Entrance and exit at infinity for stable jump diffusions

Andreas Kyprianou (based on joint work with Leif Döring)

FELLER BOUNDARY CLASSIFICATION FOR DIFFUSIONS

- In his seminal work in the 1950s, William Feller classified one-dimensional diffusion processes on $-\infty \leq a<b \leq \infty$
\rightarrow The four types of boundary points are:
regular, if it is both accessible and enterable;
exit, if it is accessible but not enterable;
entrance, if it is enterable but not accessible;
natural if it is neither accessible nor enterable.
- Feller's definitions and nroofs are nurely analytic, using I Hille-Yosida theory to generate Feller semigroup of a process $\left(X_{t}, t \geq 0\right)$ from differential operators (diffusion generators)

$$
\mathcal{A}:=\kappa(x) \frac{d}{d x}+\frac{\sigma(x)^{2}}{2} \frac{d^{2}}{d x^{2}}
$$

taking account of the different boundary conditions.
$>$ A change of space via the so-called scale function (sav: which makes $\left(s\left(X_{t}\right), t \geq 0\right)$ a martingale)

$$
d Z_{t}=\tilde{\sigma}\left(Z_{t}\right) d B_{t}, \quad Z_{0}=z \in \mathbb{R}
$$

on a new interval (\tilde{a}, \tilde{b}).

FELLER BOUNDARY CLASSIFICATION FOR DIFFUSIONS

- In his seminal work in the 1950s, William Feller classified one-dimensional diffusion processes on $-\infty \leq a<b \leq \infty$
- The four types of boundary points are:
regular, if it is both accessible and enterable; exit, if it is accessible but not enterable; entrance, if it is enterable but not accessible; natural if it is neither accessible nor enterable.
- Feller's definitions and proofs are purely analytic, using Hille-Yosida theory to generate Feller semigroup of a process $\left(X_{t}, t \geq 0\right)$ from differential operators (diffusion generators)

$$
\mathcal{A}:=k(x) \frac{d}{d x}+\frac{\sigma(x)^{2}}{2} \frac{d^{2}}{d x^{2}}
$$

taking account of the different boundary conditions.
\Rightarrow A change of snace via the so-called scale function (says which makes $\left(s\left(X_{t}\right), t \geq 0\right)$ a martingale)

$$
d Z_{t}=\tilde{\sigma}\left(Z_{t}\right) d B_{t}, \quad Z_{0}=z \in \mathbb{R},
$$

on a new interval (\tilde{a}, \tilde{b}).

FELLER BOUNDARY CLASSIFICATION FOR DIFFUSIONS

- In his seminal work in the 1950s, William Feller classified one-dimensional diffusion processes on $-\infty \leq a<b \leq \infty$
- The four types of boundary points are:
regular, if it is both accessible and enterable; exit, if it is accessible but not enterable;
entrance, if it is enterable but not accessible; natural if it is neither accessible nor enterable.
- Feller's definitions and proofs are purely analytic, using Hille-Yosida theory to generate Feller semigroup of a process $\left(X_{t}, t \geq 0\right)$ from differential operators (diffusion generators)

$$
\mathcal{A}:=\kappa(x) \frac{d}{d x}+\frac{\sigma(x)^{2}}{2} \frac{d^{2}}{d x^{2}}
$$

taking account of the different boundary conditions.

[^0]
on a new interval (\tilde{a}, \tilde{b}).

FELLER BOUNDARY CLASSIFICATION FOR DIFFUSIONS

- In his seminal work in the 1950s, William Feller classified one-dimensional diffusion processes on $-\infty \leq a<b \leq \infty$
- The four types of boundary points are:
regular, if it is both accessible and enterable; exit, if it is accessible but not enterable;
entrance, if it is enterable but not accessible; natural if it is neither accessible nor enterable.
- Feller's definitions and proofs are purely analytic, using Hille-Yosida theory to generate Feller semigroup of a process $\left(X_{t}, t \geq 0\right)$ from differential operators (diffusion generators)

$$
\mathcal{A}:=\kappa(x) \frac{d}{d x}+\frac{\sigma(x)^{2}}{2} \frac{d^{2}}{d x^{2}}
$$

taking account of the different boundary conditions.

- A change of space via the so-called scale function (say s which makes $\left(s\left(X_{t}\right), t \geq 0\right)$ a martingale)
on a new interval (\tilde{a}, \tilde{b}).

FELLER BOUNDARY CLASSIFICATION FOR DIFFUSIONS

- In his seminal work in the 1950s, William Feller classified one-dimensional diffusion processes on $-\infty \leq a<b \leq \infty$
- The four types of boundary points are:
regular, if it is both accessible and enterable;
exit, if it is accessible but not enterable;
entrance, if it is enterable but not accessible;
natural if it is neither accessible nor enterable.
- Feller's definitions and proofs are purely analytic, using Hille-Yosida theory to generate Feller semigroup of a process $\left(X_{t}, t \geq 0\right)$ from differential operators (diffusion generators)

$$
\mathcal{A}:=\kappa(x) \frac{d}{d x}+\frac{\sigma(x)^{2}}{2} \frac{d^{2}}{d x^{2}}
$$

taking account of the different boundary conditions.

- A change of space via the so-called scale function (say s which makes $\left(s\left(X_{t}\right), t \geq 0\right)$ a martingale)

$$
d Z_{t}=\tilde{\sigma}\left(Z_{t}\right) d B_{t}, \quad Z_{0}=z \in \mathbb{R}
$$

on a new interval (\tilde{a}, \tilde{b}).

THE CASE OF AN INFINITE BOUNDARY

- In the setting of the entire real line, i.e. $a=-\infty$ and $b=+\infty$, the notion of entrance (in applications also called coming down from infinity) and exit (explosion) becomes interesting
$>$ Depending on the growth of σ at infinity the infinite boundary points can be of an entrance type. Feller's results for this scenario imply that $+\infty$ is an entrance boundary if and only if

i.e. σ growth slightly more than linearly at infinity.

THE CASE OF AN INFINITE BOUNDARY

- In the setting of the entire real line, i.e. $a=-\infty$ and $b=+\infty$, the notion of entrance (in applications also called coming down from infinity) and exit (explosion) becomes interesting
- Depending on the growth of σ at infinity the infinite boundary points can be of an entrance type. Feller's results for this scenario imply that $+\infty$ is an entrance boundary if and only if

$$
\int^{+\infty} x \sigma(x)^{-2} d x<\infty
$$

i.e. σ growth slightly more than linearly at infinity.

COMING DOWN FROM INFINITY: I

- The notion of coming down from infinity becoming more important in other classes of Feller processes e.g. Kingman's Coalescent

- The death chain counting number of blocks (genealogies) in Kingman's Coalescence is monotone and skip free (relatively easy to handle!)

COMING DOWN FROM INFINITY: I

- The notion of coming down from infinity becoming more important in other classes of Feller processes e.g. Kingman's Coalescent

- The death chain counting number of blocks (genealogies) in Kingman's

Coalescence is monotone and skip free (relatively easy to handle!)

COMING DOWN FROM INFINITY: II

- Kingman coalescent dynamics, fragment each block at a constant rate into an infinite number of blocks [cf. K., Pagett, Rogers \& Schweinsberg (2017)] - what happens after the first fragmentation event?
$>$ Nothing more than a Markov chain $(N(t): t \geq 0)$ on $\mathbb{N} \cup\{\infty\}$ specified by the Q-matrix

- If $0<\theta<1$, then $(N(t): t \geq 0)$ is a recurrent Feller process on $\mathbb{N} \cup\{\infty\}$ such that $\{\infty\}$ is instantaneously regular (that is to say 0 is a not a holding point).
\Rightarrow If $\theta \geq 1$, then $\{\infty\}$ is an absorbing state for $(N(t): t \geq 0)$.

COMING DOWN FROM INFINITY: II

- Kingman coalescent dynamics, fragment each block at a constant rate into an infinite number of blocks [cf. K., Pagett, Rogers \& Schweinsberg (2017)] - what happens after the first fragmentation event?
- Nothing more than a Markov chain $(N(t): t \geq 0)$ on $\mathbb{N} \cup\{\infty\}$ specified by the Q-matrix

$$
Q_{i, j}= \begin{cases}c\binom{i}{2} & \text { if } j=i-1 \\ \lambda i & \text { if } j=\infty .\end{cases}
$$

\rightarrow If $0<\theta<1$, then $(N(t): t \geq 0)$ is a recurrent Feller process on $\mathbb{N} \cup\{\infty\}$ such that $\{\infty\}$ is instantaneously regular (that is to say 0 is a not a holding point).
\Rightarrow If $\theta \geq 1$, then $\{\infty\}$ is an absorbing state for $(N(t): t \geq 0)$.

COMING DOWN FROM INFINITY: II

- Kingman coalescent dynamics, fragment each block at a constant rate into an infinite number of blocks [cf. K., Pagett, Rogers \& Schweinsberg (2017)] - what happens after the first fragmentation event?
- Nothing more than a Markov chain $(N(t): t \geq 0)$ on $\mathbb{N} \cup\{\infty\}$ specified by the Q-matrix

$$
Q_{i, j}= \begin{cases}c\binom{i}{2} & \text { if } j=i-1, \\ \lambda i & \text { if } j=\infty .\end{cases}
$$

Let $\theta:=2 \lambda / c$.

- If $0<\theta<1$, then $(N(t): t \geq 0)$ is a recurrent Feller process on $\mathbb{N} \cup\{\infty\}$ such that $\{\infty\}$ is instantaneously regular (that is to say 0 is a not a holding point).

COMING DOWN FROM INFINITY: II

- Kingman coalescent dynamics, fragment each block at a constant rate into an infinite number of blocks [cf. K., Pagett, Rogers \& Schweinsberg (2017)] - what happens after the first fragmentation event?
- Nothing more than a Markov chain $(N(t): t \geq 0)$ on $\mathbb{N} \cup\{\infty\}$ specified by the Q-matrix

$$
Q_{i, j}= \begin{cases}c\binom{i}{2} & \text { if } j=i-1, \\ \lambda i & \text { if } j=\infty .\end{cases}
$$

Let $\theta:=2 \lambda / c$.

- If $0<\theta<1$, then $(N(t): t \geq 0)$ is a recurrent Feller process on $\mathbb{N} \cup\{\infty\}$ such that $\{\infty\}$ is instantaneously regular (that is to say 0 is a not a holding point).
- If $\theta \geq 1$, then $\{\infty\}$ is an absorbing state for $(N(t): t \geq 0)$.

COMING DOWN FROM INFINITY: III

- Lambert's logistic Continuous-state branching process

$$
\mathrm{d} Z_{t}=b Z_{t} \mathrm{~d} t+\gamma Z_{t} \mathrm{~d} B_{t}-c Z_{t}^{2} \mathrm{~d} t, \quad t \geq 0
$$

Lambert (2005)
> More generally

$$
\begin{aligned}
Z_{t}= & x-a \int_{0}^{t} Z_{s} \mathrm{~d} s+\sigma \int_{0}^{t} \int_{0}^{Z_{s-}} W(\mathrm{~d} s, \mathrm{~d} u) \\
& +\int_{0}^{t} \int_{0}^{Z_{s-}} \int_{0}^{\infty} r \tilde{N}(\mathrm{~d} s, \mathrm{~d} v, \mathrm{~d} r)-\int_{0}^{t} G\left(Z_{s}\right) \mathrm{d} s
\end{aligned}
$$

[Berestycki, Fitipaldi \& Fontobona (2018)]

COMING DOWN FROM INFINITY: III

- Lambert's logistic Continuous-state branching process

$$
\mathrm{d} Z_{t}=b Z_{t} \mathrm{~d} t+\gamma Z_{t} \mathrm{~d} B_{t}-c Z_{t}^{2} \mathrm{~d} t, \quad t \geq 0
$$

Lambert (2005)

- More generally

$$
\begin{aligned}
Z_{t}= & x-a \int_{0}^{t} Z_{s} \mathrm{~d} s+\sigma \int_{0}^{t} \int_{0}^{Z_{s-}} W(\mathrm{~d} s, \mathrm{~d} u) \\
& +\int_{0}^{t} \int_{0}^{Z_{s-}} \int_{0}^{\infty} r \tilde{N}(\mathrm{~d} s, \mathrm{~d} v, \mathrm{~d} r)-\int_{0}^{t} G\left(Z_{s}\right) \mathrm{d} s, \quad t \geq 0
\end{aligned}
$$

[Berestycki, Fitipaldi \& Fontobona (2018)]

Stable Jump-Diffusions

- Focus our study on so-called stable jump diffusions:

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

$>$ Intersted in entrance from $\{+\infty\},\{-\infty\}$ and $\pm \infty:=\{+\infty\} \cup\{-\infty\}$

Stable process

- A stable process lies in the intersection of the class of Lévy process (stationary and independent increments) and the class of self-similar Markov processes: for all $c>0$ and $x \in \mathbb{R}$,

$$
\left(c X_{c}-\alpha_{t}, t \geq 0\right) \text { under } \mathbb{P}_{x} \text { is equal in law to }\left(X_{t}, t \geq 0\right) \text { under } \mathbb{P}_{c x},
$$

where $\left(\mathbb{P}_{x}, x \in \mathbb{R}\right)$ are the probabilities of X and $\alpha \in(0,2)$.
\Rightarrow Semigroup of X is entirely characterised by $\Psi(z):=-\log \mathbb{E}_{0}\left[\mathrm{e}^{\mathrm{i} Z X_{1}}\right]$, satisfying

where $\rho=\mathbb{P}\left(X_{1}>0\right)$.
\rightarrow The Lévv measure associated with Ψ :

where $\hat{\rho}:=1-\rho$. In the case that $\alpha=1$, we take $\rho=1 / 2$, meaning that X corresponds to the Cauchy process.
Convention from now on: Anything with a^{\wedge} is associated to the law of $-X$. E.g. $\hat{\mathbb{P}}_{x}$ is the law of $-X$ with $X_{0}=-x$.
\rightarrow If X has only upwards (resp. downwards) jumps we say X is spectrally positive (resp. negative). If X has jumps in both directions we say X is two-sided. A spectrally positive (resp. negative) stable process with $\alpha<1$ is necessarily

Stable process

- A stable process lies in the intersection of the class of Lévy process (stationary and independent increments) and the class of self-similar Markov processes: for all $c>0$ and $x \in \mathbb{R}$,

$$
\left(c X_{c}-\alpha_{t}, t \geq 0\right) \text { under } \mathbb{P}_{x} \text { is equal in law to }\left(X_{t}, t \geq 0\right) \text { under } \mathbb{P}_{c x},
$$

where $\left(\mathbb{P}_{x}, x \in \mathbb{R}\right)$ are the probabilities of X and $\alpha \in(0,2)$.

- Semigroup of X is entirely characterised by $\Psi(z):=-\log \mathbb{E}_{0}\left[\mathrm{e}^{\mathrm{i} Z X_{1}}\right]$, satisfying

$$
\Psi(z)=|z|^{\alpha}\left(e^{\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{\{z>0\}}+e^{-\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{\{z<0\}}\right), \quad z \in \mathbb{R} .
$$

where $\rho=\mathbb{P}\left(X_{1}>0\right)$.
> The Lévy measure associated with Ψ :

where $\hat{\rho}:=1-\rho$. In the case that $\alpha=1$, we take $\rho=1 / 2$, meaning that X corresponds to the Cauchy process.
Convention from now on: Anything with a^{a} is associated to the law of $\mathrm{E} \mathrm{X} \cdot \mathrm{E}$. g . $\hat{\mathbb{P}}_{x}$ is the law of $-X$ with $X_{0}=-x$.

- If X has only upwards (resp. downwards) jumps we say X is spectrally positive (resp. negative). If X has jumps in both directions we say X is two-sided. A spectrally positive (resp. negative) stable process with $\alpha<1$ is necessarily

STABLE PROCESS

- A stable process lies in the intersection of the class of Lévy process (stationary and independent increments) and the class of self-similar Markov processes: for all $c>0$ and $x \in \mathbb{R}$,

$$
\left(c X_{c}-\alpha_{t}, t \geq 0\right) \text { under } \mathbb{P}_{x} \text { is equal in law to }\left(X_{t}, t \geq 0\right) \text { under } \mathbb{P}_{c x},
$$

where $\left(\mathbb{P}_{x}, x \in \mathbb{R}\right)$ are the probabilities of X and $\alpha \in(0,2)$.

- Semigroup of X is entirely characterised by $\Psi(z):=-\log \mathbb{E}_{0}\left[\mathrm{e}^{\mathrm{i} Z X_{1}}\right]$, satisfying

$$
\Psi(z)=|z|^{\alpha}\left(e^{\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{\{z>0\}}+e^{-\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{\{z<0\}}\right), \quad z \in \mathbb{R} .
$$

where $\rho=\mathbb{P}\left(X_{1}>0\right)$.

- The Lévy measure associated with Ψ :

$$
\frac{\Pi(\mathrm{d} x)}{\mathrm{d} x}=\Gamma(1+\alpha) \frac{\sin (\pi \alpha \rho)}{\pi} \frac{1}{x^{1+\alpha}} \mathbf{1}_{(x>0)}+\Gamma(1+\alpha) \frac{\sin (\pi \alpha \hat{\rho})}{\pi} \frac{1}{|x|^{1+\alpha}} \mathbf{1}_{(x<0)},
$$

where $\hat{\rho}:=1-\rho$. In the case that $\alpha=1$, we take $\rho=1 / 2$, meaning that X corresponds to the Cauchy process.
\qquad

STABLE PROCESS

- A stable process lies in the intersection of the class of Lévy process (stationary and independent increments) and the class of self-similar Markov processes: for all $c>0$ and $x \in \mathbb{R}$,

$$
\left(c X_{c-\alpha_{t}}, t \geq 0\right) \text { under } \mathbb{P}_{x} \text { is equal in law to }\left(X_{t}, t \geq 0\right) \text { under } \mathbb{P}_{c x},
$$

where $\left(\mathbb{P}_{x}, x \in \mathbb{R}\right)$ are the probabilities of X and $\alpha \in(0,2)$.

- Semigroup of X is entirely characterised by $\Psi(z):=-\log \mathbb{E}_{0}\left[\mathrm{e}^{\mathrm{i} Z X_{1}}\right]$, satisfying

$$
\Psi(z)=|z|^{\alpha}\left(e^{\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{\{z>0\}}+e^{-\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{\{z<0\}}\right), \quad z \in \mathbb{R} .
$$

where $\rho=\mathbb{P}\left(X_{1}>0\right)$.

- The Lévy measure associated with Ψ :

$$
\frac{\Pi(\mathrm{d} x)}{\mathrm{d} x}=\Gamma(1+\alpha) \frac{\sin (\pi \alpha \rho)}{\pi} \frac{1}{x^{1+\alpha}} \mathbf{1}_{(x>0)}+\Gamma(1+\alpha) \frac{\sin (\pi \alpha \hat{\rho})}{\pi} \frac{1}{|x|^{1+\alpha}} \mathbf{1}_{(x<0)}
$$

where $\hat{\rho}:=1-\rho$. In the case that $\alpha=1$, we take $\rho=1 / 2$, meaning that X corresponds to the Cauchy process.
Convention from now on: Anything with a^{\wedge} is associated to the law of $-X$. E.g. $\hat{\mathbb{P}}_{x}$ is the law of $-X$ with $X_{0}=-x$.
If X has only upwards (resp. downwards) jumps we say X is spectrally positive (resp. negative). If X has jumps in both directions we say X is two-sided. A spectrally positive (resp. negative) stable process with $\alpha<1$ is necessarily increasing (resp. decreasing).

STABLE PROCESS

- A stable process lies in the intersection of the class of Lévy process (stationary and independent increments) and the class of self-similar Markov processes: for all $c>0$ and $x \in \mathbb{R}$,

$$
\left(c X_{c}-\alpha_{t}, t \geq 0\right) \text { under } \mathbb{P}_{x} \text { is equal in law to }\left(X_{t}, t \geq 0\right) \text { under } \mathbb{P}_{c x},
$$

where $\left(\mathbb{P}_{x}, x \in \mathbb{R}\right)$ are the probabilities of X and $\alpha \in(0,2)$.

- Semigroup of X is entirely characterised by $\Psi(z):=-\log \mathbb{E}_{0}\left[\mathrm{e}^{\mathrm{i} z X_{1}}\right]$, satisfying

$$
\Psi(z)=|z|^{\alpha}\left(e^{\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{\{z>0\}}+e^{-\pi \mathrm{i} \alpha\left(\frac{1}{2}-\rho\right)} \mathbf{1}_{\{z<0\}}\right), \quad z \in \mathbb{R}
$$

where $\rho=\mathbb{P}\left(X_{1}>0\right)$.

- The Lévy measure associated with Ψ :

$$
\frac{\Pi(\mathrm{d} x)}{\mathrm{d} x}=\Gamma(1+\alpha) \frac{\sin (\pi \alpha \rho)}{\pi} \frac{1}{x^{1+\alpha}} \mathbf{1}_{(x>0)}+\Gamma(1+\alpha) \frac{\sin (\pi \alpha \hat{\rho})}{\pi} \frac{1}{|x|^{1+\alpha}} \mathbf{1}_{(x<0)}
$$

where $\hat{\rho}:=1-\rho$. In the case that $\alpha=1$, we take $\rho=1 / 2$, meaning that X corresponds to the Cauchy process.
Convention from now on: Anything with a^ is associated to the law of $-X$. E.g. $\hat{\mathbb{P}}_{x}$ is the law of $-X$ with $X_{0}=-x$.

- If X has only upwards (resp. downwards) jumps we say X is spectrally positive (resp. negative). If X has jumps in both directions we say X is two-sided. A spectrally positive (resp. negative) stable process with $\alpha<1$ is necessarily increasing (resp. decreasing).

SDE

Proposition (Zanzotto (2002), Döring \& K. (2018))

Suppose that σ is strictly positive. Then there is a unique (possibly exploding) weak solution Z to the SDE

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

and Z can be expressed as time-change under \mathbb{P}_{z} via

$$
Z_{t}:=X_{\tau_{t}}, \quad t<T,
$$

where

$$
\tau_{t}=\inf \left\{s>0: \int_{0}^{s} \sigma\left(X_{s}\right)^{-\alpha} \mathrm{d} s>t\right\}
$$

and the finite or infinite explosion time is $T=\int_{0}^{\infty} \sigma\left(X_{s}\right)^{-\alpha} \mathrm{d} s$.
The law of the unique solution Z will be denoted by $\mathrm{P}_{z}, z \in \mathbb{R}$.

[^1]
SDE

Proposition (Zanzotto (2002), Döring \& K. (2018))

Suppose that σ is strictly positive. Then there is a unique (possibly exploding) weak solution Z to the SDE

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

and Z can be expressed as time-change under \mathbb{P}_{z} via

$$
Z_{t}:=X_{\tau_{t}}, \quad t<T,
$$

where

$$
\tau_{t}=\inf \left\{s>0: \int_{0}^{s} \sigma\left(X_{s}\right)^{-\alpha} \mathrm{d} s>t\right\}
$$

and the finite or infinite explosion time is $T=\int_{0}^{\infty} \sigma\left(X_{s}\right)^{-\alpha} \mathrm{d} s$.
The law of the unique solution Z will be denoted by $\mathrm{P}_{z}, z \in \mathbb{R}$.
Technical point: when $\alpha \in(1,2)$, the origin is a recurrent point, hence as $\sigma>0$, $T=\infty$.
However, when $\alpha \in(1,2), \mathrm{k}:=\inf \left\{t>0: Z_{t}=0\right\}$ is almost surely finite (irrespective

SDE

Proposition (Zanzotto (2002), Döring \& K. (2018))

Suppose that σ is strictly positive. Then there is a unique (possibly exploding) weak solution Z to the SDE

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

and Z can be expressed as time-change under \mathbb{P}_{z} via

$$
Z_{t}:=X_{\tau_{t}}, \quad t<T,
$$

where

$$
\tau_{t}=\inf \left\{s>0: \int_{0}^{s} \sigma\left(X_{s}\right)^{-\alpha} \mathrm{d} s>t\right\}
$$

and the finite or infinite explosion time is $T=\int_{0}^{\infty} \sigma\left(X_{s}\right)^{-\alpha} \mathrm{d} s$.
The law of the unique solution Z will be denoted by $\mathrm{P}_{z}, z \in \mathbb{R}$.
Technical point: when $\alpha \in(1,2)$, the origin is a recurrent point, hence as $\sigma>0$, $T=\infty$.
However, when $\alpha \in(1,2), \mathrm{k}:=\inf \left\{t>0: Z_{t}=0\right\}$ is almost surely finite (irrespective of Z_{0}).

Entrance at infinity

Definition

We say that $\pm \infty$ is a (continuous) entrance point for a Feller process Y on \mathbb{R} with transition semigroup \mathcal{P} (with probabilities $\mathrm{P}_{x}, x \in \mathbb{R}$) if
(i) the point $\pm \infty$ is not accessible,
(ii) the semigroup \mathcal{P} can be extended to a Feller semigroup $\overline{\mathcal{P}}$ on $C_{b}(\overline{\mathbb{R}})$,
(iii) there is continuous entrance in the sense that

$$
\mathrm{P}_{ \pm \infty}\left(\lim _{t \downarrow 0}\left|Y_{t}\right|=\infty, \limsup _{t \downarrow 0} Y_{t}=+\infty, \liminf _{t \downarrow 0} Y_{t}=-\infty\right)=1
$$

Analogously, we define entrance from $-\infty$ as extension to $C_{b}(\underline{\mathbb{R}})$ and entrance from $+\infty$ as extension to $C_{b}(\overline{\mathbb{R}})=C(\overline{\mathbb{R}})$.

ENTRANCE AT INFINITY

Theorem (Döring \& K. (2018))

Suppose that σ is uniformly bounded away from the origin and let

$$
I^{\sigma, \alpha}(A)=\int_{A} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x \quad \text { and } \quad I^{\sigma, 1}=\int_{\mathbb{R}} \sigma(x)^{-1} \log |x| \mathrm{d} x
$$

Then the following table exhaustively summarizes entrance points at infinity of

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

Necessary and sufficient conditions for entrance from infinite boundary points				
α	Jumps	$+\infty$	$-\infty$	$\pm \infty$
< 1	only \downarrow only \uparrow $\uparrow \& \downarrow$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$
= 1	$\uparrow \& \downarrow$	x	x	\checkmark iff $I^{\sigma, 1}<\infty$
> 1	only \downarrow only \uparrow $\uparrow \& \downarrow$	$\begin{aligned} & x \\ & \checkmark_{x} \text { iff } I^{\sigma, \alpha}\left(\mathbb{R}_{+}\right)<\infty \\ & x \end{aligned}$	$\begin{aligned} & \hline \hline{ }^{\text {iff } I^{\sigma, \alpha}\left(\mathbb{R}_{-}\right)<\infty} \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline \hline x \\ & x \\ & V_{\text {iff } I^{\sigma, \alpha}}^{(\mathbb{R})<\infty} \\ & \hline \end{aligned}$
$=2$	none	\checkmark iff $I^{\sigma, 2}\left(\mathbb{R}_{+}\right)<\infty$	\checkmark iff $I^{\sigma, 2}\left(\mathbb{R}_{-}\right)<\infty$	x

EnTrAnce AT INFINITY

Theorem (Döring \& K. (2018))

Suppose that σ is uniformly bounded away from the origin and let

$$
I^{\sigma, \alpha}(A)=\int_{A} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x \quad \text { and } \quad I^{\sigma, 1}=\int_{\mathbb{R}} \sigma(x)^{-1} \log |x| \mathrm{d} x .
$$

Then the following table exhaustively summarizes entrance points at infinity of

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

Necessary and sufficient conditions for entrance from infinite boundary points				
α	Jumps	$+\infty$	$-\infty$	$\pm \infty$
< 1	only \downarrow only \uparrow $\uparrow \& \downarrow$	$\begin{aligned} & \hline x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \end{aligned}$
$=1$	$\uparrow \& \downarrow$	x	x	\checkmark iff $I^{\sigma, 1}<\infty$
> 1	only \downarrow only \uparrow $\uparrow \& \downarrow$	$\begin{aligned} & \hline x \\ & \sqrt{\text { iff } I^{\sigma, \alpha}\left(\mathbb{R}_{+}\right)<\infty} \\ & x \end{aligned}$	$\begin{aligned} & \hline \overline{V_{i f f} I^{\sigma, \alpha}\left(\mathbb{R}_{-}\right)<\infty} \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & \jmath_{\text {iff } I^{\sigma, \alpha}}(\mathbb{R})<\infty \end{aligned}$
$=2$	none	\checkmark iff $I^{\sigma, 2}\left(\mathbb{R}_{+}\right)<\infty$	\checkmark iff $I^{\sigma, 2}\left(\mathbb{R}_{-}\right)<\infty$	x

Henceforth concentrate on the case of two-sided jumps.

RIESZ-BOGDAN-ŻAK TRANSFORM

Convention from now on: Anything with a^{\wedge} is associated to the law of - X. E.g. $\hat{\mathbb{P}}_{x}$ is the law of $-X$ with $X_{0}=-x$.

Theorem (Bogdan \& Żak (2010), K. (2016))
Suppose that X is a stable process with two-sided jumps. Define

$$
\eta(t)=\inf \left\{s>0: \int_{0}^{s}\left|X_{u}\right|^{-2 a} d u>t\right\}, \quad t \geq 0
$$

Then, for all $x \in \mathbb{R} \backslash\{0\}$,

$$
\frac{1}{X_{\eta(t)}},
$$

under $\hat{\mathbb{P}}_{x}$ a self-similar Markov process equal in law to $\left(X, \mathbb{P}_{1 / x}^{\circ}\right)$, where

$$
\left.\frac{d m_{00}}{d P_{X}}\right|_{J_{1}}=\frac{h\left(\mathrm{X}_{1}\right)}{h_{1}(x)} 1_{(1<t(0)}
$$

$$
h(z)=(\sin (\pi \alpha \rho)+\sin (\pi \alpha \hat{\rho})-(\sin (\pi \alpha \rho)-\sin (\pi \alpha \hat{\rho})) \operatorname{sgn}(z))|z|^{\alpha-1}
$$

and $\mathcal{F}_{t}:=\sigma\left(X_{s}: s \leq t\right), t \geq 0$.

RIESZ-BOGDAN-ŻAK TRANSFORM

Convention from now on: Anything with a^{\wedge} is associated to the law of $-X$. E.g. $\hat{\mathbb{P}}_{x}$ is the law of $-X$ with $X_{0}=-x$.

Theorem (Bogdan \& Żak (2010), K. (2016))

Suppose that X is a stable process with two-sided jumps. Define

$$
\eta(t)=\inf \left\{s>0: \int_{0}^{s}\left|X_{u}\right|^{-2 \alpha} \mathrm{~d} u>t\right\}, \quad t \geq 0
$$

Then, for all $x \in \mathbb{R} \backslash\{0\}$,

$$
\frac{1}{X_{\eta(t)}}, \quad t \geq 0
$$

under $\hat{\mathbb{P}}_{x}$ a self-similar Markov process equal in law to $\left(X, \mathbb{P}_{1 / x}^{\circ}\right)$, where

$$
\begin{gathered}
\left.\frac{\mathrm{d} \mathbb{P}_{x}^{o}}{\mathrm{~d} \mathbb{P}_{x}}\right|_{\mathcal{F}_{t}}=\frac{h\left(X_{t}\right)}{h(x)} \mathbf{1}_{(t<\tau\{0\})} \\
h(z)=(\sin (\pi \alpha \rho)+\sin (\pi \alpha \hat{\rho})-(\sin (\pi \alpha \rho)-\sin (\pi \alpha \hat{\rho})) \operatorname{sgn}(z))|z|^{\alpha-1}
\end{gathered}
$$

and $\mathcal{F}_{t}:=\sigma\left(X_{s}: s \leq t\right), t \geq 0$.

Stable conditioned to avoid the origin

\Rightarrow Recalling that $\alpha \in(1,2),|x|^{\alpha-1}$ as a Doob h-function, rewards paths that are far from the origin $(|x| \gg 1)$ and punishes paths that stray too close to the origin $(|x| \ll 1)$.

```
> In fact it has been shown [Chaumont, Panti & Rivero (2013), Kuznetsov, K., Pardo, Watson (2014)]
that (X, 単),y\not=0, can be identified by the limit
```

$$
\mathbb{P}_{y}^{0}(A)=\lim _{s \rightarrow \infty} \mathbb{P}_{y}\left(A \mid T_{0}>t+s\right),
$$

for $A \in \mathcal{F}_{t}$ and $T_{0}=\inf \left\{t>0: X_{t}=0\right\}$.

\rightarrow (WARNING! Ultra specialist information): As X is a point recurrent process, there exists an excursion measure $n(\cdot)$ for the Poisson random field of excursions from the origin, from which one can construct (up to a constant)

$$
\mathbb{P}_{0}^{\circ}\left(X_{t}^{\circ} \in \mathrm{d} z\right):=h(z) n\left(X_{t} \in \mathrm{~d} z, t<\zeta\right)
$$

consistently with $\mathbb{P}_{y}^{0}, y \neq 0$, where ζ is the excursion lifetime and

$$
h_{h}(z)=(\sin (\pi \alpha \rho)+\sin (\pi \alpha \hat{\rho})-(\sin (\pi \alpha \rho)-\sin (\pi \alpha \hat{\rho})) \operatorname{sgn}(z))|z|^{\alpha-1}
$$

\rightarrow (Executive summary of last point): The limit

$$
m_{0} 0:=\lim _{|y| \rightarrow 0}^{m o y}
$$

Stable conditioned to avoid the origin

\Rightarrow Recalling that $\alpha \in(1,2),|x|^{\alpha-1}$ as a Doob h-function, rewards paths that are far from the origin $(|x| \gg 1)$ and punishes paths that stray too close to the origin $(|x| \ll 1)$.

- In fact it has been shown [Chaumont, Panti \& Rivero (2013), Kuznetsov, K., Pardo, Watson (2014)] that $\left(X, \mathbb{P}_{y}^{\circ}\right), y \neq 0$, can be identified by the limit

$$
\mathbb{P}_{y}^{\circ}(A)=\lim _{s \rightarrow \infty} \mathbb{P}_{y}\left(A \mid T_{0}>t+s\right)
$$

for $A \in \mathcal{F}_{t}$ and $T_{0}=\inf \left\{t>0: X_{t}=0\right\}$.
(WARNING! Ultra specialist information): As X is a point recurrent process, there exists an excursion measure $n(\cdot)$ for the Poisson random field of excursions from the origin, from which one can construct (up to a constant)

$$
\mathbb{P}_{0}^{\circ}\left(X_{t}^{\circ} \in \mathrm{d} z\right):=h(z) n\left(X_{t} \in \mathrm{~d} z, t<\zeta\right)
$$

consistently with $\mathbb{P}_{y}^{\circ}, y \neq 0$, where ζ is the excursion lifetime and

$$
h(z)=(\sin (\operatorname{tap})+\sin (-\alpha \hat{p})-(\sin (\operatorname{tap})-\sin (-\alpha \hat{p})) \operatorname{sgn}(z))|z|^{a-1}
$$

- (Executive summary of last point): The limit

Stable conditioned to avoid the origin

- Recalling that $\alpha \in(1,2),|x|^{\alpha-1}$ as a Doob h-function, rewards paths that are far from the origin $(|x| \gg 1)$ and punishes paths that stray too close to the origin $(|x| \ll 1)$.
- In fact it has been shown [Chaumont, Panti \& Rivero (2013), Kuznetsov, K., Pardo, Watson (2014)] that $\left(X, \mathbb{P}_{y}^{\circ}\right), y \neq 0$, can be identified by the limit

$$
\mathbb{P}_{y}^{\circ}(A)=\lim _{s \rightarrow \infty} \mathbb{P}_{y}\left(A \mid T_{0}>t+s\right)
$$

for $A \in \mathcal{F}_{t}$ and $T_{0}=\inf \left\{t>0: X_{t}=0\right\}$.

- (WARNING! Ultra specialist information): As X is a point recurrent process, there exists an excursion measure $n(\cdot)$ for the Poisson random field of excursions from the origin, from which one can construct (up to a constant)

$$
\mathbb{P}_{0}^{\circ}\left(X_{t}^{\circ} \in \mathrm{d} z\right):=h(z) n\left(X_{t} \in \mathrm{~d} z, t<\zeta\right)
$$

consistently with $\mathbb{P}_{y}^{\circ}, y \neq 0$, where ζ is the excursion lifetime and

$$
h(z)=(\sin (\pi \alpha \rho)+\sin (\pi \alpha \hat{\rho})-(\sin (\pi \alpha \rho)-\sin (\pi \alpha \hat{\rho})) \operatorname{sgn}(z))|z|^{\alpha-1}
$$

- (Executive summary of last point): The limit

Stable conditioned to avoid the origin

- Recalling that $\alpha \in(1,2),|x|^{\alpha-1}$ as a Doob h-function, rewards paths that are far from the origin $(|x| \gg 1)$ and punishes paths that stray too close to the origin $(|x| \ll 1)$.
- In fact it has been shown [Chaumont, Panti \& Rivero (2013), Kuznetsov, K., Pardo, Watson (2014)] that $\left(X, \mathbb{P}_{y}^{\circ}\right), y \neq 0$, can be identified by the limit

$$
\mathbb{P}_{y}^{\circ}(A)=\lim _{s \rightarrow \infty} \mathbb{P}_{y}\left(A \mid T_{0}>t+s\right)
$$

for $A \in \mathcal{F}_{t}$ and $T_{0}=\inf \left\{t>0: X_{t}=0\right\}$.

- (WARNING! Ultra specialist information): As X is a point recurrent process, there exists an excursion measure $n(\cdot)$ for the Poisson random field of excursions from the origin, from which one can construct (up to a constant)

$$
\mathbb{P}_{0}^{\circ}\left(X_{t}^{\circ} \in \mathrm{d} z\right):=h(z) n\left(X_{t} \in \mathrm{~d} z, t<\zeta\right)
$$

consistently with $\mathbb{P}_{y}^{\circ}, y \neq 0$, where ζ is the excursion lifetime and

$$
h(z)=(\sin (\pi \alpha \rho)+\sin (\pi \alpha \hat{\rho})-(\sin (\pi \alpha \rho)-\sin (\pi \alpha \hat{\rho})) \operatorname{sgn}(z))|z|^{\alpha-1}
$$

- (Executive summary of last point): The limit

$$
\mathbb{P}_{0}^{\circ}:=\lim _{|y| \rightarrow 0} \mathbb{P}_{y}^{\circ}
$$

is well defined in the sense of Skorohod convergence.

Time change and Riesz-Bogdan-Żak

Remember there is a unique weak solution Z to the SDE

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

and Z can be expressed as time-change under \mathbb{P}_{z} via $Z_{t}:=X_{\tau_{t}}, t<T$, where

$$
\tau_{t}=\inf \left\{s>0: \int_{0}^{s} \sigma\left(X_{s}\right)^{-\alpha} \mathrm{d} s>t\right\}
$$

Proposition (Döring \& K. (2018))
Set

$$
\beta(x)=\sigma(1 / x)^{-\alpha}|x|^{-2 \alpha}, \quad x \in \mathbb{R} \backslash\{0\} .
$$

Define the time-space transformation

$$
Z_{i}^{*}=\frac{1}{\hat{X}_{\theta_{1}}}, \quad t<\int_{0}^{\infty} \beta\left(\hat{X}_{I I}^{0}\right) d u
$$

where

$$
\theta_{t}=\inf \left\{s>0: \int_{0}^{s} \beta\left(\hat{X}_{u}^{\circ}\right) d u>t\right\}
$$

If \hat{X}° has law $\hat{\mathbb{P}}_{1 / x^{\prime}}^{\circ} x \neq 0$, then Z^{\dagger} is equal in law to the unique solution to the SDE

Time change and Riesz-Bogdan-Żak

Remember there is a unique weak solution Z to the SDE

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

and Z can be expressed as time-change under \mathbb{P}_{z} via $Z_{t}:=X_{\tau_{t}}, t<T$, where

$$
\tau_{t}=\inf \left\{s>0: \int_{0}^{s} \sigma\left(X_{s}\right)^{-\alpha} \mathrm{d} s>t\right\}
$$

Proposition (Döring \& K. (2018))

Set

$$
\beta(x)=\sigma(1 / x)^{-\alpha}|x|^{-2 \alpha}, \quad x \in \mathbb{R} \backslash\{0\} .
$$

Define the time-space transformation

$$
Z_{t}^{\dagger}=\frac{1}{\hat{X}_{\theta_{t}}^{\circ}}, \quad t<\int_{0}^{\infty} \beta\left(\hat{X}_{u}^{\circ}\right) d u
$$

where

$$
\theta_{t}=\inf \left\{s>0: \int_{0}^{s} \beta\left(\hat{X}_{u}^{\circ}\right) d u>t\right\}
$$

If \hat{X}° has law $\hat{\mathbb{P}}_{1 / x^{\prime}}^{\circ} x \neq 0$, then Z^{\dagger} is equal in law to the unique solution to the SDE under \mathbb{P}_{x} up to killing at the origin.

Sufficiency (Heuristic)

\Rightarrow We want to show that $\int_{\mathbb{R}} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x<\infty$ implies that $\pm \infty$ is an entrance point for

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

> Heuristically we want to have $Z={ }^{d} X_{\tau}$. enter at $\pm \infty$

- Which is to have $1 / Z$. (or indeed $1 / Z!$) enter at 0 , crossing the origin infinitely often for arbitrarily small times
- Which is to have \hat{X}_{θ}°, enter at 0 , crossing the origin infinitely often for arbitrarily small times
- Which will hap pen, since X° can enter at 0 , providing we can control θ.
- Needs weak convergence of $\int_{0}^{t} \beta\left(\hat{X}_{u}^{\circ}\right) d u$ as $\left|\hat{X}_{0}^{\circ}\right| \rightarrow 0$.
- Suffices to check

Sufficiency (Heuristic)

\Rightarrow We want to show that $\int_{\mathbb{R}} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x<\infty$ implies that $\pm \infty$ is an entrance point for

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

- Heuristically we want to have $Z={ }^{d} X_{\tau}$. enter at $\pm \infty$
- Which is to have $1 / Z$. (or indeed $1 / Z$.) enter at 0 , crossing the origin infinitely often for arbitrarily small times
\Rightarrow Which is to have \hat{X}_{0}° enter at 0 , crossing the origin infinitely often for arbitrarily small times
- Which will happen, since \hat{X}° can enter at 0 , providing we can control θ.
\Rightarrow Needs weak convergence of $\int_{0}^{t} \beta\left(\hat{X}_{, i}^{\circ}\right) d u$ as $\left|\hat{X}_{0}^{\circ}\right| \rightarrow 0$.
- Suffices to check

Sufficiency (Heuristic)

\Rightarrow We want to show that $\int_{\mathbb{R}} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x<\infty$ implies that $\pm \infty$ is an entrance point for

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

- Heuristically we want to have $Z={ }^{d} X_{\tau}$. enter at $\pm \infty$
- Which is to have $1 / Z$. (or indeed $1 / Z_{!}^{\dagger}$) enter at 0 , crossing the origin infinitely often for arbitrarily small times
* Which is to have \hat{X}_{θ}°. enter at 0 , crossing the origin infinitely often for arbitrarily small times
$>$ Which will hap pen, since X° can enter at 0 , providing we can control θ
\Rightarrow Needs weak convergence of $\int_{0}^{t} \beta\left(\hat{X}_{u}^{\circ}\right) d u$ as $\left|\hat{X}_{0}^{\circ}\right| \rightarrow 0$.
- Suffices to check

Sufficiency (Heuristic)

- We want to show that $\int_{\mathbb{R}} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x<\infty$ implies that $\pm \infty$ is an entrance point for

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

- Heuristically we want to have $Z={ }^{d} X_{\tau}$. enter at $\pm \infty$
- Which is to have $1 / Z$. (or indeed $1 / Z_{!}^{\dagger}$) enter at 0 , crossing the origin infinitely often for arbitrarily small times
- Which is to have \hat{X}_{θ}°, enter at 0 , crossing the origin infinitely often for arbitrarily small times
- Which will happen, since \hat{X}° can enter at 0 , providing we can control θ.
\Rightarrow Needs weak convergence of $\int_{0}^{t} \beta\left(\hat{X}_{u}^{\circ}\right) d u$ as $\left|\hat{X}_{0}^{\circ}\right| \rightarrow 0$.
- Suffices to check

Sufficiency (Heuristic)

- We want to show that $\int_{\mathbb{R}} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x<\infty$ implies that $\pm \infty$ is an entrance point for

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

- Heuristically we want to have $Z={ }^{d} X_{\tau}$. enter at $\pm \infty$
- Which is to have $1 / Z$. (or indeed $1 / Z_{!}^{\dagger}$) enter at 0 , crossing the origin infinitely often for arbitrarily small times
- Which is to have \hat{X}_{θ}°, enter at 0 , crossing the origin infinitely often for arbitrarily small times
- Which will happen, since \hat{X}° can enter at 0 , providing we can control θ.
\rightarrow Suffices to check

Sufficiency (Heuristic)

- We want to show that $\int_{\mathbb{R}} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x<\infty$ implies that $\pm \infty$ is an entrance point for

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

- Heuristically we want to have $Z={ }^{d} X_{\tau}$. enter at $\pm \infty$
- Which is to have $1 / Z$. (or indeed $1 / Z_{!}^{\dagger}$) enter at 0 , crossing the origin infinitely often for arbitrarily small times
- Which is to have \hat{X}_{θ}°, enter at 0 , crossing the origin infinitely often for arbitrarily small times
- Which will happen, since \hat{X}° can enter at 0 , providing we can control θ.
- Needs weak convergence of $\int_{0}^{t} \beta\left(\hat{X}_{u}^{\circ}\right) d u$ as $\left|\hat{X}_{0}^{\circ}\right| \rightarrow 0$.

[^2]

Sufficiency (Heuristic)

- We want to show that $\int_{\mathbb{R}} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x<\infty$ implies that $\pm \infty$ is an entrance point for

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

- Heuristically we want to have $Z={ }^{d} X_{\tau}$. enter at $\pm \infty$
- Which is to have $1 / Z$. (or indeed $1 / Z_{!}^{\dagger}$) enter at 0 , crossing the origin infinitely often for arbitrarily small times
- Which is to have \hat{X}_{θ}° enter at 0 , crossing the origin infinitely often for arbitrarily small times
- Which will happen, since \hat{X}° can enter at 0 , providing we can control θ.
- Needs weak convergence of $\int_{0}^{t} \beta\left(\hat{X}_{u}^{\circ}\right) d u$ as $\left|\hat{X}_{0}^{\circ}\right| \rightarrow 0$.
- Suffices to check

$$
\lim _{|x| \rightarrow 0} \hat{\mathbb{E}}_{x}^{\circ}\left[\int_{0}^{t} \beta\left(\hat{X}_{u}^{\circ}\right) d u\right]<\lim _{|x| \rightarrow 0} \hat{\mathbb{E}}_{x}^{\circ}\left[\int_{0}^{\infty} \beta\left(\hat{X}_{u}^{\circ}\right) d u\right]<\infty
$$

Sufficiency (Heuristic)

Writing $G_{\hat{X}^{\circ}}(x, \mathrm{~d} y)$ for the resolvent of \hat{X}° and $G_{\hat{X}^{\dagger}}(x, \mathrm{~d} y)$ for the resolvent of X killed on first hitting the origin,

$$
\begin{aligned}
& \hat{\mathbb{E}}_{x}^{\circ}\left[\int_{0}^{\infty} \beta\left(\hat{X}_{u}^{\circ}\right) d u\right] \\
& =\int_{\mathbb{R}} G_{\hat{X}^{\circ}}(x, \mathrm{~d} y) \sigma(1 / y)^{-\alpha}|y|^{-2 \alpha} \\
& =\int_{\mathbb{R}} G_{\hat{X}^{\dagger}}(x, \mathrm{~d} y) \frac{\hat{h}(y)}{\hat{h}(x)} \sigma(1 / y)^{-\alpha}|y|^{-2 \alpha} \\
& \approx \int_{\mathbb{R}}\left(|y|^{\alpha-1} s(y)-|y-x|^{\alpha-1} s(y-x)+|x|^{\alpha-1} s(-x)\right) \frac{|y|^{\alpha-1}}{|x|^{\alpha-1}} \sigma(1 / y)^{-\alpha}|y|^{-2 \alpha}
\end{aligned}
$$

which is finite if

$$
\int_{\mathbb{R}} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x<\infty
$$

Note, for a Markov process Y, with probabilities $\mathrm{P}_{x}, x \in E$,

$$
G_{Y}(x, \mathrm{~d} y)=\int_{0}^{\infty} \mathrm{P}_{x}\left(Y_{t} \in \mathrm{~d} y\right) \mathrm{d} t, \quad x, y \in E .
$$

Hunt-Nagasawa Duality

Proposition (Döring \& K. (2018))

Suppose that \hat{X}° has probabilities $\hat{\mathbb{P}}_{x}^{\circ}, x \in \mathbb{R}$. Define $\hat{Z}_{t}^{\circ}=\hat{X}_{\iota t}^{\circ}, t \geq 0$, where the time-change ι is given by

$$
\iota_{t}=\inf \left\{s>0: \int_{0}^{s} \sigma\left(\hat{X}_{s}^{\circ}\right)^{-\alpha} d s>t\right\}, \quad t<\int_{0}^{\infty} \sigma\left(\hat{X}_{s}^{\circ}\right)^{-\alpha} d s
$$

Recall that Z has the law of the unique weak solution to the SDE and Z^{\dagger} is the same process killed on first hitting 0 .
If $\pm \infty$ is an entrance point for Z, then the time reversed process $Z_{(k-t)-}^{\dagger}, t \leq k$, under $P_{ \pm \infty}$ is a time-homogenous Markov process with transition semigroup which agrees with that of \hat{Z}°, where k is any almost surely finite last passage time for Z^{\dagger} (e.g. $\mathrm{k}=\inf \left\{t>0: Z_{t}^{\dagger}=0\right\}$).

[^3]where

Hunt-Nagasawa Duality

Proposition (Döring \& K. (2018))

Suppose that \hat{X}° has probabilities $\hat{\mathbb{P}}_{x}^{\circ}, x \in \mathbb{R}$. Define $\hat{Z}_{t}^{\circ}=\hat{X}_{\iota t}^{\circ}, t \geq 0$, where the time-change ι is given by

$$
\iota_{t}=\inf \left\{s>0: \int_{0}^{s} \sigma\left(\hat{X}_{s}^{\circ}\right)^{-\alpha} d s>t\right\}, \quad t<\int_{0}^{\infty} \sigma\left(\hat{X}_{s}^{\circ}\right)^{-\alpha} d s
$$

Recall that Z has the law of the unique weak solution to the SDE and Z^{\dagger} is the same process killed on first hitting 0 .
If $\pm \infty$ is an entrance point for Z, then the time reversed process $Z_{(k-t)-}^{\dagger}, t \leq k$, under $P_{ \pm \infty}$ is a time-homogenous Markov process with transition semigroup which agrees with that of \hat{Z}°, where k is any almost surely finite last passage time for Z^{\dagger} (e.g. $\mathrm{k}=\inf \left\{t>0: Z_{t}^{\dagger}=0\right\}$).

Remark on proof: Important step is to prove weak duality:

$$
p_{Z^{\dagger}}(t, y, \mathrm{~d} z) \mu(\mathrm{d} y)=p_{\hat{Z}^{\circ}}(t, z, \mathrm{~d} y) \mu(\mathrm{d} z)
$$

where

$$
\mu(d y)=\int_{\mathbb{R}} \nu(\mathrm{d} x) G_{\hat{Z}^{\circ}}(x, \mathrm{~d} y)
$$

Hunt-Nagasawa Duality

Proposition (Döring \& K. (2018))

Suppose that \hat{X}° has probabilities $\hat{\mathbb{P}}_{x}^{\circ}, x \in \mathbb{R}$. Define $\hat{Z}_{t}^{\circ}=\hat{X}_{\iota t}^{\circ}, t \geq 0$, where the time-change ι is given by

$$
\iota_{t}=\inf \left\{s>0: \int_{0}^{s} \sigma\left(\hat{X}_{s}^{\circ}\right)^{-\alpha} d s>t\right\}, \quad t<\int_{0}^{\infty} \sigma\left(\hat{X}_{s}^{\circ}\right)^{-\alpha} d s
$$

Recall that Z has the law of the unique weak solution to the SDE and Z^{\dagger} is the same process killed on first hitting 0 .
If $\pm \infty$ is an entrance point for Z, then the time reversed process $Z_{(k-t)-}^{\dagger}, t \leq k$, under $P_{ \pm \infty}$ is a time-homogenous Markov process with transition semigroup which agrees with that of \hat{Z}°, where k is any almost surely finite last passage time for Z^{\dagger} (e.g. $\mathrm{k}=\inf \left\{t>0: Z_{t}^{\dagger}=0\right\}$).

Remark on proof: Important step is to prove weak duality:

$$
p_{Z^{\dagger}}(t, y, \mathrm{~d} z) \mu(\mathrm{d} y)=p_{\hat{Z}^{\circ}}(t, z, \mathrm{~d} y) \mu(\mathrm{d} z)
$$

where

$$
\mu(d y)=\int_{\mathbb{R}} \nu(\mathrm{d} x) G_{\hat{Z}^{\circ}}(x, \mathrm{~d} y)=\sigma(x)^{-\alpha} h(x) \mathrm{d} x
$$

and $G_{\hat{Z}}$ o is the resolvent of \hat{Z}°

Hunt-Nagasawa Duality

The time reversed process $Z_{(k-t)-}^{\dagger}, t \leq k$, under $\mathrm{P}_{ \pm \infty}$ is a time-homogenous Markov process with transition semigroup which agrees with that of \hat{Z}°, where k is any almost surely finite last passage time for Z^{\dagger} (e.g. $k=\inf \left\{t>0: Z_{t}^{\dagger}=0\right\}$)

Necessity (Heuristic)

- We want to show that if $\pm \infty$ is an entrance point for

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

then necessarily $\int_{\mathbb{R}} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x<\infty$.

- If $\pm \infty$ is an entrance point, then Z can be seen as a Feller process on the compact space $\overline{\mathbb{R}}$.
- Getoor's equivalent definitions of transience:
> On the one hand, last exit from any compact set is a.s. finite
> On the other hand the resolvent of any compact set is finite
- As $\overline{\mathbb{R}}$ is compact itself,

\rightarrow Hunt-Nagasawa duality implies that

$$
G_{z t}(\pm \infty, \overline{\mathbb{Z}})=G_{20}(0, \mathbb{R})<\infty
$$

- A bit of work

Necessity (Heuristic)

- We want to show that if $\pm \infty$ is an entrance point for

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

then necessarily $\int_{\mathbb{R}} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x<\infty$.

- If $\pm \infty$ is an entrance point, then Z can be seen as a Feller process on the compact space $\underline{\mathbb{R}}$.
- Getoor's equivalent definitions of transience:
- On the one hand, last exit from any compact set is a.s. finite
$>$ On the other hand the resolvent of any compact set is finite
\Rightarrow As $\overline{\mathbb{R}}$ is compact itself,

\rightarrow Hunt-Nagasawa duality implies that

$$
G_{21}(\pm \infty, \underline{Z})=G_{20}(0, \mathbb{R})<\infty
$$

- A bit of work

Necessity (Heuristic)

- We want to show that if $\pm \infty$ is an entrance point for

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

then necessarily $\int_{\mathbb{R}} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x<\infty$.

- If $\pm \infty$ is an entrance point, then Z can be seen as a Feller process on the compact space $\underline{\mathbb{R}}$.
- Getoor's equivalent definitions of transience:
- On the one hand, last exit from any compact set is a.s. finite
- On the other hand the resolvent of any compact set is finite
$\Rightarrow A s \mathbb{R}$ is compact itself,

\rightarrow Hunt-Nagasawa duality implies that

$$
G_{Z+}(\pm \infty, \bar{Z})=G_{z_{0}}(0, \mathbb{R})<\infty
$$

- A bit of work

Necessity (Heuristic)

- We want to show that if $\pm \infty$ is an entrance point for

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

then necessarily $\int_{\mathbb{R}} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x<\infty$.

- If $\pm \infty$ is an entrance point, then Z can be seen as a Feller process on the compact space $\underline{\mathbb{R}}$.
- Getoor's equivalent definitions of transience:
- On the one hand, last exit from any compact set is a.s. finite
- On the other hand the resolvent of any compact set is finite
\Rightarrow As $\overline{\mathbb{R}}$ is compact itself,

$$
G_{Z^{\dagger}}(\pm \infty, \overline{\mathbb{R}})<\infty
$$

\rightarrow Hunt-Nagasawa duality implies that

$$
G_{21}(\pm \infty, \bar{Z})=G_{20}(0, \mathbb{R})<\infty
$$

- A bit of work

Necessity (Heuristic)

- We want to show that if $\pm \infty$ is an entrance point for

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

then necessarily $\int_{\mathbb{R}} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x<\infty$.

- If $\pm \infty$ is an entrance point, then Z can be seen as a Feller process on the compact space $\underline{\mathbb{R}}$.
- Getoor's equivalent definitions of transience:
- On the one hand, last exit from any compact set is a.s. finite
$>$ On the other hand the resolvent of any compact set is finite
\Rightarrow As $\overline{\mathbb{R}}$ is compact itself,

$$
G_{Z^{\dagger}}(\pm \infty, \overline{\mathbb{R}})<\infty
$$

- Hunt-Nagasawa duality implies that

$$
G_{Z^{\dagger}}(\pm \infty, \overline{\mathbb{R}})=G_{\hat{Z}^{\circ}}(0, \mathbb{R})<\infty
$$

- A bit of work

Necessity (Heuristic)

- We want to show that if $\pm \infty$ is an entrance point for

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

then necessarily $\int_{\mathbb{R}} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x<\infty$.

- If $\pm \infty$ is an entrance point, then Z can be seen as a Feller process on the compact space $\underline{\mathbb{R}}$.
- Getoor's equivalent definitions of transience:
- On the one hand, last exit from any compact set is a.s. finite
$>$ On the other hand the resolvent of any compact set is finite
\Rightarrow As $\overline{\mathbb{R}}$ is compact itself,

$$
G_{Z^{\dagger}}(\pm \infty, \overline{\mathbb{R}})<\infty
$$

- Hunt-Nagasawa duality implies that

$$
G_{Z^{\dagger}}(\pm \infty, \overline{\mathbb{R}})=G_{\hat{Z}^{\circ}}(0, \mathbb{R})<\infty
$$

- A bit of work
$\infty>G_{\hat{Z}^{\circ}}(0, \overline{\mathbb{R}}) \approx G_{\hat{Z}^{\circ}}(x, \mathbb{R})=\int_{\mathbb{R}} G_{\hat{X}^{\dagger}}(x, \mathrm{~d} y) \frac{\hat{h}(y)}{\hat{h}(x)} \sigma(1 / y)^{-\alpha}|y|^{-2 \alpha} \approx \int_{\mathbb{R}} \sigma(x)^{-\alpha}|x|^{\alpha-1} \mathrm{~d} x$,
for any $x \in \mathbb{R}$.

DIFFICULTIES IN OTHER REGIMES

- Two sided jumps
$\quad \alpha \leq 1$ Cannot hit the origin, so cannot time reverse from the origin or condition to avoid the origin
- $\alpha=1$ Can time reverse from first entry into strip $(-1,1)$
$\quad \alpha<1$ Can do the same as $\alpha=1$ but cannot control the time change to explosion
- One sided jumps
\Rightarrow In the (negative) subordinator cases, don't need to look at conditioned processes on time reversal
* For the unbounded variation spectratly one-sided case, end up looking at conditioning to stay positive or negative instead of conditioning to avoid the origin

DIFFICULTIES IN OTHER REGIMES

- Two sided jumps
- $\alpha \leq 1$ Cannot hit the origin, so cannot time reverse from the origin or condition to avoid the origin
- $\alpha=1$ Can time reverse from first entry into strip $(-1,1)$
$>\alpha<1$ Can do the same as $\alpha=1$ but cannot control the time change to explosion
- One sided jumps
- In the (negative) subordinator cases, don't need to look at conditioned processes on time reversal
- For the unbounded variation spectrally one-sided case, end up looking at conditioning to stay positive or negative instead of conditioning to avoid the origin

EXPLOSION (EXIT AT INFINITY)

Theorem (Döring \& K. (2018))

Suppose that $\sigma>0$ and let

$$
I^{\sigma, \alpha}(A)=\int_{A} \sigma(x)^{-\alpha}|x|^{\alpha-1} d x
$$

Then the following table exhaustively summarises finite time explosion for

$$
d Z_{t}=\sigma\left(Z_{t-}\right) d X_{t}, \quad Z_{0}=z \in \mathbb{R}, t \geq 0
$$

Necessary and sufficient conditions for exit at infinite boundary points				
α	Jumps	$+\infty$	$-\infty$	$\pm \infty$
< 1	only \downarrow only \uparrow $\uparrow \& \downarrow$	$\begin{aligned} & \hline \bar{x} \\ & \sqrt{\text { iff } I^{\sigma, \alpha}}\left(\mathbb{R}_{+}\right)<\infty \\ & x \end{aligned}$	$\bar{V}_{\text {iff } I^{\sigma, \alpha}}\left(\mathbb{R}_{-}\right)<\infty$ x x	$\begin{aligned} & \hline \hline x \\ & x \\ & \boldsymbol{J}_{\text {iff } I^{\sigma, \alpha}}(\mathbb{R})<\infty \\ & \hline \end{aligned}$
$=1$	$\uparrow \& \downarrow$	x	x	x
> 1	only \downarrow only \uparrow $\uparrow \& \downarrow$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \end{aligned}$
$=2$	none	x	x	x

Thank you!

[^0]: A change of space via the so-called scale function (say s which makes $\left(s\left(X_{t}\right), t \geq 0\right)$ a martingale)

[^1]: Technical point: when $\alpha \in(1,2)$, the origin is a recurrent point, hence as $\sigma>0$, $T=\infty$.

[^2]: - Suffices to check

[^3]: Remark on proof: Important step is to prove weak duality:

