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Radiation transport equations
Where’s the math?

Boltzmann transport equation

Let  =  (y) =  (t,x,⌦, e) : R7 ! R denote angular flux

@t (y) +⌦ ·rx (y)| {z }
Transport

+�T (x, e)
| {z }

Total cross section

 (y) =

Z

e0

Z

⌦0
�S(x,⌦

0 ! ⌦, e0 ! e)
| {z }
Scattering cross section

 (t,x,⌦0, e0) d⌦0 de0

+ BCs, ICs, source terms

Wot?

I Transport at x in direction ⌦
I Total macroscopic cross section at x with energy e. The e↵ective target area of all of the nuclei contained in the

volume of the material.
I Probability of a proton with energy e0 and direction ⌦0 scattering at x with new energy e and new direction ⌦.
I Cross sections are properties of the medium.

https://tristanpryer.com



Types of radiation transport problems
Ø Criticality 



Types of radiation transport problems
Ø Shielding

Kobayashi et al. (2000). “3-D Radiation Transport Benchmark Problems and 
Results for Simple Geometries with Void Regions”, NEA-OECD 



Types of radiation transport problems
Ø Forward modelling



Types of radiation transport problems
Ø Inverse modelling



Traditional MC code structure

Ø Focus on the function 
of components

Ø Circular dependence 
of components

8
T. Adams, et al., Monte Carlo Application ToolKit (MCATK), Ann. Nucl. En., 82, 41-47, 2015



https://mathrad.ac.uk/
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PROTON BEAM FACILITY UCLH
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PROTON BEAM SDE

A special kind of Stochastic Differential Equation models the energy deposition of
individual proton streams: Y` = (✏`, r`,⌦`)

I ✏` is the energy of the proton stream after it has traversed a distance `

I r` is the position of the proton stream after it covers a distance `

I ⌦` is the direction of travel of the proton after it covers a distance `.

✏` = ✏0 �
Z `

0
&(Yl�)dl �

Z `

0
(1 � u)✏l�Nne(Yl�;dl,d⌦0,du)

r` = r0 +

Z `

0
⌦ldl

⌦` = ⌦0 �
Z `

0
m(Yl)

2⌦ldl +

Z `

0
m(Yl�)⌦l ^ dBl

+

Z `

0

Z

S2

(⌦0 � ⌦l�)Ne(Yl�;dl,d⌦0) +

Z `

0

Z 1

0

Z

S2

(⌦0 � ⌦l�)Nne(Yl�;dl,d⌦0,du)
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TECHNICALITIES

I Does does law of the solution (✏`, r`,⌦`) to this SDE have a density with respect
to Lebesgue measure on (0,1)⇥ D ⇥ S2?

I Important because: We can define for a test function f on (0,1)⇥ D ⇥ S2 (the
configuration space of the solution), the ‘interrogation’ potential of where (and
how much) energy is deposited along its stochastic path:

U[f ] = �E
Z ⇤

0
f (Y`�)d✏`

�
,

here ⇤ is the total distance covered by the proton stream and Y` = (✏`, r`,⌦`)

I If we define

D[f ] := � lim
"!0

1
"
E
Z ⇤

0

⇣
f (r` + "⌦`)� f (r`)

⌘
d ✏`

�

=

Z

⌥
⌦ ·rrf (r) u(z) d z,

where u(z) is a density associated to U[f ].
I Because of the existence of the density, we can appeal to duality to tell us that

D[f ] = h(⌦ ·rr)[f ], ui = �hf , (⌦ ·rr)[u]i.
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BRAGG MANIFOLD

We defined the path Bragg manifold to be the quantity

b(z) = �⌦ ·rru(z).

As alluded to above, this is the average rate of directional energy deposition at
configuration z = (✏, r,⌦) 2 ⌥ in the sequential proton track.
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NEUTRON TRANSPORT EQUATION

Neutron flux is thus identified as  g : D ⇥ V ! [0,1), which solves the
integro-differential equation

@ g

@t
(t, r, �) + � ·r g(t, r, �) + �(r, �) g(t, r, �)

=

Z

V

 g(r, �
0, t)�s(r, �

0)⇡s(r, �
0, �)d�0 +

Z

V

 g(r, �
0, t)�f(r, �

0)⇡f(r, �
0, �)d�0,

where the different components are measurable in their dependency on (r, �) and are
explained as follows:

�s(r, �
0) : the rate at which scattering occurs from incoming velocity �0,

�f(r, �
0) : the rate at which fission occurs from incoming velocity �0,

�(r, �) : the sum of the rates �f + �s and is known as the cross section,

⇡s(r, �
0, �)d�0 : the scattering yield at velocity � from incoming velocity �0,

satisfying ⇡s(r, �,V) = 1,

⇡f(r, �
0, �)d�0 : the average neutron yield at velocity � from fission with

incoming velocity �0, satisfying ⇡f(r, �,V) < 1

We will assume that all quantities are uniformly bounded away from zero and infinity.
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BOUNDARY CONDITIONS

I Boundary conditions which represent ‘fission containment’
8
<

:

 g(0, r, �) = g(r, �) for r 2 D, � 2 V, (initial condition)

 g(t, r, �) = g(r, �) = 0 for r 2 @D if � · nr < 0, (neutron annihilation)

I nr is the outward facing normal of D at r 2 @D

I g : D ⇥ V ! [0,1) is a bounded, measurable function which we will later assume
has some additional properties.
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(FORWARD !BACKWARDS) NEUTRON TRANSPORT EQUATION

I Hence, with similar computations, this tells us that, for f , g 2 L2(D ⇥ V),

hf , (T+ S+ F)gi = h(T + S + F)f , gi,

where
8
>>><

>>>:

T f (r, �) := � ·rf (r, �) (backwards transport)

Sf (r, �) := �s(r, �)
R

V
f (r, �0)⇡s(r, �, �0)d�0 � �s(r, �)f (r, �) (backwards scattering)

F f (r, �) := �f(r, �)
R

V
f (r, �0)⇡f(r, �, �0)d�0 � �f(r, �)f (r, �) (backwards fission)

I This leads us to the so called backwards neutron transport equation (which is also
known as the adjoint neutron transport equation) given by the Abstract Cauchy
Problem on L2(D ⇥ V),

@ g

@t
(t, ·, ·) = (T + S + F) g(t, ·, ·)

with additional boundary conditions
8
<

:

 g(0, r, �) = g(r, �) for r 2 D, � 2 V,

 g(t, r, �) = 0 for r 2 @D if � · nr > 0.
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UNDERLYING STOCHASTICS (LEADING TO MONTE-CARLO)
I Backwards equation lends itself well to stochastic representation,

@ g

@t
(t, r, �) = � ·r g(t, r, �)� �(r, �) g(t, r, �)

+ �s(r, �)

Z

V

 g(r, �
0, t)⇡s(r, �, �

0)d�0 + �f(r, �)

Z

V

 g(r, �
0, t)⇡f(r, �, �

0)d�0,

I The physical process of fission is a Markov-additive branching process (neutron

branching process).
I Represented by a configuration of physical location and velocity of particles in

D ⇥ V, say {(ri(t), �i(t)) : i = 1, . . . ,Nt}, where Nt is the number of particles alive
at time t � 0.

I Represent as a process in the space of the atomic measures

Xt(A) =
NtX

i=1

�(ri(t),�i(t))(A), A 2 B(D ⇥ V), t � 0,

where � is the Dirac measure, define on B(D ⇥ V), the Borel subsets of D.
I Then the stochastic representation of the backwards NTE is nothing more than

�t[g](r, �) = E�(r,�)
[hg,Xti] = E�(r,�)

2

4
NtX

i=1

g(ri(t), �i(t))

3

5 , t � 0.
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NEUTRON BRANCHING PROCESS

D
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MILD EQUATION
I Define for g 2 L

+
1(D ⇥ V), the (physical process) expectation semigroup

�t[g](r, �) := E�(r,�)
[hg,Xti], t � 0, r 2 D, � 2 V,

and the advection semigroup

Ut[g](r, �) = g(r + �t, �)1{t<D
r,�}, t � 0.

where D
r,� := inf{t > 0 : r + �t 62 D}.

Lemma
When g 2 L

+
1(D ⇥ V), the space of non-negative functions in L

+
1(D ⇥ V), the expectation

semigroup (�t[g], t � 0) is the unique bounded solution to the mild equation

�t[g] = Ut[g] +

Z
t

0
Us[(S + F)�t�s[g]]ds, t � 0.

Lemma
The mild solution (�t, t � 0), is equal on L2(D ⇥ V) to ( g(t, ·, ·), t � 0) and dual to

( g(t, ·, ·), t � 0) on L2(D ⇥ V), i.e.

hf ,�t[g]i = hf , g(t, ·, ·)i = h f (t, ·, ·), gi

for all f , g 2 L2(D ⇥ V).
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�-EIGENVALUE PROBLEM

I So far
hf ,�t[g]i = h f (t, ·, ·), gi

for all f , g 2 L2(D ⇥ V)

I We want to play with the eigenfunction '̃ 2 L2(D ⇥ V), e.g.

hf ,�t['̃]i = h f (t, ·, ·), '̃i = e�thf , '̃i

suggesting (at least in the L2(D ⇥ V) sense)

�t['̃](r, �) = E�(r,�)
[h'̃,Xti] := e�t'̃(r, �)

) points us towards Monte-Carlo methods - especially when � = 0

I Problem! No good unless '̃ 2 L
+
1(D ⇥ V), but we only know '̃ 2 L

+
2 (D ⇥ V)
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PERRON-FROBENIUS

Theorem (Horton, K., Villemonais, 2018)
Suppose that

I D is non-empty and convex;

I Cross-sections �s, �f, ⇡s and ⇡f are uniformly bounded away from infinity;

I infr2D,�,�02V (�s(r, �)⇡s(r, �, �0) + �f(r, �)⇡f(r, �, �0)) > 0

Then, for the semigroup (�t, t � 0), there exists a �⇤ 2 R, a positive1 right eigenfunction

' 2 L
+
1(D ⇥ V) and a left eigenmeasure which is absolutely continuous with respect to

Lebesgue measure on D ⇥ V with density '̃ 2 L
+
1(D ⇥ V), both having associated eigenvalue

e�⇤t, and such that ' (resp. '̃) is uniformly (resp. a.e. uniformly) bounded away from zero on

each compactly embedded subset of D ⇥ V. In particular, for all g 2 L
+
1(D ⇥ V),

h'̃,�t[g]i = e�⇤th'̃, gi (resp. �t['] = e�⇤t') t � 0.

Moreover, there exists " > 0 such that

sup
g2L

+
1(D⇥V):||g||11

���e��⇤t'�1�t[g]� h'̃, gi
���
1

= O(e�"t) as t ! 1.

1To be precise, by a positive eigenfunction, we mean a mapping from D ⇥ V ! (0,1). This does not prevent it
being valued zero on @D, as D is an open bounded, convex domain.
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�-EIGENVALUE AND MONTE-CARLO LOGIC

I Suppose now we can efficiently simulate the Neutron branching process, recalling
that

�t[g](r, �) := E�(r,�)
[hg,Xti], t � 0, r 2 D, � 2 V,

I

�⇤ = lim
t!1

1
t
log �t[g](r, �) = lim

t!1

1
t
logE�(r,�)

[hg,Xti], t � 0, r 2 D, � 2 V.
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MONTE-CARLO IS STILL DIFFICULT
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MONTE-CARLO, IMPORTANCE MAP '̃
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MANY-TO-ONE AND MONTE-CARLO PARALLELISATION

I The representation T + S + F = L+ �, where

Lf (r, �) = � ·rf (r, �, t) + ↵(r, �)

Z

V

�
f (r, �0, t)� f (r, �, t)

�
⇡(r, �, �0)d�0.

This is the Markov generator of a neutron random walk (NRW) (R,⌥) (scatters at
rate ↵ and chooses new velocity with distribution ⇡) with probabilities
(P(r,�), r 2 D, � 2 V). We have a new representation in terms of (R,⌥),

�t[g](r, �) = E�(r,�)
[hg,Xti] = E(r,�)

h
e
R

t

0 �(Ru,⌥u)du
g(Rt,⌥t)1(t<⌧D)

i
,

for t � 0, r 2 D, � 2 V, where

⌧D = inf{t > 0 : Rt 62 D}.

I This affords the opportunity to avoid simulating entire trees:

D

can be replaced by

D
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INTERACTING PARTICLE MONTE-CARLO
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Thank you!


