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1. Introduction

Proton Beam Therapy (PBT) is a promising treatment for certain challenging cancers.
This includes cases where conventional radiotherapy cannot adequately limit irradiation to
surrounding critical tissues. Examples are pediatric cancers, cancers at the base of the skull, and
complex head and neck cancers.

A proton deposits energy as it travels through matter. This energy deposition increases as the
proton slows down, reaching its maximum at the end of its path, as illustrated in Figure 1.
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Figure 1: An illustration of dose profiles of different radiation modalities. The relative dose
distribution is depicted as a function of depth in water for various clinical radiation beams. The
dose deposition of photons is highest near the source, exhibiting a decaying profile as depth
increases. For protons and carbon ions, the dose deposition is highly localised. Proton beams
demonstrate a rapid decline in dose to zero after reaching the peak deposition, a characteristic
which facilitates the construction of a Spread Out Bragg Peak (SOBP) over a target region through
the appropriate linear combinations of beams with varying energy and intensity. Carbon ions, on
the other hand, have an even sharper peak and dose profile upon entry. However, unlike protons,
the dose deposition does not drop to zero after the peak due to secondary interactions.

This energy, or dose, delivers the cancer-killing effect, but can also harm surrounding healthy
tissue. The objective of PBT is to administer the intended dose to the tumor, as predetermined
by prior clinical evidence, while minimising exposure to the adjacent tissues. PBT’s potential
for delivering a superior dose profile compared to traditional photon treatments has long been
recognised [1]. A significant number of patients have received PBT treatment ( [2] estimates
over 275,000 worldwide as of December 2021). Nevertheless, there remains a lack of conclusive
evidence regarding PBT’s benefits over conventional photon-based treatments, such as X-rays
(see, for instance, [3]). As a relatively new treatment modality, fundamental challenges persist in
PBT’s treatment planning and verification, limiting its broader adoption. Day-to-day variations
in patient anatomy, such as those caused by water retention, introduce uncertainties. Current
strategies address these uncertainties during planning either by expanding the irradiated volume
- which diminishes PBT’s potential for sparing healthy tissue - or by compromising tumour
coverage to ensure protection of critical surrounding tissues.

In conventional photon radiotherapy, the dose delivery location can be inferred by measuring
the X-rays that exit the patient. However, while proton therapy offers superior dose delivery,
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verifying its precise administration is more challenging since most of the radiation dose, including
the proton beam itself, remains inside the patient. This challenge, stemming from clinical need, is
the focus of our investigation, and in this work we propose a flexible mathematical methodology
which can form the basis for addressing this.

There is very little in the mathematics literature exploring forward and inverse problems in
proton transport. Typically the forward model is simulated using Monte-Carlo approaches [4,5].
They form the gold standard due to the ability to provide detailed physical insights although
they are extremely computationally intensive. More recently, methodologies based on neural
networks have gained traction. These data-driven approaches can learn complex patterns from
large datasets, potentially offering rapid and accurate predictions. In the clinical context, at the
time of writing this, there is very little in the literature however works have been done in related
areas, for example [6] introduces a PINNs framework for radiative transport and [7] examines
simulation of stellar spectra. A relevant work in biological system identification is [8] where the
authors examine automating the physical understanding and calibration of biological processes.
These methods can handle the high dimensionality and non-linearity of the problem, providing
an alternative to traditional computational techniques. However, there is a challenge in the need
for extensive training data and the lack of interpretability of the models means this remains an
area of active research.

When protons impact tissue, the primary mechanism of energy loss involves inelastic
interactions with atomic electrons. As the proton interacts with electrons, it leaves behind a trail of
excitations and ionisations. There is a continual energy decrement of the proton within the tissue,
which is quantified by the stopping power. Elastic interactions cause the treatment field to scatter
within the tissue; interestingly, this scattering increases with depth. Non-elastic nuclear collisions
can generate neutrons and other protons as secondary interactions. An additional possible result
of a nuclear reaction is the decay of an unstable nucleus, which emits gamma rays, or prompt
gammas (prompt-y’s). These are termed "prompt’ because they emerge shortly after the initial
proton interaction, as shown in Figure 2.
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Figure 2: The three main interactions of a proton with matter. A nonelastic proton-nucleus collision, an
inelastic Coulomb interaction with atomic electrons and Coulomb scattering with the nucleus.

The prompt-7’s have energies in the range of approximately 2-10MeV. This is significantly
higher than the photon energies typically employed in diagnostic imaging. As a result, there are
currently no cameras specifically optimised for measuring prompt-y’s in a clinical setting.

The aim and novelty of this work lie in introducing a Bayesian approach to explore the
potential for dose delivery verification by measuring the prompt-y radiation emitted from
the patient. The location of these emitted particles depends on the intricate interplay of the
environment they traverse, which often remains not fully understood during treatment, given
the limitations of tools like CT scans used for planning. Consequently, determining whether the
radiation measured during the treatment aligns with the intended dose delivery poses a complex
inverse problem.
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Our presentation revolves around the energy dynamics during proton treatment. At the heart
of our methodology is the Bortfeld model [9,10], which we use to model forward behaviour of a
hypothetical scenario. We extend this to nonuniform medium incorporating varying density and
compositions to enable the study of a layered lung phantom. We employ a Bayesian framework to
ascertain the potential success of treatments using observed radiation profiles. In formulating the
model we make some fundamental assumptions. Specifically, we suggest that the depth of energy
deposition correlates directly to the likelihood of a v particle’s emission. Moreover, we consider
our observational data to be independent, identically distributed, and consistent over time.

A key aspect of our treatment is the data integration step. We adopt a Bayesian approach,
incorporating potentially highly uncertain beliefs about the configuration of the patient, and
synthesising this information though our forward modelling to determine likely configurations
given the observed prompt-y emissions. Our approach takes the form of a Bayesian Inverse
Problem, which we propose to solve using a Sequential Monte Carlo approach. This approach
is now well established, see for example [11-13]. Benefits of this approach are that we can control
the computational burden of solving the forward problem in a flexible framework which can
handle the statistical nature of the observed data.

Our goal is for the techniques proposed in this work to drive advancements in next-generation
measurement devices for Proton Beam Therapy (PBT). We believe the potential of our approach
extends beyond providing a solution to the inverse problem of dose delivery verification.
We apply principles from information theory to quantify the minimal amount of information
necessary to achieve accurate and reliable outcomes. This quantification is important because
it identifies the data required to reconstruct the dose distribution with high fidelity, avoiding
redundancies and enhancing the efficiency of data acquisition.

Analysing the mutual information between the delivered dose and the measured response,
we determine the data needed to distinguish between different parametric setups, informing
the development of measurement protocols and devices which currently do not exist in clinical
practice. This approach supports the design of adaptive measurement schemes that adjust the
amount and type of data collected based on real-time needs. Such optimisation can significantly
reduce computational overhead, improve the speed and efficiency of the verification process, and
lead to the development of advanced imaging and detection systems tailored specifically for the
energies and intricacies inherent to proton therapy:.

If realised, these state-of-the-art devices could expand the current capabilities in PBT, leading
to enhanced treatments, better patient outcomes, and broader adoption of this therapeutic
technique. The methods used here are aimed at shedding light on the precision required in data
gathering and interpretation for effective dose delivery verification.

The structure of the remainder of this paper is as follows: In §2, we outline a prototypical
forward model for the study. §3 delves into the Bayesian approach to framing the inverse
problem. In §4, the Kullback-Leibler divergence is introduced, highlighting its application in
differentiating between different patient configurations. §5 presents the Sequential Monte-Carlo
methods and their relevance to the Bayesian inverse problem. Lastly, §6 showcases several
numerical experiments.

2. Forward Model

Our initial objective is to construct a robust forward model. In essence, we aim to delineate how a
given physical setup (termed "patient configuration’) influences proton transport, culminating in
the observed ~-radiation.

The computation of pristine Bragg curves, which chart the energy loss of protons as they
traverse matter, can be undertaken using a spectrum of techniques. These range from lookup
tables populated with empirically measured data to Monte-Carlo simulations and analytical
models. In this section, we provide an overview of the foundational physics-based models,
beginning with the articulation of a general partial differential equation governing the transport
of charged particles.
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While the mathematical formulation capturing proton transport in its full breadth is seldom
explicitly stated, it has recently been addressed comprehensively by Birmpakos et. al. [14].
Broadly speaking, one has to navigate the spatial-velocity-energy phase space. To facilitate
this, we define X C R® as a closed, bounded spatial domain, S? as the unit sphere, and E =
(emin, emax) C (0, c0). This paves the way to define the spatial-velocity-energy phase space as

r=Xxs*xE. 2.1)

The mechanism by which we will account for sources stems from the spatial boundary. Let us
represent it as:

0X_:={z€0X:2 -nx <0} (2.2)

where ny will serve as the outward-pointing normal to 9X. We postulate that protons are

introduced into the system through the inflow boundary 0 X_ at an initial flux denoted by g.
The transport equation that dictates proton flux, v, is occasionally termed the Proton Transport

Equation (PTE). Alternatively, it’s known as the Boltzmann-Fokker—Planck Equation satisfying

transport energy depletion  elastic scatter ~ Scattering

—_—— —— —
O+ 02-Vpy— Ve(y) — ployp = LY (2.3)

in (0,T] x 7, with boundary conditions

Y(x,0) =vo(x) in {0} x T
()

= g on (0, 7] x 0X_. (2.4
proton source

Here, the scatter operator ., incorporating elastic and inelastic scatter, satisfies

S ::J Ky, @V, 2 00 Yb(y, @, YA — wly, 2, by, 2,€),
S2xE

where & is the scatter cross section and = is the distribution of the new direction and energy on a
scatter event.

In this general framework, the energy released into the tissues is determined by the energy
release from non-elastic scatter events as detailed in (2.3). However, to date, no such calculations
have been documented in the literature. This omission represents just one of the many gaps in the
broader mathematical framework, which has yet to be fully developed to facilitate comprehensive
dose calculations.

Due to the constraints of brevity and to simplify exposition we will explore the Bayesian
framework with an analytical model. This model encapsulates many crucial physical processes
and offers a combination of computational simplicity, speed, and practical utility for our context.
We are interested in a one dimensional depth-dose representation over the spatial domain z € X
where we suppose that a series of adjacent y-detectors positioned above the patient at a distance
h. We appeal to the work of Bortfeld [10] where the author derives a closed form expression for
a dose-depth curve along a single pencil beam under a number of basic physical assumptions.
We can use this to calibrate a forward model for a particular energy proton beam in depth, from
which we can generate synthetic data of v readings from our hypothetical -detectors, sometimes
known as a Compton camera.

Let D(z) denote the dose and suppose ®$q denotes primary fluence, R the range, o the standard
deviation of the Gaussian of depth, {(z) = R;x , € is the fraction of low-energy proton fluence to
total fluence, I" is the standard I" function and Dy(z) is the parabolic cylinder function. Then
further, let o, p and p be material dependent constants from the Bragg-Kleeman rule for stopping
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power
1dE _E'"?
The Bortfeld model then consists of writing the dose function D as
1
D(a) = K| 11 p(~€(a) + KaD s p1(~C(0) 26)
with
exp(~¢(2)2/4) o'/P1(1/p)
K1 :=%g
V2mppal/P(1+ SR) 2.7)
(2 1584+ €
Ko .—(p + 48 + R

Although strictly 1-dimensional, this model exhibits remarkable accuracy when juxtaposed with
measured dose values and aligns with the objectives of our study. Indeed, this expression has
been employed in treatment planning calculations [15, c.f.].

In our context, the inputs for the Bortfeld model comprise a set of n material-dependent
constants. For convenience we highlight the constants physical meaning and typical values
in Table 1. We make the assumption that some of these constants, specifically R,o,e are
unknown in the tissue of the patient. We denote d =(R, o, ¢) and where we want to make the
dependency of the dose D on d explicit, we will write D(x|d). Furthermore, in later sections we
construct a stratified representation of a patient, as depicted in Figure 11 and represent write
d={R;,0i,¢€}i—. The values of these coefficients are contingent upon the patient’s geometry
since they correlate with the medium inherent to each region.
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Constant Meaning Value
R Range Unknown
o Width of Gaussian Unknown
€ Fraction of primary fluence contributing to the “tail” of energy spectrum | Unknown
o Proportionality factor 0.0022
p Exponent of Bragg Kleeman range-energy rule 1.77
p Density 1
B Slope of fluence reduction relation 0.012
A Fraction of locally absorbed energy released in nonelastic interactions 0.6

Table 1: Summary of constants and parameters used in the theoretical model. These are extracted
from [10] for a uniform water phantom.

We then posit the following assumption about the likelihood of an isotropic emission of a
prompt-y particle from a given location:

Assumption: The probability of a y-particle being emitted from a point at depth z € X
along the pencil beam is proportional to the energy deposition from the Bortfield model.

This assumption is visualised in Figure 4.
An immediate consequence of this assumption is that we can specify the law of y-particles
emitted in terms of the dose function D given in (2.6). Specifically, for a given set of constants d,



the distribution of the emission point of y-particles is given by

D(xd)
QI = e @8)

Using @, the probability distribution that a v-particle lands at a certain location along the
detectors can be determined. We first consider the setup of the problem.

The location of the deposited dose (0 < z < 1) relative to the series of y-detectors (0 < 2’ <1)
is illustrated in Figure 3. With the help of this figure, it can be shown that the probability of a ~-
particle landing at the position [z, 2" + A), given that it started at position z, at a uniform angle
in [0, 27, is defined as

P@'le)= o (tan_l <$) ~ tan! (m . ’”)) , 2.9)

where A is the ‘width’ of the detector. Therefore, the probability of the ~-particle landing in
[z/,2" + A), for some choice of d, is given by

P(2'|d) = JP(II|x)Q(x|d)dm

= [ Q1D s ((an (%) ~tan! (“’” 7)) @

where Q(z|d) corresponds to the probability distribution for the origin of the y-particles, which
is the dose profile generated by the analytical model with input d.

Hence, for some given patient geometry that defines d, the analytical model is computed to
obtain the dose profile, Q(x|d), which is used in (2.10). As a result of the deposited dose, -
particles are released, with some landing on the y-detectors. To simulate these observations along
the detectors, we randomly sample from (2.10).

N \/\ N proton path
7 7 »
| ’ ‘ | emitted

" FA

Figure 3: Simulating ~-particles: y-particles are released from the z-axis due to the deposited
dose. Some of these particles land on the series of adjacent y-detectors positioned along the z’-
axis. These axes are separated by the distance h.

Our forward problem can then be defined as
P(:|d) = F(a), (2.11)

where F' represents the analytical model of the proton beam and ~y-particle emissions with d
representing the model inputs. The model output P(-|d) is the distribution of the position of -
particles detected. We assume in addition that, given the model inputs d, each particle detection
location is independent.

As an extension to the v-particle simulation model, we suppose that the detectors can
determine a projection angle range for each detected particle. The projection angle that is
estimated by the detectors is labelled 6 in Figure 3. The detectable angle ranges are defined
as [—7/2,—7/24480),[—7/2 4 60, —7w/2 + 256),...,[r/2 — 66,7/2), where 60 =7/b and the
model parameter b specifies the number of bins. The distribution used to simulate ~-particle
observations, (2.10), is then split into b bins according to these angle ranges, where P(z'|d) =
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Zle P;(2'|d) and P; are the ‘binned’ probability distributions. To now generate v readings along
the detectors, we firstly sample i € {1,2,...,b} with probability p; = f(l) P;(z|d) dx respectively,
and next randomly sample from bin i’s probability distribution P;(z’|d). As an example, the
partitioning of the distribution into 2 and 6 separate bins is demonstrated in Figure 4.

Relative dose
PiX,d)

o 2 4 6 8 10 12 14 16 1 2 o 2 4 & & 2 1 % 18 2 o 2 « & 8

0 2 14 6 18 20
Depth Depth

0
Depth

Figure 4: A Bragg Peak (left) and two examples of how the prompt-vy distribution P(z’|d) can
be split into two (middle) and six (right) distributions of y-detection distributions from coding
different emission ranges. In both cases the detectors are positioned at distance i = 1.

3. Bayesian Inverse Problem

From an operator’s perspective, determining whether the radiation observed by the detectors
aligns with a specific patient configuration is crucial. We advocate for a Bayesian modeling
approach. Typically, the operator would suggest a prior model for the actual patient configuration
during therapy, potentially based on scans taken during the treatment planning phase. After
defining this prior, our aim is to utilize the observed radiation profile to assess the likelihood
of a successful treatment. As detailed earlier, given a patient configuration, the data distribution
can be derived by solving the forward problem. However, we anticipate that solving this
forward model with high precision will be numerically demanding. Consequently, we need
efficient numerical methods to update our potentially high-dimensional and intricate posterior
distribution based on data observations.

We make an assumption that our observations are independent and identically distributed,
and the model remains static over time. This challenge falls within the realm of sequential
Bayesian learning problems (e.g., [16, Section 3.2]). Our proposal leans towards a model using
Sequential Monte Carlo (SMC) methods. Considering the likelihood of configurations being
complex and high-dimensional - capturing potential deformations, uncertainties in patient
positioning, physical property variations, and more - we aim to design Bayesian methods
that explore the prior space effectively while necessitating minimal solutions of the system
for specified configurations. In our SMC approach, the posterior measure is represented by a
‘cloud” of potential points, updated based on incoming data. We label these elements in the
‘cloud’ as particles; each particle represents a possible patient geometry configuration, requiring
a numerical solution of the forward problem.

Broadly, our algorithm, elaborated on further in Section 5 below, adheres to an importance-
selection-mutation pattern. In the importance phase, observed data is harnessed to update
the posterior probability linked to each particle: particles predicting the data accurately will
see a relative boost in their posterior probability, while the others will see a decrease. The
selection phase involves rebalancing the particle population-eliminating unlikely particles and
duplicating promising ones. The mutation phase introduces particle modifications based on
stochastic dynamics. By comparing new and existing particles, an accept-reject step is executed
based on prediction accuracy. Without mutation, particles would quickly converge to a few
models, hindering the assimilation of extensive data for model refinement. Given the crucial
role of mutation, it might be practical to process data in smaller ‘chunks’, despite data collection
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potentially occurring within a brief timeframe. Thus, we suggest a block-sequential data analysis
approach, facilitating efficient interplay between selection and mutation.

This method yields a Bayesian posterior probability measure describing the distribution of d
given the observed data. Ideally, this could offer insights on treatment outcomes-like posterior
estimates of treatment success, potential damage to high-risk zones, or total energy deposition.

For the scope of this paper, we confine ourselves to simpler models with a few input
parameters delineated in the preceding section. Our goal is to harness data from the -detectors
to estimate values of d, subsequently predicting the medium’s properties — possibly tumor
position — and dose distribution in the vicinity. By framing this as a sequential Bayesian learning
challenge, the posterior probability of a particular configuration d can be articulated when new
data points are encountered. Suppose that we observe k y-particles at locations ' = (21, ..., 2}),
and want to use this data to infer the likely values of d. We can proceed as follows. Using Bayes’
Theorem, the posterior distribution is given as:

ny_ p('|d)p(d)
paia) =P R, (3.1)
where p(z'|d) is the likelihood function, p(d) is the prior distribution and p(z’)=
[4p(d|z")p(d)dd is the marginal likelihood. In general, p(x’) is not easily computed, and SMC
methods, as described in Section 5 are in large part motivated by the need to avoid the challenge
of computing this quantity.

For the prior distribution, we can apply a Gaussian white noise prior on the parameters of d =
{Ri, 0i, € }j—1 where the mean and covariances could be chosen to reflect some prior knowledge
about d before any observations are made.

The likelihood function is defined using (2.10) since this equation gives the probability of
observing the location z}, given a particular choice of the model parameters d. Moreover, for
k new independent observations, the likelihood is given by

k
p(a’ = (], 2h,...,27)|d) = H P(x;\d)
=1

Thus, we begin with limited information about the model parameters d, represented by the
prior. Next, using (3.1), the posterior is updated by adding y-particle readings 2. This distribution
reveals the most likely state of d given ' which, at least usually, will become more refined as
the number of observations increases, and therefore, giving us a well-informed estimate for d.
Once these model parameters are established within a certain level of confidence, the physical
parameters and the corresponding dose profile can be approximated.

4. KL-based approach to model discrimination

A question of paramount importance to address before practically implementing our methods
is the feasibility of distinguishing between two possible patient configurations, especially
considering that the data collection will be restricted by the duration of the proton treatment.
Further, it’s worth questioning whether enhancing the measurements-by, for instance, increasing
the number or sensitivity of gamma detectors or integrating angular sensitivity-would augment
our capability to differentiate between successful and unsuccessful treatments. To address this,
we employ the Kullback-Leibler (KL) divergence, an information-theoretic perspective on relative
entropy, with a focus on its interpretation as discrimination information ( [17]).

To simplify our understanding, let us consider wanting to discriminate between just two
potential physical configurations. The fundamental query here is: how much data is required
to accomplish this? By contemplating two distinct geometries that we might wish to differentiate,
we can, in fact, provide estimates on the necessary caliber of the detector setup.

Let us assume we have two closely related probability distributions, P(z’|d;) and P(z'|d*),
which are the likelihood functions for the true solution and a neighbouring solution respectively.
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In order to distinguish between the two distributions, the number of observations, k, sampled
from P(z’|d:) must satisfy

k> (log (1 ;Opo) ~log ((1 —o) o 1))

X D (P(z'|dy)|P(z'|d")) 7, (4.1)

where

P(a’|dy)
P(z'|d")
is the Kullback-Leibler (KL) divergence, po is the prior probability that d; is true,and 0 < 6 < 1is
an acceptable error rate. If the likelihood functions have been split into b bins such that P(x; |d) =

D (P |d)|P(2/|d")) = Jlog ( ) « P(z'|dy)da’

23:1 Pl(z; |d), the KL divergence is instead written as
b !
Pj(«|dy)
/ 1Ry J ot /
Dicn(P(/|dn)|P('|d")) —j}_ljjlog (P ) * P lanas’

If (4.1) is met, then the posterior probability of the true solution will satisfy
p(d=di|zy, 25, ..., 2)>1—34,

with probability of order 1, which means the truth can be estimated with a high level of
confidence.

Suppose we are considering two closely related patient geometries: d; and d*. If d¢
represents the true solution, then to distinguish between these two configurations, the number of
observations, k, must satisfy the condition given by equation (4.1). This criterion is influenced by
the number of bins, b, that the y-detectors can discern. Additionally, the sensitivity of the forward
model to variations in each of the parameter values plays a crucial role.

Figures 5 and 6 examine the impact of varying h, the distance between detector and source, 9,
the acceptable error rate and pg the prior probability. Both Figures show the required number of
observations as a function of b. From this plot, it’s clear that as b increases, the value of k tends to
decrease. Figure 5 shows two parametric states that are relatively far from one another where the
number of observations required is relatively low. Figure 6 then shows a more challenging setup
where the parametric setup is quite close requiring many observations to distinguish between the
two setups.

—n=02 —.
heos

N

10l
o 2 4 &

010

Number of Observations, k

(( |

1 1ok
s 10 12 1 6 18 2 o 2 4 6 8 10 12 14 16 18 2 o 2 4 s 8 1 1
Number of Bins Number of Bins Number of Bins.

(a) Varying h. (b) Varying 6. (c) Varying po.

Figure 5: The number of observations, k, needed to discriminate between d; = (16.2,0.25,0.2)
and d* = (16.9,0.3,0.25) as a function of the number of bins recognised by the y-detectors. We
examine the impact of varying h, § and pg.

One can also examine the Kullback-Leibler divergence, D, for fixed b and as a function of
the parameter values, d. This enables examination of the sensitivity of the measure to the different
parametric values shown in Figure 7.
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Figure 6: The number of observations, k, needed to discriminate between d¢ = (16.9,0.25,0.2)
and d* = (16.9,0.3,0.25) as a function of the number of bins recognised by the y-detectors. We
examine the impact of varying h,  and pg. Compare with Figure 5 and notice that the required
observations are significantly higher since the Kullback-Leibler divergence of the two setups is
considerably smaller.
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Figure 7: Examination of the Kullback-Leibler divergence as a function of individual parameters
for a true parameter range d=(16.9,0.3,0.25), a single detector and h =1. Notice that the
dominant parameter is R.

5. Sequential Monte Carlo Approach

Sequential Monte Carlo (SMC) methods have been applied to a wide range of Bayesian problems,
and fundamentally rely on simulating a collection of particles whose empirical measure is
expected to follow the posterior measure associated with a given data source. Their use was
popularised in e.g. [18-20]. The problem we face can be described as an IBIS (Iterated Batch
Importance Sampling) problem ( [21], [22, Section 17.2.2]). Our numerical method will be based
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on using a MCMC (Markov Chain Monte Carlo) step within an SMC algorithm, e.g. [23,
Section 3.3.2.3]. To ensure that the proposal distributions from the MCMC step remain viable,
we introduce an adaptive MCMC methodology, similar to that proposed in [24].

Since it is difficult to explicitly calculate (3.1) due to the term p(z’), which would require
integrating over space of possible models, we can instead sample from the posterior distribution
using SMC. This involves having N particles that each correspond to some choice of d=
{R;,0;,¢€;}i—1, sampled from the prior, which are then filtered using importance weights defined
by the likelihood function. With additional observations, the particles begin to cluster around
the “true’ solution, representing a good approximation for d. Below we describe the algorithm
as we have implemented it, including generating data using a known model (‘truth’). In a
genuine implementation, this would be replaced by the actual data observed by the monitoring
equipment.

Our SMC approach is detailed below:

(i) Truth: Select the ‘true’ values for the model parameters d*, and then compute the

corresponding ‘true” probability distribution of (2.10).

(i) Initialisation:Fori=1,2,..., N,sample d* ~ p(d), where p(d) is the Gaussian white noise
prior.

(iii) Sample Data: Generate k new observations by randomly sampling from the ‘true’
probability distribution p(x|d*).

(iv) Importance: Given the new observations x;-, j=1,2,...,k for i=1,2,... N, calculate
the importance weights

k
w; = [ [ P(z}ld),
j=1

where P (:v; |d) is given by (2.10). Then normalise the weights to sum to one by dividing
each weight by 37 | w; to obtain @; = w;/ > 1 1 w;.

(v) Selection: From the set {dl, o dY }, resample with replacement N particles {31, e ,EN}
with probabilities w1, ..., Wy )

(vi) Mutation: For i=1,..., N, slightly shift d’ in state space. See below for further detail

about this step. These perturbed particles are set to d.
(vii) Repeat: While there is more data, go to step (i¢2).

To correctly perturb the models in the mutation step, we use a version of a Metropolis-Hastings
algorithm, see e.g. [24], detailed below:

(i) For t=1,2,..., N, sample y'~N (?d\l7 C;), where C; is the covariance matrix for the
proposal distribution (a Gaussian distribution has been chosen here).
(ii) Fori=1,2,..., N, calculate the acceptance probability

p(y) 151 Pfly’)

p(@) TTiy P(a)ld)

This choice of a ensures that the more likely state according to the posterior is selected.

oe(yi|cAll) =min ¢ 1,

(iii) Fori=1,2,..., N, sample d' from {&Z, yi} with probability a.

Haario et al. ([25]) proposed a method for computing the covariance matrix such that it varies
according to the particle’s path, which they labelled Adaptive Metropolis. Here, to represent the
history of the particle, we use the subscript ¢ to correspond to the number of iterations performed.
The covariance matrix at iteration ¢ for particle i is defined as

Cit =sqcov(d;o,...,d; 1)+ 55014, (6.1)

where s, = (2.38%)/m, m is the dimension of the vector d;, I, is the identity matrix and § =0.1
ensures that C; ; remains positive semi-definite. Note that we only consider the location of the
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particle after the importance sampling at each iteration. The definition of the covariance matrix
for the points Xo,..., Xy € R% in state space is

k
cov(Xo,...,Xg) = % ZXjXJT —k+1)XxXx"],
j=0

where X = (1/(k + 1)) Z?:o X,
Roberts & Rosenthal ( [26]) built upon this work by outlining different extensions to the
Adaptive Metropolis technique. One approach involved having two phases for resampling such

that
, ~i 0.011
yZNN(dﬂOOd d>7 for i < 2d,

; ~i _; 0.011,
v~ (1= ON (@'.00r) + 8N (mz, i

), for ¢ > 2d,

where 3 = 0.05. The initial phase ensures that mutations do occur during ‘burn-in’. Alternative
methods are described in [24], in particular including only implementing the mutation step in
an adaptive manner, and may be necessary to reduce computational complexity. Note that we
would anticipate that increased dimensionality may also prove challenging (see the discussion
in [22, Section 17.2.2]), but could be addressed through the addition of tempering in the algorithm.

6. Numerical results

To highlight the performance and showcase the main ideas behind our methodology, we give a
series of numerical examples to test our algorithm. These are designed to investigate the effect
of increasing the number of bins, b, and the ability to infer tissue density and range verification
based on the prompt-vy observations.

The accuracy is measured using the mean KL-divergence of the particles,

N
=7 1 i AP
KL= w E 1DKL(P(ar: |d”)|P(z'|d").
j=

Here, we always perform twenty iterations of the SMC algorithm, each incorporating additional
data, and then assess the prediction accuracy at this point. As a result, all the simulations
presented will have roughly consistent computation times.

(a) Range uncertanties of a pristine Bragg Peak

To begin we consider the case of a pristine Bragg Peak at an energy level of 100MeV through
a water phantom. In this case the Bortfeld dose function can be written explicitly with three
unknown parametric values, R, and e. The range of the beam, R, is particularly pertinent as
it is one of the key uncertainties in proton therapy. We showcase the results of the algorithm
presented in Figures 9-10 where the problem is examined with a single detector and six separate
detectors respectively. It is worth noting that the algorithm converges significantly quicker when
using multiple detectors, although even with a single one the dose is reproduced accurately after
twenty SMC iterations.
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Figure 8: The Figures above show true and posterior samples of dose profiles (a)-(b) and
observation (c)-(d) distributions. In (a)-(b), the green curve denotes the true dose profile,
Q(-|d*), while the purple curves correspond to Q(:|d;) (c.f. (2.8)) for samples from the
posterior distribution. In (c)-(d), the curves correspond to the true (green) and posterior (purple)
observation profiles, P(-|d") and P(-|d;) (c.f. (2.10)) respectively. Plots (a)-(c) show the posterior
distribution after one step of the SMC algorithm, corresponding to k = 1000 observed ~y-particles.
Plots (b)-(d) correspond to 20 steps of the SMC algorithm, with 10 times as many observations.
Distribution of the particles in (R, 0, €) space is shown in Figure 9.
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Figure 9: Numerical simulation of the SMC algorithm. The points correspond to particles
representing parameter values, which concentrate as more data accumulates. Note that the
particles are able to clearly identify the range accurately, but are not able to fully resolve
uncertainty in the o, e parameters. The background denotes the KL divergence of the given points
relative to the truth. Based on the given scales, it is clear that it is harder for the particles to resolve
uncertainty in these parameters against the uncertainty in the range parameter.
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Figure 10: This Figure shows the experiment from Figure 8 with the exception that there are six
detectors. Notice the algorithm converges significantly quicker and the realisation of dose profile

at the twentieth iteration is more accurate than with a single detector.
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(b) Lung tumour

Our second experiment is based on a more challenging setup representing the cross section of a
lung tumour. To that end, consider the setup of a one-dimensional cross section given in Figure
11. Notice there are six layers between the proton source, at a Ocm depth and the tumorous
region, between 10 — 13cm although there are eleven layers, which is important when considering
the impact of range uncertainties. We showcase the results of the algorithm in Figures 12-13
where the problem is examined with a single detector and six separate detectors. Due to the
high dimensionality of the parameter space the additional angular resolution with six detectors
is important to determine the correct dose deposition.
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Figure 11: A one-dimensional lung cross section.
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Figure 12: The figure shows dose profiles and likelihood functions associated to reconstruction
of a Bragg Peak over a lung phantom (§6(b)) from observed prompt-y data observed with a single
detector. Notice the algorithm does a reasonable job in approximating range however struggles
with differentiating between different tissue types.

0000000 v 208 1 2014 es3jpinoifio Burisiandhisosicio: [



N
S

@ 3
8 8
—

relative dose
®
3
—

relative dose

/

o 5 10 15 20
depth depth
(a) Posterior dose profiles (in purple) (b) Posterior dose profiles (in purple)
compared to the truth (in green) after compared to the truth (in green) after
one SMC iteration. twenty SMC iterations.
° o 001 o
go. § goo
£ £ 0,005 \ <001
B b % 10 20 B % 110 20
depth depth
50 - 5004 5004 ,
g g g § | ﬁ
= = £ 0.02 £ 0.02 1
£ £ & M £ :
N UO 10 20 DO 10 20
depth depth
E . EO-OZ | Eom //\
b B % 10 20 B % 10 20
depth depth
(c) Posterior likelihood functions (in (d) Posterior likelihood functions (in
purple) compared to the truth (in purple) compared to the truth (in
green) after one SMC iteration. green) after twenty SMC iterations.

Wt .
§ 02
g
£ 3
E §015
3 8
g E 0.1
a i<
g 5 .
ETU §0.05 - \
- \‘\/\‘ﬁ_‘
0
0 5 10 15 20
107 iteration
0 5 . 10. 15 20
s () Proportion of accepted Metropolis
(e) Kullback-Leibler divergence error Hastings proposals as a function of
as a function of SMC iterations. SMC iterations.

Figure 13: A numerical experiment showing dose profiles and likelihood functions associated
to reconstruction of a Bragg Peak over a lung phantom (§6(b)) from observed prompt-y data
observed with six detectors. Notice the algorithm is well able to approximate the Bragg peak in
range and is significantly more accurate in determining tissue profile parameters, however is not
able to distinguish sharp transitions between tissue types of high density difference, in this case
the transition between bone and lung.
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7. Summary and outlook

In this paper we have presented a flexible mathematical framework which could form the basis
of future verification methods for PBT. In future work, our framework will enable us to analyse
the amount of information required to measure clinically relevant differences, potentially leading
to adapted treatment plans, and offers a robust numerical method for providing clinicians with
more accurate data on the effectiveness and precision of the delivered treatment.

We anticipate that the methods presented here will play a significant role in the future
development of 7-detectors, and we plan to apply our methods as an integral part of this
advancement in future work. Future areas for further work include:

¢ Recent work in [27] has developed novel Compton cameras for treatment verification.
Compton cameras capture complex information about 7-radiation, which potentially
includes some information about the direction of the observed photon. It should be
possible to incorporate this information in a statistically meaningful manner due to the
Bayesian elements of our approach. As demonstrated through consideration of different
angular decomposition (Figure 5), increased angular resolution should enable more
robust discrimination between models. Using the methods presented in this work should
make quantifying these benefits straightforward.

® The current approach does not consider noise in the system, due e.g. to background
radiation. In practical situations, calibrating these models will be crucial for
understanding different noise sources and incorporating them into our updating
framework. Similarly, we assume in the setup considered in Figure 11 that the depths of
different layers are known. A more realistic scenario might include uncertainty on these
depths.

* An important question for design of future verification systems will be how to optimally
place sensors. The work presented in this paper can address this challenge by quantifying
various system designs.

¢ In this paper, we use a relatively simple forward model, which approximates the
particle flux using a one-dimensional pencil beam. In practice, more realistic SDE/PDE
models could be implemented to provide more accurate results. It seems likely that
these methods will be significantly more computationally demanding. In the algorithm
proposed, each new configuration requires a new numerical solve for the forward model
at the given configuration. It seems likely that modified numerical methods, where new
particles are introduced at different levels of numerical fidelity, could potentially enhance
numerical fidelity in these cases (see, for example, [28]).
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