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Abstract

Recently in Barczy et al. (2015), the notion of a multi-type continuous-state branching process (with
immigration) having d-types was introduced as a solution to an d-dimensional vector-valued SDE.
Preceding that, work on affine processes, originally motivated by mathematical finance, in Duffie et al.
(2003) also showed the existence of such processes. See also more recent contributions in this direction due
to Gabrielli and Teichmann (2014) and Caballero and Pérez Garmendia (2017). Older work on multi-type
continuous-state branching processes is more sparse but includes Watanabe (1969) and Ma (2013), where
only two types are considered. In this paper we take a completely different approach and consider multi-type
continuous-state branching process, now allowing for up to a countable infinity of types, defined instead as
a super Markov chain with both local and non-local branching mechanisms. In the spirit of Engländer and
Kypriano (2004) we explore their extinction properties and pose a number of open problems.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Continuous-state branching processes (CSBP) can be seen as high density limits of Bien-
aymé–Galton–Watson (BGW) processes. Thanks to their importance as prototypical continuum
(both in space and time) asexual population models, they have been the subject of intensive study
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since their introduction by Jiřina [21]. For a general background on CSBPs see Chapter 12 of [23]
or Chapter 3 of [25], see also the review article of Caballero et al. [4].

By analogy with multi-type BGW processes, a natural extension of the class of CSBPs would
be to consider a multi-type Markov population model in continuous time which exhibits a
branching property. Indeed, in whatever sense they can be defined, multi-type CSBPs (MCSBP)
should have the property that the continuum mass of each type reproduces within its own
population type in a way that is familiar to a CSBP, but also allows for the migration and/or
seeding of mass into other population types.

Recently in [2], the notion of a multi-type continuous-state branching process (with immigra-
tion) having d-types was introduced as a solution to an d-dimensional vector-valued stochastic
differential equation (SDE) with both Gaussian and Poisson driving noise. Preceding that,
work on affine processes, originally motivated by mathematical finance, in [9] also showed the
existence of such processes. See also more recent contributions in this direction due to [17]
and [5]. Older work on multi-type continuous-state branching processes is more sparse but
includes [32] and [26], where only two types are considered.

In this article, we introduce MCSBPs through the medium of super Markov chains. That is
to say we defined MCSBPs as superprocesses whose associated underlying Markov movement
generator is that of a Markov chain. This allows us the possibility of working with a countably
infinite number of types. We are interested in particular in the event of extinction and growth
rates. Lessons learnt from the setting of super diffusions tells us that, in the case that the number
of types is infinite, we should expect to see the possibility that the total mass may grow arbitrarily
large whilst the population of each type dies out; see for example the summary in Chapter 2
of [14]. This type of behaviour can be attributed to the notion of transient ‘mass transfer’ through
the different types and is only possible with an infinite number of types. In the case that the
number of types is finite, we know from the setting of multi-type Bienaymé–Galton–Watson
processes (MBGW) that all types grow at the same rate and we expect the same to be true of
MCSBPs.

2. Main results

Our first main result is to identify the existence of MCSBPs, allowing for up to a countable
infinity of types. Denote by N = {1, 2, . . .} the natural numbers. Let B(N) be the space of
bounded measurable functions on N. Thinking of a member of B(N), say f , as a vector we will
write its entries by f (i), i ∈ N. Write M(N) the space of finite Borel measures on N, let B+(N)
the subset of bounded positive functions.

Theorem 1. Suppose that

ψ(i, z) = b(i)z + c(i)z2
+

∫
∞

0
(e−zu

− 1 + zu)ℓ(i, du), i ∈ N, z ≥ 0, (1)

where b ∈ B(N), c ∈ B+(N) and, for each i ∈ N, (u ∧ u2)ℓ(i, du) is a bounded kernel from N to
(0,∞). Suppose further that

φ(i, f ) = −β(i)
[

d(i)⟨ f, πi ⟩ +

∫
∞

0
(1 − e−u⟨ f, πi ⟩)n(i, du)

]
, i ∈ N, f ∈ B+(N), (2)

where d, β ∈ B+(N), πi is a probability distribution on N \ {i} (specifically πi (i) = 0, i ∈ N)
and, for i ∈ N, un(i, du) is a bounded kernel from N to (0,∞) with

d(i) +

∫
∞

0
un(i, du) ≤ 1.
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Then there exists an [0,∞)N-valued strong Markov process X := (X t , t ≥ 0), where X t =

(X t (1), X t (2), . . .), t ≥ 0, with probabilities {Pµ, µ ∈ M(N)} such that

Eµ[e−⟨ f,X t ⟩] = exp {−⟨Vt f, µ⟩} , µ ∈ M(N), f ∈ B+(N), (3)

where, for i ∈ N,

Vt f (i) = f (i) −

∫ t

0

[
ψ(i, Vs f (i)) + φ(i, Vs f )

]
ds, t ≥ 0. (4)

In the above theorem, for f ∈ B+(N) and µ ∈ M(N), we use the notation

⟨ f, µ⟩ :=

∑
i≥1

f (i)µ(i).

Eq. (3) tells us that X satisfies the branching property: for µ1, µ2 ∈ M(N),

Eµ1+µ2 [e−⟨ f,X t ⟩] = Eµ1 [e−⟨ f,X t ⟩]Eµ2 [e−⟨ f,X t ⟩], t ≥ 0.

That is to say, (X,Pµ1+µ2 ) is equal in law to the sum of independent copies of (X,Pµ1 ) and
(X,Pµ2 ). We can also understand the process X to be the natural multi-type generalisation of
a CSBP as, for each type i ∈ N, X (i) evolves, in part from a local contribution which is that
of a CSBP with mechanism ψ(i, z), but also from a non-local contribution from other types.
The mechanism φ(i, ·) dictates how this occurs. Roughly speaking, each type i ∈ N seeds an
infinitesimally small mass continuously at rate β(i)d(i)πi ( j) on to sites j ̸= i (recall πi (i) = 0,
i ∈ N). Moreover, it seeds an amount of mass u > 0 at rate β(i)n(i, du) to sites j ̸= i in
proportion given by πi ( j). We refer to the processes described in the above theorem as (ψ, φ)
multi-type continuous-state branching processes, or (ψ, φ)-MCSBPs for short.

Our main results concern how the different types of extinction occur for a MCSBP X as
defined above. As alluded to in the introduction, we must distinguish local extinction at a finite
number of sites A ⊂ N, that is,

LA := { lim
t→∞

⟨1A, X t ⟩ = 0},

from global extinction of the process X , i.e. the event

E := { lim
t→∞

⟨1, X t ⟩ = 0}.

The distinction between these two has been dealt with in the setting of super diffusions by [15].
In this article, we use techniques adapted from that paper to understand local extinction in the
setting here. The case of global extinction can be dealt with in a familiar way. To this end, denote
by δi the atomic measure consisting of a unit mass concentrated at point i ∈ N.

Lemma 1. For each i ∈ N, let w be the vector with entries w(i) := − log Pδi (E), i ∈ N. Then w
is a non-negative solution to

ψ(i, w(i)) + φ(i, w) = 0, i ∈ N. (5)

For the case of local extinction, a more sophisticated notation is needed. First we must
introduce the notion of the linear semigroup. For each f ∈ B( f ), define the linear semigroup
(Mt , t ≥ 0) by

Mt f (i) := Eδi [⟨ f, X t ⟩], t ≥ 0.
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Define the matrix M(t) by

M(t)i j := Eδi [X t ( j)], t ≥ 0,

and observe that Mt [ f ](i) = [M(t) f ](i), for t ≥ 0 and f ∈ B(N). The linear semigroup and
its spectral properties play a crucial role in determining the limit behaviour of the MCSBP. In
what follows, we need to assume that M(t) is irreducible in the sense that, for any i, j ∈ N,
there exists t > 0 such that M(t)i j > 0. To this end, we make the following global assumption
throughout the paper, which ensures irreducibility of M(t), t ≥ 0.
(A): The matrix πi ( j), i, j ∈ N, is the transition matrix of an irreducible Markov chain.

For each i, j ∈ N, and λ ∈ R we define the matrix H (λ) by

Hi j (λ) :=

∫
∞

0
eλt M(t)i j dt.

The following result is the analogue of a result proved for linear semigroups of MBGW
processes; see e.g. Niemi and Nummelin ([28], Proposition 2.1) or Lemma 1 of [27]. In light
of this, its proof is straightforward omitted for the sake of brevity.

Lemma 2. If, for some λ, Hi j (λ) < ∞ for a pair i, j , then Hi j (λ) < ∞ for all i, j ∈ N. In
particular, the parameter

Λi j = sup{λ ≥ −∞ : Hi j (λ) < ∞},

does not depend on i and j . The common value, Λ = Λi j , is called the spectral radius of M.

In contrast to Lemma 1, which shows that global extinction depends on the initial configu-
ration of the MCSBP through the non-linear functional fixed point equation (5), case of local
extinction on any finite number of states depends only on the spectral radius Λ. In particular local
extinction for finite sets is not a phenomenon that is set-dependent.

Theorem 2 (Local Extinction Dichotomy). Fix µ ∈ M(N) such that sup{n : µ(n) > 0} < ∞.
Moreover suppose that∫

∞

1
(x log x)ℓ(i, dx) +

∫
∞

1
(x log x)n(i, dx) < ∞, for all i ∈ N (6)

holds.

(i) For any finite number of states A ⊆ N, Pµ(LA) = 1 if and only if Λ ≥ 0.
(ii) For any finite number of states A ⊆ N, let vA be the vector with entries vA(i) =

− log Pδi (LA), i ∈ N, Then vA is a solution to (5), and vA(i) ≤ w(i) for all i ∈ N.

Remark 1. As we will see in the proof, if Λ ≥ 0, then the process has local extinction a.s. even
if (6) is not satisfied.

The results in this paper open up a number of questions for the MCSBP which are motivated
by similar issues that emerge in the setting of CSBPs and super diffusions. For example, by
analogy with the setting for super diffusions, under the assumption (6), we would expect that
when Λ < 0, the quantity −Λ characterises the growth rate of individual types. Specifically we
conjecture that, when local extinction fails, exp{Λt}X t (i) converges almost surely to a non-trivial
limit as t → ∞, for each i ∈ N. Moreover, if the number of types is finite, then −Λ is also the
growth rate of the total mass. That is to say exp{Λt}⟨1, X t ⟩ converges almost surely to a non-
trivial limit as t → ∞. If the total number of types is infinite then one may look for a discrepancy



3470 A.E. Kyprianou, S. Palau / Stochastic Processes and their Applications 128 (2018) 3466–3489

between the global growth rate and local growth rate. In the setting of super diffusions, [16] has
made some progress in this direction. Referring back to classical theory for CSBPs, it is unclear
how the event of extinction occurs, both locally and globally. Does extinction occur as a result of
mass limiting to zero but remaining positive for all time, or does mass finally disappear after an
almost surely finite amount of time? Moreover, how does the way that extinction occur for one
type relate to that of another type? An irreducibility property of the type space, e.g. assumption
(A), is likely to ensure that mass in all states will experience extinction in a similar way with
regard to the two types of extinction described before, but this will not necessarily guarantee that
global extinction behaves in the same way as local extinction. We hope to address some of these
questions in future work.

We complete this section by giving an overview of the remainder of the paper. In the next
section we give the construction of MCSBPs as a scaling limit of MBGW processes; that is
to say, in terms of branching Markov chains. We define the linear semigroup associated to the
MCSBP. The so-called spectral radius of this linear semigroup will have an important role in
the asymptotic behaviour of our process, in particular, it will determine the phenomenon of
local extinction. The properties of the linear semigroup are studied in Section 4. In Sections 5
and 6 we develop some standard tools based around a spine decomposition. In this setting, the
spine is a Markov chain and we note in particular that the non-local nature of the branching
mechanism induces a new additional phenomenon in which a positive, random amount of mass
immigrates off the spine each time it jumps from one state to another. Moreover, the distribution
of the immigrating mass depends on where the spine jumped from and where it jumped to.
Concurrently to our work we learnt that this phenomenon was also observed recently by Chen,
Ren and Song [6]. In Section 7, we give the proof of the main results. We note that the main
agenda for the proof was heavily influenced by the proof of local extinction in [15] for super
diffusions. Finally in Section 8, we provide examples to illustrate the local phenomenon property.

3. MCSBPs as a superprocess

Our objective in this section is to prove Theorem 1. The proof is not novel as we do this by
showing that MCSBPs can be seen in, in the spirit of the theory of superprocesses, as the scaling
limits of MBGW processes with type space N (or just {1, . . . , n} for some n ∈ N in the case of
finite types).

To this end, let γ ∈ B+(N) and let F(i, dν) be a Markov kernel from N to I(N), the space of
finite integer-valued measures, such that

sup
i∈N

∫
I(N)

ν(1)F(i, dν) < ∞.

A branching particle system is described by the following properties:

1. For a particle of type i ∈ N, which is alive at time r ≥ 0, the conditional probability of
survival during the time interval [r, t) is ρi (r, t) := exp{−γ (i)(t − r )}, t ≥ r .

2. When a particle of type i dies, it gives birth to a random number of offspring in N according
to the probability kernel F(i, dν).

We also assume that the lifetime and the branching of different particles are independent. Let
X t (B) denote the number of particles in B ∈ B(N) that are alive at time t ≥ 0 and assume
X0(N) < ∞. With a slight abuse of notation, we take X0 := µ, where µ ∈ I(N). Then
{X t : t ≥ 0} is a Markov process with state space I(N), which will be referred as a branching
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Markov chain or multi-type BGW with parameters (γ, F). For µ ∈ I(N), let Pµ denote the law
of {X t : t ≥ 0} given X0 = µ. In the special case that X is issued with a single particle of type i ,
we write its law by Pδi . For f ∈ B+(N), t ≥ 0, i ∈ N, put

ut (i) := ut (i, f ) = − log Eδi [exp {−⟨ f, X t ⟩}].

The independence hypothesis implies that

Eµ[exp {−⟨ f, X t ⟩}] = exp {−⟨ut , µ⟩} , µ ∈ I(N), f ∈ B+(N), t ≥ 0. (7)

Moreover, by conditioning on the first branching event, ut is determined by the renewal equation

e−ut (i)
= ρi (0, t)e− f (i)

+

∫ t

0
ρi (0, s)γ (i)

∫
I(N)

e−⟨ut−s , ν⟩F(i, dν)ds.

By a standard argument (see for example Lemma 1.2 in Chapter 4 of in [12]) one sees that the
last equation is equivalent to

e−ut (i)
= e− f (i)

−

∫ t

0
γ (i)e−ut−s (i)ds +

∫ t

0
γ (i)

∫
I(N)

e−⟨ut−s , ν⟩F(i, dν)ds. (8)

See, for example, Asmussen and Hering [1] or Ikeda et al. [18–20] for similar constructions.
In preparation for our scaling limit, it is convenient to treat the offspring that start their motion

from the death sites of their parents separately from others. To this end, we introduce some
additional parameters. Let α and β ∈ B+(N) such that γ = α + β. For each i ∈ N, let πi
be a probability distribution in N \ {i} and let g, h be two positive measurable functions from
N × [−1, 1] to R such that, for each i ∈ N,

g(i, z) =

∞∑
n=0

pn(i)zn, h(i, z) =

∞∑
n=0

qn(i)zn
|z| ≤ 1,

are probability generating functions with supi g
′
z(i, 1−) < ∞ and supi h

′
z(i, 1−) < ∞. Next,

define the probability kernels F0(i, dν) and F1(i, dν) from N to I(N) by∫
I(N)

e−⟨ f, ν⟩F0(i, dν) = g(i, e− f (i))

and ∫
I(N)

e−⟨ f, ν⟩F1(i, dν) = h(i, ⟨e− f , πi ⟩).

We replace the role of F(i, dν) by

γ−1(i) [α(i)F0(i, dν) + β(i)F1(i, dν)] , i ∈ N, ν ∈ I(N).

Intuitively, when a particle of type i ∈ N splits, the branching is of local type with probability
α(i)/γ (i) and is of non-local type with probability β(i)/γ (i). If branching is of a local type, the
distribution of the offspring number is {pn(i)}. If branching is of a non-local type, the particle
gives birth to a random number of offspring according to the distribution {qn(i)}, and those
offspring choose their locations in N\{i} independently of each other according to the distribution
πi (·). Therefore, ut is determined by the renewal equation

e−ut (i)
= e− f (i)

+

∫ t

0
α(i)

[
g(i, e−ut−s (i)) − e−ut−s (i)

]
ds

+

∫ t

0
β(i)

[
h(i, ⟨e−ut−s , πi ⟩) − e−ut−s (i)

]
ds. (9)
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For the forthcoming analysis, it is more convenient to work with

vt (i) := vt (i, f ) = 1 − exp{−ut (i, f )}, t ≥ 0, i ∈ N.

In that case,

vt (i) = Ei
[
1 − e f (i)]

−

∫ t

0

[
ψ(i, vt−s(i)) + φ(i, vt−s)

]
ds,

where

ψ(i, z) = α(i)[g(i, 1 − z) − (1 − z)] + β(i)z

and

φ(i, f ) = β(i) [h(i, 1 − ⟨ f, πi ⟩) − 1] .

Next, we take a scaling limit of the MBGW process. We treat the limit as a superprocess with
local and non-local branching mechanism. For each k ∈ N, let {Y (k)(t), t ≥ 0} be a sequence of
branching particle system determined by (αk(·), βk(·), gk(·), hk(·), π·). Then, for each k,

{X (k)(t) = k−1Y (k)(t), t ≥ 0}

defines a Markov process in Nk(N) := {k−1σ, σ ∈ I(N)}. For 0 ≤ z ≤ k and f ∈ B(N), let

ψk(i, z) = kαk(i)[gk(i, 1 − z/k) − (1 − z/k)] + βk(i)z

and

φk(i, f ) = βk(i)k[hk(i, 1 − k−1
⟨ f, πi ⟩) − 1].

Let us denote by uk
t (i, f ) = − log Eδi [exp

{
−⟨ f, X k

t ⟩
}
] and vk

t (i, f ) = 1 − exp{−uk
t (i, f )}.

Under certain conditions, Dawson et al. [8] obtained the convergence of {X (k)(t), t ≥ 0} to
some process {X (t), t ≥ 0}. Let B(N) be the subset B(N) with entries uniformly bounded from
above and below. We re-word their result for our particular setting here.

Theorem 3. Suppose that
∞∑

n=0

nqk
n (i) ≤ 1,

that βk → β ∈ B+(N) uniformly, φk(i, f ) → φ(i, f ) uniformly on N × B(N), and ψ(i, z) →

ψ(i, z) locally uniformly. Then

(i) The function ψ(i, z) has representation

ψ(i, z) = b(i)z + c(i)z2
+

∫
∞

0
(e−zu

− 1 + zu)ℓ(i, du), i ∈ N, z ≥ 0, (10)

where b ∈ B(N), c ∈ B+(N) and (u ∧ u2)ℓ(i, du) is a bounded kernel from N to (0,∞).
(ii) The function φ(i, f ) can be represented as

φ(i, f ) = −β(i)
[

d(i)⟨ f, πi ⟩ +

∫
∞

0
(1 − e−u⟨ f, πi ⟩)n(i, du)

]
, (11)

where d ∈ B+(N), and un(i, du) is a bounded kernel from N to (0,∞) with

d(i) +

∫
∞

0
un(i, du) ≤ 1.
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(iii) To each function ψ and φ satisfying (10) and (11) there correspond a sequence of βk , ψk

and φk .
(iv) For each a ≥ 0, the functions vk

t (i, f ) and ku(k)
t (i, f ) converge boundedly and uniformly

on [0, a] × N × B(N), to the unique bounded positive solution Vt f (i) to the evolution
equation

Vt f (i) = f (i) −

∫ t

0

[
ψ(i, Vt−s f (i)) + φ(i, Vt−s f )

]
ds, t ≥ 0. (12)

Moreover, there exists a Markov process {X t : t ≥ 0} with probabilities {Pµ, µ ∈ M(N)}
such that

Eµ[e−⟨ f,X t ⟩] = exp {−⟨Vt f, µ⟩} , µ ∈ M(N), f ∈ B+(N),

and the cumulant semigroup Vt f is given by (12).

Theorem 1 now follows directly as a corollary of the above result. Intuitively, ψ(i, ·) describes
the rate at which a branching event amongst current mass of type i ∈ N, produces further mass
of type i . Moreover, φ(i, ·) describes the rate at which a branching event amongst current mass
of type i ∈ N, produces further mass of other types N \ {i}.

Remark 2. The non-local branching mechanism is not the most general form that can be
assumed in the limit. Indeed, taking account of the class of non-local branching mechanisms
that can be developed in [8,11,25], we may do the same here. Nonetheless, we keep to this
less-general class for the sake of mathematical convenience.

4. Spectral properties of the moment semigroup

Let (X t ,Pµ) be a MCSBP and define its linear semigroup (Mt , t ≥ 0) by

Mt [ f ](i) := Eδi [⟨ f, X t ⟩], i ∈ N, f ∈ B+(N), t ≥ 0. (13)

By replacing f in (3) and (4) by λ f and differentiating with respect to λ and then setting λ = 0,
we can verify that

Mt [ f ](i) = f (i) +

∫ t

0
K[Ms[ f ]](i)ds −

∫ t

0
b(i)Ms[ f ](i)ds,

i ∈ N, f ∈ B+(N), t ≥ 0,

where

K[g](i) = β(i)
(

d(i) +

∫
∞

0
un(i, du)

)
⟨g, πi ⟩.

(For similar computations see Propositions 2.24 and 2.29 in [25].) Denote by L the infinitesimal
generator of Mt ,

L[ f ](i) = lim
t→0

Mt [ f ](i) − f (i)
t

, i ∈ N, f ∈ B(N).

Then, the operator L[ f ](i) is the matrix product with L given by

L = ∆−b + K , (14)
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where the matrices ∆−b and K are given by

(∆−b)i j = −b(i)1i= j , and Ki j = β(i)
(

d(i) +

∫
∞

0
un(i, du)

)
πi ( j).

Define the matrix M(t) by

M(t)i j := Eδi [X t ( j)],

and observe that

Mt [ f ](i) = [M(t) f ](i). (15)

The linear semigroup will play an important role in the proof of Theorem 2, in particular, its
spectral properties are of concern to us. Thanks to (15), it suffices to study the spectral properties
of the matrix M(t). In the forthcoming theory, we will need to assume that M := {M(t) : t ≥ 0},
is irreducible in the sense that for any i, j ∈ N there exists t > 0 such that M(t)i j > 0. The
following lemma ensures this is the case.

Lemma 3. Suppose that πi ( j), i, j ∈ N is the transition matrix of an irreducible Markov chain,
then M is irreducible.

Proof. Let a(i) = β(i)
(
d(i) +

∫
∞

0 un(i, du)
)
, for i∈ N. Define the matrices Q and ∆a−b

Qi j = a(i)(πi ( j) − 1{i= j}) and (∆a−b)i j = (a(i) − b(i))1{i= j}.

By hypothesis, Q is the Q-matrix of an irreducible Markov chain (ξt ,Pi ). In particular, for each
i, j ∈ N and t > 0, Pi (ξt = j) > 0. Observe in (14) that L = Q + ∆a−b which is the formal
generator of the semigroup given by

Tt [ f ](i) = Ei

[
f (ξt ) exp

{∫ t

0
(a − b)(ξs)ds

}]
i ∈ N, f ∈ B+(N), t ≥ 0. (16)

By uniqueness of semigroups, Mt f (i) = Tt [ f ](i), t ≥ 0, i ∈ N. In particular M(t)i j =

Tt [δ j ](i) > 0, where δ is the Dirac function, and therefore M is irreducible. □

Recall that, for each i, j ∈ N and λ ∈ R, we defined the matrix H (λ) by

Hi j (λ) :=

∫
∞

0
eλt M(t)i j dt.

and that the spectral radius

Λ := sup{λ ≥ −∞ : Hi j (λ) < ∞},

does not depend on i and j .

Definition 1. A non-negative vector x with entries x(i), i ∈ N, is called right (resp. left)
subinvariant λ-vector, if for all t ≥ 0,

M(t)x ≤ e−λt x, (resp. xT M(t) ≤ e−λt x).

If the equality holds, the vector is called a right (resp. left) invariant λ-vector.

In the next proposition, we appeal to standard techniques (cf. [27] or [31]) and provide sufficient
conditions for the existence of subinvariant λ-vectors.
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Proposition 1. If H (λ) < ∞, then there exists a positive1 right subinvariant λ-vector, x, and
a positive left subinvariant λ-vector, y. There exists no left or right subinvariant β-vector for
β > Λ.

Proof. Fix j ∈ N and define x and y as follows

x(i) = Hi j (λ) and y(i) = H j i (λ).

Since the function t ↦→ M(t) is continuous and M is irreducible, x(i)y(k) > 0 for all i, k ∈ N.
Let s ≥ 0, by Fubini’s Theorem,

[yT M(s)](i) =

∑
k∈N

∫
∞

0
eλt M(t) jkdt M(s)ki =

∫
∞

0
eλt
∑
k∈N

M(t) jk M(s)ki dt.

The semigroup property implies that

[yT M(s)](i) =

∫
∞

0
eλt M(s + t) j i dt = e−λs

∫
∞

s
eλt M(t) j i dt ≤ e−λs y(i).

Therefore, y is a left subinvariant λ-vector. A similar computation shows that x is a right
subinvariant λ-vector.

Suppose x is a right subinvariant β-vector. Let α ∈ (Λ, β), then, for each i ∈ N,∫
∞

0
eαt [M(t)x](i)dt ≤

∫
∞

0
eαt e−βt x(i)dt = x(i)(β − α)−1.

Let j ∈ N such that x( j) > 0, then∫
∞

0
eαt M(t)i j dt ≤

x(i)
x( j)

(β − α)−1 < ∞,

which is a contradiction with the definition of Λ. In an analogous way, there is no left subinvariant
β-vector. □

When Hi j (Λ) = ∞, Niemi and Nummelin ([28], Theorem 4) proved that there exist unique
left and right invariant Λ-vectors as follows.

Proposition 2. Assume that Hi j (Λ) = ∞ for some i, j ∈ N. Then,

(i) There exists a unique (up to scalar multiplication) positive left invariant Λ-vector.
(ii) There exists a unique (up to scalar multiplication) positive right invariant Λ-vector.

Moreover, any right subinvariant Λ-vector is a right invariant vector.

From the previous propositions, there exists at least a positive left (right) subinvariant Λ-
vector. One of the reasons we are interested in right (sub)invariant vector, is that we can associate
to it a (super)martingale, which will be of use later on in our analysis.

Proposition 3. Let x be a right subinvariant λ-vector. Then

Wt := eλt
⟨x, X t ⟩, t ≥ 0,

is a supermartingale. If x is also an invariant vector, then (Wt , t ≥ 0) is a martingale.

1 Recall that a vector x is positive if its entries, x(i), are strictly positive for all i .
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Proof. Let t, s ≥ 0. By the Markov property and the branching property

E
[

eλ(t+s)
⟨x, X t+s⟩

⏐⏐Fs
]

= eλ(t+s)EXs [⟨x, X t ⟩] = eλ(t+s)
∑
i∈N

Xs(i)Eδi [⟨x, X t ⟩] .

Since x is a right subinvariant λ-vector,

Eδi [⟨x, X t ⟩] = [M(t)x](i) ≤ e−λt x(i),

therefore, we have that

E
[

Wt+s |Fs
]

= eλ(t+s)
∑
i∈N

Xs(i)[M(t)x](i) ≤ eλs
∑
i∈N

x(i)Xs(i) = Ws .

In the invariant case, inequalities become equalities. □

Let [n] = {1, . . . , n} and let X [n]
:= {X [n]

t : t ≥ 0} be a branching process with the same
mechanism as X t but we kill mass that is created outside of [n]. To be more precise, X [n] has the
same local branching mechanisms ψ(i, ·) and φ(i, ·), for i = 1, . . . , n, albeit that, now, πi ( j),
j ∈ N \ {i} is replaced by πi ( j)1( j≤n), j ∈ N \ {i}. Finally ψ(i, ·) and φ(i, ·) are set to be zero for
i ≥ n.

Let M [n](t) be the matrix associated to the linear semigroup of X [n]. Then the infinitesimal
generator of M [n](t) is given by

L [n]
= [∆−b + K ]

⏐⏐⏐
[n]
.

In order to apply Perron–Frobenius theory to the matrix M [n](t), we need irreducibility. By
Lemma 3, it is enough that πi ( j), i, j ≤ n is irreducible. There exist simple examples of infinite
irreducible matrices such that their upper left square n-corner truncations are not irreducible for
all n ≥ 1. However, according to Seneta ([30], Theorem 3), the irreducibility of π implies that
there exists a simultaneous rearrangement of the rows and columns of π , denoted by π̃ , and a
sequence of integers kn tending to infinity, such that the truncation of π̃ to [kn] is irreducible
for all n. Observe that the type space, N, is used as a labelled set and not as an ordered set. It
therefore follows that we can assume without loss of generality, that we start with π̃ (The vectors
b, c, d, β, ℓ and n will require the same rearrangement.) In the rest of the paper, when requiring
finite truncations to the state space, whilst preserving irreducibility, it is enough to work with the
truncations on [kn]. In order to simplify the notation, we will assume without loss of generality
that kn = n for all n.

Classical Perron–Frobenius theory tells us there exist two positive vectors x [n]
= {x [n](i) :

i = 1, . . . , n} and y[n]
= {y[n](i) : i = 1, . . . , n}, and a real number Λ[n]

= sup{λ ≥ −∞ :

H [n]
i j (λ) < ∞}, such that

M [n](t)x [n]
= e−Λ[n]t x [n] and (y[n])T M [n](t) = e−Λ[n]t y[n].

By construction of X [n]
t , we have the inequalities

M [n]
i j (t) ≤ M [n+1]

i j (t) ≤ Mi j (t),

which naturally leads to the hierarchy of eigenvalues

Λ ≤ Λ[n+1]
≤ Λ[n]. (17)
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Lemma 4.

(i) Λ∞
:= lim n→∞Λ[n]

= Λ.
(ii) Let x [n] be a right invariant Λ[n]-vector for M [n], such that x [n](1) = 1. Then, the vector

{x∗( j) : j ∈ N} given by x∗( j) = lim infn→∞x [n]( j) is a positive right Λ-subinvariant
vector. Moreover, it Hi j (Λ) = ∞, then {x∗( j) : j ∈ N} is the unique positive right invariant
Λ-vector of M with x∗(1) = 1.

Proof. By inequality (17),

Λ ≤ Λ∞
= lim

n→∞
Λ[n].

For any n ∈ N, let x [n] be a M [n] right invariant vector, such that x [n](1) = 1 for all n ∈ N, this
implies

L [n]x [n]
= −Λ[n]x [n].

Let x∗( j) = lim infn→∞x [n]( j), by Fatou’s Lemma

Lx∗
≤ −Λ∞x∗.

Using the fact that M(t) is a non negative matrix and

d
dt

[M(t)x∗](i) = [M(t)Lx∗](i), i ∈ N,

we find that

[M(t)x∗](i) ≤ e−Λ∞t x∗(i), i ∈ N.

Since x∗(1) = 1, x∗ is a right Λ∞-subinvariant vector. By applying Proposition 1 we have that
Λ∞

≤ Λ and therefore x∗ is a right Λ-subinvariant vector. The last part of the claim is true due
to Proposition 2. □

Any vector x ∈ Rn can be extended to a vector u ∈ RN by the natural inclusion map
u(i) = x(i)1{i≤n}. Since it will be clear in which space we intend to use the vector, we make
an abuse of notation, and in the future we will denote both with x .

5. Spine decomposition

According to Dynkin’s theory of exit measures [10] it is possible to describe the mass of X
as it first exits the growing family of domains [0, t) × [n] as a sequence of random measures,
known as branching Markov exit measures, which we denote by {X [n],t

: t ≥ 0}. Informally,
the measure X [n],t is the distribution of the mass obtained by ‘freezing’ the mass of the MCSBP
when it is outside [0, t) × [n] for the first time. See [12, Chapter 3] for details of branching
Markov exit measures. We recover here some of its basic properties. First, X [n],t has support on
({t} × [n]) ∪ ([0, t] × [n]c). Moreover, under {t} × [n],

X [n],t ({t} × B) = X [n]
t (B),

for each B ⊂ [n]. We use the obvious notation that for all f ∈ B+([0, t] × N),

⟨ f, X [n],t
⟩ =

∑
i∈[n]

f (t, i)X [n],t ({t}, i) +

∑
i∈[n]c

∫ t

0
f (s, i)X [n],t (ds, i).
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We have that for all µ ∈ M([0, t] × N), and f ∈ B+([0, t] × N)

Eµ[e−⟨ f,X [n],t
⟩] = exp{−⟨V [n],t

0 f, µ⟩}, (18)

where, for t ≥ r ≥ 0, V [n],t
r f : [n] → [0,∞) is the unique non-negative solution to

V [n],t
r f (i) =

⎧⎪⎪⎨⎪⎪⎩
f (t, i) −

∫ t

r

[
ψ(i, V [n],t

s f (i)) + φ(i, V [n],t
s f )

]
ds if i ≤ n

f (r, i) if i > n.

(19)

An important observation for later is that if the value of f does not depend on time t (temporal
homogeneity), then

V [n],t
r f = V [n],t−r

0 f, (20)

for all f ∈ B+([0, t] × N). Moreover, as a process in time, X [n],·
= {X [n],t

: t ≥ 0} is a MCSBP
with local mechanism ψ [n]

= ψ(i, z)1{i≤n} and non-local mechanism φ[n]
= φ(i, f )1{i≤n}.

Let us denote by Ni the excursion measure of the (ψ [n], φ[n])-MCSBP corresponding to Pδi .
To be more precise, Dynkin and Kuznetsov [13] showed that associated to the laws {Pδi : i ∈ N}

are measures {Ni : i ∈ N}, defined on the same measurable space, which satisfy

Ni (1 − e−⟨ f,X [n],t
⟩) = − log Eδi (e

−⟨ f,X [n],t
⟩),

for all non-negative bounded function f on N and t ≥ 0. Intuitively speaking, the branching
property implies that Pδi is an infinitely divisible measure on the path space of X [n],· and the
previous equation is a “Lévy–Khintchine” formula in which Ni plays the role of its “Lévy
measure”. A particular feature of Ni that we shall use later is that

Ni (⟨ f, X [n],t
⟩) = Eδi [⟨ f, X [n],t

⟩]. (21)

Given two functions x, y : N → [0,∞) we denote by x ◦ y the element wise multiplication,
[x ◦ y](i) = x(i)y(i). Any function g : N → [0,∞) can be extended to a function ḡ :

[0,∞) × N → [0,∞) such that ḡ(s, i) = g(i).
Let x be a Λ[n] right invariant vector of M [n]. (Note, in order to keep notation to a minimum,

we prefer x in place of the more appropriate notation x [n].) By splitting the integral between
{t} × [n] and [0, t] × [n]c, it is easy to show that

⟨x̄, X [n],t
⟩ = ⟨x, X [n]

t ⟩.

Using the Markov property of exit measures, the last equality, and Proposition 3, standard
computations tell us that

Y [n]
t := eΛ

[n]t ⟨x̄, X [n],t
⟩

⟨x, µ⟩
= eΛ

[n]t ⟨x, X [n]
t ⟩

⟨x, µ⟩
, t ≥ 0,

is a mean one Pµ-martingale. For µ ∈ M(N) such that µ(N \ [n]) = 0, define P̃[n]
µ by the

martingale change of measure

dP̃[n]
µ

dPµ

⏐⏐⏐
Ft

= Y [n]
t .

Theorem 4. Let µ a finite measure with support in [n] and g ∈ B+(N). Introduce the Markov
chain (η,Px

·
) on [n] with infinitesimal matrix, L̃ [n]

∈ Mn×n , given by

L̃ [n]
i j =

1
x(i)

(
∆−b + Ki j + 1{i= j}Λ

[n]) x( j).
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If X is a MCSBP, then

Ẽ[n]
µ

[
e−⟨ f,X [n],t

⟩
⟨x̄ ◦ ḡ, X [n],t

⟩

⟨x̄, X [n],t ⟩

]
= Eµ

[
e−⟨ f,X [n],t

⟩

]
×

Ex
xµ

[
exp

{
−

∫ t

0

(
2c(ηs)V [n],t−s

0 f (ηs) +

∫
∞

0
u(1 − e−uV [n],t−s

0 f (ηs ))ℓ(ηs, du)
)

ds
}

× g(ηt )
∏
s≤t

Θ [n],t−s
ηs−,ηs

]
, (22)

where the matrices {Θ [n],s
: s ≥ 0}, are given by

Θ [n],t
i, j =

πi ( j)β(i)
[∆−b + K + Λ[n] I ]i, j

∫
∞

0
u(e−u⟨V [n],t

0 f, πi ⟩ − 1)n(i, du) + 1

and

Px
xµ(·) =

∑
i∈[n]

x(i)µ(i)
⟨x, µ⟩

Px
i (·),

with an obviously associated expectation operator Ex
xµ(·).

This theorem suggest that under P̃[n]
µ , our process can decompose into 2 parts. The first one is a

copy of the original process and the second one can be related to some independent processes
of immigration. As we will see after the proof, the process of immigration is governed by
an immortal particle or spine along which two independent Poisson point processes of mass
immigration occur. The non-local nature of the branching mechanism induces a new additional
immigration at each time the spine jumps. Moreover the distribution of this new immigration
mass depends on where the spine jumped from and where it jumps to.

Proof. We start by noting that

Ẽ[n]
µ

[
e−⟨ f,X [n],t

⟩
⟨x̄ ◦ ḡ, X [n],t

⟩

⟨x̄, X [n],t ⟩

]
=

eΛ
[n]t

⟨x, µ⟩
Eµ
[
⟨x̄ ◦ ḡ, X [n],t

⟩e−⟨ f,X [n],t
⟩

]
.

Replacing f by f + λx̄ ◦ ḡ in (18) and (19) and differentiating with respect to λ and then setting
λ = 0, we obtain

Ẽ[n]
µ

[
e−⟨ f,X [n],t

⟩
⟨x̄ ◦ ḡ, X [n],t

⟩

⟨x̄, X [n],t ⟩

]
= Eµ

[
e−⟨ f,X [n],t

⟩

]
⟨θ t

0, x ◦ µ⟩

⟨x, µ⟩
,

= Eµ
[
e−⟨ f,X [n],t

⟩

]∑
i≤n

x(i)µi

⟨x, µ⟩
θ t

0(i), (23)

where for t ≥ r ≥ 0, θ t
r is the vector with entries

θ t
r (i) :=

1
x(i)

eΛ
[n](t−r ) ∂

∂λ
V [n],t

r [ f + λx̄ ◦ ḡ](i)
⏐⏐⏐⏐
λ=0
, i ∈ [n].

So that, in particular, θ t
t (i) = g(i), i ∈ [n], and additionally, θ t

r (i) = 0 for i > n and r ≤ t . Note
that the temporal homogeneity property (20) implies that θ t

r (i) = θ t−r
0 (i), i ∈ [n], t ≥ r ≥ 0.
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Moreover, θ t
r (i), i ∈ [n], is also the unique solution to

θ t
r (i) = g(i) −

∫ t

r
θ t

s (i)
[

2c(i)V [n],t−s
0 f (i) +

∫
∞

0
u(1 − e−uV [n],t−s

0 f (i))ℓ(i, du)
]

ds

+ x(i)−1
∫ t

r

[
(∆−b + K + Λ[n] I )x ◦ θ t

s

]
(i)ds

+

∫ t

r
⟨θ t

s , π
x
i ⟩β(i)

∫
∞

0
u(e−u⟨V [n],t−s

0 f, πi ⟩ − 1)n(i, du)ds,

where

π x
i ( j) :=

x( j)
x(i)

πi ( j), i, j ∈ [n].

An integration by parts now ensures that

[eL̃[n]rθ t
r ](i) =[eL̃[n]t g](i)

−

∫ t

r
eL̃[n]s

[
θ t

s ◦

[
2c(·)V [n],t−s

0 f (·)

+

∫
∞

0
u(1 − e−uV [n],t−s

0 f (·))ℓ(·, du)
]]

(i)ds

+

∫ t

r
eL̃[n]s

[
⟨θ t

s , π
x
·
⟩β(·)

∫
∞

0
u(e−u⟨V [n],t−s

0 f, π·⟩ − 1)n(·, du)ds
]

× (i)ds.

Then appealing to temporal homogeneity, and the fact that {eL̃[n]t
: t ≥ 0} is the semigroup of

(η,Px
·
),

θ t
0(i) =Ex

i [g(ηt )] − Ex
i

[∫ t

0
θ t−s

0 (ηs)
[

2c(ηs)V [n],t−s
0 f (ηs)

+

∫
∞

0
u(1 − e−uV [n],t−s

0 f (ηs ))ℓ(ηs, du)
]

ds
]

+ Ex
i

[∫ t

0
⟨θ t−s

0 , π x
ηs

⟩β(ηs)
∫

∞

0
u(e−u⟨V [n],t−s

0 f, πηs ⟩
− 1)n(ηs, du)ds

]
=Ex

i [g(ηt )] − Ex
i

[∫ t

0
θ t−s

0 (ηs)
[

2c(ηs)V [n],t−s
0 f (ηs)

+

∫
∞

0
u(1 − e−uV [n],t−s

0 f (ηs ))ℓ(ηs, du)
]

ds
]

+ Ex
i

⎡⎣∫ t

0

∑
j

1(L̃[n]
ηs , j ̸=0)θ

t−s
0 ( j)

(
π x
ηs

( j)β(ηs)

L̃ [n]
ηs , j

×

∫
∞

0
u(e−u⟨V [n],t−s

0 f, πηs ⟩
− 1)n(ηs, du)

)
L̃ [n]
ηs , j ds

]
.
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(Note, in the last equality, we have used that L̃ [n]
ηs , j = 0 if and only if πηs ( j) = 0.) We now see

from Lemma 6 in the Appendix that

θ t
0(i) = Ex

i

[
exp

{
−

∫ t

0

(
2c(ηs)V [n],t−s

0 f (ηs)

+

∫
∞

0
u(1 − e−uV [n],t−s

0 f (ηs ))ℓ(ηs, du)
)

ds
}∏

s≤t

Θ [n],t−s
ηs−,ηs

]
,

as required. □

Fix µ as a finite measure with support in [n]. As we said before, Theorem 4 suggests that the
process (X [n],·, P̃µ) is equal in law to a process {Γt : t ≥ 0}, whose law is henceforth denoted by
Pµ, where

Γt = X ′

t +

∑
s∈Dc

t

X c,s
t−s +

∑
s∈Dd

t

Xd,s
t−s +

∑
s∈Dj

t

X j,s
t−s, t ≥ 0, (24)

such that X ′ is an independent copy of (X [n],·,Pµ), the countable sets Dc
·
, Dd

·
, Dj

· and processes
X c,s

·
, Xd,s

·
and X j,s

· are defined through a process of immigration as follows: Given the path of
the Markov chain (η,Px

xµ),

[continuous immigration] in a Poissonian way an (ψ [n], φ[n])-MCSBP X c,s
·

is immigrated at
(s, ηs) with rate ds×2c(ηs)dNηs . The almost surely countable set of immigration times is denoted
by Dc and Dc

t := Dc
∩ (0, t],

[discontinuous immigration] in a Poissonian way an (ψ [n], φ[n])-MCSBP Xd,s
·

is immigrated at
(s, ηs) with rate ds ×

∫
∞

0 uℓ(ηs, du)Puδηs . The almost surely countable set of immigration times
is denoted by Dd and Dd

t := Dd
∩ (0, t],

[jump immigration] at each jump time s of η, an (ψ [n], φ[n])-MCSBP X j,s
· is immigrated at

(s, ηs) with law
∫

∞

0 νηs−,ηs (du)Puπηs−
, where, for i, j in the range of η,

νi, j (du) =
[∆−b + IΛ[n]]i, j + β(i)d(i)πi ( j)

[∆−b + K + IΛ[n]]i, j
δ0(du) +

πi ( j)β(i)
[∆−b + K + IΛ[n]]i, j

un(i, du).

Dj denotes the set of jump times of η and we denote by Dj
t the jump times before t .

Given η, all the processes are independent. We remark that we suppressed the dependence on n
of the processes X ′, X c,s

·
, Xd,s

·
, X j,s

· and Γ in order to have a nicer notation.
Observe that the processes X c, Xd and X j are initially zero valued, therefore, if Γ0 = µ then

X ′

0 = µ. Moreover (η, Pµ) is equal in distribution to (η,Px
xµ). The following result corresponds

to a classical spine decomposition, albeit now for the setting of an (ψ [n], φ[n])-MCSBP. Note, we
henceforth refer to the process η as the spine.

Remark 3. The inclusion of the immigration process indexed by j appears to be a new feature
not seen before in previous spine decompositions and is a consequence of non-local branching.
Simultaneously to our work, we learnt that a similar phenomenon has been observed by Chen,
Ren and Song [6].

Theorem 5 (Spine Decomposition). Suppose that µ as a finite measure with support in [n]. Then
(Γ ,Pµ) is equal in law to (X [n],·, P̃µ).
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Proof. The proof is designed in two steps. First we show that Γ is a Markov process. Secondly
we show that Λ has the same semigroup as X [n],·. In fact the latter follows immediately from
Theorem 4 and hence we focus our attention on the first part of the proof. Observe that
((Γt , ηt ),Pµ) is a Markov process. By the same argument that appeared in Theorem 5.2 in [24],
if we prove

Eµ[ηt = i | Γt ] =
x(i)Γt (i)
⟨x̄,Γt ⟩

, i ≤ n, (25)

then, (Γt ,Pµ) is a Markov process. By conditioning on η, using the definition of Γ , Eq. (22) and
the fact that (Γt ,Pµ) is equal in law to (X t , P̃µ), for each t , we obtain

Eµ
[
e−⟨ f,Γt ⟩g(ηt )

]
= Eµ

[
e−⟨ f,Γt ⟩

⟨x̄ ◦ ḡ,Γt ⟩

⟨x,Γt ⟩

]
, for all f, g measurables.

The definition of conditional expectation implies (25). □

6. Martingale convergence

An important consequence of the spine decomposition in Theorem 5 is that we can establish
an absolute continuity between the measures Pµ and P̃[n]

µ .

Theorem 6. Fix n ∈ N and µ ∈ M(N) such that sup{k : µ(k) > 0} ≤ n. The martingale Y [n]

converges almost surely and in L1(Pµ) if and only if Λ[n] < 0 and that∑
i∈[n]

∫
∞

1
(x log x)ℓ(i, dx) +

∑
i∈[n]

∫
∞

1
(x log x)n(i, dx) < ∞. (26)

Moreover, when these conditions fail, Pµ(limt→∞Y [n]
t = 0) = 1.

Proof. We follow a well established line of reasoning. Firstly we establish sufficient conditions.
We know that 1/Y [n]

t is a positive P̃[n]
µ -supermartingale and hence limt→∞Y [n]

t exists P̃[n]
µ -almost

surely. The statement of the theorem follows as soon as we can prove that P̃[n]
µ (limt→∞Y [n]

t <

∞) = 1.
To this end, consider the spine decomposition in Theorem 5. Suppose, given the trajectory

of the spine η, that we write (s,∆d
s ,∆

j
s), s ≥ 0, for the process of immigrated mass along the

spine, so that (s,∆d
s ) has intensity ds × uℓ(ηs, du) and, at s such that ηs− ̸= ηs , ∆j

s is distributed
according to νηs−,ηs . Let S = σ (η, (s,∆d

s ,∆
j
s), s ≥ 0) be the sigma algebra which informs the

location of the spine and the volume of mass issued at each immigration time along the time and
write

Z [n]
t = eΛ

[n]t ⟨x̄,Γt ⟩

⟨x, µ⟩
.

Our objective now is to use Fatou’s Lemma and show that

Eµ[ lim
t→∞

Z [n]
t |S] ≤ lim inf

t→∞
Eµ[Z [n]

t |S] < ∞.

Given that (Γ ,Pµ) is equal in law to (X [n],·, P̃µ), this ensures that P̃[n]
µ (limt→∞Y [n]

t < ∞) = 1,
thereby completing the proof.

It therefore remains to show that lim inft→∞Eµ[Z [n]
t |S] < ∞. Taking advantage of the spine

decomposition, we have, with the help of (21) and the fact that Eµ[Y [n]
t ] = 1, for t ≥ 0 and µ
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such µ ∈ M(N) such that sup{k : µ(k) > 0} ≤ n,

lim inf
t→∞

Eµ[Z [n]
t |S] = ⟨x, µ⟩ +

∫
∞

0
2c(ηs)eΛ

[n]s xηs

⟨x, µ⟩
ds

+

∑
s>0

eΛ
[n]s∆d

s
xηs

⟨x, µ⟩
+

∑
s>0

eΛ
[n]s∆j

s
⟨x, πηs−⟩

⟨x, µ⟩
.

Recalling that Λ[n] < 0 and that η lives on [n], the first integral on the right-hand side above can

be bounded above by a constant. The two sums on the right-hand side above can be dealt with
almost identically.

It suffices to check that∑
s>0

eΛ
[n]s1(∆d

s<1)∆
d
s +

∑
s>0

eΛ
[n]s1

(∆j
s<1)

∆j
s

+

∑
s>0

eΛ
[n]s1(∆d

s ≥1)∆
d
s +

∑
s>0

eΛ
[n]s1

(∆j
s≥1)

∆j
s < ∞. (27)

We first note that

Eµ

[∑
s>0

eΛ
[n]s1(∆d

s<1)∆
d
s +

∑
s>0

eΛ
[n]s1

(∆j
s<1)

∆j
s

]

= Eµ

[∫
∞

0
eΛ

[n]s
∫

(0,1)
u2ℓ(ηs, du)ds

]
+ Eµ

[∫
∞

0
eΛ

[n]s
∫

(0,1)
u2L [n]

ηs−,ηs
νηs−,ηs (du)ds

]
≤

∫
∞

0
eΛ

[n]sds

{
sup
i∈[n]

∫
(0,1)

u2ℓ(i, du)ds + sup
i, j∈[n]

π x
i ( j)

∫
(0,1)

u2n(i, du)ds

}
< ∞.

Next, note that the condition (26) ensures that, Pµ almost surely,

lim sup
s→∞

s−11(∆d
s ≥1) log∆d

s + lim sup
s→∞

s−11(∆d
s ≥1) log∆j

s = 0,

so that both sequences ∆d
s and ∆

j
s in the last two sums of (27) grow subexponentially. (Note that

both of the aforesaid sequences are indexed by a discrete set of times when we insist {∆d
s ≥ 1}.)

Hence the second term in (27) converges.
To establish necessary conditions, let us suppose that τ is the set of times at which the mass

(s,∆d
s ,∆

j
s), s ≥ 0, immigrates along the spine. We note that for t ∈ τ ,

Z [n]
t ≥ eΛ

[n]t∆d
t

xηt

⟨x, µ⟩
+ eΛ

[n]t∆
j
t
⟨x, πηt −⟩

⟨x, µ⟩
. (28)

If Λ[n] > 0 and (26) holds then

P̃µ(lim sup
t→∞

Y [n]
t = ∞) = Pµ(lim sup

t→∞

Z [n]
t = ∞) = 1 (29)

on account of the term eΛ
[n]t , the remaining terms on the right-hand side of (28) grow

subexponentially. If Λ[n]
= 0 and (26) holds then, although there is subexponential growth of

(∆j
t ,∆

d
t ), t ≥ 0,

lim sup
t→∞

1(∆d
s ≥1)∆

d
s + lim sup

s→∞

1(∆d
s ≥1)∆

j
s = ∞
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nonetheless. This again informs us that (29) holds. Finally if Λ[n] < 0 but (26) fails, then there
exists an i ∈ [n] such that

∫
∞

1 (x log x)ℓ(i, dx) = ∞ or
∫

∞

1 (x log x)n(i, dx) = ∞. Suppose it is
the latter. Recalling that η is ergodic, another straightforward Borel–Cantelli Lemma tells us that

lim sup
s→∞

s−11(ηs−=i,∆d
s ≥1) log∆j

s > c,

for all c > 0, which implies superexponential growth. In turn, (29) holds. The proof of the
theorem is now complete as soon as we recall that (29) implies that Pµ and P̃µ are singular and
hence P̃µ(limt→∞Y [n]

t = 0) = 1. □

7. Local and global extinction

Lemma 5. For any finite A ⊂ N and any µ,

Pµ
(

lim sup
t→∞

⟨1A, X t ⟩ ∈ {0,∞}

)
= 1.

Proof. It is enough to prove the lemma for A = {i}. The branching property implies that X1(i) is
an infinitely divisible random variable and consequently, its distribution has unbounded support
on R+, (see Chapter 2 in Sato [29]). Therefore, for all ϵ > 0,

Pϵδi (X1(i) > K ) > 0. (30)

Let us denote by Ω0 the event lim supt→∞ X t (i) > 0 and, for each ϵ > 0, denote by Ωϵ the
event lim supt→∞ X t (i) > ϵ. Define the sequence of stopping times as follows. On Ωϵ , let
T0 = inf{t > 0 : X t (i) ≥ ϵ} and Tn+1 = inf{t > Tn + 1 : X t (i) ≥ ϵ} and for Ω c

ϵ let Tn = n.
Then, the Tn’s are finite stopping times on Ωϵ . Fix K > 0 and let An = Ωϵ ∩ {XTn+1(i) > K }

and Ω1
= {ω : ω ∈ An i.o.}. Thus by (30) and the strong Markov property,

∞∑
n=1

Pµ(An | XT1 , . . . , XTn ) = ∞ Pµ-a.s. on Ωϵ .

By the extended Borel–Cantelli lemma [see Corollary 5.29 in [3]], Pµ-a.s. Ωϵ ⊂ Ω1. Observe
that Ωϵ ↑ Ω0 as ϵ ↓ 0. Therefore, for K arbitrary large, lim supt→∞ X t (i) ≥ K , Pµ-a.s. on Ω0,
and the claim is true. □

Recall that we say that X under Pµ exhibits local extinction for the finite set A ⊂ N if

Pµ
(

lim
t↑∞

⟨1A, X t ⟩ = 0
)

= 1.

Now, we have all the preliminary results needed for the Proof of Theorem 2.

Proof of Theorem 2. (i) Let 0 ≤ Λ. By Propositions 1 and 2, there exists x a positive
right subinvariant Λ-vector. Proposition 3 yields that Wt = eΛt

⟨x, X t ⟩ is a non-negative
supermartingale. By Doob’s convergence theorem, there is a non-negative finite random variable
W such that a.s.

Wt −→ W as t → ∞.

When Λ > 0, since eΛt
→ ∞ as t → ∞, and x(i) > 0 for any i ∈ N, we have that Pµ-a.s.

limt→∞ X t (i) = 0, and hence, Pµ-a.s., limt→∞⟨1A, X t ⟩ = 0. When Λ = 0, Lemma 5 yields the
claim.
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(ii) Now suppose that Λ < 0, using Lemma 4 there exists n ≥ i such that Λ[n] < 0. Next,
consider the conclusion of Theorem 5. Let 1 be n-dimensional vector whose entries are all 1
and let 0 be similarly defined. Note that L̃ [n]1 = 0 and hence, together with irreducibility of
π |[n], it follows that (η,Px

·
) is ergodic. As a consequence, of the spine decomposition (24), we

now see that, P̃[n]
µ -almost surely, mass is deposited by η infinitely often in state i . Thanks to the

assumption (6) and Theorem 6, we have that P̃[n]
µ ≪ Pµ and hence there is no local extinction.

Next, recall that for a finite set of types A ⊂ N

vA(i) = − log Pδi (LA).

It is a trivial consequence of the fact that E ⊆ LA that vA(i) ≤ w(i), i ∈ N. By independence, it
follows that, for all finite µ ∈ M(N),

Pµ(LA) = exp {−⟨vA, µ⟩} , t ≥ 0.

By conditioning the event LA on Ft , we obtain that for all t ≥ 0,

Eµ(e−⟨vA,X t ⟩) = exp{−⟨vA, µ⟩}. (31)

Now recalling (4), vA must satisfy the semigroup evolution, see

ψ(i, vA(i)) + φ(i, vA) = 0.

Formally speaking, to pursue the reasoning, we need vA to be a bounded vector, but this is not
necessarily the case. To get round this problem, we can define vK

A (i) = K ∧ vA(i), i ∈ N, and
observe by monotonicity and continuity that Vtv

K
A (i) ↑ vA(i), i ∈ N, t ≥ 0, as K ↑ ∞. When

seen in the context of (4) (also using continuity and monotonicity), the desired reasoning can be
applied. □

Proof of Lemma 1. The proof that w solves (5) is the same as the proof of (31). □

8. Examples

This section is devoted to some examples, where we find explicitly the global and local
extinction probabilities. First we start with a remark of Kingman (see [22]).

Proposition 4. Let Pi j (t) be the transition probabilities of an irreducible continuous-time
Markov chain on the countable state space E. Then there exists κ ≥ 0 such that for each i, j ∈ E,

t−1 log(Pi j (t)) → −κ.

Moreover, for each i ∈ E and t > 0

Pi i (t) ≤ e−κt

and there exist finite constants Ki j such that

Pi j (t) ≤ Ki j e−κt , for all i, j ∈ E, t > 0.

If Q = (qi j ) is the associated Q-matrix, then

κ ≤ − sup{qi i : i ∈ E}.
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Observe that if the Markov chain is recurrent then κ = 0. When it is transient, κ could
be greater than 0. In this case, we will say that the chain is geometrically transient with κ its
decay parameter. Kingman provided a random walk example where κ > 0. The example is the
following. Let ξ be a random walk with Q-matrix given by

qi,i=1 = p, qi i = −1, qi,i−1 = q = 1 − p,

where p ∈ (0, 1). Then, ξ is an irreducible process with decay parameter κ = 1 − 2
√

pq . In
particular, the process is geometrically transient except when p = 1/2.
Now, we can provide some examples.

Example 1. If ψ , β, d and n do not depend on the underlying type, it is easy to show that
(⟨1, X t ⟩, t ≥ 0) is a CSBP with branching mechanism given by

ψ̃(z) =

(
b − βd − β

∫
∞

0
un(du)

)
z + cz2

+

∫
∞

0
(e−zu

− 1 + zu)(ℓ+ βn)(du),

z ≥ 0.

In this case, the global extinction probability is given by

Pδi (E) = e−Φ̃(0),

where Φ̃(0) = sup{z ≤ 0 : ψ̃(z) = 0}.

Define a = βd + β
∫

∞

0 un(du), then, our process X has global extinction a.s. if and only if
b − a ≥ 0. On the other hand, let (ξ,Pi ) be an irreducible chain with Q-matrix given by

Qi j = a(πi ( j) − δi= j ).

Then, by Eq. (16), the linear semigroup of X is

Mt f (i) = Ei

[
f (ξt ) exp

{∫ t

0
(a − b)(ξs)ds

}]
.

In particular,

Hi j (λ) =

∫
∞

0
e(λ+a−b)t Pi j (t)dt.

If (ξ,Pi ) is geometrically transient, then κ ∈ (0, a) and λ < b − a + κ implies Hi j (λ) < ∞. In
particular if a − κ < b, the spectral radius of M satisfies Λ > 0 and, by Theorem 2, X presents
local extinction a.s.

In summary, if a − κ < b < a then the process presents local extinction a.s. but global
extinction with probability less than one.

Example 2. Define a(i) = β(i)d(i) + β(i)
∫

∞

0 un(i, du). Suppose that there exists a constant
c > 0 such that b(i) − a(i) ≥ c > 0. Let (ξ,Pi ) the associated irreducible chain in Lemma 3. Let
0 ≤ λ < c. By Eq. (16) we have

Hi j (λ) =

∫
∞

0
eλtEi

[
δ j (ξt ) exp

{∫ t

0
(a − b)(ξs)ds

}]
dt ≤

∫
∞

0
e(λ−c)t dt < ∞.

Then, Λ > 0 and the process presents local extinction a.s.
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Example 3. Suppose now that there exists a constant c > 0 such that b(i) − a(i) ≤ −c < 0 and
(ξ,Pi ) is a recurrent Markov chain. Then, for −c < λ < 0,

Hi j (λ) =

∫
∞

0
eλtEi

[
δ j (ξt ) exp

{∫ t

0
(a − b)(ξs)ds

}]
dt ≥

∫
∞

0
Pi j (t)dt = ∞.

It follows that Λ < 0. If

sup
i∈N

∫
∞

1
(x log x)ℓ(i, dx) + sup

i∈N

∫
∞

1
(x log x)n(i, dx) < ∞,

then the process presents local extinction in each bounded subset of N with probability less than
one.
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Appendix

We provide here a technical lemma pertaining to an extended version of the Feynman–Kac
formula that is used in the main body of the text. Note that similar formulae have previously
appeared in the literature e.g. in the work of Chen and Song [7].

Lemma 6. Let (ξt ,P) be a Markov chain on a finite state space E with Q matrix Q = (qi j )i, j∈E .
Let v : E × R+ → R be a measurable function and F : E × E × R+ → R be a Borel function
vanishing on the diagonal of E. For i ∈ E and t ≥ 0 and f : E → R, define

h(i, t) := Tt [ f ](i) = Ei

[
f (ξt ) exp

{∫ t

0
v(ξs, t − s)ds

}
exp

{∑
s≤t

F(ξs−, ξs, t − s)

}]
.

Then Tt is a semigroup and for each (i, t) ∈ E × R+, h satisfies

h(i, t) =Ei [ f (ξt )] + Ei

[∫ t

0
h(ξs, t − s)v(ξs, t − s)ds

]

+ Ei

⎡⎣∫ t

0

∑
j∈E

h( j, t − s)(eF(ξs , j,t−s)
− 1)qξs , j ds

⎤⎦ . (32)

Moreover, if v and F do not depend on t, the semigroup has infinitesimal generator matrix P
given by,

pi j = qi j eF(i, j)
+ v(i)1{i= j}. (33)
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Proof. The Markov property implies the semigroup property. For each 0 ≤ s ≤ t define

As,t :=

∫ t

s
v(ξr , t − r )dr

∑
s<r≤t

F(ξr−, ξr , t − r ).

Then,

eA0,t − eAt,t =

∫ t

0
v(ξs, t − s)eAs,t ds +

∑
s≤t

eAs−,t (eF(ξs−,ξs ,t−s)
− 1).

This implies,

h(i, t) = Ei [ f (ξt )] + Ei

[∫ t

0
f (ξt )v(ξs, t − s)eAs,t ds

]
+Ei

[∑
s≤t

f (ξt )eAs−,t (eF(ξs−,ξs ,t−s)
− 1)

]
.

By the Markov property

h(i, t) = Ei [ f (ξt )] + Ei

[∫ t

0
v(ξs, t − s)h(ξs, t − s)ds

]
+Ei

[∑
s≤t

h(ξs, t − s)(eF(ξs−,ξs ,t−s)
− 1)

]
.

The Lévy formula says that for any nonnegative Borel function G on E × E × R+ vanishing on
the diagonal and any i ∈ E ,

Ei

[∑
s≤t

G(ξs−, ξs, s)

]
= Ei

⎡⎣∫ t

0

∑
y∈E

G(ξs, y, s)qξs ,yds

⎤⎦ .
Therefore, h satisfies (32). Using this expression, we can obtain the infinitesimal matrix. □
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