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Abstract
We correct the statements of the non-critical convergence theorems in Gonzalez et al.
(Probab Theory Rel Fields, 2022), principally correcting the recursive constants that
appear in the limits.
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1 Summary of corrections

In this short note, we remark that there were erroneous limits used in the non-critical
cases for the moment convergence and occupation moments in [2]. The source of
the error was a misuse of the sense in which uniformity held in various convergence
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506 I. Gonzalez et al.

arguments. This affects the nature of the constants that appear in the limits. The results
for the critical cases, which were the principal results, are correct with one minor
adjustment in the statement which is that supt≥0 �

(�)
t < ∞ should read supt≥c �

(�)
t <

∞, for any c > 0.
In what follows we assume the notation and hypotheses of [2] and provide the

correct statements and brief corrections of the proofs for the non-critical setting. The
theorem numbers correspond to the same theorem numbers in [2].

Theorem 2 (Supercritical, λ > 0) Suppose that (H1) holds along with (H2) for some
k ≥ 2 and λ > 0. Redefine

�
(�)
t = sup

x∈E, f ∈B+
1 (E)

∣
∣
∣e−�λtϕ(x)−1T(�)

t [ f ](x) − �!〈 f , ϕ̃〉�L�(x)
∣
∣
∣ ,

where L1(x) = 1 and we define iteratively for k ≥ 2

Lk(x) =
∫ ∞

0
e−λksϕ(x)−1Ts

⎡

⎢
⎢
⎣

βE·

⎡

⎢
⎢
⎣

∑

[k1,...,kN ]2k

N
∏

j=1
j :k j>0

ϕ(x j )Lk j (x j )

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎦

(x)ds,

with [k1, . . . , kN ]2k is the set of all non-negative N-tuples (k1, . . . , kN ) such that
∑N

i=1 ki = k and at least two of the ki are strictly positive1 if (X ,P) is a branching
Markov process. Alternatively, if (X ,P) is a superprocess, define iteratively for k ≥ 2
with L1(x) = 1 and I2(x) = 1

2ϕ
−1(x)

∫∞
0 e−2λsTs [V [ϕ]] (x)ds

Lk(x) = Rk(x) + Ik(x),

where

Rk(x) =
∑

{m1,...,mk−1}k
1

m1! . . .mk−1! (m1 + · · · + mk−1 − 1)!ϕ(x)m1+···+mk−1−1

k−1
∏

j=1

(−L j (x))
m j (1)

and

Ik(x) =
∫ ∞

0
e−λktϕ−1(x)Ts

⎡

⎣
∑

{m1,...,mk−1}k
1

m1! . . .mk−1!

⎛

⎝ψ(m1+···+mk−1)(·, 0+)(−ϕ(·))m1

k−1
∏

j=2

(−ϕ(·)I j (·))m j

1 Recall that we interpret
∑

∅ = 0 and
∏

∅ = 1.
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+ β(·)
∫

M(E)◦
〈ϕ, ν〉m1

k−1
∏

j=2

〈

ϕI j , ν
〉m j 	(·, dν)

⎞

⎠

⎤

⎦ (x)ds.

Here the sums run over the set {m1, . . . ,mk−1}k of positive integers such that m1 +
2m2 + · · · + (k − 1)mk−1 = k. Then, for all � ≤ k

sup
t≥0

�
(�)
t < ∞ and lim

t→∞ �
(�)
t = 0. (2)

Theorem 3 (Subcritical, λ < 0) Suppose that (H1) holds along with (H2) for some
k ≥ 2 and λ < 0. Redefine

�
(k)
t = sup

x∈E, f ∈B+
1 (E)

∣
∣
∣ϕ(x)−1e−λtT(k)

t [ f ](x) − Lk

∣
∣
∣ ,

where we define iteratively L1 = 〈 f , ϕ̃〉 and for k ≥ 2,

Lk = 〈 f k, ϕ̃〉 +
∫ ∞

0
e−λs

〈

βE·

⎡

⎢
⎢
⎣

∑

[k1,...,kN ]2k

(
k

k1, . . . , km

) N
∏

j=1
j :k j>0

T
(k j )
s [ f ](x j )

⎤

⎥
⎥
⎦

, ϕ̃

〉

ds.

if (X ,P) is a branching Markov process. Alternatively, if (X ,P) is a superprocess, we
still have L1 = 〈 f , ϕ̃〉 but

Lk =
∫ ∞

0
e−λs 〈Vk[ f ](·, s), ϕ̃〉 ds

for k ≥ 2, with

Vk[ f ](x, s) =
∑

{m1,...,mk−1}k
k!

m1! . . .mk−1!

×
⎡

⎣ψ(m1+···+mk−1)(x, 0+)(−Ts [ f ] (x))
m1

k−1
∏

j=2

(
1

j !
(

−T( j)
s [ f ] (x) + (−1) j+1R j (x, s)

))m j

+β(x)
∫

M(E)◦
〈Ts [ f ] , ν〉m1

k−1
∏

j=2

(
1

j !
〈

T( j)
s [ f ] + (−1) j R j (·, s), ν

〉)m j

	(x, dν)

⎤

⎦ .
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508 I. Gonzalez et al.

Here the sums run over the set {m1, . . . ,mk−1}k of non-negative integers such that
m1 + 2m2 + · · · + (k − 1)mk−1 = k. Then, for all � ≤ k

sup
t≥0

�
(�)
t < ∞ and lim

t→∞ �
(�)
t = 0. (3)

Theorem 5 (Supercritical, λ > 0) Let (X ,P) be either a branchingMarkov process or
a superprocess. Suppose that (H1) holds along with (H2) for some k ≥ 2 and λ > 0.
Redefine

�
(�)
t = sup

x∈E, f ∈B+
1 (E)

∣
∣
∣e−�λtϕ(x)−1M(�)

t [g](x) − �!〈g, ϕ̃〉�L�(x)
∣
∣
∣ ,

where Lk(x) was defined in Theorem 2 (both for branching Markov processes and
superprocesses), albeit that L1(x) = 1/λ. Then, for all � ≤ k

sup
t≥0

�
(�)
t < ∞ and lim

t→∞ �
(�)
t = 0. (4)

Theorem 6 (Subcritical, λ < 0) Suppose that (H1) holds along with (H2) for some
k ≥ 2 and λ < 0. Redefine

�
(�)
t = sup

x∈E, f ∈B+
1 (E)

∣
∣
∣ϕ(x)−1M(�)

t [g](x) − L�(x)
∣
∣
∣ ,

where L1(x) = ∫∞
0 ϕ(x)−1Ts[g](x)ds and for k ≥ 2, the Lk(x) are defined recur-

sively via

Lk(x) =
∫ ∞

0
ϕ(x)−1Ts

⎡

⎢
⎢
⎣

βE·

⎡

⎢
⎢
⎣

∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N
∏

j=1
j :k j>0

ϕ(x j )Lk j (x j )

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎦

(x) ds

− k
∫ ∞

0
ϕ(x)−1Ts

[

gϕLk−1

]

(x) ds,

if X is a branching Markov process. Alternatively, if X is a superprocess,

Lk(x) = (−1)k+1
Rk(x) + (−1)k

∫ ∞

0
ϕ(x)−1Ts [Uk] (x)ds

− k
∫ ∞

0
ϕ(x)−1Ts

[

gϕ
(

Lk−1 + (−1)k−1
Rk−1

)]

(x)ds,

where

Rk(x) = ϕ(x)−1
∑

{m1,...,mk−1}k
k!

m1! . . .mk−1! (−1)m1+···+mk−1−1
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Correction to: Asymptotic moments of spatial branching processes 509

(m1 + · · · + mk−1 − 1)!
k−1
∏

j=1

(

(−1) jϕ(x)L j (x)

j !

)m j

,

and

Uk(x)

=
∑

{m1,...,mk−1}k

k!
m1! . . .mk−1!

⎡

⎣ψ(m1+···+mk−1)(x, 0+) (ϕ(x)L1(x))
m1

k−1
∏

j=2

(

(−1) j+1ϕ(x)L j (x) − ϕ(x)R j (x)

j !

)m j

+β(x)
∫

M(E)◦
(−1)m1+···+mk−1 〈ϕL1, ν〉m1

k−1
∏

j=2

⎛

⎝

〈

(−1) j+1ϕL j −ϕR j , ν
〉

j !

⎞

⎠

m j

	(x, dν)

⎤

⎥
⎦.

Then, for all � ≤ k
sup
t≥0

�
(�)
t < ∞ and lim

t→∞ �
(�)
t = 0. (5)

2 Summary of proofs

We give a brief proof of Theorems 2 and 3 to give a sense of the corrected reasoning.
The proofs of Theorems 5 and 6 are left out given that the corrected reasoning uses
the same logic. The reader may also consult [1] for more details.

Proof of Theorem 2 Suppose for induction that the result is true for all �-th integer
moments with 1 ≤ � ≤ k − 1. From the evolution equation in Proposition 1 of [2],
noting that

∑N
j=1 k j = k, when the limit exists, we have

lim
t→∞ e−λkt

∫ t

0
ϕ(x)−1Ts

⎡

⎢
⎣βE·

⎡

⎢
⎣

∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N
∏

j=1

T
(k j )
t−s [ f ](x j )

⎤

⎥
⎦

⎤

⎥
⎦ (x)ds

= lim
t→∞ t

∫ 1

0
e−λ(k−1)ute−λutϕ(x)−1Tut

[

H [ f ](x, u, t)
]

(x)du, (6)

where

H [ f ](x, u, t) := β(x)Ex

⎡

⎢
⎣

∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N
∏

j=1

e−λk j t(1−u)T
(k j )
t(1−u)[ f ](x j )

⎤

⎥
⎦ .

123



510 I. Gonzalez et al.

It is easy to see that, pointwise in x ∈ E and u ∈ [0, 1], using the induction hypothesis
and (H2),

H [ f ](x) := lim
t→∞ H [ f ](x, u, t) = k!〈 f , ϕ̃〉kβ(x)Ex
⎡

⎢
⎢
⎣

∑

[k1,...,kN ]2k

N
∏

j=1
j :k j>0

ϕ(x j )Lk j (x j )

⎤

⎥
⎥
⎦

,

where we have again used the fact that the k j s sum to k to extract the 〈 f , ϕ̃〉k term.
Using the expressions for H [ f ](x, u, t) and H [ f ](x) together with the definition

of Lk(x), we have, for any ε > 0, as t → ∞,

sup
x∈E, f ∈B+

1 (E)

|e−kλtϕ−1T(k)
t [ f ] − k!〈 f , ϕ̃〉k Lk |

≤ t
∫ 1

0
e−λ(k−1)ut sup

x∈E, f ∈B+
1 (E)

∣
∣
∣e−λutϕ−1Tut [H [ f ](·, u, t) − H [ f ]]

∣
∣
∣ du + ε,

(7)

where ε is an upper estimate for

sup
x∈E, f ∈B+

1 (E)

k!〈 f , ϕ̃〉k
∫ ∞

t
e−λksϕ(x)−1Ts

⎡

⎢
⎢
⎣

βE·

⎡

⎢
⎢
⎣

∑

[k1,...,kN ]2k

N
∏

j=1
j :k j>0

ϕ(x j )Lk j (x j )

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎦

(x)ds. (8)

Note, convergence to zero as t → ∞ in (8) follows thanks to the induction hypothesis
(ensuring that Lk j (x) is uniformly bounded), (H2) and the uniform boundedness of β.

The induction hypothesis, (H2) and dominated convergence again ensure that

lim
t→∞ sup

x∈E, f ∈B+
1 (E),u∈[0,ε]

|H [ f ](·, u, t) − H [ f ]| = 0. (9)

As such, in (7), we can split the integral on the right-hand side over [0, ε] and (ε, 1],
for ε ∈ (0, 1). Using (9), we can ensure that, for any arbitrarily small ε′ > 0, making
use of the boundedness in (H1), there is a global constant C > 0 such that, for all t
sufficiently large,

t
∫ ε

0
e−λ(k−1)ut sup

x∈E, f ∈B+
1 (E)

∣
∣
∣e−λutϕ−1Tut [H [ f ](·, u, t) − H [ f ]]

∣
∣
∣ du

123



Correction to: Asymptotic moments of spatial branching processes 511

≤ ε′Ct
∫ ε

0
e−λ(k−1)utdu

= ε′C
λ(k − 1)

(1 − e−λ(k−1)εt ). (10)

On the other hand, we can also control the integral over (ε, 1], again appealing to (H1)
and (H2) to ensure that

sup
x∈E, f ∈B+

1 (E),u∈(ε,1]

∣
∣
∣e−λutϕ−1Tut [H [ f ](·, u, t) − H [ f ]]

∣
∣
∣ < ∞.

We can again work with a (different) global constant C > 0 such that

t
∫ 1

ε

e−λ(k−1)ut sup
x∈E, f ∈B+

1 (E)

∣
∣
∣e−λutϕ−1Tut [H [ f ](·, u, t) − H [ f ]]

∣
∣
∣ du

≤ Ct
∫ 1

ε

e−λ(k−1)utdu

= C

λ(k − 1)
(e−λ(k−1)εt − e−λ(k−1)t ). (11)

In conclusion, using (10) and (11), we can take limits as t → ∞ in (7) and the
statement of the theorem follows for branching Markov processes.

The proof in the superprocess setting starts the same way as in [2] up to equation
(90) therein, noting that the term Rk(x, t) in the moment evolution equation

T(k)
t [ f ] (x) = (−1)k+1Rk(x, t) + (−1)k

∫ t

0
Ts [Uk(·, t − s)] (x)ds, (12)

from equation (77) of [2] can be compensated in the limit using Rk(x, t) defined in
(1) above. The remainder of the proof deals with the compensation of the integral term
in (12).

We have

lim
t→∞ e−λkt (−1)k

∫ t

0
ϕ(x)−1Ts [Uk(·, t − s)] (x)ds

= lim
t→∞ t

∫ 1

0
e−λ(k−1)ute−λutϕ(x)−1Tut

[

H [ f ](x, u, t)
]

(x)du,

where H [ f ] (x, u, t) as

H [ f ] (x, u, t) = (−1)ke−λkt(1−u)Uk(x, t(1 − u)),

123



512 I. Gonzalez et al.

that is,

H [ f ] (x, u, t) :=
∑

{m1,...,mk−1}
k!

m1! . . .mk−1!
⎡

⎣ψ(m1+···+mk−1)(x, 0+)(−e−λt(1−u)Tt(1−u) [ f ] (x))
m1

k−1
∏

j=2

(

−e−λ j t(1−u)

j !
(

T( j)
t(1−u) [ f ] (x) + (−1) j R j (x, t(1 − u))

)
)m j

+ β(x)
∫

M(E)◦

〈

e−λt(1−u)Tt(1−u) [ f ] , ν
〉m1

k−1
∏

j=2

〈

e−λ j t(1−u)

j ! (T( j)
t(1−u) [ f ]+(−1) j R j (·, t(1−u))), ν

〉m j

	(x, dν)

⎤

⎦.

The induction hypothesis and (H1) allow us to get

H [ f ] (x)

:= lim
t→∞ H(x, u, t)

=
∑

{m1,...,mk−1}k
1

m1! . . .mk−1!
⎛

⎝ψ(m1+···+mk−1)(x, 0+)(−ϕ(x))m1

k−1
∏

j=2

(−ϕ(x)I j (x))
m j

+β(x)
∫

M(E)◦
〈ϕ, ν〉m1

k−1
∏

j=2

〈

ϕI j , ν
〉m j 	(x, dν)

⎞

⎠ .

Using the same arguments used above from (10) onwards, we get the desiblack result.
�

Proof of Theorem 3 First note that since we only compensate by e−λt , the term
Tt [ f k](x) that appears in equation (41) of [2] does not vanish after the normalisa-
tion. Due to assumption (H1), we have

lim
t→∞ ϕ−1(x)e−λtTt [ f k](x) = 〈 f k, ϕ̃〉.

Next we turn to the integral term in (41) of [2]. Define [k1, . . . , kN ](n)
k , for 2 ≤ n ≤ k

to be the set of tuples (k1, . . . , kN ) with exactly n positive terms and whose sum is
equal to k. Similar calculations to those given above yield

123



Correction to: Asymptotic moments of spatial branching processes 513

e−λt

ϕ(x)

∫ t

0
Ts

⎡

⎢
⎣βEx

⎡

⎢
⎣

∑

[k1,...,kN ]2k

(
k

k1, . . . , kN

) N
∏

j=1

T
(k j )
t−s [ f ](x j )

⎤

⎥
⎦

⎤

⎥
⎦ (x)ds

= t
∫ 1

0

k
∑

n=2

eλ(n−1)ut e
−λ(1−u)t

ϕ(x)

× T(1−u)t

⎡

⎢
⎣βE·

⎡

⎢
⎣

∑

[k1,...,kN ](n)
k

(
k

k1, . . . , kN

) N
∏

j=1

e−λutT
(k j )
ut [ f ](x j )

⎤

⎥
⎦

⎤

⎥
⎦ (x)du.

(13)

Now suppose for induction that the result holds for all �-th integer moments with
1 ≤ � ≤ k − 1. Roughly speaking the argument can be completed by noting that the
integral in the definition of Lk can be written as

∫ ∞

0

k
∑

n=2

eλ(n−1)s

〈

βE·

⎡

⎢
⎣

∑

[k1,...,kN ](n)
k

(
k

k1, . . . , kN

) N
∏

j=1

e−λsT
(k j )
s [ f ](x j ), ϕ̃

〉

ds,

(14)
which is convergent by appealing to (H2), the fact that β ∈ B+(E) and the induction
hypothesis. As a convergent integral, it can be truncated at t > 0 and the residual of
the integral over (t,∞) can be made arbitrarily small by taking t sufficiently large.
By changing variables in (14) when the integral is truncated at arbitrarily large t , so it
is of a similar form to that of (13), we can subtract it from (13) to get

t
∫ 1

0

k
∑

n=2

eλ(n−1)ut

(

e−λ(1−u)t

ϕ(x)
T(1−u)t [H (n)

ut ] − 〈H (n)
ut , ϕ̃〉

)

du,

where

H (n)
ut (x) = βEx

⎡

⎢
⎣

∑

[k1,...,kN ](n)
k

(
k

k1, . . . , kN

) N
∏

j=1

e−λutT
(k j )
ut [ f ](x j )

⎤

⎥
⎦ .

One proceeds to split the integral of the difference over [0, 1] into two integrals, one
over [0, 1−ε] and one over (1−ε, 1]. For the aforesaid integral over [0, 1−ε], we can
control the behaviour of ϕ−1e−λ(1−u)tT(1−u)t [H (n)

ut ]−〈H (n)
ut , ϕ̃〉 as t → ∞, making it

arbitrarily small, by appealing to uniform dominated control of its argument in square
brackets thanks to (H1). The integral over [0, 1− ε] can thus be bounded, as t → ∞,
by t(1 − eλ(n−1)(1−ε))/|λ|(n − 1).

For the integral over (1 − ε, 1], we can appeal to the uniformity in (H1) and (H2)
to control the entire term e−λ(1−u)tT(1−u)t [H (n)

ut ] (over time and its argument in the

123



514 I. Gonzalez et al.

square brackets) by a global constant. Up to a multiplicative constant, the magnitude
of the integral is thus of order

t
∫ 1

1−ε

eλ(n−1)utdu = 1

|λ|(n − 1)
(eλ(n−1)(1−ε)t − eλ(n−1)t ),

which tends to zero as t → ∞.
In the superprocess setting, as in the original proof, the exponential scaling kills

the term Rk(x, t) in (12). For the integral term in (12), define H (m1,...,mk−1)
ut by

H (m1,...,mk−1)
ut (x)

:= ψ(m1+···+mk−1)(x, 0+)(−e−λutTut [ f ] (x))
m1

k−1
∏

j=2

(

−e−λut

j !
(

T( j)
ut [ f ] (x) + (−1) j R j (x, ut)

))m j

+ β(x)
∫

M(E)◦

〈

e−λutTut [ f ] , ν
〉m1

k−1
∏

j=2

〈
e−λut

j ! (T( j)
ut [ f ] + (−1) j R j (·, ut)), ν

〉m j

	(x, dν)

and noting that Lk can be written as

∫ ∞

0

∑

{m1,...,mk−1}k
k!

m1! . . .mk−1!e
λ(m1+···+mk−1−1)s

〈

H (m1,...,mk−1)
s [ f ] , ϕ̃

〉

ds, (15)

which is also convergent by appealing to (H2). The rest of the proof follows similar
arguments to that of the particle system. That is, one splits the integral (15) at t and
uses the integral over [0, t] to compensate the integral component of (12), changing
variable so that it becomes an integral over [0, 1] and handling things as with the
particle system. The remaining integral from (t,∞) can be argued away as arbitrarily
small because of the convergence of (15). �

3 Concluding remarks

Fundamentally, the corrected results offer the same rates of convergence and simply
the constants take a different iterative structure. The corrections also remove the dis-
crepancy between when there is dependency on x or not in the constants in the case
of branching Markov processes and superprocesses. Hence, the original attempt at
explaining the discrepancy in the dependency on the limiting constants is no longer
necessary nor valid.

123



Correction to: Asymptotic moments of spatial branching processes 515

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Gonzalez, I.: Moments of branching Markov processes and related problems. Ph.D. thesis, University
of Bath (2022)

2. Gonzalez, I., Horton, E., Kyprianou, A.E.: Asymptotic moments of spatial branching processes. Probab.
Theory Rel. Fields (2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	Correction to: Asymptotic moments of spatial branching processes
	Abstract
	Correction to: Probability Theory and Related Fields (2022) 184:805–858  https://doi.org/10.1007/s00440-022-01131-2
	1 Summary of corrections
	2 Summary of proofs
	3 Concluding remarks
	References




