1 The contour yg.
Residue calculus gives us
1 1
— — e ¥ dz
2ni c+ix:|x]<R W (—iZ)
1 1
- — e—Zx dZ

211 JerReitpe(-n/2.n12) B (~iz)
—Res(1/¥ (=iz) : 2= @ — De @

- Z Res(1/¥ (=iz) : z = k)e ™. 6.17)
1<k<[R]

Now fix x > 0. The uniform estimate (6.13), the positivity of x and the arc
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{c+Re : 0 € (-n/2,n/2)} having length 7R allows us to estimate

f 1 e dz| < CR (@D
c+Rei0:0e(-n/2.1/2) P (—iz)

for some constant C > 0, and hence

lim e “¥dz=0.

R JesReit:ge(-n/2.1/2) P (~iz)

Together with (6.16), we can use this convergence and take limits as R — oo
in (6.17) to conclude that

U (x) = — Res(1/¥ (=iz) : z = @ — 1)e"@ V¥
- Z Res(1/¥ (—iz) : z = k)e ™.
k=1
To compute the residues, we make straightforward use of the fact that Res(I'(z) :

z=-n) = (=1)"/n!, forn > 0; see (A.11)). Hence, with the help of the binomial
series identity, we finally obtain

~

1 1 © Tl —a+k
i (1) =~ sin(rap) (1 - e @ + Lingragy 3 TLZ2 0 e
T n - k!

—(a—1)x

= —l sin(raP)[(1 — a)e
s
+ l sin(rap)['(1 — @) [(1 —e )l = 1] ,
bis

which is valid for x > 0.

The proof in the case x < 0 is identical, except that we need to shift the
arc of the contour yg to extend into the negative part of the complex plane,
catching the poles {0, — 2, @ — 3, - - - }. The details are left to the reader. O

Theorem 6.16. Suppose that @ € (1,2) and 0 < ap,ap < 1. For any two
distinct points x, b in R that are also distict from the origin,

161 5(b) — [b — x|* " s(b — x) + [x|" ' s(—x)
|ble=1(sin(ap) + sin(rap))

P(r" < 7% = . (6.18)

where s(y) = 1(50) sin(mrap) + 1<q) sin(ap).

Proof There are only two cases to consider: x < b and x > b. In the first case,
note that —log(x/b) > 0. We therefore use the first of the two expressions for
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i (x) in Theorem for the identity (6.13). We have
P (" < 7%
sin(zap) [1 - (1 - x/b)*!| + sin(rap)(x/b)*"!
(sin(zap) + sin(rap))
3 b !sin(rap) — (b — x)*~! sin(rap) + x*~! sin(rap)

- >

b1 (sin(rap) + sin(rap))

as required. When x > b, we have —log(x/b) < 0 and we use the second of the
two expressions in Theorem [6.15] for the identity (6.13). In that case, we have

PX(T{b} < T{O})
sin(rap) [1 = (1 = b/x)*"!| (x/b)*" + sin(map)
(sin(mrap) + sin(rap))
: b !sin(rap) — (x — b)*~! sin(rap) + x>~ sin(rap)

- [l

be~1(sin(rap) + sin(rap))

Now note that for x, b > 0 we have
P(r" <"y = 1-P,«" <)
and hence, for b < 0 < x, by spatial homogeneity,

PX(T{M < T{O}) — Px—b(T{O} < THb”)
_ b sin(rap) + x*! sin(rap) — (x — b)*”! sin(rap)
- |ble=1 (sin(rap) + sin(rap))
B s(b) — b — X127 s(b — x) + x* L s(—x)
B lbl>~1(sin(rap) + sin(rap))

When b > 0 > xor x,b < 0, we have
P(" <% = P_ (+'"? < T‘O})LM
=Bl s(=b) = [b — x| s(=b + x) + (—x0)7 ' s(x)
B |ble=1(sin(rap) + sin(rap)) bop
b1 s(b) = 1b = X" s(b = x) + || s(—x)
- |ble=1(sin(map) + sin(map))

where p < p means that the roles of p and p are interchanged. O

6.6 First hitting of a point

Recall that, for x € R, 7™ = inf{r > 0 : X, = x}. We are interested in character-
ising the distribution of 7. As mentioned earlier, we know that P(\¥) < c0) =
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1 (see e.g. Table[3:4) and e.g. in the case that X has two-sided jumps, we can
confirm this from the conclusion of Theorem[6.16] We have,

lim P(r'"” < 7179) = lim (b + )" sin(rap) — b|*"'s(b) + x*~" sin(rap) =

15
x—00 x—00 (b + x)*~!(sin(map) + sin(rap))

where s(b) = 1(450) sin(map) + 1<) sin(map).
For « € (1,2), Lemma[2.19tells us that, for ¢ > 0,

B [e_qrm] _ U9 (x) XeR,

T U@y’

where u'? is the density of the occupation measure

U9(dx) = f equ(X,edx)dtz( f eq’p,(x)dt) dx, xeR,
0 0

and p,(x) is the probability density function of X; under P, for + > 0. Ob-
serve from self-similarity that p,(x) = ¢~'/%p,(t~'/%x), where p, (x) = p(x, a, p),
which was defined in Section 1.4. It follows that

1 00
f e v Vep, (Y ox) dr.
0

u@(0)

E [equ(x’] =

Note that by setting x = 0, since the left-hand side above is equal to unity, this
tells us that

I/t(q)(()) = pl(O)f e*qtt—l/a dr = @F(l + 1/0/)F(1 _ 1/a)q71+1/w’
0

where the second equality follows by appealing to the integral representation
of the gamma function and (T.33).
In a similar spirit to e.g. (5.38), we have by scaling that

o @ Xt (6.19)

thus we can proceed with our computations for the special case that x = 1. To
this end, let A = X[ “1(x,>0). With a change of variable u = 1% we can now
write

(a-1)/a 00

Eler"]| = il aq —q/u” |
[e ] sin(mp) I'(1 + 1/a)I'(1 = 1/a) Jy e pi(wu " du
(a-1)/a

__x aq .

sin(mp) I'(1 + 1/a)I'(1 — 1/a)
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On the other hand, we also have, for s € (0, 1), that

E[(r")] = % f Bl g dg
0

= dl @ ” —qA _s—1/a
~ sin(mp) I(1 + 1/a)I(1 - 1/0)15[/\[0 e g dq]

__ T a Ira-1/a+ys) 1y
S S TA+ Ul — ) T
= dl @ r(] _ 1/(Z+S) as—1
~ sin(p) T(1 + 1/a)C(1 — 1/a) T(s) E[X" 1x,50)].

From Theorem [I.13] we note that
sin(mo(as — 1)) T(1 — s+ 1/a)
sin(m(as — 1)) T'(2—as)

E[X7 100 =

All together, we have

b 1004 Ira-1/a+ 91 —s+1/a) sin(mp(as — 1))
sin(mp) T'(1 + 1/a)T'(1 = 1/a)T'(2 — as)I'(s) sin(m(as —1))
After some algebra, involving repeated use of the reflection formula for the
gamma function, see (A.12), the above expression can be simplified to

E[(')™] =

sin(rr/a) sin(mp(as — 1)) T'(1 + as)
sin(mp) sin(n(s — 1/a)) T(1 +s)

and we get the following theorem.

B[] =

Theorem 6.17. Suppose that a € (1,2). For s € (0, 1),

sin(r/a) sin(mp(a — 1 —as)) I'(a + 1 — as)

{Ihys—17 _
B = e s = 1ja=s) T@=3)

(6.20)

In principal one may use the ideas found in the proofs of e.g. Theorems|[I.18]
and[.22]to perform an inverse Mellin transform of (6.20). It turns out that, for
(6:20), there are some complications that one needs to be wary of in doing so,
which we address in the comments section at the end of this chapter. We skip
over the details in preference of continuing with our exposition of fluctuation
identities.

We complete this section by returning to Theorem [6.16] from which we can
draw a simple conclusion about the the resolvent of the stable process with
killing at the origin,

U"%(x,db) = f Pu(X, €db, r <7 dr = f PO(X, € db) dr.
0 0

Let us momentarily restrict our discussion to the setting that @ € (1,2) and
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0 < ap,ap < 1. Without loss of generality, assume that x,b > 0. Using the
strong Markov property, we have

U%x,db) = PO < 0)U (b, db) = P,(v" < 7OHU (b, db).  (6.21)

If we pre-emptively assume that U'”(x, db) has a density, written u%(x, b),
then we can use (6.18)) to deduce the following result

U (x, b) = ¢ (lbl“" s(b) = b — x| s(b — x) + |x*! s(—x)).

for some constant ¢, € (0, c0) (which could in principle depend on b) where
s(x) = sin(mrap)1 >0 +sin(rapP)l o). Pinning down the constant ¢, is difficult.
Formally speaking,

f u%(x, b)db = f P.(r < 7% dr = E,[7'. (6.22)
R 0

However, the right-hand side turns out to be infinite. To see why, note that

B = B+ B 7,
where ?[0] is the life time of the censored stable process and, as usual, (]@’x, X €
R) are the probabilities of —X. Recall from Theorem [5.19] that the (positively)
censored stable has underlying Lévy process & belongs to the class of hyper-
geometric Lévy processes with characteristic exponent

T(ap —iz) T — ap +i2)
I-iz) T-a+iz)’

¥ (z) = zeR.

Accordingly, for x = 1, thanks to Fubini’s Theorem, we have

0 0

where P is the law of E issued from the origin. The expression above for ¥,
indicates that the Laplace exponent of 2 (which can be seen as an analytic ex-
tension of ¥) only exists on the strip {z € C : Re(z) € (ap, ap—1)}. Accordingly
we see in that the right-hand side blows up.

Nonetheless, it is possible to find a precise formula for the above resolvent.
As was the case for the proof of Theorem|[6.12] we will have to wait to develop
some additional technology in Chapter [I2] before we can prove the following
result. (Its proof can be found in Section[12.5])

Theorem 6.18. Suppose that @ € (1,2) and 0 < ap,ap < 1. The resolvent
with killing at the origin is absolutely continuous such that, for x,y in R and
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distinct from the origin,

1
w6, y) = =T = a) (" 5G) = by = 21 sy = 20 + 1" s(-),

where s(x) = sin(map)1x»0) + sin(map)l o).

6.7 First exit for the reflected process
In this section, we will consider the reflected stable process
R =X,—(0AX), t>0,

where, under P, X is a stable process issued from z > 0 and X, = inf, X.
Note that P,(Ry = z) = 1. To avoid trivialities, we exclude the setting that X
has monotone paths throughout this section. The process R is valued in [0, o0)
and, roughly speaking, its paths evolve as follows. When R, is issued from
z > 0, it follows the same trajectory as X until time 7, = inf{r > 0 : X; < O}.
At this moment in time, the process R takes the value zero and thereafter, its
excursions away from zero correspond precisely to the excursions of X away
from its previous infimum.

As we shall see shortly, R possesses the strong Markov property and hence
there are natural first passage problems which, inevitably, are very closely re-
lated to those of X. Noting that R = (R;,¢# > 0) is valued in [0, o), our main
concern in this section is to look at the problem of first exit from an interval of
the form [0, a], where a > 0.

We start by returning to our earlier claim that R is strong Markovian. As
before (7, : t > 0) is the filtration generated by X which is naturally enlarged.

Lemma 6.19. The process R is a strong Markov process in (F; : t > 0), under
the family of measures (P,,z > 0).

Proof Suppose that 7 is any stopping time with respect to (7; : ¢ > 0). Let
Xs = Xevs — Xt, s 2 0, and recall that, on {1 < oo}, (X;, s > 0) is independent
of ¥, with the same law as (X, P). Note that, for s > 0, on {r < oo},

Xros —(ONX ):X,+5§S—(O/\§TA inf Xu)

=TS ue[r,t+s]

)?s - |:(X‘r —O0AX))A (XT B uE[iTanJrS] Xu)]

%, -

R, A inf X,|.
T Lel0,s] ”]



6.7 First exit for the reflected process 179

From the right-hand side above, it is clear that the law of R, ; depends only on
(Ry, u < 1) through the value of R;. It follows that (R;, t > 0) is a strong Markov
process. ]

We are now ready to state the main result of this section, for which we define
the first exit time

vq = inf{t > 0 : R, > a},

where a > 0. In order for the result to be non-trivial, we further exclude the
setting that X is spectrally negative.

Theorem 6.20. Suppose a € (0,2) and 0 < ap < 1. Foru > 0 and v € [0, al,
PR,, —a€du,a-R,_€dv)

_ asin(rap) V(g — v)er-!
B P (u + v)et!

du dv. (6.24)

It is worth remarking that, as X cannot creep upwards over a, then it is also
not possible for R to creep upwards over a; indeed it is easy to verify that the
distribution in is proper.

The proof of this result depends heavily on the understanding of the process
(R,P) in terms of its excursions from the origin. The latter is nothing more than
the process of excursions of X from its running infimum X. This was discussed
for general Lévy processes in Section (albeit in the context of excursions
from the running maximum, which maps to the current setting by considering
-X).

For convenience, let us transfer some of the notation across. We will write
(Lt = 0) for the local time of X at its minimum. From Table [3.4] we know
that, since X always oscillates, we have that L, = co. Denote by U(R) the
space of paths taking the form € = (e(s), s < ¢) which are right-continuous
with left limits and which are strictly positive-valued on (0, {). When ¢ < oo,
we have the terminal value €({) < 0. Accordingly ¢ = inf{r > 0 : €(¢) < O}.
Then for all ¢+ > 0 such that AL7! := L7' — L7! > 0, we can identify the
excursion of R from {0}

a(s) =Y =Y, 0<s<AL™.
The key feature of excursion theory in the current setting that we will use is
that
((t.€).1 2 0and AL" > 0)
is a Poisson point process with values in [0, c0) X U/ (R) and intensity measure

dt x dn, where n is a measure on the Skorokhod space (see Section in the
Appendix), which is concentrated on U(R).
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Proof of Theorem[6.20] 'We start by noting that the statement of the theorem
dictates that Ry = 0. As such, we do not need to deal with the occasion that
the process exceeds a from its point of issue before reflecting at the origin.
Using the thinning theorem for Poisson point processes, the first excursion
that exceeds a threshold a has law given by

Q() = w, (6.25)

n(ya < 0)

where, for the generic excursion € € U(R), we make a slight abuse of notation
and use y, = inf{r > 0 : €(¥) > a}. Next, suppose that f : (0,00) X [0,a] —
[0, c0) is measurable and uniformly bounded and consider the martingale

My = Q(f(e(va) - @ a— e(ya=) 1iy,<0 1 Gs)

for 6 € (0,a], where Gy is the sigma-algebra generated by (€,,u < vyy) and
€(t) = sup,., €(s), for 0 < ¢ < {. The martingale property follows as a con-
sequence of the tower property for the excursion measure and the fact that
n(y, < {) < oo. (If the latter were false, then the otherwise infinite rate of ex-
cursions exceeding height @ would imply that P(y, = 0) = 1, which contradicts
the fact that the paths of Y are right-continuous.)

We can otherwise write

oy, _ L) — 0 a = erum) 101 Gi)
. n(va < 160)

(6.26)

for 6 € (0, a], where the equality is the result of Bayes formula. Moreover, by
the Markov property of excursions, on the event {€(yy) < a}, we can write

n(f(etva) - a, a = e(ya=) 1,01 Go)
= Beyy [ f(Xey — @ a = Xey ) Ay 6.27)
and
n(¥a < £1G6) = Py (T < 7). (6.28)

Next, observing that €(yy) — 0 as 6 | 0 almost surely thanks to regularity
of the upper half line of X (see Section , we have, on the one hand, from

(6.26), that
19%1 My=Q [f(e(ya) —a, a—€e(y,-)) 1m<¢>]

=E[f®R, —a a=R, )|

The second equality above follows on account of the fact that the joint law
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of the overshoot and undershoot of the first excursion exceeding threshold a
agrees with the joint law of the analogous quantities for R. Taking note of

and (6.28), we have with the help of Lemma [6.1} Theorem [6.2] and an
application of L’Hopital’s rule that
B [f(Rn -4, a-— R%z—)]

00 ra r(a—x)Av asin(rap) x?(a—v)* (a—x—y)*~! (v—y)?P!
j(‘) j(; 0 f('/i, V) T (u+v)‘”‘l (a,y)(y

= hf{)l x/a
X o—1 _ -1
Jo 1 (1 = et dr

~ap ap @ sin(ap)

- q l —
T
o0 a v (a_v)ap vapy .
<[ e @ 6= dydva

dydvdu

Setting w = (v — y)/(a — y) and marginalising the statement of the theorem
follows. o

Define R, = sup,, Ry, for t > 0. If we note that, for y € [0,a], v < y and
u>0,
{§%_ <y,a-R,_€dv,R, —aecdu}
={a-Ry_- €dv,R, —a € du}
we easily derive the following corollary of Theorem [6.20}

Corollary 6.21. Suppose @ € (0,2) and 0 < ap < 1. Foru > 0, v € [0,a] and
y€[0,v],

PR,,- <y,R,, —a€du, a—R,,_ €dv)

_ asin(rap) (@ - )" (v —a+y)? dy dvdu.
p (M + v)a+1

As noted in its proof, Theorem @l does not consider the case that Ry =
z € [0,a]. This case may be dealt with in a relatively straightforward way,
although it delivers an identity which is no object of beauty. Note that, for
z€[0,al,u>0andv e [0,q],
P.(R,, —a €du, a—-R,_ €dv)
=P,(X;r —aedu, a—Xp:— €dv; 1) <717)
+P,(1; < T))PR,, —a €du, a—R,_ €dv), (6.29)

where we recall that

70 =inf{r > 0: X, > a} and 7, =inf{r > 0: X, < 0}.
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Again referring to Lemma[6.]and also to Corollary[6.6] as well as the expres-
sion in (6.24), the relevant expressions for each of the probabilities in (6.29)
may be plugged in.

We can also obtain an identity for the resolvent of the reflected process up
to exiting the interval [0, a],

Y0, dy) = f PR €dy, t<yad,  yel0al
0

Corollary 6.22. Suppose @ € (0,2) and 0 < ap < 1. Fix a > 0. For each x €
[0, a], the resolvent V'O’“](O, dy) has a density, denoted by v[O’“I(O, y), y € [0,a],
which satisfies

1 A
V00,y) = == (a - y)"y* dy. (6.30)
[(a)

Proof From (6.24), we have that, for u > 0 and y € [0, a],

asin(map) (a = y)*y*!

dudv.  (6.31)
Pis (u+a— y)e+!

PR,, —a €du, R, _€dy) =

On the other hand, appealing to the use of the compensation formula, in the
spirit of the computations in (6.1)) and (6.2), we have that, for positive, bounded
and measurable functions f : [0, c0) X [0, a] — [0, c0),

E[f®Ry, —a. Ry,)]

Z 1y<y) fR- + AX; —a, Rt—)l(R,+AX,>a)}

>0

=E

=E [f f Li<y) fRim + x — a, R)1®,_+x>0)11(dx) dt}
0 R
sin(7rq, 0 X
=TI+ a/)M f f vI%al0, dy) f(y + x — a, y)1 (reman0) e dx
T 0 [0,a] X

. . |
_T(1 + oS0 f f V090, dy) £ (uy ) ———— du, (6.32)
Vg o Jioa (u+a-y'+

where the sum in the first equality is taken over the Poisson point process
of jumps with intensity dz x II(dx) (cf. Appendix [A.13)), where II is the Lévy

measure given by (3.1). Now comparing the two joint laws in (6.3 and (6-32),
the result follows. ]

Just as with the discussion surrounding (6.29) we can push the conclusion
of Corollary just a little further to get an explicit identity for vI®I(x, dy),
albeit being a little ugly (and therefore we refrain from writing it out in detail).
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Note that, for x,y € (0, a), the measure VI®(x, dy) is absolutely continuous
with density

vi0d(x, dy) = ul®(x, dy) + Py(1y < ol dy),

where U was given in Theorem|6.4|and P,(t; < 7)) can be recovered from
Lemma

6.8 Comments

Lemma and Corollary first appeared in Rogozin [183]]. Using the ap-
proach given here, Theorem was established in Kyprianou et al. [[127].
Theorem was first proved in the symmetric case in Blumenthal et al. [39]
and in the more general setting by Kyprianou and Watson [[137] as well as Si-
mon and Profeta [[175]. Corollaries @] and @ can similarly be deduced or
found directly in the aforementioned literature. Theorem[6.7)and Corollary [6.§]
can be found in both Kyprianou [124]] and Profeta and Simon [175]]. Theorem
[6.9]and Corollary [6.11] were first proved in the symmetric case in Blumenthal
et al. [39], then later in Kyprianou et al. [129] and Profeta and Simon [175]].
Proposition [6.10] can again be found in Kyprianou et al. [129], but first ap-
peared in Port [I71]. An incomplete version of Theorem [6.12] can be found
in [129], however a full statement was proved in Profeta and Simon [175]. An
alternative proof of Theorem|[6.12]was put forward in Kyprianou [[125] and this
is the one that will be give later in the forthcoming Section[12.4]

Theorems [6.13] and [6.14] are taken from Kyprianou et al. [132]. Theorem
[6.16] was first proved in Getoor [76], however the proof given here is new,
based on self-similarity rather than a potential analytic approach. Theorem
was first proved in Kuznetsov et al. [120], together with an asymptotic
expansion of the density of the law of 7!}, The shorter proof of Theorem
that we offer here comes from Letemplier and Simon [[141]. As alluded to ear-
lier, care is needed when performing the inverse Mellin transform using stan-
dard techniques. One of the problems highlighted in [120] is the multiplicity of
poles when « is rational. As such the results obtained there place restrictions
on a. In the spectrally positive case, a full expansion for the aforesaid density
was given in [[167] using a methodology different to Mellin inverse transform,
which holds for all @ € (1,2). Theorem [6.18]is a relatively new result, found
in the review article [123]], as are many of the proofs given in this chapter.
The proof of Theorem could in principle be derived from Theorem
by taking limits as @ — 0 and invoking monotonicity, however this seems
analytically rather difficult to execute on account of the limit resulting in the
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difference of two infinities. Instead, we opted for a more elegant proof based
on the Riesz—-Bogdan—Zak transformation, given in Section

The method for Theorem using excursion theory in the stable setting
was developed in Kyprianou [122] alongside similar ideas appearing in the
related setting of spectrally one-sided Lévy processes in [9)]. Baurdoux [12]
exploited other excursion theoretic techniques to analyse resolvents for general
reflected Lévy processes. His results include Corollary for the case of
symmetric stable processes. Appealing to Baurdoux’s approach Kyprianou and
Watson [137] proved Corollary



7

Doney—Kuznetsov factorisation and the
maximum

In this chapter, we are interested in describing the law of the running supremum
of a stable process at an independent and exponentially distributed random
time, as well as at a fixed time. As alluded to in Theorem this boils down
to a better understanding of the space-time Wiener—Hopf factorisation.

Stable processes provide a rare example of a Lévy process with discontin-
uous paths for which a full space-time Wiener—Hopf can be developed in ex-
plicit detail. Overwhelmingly, the majority of what is known in this arena is
due to the work of R. A. Doney and A. Kuznetsov. We present each of their
perspectives here. Accordingly, we collectively discuss the Doney—Kuznetsov
factorisation. (Additional remarks regarding the precise layout of the literature
are found in the comments at the end of this chapter as usual.)

Thanks to self-similarity, it will turn out that the Mellin transform of one of
the Wiener—Hopf factors is associated with the Mellin transform of the law of
the running supremum at a fixed time. We are able to provide a series repre-
sentation of the density of the latter by making a connection with the earlier
theory we have developed in Section on the law of integrated exponential
hypergeometric Lévy processes.

7.1 Kuznetsov’s factorisation

Recall that X denotes a stable process with parameters (a, p) that are admissible
ie. (a,p) € A where the set A is defined as in (3.11). We also recall that
Y, :=sup,, Xy and X, := inf<; Xy, denote its running supremum and infimum,
respectively, at time ¢ > 0. Let e, be an exponentially distributed random time
with rate ¢ > 0, which is independent of X, and we denote by ¥, and ¥ the

185
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Laplace transforms of )_(eq and Xeq, respectively. That is to say,
Vi) =E [e-zfeq] and W) =E[e0] for z>0. (7.1

From Theorem the functions ‘I‘:; and ‘P; are known as the (space-time)
Wiener—Hopf factors. Their characterisation is one of the aims of this chapter.
We call such characterisation as the Doney—Kuznetsov factorisation.

In the spectrally one-sided cases, but excluding the case of monotone paths,
characterising the Wiener—Hopf factors (7.1)) is straightforward. Indeed, let us
assume that X is spectrally negative with index a € (1,2) and hence positivity
parameter p = a~'. Observe from Lemmam that

'r:;:inf{t>0zft>x}, x>0,

is a subordinator and moreover, from the discussion of creeping in Section[3.5]
it is necessarily stable. Since the stable process is self-similar with index «, the
subordinator (7%, x > 0) is also self-similar with index a!. In other words, we
have

E[e—/l‘r;] — e—x/l% 1> 0.
On the other hand, we see
P(Xe, > %) = P(r <e,) = B[ | = e,

implying that qu has the same distribution as an exponential random vari-
able with parameter q%. Recall that the Laplace exponent satisfies y(z) =
log E[e*1] = z%. Using this expression for ¢ together with the Wiener-Hopf
factorisation, we deduce

1 1
@ q\q« — 2
WD) = ——  and ¥ () = u for 730,
qv +z g+ (g =29

Thanks to duality, we also obtain the following expressions in the spectrally
positive case

L 1
M and W, (2) = Iq”

T for z>0.
q<(q+2z%) qge -z

Y, (2) =

For the remainder of this section we will thus keep our attention on the
two sided-case jump setting, i.e. 0 < ap,@p < 1. From duality, the Laplace
transform ‘¥ has exactly the same form as ‘¥ albeit the role of p is played by
p. The scaling property implies

¥ =Yg ", 220, (7.2)
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with the same property holding for 7. In other words, in order to describe the
Wiener-Hopf factors it is enough to study ¥7.

Before we can state Kuznetsov’s identification of these two factors, we need
to introduce a family of special functions known as double sine functions. For
7 > 0, the double sine function S,(z; 7) is defined in terms of the double gamma
function G(z, ), which was introduced in (@.42), as follows

G(z; 1)

Sy(z;7) = @R =2 L
2z 7) = (27) Gl+1t-z71)

zeC. (7.3)

The double sine function also has a Weierstrass product representation, see
(A:26), which can be simplified when 7 = 1 (see (AZ7)). Moreover the func-
tion z — S»(z; T7) is meromorphic, which has zeros at points {—-m7 —n : m,n >
0} and poles at points {m7 +n : m,n > 1}. All zeros and poles are simple if and
only if 7 is irrational.
The double sine function also satisfies
S2(z:7) S2(z;7)

Sxz+ i) = =2 Sy T) =
2z 7 2 sin(zz/T) 22+ 7) 2 sin(7rz)

(7.4)

and has the normalising condition S,((1 + 7)/2;7) = 1. From the asymptotic
behaviour of the double sine function (A.29), we deduce that for every b,c € R

Sa(b + i log(e“y)/(2m); 1)S2(b — i log(e“y)/(27); 7)

Y2275 (1 1 o(1)), asy — +oo,
= (7.5)
y 12T 4 o(1)),  asy — 0.
Moreover, the above asymptotic result holds uniformly in b and ¢ on compact

subsets of R. From identity (7.3), we also observe that the function S,(z; 7)
satisfies the following reflection formula

Sr(z)S(1+17—z71) = 1. (7.6)

For further details and properties of the double sine function we refer to the
Appendix We are otherwise now ready to state Kuznetsov’s factorisation.

Theorem 7.1 (Kuznetsov’s factorisation). Assume that (a, p) € A. For Re(z) >
0, we have

Wi(2) =228 5((1 + a(l + p))/2 + ialog(z)/(2n); @) (7.7)
X S2((1 + a1 + p))/2 — i log(2)/ (2n); ),

and W7 (z) can be obtained from the above identity by replacing p by p.
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7.2 Quasi-periodicity

A key observation in proving Theorem is the identification of a quasi-
periodic property associated to the factors W' and 7. In this section, we de-
velop a proposition (below), which characterises the aforesaid quasi-periodicity.
We can then use what we know about double sine functions to guess and
rigorously verify the factorisation in Theorem using this notion of quasi-
periodicity.

To this end, let us introduce the following notation, A, (= {z € C : a <
Im(z) < b}, the horizontal open strip, A,y := {z € C : a < Im(z) < b}, the
closed horizontal strip, and y, := {z € C : Im(z) = a}, the horizontal line.

On account of the fact that both ¥ (z) and ¥~ (z) are Laplace transforms of
positive random variables, it is immediately obvious that they are analytic in
the half-plane Re(z) > 0 and continuous in the closed half-plane Re(z) > 0.
On the other hand, from the Wiener—Hopf factorisation (2.34) and the explicit
form of the characteristic exponent of the stable process, (see (3.9)), the char-
acteristic exponent of X, we have e.g. that

gy 1
YT (-iz)¥] (i2) = TS e for z>0. (7.8)

In the next proposition, identity (7.8)), together with Schwartz’s reflection prin-
ciple, will allow us to play the analytic properties of V'] off against those of P}
(and vice versa). This results in analytic continuation and a functional equation
satisfied by each of the Wiener—Hopf factors. The aforesaid functional equa-
tion demonstrates the aformentioned quasi-periodicity.

Proposition 7.2. For Im(w)| < n/2, we define f(w) = ‘{’;'(ew) and f(w) =
W[ (e"). The functions f(w) and f (w) can be analytically continued to mero-
morphic functions and satisfy the quasi-periodic functional equations

cos(iaw/2 — map/2)
cos(iaw/2 — ma(l + p)/2)

cos(iaw/2 — map/2)
cos(iaw/2 — ma(l + p)/2)

fw +27i) = 7P

fw), (7.9)

fw + 27i) = e

fow), (7.10)
forw e C.
Proof We begin by applying a change of variable of the form z = ", in the

Wiener-Hopf factorisation (7:8)), to deduce

s 2 . 1
f(w—7r1/2)f(w+m/2)= W, w e R. (7.11)

From its representation as an expectation, cf. (7.I), the function f(w — 7i/2)
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is analytic in the open strip Ao and is continuous in A . Similarly, the func-
tion f(w + 7i/2) is analytic in the open strip A_. and is continuous in A_rp.
Rewriting equation (7.I1)) in the form

1 9 1
1+ enia(l/Z—p)le f(W + 7T1/2)’

Jfw—mi/2) =

weR, (7.12)

and applying Morera’s Theorem (see Theorem [A.4]in the Appendix) we can
analytically (or meromorphically, depending on where the poles of the factor
(1 + ematl/2=p)+awy=1 Jie) continue f(w — 7i/2) into the wider strip A_, . Since
f(w — 7i/2) takes real values on the line y,/2, we can apply Corollary [A.3]in
the Appendix and we see that f(w — mi/2) is a meromorphic function in the
Strip A_z 2.

Next, rewriting equation (7.11]) as follows

1 1

f(W + 72-1/2) = 1 + eria(1/2-p)+aw 0 f(W _ 71-1/2)’

(7.13)

we obtain an analytic (or meromorphic) continuation of f (w+mi/2) in the strip
A_r2n. Since f(w + mi/2) takes real values on the line y_./,, we apply again
Corollary and we see that f(w + 7i/2) is a meromorphic function in the
wider strip A_3z 2.

We repeat this procedure and observe that formula and Corollary[A.J]
guarantee analytic continuation of f(w — 7i/2) in the strip A_3,4,, then for-
mula and the above Corollary allow us to continue f(w + 7i/2) into
strip A_sz4x, and so on. In other words, repeating the steps from above indef-
initely we have deduced that both functions f(w) and f (w) can be analytically
continued to meromorphic functions in C.

In order to finish our proof, it remains to show that these functions satisfy

the functional equations and (7.10). From formula (7.13), we have
Fon™ = 1+ ™) flw — i),
Since f(w) is real for w € R, we deduce that for w € R,
(1 + ™0 ) £ — i) = fow)™ = Fon)T = (14 €70 0) flow + i,

where we have used the fact that. if a and b are two complex numbers, then
ab = a x b and that, as f is a meromorphic function taking real values on the
real axis, f(z) = f(z). By analytic continuation, we observe

(1 + ™) f(w — 1) = (1 + e ™) f(w + 7i), for wecC.

The above identity is equivalent to the functional equation (7.9). The functional
equation ([7.10) is established similarly. The proof is now complete. O
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Let us now see how the quasi-periodic relations in Proposition [7.2] can be
used to prove Theorem [7.1} Using the second functional equation in (7.4), we
can guess the following solution to equation (7.9),

Fw) =e"Y28 (1 + a(l + p))/2 + iaw/(2n); @) (7.14)
X S>((1 + a(l +p))/2 —iaw/(2n); @).

Indeed, let us verify that the above function is a solution to (7.9),

Flw + 2ni) = e” /27w g (1 + a(l + p))/2 + iaw/(2n) — a; @)
X SH((1 + a(l +p))/2 —iaw/(2n) + a; @)
= e V2T (1 + a(1 + p))/2 + iaw/(2n); @)
X 2 sin(z((1 + a(l + p))/2 + iaw/(21) — @))
So2((1 + a(1 +p))/2 —iaw/(2n); )
2sin(((1 + a(1 + p))/2 — iaw/(27)))
riap___COS(iaw/2 — tap/2)

=¢ cos(iaw/2 — ma(1 +p)/2)f(w)'

This suggests candidates for the Wiener—Hopf factors ¥} and ¥7. To be more
precise, we have ¥7(z) = f(log(z)), where f(w) is given in (7.14), and ¥ (@)
can be obtained from ¥ by exchanging the roles of p and p. Solutions to
equation (7.9) are certainly not unique since we can multiply any solution by
an arbitrary periodic function F(w) satisfying F(w + 2x1) = F(w), and the
result would still be a solution. Thus, we need to verify that our guess in (7.14)
is correct via means other than (7.9).

Proof of Theorem[7.1] Let us define

H(z) = 77%2S((1 + a(1 + p))/2 + i log(z) /(27); @)
x SH((1 + a(l + p))/2 — i log(z)/(27); @)

i.e. the function in the right-hand side of (7-7) and, by Hi (z), the same function,
but with p in place of p. Our first goal is to verify that the functions H and H
satisfy the Wiener-Hopf factorization (7-8). Assume that z > 0 and to ease the
presentation, write w = alog(z)/(2xi). Then, recalling p + p = 1,

H(-iz)H(iz) = 77 *2e™@0=1D128,(1/2 + a/4 + ap/2 + w; @)
X S>(1/2 +3a/4 + ap/2 —w; @)S2(1/2 + Sa/4 — ap/2 + w; @)
X S>(1/2 +3a/4 —ap/2 —w;a)
= 77 2em 0 1DI2G (172 + 3a/4 + ap/2 — w; @)
X Sr(1/2 +5a/4 — ap/2 + w; @),
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where we have used the reflection formula in the form
So(1/2 +a/4+ ap/2 +w;)S2(1/2 + 3a/4 —ap/2 —w;a) = 1.

Next, according to the second functional equation in (74) we have

So(1/2+a/4 —ap/2 +w)
2sin(m(1/2 + a/4 — ap/2 + w))’

52(1/2+5(1/4—ap/2+w) =

Using the above identity and the reflection formula again, but in the form
So(1/2 +a/4 —ap/2 +w;@)S2(1/2 +3a/4 + ap/2 —w;a) =1,

we obtain

7/2emiatp=1/2)/2

2sin(r(1/2 + a/4 — ap/2 + w))
_ 1 _ 1
- 1+ Zaenia(l/Z—p) - 1+ \II(Z)’

H(—iz)H(iz) =

where we have used the identity
2sin(n(1/2 + /4 — ap/2 + w)) = 772eM V202 4 zrel2emp-1/D/2,

In other words, the functions H and H satisfy the Wiener—Hopf factorisation
(78) for z > 0. The proof for z < 0 follows by taking the complex conjugate in
the computations above.

To prove that our candidate solutions H and H are in fact the Wiener—Hopf
factors, we need to apply a uniqueness argument. First, let us establish some
properties of the functions H and H.

The function S »(z; @) is analytic and zero-free in the strip 0 < Re(z) < 1+a.
Observe that

Re((1 + a(1 + p))/2 £ ialog(z)/(2n)) = %(1 +a(l+p))F % arg(z)

and, hence noting that (1 + @p)/2 < 1, the functions H and H are analytic and
zero-free in the half-plane Re(z) > 0 (i.e. arg(z) € [-n/2,7/2]). Moreover, we
have

7 'log(H(z)) >0 and  z 'log(H(z)) — 0,

as z goes to oo (uniformly in the half-plane Re(z) > 0). The latter asymptotics
can be derived from the asymptotic result (7.3)).
On the other hand, recall from (2.35) that the Wiener—Hopf factor ¥} (z) can
be written as
k1(0)

¥ (z) = PYEL (7.15)
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where «,(z), for g,z > 0, is the bivariate Laplace exponent of the ascending
ladder process (see (2.30)). From this representation and from the well-known
fact that the Laplace exponent of a subordinator is analytic in the half-plane
Re(z) > 0 and is zero-free in the half-plane Re(z) > 0, we deduce that P} also
inherits such properties in the half-plane Re(z) > 0. Since W] satisfies a similar
representation, then we deduce that both functions, ‘{’f and W™, are analytic and
zero-free in the half-plane Re(z) > 0. Moreover, from (7.13), recalling that, as
a Bernstein function (and, in particular, a concave function), «, will grow no
faster than linearly, as z goes to co on the right half plane of C,

7 og(¥(2)) = 0 and 7 'log(¥;(2) — 0,

(uniformly in the half-plane Re(z) > 0).
Next, we define the function F'(z) as follows:

H(z)/¥] (2), if Re(z) 20,
F(z) = _ (7.16)
W (=2)/H(-z), if Re(z) <0.

Note that the function F(z) is well defined for Re(z) = 0 since both pairs V¥,
¥ and H, H satisfy (7:8), thus H(z) R HORE HE) /H(-7) for Re(z) = 0.

From the properties satisfied by H and H, we see that the function F(z) is
analytic and zero-free in the two half-planes Re(z) > 0 and Re(z) < 0 and from
our discussion in the previous paragraph, it follows that F(z) is continuous in
the entire complex plane. Therefore by Morera’s theorem (see Theorem [A.4)
the function F(z) must be analytic in the entire complex plane.

In other words, we have an analytic and zero-free function F(z) and therefore
its logarithm log(#'(z)) is also an entire function. The properties satisfied by ¥}
and 7 imply that 7' 10g(F(z)) — 0 as z — oo uniformly in the entire complex
plane. Liouville’s theorem (cf. Theorem [A.6) now implies that log(F(z)) must
be constant. The value of this constant is easily seen to be zero, since F(0) = 1
(this follows from H(0) = H(O) =¥7(0) = ¥7(0) = 1). Thus F(z) = 1 for all
z € C, which implies ¥ (z) = H(z) and ¥{(z) = Hi (z) for all z in the half-plane
Re(z) > 0. This completes the proof. O

7.3 Law of the maximum at a finite time

The Wiener-Hopf factor W7 provides information about the distribution of the
supremum up to an independent exponentially distributed random time with
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parameter g > 0, written e,. In principle, a Laplace—Fourier inversion applied
to g > W} will give the law of X, for 7 > 0.

On the other hand, recalling from (7.2) that ¥} (z) = ¥} (zg™'/*), for g > 0,
we see that there is the possibility of converting an inversion with respect to
the variable g with an inverse with respect to the variable z. This observation
can otherwise be seen as equivalent to the noting that, thanks to the scaling
property and the independence of e, and X, the law of qu is equal to the law
of e;/ “X,, when Xo = 0. Indeed, the following computation, which considers
the Mellin transform of ‘I’;, connects these two random variables,

f ZS_I‘I’;(Z)deqs/"f us_l‘l’f(u)du
0 0

=q¢'"E [ f u e e du]
0
= ¢'I'T(s)E [e;” “ (Yl)_s]
- q‘”/“l“(s)l"(l - 5)M(1 —9),
a

where in the fourth equality we have used the integral representation of the
gamma function (see (A.7) in the Appendix) and M denotes the Mellin trans-
form of }_(1, i.€e.

M(s) == E [(il)‘“l].

Our approach in determining M relies on the Lamperti transform instead of
computing directly the Mellin transform of ‘¥, which can be done thanks to
the explicit expression given in Theorem Indeed, the Lamperti transform
provides a natural relationship between the law of X; and the law of an expo-
nential functional of the Lamperti-stable process £*, described in Section
that we explain below.

Recall that 7; = inf{r > 0 : X; < 0} and also that P, denotes the law of
the dual process —X issued from 1. Then spatial homogeneity, duality and the
scaling property gives us

Pirg < =B, <n=P(X,<-1)=P(X,>1)=P(X, > fi). (7.17)

In other words the law of (?1)‘”, under P, is the same as the law of 77, under
P,. The latter can be identified as the life time of the stable process killed on
entering (—oo, (), under B,.

On the other hand, recall from Section that the stable process killed on
entering (—oo, 0) is defined as follows

Z, = th(&ZO)’ t>0,
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and that Z is a positive self-similar Markov process. Its underlying Lévy pro-
cess, (%, P), that appears through the Lamperti transform is a Lamperti-stable
process with parameters (1 — ap, @p, p). In other words, its characteristic ex-
ponent is given by

W) = F(aA— 1?) ra +A1z). ’ LeR.
I'ap —iz) T — ap + iz)

Under P, the stable process killed on entering (—co, 0) and implicitly its asso-
ciated Lamperti-stable process, only experiences a change on its parameters by
replacing p by p. In other words, under the law P/, the underlying Lévy process
is a Lamperti-stable process with parameters (1 —ap, ap, ap) that we denote by
(¢*,P). It is with remembering from Section that everything we have said
regarding &* applies to both the two-sided and one-sided jump cases (albeit that
we are excluding the setting of monotone paths). In particular, in the spectrally
negative case, i.e. p = o', the Lamperti-stable process &* is spectrally positive
with parameters (0, @ — 1, 1) and in the spectrally positive case, the Lamperti-
stable process &* is spectrally negative with parameters (2 — @, 1, — 1). From
the Lamperti transform, under P|, we can also identify the life time of Z with
the exponential functional associated to a*, which implies that the law of 7,
is the same as the law as the exponential functional of @&*. In other words, the
law of 7, , under IAPI, is the same as I(«, é*), under P, where

oo
I(a,&") = f eids,
0

where ¢* is the lifetime of &*, and hence, as consequence of (7.17), we deduce
that the Mellin transform of X satisfies

M =E|(X) | = B[, &) 0. (7.18)

Our main result of this section provides a complete characterisation of the
Mellin transform M in terms of the so-called double gamma G(z; 7). The latter
follows from the above identity and Theorems .13} [4.17]and [4.19]

Theorem 7.3. For s € C and if («, p) is such that

i) 0 <ap,ap < 1, we have
Glap;a) Glap+2-s,a0)Gla—-1+s;a)

_ . s—1
M(S)—Q G(a’b+l;a,)G(a,p_1+S;Q)G((Z+1—S;a’)’

(ii) ap =1, we have
I'(s—1)

()

M(s) =
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(iii) ap =1, we have

sin(3) 01—+
sin(n(%)) re-s)

Proof We first prove part (i). Recall that & is a Lamperti-stable process with
parameters (1 — ap, ap, @p) and hence belongs to the hypergeometric family
of Lévy processes whose parameters lie in H; \ {8 = 1} (cf. @I7)). That is to
say, we can use Theorem @ and deduce

M(s) =

-1
M(s) =M(1 - S—;a,l—ap,a[),l —ozp,a/p)
a

-1 -1
=F(1—S )F(l—s ;cx,l—ap,aﬁ,l—ap,ap).
a a

From the definition of F, we get

M()_r(a—s+1)G(%)G(%é)G(#;é)G(%ﬂé)
PTG e ()
Using the transformation (A:23), we deduce
G(¥:1)6(%8) Gepa)Ge+la
N G0 rapa)

G(1:3)6(5%:3)

where

c(@) = 2n) “TH0-D g G- =p ),

Similarly, we have

G(Z2=:1)G (L) GR-ap-sa)Gla+s+Lia)
G(2+(1_S_1)G((lp+s—l;i) CGQR+a-s5;a)Glap+s— 1)

a ’a a

().

Finally, we use the quasi-periodic identity (A.2T) of G and get
l+a-s
GR+a-s;0)=T'|—— |G +a-s5;0) andG(1 + a; ) = G (a; ).
[07

Putting all pieces together, we conclude that
Glap;a) GR-ap—-s;0)G(a+s+ 1;a)

_ s—1
M) = T apa) G ta-5a)Clap+s—TLa)

as expected.

For the remaining two cases, we proceed similarly as above but using the
explicit expressions for the Mellin transform of I(a, £*) in provided in Theorem
[d.19] for part (ii) and in Theorem [.17]for part (iii). O
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Finally, we use identity (7.18), knowledge of the density of the exponential
functional I(e, &) and its tail behaviour near 0 and co to deduce similar distri-
butional properties of X;. Denote the distributional densities of I(a, &*) and X,
by

pa(x)zil?’(l(a,é*)ﬁx) and py(x) = iP(X1<x) for x> 0.

From identity (7.18), these two densities are related by

—a—1

px(X) = ax™ " pa(x), x>0.

First, we consider the case of two-sided jumps, i.e. when O < ap, @p < 1. The
spectrally negative and positive cases will be treated separately in the next sec-
tion. As alluded to previously, in the case of two-sided jumps, the Lévy process
& is a hypergeometric Lévy process in the class H; \ {8 = 1}. Accordingly, we
can apply directly Theorems 4.22] and [4.24]

Let us first introduce the sequences a,, ,, m,n > 0, and b, ,, m > 0,n > 1, as
follows

(_1)m+n
a'n,n =
F(l -p-n-— ﬂ)l"(a/p+m+an)
y ﬁ sm (ap +j- 1)) l_[ sin(ra(p + j— 1) (7.19)
sin ) i sin(ra j) ’ '
and
1“(1 -p-n-— ?;")l"(ap+m+a/n)
by = - (7.20)

F(l +n+ g)r(—m—an)

We also recall from Definition (#23)) that £ denotes the set of real irrational
numbers x, for which there exists a constant b > 1 such that the inequality
1

<_
bl

p
- £

q

is satisfied for infinitely many integers p and g. For further details about this
set, we refer to the comments after Definition [@#:23).

Theorem 7.4. Assume that O < ap,ap < 1. For a ¢ Q, we have

py(x) ~ x¥7! Z Z A X", x— 0, (721)
m=>0 n>0
pg(x) ~ x7'7® Z Z by x™"", x—oo. (722

m>0 n>0
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Fora ¢ LU Q., we have for all x > 0

xl_a Zmz() an() bm,n+lx_m_an ifae (07 1)’
px(x) =

(7.23)
x! Zmzo ZnZO am,nxmﬂm ifa € (1,2).

There are two ways of getting explicitly the coefficients that appear in (7.21)),
(7.22) and {7.23). One is performing the computations directly from @.20) or
by observing that the Mellin transform M(s) has simple poles at {m + an :
m,n > 1} and {1 — @p — m — an : m,n > 0} with residues

RescM(s) :s=1—-ap—m—an) = =by_1,,
and
Res(M(s) : s = m+ an) = ap,.

The latter identities can be deduced by iterating the following quasi-periodic
properties of M,

M(s+1) = %sin(n(p— - s))r(1 - 5)r(1 - 1_S)M(s),

@ [0 (0

and
M(s + @) = %sin(ﬂ'(a/p— 1+sH)T A =9 (@—-1+s) M(s),

which follows directly from the quasi-periodic properties of the double gamma
function found in (A.ZT) of the Appendix.

We observe that the behaviour of the density py from Theorem only
provides the asymptotic behaviour of the tail distribution of X; at 0 and oo for
a ¢ Qand 0 < ap,ap < 1. As we will see in the next chapter, tail asymp-
totic behaviour is desirable for all values of @. To avoid the aforementioned
restriction in @, we use Theorem|[I.18]to deduce the upper tail behaviour of the
distribution of X for any a € (0,2).

Proposition 7.5. Suppose that X possesses positive jumps. Then
— r
]P’(Xl > x) ~P(X; > x) ~ ﬂ sin(rap)x™® as x — oo,
b

Proof From the asymptotic expansion in Theorem|1.18] we get the following
estimate

r
P(X; > x) ~ I'@) sin(mrap)x™® as x — oo. (7.24)
T
Hence, it is clear that

— T
lim inf x"]P’(Xl > x) > & sin(rap).
r

xX—00
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For the upper bound, we fix € > 0 and observe from the Markov and scaling
properties that

P(X1 > (1 - e)x) 2 B(X; > x, X; > (1 - €)x)

I\

P(rf € du)P(X,_, > —€x)
[0,1]

—€X
= P‘rj[eduP(X >—)
«[[0,11 ( ) 1 (] _ M)l/a

> P(X; > x)P(X; > —ex),

where we recall the usual notation 71 = inf{r > 0 : X, > x}.
Next, we use again the estimate in (7.24)), together with the fact that

lim P(X; > —ex) = 1,

to deduce
— r
lim sup x"IP’(X 1> x) < @) sin(rap)(1 — €)7.
X—00 n
The desired result follows by choosing € arbitrarily close to 0. O

Scaling tells us that 77 is equal in distribution to x*7] and hence, in a similar
spirit to (7.17), we have that

P(X; < x) =Pt > 1) =P(z} > x™%) = Pi(r; > x™).

The asymptotic behaviour in Lemma[5.12](which is ultimately rooted in Propo-
sition l now gives us the lower tail behaviour of the distribution of X/,
albeit that we must interchange the roles of p and p.

Proposition 7.6. Suppose that |X| is not a subordinator. Then
— a
PX; < x) ~ ———x% 0.
(%1 <) Terd+aep”  “ *7

7.4 Doney’s factorisation

It turns out that the Mellin transform M given in Theorem(7.3|can be simplified
to a more explicit form for special parameter choices.

Definition 7.7 (Doney classes). For k,I € Z, we say that a stable process X
with admisible parameters, (@, p) € A (cf. (3.11))), belongs to the Doney class
Cy, if the following identity holds

o+k= L (7.25)
a
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Note that the spectrally one-sided cases are included in the Doney classes.
Indeed setting k = 0,/ = 1 in gives us the spectrally negative case and
k = —1,1 = —1 gives us the spectrally positive case. Moreover, if («, p) satisfy
(7.23)), then we observe that @ € Q if and only if p € Q. If @ ¢ Q there exists
a unique pair of integers k, [ such that identity holds. If @ = m/n for
some coprime integers m, n and X € Cy, then identity holds for any pair
(k, 1) = (k+ jn, 1+ jm), for integer j € Z. In this case, we assume that 0 < k < n
and 1 <[/ <m.

Our next result provides the explicit form of the Mellin transform M for the
Doney classes.

Theorem 7.8. If X € Cy; and l > 0, then, for s € C,

I(s) L sin(n(s — 1+ i)/@) 1~ sin(ra j)
T - =9/ LI singrija) 1 LsinGr( =5+ )

M(s) =

If X € Cryandl <0, then

T(1 = (1 - s)/a) 0 sin(a(s — 1 + ia)) 1 sin(rj/a)
rQ2-s) L sin(rrai) o sin(nr(1 — s + j)/a)’

M(s) =

Proof Since both identities use similar arguments, we only provided the ar-
guments to show the first identity. Assume that / > 0 and recall that under our
assumptions ap = [ — ak. From Theorem[7.3] we have on C

Ms) = a*! G(l - ak;a) Glak+D)-Il+2-s5;0)Gla-1+s;a)
B Glak+1)-Il+1;0) GUl-ak-1+s;a) Gla+1-sa)

Using the quasi-periodic properties for the double gamma function (A.2T)), we
deduce the following identities

Glatk+1) - 1+2-s550) _ p,.k"
l:llr a+l-s—i YI

Ga+l-sa) :

u a

k
x 1_[([(‘” SO — s — [ +2),
Jj=1
and

-1

Gla-1+s0) = (ZH)HT_I(HI)Q*(S*IH% I'(s—-1) 1
Gs+Il-1-ak;a) rad-a-s/a) L F(P(i”)
k 1
x [ Ja (s 4 - aj - 1),
J=1
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Multiplying both identities and using the reflection formula (A12), we observe

Glak+D)—-Il+2-s5s;0) Gla-1+s;a)

= (270) @ D+1/2) o ~(s=D+3
Gla+1-s;a) Gs+1—1-ak.a) (2rm) a

I(s) ﬁ sin(n(s — 1 + i)/a) ﬁ n
F(l—%) o Pis i sin(r(1 — s — (I = 1) + ja))’
In particular for s = 1, we obtain
G(l - ak;a)

— (zﬂ)—((t—l)(k+l/2)a—%

Glak+1)-1+ L)
I-1

r g sinG(=1 - 1) + ja))
% l_[ sin(mi/a@) 1:[ P d ’

i=1

Finally, using the reflection identity of the sine function,
sin(f — ) = — sin(6),

in the last two identities, we deduce the form of the Mellin transform M as
required. o

Similarly to Theorem the explicit form of the Mellin transport M for
the Doney classes allows us to describe explicitly the density of X;. In order to
do so, we introduce the sequence of coefficients as follows. If I > 0, then for
ne{0,1,2...,k} and m € Z, we define

k+1)+ni+1
N (_1)m(+ )+nl+

“mn = T + n+m/a)(—m - na)
[ [ st
while if / < 0, then form € {0, 1, ...,]|l|} and n € Z, we define
C;Ln (_1)mk+n(l+l)+l

- I'd+n+m/a)l'(-m — na)
k-1

y l‘—[ sin(ra(i + n)) = sin(x(j + m)/a)

sin(rie) L sin(zj/a)

i=1

Theorem 7.9. Assume that X € Cy;. Then if @ € (0,1) and | > 0 we have a
convergent series representation

k
px(x) = - Z Z e x€eR” (7.26)

n=1 m>0
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and an asymptotic expansion

k
px(x) ~ Z Z chxmenl x— 0. (7.27)

n=0 m<-1
Similarly, if @ € (0, 1) and | < 0, we have a convergent series representation

11

pr(0 == > > e x ", xeR, (7.28)

m=0 n>1
and an asymptotic expansion

[l

Py ~ . Y G x5 0%, (7.29)

m=1 n<k

Ifa € (1,2) and l > 0, we have a convergent series representation

k
py(x) = Z Z chxmentl e RY (7.30)

n=0 m<-1

and an asymptotic expansion

k
py(x) ~ — Z Z ch el y s o, (7.31)

n=1 m>0
Similarly, if @ € (1,2) and | < 0 we have a convergent series representation
11
py(x) = Z Z X " X e RY, (7.32)
m=1 n<k

and an asymptotic expansion

11
py(x) ~ — Z Z R L N Q) (7.33)
m=0 n>1

Proof We follow the same arguments used in the proof of Theorem .22 and
observe that, in order to deduce the asymptotic expansions {7.27) and (7.29),
only the knowledge of the residues at the poles of M(s) are needed. The rest
of the proof follows exactly the same arguments as in the proof of the afore-
mentioned result.

From the explicit form of M(s) given in Theorem we deduce for the
case [ > 0 that M(s) has simple poles at s,,, = m + na form < 1 — [ and
ne{0,1,2,...,k}orm > 1and n € {1,2,...,k}. The associated residues are
such that,

Res(M(s) : s =m+an) =c,_,,.
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Similarly, for / < 0, the Mellin transform M(s) has simple poles at s,,, =
m+na forme{1,2,3,...,|l|+1}andn>1lorme{2,3,...,|l|+1}and n < k.
The associated residues are such that,

Res(M(s): s=m+an)=c,_,,.

The above characterisation of the residues of M(s) completes the proof of
and (729).

Next, we establish the convergence of and (7.28). With this aim in
mind, we assume that @ € (1,2) and [ > 0. We choose ¢ € (0, 1) such that
c #m+anforn e {0,1,2,...,k} and m € Z. Our starting point is the expression
of p(x) as the inverse Mellin transform

px(x) = L M(s)x*ds, x>0. (7.34)
271 J1sir
In a similar spirit to the proof of Theorem§.22] recalling that we are using the
identity for M, where the underlying Lévy process belongs to the hyper-
geometric family of Lévy processes with parameters (1 — ap, ap, 1 — ap, ap),
we can use (A.T6) in the Appendix together with (#.43) and the explicit form
of M from Theorem|7.3]to deduce that that | M(x +iu)| decreases exponentially
as u — oo (uniformly in x in any finite interval). To be more precise, for x € R,
we have as u — oo,

log (IM(x + iw)|) = —7;|—Z| (a(l —p)+ 1 —ap) + o(u). (7.35)

As a consequence, not only does its Fourier inverse exist but so does the Fourier
inverse of its derivatives, and therefore all of them are continuous. As such,
px(x) is a smooth function for x > 0.

We take N to be a large positive number and assume that ¢ is an integer.
Define the contour L = L; U L, U L3 U L4, where

L1 :={Re(zr) =c—N, - <Im(z) < ¢},
Ly :={Im(z) = ¢, c— N <Re(z) < 1},
Ly :={Re(z) = 1, =€ < Im(z) < ¢},

Ly :={Im(z) = —, ¢ — N < Re(z) < 1}.

It is clear that L is the rectangle bounded by vertical lines Re(z) = ¢ — N,
Re(z) = 1 and by horizontal lines Im(z) = +£. We assume that L is oriented
counter-clockwise; see Figure|/.1

The function M(s) is analytic in the interior of L, except for simple poles
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4

N

Ly

AL

LN

Ly
N
>

Figure 7.1 The contour L =L ULy, ULz U Ly

Sm.n» Which lie in (¢ — N, 1), moreover, it is continuous on L. Using the residue
theorem (cf. Section[A.T]in the Appendix) we find

l =S —_ . —_ —Sm.n
oF fL M(s)x™* ds = Z Res(M(s) : 5 = Syun) X x5,

c=N<sy,<1

where the summation is over all m, n, such that c — N < s,,, < 1. Next, we
estimate the integrals over the horizontal side L, as follows

M(s)x™*ds

Ly

When ¢ increases, we see from (7.35)) that max,e;, |IM(s)| tends to 0. Therefore

<(l=-c+N)xx! max [ M(s).
S€Ly

M(s)x ¥ ds - 0 as { — oo.

L,

Similarly, we deduce that the integral on the contour L, goes to 0 as £ goes to
oo. Thus putting all the pieces together, we have

1 1 )
- — M($)xds + — M(s)x*dz
27 Je-nvir 27 Jiviv
= Z Res(M(s) 1 s = Syn) X x75m,
c—N<spy <1

In other words, we have deduced

pY(-x) = Z ReS(M(S) s = Sm’n)_x_sm,n

c=N<sy,<1

1
+ — M(s)x"*ds, (7.36)
271 Jen+iv



204 Doney—Kuznetsov factorisation and the maximum

Now, we use the explicit form of M from Theorem and the reflection for-
mula for the gamma function (see (A:12) in the Appendix) to find that, for
some constant C € R,

T(52) iz sinGe(s = 1+ j)/a)

=C 5
M(s) I -s) ]‘[’J‘.zo sin(z(1 — s + «j))

on C. Finally, we prove that as N increases, the integral on the right-hand side
of (7.36) converges to zero for any x > 0. Indeed, we observe

r N—c+it
f M(s)x~*ds| < CxN_"f S
c—N+R R

I'(N—-c+ir)
k
g(t) = el 1_[ lcosech(n(t + i(aj — ¢)))|.
=0
Using the asymptotic (A.16)) for the gamma function, we deduce that for any
x > 0, the function

g(ndt,

where

N—c+it
(=)
(N —c+it)’
converges to zero as N increases (uniformly in ¢ € R), thus the integral in the

right-hand side of vanishes as N increases and implicitly the convergent
series for a € (1,2) is such that

k
pr(x) = Z Z c,fqynx””"m’l, x> 0.

n=0 m<-1

N-1

The convergence of the series for the case / < 0 can be established in the same
way, except that now we have to change the rectangular contour so that one
side lies along the line Re(z) = 1, but the other three sides are arranged so that
the contour encloses an increasing number of poles on the positive real line.
The case @ € (0, 1) can be deduced exactly in the same way as above. The
details are left to the reader. O

It is worthy of note that there is another way to characterise the coefficients
,i,m, by making use of the sequences {a, ,}nm>0 and {by, }ms0.>1, defined in
(7.19) and (7.20) respectively. Indeed, by performing straightforward compu-
tations (similar to those used in the proof of Theorem [7.8)), we can deduce that
Amn = cflfm’kfn and by, = —c;, , accordingly as +/ > 0.

We also note by way of a corollary that the spectrally negative case (k = 0,
[ = 1) and the spectrally positive case (k = —1, [ = —1) offer more convenient

expressions than already apparent from Theorem|/.9

c
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Corollary 7.10. When X is spectrally negative, i.e. « € (1,2) and p = a7},

(_l)m—l "
—(x) = § ol 0. 7.37
px() Sr(1-2)m-1) * 7:37)

When X is spectrally positive, i.e. a € (1,2) andp = 1 —a™!, we have

1
pw(x) = X2, x> 0. (7.38)
X ;F(l—n+$)l"(om—l)

Finally, we state the Wiener—Hopf factor for stable processes in the Doney
classes. In order to do so, we first introduce the g-Pochhammer symbol as
follows

n—1
(@:qy:= 1—1(1 - aqk), for neN,
k=0

and (a: q)o = 1. If |g] < 1, we define

(a:q)o = l_[(l — aqk).

k>0

Theorem 7.11 (Doney’s factorisation). Assume that X € Cy. Then, for |arg(z)| <

T,

(Za(_l)l—le(l—k)ﬂia . eZﬂia/)

A A k if 1>0,
(Z(_l)l—ke—(l—l)m/a : e—2m/oz)

1
¥i(2) =

(Z(— 1)1+ke—(1+1)7ri/(t : e—27'ri/<1)
1

if 1<0.

(Za(_1)1+le(l+k)ﬂi(z : eeria/)
[kl

We will not provide the complete proof here but will offer instead a sketch of
the main arguments. The complete and formal arguments go beyond the scope
of our exposition.

First, we observe that the form of the Wiener—-Hopf factor ¥7 in (7.7) can
be written in terms of the double gamma function G using the identity (7.3).
For the second step, we also observe that the resulting identity also holds for
a € {w € C: Re(w) > 0}. After this, we develop the identity further using
the analogue of the reflection formula for the double gamma function (A.22),
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which, in our particular case, reads as

( _ eZniz . eeriar)

00
[l

3 1 . 1 . p—
—2maG(§ +z,a/)G(§ Z; a/)—

for Im(e) > 0, together with the transformation that appears in (A.23)), which
in particular is written as

(e27ri(1 . e27ria/)

[e]

Gz ) = (zn)é(l—p‘,)a”zi}z%—lg(i; l)
a

To complete our arguments, the following identity is needed

(@: Qo
(aq" : @)
which can be easily deduced from the definition of the g-Pochhammer symbol.
For the last step, in the resulting identity that we have developed from
with the help of the above identities, we let Im(@) go to 0 and use analytic

continuation, to give the desired expression for the Wiener—Hopf factor when
a €(0,2).

= (a5 Qn»

7.5 Comments

Darling [56] and Heyde [87]] are the first authors interested in the Wiener—Hopf
factorisation for stable processes. They observed that evaluating the Wiener—
Hopf factors analytically is equivalent to the evaluation of a certain definite
integral, usually referred to as Darling’s integral. This integral was explicitly
computed in the case of symmetric Cauchy process by Darling [S6] and, in
the case of spectrally negative Lévy processes, by Bingham [34]]. In particu-
lar, Darling found a simple expression and Bingham obtained an absolutely
convergent series representation for the density of the supremum; see identity
@37.

In his seminal paper, Doney [59] obtained a closed-form expression for the
Wiener—Hopf factors for a dense set of parameters that we introduce here as the
Doney classes, and which include the one-sided cases. The method employed
to evaluate Darling’s integral by Doney was similar to that used by Bingham.
Theorem is the main result in [S9] and is included for completeness in
spite of the cases there being covered by Theorem The sketch proof that
we highlighted is not Doney’s original proof, but rather a method suggested by
Kuznetsov [116]].
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After the result of Doney and following an absence of any progress for
around 30 years, many other significant results related to the supremum at a
fixed time for stable processes and its density appeared in the literature. For
instance, an absolutely convergent series representation was obtained for the
spectrally positive case by Bernyk et al. [17], see identity (7.38)). Doney [61]]
found the first asymptotic term of the density at infinity in the spectrally posi-
tive case and, in the same setting, Patie [[164] provided a complete asymptotic
expansion. In the setting of two-sided jumps, the first term of the asymptotic
expansion of the density at O or at infinity was obtained by Doney and Savov
[63]. Graczyk and Jakubowski [81]] have also discovered a series representa-
tion for the logarithm of the Wiener—Hopf factor.

Kuznetsov [[116] observed from Doney’s main result in [S9] that certain
properties were reminiscent of aspects of the theory of elliptic functions. Mo-
tivated by this observation, Kuznetsov used the theory of elliptic functions to
deduce the Wiener—Hopf factors as described in Theorem Theorem
which describes the Mellin transform of the supremum at a fixed time, was
also established in [L16]]. In this paper, he also establishes the asymptotic ex-
pansion of its density, which is the first part of our Theorem Moreover he
constructs the asymptotic expansion and the convergent series representation
of the density of the supremum at a fixed time for the Doney classes, which
was given in Theorem The tail distribution in Theorem [7.5]is based on a
similar result in Chapter VIII of [18]].

In [L16], Kuznetsov also points out that a convergent series for the density
of the distribution of X; is not so easy to deduce in full generality and a conjec-
ture was established. This conjecture, which corresponds to the second part of
Theorem [7.4] was proved shortly after by Hubalek and Kuznetsov [90]. How-
ever, this is not the end of the story. Further developments include Kuznetsov
[117], who showed that there exist an uncountable dense set of irrational a’s,
for which the series representation that appears in the second part of Theorem
does not converge absolutely, for almost all p. Moreover, Kuznetsov [117]]
gives an infinite series representation for the density in the setting that a is
rational. Finally, Hackmann and Kuznetsov [85] show that, for every irrational
a, there is a way to rearrange the terms of the double series in Theorem SO
that the series converges to the density of the supremum.
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Asymptotic behaviour for stable processes

Now that we have a suitable knowledge of the distribution of a stable process
and its extrema, we are in a position to develop integral tests that determine
lower and upper envelopes of their sample paths as # — 0. Similar arguments
can be applied for ¢+ — oo, so we only state and prove our results for small
times. The results for large times are similar, albeit that integral tests at 0 must
be replaced by the same integral tests at co.

In keeping with our standard notation, (X;,# > 0) with probabilities P,,
x € R, will always denote a stable process. Recall that ‘A denotes the admissi-
ble set of parameters defined in (3.1T). In the following sections, we will work
our way around different regimes of the fundamental parameters (a,p) € A,
establishing path envelope properties for each. For some parameter combina-
tions, the results on envelopes will be strong enough to state a law of iterated
logarithm.

8.1 Stable subordinators

We begin by considering the simplest scenario, that is to say, the case when
the sample paths of the stable process X are monotone increasing i.e. the case
of a subordinator. Recall that, for this case, the parameters (@, p) are such that
ae(0,)andp = 1.

Our first result describes the upper envelope of stable subordinators.

Theorem 8.1. Suppose a € (0,1) and p = 1. Let f : (0,00) — (0, c0) be an
increasing function such that lim,_o £ V/? f(¢) = co. Then

X
lim sup L =0 or 0o, P-a.s.,

t—0 f(t)

208
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accordingly as the integral
dr
0+ f(t)a

Proof We first deal with the setting that the integral in 8.1 is convergent.
Let r € (0, 1) and define, for n > 1, the events

converges or diverges. 8.1

A, = {Xr" > r—2/(ycf(rn+])}’

where c is any positive constant smaller than 1.
Next, we observe that the following inequality holds

Z P(A,) = Z P(Xp2 > cf ("))

n>1 n>1
< fl B P(X, > cf(r))dr

where in the equality we have used the scaling property and, in the inequality,
we used the monotonicity of X and f; in particular, for t € [k, k+ 1], k > 1, we
have {X,«1 > cf(r*)} € {X,« > cf(r')}. Now appealing to the change of variable
u = r' followed by the scaling property we get

ZP(A,,)S—L frp(xl >cf(”))d—“. (8.2)
logr Jo ul/e | y

nx1

From (1:32), it is not difficult to deduce the asymptotic
P(X; > x) ~ k(a)x™?, as x — oo, (8.3)

where k() is a constant that depends only on «@. Putting the pieces together,
we have

dr
P(A,) < o whenever < o0
Z 0+ f(l‘)Q

n>1

Then, from Borel-Cantelli’s Lemma it follows that
X < cr 2 f(1)  eventually as n — oo, P-a.s.

In a similar spirit to remarks above, monotonicity of f and X tells us that, for
t € [P, 7], n > 1, we have (X < cr”?f("*)} C (X, < cr?/?f(£)}. In
other words, with probability one,

X
limsup — < 2%,  forall re(0,1).

t—0 f(t)

The result now follows since ¢ can be taken arbitrarily small.
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For the setting that the integral in (8.T)) diverges, we use again Borel-Cantelli’s
Lemma for the independent sequence of events

B, = {xrm — X2 > 2% f(r”)},

where ¢ is any positive constant bigger than 1 and r € (0, 1). Following similar
steps to those that led to (8:2), we have

ZP(Bn) = ZP(erz+l(l_r) > rz/"cf(r”))

n>1 n>1

1 l/a
= ZP(X,H > (:) cf(r"))

n>1

o 1 1/a
> f P(X,r > (—) cf(r’)] dr
1 1-r

’ 1/a
e e o e A b
logr Jo l1-r ul/e | u

where in the first equality we used stationary and independent increments, for
the second and last equalities, we used the scaling property and for the inequal-
ity we used monotonicity of f and X.
Using the asymptotic (8-3) and taking r close to 0, we get
de

Z P(B,) = whenever . e =00

From Borel-Cantelli’s Lemma for independent events, it follows that

n>1

Xuit = Xy > /% f (") i.0., a8 n — oo, P-a.s.

Again noting in a similar spirit to earlier remarks {X,»1 > X,u2 + r¥%cf(r")} C
(X, > r¥ecf(0)}, for t € [r™!, "], n > 1 thanks to the monotonicity of f and
the process X. In other words, with probability one, we have

2/a

X
limsup—;)Zr c, forall r<1,

t—0
then the result follows since ¢ can be taken arbitrarily large. The proof is now
complete. O

Next, we study the lower envelope. In this case, one is able to get a precise
result in the form of a law of the iterated logarithm.

Theorem 8.2. Fora € (0,1) and p = 1, we have

(I-—a)/a
liminf X:(log|log1])

m o =a(l - a/)(l_")/", P-a.s.
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We prove Theorem[8.2]in two steps. First, we obtain an integral test in terms
of the law of X that allows us to identify lower envelopes of stable subordi-
nators. Thereafter, we use a sharp estimate for the lower tail of the distribution
of X to develop the aforementioned integral test into an explicit form, which
gives the desired result.

Lemma 8.3. Suppose @ € (0,1) and p = 1. Let f : (0,00) — (0,0) be an
increasing function such that lim,_, e f(@® =0.

(i) If
[ 2o < )8,
0+ ulle | y
then
X,
liminf — > 1, P-a.s.
t—0 )
(ii) If
f P X1<f(u) %:00,
0+ ulle | y
then
X,
lirtrlionf]T;) <1, P-a.s.

Proof We first deduce part (i). Similarly to the proof of Theorem 8.1} we
introduce, for r € (0, 1) and n > 2, the events

A = (X < Pl fG)
and use scaling and monotonicity to deduce that

ZP(AH)S—LIVP(XK@)%
logr Jo ule ) u

n>2

That is to say, if the previous integral is finite then from Borel-Cantelli’s Lemma,
it follows, with probability one, that

X > O f(#")  eventually as n — oo, P-a.s.

Again, a monotonicity argument allow us to deduce that with probability one,
we have

X,
liminf — > /@, forall r<1.
—0 f()

As r may be taken arbitrarily close to 1, the result follows.
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Now, we prove part (ii). Let us take r € (0, 1) and define, for n > 1, the

events
C,= {Xz < r 2% f(1), for some ¢ € (0, r”)}.

Note that the family of events (C,),>; is decreasing. Moreover,

C:= ﬂ Co={X, <rf(i0.as 1 - 0},

nx1

As such, if we prove that

lim P(C,) =1, (8.4)
it follows that
P(X, <rf()i0.,as 1 — O) =1, (8.5)

which, in turn, implies the claim. In order to show (8.4)), we introduce the sets,
B, =X < r72f(), fornx 1.

Following arguments already used several times, it is clear from scaling and

monotonicity that
1 " d
D URB) 2 - fJP x; < L) 4
logr Jo ulle ) u

nx1

so that the hypothesis of the claim in (ii) implies that ). P(B,) = oo.

Since lim,_,. P(C,) exists by monotonicity, to prove (8.4), it suffices for us
to find increasing sequences (my )0 and (74 )= tending to infinity such that
O<m<ng—1,

P(Cp,) = 1 = G(my, ny),
and limy_,., G(my, n;) = 0, where
G(m,n) = P(x,,-_l > 2 f ), forallm < j<n-— 1).
To this end, let us introduce
H(n,m) =P (X, = X > 12 f(r), forallm < j<n-1),
and
Prn(X) = P (X, = X2 > r 21 f(r7) = x, forallm < j<n-2).

Observe that the map x — p,, ,(x) is increasing. From stationary and indepen-
dent increments and the scaling property, H(m, n) and G(m, n) can be expressed
as follows

H(m,n) = f Pmn (@ X) P(X1 -, € dx),
by
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and

G(m,n) = f Pma(@X)P(X; € dx),
by

where a; = r* 2/ and by, = ¥4/ f#*1). In particular, it follows that, for m, n
sufficiently large,

H(n,m) > pym (@,N)P(X,_, = N) for N>C, (8.6)

where C = sup,, x~Y¢ f(x), which can be assumed to be finite without loss
of generality.

Our objective is now to show that there exist increasing sequences (11;)>0
and (7 )x>0 to infinity such that 0 < my < n; — 1 and

H(mk, nk) k—) 0. (87)
Indeed, with in hand, noting (8.6), it implies that p,, ., (a, N) also con-
verges to 0, for every N > C. On the other hand, we have
G(nk’ mk) < Py, (ankN)P(Xl < N) + IP)()(l > N)

and hence letting k and N tend to infinity, we get that limy_,.o G(ng, m) = 0.
We thus complete the proof by proving (8.7). To this end, suppose the con-

trapositive, i.e. that there exists & > 0 such that H(m, n) > 9, for all sufficiently

large integers m and n. From the independence of increments, we deduce

12P[ O Bn)

n=m+1
o0 n-1 ¢
n=m+1 j=m
> ' B(B)H(m,n)
n=m+1
>5 ) BB,
n=m+1
but since the last term diverges, we deduce that the limit in (8.7) holds. O

For the next Lemma, we introduce

g = (1og|10gt|)n74, 0<r<e™.

Lemma 8.4. Suppose a € (0, 1) and p = 1. For every ¢ > 0, we have

a

“log P(X; < cg(t)) ~ (1 - oz)(%) logllogd] as 1—0.  (8.8)
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Proof We first deduce the lower bound. From Chebyshev’s inequality, we
have

P(X; < cg(t) < exp{dcg(®) - A%}, forany 1> 0.

A straightforward optimisiation of the exponent on the right-hand side above

gives us

a/(1-

a @)
“log (X, < cg(t) = (1 - @) (Z) log|log 1. (8.9)

To complete the proof, we need an upper bound in the spirit of (8.9) as
t — 0. Recall from (2.22)) that E,(2) := exp(—AX; + 2%1), t > 0, is a martingale
that induces the following change of measure

PYA) = E[E;(D)14], A €T, (8.10)

see (2.23). Under P*, the process X is still a subordinator with Laplace trans-
form given by

OO =A+0)"—2%,  6>0.
In particular,
2
EYX;]=al®', and E! [(X1 — a1 ] =a(l-a)2* 2. (8.11)

Using (8-10) transform with A2 = A(r), where

c(1—-e)\*"
a

1
a-1
/l(t)z( ) (log|logf)"/*, for O<r<e,

we observe
P(X; < cg() = B [&1A) ™ 1ix, 2500 |
> exp {A()c(1 = 26)g(r) — A" (PO (c(1 - 2€)g(r) < X, < cg(0))

= exp{ - Co.c log | log )P V(1X; - c(1 - )g(1)| < ecg(®))
(8.12)

where € > 0 is arbitrarily small and

a T 1-2¢
Ca’ez(c(l—e)) (l—a 1—6)'

Noting that E*[X,] = ¢(1 — €)g(1), we have from Chebyshev’s inequality and
(8:TT), that the following inequality holds

P/l(t)<|X1 —c(l —e)g) > 6cg(t)) < C 1

e —— 8.13
"~ log|log 1| (8.13)
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where a,,f is a positive constant that only depends on @ and e. In other words,
as t goes to 0, the probability in (§.13) goes to 0 implying that

lim PYO(1X) = c(1 - e)g(0)] < ecg(r)) = 1,
—

and, hence, from (8:12)) we deduce

lim sup

—log P(X; < cg(t)) ( a )1:, ( 1- 2e)
< l-«a .
-0 log|log 1|

c(l-¢) 1-€

Since € was taken arbitrarily small, the required asymptotic upper bound fol-
lows. This completes the proof. O

Proof of Theorem[8.2] In order to deduce the result, we take
f@) = et (log|log )@V, 0<r<e,

with 0 < ¢ < a(1 — @)"~/®_ From the estimate in Lemma|[8.4] we note that

d d
f P(Xl ffjl)) “ |10gu|‘cd—u < oo,
0+ u 0+ u

with
@\
C,=(- a)(;) 1 (8.14)
Using part (i) in Lemma[8.3] we deduce

hmmf%_ , P-as. (8.15)

The proof is completed by establishing an asymptotic upper bound for the
limsup that complements (8:13). We take f(7) as before but with ¢ > a(1 —
@)1=/ which from (8:14) means C,, < 1. We get that

(u du
fP(Xl f”)) llog ul " = = oo,
0+ u 0+ u

From part (ii) in Lemma[8:3] we deduce

X,
liminf — <1, P-as.,
t—0 )

which completes the proof. O
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8.2 Upper envelopes for p € (0, 1)

Next, we proceed to study the upper envelope when the sample paths of stable
processes are not necessarily monotone. We first assume that the stable process
X possesses positive jumps and is not a subordinator. In other words (a, p) €
AT where

A =lae .1, pe©. DU =1, p=1/2}

Ufee(1,2), pe [1—a-1,a-1)}. (8.16)
We also recall that for any ¢ > 0, X, denotes the running supremum of X, i.e

Z = sup X;.

s<t

Theorem 8.5. Suppose (a,p) € A*. Let f : (0,0) — (0, ) be an increasing
function such that lim,_o t~"/% f(f) = co. Then

lim su lim su =0 or oo, P-as., (8.17)
,wpﬂ> ,%pﬂ>

accordingly as the integral

dr
0+ f(t)a

Proof Let us start by noting from the obvious inequality X, > X;, t > 0, that

converges or diverges.

X

tim sup 775 < limsup 75 (E19
almost surely. On the other hand, there is a sequence of times at which X, =
X,, specifically, when 7 belongs to the range of the inverse local time at the
maximum. Moreover, since f is increasing, this means we have a collection of
times, i.e. the left end points of excursion of X from X, say 7 C [0, o), which
is such that [0, 00)\7 is the countable union of open intervals on which X is
constant. In addition, for each € 7, X, = X, and f@® < f(s), forall s > ¢
satisfying X, = X,. It follows that

X; X; X, X,
lim sup — msup — = limsup — msup —

t—0 f( ) tE'T f(t) teT f(t) §—00 f( )

the converse inequality to (8:18)) holds and the first equality of is auto-
matic.

We now proceed similarly as in the proof of Theorem to deduce the
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convergent part of the integral test. Indeed, let r € (0, 1) and define, forn > 1,
the events

A, = {)_( > 2 f(r"“)},

where c is any positive constant smaller than 1. Then, using the scaling prop-
erty and the monotonicity of X and f as before, we deduce

ZP(AH)S—LfrP(chf(”))d—”.
logr Jo ul/e | y

On the other hand from Proposition we have that there exist a constant
k1 > 0, such that

P(Y1 > x) ~kx®  as x— oo. (8.19)

In other words, for r close to 0, we have

dr
Z P(A,) < whenever f < o0
T 0+ f(t)a

Then, from Borel-Cantelli’s Lemma and the monotonicity of X and f, we ob-
tain, with probability one, that

2/a

X
limsup—;)sf c, forall r<l1.

t—0
The result then follows since c can be taken arbitrarily small.
For the divergent part of the integral test, let » € (0, 1) and introduce, for
n > 1, the following sets

(1)

B, = {'X,n < Nr"/a} and C, = {}r"’l(l—r) > Cf(}’ﬂ_l) + Nrn/a} i

< .. .
where X,n = sup,.; X,n4s — X;» and N, ¢ are two positive arbitrary constants.
Let D, = B, N C,, from stationary and independent increments and the scaling
property, we see

P(D,) = P(B)P(Cy) (8.20)
_ v S N
=P(X;| < N)P (Xl > Crﬁ(; "1y + (% - 1)1/0). (8.21)
It follows that, for t € [n — 1, n],
v f(r) N
P(D,) = KNP(X] > 7 Ty + a- ])l/a) (8.22)

where ky = P(|X;|] < N) > 0. Recalling that lim,_ f(u)/ul/“ = oo and the
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polynomial decay in the tail distribution of X;, cf. (8:19), we may asymptoti-
cally, for n sufficiently large, replace the lower bound in (8:22)) by

Ji) ]

_— 8.23
ra(L - 1le (823

P(D,) > kyP [)_(1 >c

Putting these pieces together, we note that

-1
o d

SEDy=e if - KNf le>l;f(”) Y
logr Jo (;_l)l/aul/ﬂ u

n>1

which is the case thanks to the the upper tail distribution of X; in (8.19) and
the assumed divergent integral test.

On the other hand, we observe that for m < n, using stationary and indepen-
dent increments together with (8:20),

P(Dy)
P(B,)
Clearly the case n > m holds by symmetry. The inequality (8:24) fulfils the

conditions of Lemma[A.12]in Apendix [A.9] which is of a Borel-Cantelli type,
and we deduce

P(D,,nD,) <P(D,,NC,)=PD,,)

< —P(Dm)IP’(D,,) (8.24)

P (lim sup Dk) > KN .
k=l

Next, it is clear that on the event D, the inequality X, > cf (™ 1) holds.

Moreover, on lim sup,,.; D

c
lim sup —

t—0 f() r—>0 f(t) l)l/a’

with probability equal to at least P(|X;| < N). Smce N is arbitrary, we deduce
that the latter holds with probability one. The result then follows since ¢ can
be taken arbitrarily large. O

Now let us introduce the notation

X; = sup X}, for t>0. (8.25)

s<t

Theorem 8.6. Assume that (a,p) € A and let f : (0,00) — (0,00) be an
increasing function such that lim,_,o t /% f(¢) = co. Then

|Xi| X;
limsup — = lim

-0 f@) o f(f)
accordingly as the integral
dr
0+ f(t)w

or oo, P-a.s.,

converges or diverges.
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Proof Let us assume that the process has positive jumps, then if the integral
diverges we use Theorem [8.5]and obtain

X X/

. Xt . . 1
oo = limsup — < limsup — = limsup —, P-a.s.
t—0 f(t) t—0 f(t) t—0 f(t)
If the process has no positive jumps, we consider its dual process i.e. X =
—X. Since the dual process X possesses positive jumps, the previous argument
guarantees that

lim sup il lim sup X _ o0
-0 JO o SO ’
Next, we assume that the integral test converges. If |X]| is a subordinator, then

the result follows from Theorem [8.1] If the process X has two sided jumps,
then Theorem [8.5] guarantees

P-a.s.

N

X
lim sup — = limsu P-a.s,

X
p——~ =0,
-0 () -0 ()
which implies our assertion.

If the process is spectrally negative, we recall that stationary and indepen-
dent increments implies that the first passage time process (r§,x > 0) is a
subordinator, where 7§ = inf{s > 0 : X; > x}; see Lemma In addition,
it is not difficult to verify that (3, x > 0) respects the scaling property with
self-similar index a~'. Form the Markov inequality, one easily deduces

P(X,>x)=P@f > 1) <e'Ele™ | <ee™
The latter inequality together with the asymptotic (8.19) implies
P(X] > x) = P()_(l > x) +]P’(—X| > x) -PX; > x,-X, > x) ~ kx %,

as x — oo, where X, = infy; X;, which is equal in law to the law of the
maximum until time 1 of the dual process. Using the same arguments as in the
proof of Theorem for the case of the convergent integral test, we deduce
our claim. The proof is now complete. O

In the specal case of a spectrally negative stable process, i.e. @ € (1,2) and
p = a”!, we again recover a law of the iterated logarithm.

Theorem 8.7. For « € (1,2) and p = a” ', the following law of the iterated
logarithm holds

—1

lim sup X =a'l® (—a )HT
o te(log|log f)1-1/e a-1

bl

almost surely.
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Proof Letr € (0,1) and, for n > 0, we define the events
An = (X > iR, ) f(),
where
f() = 1'*(log|log )=, 1>0,

and, forR > 1,
a-1

c1(R, @) := R r~ Vgl (_a/ ) o
a-1

Note in particular that € (0, 1) and « € (1, 2) implies that ¢ (R, @) > 1. In the
absence of positive jumps, we observe

— + n
An = {Tm(R,a)f(ﬂ’“) <r }

where (7; x > 0) is a stable subordinator with scaling parameter o' (see ear-
lier remarks and Lemma [2.29). Thus we use the scaling property and Lemma
to deduce that, for n sufficiently large, after some rather tedious algebra,
we have the estimates

Z P(Ay) = Z P (TI’ < r i (R, @) (log | log ! I)l_") < k(@) Z kCro,
k>n k>n on
for n sufficiently large, where ;(r, @) is an unimportant constant and
1
1\ (rei(R,a)* |71
Cl,a = (]__)(M) =R>1.
@ @

We thus have that )", P(A,) < co and hence, since we may take r and R as

close to 1 as we like, it follows from Borel-Cantelli’s Lemma that

X, =
lim sup ! <all® (L) , P-a.s.
o 1'/*(log|log)!~1/* a-1
To show that
i T (o)
1 >a/—— s P-a.s., 8.26
P Magoglogy-7e = ¢ a1 s (8.26)
we define

B, = {T:‘rz(w)f(r") <r 1}’

where, now, we take the different definition

a=1

(R, @) := R+ a'/® (L) o,
a-1

for some R € (0, 1). Again, we use self-similarity, Lemma applied to the
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subordinator (77, s > 0), remembering that it has self-similarity index 1/, and
similar arguments as above to deduce that, for n sufficiently large,

Z P(By) = Z P(Tl+ < c2(R, @) *(log|log r"|)1"’) > ky(r, @) Z k~Coa,
k>n n>0 on
where, again, k»(r, @) is an unimportant constant, but this time,

Czﬂ = (1 — l)(M)H =R<1.

a «
In consequence, ), P(B,) = co. Similar reasoning to the proof of Theorem

[8:3] (ii) leads us to the conclusion

T+
lim inf ~2E <
s—0 R) -

1, P-a.s.

n
c2(R,a) f(s)

negativity means that the latter is equivalent to {7 : ?, > (R, @) f(1)} is also an
unbounded set P-a.s. In other words,

This implies that the set {s : T < s} is an unbounded set P-a.s. Spectral

. X, el @\t
limsup — > R'@ a'/® (—) , P-a.s. (8.27)
o’ @) a1
and we are free to choose R as close to 1 from below as we like. Similar rea-
soning to that found in the proof of Lemma [8.5|tells us that we may replace X,

by X; in (8:27), thus giving us (8:26). This completes the proof. i

8.3 Lower envelopes for p € (0, 1)

Finally, we describe the lower envelope of the sample paths of stable processes.
We first present an integral test that describes the lower envelope of the running
supremum of stable processes.

Theorem 8.8. Suppose (a,p) € Aandp € (0,1). Let f : (0,00) — (0, 00) be
an increasing function, then

X
liminf —~—— =0 or o0, P-a.s.,
=0t f(r)

accordingly as the integral

AU

dr diverges or converges.
0+
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Proof The integral test follows the same arguments as in the proof of Theo-
rem 8.5] Indeed, the convergent part uses the events

A, = {)_(,m < rl/“cr"/“f(r")}, n>1,

with r € (0, 1) and c a positive constant bigger than 1. Then, it is enough to
deduce the behaviour of P ()_(1 < x) for x small enough. From Proposition
we have

. e )
TGO+ ap)x as x— 0. (8.28)

In other words, for r close to 0, we have

]P’(Yl < x)

ap
Z P(A,) < whenever &dt < o0

0+

Then, from Borel-Cantelli’s Lemma and the monotonicity of X and f, we ob-
tain the result.

For the divergent part of the integral test, let » € (0, 1) and introduce, for
n > 1, the following sets

B, = {X,ﬂ < —6r"/"} and C, = { sup (X, — Xpm) < cr%f(r"_l) + er”/“’} ,
te(rn=1,rm)

where €, ¢ are two positive arbitrary constants. Let D,, = B,NC,,, from the inde-
pendence of increments and the scaling property, following similar reasoning
to the proof of Theorem 8.3] we see

P(D,) = P(B)P(Cy)

— Y ere
= P(X] < —G)P(Xl < C(l — r)l/a + (1 — r)l/a)

n—1
S ) (8.29)

> P(X] < —E)P(Xl < Cm
In particular, noting that P(X; < —€) — 1 — p as € — 0, we deduce that

1

ZP(Dn) > _ K J; : P()_(l <c f(u))d—;‘ = co.

= logr

where, recalling that the law of X; is supported on R as p € (0, 1),
ke :=P(X; < —€)>0.

Again, following the reasoning in the proof of Theorem [8:3]for m # n, we
have

P(D,, N D,) < KQIP(Dm)P(Dn)a
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which, from Lemma[A.12] (cf. Apendix[A.9), implies

P (lim sup Dk) > Ke.
k=1

Next, it is clear that under the event limsup,, D,, the following inequality

holds

lim sup
t—0

Xi
W <c, (8.30)

with probability at least equal to P(X; < —e) > 0. Since c is arbitrary and
the event (8.30) is in the tail sigma algebra of X (and therefore has a 0 or 1
probability), we deduce our result. m}

Our last result describes the lower envelope of X*, defined in ([8.25), by a
law of the iterated logarithm.

Theorem 8.9. Suppose (a,p) € Aand p € (0, 1). There exist a constant k > 0
such that

X*(log|log(t)DV
liminf ; (log|log(n)l)

1—0 tl/e

— kl/oz

The proof of this result relies on the following estimate.

Lemma 8.10. Suppose that |X| is not a subordinator, then there exists a con-
stant k € (0, o) such that

logP(X; < 1) ~ —kt as t— oo, (8.31)
Proof Let us consider the function

F@) =supPu(X; < 1).

Ixl<1
From the Markov property, we deduce
Po(X;,s < 1) = By [ Py (X; < 1)].

The previous identity implies the inequality f(¢ + s) < f(f)f(s) and thus the
function log f is subadditive. From Theorem[A.T0|(see the Appendix this
tells us that there exist a constant k € (0, co] such that

1
tlim n log f(t) = —k. (8.32)
In particular
1
lim sup " logP(X; < 1) < —k. (8.33)
t—o00
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Let us now turn our attention to showing
1
liminf — log B(X; < 1) = . (8.34)
1—o0
Fix € > 0 arbitrarily small and deduce by the scaling property and (8.32) that,

for every ¢ > 0 large enough, there exists y(t) € [e — 1, 1 — €] such that

! 1
Pyo(X; < 1-€) 2 5 sup Pu(X] <1-€) > Sexp{—k(1-&) 1},

|x|<1-€

The above inequality entails that for y € [y(f) — €, y(¢) + €] and ¢ sufficiently
large, we have

Py(X; <1) > %exp{ — k(1 —e)™ 1.
Next, we claim that we can find a deterministic 7 > 0 for which
gr(x) = by|i<nlf_E]Px(XT ely-ey+el.X;<1)>0. (8.35)
In order to deduce the previous claim, we proceed by contradiction. Let us
assume that, for each T > 0, gr(x) = 0, i.e.

inf P(Xr€(y—ey+elX;<1)=0. (8.36)
<l-e

Define F7(z) := P.(Xr < z,X; < 1), and note that (8.36) can otherwise be
written as

inf (Fr(y+e€) —Fr(y—e) =0,

lyl<l—€

for every T > 0. Since the distribution function Fr is cadlag, we deduce that
there exists y € [e—1, 1 — €] such that F7(J+€)— Fy(y—€) = 0. In other words,
forall T > 0,

PXre(G-ey+el.Xp<1)=0. (8.37)
On the other hand, recall from Theorem [6.4] that
UM - e9+€) >0

where, for any Borel set A in [-1, 1],
U-x, A) = f P.(X! < 1,X, € A)dt.
0
However, this implies that there exists a 7 > 0 such that

PX; < LXp €[9— e +€) >0,
which contradicts (8.37).
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Putting all pieces together and, using that (8.33) holds for T > 0 together
with the Markov property, we deduce

1
% > . * > _ _ A\ @ .
P <D2gr(o inf B < 1) 2 Ser(expl k(-1

This gives us the liminf in (8:34) as e may be taken arbitrarily small in our
reasoning.

In order to finish the proof, we need to verify that k < co. Recall that p;(x),
the density of X, is continuous and positive. Hence we can take ¢, cy,k > 0
such that

PAX] <o lXil <c1) 2k, forall |x|] < cy.
From the scaling property, we have that for every integer n > 0

y inflm PX(XT/n < cn—l/a’ |X1/n| < Cln‘l/a) > k.
x|<cin~

Then applying the Markov property twice, we see
P(XT < Cn—l/(t)
B E[l(xf/n“”’”“)PXun(X(*n—l)/n < Cn_]/d)]

> P(X}‘/n <cn Ve, 1X1/n] < cln_l/") inf PX(X(*n_l)/n < cn_l/")

|x|<cin~te

which, by a recursive argument, implies

P(X; <cn ') > ( inf ) Px(Xf/n <en VXl < cln_'/")) > K",
|x|<cin~Ve

and, after applying scaling to the probability on the left-hand side above, this

shows that k must be finite. m}

Proof of Theorem[8.9] Let us introduce

for t>0.

t
= ———,
F® log|log |

For the lower bound, we take » € (0,1) and 0 < ¢ < ¢; < k'/®. If we take n
sufficiently large and r close enough to 1, we get

P(X:n < Cf(’ﬂfl)l/a) < P(X:” < le(rn)l/a).

From the scaling property and the asymptotic behaviour in (§:3T), we obtain
for any k' > k

kl
1ogP(x;; < cf(r”*)l/“) < logP(X* o < 1) < —— log (n]log rl).
C

& ram 1
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as n — oo Hence for n large enough, we have

ST E(X < cf ") s € 3 mrt

m=n m>n

Since k > ¢, one can deduce

ZP(X;‘ < cf(r”_l)l/”) < o

n>1

and the lower bound

.. X (log|log(n))"/
liminf ————————

> ke
1—0 tl/a

thus follows from Borel-Cantelli’s Lemma and taking ¢ arbitrarily close to k'/.
For the upper bound

X*(1 1 t 1/a
liminf ; (log [log(n)])

m it T < ke, (8.38)

we take r > 1 and k'/? < ¢,. Let t, = exp{-n"}. Since
@)«
sup |X; - X, = X,

n—In+1
SE[tns1,tn]

<X; (8.39)

< x} and hence

we have that {X; < x} is contained in {X}

th—ln+1
P( sup X, -X,,, 1< x) > P(Xl* < x).
SE[thr1,ta]

For r close enough to 1, we now have

D P( sup |X, = X,,.,| < czfum)”“) > Y P(X; < eaf(tn)')?)

SE[tms1,tm] m=n

>C Z mke"r

m>n+1

mzn

= 00,

where the second inequality follows from scaling and the asymptotic (8:31)
and the infinite sum follows since we can choose kc;*r < 1 on account of the
fact that kc;* < 1 and we can choose r as close to 1 as we like from above.
Using Borel-Cantelli’s Lemma, we deduce

SUPse(t, 11,141 IXs — Xi,..,1

lim inf <cy <k'",  P-as. 8.40
n—eo f(tn)l/a ? ( )
Next, note that, since ¢, > 2t,,;, we have in contrast to (8:39) that

sup X, -X, 19X, >x

y=lpp1 = Tlpgr”
SE[tn+1,1n]
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Hence since

X:x _ szl ( Supse[fml St |XS| )
JaVe  fehe f)he

< th-v»l (Supse[l‘m—l,td |XS B Xt"+]| + |an+l| )
T f)te [ fa)e”

it easily follows from the independent comparison of X; and sup, . 1Xs—
X;,.,|, if we can show that

lim M =0, P-a.s., (8.41)
n—oo f(tn)l/a

then
Xy < SUPsel,1.0] Xy = X,
fa)le ~ fl)le

infinitely often. Together with (8:40) this is sufficient to deduce

lim inf X, <kl P
e fle =7 s
in other words (8:38) holds.

To show (B:41), the coarse estimate X; < X, and -X; < -X |» we use the
scaling property and the asymptotic (8:19) to get

P(1X,,,| > ef(t)"/") = P(1X1| = er, )1 £(1))
=P (X1 2 e, 1" f(t)"") + P(-X 2 €r,)|" f(2)")°)

- -1
<Ce atn+1f(tn)

=Ce “exp{—(n+1)" +n"}rlogn,
for some constant C € (0, o0). In other words,

Z P(1X,,.| > ef(6,)"/?) < Ce™ Z expl—n"((1 + 1/n)" = D}logn’ < .

m>n k>n
From the classical Borel-Cantelli Lemma, we have that

lim sup M <e P-as
oo [(t) ~ o
which implies (§4T) as we may take € as small as we like. This completes the
proof. O
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8.4 Comments

There is a huge variety of results concerning the upper and lower envelopes
of stable processes. Most of them have been extended to the setting of more
general classes of Lévy processes. One of the earliest works in this arena, if
not the first, is Khintchine [105]], who considered the upper envelope of stable
subordinators. The description of the lower envelope of stable subordinators,
manifesting in a law of the iterated logarithm, was derived by Fristedt [73]. We
refer to [74] for a survey about the asymptotic behaviour of subordinators. The
arguments used in Theorems|[8.1]and[8.2]follow similar reasoning to those used
by Watanabe [213]], where the sample path behaviour of increasing self-similar
processes with independent increments is studied. The asymptotic behaviour
of the lower tail of the law of a stable subordinator described in Lemma [8.4]is
taken from Bertoin [18]].

The lower and upper envelopes of the supremum of stable processes, Theo-
rems and were noted by Bertoin [18]]; the versions we present here
are taken from Fourati [72]]. The upper envelope of the radial part of one-
dimensional stable processes, Theorem was noted by Khintchine [105].
Chapter[I2] the d-dimensional analogue will be treated. The law of the iterated
logarithm in the spectrally negative case presented in Theorem was first
noted by Zolotarev [217] but our approach is from Bertoin [21]. Theorem@]
is from Taylor [207] and Lemma[ﬂ_ﬁ]is from Bertoin [19]. An additional refer-
ence which contains a summary results concerning upper and lower envelopes,
albeit now dated, is the PhD thesis of Mijnheer [150].



9

Envelopes of positive self-similar Markov
processes

In the spirit of Chapter [8] we are interested in developing integral tests that
describe the lower and upper envelopes at t — 0 and as t — oo, but now for
general positive self-similar Markov processes starting from the origin. Given
Lamperti’s characterisation of pssMps (cf. Theorem [5.2)), such integral tests
should ideally be written in terms of the Lévy process that underlies the Lam-
perti transform. It turns out that the law of its exponential functional is the
natural quantity that serves a purpose to that end. This emerges from a path
decomposition at last passage of, which we discuss in Section[0.1] Similarly to
the previous chapter, we only give proofs of the integral tests associated with
upper and lower envelopes as t — 0. The proofs of the asymptotic behaviour
as t — oo are essentially the same with minor modifications.

Ultimately, our aim is to develop the aforementioned integral tests into an
explicit form for the setting of the pssMps associated to the path functionals of
stable processes discussed in Chapter[5] This is done in the next chapter.

9.1 Path decompositions for pssMp

Let us consider a pssMp with self-similar index @ > 0, as usual written (Z, P),
where P = (P, x > 0) is its family of laws. We denoted by E its associated
Lévy process via the Lamperti transform (cf. Theorem[5.2). In other words, for
every t > 0,

Z, = xexp (B0} Locwr,), ©.1)
where

!
I, = f e ds with I :=1lim1,,
0 1Too

229
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and
o(t) =inf{s > 0: I; > t}.

We also consider its dual (cf. Proposition , (Z, P), where P = (P,,x > 0)
are its probabilities, which is also a pssMp with self-similar index @ > 0, and
which is associated with the dual of the Lévy process Z, i.e. & = —Z. In other
words, the Lamperti transform of (Z, f’x), is equal law to

xexp (S| cwiny 120, (9.2)

where I and @(-) are defined as above but with = instead of =.

In what follows, we always assume that the Lévy process =, with law P, is
not arithmetic (i.e. that its paths do not almost surely live in a strict sub-group
of R) and satisfies

0 <E[E] < o. 9.3)

We will also use P to denote the law of =.

Assumption (9.3) implies that 2, — —oo almost surely and hence (Z, P)
hits 0 continuously so that x*1,, corresponds to the first hitting time at 0 of
(Z, P). Moreover, (93) tells us that the process (Z, P) is conservative and that
the conditions of Theorem [5.3]are fulfilled. In other words, we have that P :=
lim,, P, exists, in the sense of weak convergence on the Skorokhod space (cf.
Theorem [5.3)).

Let us denote the last passage time of (Z, Py) by

Dy =sup{r>0:27 <y}, for y>0, (9.4)

with the convention that sup @ = 0. We also recall from Proposition[5.6|that the
law of (Z, P.) is a regular version of the law of the process

Zi=Zp, -,  0<1<D, 9.5)

under Py(-|Zp,— = z), for z € S,, where S, denotes the support of the law of
Zp, .

Fix a decreasing sequence (x;),>1, of positive real numbers such that x,, | 0
as n goes to co. For purposes that will soon become clear, we need to decom-
pose the paths of (Z, Py) at the sequence of last passage times (Dy, )n>1-

To this end, we introduce the first passage time of 7 below v, as follows

Sy=inf{t>0:7,<y}  y>0.

Proposition 9.1. Between the first passage times an and EXM, the process 7
has the pathwise description

(ZEXH.;’ 0 st= an+] - an ) = (rn eXp {Eg(lg)(t/m)} 5 0 <r< An)’ n 2 1,
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where the processes (E™),1 are also independent copies of &, which are in-
dependent of

F] = ZD —.

1

Forn > 1, we have
N N S am
") = inf{s >0: "> t} , " = f e du
0
and, iteratively,

. An) J,
Dner =T eXp( T(">(1og<xn+1/rn») and A= T Loy gm0

with
T™(z) = inf{r > 0: E" < 7).

Moreover, for each n > 1, T, is independent of =% and

', QX (9.6)

d . e
where © means identity in distribution.

Before moving to the proof, we should note that the above definitions may
be degenerate, depending on the spacing of the sequence (x,),>;. Indeed, by
definition, f"(")(log(x,,ﬂ /T',)) = 0 on the event that {I', < x,,1}, in which case
we havee.g. Iy =T,.

Proof of Proposition[9.1] From (9.2)) and Proposition [5.6] recalling the nota-
tion @]} the process 2 with point of issue Z; = x;, may be described as

(1)
(F1 exp {_A(,)(t/r,,)} 0<t<IVls ) ,
where Z() has the same law as 2, is independent of I'; and
: . N T LED
W) = mf{s >0: [P > t} with I = f e du.
0

On the other hand, we observe that I'} < x;, almost surely, so between the
first passage times S,,= 0 and S,,, the process Z is clearly described as in the
statement with 2 = = and

s @ A(l)
Su = Su= 0 =TT L0 ey

Now, if we set

Q) . _ &) _& (>0
T TTO(ogxa /T )+t T (log(x2/T1))’ =
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then with the definitions of the statement, we see in the pathwise sense,

7 - 2Q2)
(Z§X2+z’ t> O) = (Fz exp {“@@)(r/rg)}’ t> 0), 9.7

and

.

Sy = Su=inf(t>0:Z. _ <x3)=A,.

Syt

Thanks to stationary and independent increments, the process 2@ is indepen-
dent of the couple (E'”, 0 < 1 < TM(log(x,/T1))), T').
From the scaling property, we have that the processes

a
X2 X2
(x_IZ(x]/Xz)wl, 0 S t S (_) DX]) and (Zt9 0 S t S D)CZ) s

X
have the same law under Py, which implies that the couples
(x7'Z, . x7"Dy,) and  (x3'Zp, -, x;"Dy,). (9.8)

have the same law, under Py. On the other hand, we see from the definition of
Z in Proposition that, in the pathwise sense,

(2SX2+Iy 0<t<D, - sz) and (Z(sz_,)_, 0<t< sz)

are equal. This gives us (9.6) for n = 2 from this identity, and the iden-
tity in law in (9.8). The remainder of the proof follows by a straightforward
inductive argument, which we leave to the reader. m|

Corollary 9.2. With the same notation as in Proposition[9.1] for each n > 1,
the last passage time D, can be written as the decomposition

_ a 7(k)
Dy, = Z Fklfmaog(xkﬂ/rk»' ©.9)

k>n

In particular, for all z > 0, we have the almost sure inequality

o < x7" (9.10)

@
izl o gy < Dov < Al

=(n) . . 2
where E | n > 1, live on the same space to and are equal in law to Z and

722) = f(; ) exp{agﬁn)}dt.

In the spirit of an earlier remark, we note that, by definition, since I, < x,
and T™(y) = 0 for y > 0, the first inequality in (9.10) is relevant only when
X+l <2< Xp.
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Proof of Corollary[9.2] The identity (9.9) follows from Proposition [9.1] and

the fact that
Dy, = Z (§Ju-+1 - §Xk)-

k>n
From (9.9), we deduce

a §(n)
. <
15T (log(xe /Th)) — D,

which clearly implies the first inequality in (9.10).
In order to deduce the second inequality in (9.10), let us start by identifying
the processes 2™, n > 0. To this end, define
n+k—1
5= ), TV(log(x;u/T))
J=n

and use these times to define, iteratively,

2(n) . (n)
g if 1 €[0,2"),

Am+l) . (n) s (n)
Ht—Z(l"’ ifre [21 ,22 ),
E(") _

) : (9.11)
2 ifre 2,20,

+

which is independent of I, and has the same law as =.
With the definition (9.TT), we note that the process (£, 0 < ¢ < 7™ (log(x,+1/T))
is the same as the process E(n) killed at T(")(log(xnﬂ /Tn)), where
=(n)

T ) =inf(t: 5" <x), x<0.

Moreover, from the definition (9.3, Proposition [5.6] and the strong Markov
property, for any n > 1, in the pathwise sense,

- . —(n) .
(ZH ,0<t<D,, - SX") and (F,, exp {:gn)(t/rg)}, 0<t<D, - SX")

S+t

are equal, where

— ¥ S = -
7 :inf{s >0:7" >t}, 1" = f ¢ du and T, =7
0

s S’
(cf. Proposition[9.1)). It remains to note that
Dy~ §y,= Dy, = [T 9.12)

and that, by definition, I',, < x,,, which gives us the second inequality of (ITI_UD,
as required. O
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Combining (9.6) with (9.12)), we also have the following corollary.

Corollary 9.3. Foralln > 1,
., Lo,

In order to study the envelope of a pssMp as t — oo, we also need to un-
derstand the law of the time D, when x is large. A similar decomposition as
for the decreasing-to-zero sequence (x,),»1, can be provided for an increas-
ing sequence (y,),>1, Which tends to oo, as it is stated below. Once again, the
reader is alerted to the degeneracies of some of the statements, depending on
the spacings of (y,)u>1-

Corollary 9.4. Let (y,)n>1 be an increasing sequence of positive real numbers
which increases to . There exist sequences of processes (2™),s1, (E™),s1
and variables (I')),=1, on the same probability space such that, for eachn > 1,
the processes 2 and ™ have the same law as = and the random variables
', have the same law as Ty. Moreover; lv"n and = are independent, the Lévy
processes (2™),s1 are mutually independent and we have, for all z > 0,

n

TO0ogu-1/2) .
Fah Vi f e®="ds <D, <y W, (9.13)
0
almost surely, where

00
- 2(n) \ . ~,
If:,') = f e™ du and TZ(") =inf{r>0: :f") <z}
0

Proof Fix an integer n > 1 and define the decreasing sequence xi, ..., X,
by X, = Y1, Xs-1 = Y2,...,X1 = Y. Using the sequence (xy,--- ,X,), we can
use the definitions of 2V, ..., 2™ Ty,...,T, from xy, ..., x, and E(U, .. ,E(n)
from Proposition[9.1]and Corollary

Now, define 2V = 2 2@ = Z0-D_ 20 = 20 gpd ZO = E(n),i(z) =
E(nfl),...,i(”) = & and I =T, =T,,...,I,, = I';. With this new

notation, it is implicit from (9.10), that for any k = 2,...,n, forall z > 0,
TOogu-1/2)
a8 e fo e'= ds <Dy, <)Y,
almost surely, The sequences (E™),s1, (E™),s1 and (I',),s are thus well de-

fined with the desired properties. O

We now identify the law of I'; in terms of the stationary ascending overshoot
distribution of =. Let us write H = (H,,¢t > 0) for ascending ladder height
process of Z; see Section for its formal definition. Since the process =
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is not arithmetic and has positive finite mean, the Wiener-Hopf factorisation
(2.31) implies that its ladder height process H is also not arithmetic (i.e. that
its range not live in a strict sub-group of [0, c0)) and that E[H;] < co. Suppose
we denote by II the Lévy measure of the subordinator H and by 7, its first
passage time above the level x > 0. The family of overshoots of the ascending
ladder height process (H, — x, x > 0) agrees with the family of the overshoots
of E,i.e. (Ers — x,x > 0), where T} =inf{r > 0: &; > x}.

Corollary 2.28] tells us that, when treated as a stochastic process, the afore-
mentioned family of overshoots converges in distribution towards a random
variable whose law can be determined explicitly. More precisely,

He —x 25 uw, (9.14)

X—00

(w) . .
where “——” means weak convergence, !l and W are independent random vari-
ables, U is uniformly distributed over [0, 1] and the law of W is such that

P(W > u) f sI(ds), for u>0. (9.15)
(u,00)

~ E[H|]
The relationship between the above limiting distribution and I'; can now be

given in the next result.

Lemma 9.5. Assume that Z is not arithmetic and that 0 < E[E;] < oo, then
the law of Ty is characterised as follows

log(x;'T) € —uw,
where W and W are defined as above. In particular, for all x < x;, we have
PT; > x) > 0.
Proof We showed in Proposition that

L O
X Iy = xn+1rn+l

_ 2(m) 3
= oXp {“T("><log<x,,+1/r,,>> log(xns1/ F,,)}

(d) 2 -1
= exp {dfaog(x,m/x,l>+log<x,-'r1>> — 10g(xy+1/%,) = log(x; ' T}

Note that, since (x,),>0 is a decreasing sequence, log(x,+1/x,) < 0, and, by
definition, log(x;'Ty) < 0. As such,

= -1 N — (S —
Ef(og(xue1 /1) +og(x; Ty ~ 10841/ %) = 10g(x " T'1) = Egy + 20 = —(Ery, = 20),

where z, = —log(x,+1 /xn)—log(xflf 1)- Then, by taking, for example, x,, = e

(any choice for which z, — oo will do), we deduce from the equalities (9.16)
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that log(xl"l"l) has the same law as the limiting overshoot distribution of E as
claimed. o

9.2 Lower envelopes

In order to describe the lower envelope of a pssMp, we need to study the be-
haviour of the upper tail distributions of f,, and

A 7, -
I;- = f e du, q >0,
0

where
T =inflr>0:2 <x}.

X

To this end, let us introduce, for ¢ > 0,
F():=P(le>0 and  F,1):= P(iﬁq >1), (9.16)

fort > 0.

It will turn out that the two distributions F* and F, are the natural quantities
from which to develop integral tests for the lower envelope. Before we engage
in the main conclusions, for which the aforesaid integral tests are given, let us
first develop some analytical results for F and F,. The following result will
be used to show that, for particular cases, knowing F suffices to describe the
lower envelope of (Z, Py).

Lemma 9.6. Assume that there exists y > 1 such that,
lim sup Fo)
im0 F(1)
For any g > 0 and 6 > ye "4, we have that
F ((1-0)
limint 72 =90
t—00 F (l‘)
Proof 1t follows from the decomposition of = into the two independent pro-

A
=~

cesses (2, s < T:q) and 2’ := (5,4 — Ef-,» § 2 0) that
,q -

<1

~ ~

I =1 + 5, I, < I}:q +e
where [7, = fooo e= dsisa copy of I, which is independent of /. i, Then we
can write, for any ¢ > 0 and ¢ € (0, 1), the inequalities
P, >1) < f’(IT:q +e v > t)
<P(Ir, > (1-0)t) + P(e™L > 61).
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Therefore, for 6 > ye™*4, we deduce

[ BUesyn B >emon P> -0n)
PU.>0 ~ PU.>1 P, > 1)

from which the result follows. O

With all these tools in hand, we are ready to state the main result of this
section which provides an integral tests as + — O for the lower envelope of
(Z, Py). As alluded to earlier, this theorem asserts that the asymptotic behaviour
of (Z, Po) depends only on the analytic properties of the distributions F and F,.

Theorem 9.7. The lower envelope of (Z, Py) at 0 is described as follows.
Let f be an increasing function.

o If
f F( ! ) d—t < 00
o+ \f(O¥) t ’

Po(Z < (1= &)f(t)io.ast— 0)=0.

[l -
o \fo) t

PO(Z, <(1+8&)f(t) io.ast— 0) =1.

then, for all € > 0,

(i) If, for all g > 0,

then, for all € > 0,

(iii) Suppose that t = t~' f()® is increasing. If there exists y > 1 such that,

F()’t)<1 and fF( t )d_tzoo
i—oo F(1) 0+ \fO¥) t

lim sup

then, for all € > 0,
Po(Z < (1 +8)f(t) io.ast—0)=1.

We start with some general remarks before proving each of the three parts
of the theorem individually.

Proof Let (x,),» be a decreasing sequence such that x,, | 0 as n goes to co.
We define the events

A, = {there exists ¢ € [D,,,,, Dy, ] such that Z, < f(t)}.



238 Envelopes of positive self-similar Markov processes

Since D,, tends to 0 a.s., as n — oo, we have

{Z < f) i0.as1 - 0} = limsup A4, . 9.17)

n—oo
We also introduce (z,),>; a decreasing sequence satisfying x,+1 < z, < X,.
Since f is increasing and Z; > x4 for ¢ € [D,, ,, Dy, ], we deduce the following
inclusions

(Z,, - > 202y < fD,, )} € Ay € {x0r < FOD)) (9.18)

For the first inclusion, we observe that the event {Zp _ > z,} guarantees that
D,,,, < D,,. To see why, note that the contrapositive (i.e. D,,,, = Dy ) would
entail that z, < Zp _ = ZDX,M— < Xp+1, which violates the assumption that
Zn > Xp+1. Hence if we also have that x, < f(D,,—) in addition to Zp, _ > z,,
the right continuity of Z and f allow us to find € > 0 such that for all s €
(Dy, — €,Dy,), Z; < f(s). The second inclusion always holds even for those
cases when Dy ., =D, .

(i) Let us choose x, = r™" for r > 1, and recall from relation (9.10) above
that D, < r“"’ii?. From this inequality, and the monotone property of
f, we observe that

Ay D < ATl (9.19)
Therefore the classical version of the Borel-Cantelli Lemma, (9.19) and (9.17)
imply that, if
Z IA’(r_(””) < f(r“””[w)) < oo,

n>1
then
Po(Z < f(), i0.ast— 0)=0. (9.20)

Using the change of variable s = e™* [, we observe that

S St o P(s < f(5) Lo s < Lor™)
I P(r = IDO)) ar= f; sa log(r) ds.

Since f is increasing, the following inequalities hold

IA)(r_n < f(r_(l(n+1)loo)) < f IA)( o < Ioo’ s < Ioor_a/) L
Z, o \fG)r salog(r)
< Z P(r ) < f07L)). 9.21)
n=1

(We note that the first equality is relevant to the current proof of part (i) but
the second equality will be relevant to the proof of part (ii).) With no loss of
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generality, we can restrict ourselves to the case f(0) = 0. It is not difficult to
check that for any r > 1,

fP(L<1m,s<1mr”)9<ooiff fF( il )9@0
o+ \f(9) s 0o+ \f()¥) s

(9.22)

Suppose the latter condition holds, then from (9.21)), for all » > 1,

oo l,:\,(r_(n+1) < r—2f(r—(tn1w)) < o0,
=2

n

and from (9.20), for all r > 1,
Py (Zt <r2f@), io.ast— O) =0,

which proves the desired result for part (i).

(i1) Again, we choose x,, = " forr > 1,and z, = kr™", where k = 1 —e+¢&/r,
for 0 < & < 1 (so that x,,1 < z, < x,,). We set

— —n < @ —an » "(An)
B, {I’ < fre (k r ", sk }IT"”(log(x,,H/z,,)))} R

where, f,..(#) = rf(¢t/k*) and observe that, for each n,

T-(og(1/rk)
i 2 f e"® ds 9.23)
0

T (0g(tusi/20)

L . d
which is independent of I',;, and I',, is such that x;ll" n @ xl’ll“l. Moreover the
random variables

7(n)
0 > 1
TOGog(im/z)) TS

are mutually independent and identity (9.23) shows that they have the same
law as I}f(_q) defined before Lemma with ¢ = —log(1/rk). Without loss
of generality, we may assume that f(0) = 0, so that we rewrite

% a,—an §(n) > b
B. {r < Jre (k 4 Ifw)(log(x,,ﬂ/zn»)’ L2 kr }

and from the above remarks we deduce
P(B,) = P(r™" < fuo (Kr "Iy~ ) )P (T) 2 kr ') . (9.24)

The arguments which are developed above to show (9.21) and (9.22), are also
valid if we replace [, by ff:q. Hence from the hypothesis in the statement of
part (ii), since

. o ds
fo Pl < St ) = oo,
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and from (9.21) and (9.22) with /., replaced by I;- , we have

00 00

ZP( 1) o f “"IT Z r’'< fr.o k® _CmIT?q)) =%

n=1 n=1

and from (9.24) we deduce },5; P(B,) = co. Therefore, remembering the mu-
tual independence of Z™ and Z, another application of (9.24), gives for any
n and m,

P(Bn n Bm) < f)(r—n < fr,s(kar_(mIT_‘q))p(r_m < fr,s(kar_mnIT:q))~
Using identity (9.24), we get
P(B, N B,) < P(Ty > kr™")?P(B,)P(B,),

where P(I'; > kr~') > 0, from Lemma[9.5] From the generalisation of Borel-
Cantelli’s lemma given in Lemma[A-T2] we obtain

n—oo

P(lim sup Bn) >PI, > kr’)?>0. (9.25)

Then, we recall from Corollary [9.2]the inequality

K, s ’IT<"><log(xn+1/zn)>
which implies from (9.18) that B, C A,, (where in the definition of A, we
replaced f by f;..). So, from (9.25), Py(limsup, A,) > 0, but since (Z, Py) is a
Feller process and lim sup,, 4, is a tail event, we have

D,

Py (lim sup An) =1.

n>1

We deduce from the scaling property of (Z, Py) and (9.17) that

Py(Z; < f.(t) 1.0.ast — 0) = Po(Zye; < rf(r) 1.0.as1— 0)
= Po(Z <k 'rf(t) i.0.ast — 0)
=1.
Sincek =1—-&+¢&/r,withr > 1 and 0 < € < 1 are arbitrary, we obtain the
statement of part (ii).

(iii) The sequences (x,),»>1 and (z,),»; are defined as in the proof of part
(ii). Recall that ¢ = —log(1/rk) and take § > ye ™7 as in Lemma Without
loss of generality, we may assume that ¢! f(£)* — 0, as t — 0 Then from our
hypothesis and Lemmal[9.6] we have

(1-06)
F
ol ) -
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As already noticed above, this is equivalent to
ﬁ f’((l -0l < f(r_‘”IT;q)) dt = oo.

Since t > ¢! f(£)® increases,

[ e(a-or < st ) ars SR o < () =
1

n=1

Set £9(t) = (1 = 6)' f(t/k), then

e

Z f’(r_" < fO (k”r_m'lr:q» =00,

1
Similarly to the proof of part (ii), we define

r ) o-n ) (1, ,.—an §(n) —n
B, = {r </ (k g IT‘”)(log(XnH/zn)))’ Loz kr }

Then B), C A,, (where in the definition of A, we replaced f by ff‘”). From the
same arguments as above, since ), P(B;,) = co, we have Py(limsup, A4,) = 1.
Hence from the scaling property of (Z, Py) and

Po(Z < fO1) 0. ast— 0) = Po(Zwy < (1= 6)7 f(1) i.0.as1 - 0)
= Py(Z < k' (1= 8" f(t) i0.ast > 0)
=1.

Sincek=1-e+¢g/rwithr>1,0<e<landd>vye™? =y/(r+&(l—-r)),by
choosing r sufficiently large and ¢ sufficiently small, § can be taken sufficiently
small so that k~'(1 — 6)~! is arbitrary close to 1. This completes the proof of
part (iii). O

We can use the same arguments of Theorem to address similar results
for the the lower envelope as t — oo of (Z, P,), but now for any point of issue
x > 0. We do not give a proof of the result below as the arguments go through
almost verbatim as in Theorem [9.7] with some minor technical variation.

Theorem 9.8. Let x > 0. The lower envelope of (Z, P,) at oo is described as
follows. Let f be an increasing function.

o If
fo*) ¢
then for all € > 0,

PZ < (1= &)f(t) io.ast — o) =0.
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o t dr
/ Fq(m)f‘”’

Px(Zt < +&f@® io ast— oo) =1.

(i) Ifforall g > 0,

then for all € > 0,

(iii) Suppose that t — "' f()* is decreasing. If there exist exists y > 1 such

that,
F(yt)<1 and f‘”F( ! )d—tzoo,
e F(2) Jfor) 1

lim sup
then for all € > 0, and for all x > 0,

P(Z <(1+8)f(t) io.ast—>oo)=1.

9.3 Upper envelopes

For the study of the upper envelope of (Z, Py), we proceed in two steps. First we
describe the upper envelope of its future infimum which is defined as follows

), =infZj, for >0,

s>t
and then we compare it with the upper envelope of the process itself.

Observe that the process J = (J,,¢ > 0) is an increasing self-similar process
with the same index of self-similarity as Z. It is clear that when the process
Z starts at 0, the process J also starts from 0. When the process Z starts from
x > 0, the future infimum J starts from its global infimum , that is to say

Jo=Z, =infZ.
- >0

We also introduce the random variable Y’ which is independent of I, and has
the same distribution as xl’ll"l. That is to say,

v @1z, forall x> 0, (9.26)

where we recall that there is no dependency on x thanks to scaling. We also
note that the support of the law of Y is a subset of the interval [0,1].

Moreover, with this notation Corollary @]has a more convenient statement
of the last passage time at x > 0.

Corollary 9.9. The last passage time at x > 0 under Py satisfies

D, @ xoyef, (9.27)
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In order to state our results, we set
Fe() = Po(T°I <1), 120 (9.28)

Definition 9.10. Denote by Cy the set of positive increasing functions /() on
(0, o) satisfying

(i) h(0) =0, and
(i) there exists ¢ € (0, 1) such that sup,_s th()™® < co.

We will also need the following integral condition in all the main results of

this section.
1
E|lo +( _ )
[ £ el

This condition may come across as a concern as it may appears to be difficult
to verify. Later, in Section [I0.I] we demonstrate that, for a class of pssMps
driven by hypergeometric Lévy processes, (9.29) can indeed be verified. This
is of particular importance in the next chapter, where we develop further the
integral tests for the upper and lower envelopes of this chapter for particular
examples of pssMp, which correspond to a number of the path functionals of
stable processes that we have seen earlier in this book.

Our first result of this section provides integral tests for the upper envelope
at 0 of the future infimum of pssMps.

< oo, (9.29)

Theorem 9.11. Let h € Cy and assume that (9.29) holds.

(i) If
— t dr
fm F(m) T

PO(J, > (1 + () i.o. ast — 0) =0.

— t \dt
fm FT(h(t)a) T

PO(J, > (1= () i.o. ast — o) =1.

then for all € > 0

(i) If

then for all € > 0

Proof As with the proof of Theorem we start again with some general
remarks before proving each of the two parts of the theorem individually. Let
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(xn)n>1 be a decreasing sequence which converges to 0. Recalling that D, is the
last passage time below x > 0, see (9.4), we define the events

A, = {there exists ¢ € [D,,,,, Dy, ) such that J, > h(t)}.
From the fact that D, tends to 0, Py-a.s., when n goes to co, we see

{J; > h(t)i.0.ast — 0} =limsupA,.

n>1

(1) Since h is a non-decreasing function and x, > J, for ¢ € [D, ,,Dy,), the
following inclusion holds

An € {30 > H(D,,..)}. (9.30)

We choose x,, = 7", for r < 1, and introduce £,(t) = r~2h(f). Appealing again
to monotonicity, we deduce that

Z Po(r" > (D)) < f N Po(r* > h(D,-))ds
n0 : 9.31)

1 " dr
= _log(r) ‘fo‘ P()(t > h(Dr))7,

where the last identity follows from the change of variable s = r'. Hence, if
we replace & by A, in (9.30), since r may be taken arbitrarily close to 1 from
below, we see from (9.31)) that the result follows if

[ #ole> 100) <o

From Corollary Fubini’s Theorem and the change of variable s = 1*Y* ],
we have

fo ' Po(r > h(D,)ﬁ

' anea T dr
[ P> T

1 g(r) ds
;E[ jo‘ 1{3r‘”<'1’”im<sh(s)‘"}? ’

where g(s) := inf{t > 0, h(t) > s} denotes the right-continuous inverse function
of h. Then, this integral on the right-hand side of (9.32)) converges if

8(r)
f plroi, < )Y <
0 h()e) t

By choosing r suitably close to 1 and using similar reasoning to the proof of
part (i) of Theorem[9.7, we deduce part (i).

(9.32)
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(ii) We use an adaptation of the proof of part (ii) of Lemma[8.3] We suppose

that & satisfies
— t \dr
F — = o0. 9.33
fo+ T(h(t)") t 033

Again we take x,, = r", for r < 1, and introduce h,(t) = rh(t). By replacing h
by A, in the definition of A,, we note

B, = | | A;={there exist 1 € (0,D,-) such that 3, > i, ()} (9.34)

1

—

j=n
Hence, if we prove that
JLTO Py(B,) >0, (9.35)
we can use the fact that (Z, Py) is a Feller process, invoke Blumenthal’s 0-1 law
and deduce that
Po(3; > h(t)i.0.,,ast — 0) = 1.
The latter identity, clearly implies the statement in part (ii).

Since Jp, > x, for x > 0, we deduce that for m > n + 1, the inclusion below
holds

ﬁ AS = {J, < h(f) forallr € [DXW,,DX,,,I)}

Jj=n—1

. (9.36)
c ﬂ {x; < h(D,)}.
j=n
From the inclusion in (9.36)), (9:34) and Corollary [9.3] we see
Po(B)) > 1 - P(rf <h (r;ﬁf,{f), foralln < j < m) 9.37)

where m is chosen arbitrarily such thatm > n + 1.

The remainder of the proof is quite long. Before embarking on it, we give a
brief summary first of the two main objectives.
Step 1: Define the events

C, = {r" > h,(rgifff)}.

We will prove that
D P(C,) = o (9.38)

n>1

Step 2: Following the same strategy as in the proof of part (ii) in Lemma[8.3]
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having established (9.38)), we can use it to show the existence of two subse-
quences (1;);>1 and (m;);>1, both tending to infinity, such that 0 < n; < m; — 1,
and

lim P(rf <h, (rfﬁf,{?), forall m < j < m,) <1. (9.39)

[—>0c0
From (9:39) and (9.37), we may thus conclude that (9.33), which, in turn,
gives us the desired result.

Proof of Step 1: Recall from the identity in law in that I'; has the same
law as #/T. Since the function # is increasing, it is straightforward to see

ZP(C,,) > fo P(r > n(r"rel))dr

nx1

1 ! e s A
=~ loa) fo P(s > h(s™ 100))?, (9.40)

where the first inequality follows by splitting the integral in the right-hand
side along the positive integers and the last identity by the change of variables
s = r'. Hence, it is enough for our purposes to prove that this last integral is
infinite. Using arguments similar to those in the proof of part (i), we have

g v s A2 5(1) dt
L P<t > h(t T IDO))? =E [f()‘ 1{tr"<‘Y‘”fm<fh(l)”}7] ’

where g(s) := inf{r > 0, h(t) > s} denotes the right-continuous inverse function
of h. On the other hand, we see

8(r) . t\de 80 f . t\dr
f PYT%, < —=f Pl— <Y < — | —
0 h(H® ) t 0 re h(H ) t

g(r) R £\ dr
+f P(‘I‘“IOO < —)—.
0 r¥) t
Next, we observe

8() . rydr .
f P('Y"’Io0 < —) —=E [logJr ( g(r)A )} s
0 re) 1 e,

which is finite from the assumption in (9.29). In other words, we have deduced

that
g(r) dr
E [j; 1{tr‘“<T"iw<th(t)‘”}T] =%

where the latter follows from our assumption. Hence, from (9.40), we have
2nz1 P(Cy) = 0.
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Proof of Step 2: For n < m — 1, we introduce
Dmy = {rj < h(l";‘ﬁ( smy) foralln < j < m}
and, for r < k < 1 and n < m — 2, we also define

E(K)

nm—1

{rf < h(F IGm1y + T _ 7 1)’K) foralln< j<m-— 1},

where
_ T log™ 1 1) iy (T o)y
I(j,m—l) = L e®=s dS, 1 = fo‘ e®=s dS,

and for n < j < m -1, E(j) is the Lévy process defined as in li From the
definition of E7, we note that, for j < m,

=m) _ =0 =0
=) >
t ST ogrn1 T+ =T log(rn1 /T 20
and
o
1—‘m 1 = Fjeuﬁ/)(log(ﬂnil/rf)).

Furthermore, we have the following identity

7 (log(™ /T ) =T (log(*" /T ;)
+ inf {t >0: &, gD < 10g(1’m/rm—1)}o

(1)

The above decomposition allows us to determine the following identity

=)

= = CE () air=
LGimy = LGm-1) + € T o ]/If))l( ) 9.41)

By Proposition 9.1 and the decomposition in (9.11), it follows that Z(,_; ) is

independent of
- 02,
Im-1y and e T 0", (9.42)

Similarly, we can also deduce that
) o= 7
— — = _ b/
I =Tgmy+e T T (9.43)

Again, by Propositionand the decomposition in , it follows that I
is also independent of the pair in (9:42) and has the same distribution as I,

under P. Moreover, since I'; is independent of £ (see Proposition , We

deduce that

M7 = DTGy + T2 T, (9.44)

m—1"00
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and that 72:1_]) is independent of (T, 7( jm=1y> Tm=1)-
On the other hand, it is clear that

D(n,m) = D(n,m—l) ﬂ {r”hl < h(r;,li(m—],m))} s

for n < m — 1, and we also introduce

H(n,m) =P (E(K) < h (r"

nm-1° m—1

— -1 A _
I(m )K),l"m,l > 7" IK).

—(m—1), — .
On the event {I',,_; > "'k}, we have I(m M < In—1,m)- Thus, since « > r and

h is increasing, we may deduce that P(D, ) > H(n, m).

Next, we prove that there exist two increasing sequences, (1;);>1 and (71);>1,
tending to infinity such that 0 < n; < m; — 1 and H(n;, m;) tends to O as [ goes
to infinity. The previous claim is important to deduce (9.39).

Arguing by contradiction, we suppose the contrapositive is true, i.e. that
there exist § > O such that H(n,m) > ¢ for all sufficiently large integers m and
n. Hence from identity (9.44)) and the independence of 7(0':) and (T}, I(jmy> T,
we see

v
Ngk
)
9!
3

[\

> 3 (> (U1 Hin,m)
m=n+1
> 6 i P(C,),
m=n+1

but since . P(C,) diverges, we see that our assertion concerning H(n;, m;)
is true.

Next, let us deduce ([9.39). With this purpose in mind, we define

m,—2

P (X) =P ﬂ {rj < rh(l"‘ﬁ(j,ml_l) + l"m,_lx)},l"ml_l > k™!

J=n
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and

m—1 )
G, i) = P[h {r < rh(r(jig)}’rml—l > ™

J=n

Since A is increasing, we see that p,,, ,, (x) is increasing in x. Moreover, H(n;, m;)
and G(n;, m;) satisfy

H(ny,my) = f l{h(ra(mrl)Kax)>rm[72}pﬂ],mI(x)P(if‘*(log(r/K)) € dx) (9.45)
0 >
and
G(n;,my) < f l{h(ra(m,fl)x)>,m,72}pn[,m[(X)P(ioo € dx) (946)
0 >

The inequality (9.43) follows by virtue of the fact that 4 is increasing and the

D

independence of 7" and the ensemble

le_l and (I_(j’m,_l),l"j for n < ] <m - 2) .
To show (9.46), we use lb and the independence of 7(021 """ and the ensemble
le_l and (I_(j,m,—l)7 Fj for n < ] <m - 2) .

In particular, we get that, for [ sufficiently large,

H(npomy) = poym(N) f P(I7- gy €dx)  for N 2 rC,
N

where C = sup,_; xh(x)™. Since H(n;, m;) converges to 0, as [ goes to co and
the law of if,(log(,/,()), under P, does not depend on /, it follows that p,,, ;, (N)
also converges to 0 as / tends to oo, for every N > rC. On the other hand, we
have

G(ny, my) < Py (N) fo ) P(i. € dx) + fN " P(i. € dx).

By letting / and N tend to infinity, we get that G(n;, m;) tends to 0.
Finally, recall from (9.37) that

Po(By) > 1 - P(rf <rh (r(;ifi’), forall m < j < my - 1).
It is not difficult to see
P(rf <rh (r‘;ffj?), for all my < j < my — 1) < P(Dt < &™) + Gy, my),
which implies (9.39) on account of the fact that G(n;, m;) tends to 0 and

P(T,-1 > k™) = P(Ty > kr) > 0,
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cf. (0.6) and Lemma [0.5] The latter allow us to conclude that lim Py(B,) > 0
and hence, from the discussion following (9.33)) the proof is complete. O

Next we will look at integral tests for upper envelopes at t — oo. Before
doing so, we will introduce another class of functions.

Definition 9.12. Define C., the class of positive increasing functions /() on
(0, o) satisfying

(1) ]im]—wo h(t) = 09, and
(ii) there exists § > 1 such that sup,, 5 th(f)™ < co.

Then the upper envelope of J as t — oo, under P, for x > 0, is given by
the theorem below; we omit its proof on account of it being similar to that of
Theorem 0.111

Theorem 9.13. Let h € Co and assume that (9.29) holds.

(i) If
o t \dr
fF*(hma)Tm’

then for all € > 0 and for all x > 0,

Pi(3, > (1 + Oh(t) i.o. as t — ) = 0.

o _ t \dr
f F*(W)?””

then for all € > 0 and for all x > 0

(i) If

Px(Jt > (1 —e)h(t)i.o.ast — oo) =1.

Our next result provides integral tests for the upper envelope at 0 of the
pssMp (Z, Py) under the same hypotheses as above, i.e. that E is not arithmetic,
0 < E[E] < oo and that (9.29) is satisfied.

Let S, be the first passage time of the pssMp Z above the level y > 0, i.e.

Sy =inf{r=0:2 >y}
‘We also introduce
G(t) := Po(Sy <1). (9.47)

Proposition 9.14. Let h € Cy and assume that (9.29) holds.
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t dr
L G(h(z)a) T

Po(Z: > (1 + ©)h(t) i.0. ast — 0) = 0.

0 — t \dr
fF*(hw)T:m’

Po(z, <(1=eh()io ast— o) = 1.

(i) If

then for all € > 0

i) If

then for all € > 0

Proof We begin with some general comments. Let (x,),>; be a decreasing
sequence which converges to 0. We define the events

A, = {there exists 1 € [S,,,,,Sy,) such that Z, > h(¢)}.
Appealing to the fact that S, tends to 0 as n tends to co, we have

{Z, > h(t)i.0.ast — 0} =limsupA,.

n>1

Since £ is an increasing function and Zg, < x, when S, > S, the follow-
ing inclusion holds

An < {x0 > R(S,,..))- (9.48)

We observe that when S, = S, ,,, the event A, is an empty set and hence (9.48)
is trivial.

(i) We choose x, = r*, for r < 1 and define h,(r) = r2h(f). Since h is
increasing, in a similar spirit to (9.31)), we deduce

) 1 " dr
; PO(rJ > hr(Sr'”l)) < —@ A Po(f > h(St))T-

Replacing / by A, in (9.48) and recalling that r can be chosen arbitrarily close
to 1 from below, we obtain the desired result if

for Po(t > h(S,)>d7t < o0,

Also, in the spirit of (9.32)), we can similarly derive

r dr 5) dr
fo Po(t > h(S’))T = Eo [fo 1{tr’“<S|<th(t)*”}7 ’
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where g(s) = inf{r > 0, h(¢) > s}, denotes the right inverse function of 4. This
integral converges if
8(r) t\dt
PylS i< —|— <
fo 0( ‘ h(r)a) ‘

(ii) The statement of this part follows from part (ii) of Theorem [0.11] on
account of the fact that Z; > J,, for t > 0. O

This proves part (7).

Below we give the corresponding result for the upper envelope of Z at co,
under P, for x > 0 as t — oco. As with other envelopes as t — oo, we omit the
proofs on account of their similarity to the case that r — 0.

Proposition 9.15. Let h € Co, and assume that (9.29) holds.

(i) If
o0 t \dr
f G(h(t)”)? < o0,

then for all € > 0 and for all x > 0

Px(Zr > (1 +eh()io. ast — oo) =0.

0 — t \dr
fFT(hw)T:m’

then for all € > 0 and for all x > 0

i) If

P{Z < (1-oh(t) i.0.ast — o) = 1.

9.4 Comments

There exist several results on the lower and upper envelopes for particular fam-
ilies of pssMp, the oldest of which are due to Dvoretsky and Erdés [66] and
Motoo [153] who studied the special case of transient Bessel processes. The
asymptotic behaviour of the future infimum of transient Bessel processes was
studied by Khoshnevisan et al. [109]]. Xiao [215] considers a bigger class of
self-similar Markov processes whose transition functions admit some special
bounds.

The first author to use Lamperti’s representation of pssMps to study their
asymptotic behaviour starting from a positive state Lamperti himself, [139].
Rivero [179] provided the first integral test for the lower envelope of pssMp
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starting at O in the case when the sample paths are increasing. He was the first
to observe that the exponential functional of the underlying Lévy process was
crucial to describe the lower envelope of pssMp.

The path decomposition at last passage times for pssMp in Section is
taken from Chaumont and Pardo [49]. It is based on the construction of the
entrance law of pssMp starting at the origin given in Caballero and Chaumont
[44]. The integral tests that describe the lower envelopes of pssMp at the origin
and at infinity (i.e. Theorems and also originate from Chaumont and
Pardo [49]. The upper envelopes of pssMp and their future infimum are taken
from Pardo [[159![160]. Theorems and[9.13|are modified versions of those
presented in [159]. In [159]], the integral tests of the divergent parts of both
results are given only in terms of the probability distribution of the exponential
functional of the underlying Lévy processes. This is different to the presenta-
tion here which additionally relies on the distribution of the random variable
T, i.e. the undershoot at last passage. We account for this difference as, in the
next Chapter, it will allow us to produce more precise integral tests for upper
and lower envelopes for some of the path transformations of stable processes
introduced in Chapter 5]
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Asymptotic behaviour for path transformations

In the spirit of the previous two Chapters, we develop integral tests that de-
scribe the lower and upper envelopes as t — 0 and t — oo, for the path func-
tionals of stable processes introduced in Chapter [5] Our arguments are based
on the integral tests developed in Chapter [J] together with explicit knowledge
of the upper and lower tail behaviour of the relevant distribution functions e.g.
those of integrated exponential functionals. All of the path transformations of
stable processes that we consider boil down to positive self-similar Markov
processes driven by hypergeometric Lévy processes. In this respect, we rely
on some of the results in Chapter []and more elaborate versions thereof, in ad-
dition to some new distributional results for positive self-similar Markov pro-
cesses. With these in hand, we will work our way around different regimes of
the parameters («, p) € A, establishing asymptotic envelopes for conditioned
stable processes, censored stable processes and radial stable processes.

10.1 More on hypergeometric Lévy processes

Let us recall some notation from the previous chapter, which deals with general
positive self-similar Markov processes. The process (Z, P), denotes a general
pssMp, with index of self-similarity «, and (Z, P) is the underlying Lévy pro-
cess in the Lamperti transform (0.1)). With = = —E, the integrated exponential
functional of the dual in denoted by

16,8) = f ey, (10.1)
0

for & > 0. We will mostly be interested in the case that § = @ but when we
consider the setting of the radius of d-dimensional stable processes at the end
of this chapter, we will need to deal with the setting ¢ = «/2. From (9.26),

254
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without loss of generality thanks to scaling, we may take

927, (10.2)

which is bounded from above by unity, where we recall
Dy =sup{r>0:7Z <1} (10.3)

is the last passage time of Z below 1. Importantly, the variable T is always
taken to be independent of (5, £). Theorem requires us to work with an
assumption of the form

1
El|logt | ——— 00, 10.4
[Og (T61(6,5>)]< (104

which is core to a number of results in Chapter[9] As alluded to in the discus-
sion preceding Theorem [9.11] (T0.4) may be difficult to verify. In this section,
we show that this is not a problem for pssMps that are driven by a suitable
subclass of hypergeometric Lévy processes. As we have already seen in Chap-
ter 5] the class of pssMp driven by hypergeometric Lévy processes contain
several examples of path functionals of stable processes. Removing the condi-
tion (I0.4) for at least these processes is thus a first step to developing more
concrete statements than those offered in the main results of Chapter[9]

For the following results, we recall that the parametric regimes H; and H,

for hypergeometric Lévy processes are given in and @.13).

Lemma 10.1. Suppose that & is a hypergeometric Lévy processes whose pa-
rameters (8,7, 3,%) belong to Hy, with 8 = 0 and B < 1 or to Hy with 8 = 1
and —f < v, then the condition (10.4) is satisfied.

Proof Recall from Proposition that, for s € (0, 9)(), where
5 { 1-B i @By.ByeH niB=0\{g=1),

- _B\ if(ﬁ”y’B»j\/)eﬂ2m{ﬂ:1}\{B=0},

we have

EP@@ﬂ:-E%5EMa3*1. (10.5)

Here,

F1-p+y-2TB+%+2)
CT(-B-2 TI@+2
for Re(z) € (=B —%,1 =B +7). According to the classification in Corollary

(iii) the assumed parameter restriction for = ensures that

lim ¥s)

s—0 5

W(z) =logE [ezg‘] =

= ¢/ (0+) = E[Z)],
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implying, via (T0.3), that E[/(6, 2)"!] < oo and therefore, since log(1 + x) < x,
for x > 0,

E [log (1 + 6.5 )} < 00, (10.6)
On the other hand, from Lemma the random variable —log Y is equal in
distribution to AW, where U is a uniform random variable on [0, 1], indepen-
dent of W, which is given as in (9.13)). In the case of the hypergeometric Lévy
processes of interest here, the law of W can be computed explicitly.

To this end, recall from Theorem [4.6|that the ascending ladder height of E,

denoted here by H, is a S-subordinator with parameters
{ 0.0.9) if B.y.ByeHin{B=0\{8=1},
0,8, if@By.BYeHn{B=1}\{5=0}

From Proposition the associated Lévy measure of H has a density which
satisfies

(10.7)

1 S|
= (1—=-e* —-(+y)x | __ +
7(x) r(l—i/)( e’) e [1—ex P
where p equals 0 or 3, respectively, according to the two parameter choices in
(I0.7). In both cases, it is not so difficult to deduce that

s x>0,

1 00
—E[log Y] = f xzﬂ(x)dx < 00,
=T A J,
Recalling that Y < 1, it is easy to see that (10.4) is satisfied if and only (10.6)
and E[log(1/7%)] = =SE[log ] < co. Hence the proof is complete. O

For many of the results in the previous chapter, knowing the behaviour of
the density of Y°I(8, Z) near 0 is important. We spend the rest of this section
by providing an explicit computation giving the Mellin transform of (°I(, Z),
again, for a special class of hypergeometric Lévy processes. Moreover, we
deduce the asymptotic expansion of its density.

Proposition 10.2. Suppose that = is a hypergeometric Lévy processes with
parameters (B,7v,0,%) belonging to Hy \ {8 = 1} and let y = 1/6. Then the
Mellin transform of Y°1(6, ) satisfies, for s € C,

I'(s—DG(s -1 )G =B+y)x+1-s5%)
G =1+ )G -By+1-s5x)

fi(s) := E[(X°I(5,2) | = ¢

s

where
G((1 =B x)Gx: x)
G((A-B+yx:x)

ci=x
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Proof From the explicit form of the Mellin transform M of (0, ) in Theorem
(i) and the independence of I(9, 2) and the pair (U, W), it is enough to
compute the Laplace transform of UW, i.e.

E[e—asuw] _ %E 1 _“;&W]

1 00
— 1= —osw d
SSE[H] fo (1= e vndw
1 T@s+9%)
~EHT@Gs+1)
where the last identity follows from Proposition Moreover from the ex-
plicit form of the Laplace exponent of H, see (@.1), we get

(10.8)

E[H] =T(®).

Hence putting the expression for M given in Theorem (i) and the previ-
ous computation together, and appealing to the quasi-periodic properties of the
double gamma function G, see (A.2T)), we get the desired result. m]

Next, we invert the Mellin transform M of Proposition in order to de-
duce an asymptotic expression for the probability density function of Y°I(8, £),
henceforth denoted by

d .
px) = —P(Tﬁl(a, 2) < x), for x> 0.
dx

We are interested in the existence of an asymptotic expansion of the density
p(x) as x —» 0" or x — co. Our approach follows a similar computational
philosophy to that of Section 4.6|for integrated exponential Lévy processes.

We first observe that the zeros of M are positioned at

-my—-n+1 (m=>=1) and 1+ -B+y)x+my+n,
and its poles at
G =1 =9 —my—n and zh, =1+ =By +my+n  (10.9)

for m,n > 0. We recall from standard properties of the double gamma function
in the Appendix [A.4]that all zeros/poles are simple if § ¢ Q.
Next, we introduce the functions

IFr'os-D+PIrA-g+vy—7os)

$) = O G = D)+ DI =B —55) (10.10)
d(s) = S LHPITA =By ¢ = 5) (10.11)

I(s=1+I(1 =By —s)
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andrecall thatnp =1 -8+ vy +7%.

Definition 10.3. Assume that = is a hypergeometric Lévy process with param-
eters (8,7,0,%) € Hi \ {8 = 1}. We define the coefficients recursively

I'(n - 9)

bop = —M2 -9y,
T Tg—y-ora-y - ¥
bm,n = ¢(Zr_n,n)bm,n—ls m 2= 0» nz ]s (1012)
bun = V(2 Jomotns m=1, n20.
where y = 1/6. Similarly, ¢, ,, m,n > 0, are defined recursively
re-g-90 -
2
co0 =X =M1 - BW),
TG -y - ory)
1
Cmn = v <Cmn-1, M > 0, n= 1, 10.13
0 ) (10.13)
XX(VW)
Cmp = =———Cm—1p», Mm21,n>0.
m,n ¢(Z;_l’n) 1,n

The next result computes the residues of M. As with other calculations in
Section [4.6] we keep the assumption that 6 ¢ Q to ensure that G has simple
poles. The situation for § € Q is more complicated.

Proposition 10.4. Assume that = is a hypergeometric Lévy process with pa-
rameters (8,7v,0,%) € Hi \ {8 =1} and 6 ¢ Q. For all m,n > 0, we have

Res(M(s): s =z b s

Res(f(s) : s = z,,,) = —Can-

) =

Proof We start by observing that the quasi-periodicity of the double gamma
function at 1 and at y (see (AZI) in the Appendix) implies that
o+

fi(s+1) = %ﬁ(s) and  F(s+y) = Xé(s) (). (10.14)

Next, we prove that the residue of M(s) at s = z,,, is equal to b,,,. We use
the explicit form of i in Proposition and rearrange the terms in the first
functional identity in (I0.14), making use of the expression for ¢ in (I0.10)
and the recursion formula for gamma functions (A.8), to find that

Ms+1) T(1+%+6(s— 1)1 =B +7y—06s)
s—=1+9¢y T@(Gs-1)+DIA-B-0ds)
The above identity and the definition imply that as s — 1 — yy

M(s) =

- b
fi(s) = ——2— + 0O(1),
s—1+%yx
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which means that the residue of M(s) at Zo0 = 1 = Px is equal to by.
Next, we show that the residues satisfy the second recursive identity in
(T0.12). To this end, rewrite the first identity in (10.14) as

M(s) = p(s)M(s + 1). (10.15)

o and H(s + 1) has a simple pole
S One can also check that the function ¢(s) is analytic at
for n > 1. Therefore we have, as s — 2

We know that M(s) has a simple pole at s = z
atz,,+1 =12
§=z

m,n m,n’

M(s) = Res(fi(s) : s = z;n’n)# +0(1),

m,n

M(s + 1) = Res(i(s) : s = Z;Lﬂ—l)s;— +0(1),

“ Lmn

é(s) = #(z,,,) + O(s — 2,
which, together with (TI0.15) imply that
Res(f(s) : s = z,,,) = (2, Res(H(s) : s = Zpnet)-

The proof of all remaining cases is very similar and we leave the details to
the reader. O

As with the Mellin transform of the exponential functional of hypergemetric
Lévy processes in section Proposition immediately provides a com-
plete asymptotic expansion of p(x) as x — 0* and x — oo, which we present
in the next theorem.

Theorem 10.5. Assume that £ is a hypergeometric Lévy process with param-
eters (8,v,0,9) e Hi\{B=1}and 6 ¢ Q. Then

P ~ D D b x—-0%  (10.16)
m>0 n>0

P~ DD e AL x—ooco.  (10.17)
m>0 n>0

The proof of the above result follows exactly the same style of reasoning
as in the proof of Theorem 4.22] We thus omit it and leave the details to the
reader. Instead, we continue with the presentation of some special cases where
the density p can be written as a convergent series for which the restriction
0 ¢ Qs no longer required.

The Mellin transform M is simplified when y and ¥ take the specific value
of § € (0,1), in the sense that it can be written purely in terms of gamma
functions.
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Corollary 10.6. Lety = 9 = & and assume that 2 is a hypergeometric Lévy
process with parameters (8,6,0,6) € H, \ {8 = 1}. Then the Mellin transform
of T°I(6, E) satisfies

I TSI -8+461-1y)

M) = F=p ™ Tee-D+D

Hence, if 26 < 1, then

o I(1-B+6(1+n)(-1y
P = v g ZZ; TA-otn+1) nl 7 (10.18)
for x > 0and, if 26 > 1, then
I((1-g+n)+1)) (_l)nx_(1_ﬁ+n))(_1’ (10.19)

X
p(x)_l"(l—ﬁ); TQ-B+n)  n

for x > 0. Moreover, formula (10.18) (resp. (I0.19)) provides a complete
asymptotic expansion as x — 0% (resp. as x — ).

Proof We give only a brief sketch of the proof. The explicit form of M fol-
lows from Proposition[I0.2]and the quasi-periodicity at 1 of the double gamma
function (see (A:21) in the Appendix).

On the other hand, it is clear that the Mellin transform ¥M(z) of f(x) has simple
poles at

Z, =N and zy=1l+x(n+1-p), forn=0.

The residues at these points provide the coefficients in (I0.18)) and (10.19). In-
deed, by applying Proposition[A.T]and identity (A-TT) (both in the Appendix),
we find that

I't-pg+o6(l+mn) D"

Res(M(s) : s = —n) = T -Br1-6n+1) n!

Similarly, for the poles at z; = 1 + y(n + 1 — ), we get

I'l+xy(n+1-p))
I'A-pre-g+n
The rest of the proof follows by using similar ideas to e.g. the proof of Theorem
[4.22] In particular, this pertains to the use of an appropriate contour integral
which encloses an increasing number of poles as it expands. The poles are
chosen in such a way to ensure that one side of the contour integral converges
to the inverse Mellin transform of M(z) and the remaining parts of the contour
integral tend to zero as the contour grows larger. The Residue Theorem gives
the desired density as a sum of residues of the captured poles. We should note
that the cases 20 < 1 and 26 > 1 coincide with the need for two different

Res(fi(s) : s = 1+ y(n+1-p)) = (_1)#1%,
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contour integrals that capture a different set of poles in a similar spirit to the
two cases in Theorem [£.24] We leave the details to the interested reader. O

We conclude this section with another important case where M has an explicit
form and which is not covered by the previous results. Let us assume that the
parameters (1, 9, B,6) lie in H, \ {B = 0}. The result below is needed later on in
this chapter.

Proposition 10.7. Letry =9 = 6 € (0, 1) and assume that = is a hypergeomet-
ric Lévy process with parameters (1,6,B,6) € Hs \ {B = 0). Then the Mellin
transform of Y°I(6, 2) satisfies

8 sin(—myB)I(1 + BL(S(1 - 5))

M(s) = — A . (10.20)
[G(s—1) + 1+ B)sin(x(yB + s))I(1 — 5)
Hence, if 26 < 1, we have
5 5 sin(-myBAL(1 +BALGn+ 1) +B) . 4
~ 2Ny - B (10.21
Pe) ;( ) (1 +n+xBI(1 -6+ 1)) g ( )
for x >0, and, if 26 > 1, we have
P(x) = Z P e Z by ™ x>0, (10.22)
n>0 m>1
where
_ S sin(=myB)T (1 +B)T(B - on) 1)
" rm TGB-nTGn+1)
and
sin(-myB)(1 + B) "

sin(z(y(B + m) + D)C(—yn)[(B + 1 +m) m!
Moreover, when formula (10.21)) (resp. ({[0.22))) provides complete asymptotic

expansion as x goes to 0% (resp. as x goes to ).

Proof For the the explicit form of M, we proceed similarly as in the proof of
Proposition [T0.2] Using the style of reasoning in (T0.8) and the nature of the
ascending ladder height process, cf. Proposition4.1] we can easily deduce that

e+ = T(1+B)T([Es+B+7)
FB+9NTEs+B+1)

The independence of = and the pair (U, W), the Mellin transform of (9, 2)in
Corollary .16 and the quasi-periodic properties of the double gamma function

G, see (AZT) now gives us the identity (T0.20).
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For the convergent series representation, we proceed as in the proof of Corol-
lary We first observe from (T0.20) that the Mellin transform #(z) of j(x)
has simple poles at

g =-n—xB  l=n+l-xB for n>0,
and
7 =1+ yn, for n>1.

The residues at these points provide the coefficients in (T0.21)) and (10.22).
To find them, we again apply Proposition [A.T| and identity (A.TT) (both in the
Appendix) to find

& sin(=myB)L(1 + BL(S(1 +n) + )
T TA+n+ xR -60n+1))

Res(M(s) : s = —n —Xﬁ) = D",

& sin(=myB)L(1 + BT(B = 6n)
T TR -nIGn+1)

ResM(s): s=n+1—yp) = (-1,

and

Res(M(s) : s = 1 +yn) = — sinCmAI + ) 1.

n! sin(z(y(B + n) + DI(=ny)T'B + 1 + n)
The rest of the proof follows by developing the appropriate contour integrals
as in Chapter [d] We leave the details to the interested reader. O

10.2 Distributions of pssMp path functionals

Let us put ourselves into the general setting of Chapter [0] That is to say we
will consider a positive self-similar Markov processes Z = (Z;, ¢t > 0), with
index of self-similarity @ > 0 and probabilities P,, x > 0. The Lévy processes
associated to it via the Lamperti transformation is denoted again =, with law
P, is assumed non-arithmetic and its mean at time 1 satisfies

0 <E[5] < oo.

This ensures that Z, the dual of Z drifts to —co and hence its integrated expo-
nential function /(6, Z), defined in (T0.1)) is almost surely finite. We are specif-
ically interested in the setting that ¢ = « in this section and accordingly define

Io = 1(a,B), ie.
I, = f e"é”ds.
0
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The setting that [, < co almost surely is sufficient for us to assume that the
process Z may be extended to include entrance from the origin, with law Py,
such that lim,_,y P, = Py in the weak sense on the Skorokhod space.

Under additional assumptions, we provide three results in this section con-
cerning the distributional tail behaviour of certain path functionals of Z that
appear in the integral tests of Chapter[9]

Recall that f‘; = inf{t >0: é, < x} and, for g > 0,

-, .
17%7 = f e du.
= 0

For our first result, we are interested in tail properties of the distributions
F():=P(lw>1 and  F, 1) := P(if__] >1),

for t > 0. The following result shows that, for any ¢ > 0, functions F, and F
are asymptotically equivalent, i.e. F,(¢) < F(t), as t — oo, as soon as F has
polynomial decay.

Lemma 10.8. Assume that
F() ~ Ct7, as t— oo, (10.23)

where C andy are strictly positive constants. If (10.23) holds then for all ¢ > 0,

(1 —eDF(1) < Fy(t) < F(1), (10.24)
for all t large enough.

Proof Recall from the proof of Lemma that (ﬁs, s < T(—q)) and &’ =
(és +7(=g) —éf(_q), s > 0) are independent and also that the following inequality
holds

ioo = if,(_q) + eaéf(*q)i;o < iju(_q) + e—aqi;o (10.25)

where [’ is a copy of I, which is independent of I},(_q). From (10.23), it is
clear that the second inequality of the lemma holds. To deduce the first inequal-
ity in (10.24), we write, for all & > 0,
F((1 +&)) =P (Io > (1+ o))

<P(Ip )+ e, > (1+2))
(},w) > t) + P(e"“fﬁ,o > t) + P(I},(,q) > st)P(e’”qfw > st)
(Fp-g > 1) + P(eL > 1) + P (s > &t) P (e > &t) ,
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so that
Pl >t
lim inf M >(1+e)7 —e™ .
f=e0 P(Ioo > t)
The result now follows since € can be chosen arbitrary small. O

In the spirit of Lemma [T0.8] the next result shows asymptotic equivalence
of the two distributions

Fy() = Po(TIw <1) and  G() = Po(S) <),  120.

when the former of the two is assumed to have polynomial decay. Here, we
recall the definitions of Y and D; given in (10.2) and (I0.3) as well as

Sy =inf{t > 0:Z > y}. (10.26)

Proposition 10.9. Assume that
Fy(t) ~ CP, as t—0, (10.27)
where C and'y are strictly positive constants. Under condition ({10.27), we have

that
Cit" <G(1) £ Cot? as t—0,

where ¢ and Cy are two positive constants such that 0 < C; < C < Cs.

Proof In the notation of the Chapter 9] recall that Z = (Z;,¢ > 0) is a pssMp
with self-similar index « and its future infimum process is denoted by (3,7 >
0), where 1, = inf >, Z,. Let us introduce the running supremum of Z, written
M = (M,,t > 0), where
M, = sup Zj, t>0.
0<s<t

Since J, < M, for all t > 0, we clearly have that S| < D,. Moreover, since Dy,
under Py, has the same law as Yo, under P, cf. Corollary we deduce that
F(f) < G(1), forall £ > 0.

For the upper bound, we fix € > 0. Then, by the Markov property and the
fact that J is an increasing process, we have

l1-€
PZSI/r (JO > t ) 1[51/,<1]] . (1028)
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Since Zs,,, > 1/t, Po-almost surely, using the Lamperti transform (see Theorem

[5:2), we deduce that

1-€
Eo| Pz, | d0 > —— | Lisy=n)

> Po(Siy < 1P (ingES > log(1 — E)).
52>

(10.29)
On the other hand, since E drifts towards co, we have from the Wiener-Hopf
factorisation (see Theorem that the descending ladder height H is equal
in law to a subordinator which is killed at an independent time e,, which is
exponentially distributed with some parameter g > 0. Following similar ideas
to those in the the discussion above LemmaR.26l we deduce

P(IYIZISEY > log(1 - E)) = P( lz)g(l—e) = oo) = P([—A]er < —log(l — e))’

where T, = inf{t > 0 : E; < x}. Since the process E is not arithmetic, the
descending ladder height A has support on [0, c0) implying that, for all € > 0,

K. := P(inf =, > log(l - e)) > 0.
s>0

Hence, using the scaling property of Z which ensures that S;,; is equal in law

to %S, we have from (10.28)) and (10.29),

1 —
K;IPO(J1 > TE) > Py (S <19). (10.30)

Note that

1-¢€

t a
P()(J1> )=P0(D(1_6)/,<1)=P0(D1<(TE) ),

1

where we have used a similar scaling property for D(;_);;. Feeding this back
in (T0.30) and recalling that D; is equal in law to ([, for which we have

assumed (10.27), we now get

CK:! (

ay t a
) ZKE_IP()(D1<(1—))ZP()(S1<IQ), as t—0.

1-€
This completes the proof. O

Our third and final result for this section concerns the setting that the pssMp
(Z;,t > 0) has no positive jumps, or equivalently that E has no positive jumps,

albeit that we exclude the case of monotone paths. In this setting, we necessar-
ily have that T = 1, Pg-almost surely. In other words,

Fo(t) = F(1) := P < 1), for t>0.
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Proposition 10.10. Excluding monotone paths, assume that Z has no positive
Jjumps and that

—logF(1/t) ~Cr’, ast— oo, (10.31)
where C and vy are strictly positive constants. Then
—logG(1/t) ~ Ct” as t— oo, (10.32)

Proof  First, we prove an upper bound for (10.32). As noted earlier, the future
infimum process (J,,¢ > 0) and the process of last passage times (D,, x > 0)
are conveniently related via {J; > 1} = {D, < 1}. Corollary@] states that D, is
equal in law to 1* Yo, . Since Y = 1, we have that

PO(J1 > t) =Pl < 1/t%).

Also recalling from the proof of Proposition that J; < M := sup.,; Zs,
we have

—logP(IAoo < l/t") = —logPo(Jl > t) > —logPo(Ml > t),
which implies

—IOgP()(Ml > tl/a)
1>1 .
- Htrli?p Cr

Since Py(M; > tY%) = Py(Su. < 1), the scaling property of Z, which tells us
that S,/ is equal in law to £S;, implies that

) —log Po(S; < 1/1)
1>1 .
=P crr

Now, fix € > 0. Decomposing the path of Z at time 1, we have
Po(3y > (1 = &%) > Py(Sue < 1)P (ggas > log(1 - e)). (10.33)
Since
Ke="P( inf , > log(l - e) >0,
again using the scaling property, we deduce from (10.33) that
—log Po(31 > (1 — )t''") < ~log Po(S < 1/) - log K.

Recalling that {J; > (1 — ety = {D(1—eyi7e < 1} and that D; is equal in law to
Y], (with T = 1 in the current setting), we have from the assumption on F,
the lower bound

—log Po(S1 < 1/1)
(1 -6)* < liminf .
t—00 Cﬂ’
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Since € can be chosen arbitrarily small, (10.32) is proved. |

Now, we are ready to apply the results of Chapter [0] and identify explicit
integral tests that describe the lower and upper envelopes, as t — 0 and t — oo,
for the path functionals of stable processes discussed in Chapter [5] We start
with the case of stable processes conditioned to stay positive.

10.3 Stable processes conditioned to stay positive

Recall from Section [5.4] that the stable process conditioned to stay positive X
has probabilities PT = (P)T(, x > 0), where Pl is the law starting from x. The
process (X, PT) is defined by (5.23) or equivalently by the change of measure
520).

According to Theorem the process (X, PT) is a conservative positive
self-similar Markov process, with self-similar index a, whose underlying Lévy
process &7, with law PT, belongs to the class of hypergeometric processes with
parameters (8,7,5,9) = (1, ap, 1, @p). Moreover its dual, —£7, is a hypergeo-
metric Lévy process with parameters (3,7,8,9) = (0, ap, 0, ap), which places
it in the class H;\{8 = 1}. We also have that —¢T fulfils the conditions of The-
orem which guarantees that P(T) = limy o IP’)T( exists, in the sense of weak
convergence on the Skorokhod space (see Section in the Appendix). In
other words, we can apply the results of the previous section to describe the
lower and upper envelope of (X, P(T)) at 0 and at co.

We start by describing the lower envelope. In order to do so, we introduce
the integrated exponential functional of —£T, namely

it = f e‘“fzds.
0

From Proposition we deduce that the upper tail behaviour of the distri-
bution of I, has polynomial decay. Recall that (A is the set of (a, p) parameter
combinations for stable processes; cf. (3.11).

Lemma 10.11. For (a,p) € A and p € (0, 1), we have

fie) 10.34
—_—————1 ¢, t . .
T+ DI(P) @ tme (1034)
Proof Recall from the discussion preceding the statement of this lemma that
—&1is a hypergeometric Lévy process whose parameters belong to H;\{8 = 1}.
As alluded to above, we can appeal to Proposition 4.27] with the observation

Fl(t):= P (I, > 1) ~
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that 8 = 1 and y = 1/a, to write

W(l/a)
P (1> 1) ~ D

Rl=

o,  t— oo, (10.35)

where M denotes the Mellin transform of f{, and /1 (z) is the Laplace exponent
of —fT. Moreover, in this case, 1T(1/@) and " (1) can be computed explicitly.
Indeed, starting from the identities in Theorem[4.13](i) and by appealing
to the quasi-periodic properties of double gamma functions (see (A.21) in the
Appendix) as well as standard properties of gamma functions (see Appendix
Section[A3)), we find

1) =T 1/ % and (1) = T(@p)I(1 +ap),
thus concluding the proof. O

For ¢ > 0, let us now define 77" (—¢) := inf{r > 0 : —é—f < —qg},

it D 1 i

o = fo eoflds and Fl():=P (Iﬂ_(_q) > t) .

For the current setting, the above lemma allows us to develop more precise
integral tests for lower and upper path envelopes than those described in The-
orems[9.7)and 0.8] In particular, the appearance of the factors 1 —gand 1 + &
can be absorbed into the envelope with no change to the integral test thanks to
the polynomial asymptotic of FT. The proof of the next result follows from a
simple application of Theorems[9.7]and[9.8] Lemma|10.30]and the equivalence
between FT and F;, for g > 0, given in Lemma 10.8‘

Theorem 10.12. The lower envelope at 0 and at oo of the stable process con-
ditioned to stay positive is characterised as follows.

(i) Let f be an increasing function such that either

lim f(l =0 or lim inf f(—t) >

-0 f t—0 t

O,

then,

Py(X, < f(t)i0.ast - 0) =0 or 1,

accordingly as
t
&dt is finite or infinite.
0+ tatl
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ii) Let g be an increasing function such that either

im €2 Z0 o liminf

t—0o0 t t—0oo

{0 >0,
t

then, for all x > 0,
Pl(X, <g)io. ast— 00) = 0or 1,
accordingly as
f‘x’ fl(_i)ldt is finite or infinite.

Next, we proceed to describe the upper envelope of (X, PT) at 0 and at co. As
an intermediate step, we describe the upper envelope of the future infimum at 0
and at co and, thereafter, we compare it with the upper envelope of the original
process.

We first consider the case when the process has positive jumps since the
spectrally negative case possesses a completely different behaviour, as we will
see later. For the spectrally positive case, the reader should implicitly assume
that we are excluding the case that X is a stable subordinator. The conditioned
process in the subordinator case is nothing more than itself again and envelopes
of stable subordinators were already considered in Chapter 8]

Let us recall some notation. The future infimum process is denoted by J =
(3;,t > 0), where

), =infZj, t>0,

s>t

and recall the last passage time below the level 1 denoted D, which was defined
in (T0.3). We also consider the random variable T which is independent of il
and has the same law, under P, as Xp,- under ]P’g.

Under the assumption that £T has positive jumps, the following result gives
the behaviour for the lower tail distribution of (TT)"IEo near 0, with the restric-
tion that @ ¢ Q. Its proof follows directly from the asymptotic expansion of
p(x), for x close to 0, given in Theorem when the parameters (5,7, [3, )
take the specific values (0, @p, 0, @p). (The reader will recall from (8.16)) that
(a,p) € A" is the parameter regime for stable processes with positive jumps.)

Lemma 10.13. Let us assume that « ¢ Q. For (a,p) € A* and p € (0, 1), we
have

M'(1 +p)
LA -aep)l(1—ap) ’

Fla(0 = PT((r)edl, <1) ~ as 10,

(10.36)
where W' denotes the Mellin transform of (rheil..



270 Asymptotic behaviour for path transformations

As with Theorem , the polynomial behaviour of the tail of f%(r) al-
lows us to drop the factors 1 — & and 1 + ¢ in the envelope of Theorems [9.11]
and [9.13] whilst keeping the same integral test. Recall that Cy and Co denote
the set of positive increasing functions defined in Definitions[9.10[and[9.12] In
a similar manner to Theorem m the following result follows from simple
applications of Theorems[9.11]and[0.13|and the estimate in[T0.41]

Theorem 10.14. Let (@, p) € A" and assume that « ¢ Q. The upper envelope
at 0 and at oo of the future infinum of the stable process conditioned to stay
positive is as follows.

(i) Let f € Cy such that either

or liminf ——

t t
=0 0,
Far e o

lim
t—0

then,
Py(3, > f(t)io.ast - 0)=0 or 1,

accordingly as

Pl
dr is finite or infinite.
0+ f(t)ap
ii) Let g € C such that either
. .. t
lim =0 or liminf —— > 0,
t—00 g(t)” t—00 g([)‘l

then for all x > 0,
IP)TC(J, > g io. ast— 00) = 0or 1,

accordingly as

00 tp—l
dt is finite or infinite.
f g f f

In order to deduce the upper envelope of the stable process conditioned to
stay positive, we first need to compare the behaviour near 0 of FTTT(I) with that
of

G'() :=P($) <1),

where we recall from (T0.26) that S; = inf{r > 0 : X,, > 1}. Proposition

and Lemma ensures that G has the same polynomial behaviour as Foy.
As we have seen with Theorems [[0.12]and [T0.14] the polynomial behaviour

of fLT and G" affords us the development of a cleaner version of the upper

envelope integral tests given in Propositions[9.14]and [9.13]
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Theorem 10.15. Let Let « ¢ Q and assume (a,p) € A*. Hence the upper
envelope of the stable process conditioned to stay positive at 0 and at o is as
follows.

(i) Let f € Cy such that either

t t
li =0 liminf 0
SRR S A
then,
Py(X, > f(t)io.ast - 0) =0 or 1,

accordingly as

tp—l
dr is finite or infinite.
0+ f(t)ap
ii) Let g € C such that either
t
lim =0 or liminf —— > 0,
t—o0 g([)a t—o0 g([)”

then for all x > 0,
PL(X, >g(t)io.ast— 00) = 0or 1,

accordingly as

00 -1
f gt(pt)ap dt s finite or infinite.

It is interesting to note from Theorems and that, in the param-
eter regime A", the stable process conditioned to stay positive and its future
infimum have the same upper functions.

Finally, we consider the case when the stable process conditioned to stay
positive has no positive jumps, i.e. when @ € (1,2) and p = o~ '. As we will
see below, this assumption allows us to obtain a law of the iterated logarithm
for the upper envelope of (X, P(T)) as well as for its future infimum and for the
process at reflected its future infimum.

First, we observe that T = 1, PT-almost surely because of spectral negativ-
ity. Under the assumption that &' has no positive jumps, we have the following
behaviour for the lower tail distribution of I:L near 0.

Lemma 10.16. Let a € (1,2) and p = a” !, then

— a—-11/1 1/(a—1)
—logF (1/f) ~ — (—) @D gt — oo, (10.37)
[07 a
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Proof Recall from Theorem that £ is a spectrally negative Lamperti-
stable process with parameters (3,7, %) = (1, 1, —1). Moreover its dual —¢7 is
a spectrally positive Lamperti-stable Lévy process with parameters (3, y,y) =
(0, — 1, 1). According to Theorem the process —¢&T has the same law as
the Lévy process associated with the spectrally positive stable process killed
on entering (—oo, 0). In other words, the spectrally negative stable process con-
ditioned to stay positive is in duality with the spectrally positive stable process
killed at entering at (—oo, 0). Indeed, since

0 <E'[¢]] < o0,
we deduce from Proposition [5.6] that
th(&z()), t>0,

under ]@z, is equal in law to the process X = (Xo,--> 0 < t < D;), under PT,
for z > 0. That is to say, the laws of (D, Pg) and (7, I@’Z) are the same, where

T, = inf{s > 0 : X; < y}. Recall from Corollarythat Dy @ fL and so, with

the above duality in mind, for # > 0,
—1 1 A _ N _
F =Dy <n=B(r; <t) =By (r, <),

Since (12, x > 0) is a stable subordinator under I@o, from Lemma we get
the desired estimate. O

The following result provides laws of the iterated logarithm for the stable pro-
cess conditioned to stay positive with no positive jumps as well as for its future
infimum process. It takes advantage of the comparison between the behaviour

near 0, of fT(t) with that of G'(¢) given by Proposition [10.10

Theorem 10.17. Assume that a € (1,2) and p = a~'. Then the upper envelope
of the stable process conditioned to stay positive with no positive jumps, as
well as its future infimum, are described by the following law of the iterated
logarithms,

X, -1
'

1' = — 1 _T, PT —d.s.

T e (log | log #])'-1/@ ale-1) 0~ 43
and

: Jt _azl 1

lim sup =ale-1)"=, P, —a.s.

-0 te(log|log|)!-1/@

The same law of the iterated logarithm holds as t — oo under PL forany x > 0.
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This result follows from from the integral tests of Theorem [0.11]and Propo-

sitiontogether with the asymptotic behaviour of ﬁT and GT, which follows
from and Proposition[I0.10] repsectively. The arguments to deduce the
laws of the iterated logarithm are similar to those used in the proof of The-
orem [8.2] It is also interesting to note that Theorem indicates that, for
no positive jumps, the stable process conditioned to stay positive and its future
infimum satisfy the same law of the iterated logarithm despite the fact that they
do not necessarily have the same integral tests.

Our last result of this section tells us that the stable process conditioned to
stay positive with no positive jumps reflected at its future infimum also satisfies
the same law of the iterated logarithm.

Theorem 10.18. Let us assume that « € (1,2) and p = o~ . Then

X -] -
Lt = a(a — 1)_71, Pg —a.s.

;
Mo P e (log [ Tog 1)~/

The same law of the iterated logarithm holds as t — oo under PL forany x > Q.

Proof We give the proof only for the setting that + — 0, with the proof for
t — oo having a similar structure. The details of the latter are left to the reader.

First, we observe that X; — J; < X;, for every ¢ > 0. Hence it is clear from
Theorem [[0.17] that

X, -] -
lim sup Lot < ala - 1)_71, ]P’(T) —a.s.
-0 tY*(log|log#)!~1/e
For the lower bound, we introduce
A() = ale — D) %log|log )"V,  0<t<el.

We also fix € € (0, 1/2) and define the stopping times

aninf{szl/n:%z(l—e)}, n>1.

From the above definition, it is clear that R, > 1/n and that R, goes to 0 as n
goes to oo, ]P’g-a.s. Moreover, spectral negativity implies that Xz, = A(R,)(1—€)
on {R, < co}. From Theorem[10.17} we deduce that R, is finite, a.s.

By applying the strong Markov property, the Lamperti transform (see The-
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orem | and using that (X, P(T)) has no positive jumps, we deduce

XR —JR EXR
Pl > (1-2¢)| =P |15, < —=
0( A(Rn) _( 6)) O( R = 1—6)

_gt[pt €Xo
== |2k (o= =)

=p! (infg,T < 1og(L)), (10.38)
>0 1-€

where we recall that (£7, PT) is the Lévy process underlying the Lamperti trans-
form of (X, PT). The right-hand side of (T0-38) can be computed explicitly. In-
deed, from Theorem (iii), the descending ladder height AT associated to fT
is a B-subordinator with parameters (1, 1, @ — 1) which is killed at the time e,
which is an independent and exponentially distributed random variable with
parameter ¢ = I'(@). Thus from Lemma[2.26|and Corollary [4.3] we obtain

. 1-2¢\""
g =valy )l (2] -
P (lrrzlgé:’ < log 1-€ P\ He,- = ~log 1-¢ ! 1-¢€ Fce

which is strictly positive. Since R, > 1/n, we obtain

Xz -]
MZ(I—ZG))>65,

Xr —J
Pg(uz(l—ZE), fOrSOmePZ”)ZP(T’( A(Ry)

A(R))
where the right-hand side is uniformly bounded away from zero for each fixed
€. Since R, converges a.s. to 0 as n goes to oo, ]P(T)-a.s., we have, for all € €
(0, 1/2), that the left-hand side above decreases to the left-hand side below as
we take limsup on the right-hand side.

X -] Xr -]
]Pg(ﬁ > (1-2€)i0.ast— o) > 11;1:211)1@3(% >(1- ze)) > 0.
The event of the left hand side is in the sigma-field N0 {X; : s < f} which is

trivial under Pg. Therefore

X =) p
lim su >1-2¢ P, —a.s.
ot A 0
Since we may take € as close to 0 as we like, we deduce the desired lower
bound. O

10.4 Stable processes conditioned to limit to O from above

In this section. we focus on the asymptotic behaviour near absorption of stable
processes conditioned to limit to 0 from above. Recall from Section [5.5] that
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that (X, Pﬁ), the stable process conditioned to limit to O from above starting
from x > 0, is defined by or equivalently by the change of measure
(5.34).

According to Theorem the process (X, Pﬁ) is a non-conservative pos-
itive self-similar Markov process with self-similar index @, whose underlying
Lévy process, (¢!, P), belongs to the class of hypergeometric processes with
parameters (8,7, 8,%) = (0, ap, 0, ap) € H,. Moreover its dual —£! is a hyper-
geometric process with parameters (1, ap, 1, @p). We note that the latter pro-
cess is associated to the dual of the stable process conditioned to stay positive,
ie. (X, I@’l), for x > 0. Since

0 < —E'[¢}] < o0,

we have from Proposition that the law of (X, Pﬁ) is equal in law to the
process X = (X(p,-n-» 0 <t < Dy), under I@’(T)(-II“ = 7), for z € (0, 1], where we
D, was defined in (I0.3) and I := Xp, _.

We recall that we can state the previous time-reversal property as follows
(see for instance the comment after Proposition [5.6). Let

7% = inf{s > 0: X, = 0},

then, for any z € (0, 1], the returned process (X0, 0 < t < 7'%) under
Pﬁ has the same law as (X;,0 < ¢ < D) under Pg(-lf = z). The previous

observation and Theorem [10.12] allow us to obtain the lower envelope of the
stable processes conditioned to limit to O from above near absorption.

Theorem 10.19. The lower envelope of the stable processes conditioned to
limit to O from above near absorption is as follows. Let f be an increasing
function, such that either

lim & =0 or lim inf
t—0 t t—0

f@~ 50,
t

then, for any x > 0,
PY(Xiro_y- < f(t) i0.ast > 0) =0 or 1,
accordingly as

f@

—dt s finite or infinite.
0+ tat!

For the upper envelope of (X, P!) at its absorption time, we first consider the
case when the process has negative jumps. Recall that X = (X, ¢ > 0) denotes
the running supremum process of X, i.e.

X, = inf X, t>0.
§<t
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Note that, for e.g. z € (0, 1], the law of X 0y under Pﬁ is equal to that of J;
under BT(|T" = 7). Time reversal of (X, P}) at 1% and Theorems|10.14] [10.15]

thus gives us the following result.

Theorem 10.20. Let us assume that («,p) € A" and a ¢ Q. The upper en-
velopes of the stable processes conditioned to limit to 0 from above and its past
infimum near absorption are as follows. Let f € Cy such that either

. t .. t
lim =0 or lim inf >0,
t—0

f@® =0 f(1)”

then, for any x > 0,
PYXoy- > f() i0. ast — 0) = PY(X 0_, > f(©) io.ast—0)=0 or 1,

accordingly as
1
0+ f(t)(yﬁ

Finally, we consider the case when the stable processes conditioned to limit
to 0 from above has no positive jumps, i.e. when @ € (1,2)andp = 1 —a~!. As
we will see below, this assumption allows us to obtain three laws of the iterated
logarithm for the upper envelope of (X, PY), its past infimum and the reflected
process at its past infimum. The following result is a direct consequence of
the time reversal property of (X,P*) at 7%, described below Lemma
together with the statement of Theorems and[10.1§]

dt is finite or infinite.

Theorem 10.21. Assume that « € (1,2) and p = 1 — o', Then the upper
envelopes near absorption of the stable processes conditioned to limit to 0
from above, its past infimum and the reflected process at its past infimum are
described by the following laws of the iterated logarithm,

lims -~ (@-1"%, P
u = ala — @, - a.s.,

o 17 (log Tog /)1 *

X

. 270 —p)— _a-l 1
lim su =a(a—-1)"«, Py —a.s.

o T e (log log i) -1/ @=D *

and
X-X PN o

lim sup ( Do =ala - 1)_71, Pﬁ - a.s.,

-0 1Y% (log|log])!-1/a

forall x > 0.
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10.5 Censored stable process

In this section, we focus on the asymptotic behaviour of censored stable pro-
cesses. We only treat the case @ € (0, 1). The case that @ € [1,2) can also be
treated, however, it requires a level of analysis which lies beyond the space
available to us here; we give more commentary below on the associated diffi-
culties.

Recall from Section [5.6] that the censored stable process Z with probabil-
ities P:= (Py,x > 0), is defined by erasing the negative components of the
space-time trajectory of the stable process, shunting together the remaining
positive sections of path and then killing the resulting process at the first hit-
ting time to the state 0. According to Theorem , the process (Z,P) is a
positive self-similar Markov process with self-similar index @, whose underly-
ing Lévy process (2, P) belongs to the class of hypergeometric processes witth
parameters (3,7,8,9) = (1, ap, 1 — @, ap). We also recall from the discussion
below Theorem that the censored stable process is conservative if and
only if @ € (0, 1], otherwise it hits 0 continuously.

In the conservative case the hypergeometric Lévy process E belongs to the
class H; and, moreover, its dual — E‘ is a hypergeometric Lévy processes with
parameters («, ap, 0, @p), which belongs to the class Hy if an only if @ € (0, 1).
When a = 1, the process E oscillates and implicitly its associated exponential
functional does not converge almost surely. This is one of the difficulties that
prevents us considering this case as techniques we have developed in Chapter
[9)do not apply.

In the non-conservative case, i.e. @ € (1,2), the hypergeometric Lévy pro-
cess E‘ belongs to the class H; \ {[3 = 0}. More precisely, it drifts to —co and
its exponential functional is well defined but the behaviour of its tail distri-
bution is not covered in the analysis in this text. That said, the estimates of
the tail behaviour will follow from the Mellin transform of its exponential
functional which can be deduced from Theorem (i1). Such estimates, to-
gether with the results in Chapter [0 will allow us to deduce the lower and
upper envelopes of the censored stable process (Z, P) at its absorption time
Ty = inf{t > 0 : Z; = 0}. In the interests of brevity however, we leave the
details to the interested reader.

Let us thus focus on the case that @ € (0, 1). By differentiating the charac-
teristic exponent of E and evaluating at 0, it is clear that

0 <E [£,] < .

Hence, the conditions of Theorem are fulfilled and it makes sense to talk
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about the censored stable process issued from the origin, i.e. Py is well defined.
Moreover, in the sense of weak convergence on the Skorokhod space (see Sec-
tion in the Appendix), P, converges to Py as x — 0. In other words, we
may use the results of Chapter [0]to describe the lower and upper envelope of
(Z,Po) at 0 and at co.

We first describe the lower envelope of (Z, ﬁo) at 0 and at oco. Let us define

f;:f e ¥ ds.
0

From Proposition we deduce the upper tail behaviour of the distribution
of the exponential functional Iz,

Lemma 10.22. For a € (0, 1) and p € (0, 1), we have

( [e% ) Sin(?lp —a
) 1-a
( ) N ( ) e, as t ( 03 )

F (1) :=P (f’; >t) ~

Proof The proof is similar to that of Lemma[I0.1T] Recall from the above dis-
cussion that — E’ is a hypergeometric Lévy processes with parameters (8, y, 3, 9)
equal to (a, ap, 0, ap) which places it in the class H;\{B = 1}. Next, we appeal
to Proposition noting that 8y = (1 — a)/a and 8 = 1 — «, to give us

¥ (1=
(A;; > z) ~ %zﬁ“, t — oo, (10.40)
~'(1 —a

o~k

where M denotes the Mellin transform of [, and ¢ (z) is the Laplace trans-
form of — E‘ Moreover, M (1 — @)/a) and J~’(1 — @) can be computed ex-
plicitly. Indeed, from the identities in Theorem &.13] (i) and appealing
to some straightforward manipulation using the quasi-periodic properties of
double gamma functions (see Appendix [A.4) as well as standard properties of
gamma functions (see Appendix[A.3)), we find

ﬁ(l—a)__ (1—&) 2
o | a | T(=a)'(1 — @) sin(map) sin(rap) (0)['(D)

and

A T
~'l-q)=z —— =

V=@ = 5T sintap)

The proof follows by combining and tidying up the expressions above using

the reflection and recursion formulae for gamma functions. O

For g > 0, let us introduce T- (=q)={t=0:- Etﬁ —-q},

o -
I = f e *%ds and Fq (1) =P (fl > t)-
T-(-q) 0 o
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From Lemmas and [10.22, we have that }j"q (1) <F (1) for t large. This
equivalence together with Theorems [9.7) and 0.8] imply the following integral
tests for lower envelopes.

Theorem 10.23. Let a € (0, 1). The lower envelope of the censored stable
process at 0 and at o is as follows.

(i) Let f be an increasing function, such that either

t (03
lim A =0 or lim inf
-0t 1—0

MKQ
t

then,

Po (Zt <f(t)i.0.ast—>0)=0 or 1,
accordingly as

1-a
t
1A )1 dt s finite or infinite.
0+ I

ii) Let g be an increasing function, such that either

tll
im €2 20 o limin

t—00 t t—0o0

g”

> 0,
then for all x > 0,
P, (Z, <g®)io.ast— 00) = 0or 1,

accordingly as

00 -
8 e
f —dt s finite or infinite.

ta

Next, we proceed to describe the upper envelope of the censored stable pro-
cess at 0 and at oo when @ € (0, 1). Similarly to previous sections, we first
describe the upper envelope of its future infimum J = (J;, > 0) at 0 and at co
and then we compare them with the upper envelopes of the original process.

Recall that D; = sup{r > 0 : Z;, < 1}, denotes the last passage time of Z
below 1 and consider the random variable Y’ under f’, which is independent of
I having the same law as Zp, _, under ﬁo.

The following result gives the behaviour for the lower tail distribution of
(‘Y’)“f; near 0, with the restriction that @ ¢ Q. Its proof follows directly from
the asymptotic expansion of p(x), as x — 0, given in Theorem[I0.5] when the
parameters (3, v, 3, %) take the specific values (a, ap, 0, ap).
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Lemma 10.24. Let us assume that @ ¢ Q. For a € (0,1) and p € (0, 1), we
have

e (1 -a) ¥y 2-p)
F~ (1) =P (7)< 1) ~ Mo—afd o’ @ 0
(10.41)

where ﬁ?f denotes the Mellin transform of (v L.

The tail behaviour of F~ (r) and Proposition imply that
G (1):=Fo (S1 <t)<F (1), as t—0,

where S| = inf{r > 0 : Z, > 1}. Therefore from Theorems[9.7} 0.8and Proposi-
tions [0.14] 0.13] we deduce the following integral tests for the upper envelope.

Theorem 10.25. Let us assume that « € (0,1) and a ¢ Q. The upper envelope
the censored stable process and its future infimum at 0 and at oo is as follows.

(i) Let f € Cy such that either

=0 or hm 1nf >0,

t
lim
=0 f(O)* f ( )
then,
ﬁo (Z, > f(t)io.ast— O) =ﬁo (J; > f(t)io.ast — O) =0 or 1,

accordingly as
-1

0+ f(t)ap

dt is finite or infinite.

ii) Let g € Cw such that either

t
Iim—— =0 or liminf —— > 0,
1= g(0)” i g(1)”
then for all x > 0,
P, (Zt >g)io. ast— 00) =P, (Jr >g)io ast— 00) =0 orl,

accordingly as

0O tp_]
f dt is finite or infinite.

gy
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10.6 Isotropic stable processes

We conclude this Chapter by studying the lower and upper radial envelopes
for the isotropic d-dimensional stable process, denoted here by (X, P). Recall
from Section that, for any x > 0, the radial part of a d-dimensional stable
process defined by

Z; = X1 crony, t>0,

where 7% = inf{¢ > 0 : |X,| = 0}. In other words the radial process is killed and
absorbed at its cemetery state whenever X hits O for the first time. According
to Theorem the radial process is a positive self-similar Markov process
with self-similar index @, whose underlying Lévy process (&, P) has charac-
teristic exponent given by such that 2¢ is a hypergeometric processes
with parameters (83, vy, B, ¥) = (L, a/2,(d - @)/2,a/2). We also recall from the
discussion below Theorem that the radial part of an isotropic stable pro-
cess hits 0 continuously if and only if d = 1 and @ € (1,2), otherwise it is
conservative.

We first treat the conservative case, i.e when d > «@. The hypergeomet-
ric Lévy process 2¢ belongs to the class | and, moreover, its dual —2¢ is
an hypergeometric Lévy processes with parameters (8,v,53,%) = (1 — (d —
@)/2,a/2,0,a/2), which belongs to the class H,, more precisely, to Hi\{8 =
1}, if and only if d > @. When d = «a = 1, the process & oscillates and its
associated exponential functional does not converge almost surely. The tech-
niques we have developed in Chapter [9 therefore cannot help us in the setting
d = a = 1. Let us assume d > «. By differentiating the characteristic exponent
of & (cf. (5.50)) and evaluating at 0, it is clear that

0<E[§|]<OO,

which is consistent with the fact that lim,_,, |X;| = oo almost surely. Note, in
this setting we may more simply identify Z, = |X;|, # > 0. The conditions of
Theorem are fulfilled, hence process (|X|,P,) converges towards (|X|, Py)
as x goes to 0, in the sense of weak convergence on the Skorokhod space (see
Section[A.10]in the Appendix); this is a completely obvious statement anyway.
We can accordingly use the results of Chapter[9]to describe the lower and upper
envelope of (|X|, Pp) at 0 and at oco.

We first describe the lower envelope of (|X|, Py) at 0 and at oo for d > a. Let

us define
I = f e % dy = f e 7?65, (10.42)
0 0
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From Proposition .27, we deduce the upper tail behaviour of the distribution
of the exponential functional .

Lemma 10.26. Ford > «, we have

a\r( 4=
F(t):=P(Io> 1)~ Mf%‘*, as t— oo, (10.43)

d-a d
r(452)r(s)
Proof The proof is similar to those of Lemmas [T0.11] and [10.22] Given the
properties of —2¢ listed above, taking account of the second equality in (T0.42)),
we may appeal to Proposition with 6 = /2, 8y = (d — @)/ and 6 =
(d — a)/2, to write

fi(d=e
M( ¢ )f”’T“, t — oo, (10.44)
(%)

where M denotes the Mellin transform of /,, and iJ(z) is the Laplace transform
of —2¢. Moreover, in this case M((d - @)/a) and tﬁ’((d —@)/2) can be computed
explicitly. Indeed from the identities in Corollary .16| (i) and .37} we find

(=)o) e o(t5). I

thus concluding the proof. O

For ¢ > 0, let us introduce T~ (—¢) := {t > 0 : & < —q},

T~ (-9)
Iy = fo e@ds and  F(0):=P(l;, >1).

From Lemmas[T0.26|and [T0.8] we have that F,(r) < F(t) for ¢ large. Together
with Theorems[9.7]and[9.8] we obtain the following integral tests for envelopes
of |X]|.

Theorem 10.27. Let d > a. The lower envelope of the radial isotropic d-
dimensional stable process at 0 and at ~ is as follows.

(i) Let f be an increasing function, such that either

t (03
lim f(—) =0 or lim inf
1—0 t t—0

o,
t

then,

Po(|X| < f(t) i.0.ast > 0) =0 or 1,
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accordingly as

d—-a
t
IA )d dt is finite or infinite.
0+ fe

ii) Let g be an increasing function, such that either

t(Y t(l’
im0 o liminf 22

t—o0 t t—00

>0,

then for all x > 0,
PX(IX,I <g®)io.ast— 00> = Q0or 1,

accordingly as

te

00 d-a
t
f & )d dr is finite or infinite.

Remaining in the setting that & < d, we proceed to describe the upper enve-
lope as t — 0 and t+ — oo, again, first taking account of the upper envelope of
J =(3; = 0), where J; = inf 5, | X, # > 0. Recall thatD; = sup{r > 0 : |X;| < 1},
denotes the last passage time of |X| below 1; and consider the random variable
T which is independent of I, and has the same law, under P, as |Xp,-|, under
Py. We recall that Y takes values on [0, 1].

The following result gives the behaviour for the lower tail distribution of
Y], near 0. Its proof follows directly from the asymptotic expansion of j(x),
for x close to 0, given in Corollary when the parameters (5, , [3, ¥) of the
hypergeometric process —2¢ take the specific values (1-(d—a)/2, /2,0, a/2).
We also recall that 6 = /2 in this case.

Lemma 10.28. For d > a, we have

f . a 7 F<%)
0 =Pl <t)~ ————"——1,  as 10 (1043
r(g)ri-s)
Lemma [T0.28]and Proposition [T0.9]imply that
G(t) :=P(S1 <t)<F(r), as t—0,

where S| = inf{t > 0 : |X;| > 1}. Therefore from Theorems [0.8] and
Propositions [9.14] [9.13] we deduce the following integral test.

Theorem 10.29. Let us assume that d > «. The upper envelope the radial
isotropic d-dimensional stable process and its future infimum at 0 and at oo is
as follows.
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(i) Let f € Cy such that either

. t L. t
lim =0 or lim inf
—0

0,
f(r)® =0 f(1)* g

then,
Po(IXi| > f(t) i.o. ast — 0) = Po(3, > f(1) i.o.ast = 0) =0 or 1,

accordingly as

dr
is finite or infinite.
0+ f(t)a
(ii) Let g € C such that either
t t
lim =0 or liminf —— > 0,
t—o0 g(t)a t—o0 g([)“

then for all x > 0,
IP’X(|X,| >g()io ast— 00) = PX(J, >g()io.ast— 00) =0orl,

accordingly as

< dr
is finite or infinite.
f g~

Now, we consider the remaining case, i.e. when d = 1 and @ € (1, 2). In this
case the process 2¢ is a hypergeometric process with parameters (3,7, 8,%) =
(1,a/2,(1 — @)/2,a/2) € Hy, Moreover its dual —2¢ is a hypergeometric pro-
cess whose parameters (8, y, B, ¥) are equal to (1 + @)/2,a/2,0, @/2). More-
over,

0<-E[¢] < . (10.46)

Let us then consider the dual of the radial isotropic stable process [X;|1.w),
t > 0, with @ € (1,2) (see Proposition , denoted here by (Z, P.). The latter
is a self-similar Markov process with index @ > 0, whose Lamperti represen-
tation is given by

Z; = xexp {é?‘p(mw)} s t>0,

where @ is the right-continuous inverse of

!
I = f e %udy, t>0.
0

Since 5 has a positive finite mean, see @, the conditions of Theorem
are fulfilled the process (Z, P, converges towards (Z, Py) as x goes to 0, in the
sense of weak convergence on the Skorokhod space (see Section [A.10]in the
Appendix). The time reversal property of Proposition [5.6] tells us that for any
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x > 0 and z € (0, x], the returned process (|Xq0__|, 0 <t < 71%), under P,,
has the same law as (Z,,0 < ¢ < D,), under Py(-|T = 2).

Let us define
I = f e*udy = f e> @) dy,
0 0

thus from Proposition .27} we deduce the upper tail behaviour of the distribu-
tion of the exponential functional /.

Lemma 10.30. Ford =1 and a € (1,2), we have

o sin(E(3) o

2
Ne-0VE r(er(y) YT

RIN

Fit) =P, >1) ~
(10.47)

Proof We proceed similarly as in Lemma [10.26] First, we recall from the
above discussion that 2¢ is a hypergeometric Lévy process with parameters
8, 7,,@, ) =1,a/2,(1 — a)/2,@/2) which belongs to the class H, defined in
(@.33)) (more precisely, it belongs to H> N{n—% > 0}\{B = 1}). Next, we appeal
to Proposition taking 6 = /2, 9)( =(a—-1)/aand § = (@ - 1)/2, to write

e, t — oo, (10.48)

where M denotes the Mellin transform of I, and y(z) is the Laplace transform
of 2¢. Moreover, in this case M((@ — 1)/a) and ¢’ ((@ — 1)/2) can be computed
explicitly. Indeed from the identities in Corollary .16 (ii) and[#.37] we find

M(a—l):asin(g) and lp,(d—a):a_lﬁr(%)

o)) ) )

thus concluding the proof. O

For g > 0, we also introduce T~ (—q) :={t > 0: & < —q},

T (=q)
]T,(_q) = ﬁ e*sds and Fq(l) = P(ITf(_q) > l) .

From Lemmas[10.30|and [T0.8} we have that F,(t) < F(t) for t large. Thus, the
previous observations and Theorems [9.7] and @ imply the following integral
test for the lower envelope of (Z, P.), or equivalently, the radial isotropic stable
process reversed from its first visit to the origin.
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Theorem 10.31. Let d = 1 and a € (1,2). The lower envelope of the radial
isotropic stable processes near absorption is as follows. Let f be an increasing
function, such that either

lim & =0 or lim inf
t—0 t t—0

>0,

f@~
t
then, for any x > 0,
Po(I X0yl < f(t) 0. ast > 0)=0 or 1,

accordingly as

f@o!
2a-1
0+ [«

dt is finite or infinite.

Finally, we describe the upper envelope near absorption at the origin of the
radial isotropic stable process with @ € (1, 2). Let us introduce its past infimum
here denoted by (m,, 7 > 0) where

m, = lslg | X1 5<ri0n), t>0.

We also consider the random variable T which is independent of I, and has the
same law, under P, as Zp, _, under Po. We recall that T takes values on [0, 1].

The following result gives the behaviour for the lower tail distribution of
eI, near 0. As usual, its proof follows directly from the asymptotic ex-
pansion of p(x) for x close to 0, given in Proposition when the pa-
rameters (8,7, 3,9) of the hypergeometric process 2¢ take the specific values
(1,a/2,(1 —a)/2,a/2). We also recall that 6 = a/2.

Lemma 10.32. Ford =1 and a € (1,2), we have
a sin("[—;17r)r(3_7")tl

2v7 T(3)r (%)

Lemma[T0.32]and Proposition [T0.9]imply that

G(t):=Po(S) <1) <F(n, as t—0,

F@) = P(‘?‘"Ioo < t) ~ as t—0. (10.49)

where §; = inf{r > 0 : Z, > 1}. Therefore from Theorems[9.7} [9.8]and Proposi-
tions[9.14] [0.T3] together with the time reversal property of the radial isotropic
stable process from the hitting time 7!*, described above, we get the following
result.

Theorem 10.33. Let us assume that d = 1 and a € (1, 2). The upper envelopes
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of the radial isotropic stable process and its past infimum near absorption are
as follows. Let f € Cy such that either

. t .. t
lim =0 or lim inf >0,
t—0

f@® =0 f(1)”

then, for any x > 0,
P Xy > f(0) i0. ast — 0)
= Px(m(rm»_t)f > f(H)io.ast — O) =0 or 1,

accordingly as

I-a

te
——dt s finite or infinite.

0+ f(t)

10.7 Comments

There are few integral tests for lower and upper envelopes for path transfor-
mations of stable processes. The earliest work in this area is Khintchine [103],
who considered the upper envelope of the radial part of one-dimensional stable
processes. This corresponds to Theorem[10.29]in the case when @ < 1. Monrad
and Silverstein [[152]] were the first to study the lower and upper envelopes for
the stable processes conditioned to stay positive as + — 0. In particular, they
obtained a law of the iterated logarithm in the spectrally negative case. The re-
sults in [[152]] are stated in terms of the stable process immediately proceeding
a local minimum. Although unknown at the time that [152] was published, the
sample paths are the same as those of the stable process conditioned to stay
positive as t — 0. Fourati [72] described the lower and upper envelopes for the
stable process conditioned to stay positive and its future infimum as t — 0 and
t — oo, under the assumption the the process has two sided jumps. Theorems
[T0.12] [T0.14] and [T0.13] are based on these results. One negative aspect of the
method we pursue here is the need for o ¢ Q for some of the upper envelopes.
This restriction does not appear in the work of Monrad and Silverstein [[152] or
Fourati [[72]]. The laws of the iterated logarithm of the spectrally positive stable
processes conditioned to stay positive, its future infimum and its reflection at
its future infimum as 7 — 0 and r — oo in Theorems and[T0.T8]are taken
from Pardo [160]. Theorem is taken from Takeuchi [203] 206] where
the lower envelope of isotropic stable processes were studied as ¢ — 0 and
t — oo, respectively. The rest of the results presented here appear to be a new
contribution to the literature.




11

Markov additive and self-similar Markov
processes

We would like to understand self-similar Markov processes that explore the
real line (resp. RY). That is to say, we are interested in the class of stochastic
processes that respect Definition [5.1} albeit the state-space is taken as R (resp.
R%) in place of [0, o).

Like the case of pssMp, it is possible to describe so-called real self-similar
Markov processes, or rssMp for short, via a space-time transformation to an-
other family of stochastic processes. Whereas pssMp are connected to Lévy
processes via the Lamperti space-time transformation, rssMp turn out to be
connected to a family of stochastic processes whose dynamics are those of a
Lévy process with characteristics that change each time an auxiliary and in-
dependent Markov chain changes state. Such a process is known as a Markov
modulated (Lévy) process or Markov additive process (MAP for short). The
picture for R?-valued self-similar Markov processes (or just ssMp for short)
is a further generalisation of this representation in which the Markov chain is
replaced by a general Markov process.

As with Chapter[5] our interest in ssMp comes about through their relation-
ship with stable processes in all dimensions and their path transformations. We
discuss this relationship in the next chapter. However, in preparation for that,
we spend most of this chapter discussing how MAPs are naturally connected
to ssMps. We also address some of the many intrinsic properties of MAPs that
will be of future use.

11.1 MAPs and the Lamperti-Kiu transform

As alluded to above, a real self-similar Markov process with self-similarity
index a > 0 is a regular Feller process, Z = (Z;,t > 0), on R\{0} such that the
origin is a cemetery state, which has the property that its probability laws P,,

288



11.1 MAPs and the Lamperti—Kiu transform 289
x € R satisfy the scaling property that for all x € R\ {0} and ¢ > 0,
the law of (¢Z,.«,t > 0) under P, is P,,. (11.1)

(The reader may like to revisit Section[A.TT]in the Appendix for a reminder of
what a Feller process is.)

In the spirit of the Lamperti transform of the previous chapter, we are able to
identify each rssMp with a so-called Markov additive process via a transforma-
tion of space and time, known as the Lamperti—Kiu representation. We shall
shortly describe this transformation in detail. However, first we must make
clear what we mean by a Markov additive process.

Definition 11.1. Let E be a finite state space such that |[E| = N. A regular
Feller process, (¢,J) = (&1, J;),t = 0) on R X E with probabilities P, ;, x € R,
i € E, and cemetery state (—oo, ), which is always visited simultaneously by
the pair (&, J), is called a (killed) Markov additive process if the pair (£, J) is
such that for any i, j € E, s,¢ > 0 and bounded and measurable f : RXE — R,

Ex,i[f(§t+s - é:ts Jt+s)1(t+s<§)|gt] = EO,j[f(fb Js)l(s<g)] (112)

on the event {J; = j,t < ¢}, where ¢ = inf{r > 0 : J; = {} and (G;,t = 0)
is the filtration generated by (£, J) with natural enlargement. The process J is
thus a Markov chain on E and is called the modulator of £, whereas the latter
is called the ordinator.

If u1 is a probability distribution on E, we write P, = > ;cp u;Py;. We adopt a
similar convention for expectations.

The following proposition gives a characterisation of MAPs in terms of a
mixture of Lévy processes, a Markov chain and a family of additional jump
distributions.

Proposition 11.2. The pair (¢,J) is a Markov additive process if and only if,
for each i, j € E, there exist a sequence of iid Lévy processes (£"),s0 and a
sequence of iid random variables (Affj)nzo, independent of the chain J, such
that if oo = 0 and (0,)n>1 are the jump times of J prior to g, the process & has
the representation

J(on),
& = l(n>())(§(r,,— + A,}(on—),J(an)) + f;_(g,l)n, t€foy,0m41), 120,

and & = —oo.

We are now ready to describe the connection between MAPs and real pos-
itive self-similar Markov processes which are killed at the origin. The next
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theorem generalises its counterpart for positive self-similar Markov processes,
namely Theorem

Theorem 11.3 (Lamperti—Kiu transform). Fix a > 0. The process Z is a rssMp
with index « if and only if there exists a (killed) MAP, (¢, J), on Rx{—1, 1} such
that

Zi =¥,  0<t<lI,
where

o) = inf{s >0: f e dy > t}, 0<r<I, (11.3)
0

and I := fog e%sds is the lifetime of Z until absorption at the origin, which
acts as a cemetery state. Recall that ¢ is given in Definition [I1.1] Here, we
interpret exp{—oo} := 0 and inf () := co.

Intuitively speaking, the relationship of the MAP (£, J) to the rssMp Z is
that, up to a time change, J dictates the sign of Z, whereas exp{¢} dictates the
radial distance of Z from the origin.

By comparing Definition[5.1|with that of the definition in (TT.T), we see that
any pssMp is a rssMp. Indeed, the chain J is such that it never leaves the state
+1, unless to visit the cemetery state | (corresponding to exponential killing).
We consider the former to be a degenerate case of the latter. It turns out that
there are other ‘degenerate’ cases in which a rssMp can change sign at most
once.

In the forthcoming discussion, we want to rule out these and other cases.
Said another way, we shall henceforth only consider rssMp which have the
property that

P.3t>0:727_<0)=1 forall x=#0. (11.4)

The forthcoming Remark [TT.§] will help shed some light on other implications
of this assumption.

11.2 Distributional and path properties of MAPs

The Lamperti—Kiu transform for rssMp resembles the Lamperti transform for
pssMp even more closely when one considers how mathematically close MAPs
are to Lévy processes. Let us spend a little time in this section dwelling on this
fact. This will also be of use shortly when we look at some explicit examples of



11.2 Distributional and path properties of MAPs 291

the Lampert—Kiu transform. We will assume throughout this section that (£, J)
is back in the setting of Definition

For each i € E, it will be convenient to define, on the same probability
space, & as a Lévy process, which does not have monotone paths, whose law is
common to the processes £, n > 1, that appear in the definition of Proposition
@ Similarly, for each i, j € E, define A, ; to be a random variable whose law
is common to the variables A7 I

Henceforth, we confine ourselves to the setting that J is an ergodic Markov
chain. Let the state space E be the finite set {1,---, N}, for some N € N.
Denote the transition rate matrix of the chain J by Q = (g; ;)i jer. For each
i € E, the characteristic exponent of the Lévy process & will be written ;.
For each pair of i, j € E, define the Fourier transform G; j(z) = E(e¢'**+) of the
jump distribution A; ;. Write G(z) for the N x N matrix whose (i, j)-th element
is G; j(z). We will adopt the convention that A; ; = 0if ¢; ; = 0, i # j, and also
set A; = Oforeachi€ E.

Thanks to Proposition[IT.2} we can use the components in the previous para-
graph to write down an analogue of the characteristic exponent of a Lévy pro-
cess. Define the matrix-valued function

¥(2) = diag(-¥1(2),--- , —¥n(2)) + Q o G(2), (11.5)

for all z € R, where o indicates elementwise multiplication, also called Hadamard
multiplication. It is then known that

Eo; [e: J, = j| = ¥ i, jEE,t>0, (11.6)

ij°
for all z € R. Accordingly, W is called the (characteristic) matrix exponent of
the MAP (&, J).

One aspect of the theory of MAPs which differs slightly with that of Lévy
processes concerns duality. Recall from Section [2.T1]that, for a Lévy process,
the dual process describes the time-reversed process over a finite time horizon.
Thanks to stationary and independent increments, this turns out to be nothing
more than the negative of the Lévy process. The situation for MAPs is a little
more involved.

First note that, thanks to irreducibility, the Markov chain J necessarily has
a stationary distribution. We denote it by the vector w = (m,--- ,my). Each
MAP has a dual process, which is also a MAP. Its associated probabilities,
IA’X,,-, x € R, i € E, are determined by the dual characteristic matrix exponent,
given by

U(z) := diag(— ¥i(~2), -, ~¥n(-2) + Q 0 G(-2)",
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and Q is the intensity matrix of the modulating Markov chain on E with entries
given by

~ T .
ij = 2 i i,j€E.

Note that the latter can also be written Q@ = A;'QTA ., where A, = diag(),
the matrix with diagonal entries given by 7r and zeros everywhere else. The
matrix Q is the intensity matrix of the time-reversed Markov chain J. Hence,
when it exists,

B2 = AT (-0 A, (11.7)
showing that
nilo; [, J, = j| = mEo |67, 1, = i]. (11.8)
At the level of processes, one can understand (T1.8) as saying the following.

Lemma 11.4. The time-reversed process ((£q-s)- — & Ja-s)-), s < 1) under
Py is equal in law to (&5, J), s < t) under IA’O,.,,.

One feature of MAPs that will become of concern later on in this book per-
tains to the difference between the MAP corresponding to a matrix exponent
W and another MAP whose matrix exponent can be written A, ¥, where A,
is a diagonal matrix with strictly positive entries a(i) > 0, i € E. Quite simply,
this transformation in ¥ corresponds to a simple time change in (¢, J). Specif-
ically, whilst in state i € E, time runs at the new speed a(i)t. More precisely, if
(&', J") is the MAP corresponding to A, ¥ then

(é‘:t/"]t,) = (gf[;a(‘/x)dxa Jf[)’a(‘/x)ds)’ t> 0

Suppose now that we take £ = {1,—1}. It is also interesting to ask how
the rssMp associated to the MAP (¢’, J’), say Z’, relates to the one associated
to (¢, J), previously denoted by Z. Suppose, without loss of generality, that
Zy > 0. By considering the Lamperti representation of Z’ until it first crosses
below the origin, say 7’ = inf{t > 0 : Z{ < 0}, we note that, on {t < T},

¢'(t) = inf {s >0: f e®udy > t}
0
= inf {s >0: f eeudy > t}
0

a(l)s
= a(1)"" inf {a(l)s >0: f e%rdr > a(l)t}
0

= a(1)"'e(a(1)r).
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Hence, as J;,(I) = Jo@yy = 1 (neither J' nor J have left their initial state on

{t < T'}), we have that, on {r < T},
V0Tl = € Ty,

Now appealing to the Markov property we can extrapolate this argument to
positive and negative segments of the path of Z’ and deduce that

a(sgn(Z,))ds’ 12 0.

! _
Z, =7 [
As is the case with the characteristic exponent of a Lévy process, the char-
acteristic matrix exponent ¥(z) may be extended as an analytic function on
C to a larger domain than R, depending on where the moments of & are well

defined.

Proposition 11.5. Suppose that z € C is such that F(z) := W(—iz) is defined.
Then, the matrix F(z) has a real simple eigenvalue x(z), which is larger than
the real part of all its other eigenvalues. Furthermore, the corresponding right-
eigenvector v(z) = (vi(z),- - ,vn(2)) has strictly positive entries and may be
normalised such that

mov@) = 1. (11.9)

In the spirit of Section[2.8] it will also be important for us to understand how
one may establish Esscher-type changes of measure for MAPs.

Proposition 11.6. For x € R and i € E, define
e Y1)
vi(y)’
for some y € R such that x(y) is defined. Then, (M,(x,i), t > 0), is a unit-mean
martingale with respect to (G;,t > 0). Moreover, under the change of measure

M, (x, i) := e’ >0

= U

(11.10)

Y

X0

dP,;

= Mi(x, 1), 120,
G

the process (¢, J) remains in the class of MAPs and, where defined, its matrix
characteristic exponent is given by

U, (2) = Au(y) Wz = i) Ay(y) —x(VL (11.11)
Here, 1 is the identity matrix and A, (y) = diag(v(y)).

Just as is the case with the Esscher transform for Lévy processes, a primary
effect of the exponential change of measure is to alter the long-term drift of the
process. This is stipulated by the strong law of large numbers and the behaviour
of the leading eigenvalue y as a function of .
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Proposition 11.7. Suppose that y is defined in some open interval D of R,
then, it is smooth and convex on D.

Note that, since ¥(0) = @Q, it is always the case that y(0) = 0 and v(0) =
(1,---,1). Hence, for D as in the previous proposition, we must necessarily
have 0 € D, in which case x’(0) is well defined and finite. When this happens,
the strong law of large numbers takes the form of the almost sure limit

llgg% = x'(0), (11.12)
and we call x’(0) the drift of the MAP.

When y € D is a non-zero root of y, convexity dictates that, when y’(0) < 0,
we must have that y > 0 and y’(y) > 0. Conversely, when y’(0) > 0, we must
have thaty < 0 and y’(y) < 0. If ¥’ (0) = 0, then no such root y exists. A natural
consequence of the change of measure in Proposition is that under sz,
the MAP (&, J) acquires a new drift, which, by inspection, must be equal to
X' (y). It follows that, when y < 0, the drift of (¢, J) switches from a positive to
a negative value and when y > 0, the drift switches from negative to positive.

Remark 11.8. Recall from the Lamperti—Kiu transform in Theorem that
the radial component of a rssMp, Z, is controlled by £ of the underlying MAP.
In the presence of the assumption (TT.4), it is the the long term behaviour of &
that dictates whether Z limits continuously to the origin or not. In particular, if
{ =inf{t > 0 : Z, = 0}, then Z,_ = 0 when { < co. A