Mathematics of Radiation Transport Modelling

through the eyes of a probabilist

Andreas Kyprianou Department of Statistics, University of Warwick

Radiation transport equations

Boltzmann transport equation

Let $\psi = \psi(\boldsymbol{y}) = \psi(t, \boldsymbol{x}, \boldsymbol{\Omega}, e) : \mathbb{R}^7 \to \mathbb{R}$ denote angular flux

$$\underbrace{\partial_t \psi(\boldsymbol{y}) + \boldsymbol{\Omega} \cdot \nabla_{\boldsymbol{x}} \psi(\boldsymbol{y})}_{\text{Transport}} + \underbrace{\sigma_T(\boldsymbol{x}, e)}_{\text{Total cross section}} \psi(\boldsymbol{y}) = \int_{e'} \int_{\boldsymbol{\Omega}'} \underbrace{\sigma_S(\boldsymbol{x}, \boldsymbol{\Omega}' \to \boldsymbol{\Omega}, e' \to e)}_{\text{Scattering cross section}} \psi(t, \boldsymbol{x}, \boldsymbol{\Omega}', e') \, \mathrm{d}\boldsymbol{\Omega}' \, \mathrm{d}e'$$

+ BCs, ICs, source terms

> Criticality

Shielding

Kobayashi et al. (2000). "3-D Radiation Transport Benchmark Problems and Results for Simple Geometries with Void Regions", NEA-OECD

Forward modelling

Inverse modelling

Traditional MC code structure

- Focus on the function of components
- Circular dependence of components

Research ~ Opp

Opportunities

Partners Meet the team

eam News & Events

WARWICK

s Contact

BATH UNIVERSITY OF CAMBRIDGE

Application Areas

Home

NPL®

Nuclear engineering

The design of new plants and decommissioning of existing power stations takes us to a sustainable energy future.

More info ⊻

Radiotherapy

New medical treatments such as proton beam therapy are addressing the need for treatments of difficult cancers while minimising the damage to surrounding tissues.

Space technologies

The UK space industry is undergoing rapid expansion and needs developments e.g. for shielding of satellites and astronauts, power sources for extraterrestrial bases and nuclear-powered space exploration

More info ∖

More info \bowtie

https://mathrad.ac.uk/

Benefits of PBT

- Spare healthy tissue- reduce risk of secondary malignancies
- Escalate the dose to the target to curative levels
- Re-irradiation settings

Interactions

- Ionization (Coulomb effect)
- Coulomb interactions with atomic nucleus
- Nuclear interactions with atomic nucleus

Slow loss of energy due to Coulomb interactions with

PROTON BEAM FACILITY UCLH

PROTON BEAM SDE

A special kind of Stochastic Differential Equation models the energy deposition of individual proton streams: $Y_{\ell} = (\epsilon_{\ell}, r_{\ell}, \Omega_{\ell})$

- ϵ_{ℓ} is the energy of the proton stream after it has traversed a distance ℓ
- ▶ r_{ℓ} is the position of the proton stream after it covers a distance ℓ
- Ω_{ℓ} is the direction of travel of the proton after it covers a distance ℓ .

$$\begin{split} \epsilon_{\ell} &= \epsilon_0 - \int_0^{\ell} \varsigma(Y_{l-}) \mathrm{d}l - \int_0^{\ell} (1-u) \epsilon_{l-} N_{n\ell}(Y_{l-}; \mathrm{d}l, \mathrm{d}\Omega', \mathrm{d}u) \\ r_{\ell} &= r_0 + \int_0^{\ell} \Omega_l \mathrm{d}l \\ \Omega_{\ell} &= \Omega_0 - \int_0^{\ell} m(Y_l)^2 \Omega_l \mathrm{d}l + \int_0^{\ell} m(Y_{l-}) \Omega_l \wedge \mathrm{d}B_l \\ &+ \int_0^{\ell} \int_{\mathbb{S}_2} (\Omega' - \Omega_{l-}) N_{\ell}(Y_{l-}; \mathrm{d}l, \mathrm{d}\Omega') + \int_0^{\ell} \int_0^1 \int_{\mathbb{S}_2} (\Omega' - \Omega_{l-}) N_{n\ell}(Y_{l-}; \mathrm{d}l, \mathrm{d}\Omega', \mathrm{d}u) \end{split}$$

TECHNICALITIES

- Does does law of the solution (ε_ℓ, r_ℓ, Ω_ℓ) to this SDE have a density with respect to Lebesgue measure on (0, ∞) × D × S₂?
- ▶ Important because: We can define for a test function f on $(0, \infty) \times D \times S_2$ (the configuration space of the solution), the 'interrogation' potential of where (and how much) energy is deposited along its stochastic path:

$$U[f] = -\mathbb{E}\left[\int_0^{\Lambda} f(Y_{\ell-}) \mathrm{d}\epsilon_{\ell}\right],$$

here Λ is the total distance covered by the proton stream and $Y_{\ell} = (\epsilon_{\ell}, r_{\ell}, \Omega_{\ell})$ For the define

$$D[f] := -\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \mathbb{E} \left[\int_0^\Lambda \left(f(r_\ell + \varepsilon \Omega_\ell) - f(r_\ell) \right) \mathrm{d} \, \epsilon_\ell \right]$$
$$= \int_{\Upsilon} \Omega \cdot \nabla_r f(r) \, u(z) \, \mathrm{d} \, z,$$

where u(z) is a density associated to U[f].

Because of the existence of the density, we can appeal to duality to tell us that

$$D[f] = \langle (\Omega \cdot \nabla_r)[f], u \rangle = -\langle f, (\Omega \cdot \nabla_r)[u] \rangle.$$

17/19 《 다 〉 《 큔 〉 《 흔 〉 《 흔 〉 《 흔 〉 《 큰 〉 《 은 〉

BRAGG MANIFOLD

We defined the path Bragg manifold to be the quantity

$$b(z) = -\Omega \cdot \nabla_r u(z).$$

As alluded to above, this is the average rate of directional energy deposition at configuration $z = (\epsilon, r, \Omega) \in \Upsilon$ in the sequential proton track.

NEUTRON TRANSPORT EQUATION

Neutron flux is thus identified as $\Psi_g : D \times V \to [0, \infty)$, which solves the integro-differential equation

$$\begin{split} &\frac{\partial \Psi_g}{\partial t}(t,r,\upsilon) + \upsilon \cdot \nabla \Psi_g(t,r,\upsilon) + \sigma(r,\upsilon) \Psi_g(t,r,\upsilon) \\ &= \int_V \Psi_g(r,\upsilon',t) \sigma_{\mathtt{s}}(r,\upsilon') \pi_{\mathtt{s}}(r,\upsilon',\upsilon) d\upsilon' + \int_V \Psi_g(r,\upsilon',t) \sigma_{\mathtt{f}}(r,\upsilon') \pi_{\mathtt{f}}(r,\upsilon',\upsilon) d\upsilon', \end{split}$$

where the different components are measurable in their dependency on (r, v) and are explained as follows:

$$\begin{split} \sigma_{\mathrm{s}}(r,v'): & \text{ the rate at which scattering occurs from incoming velocity } v', \\ \sigma_{\mathrm{f}}(r,v'): & \text{ the rate at which fission occurs from incoming velocity } v', \\ \sigma(r,v): & \text{ the sum of the rates } \sigma_{\mathrm{f}} + \sigma_{\mathrm{s}} \text{ and is known as the cross section,} \\ \pi_{\mathrm{s}}(r,v',v)\mathrm{d}v': & \text{ the scattering yield at velocity } v \text{ from incoming velocity } v', \\ & \text{ satisfying } \pi_{\mathrm{s}}(r,v,V) = 1, \\ \pi_{\mathrm{f}}(r,v',v)\mathrm{d}v': & \text{ the average neutron yield at velocity } v \text{ from fission with} \\ & \text{ incoming velocity } v', \text{ satisfying } \pi_{\mathrm{f}}(r,v,V) < \infty \end{split}$$

We will assume that all quantities are uniformly bounded away from zero and infinity.

Boundary conditions which represent 'fission containment'

$$\begin{split} \Psi_g(0,r,\upsilon) &= g(r,\upsilon) & \text{for } r \in D, \upsilon \in V, \text{ (initial condition)} \\ \Psi_g(t,r,\upsilon) &= g(r,\upsilon) = 0 & \text{for } r \in \partial D \text{ if } \upsilon \cdot \mathbf{n}_r < 0, \text{ (neutron annihilation)} \end{split}$$

- ▶ \mathbf{n}_r is the outward facing normal of *D* at $r \in \partial D$
- ▶ $g: D \times V \rightarrow [0, \infty)$ is a bounded, measurable function which we will later assume has some additional properties.

うせい ひょうしょう マート・ション シング

(Forward \rightarrow Backwards) Neutron Transport Equation

▶ Hence, with similar computations, this tells us that, for $f, g \in L^2(D \times V)$,

$$\langle f, (\mathbf{T} + \mathbf{S} + \mathbf{F})g \rangle = \langle (\mathcal{T} + \mathcal{S} + \mathcal{F})f, g \rangle,$$

where

$$\begin{cases} \mathcal{T}f(r,\upsilon) &:= \upsilon \cdot \nabla f(r,\upsilon) & \text{(backwards transport)} \\ Sf(r,\upsilon) &:= \sigma_{s}(r,\upsilon) \int_{V} f(r,\upsilon') \pi_{s}(r,\upsilon,\upsilon') d\upsilon' - \sigma_{s}(r,\upsilon) f(r,\upsilon) & \text{(backwards scattering)} \\ \mathcal{F}f(r,\upsilon) &:= \sigma_{f}(r,\upsilon) \int_{V} f(r,\upsilon') \pi_{f}(r,\upsilon,\upsilon') d\upsilon' - \sigma_{f}(r,\upsilon) f(r,\upsilon) & \text{(backwards fission)} \end{cases}$$

▶ This leads us to the so called *backwards neutron transport equation* (which is also known as the *adjoint neutron transport equation*) given by the Abstract Cauchy Problem on $L^2(D \times V)$,

$$\frac{\partial \psi_g}{\partial t}(t,\cdot,\cdot) = (\mathcal{T} + \mathcal{S} + \mathcal{F})\psi_g(t,\cdot,\cdot)$$

with additional boundary conditions

$$\begin{cases} \psi_g(0, r, \upsilon) = g(r, \upsilon) & \text{ for } r \in D, \upsilon \in V, \\ \psi_g(t, r, \upsilon) = 0 & \text{ for } r \in \partial D \text{ if } \upsilon \cdot \mathbf{n}_r > 0. \end{cases}$$

UNDERLYING STOCHASTICS (LEADING TO MONTE-CARLO)

Backwards equation lends itself well to stochastic representation,

$$\begin{aligned} \frac{\partial \psi_g}{\partial t}(t,r,\upsilon) &= \upsilon \cdot \nabla \psi_g(t,r,\upsilon) - \sigma(r,\upsilon)\psi_g(t,r,\upsilon) \\ &+ \sigma_{\mathtt{s}}(r,\upsilon) \int_V \psi_g(r,\upsilon',t)\pi_{\mathtt{s}}(r,\upsilon,\upsilon') \mathrm{d}\upsilon' + \sigma_{\mathtt{f}}(r,\upsilon) \int_V \psi_g(r,\upsilon',t)\pi_{\mathtt{f}}(r,\upsilon,\upsilon') \mathrm{d}\upsilon' \end{aligned}$$

- The physical process of fission is a Markov-additive branching process (*neutron branching process*).
- ▶ Represented by a configuration of physical location and velocity of particles in $D \times V$, say $\{(r_i(t), v_i(t)) : i = 1, ..., N_t\}$, where N_t is the number of particles alive at time $t \ge 0$.
- Represent as a process in the space of the atomic measures

$$X_t(A) = \sum_{i=1}^{N_t} \delta_{(r_i(t), \upsilon_i(t))}(A), \qquad A \in \mathcal{B}(D \times V), \ t \ge 0,$$

where δ is the Dirac measure, define on $\mathcal{B}(D \times V)$, the Borel subsets of *D*.

▶ Then the stochastic representation of the backwards NTE is nothing more than

$$\phi_t[g](r,\upsilon) = \mathbb{E}_{\delta_{(r,\upsilon)}}[\langle g, X_t \rangle] = \mathbb{E}_{\delta_{(r,\upsilon)}}\left[\sum_{i=1}^{N_t} g(r_i(t),\upsilon_i(t))\right], \quad t \ge 0.$$

NEUTRON BRANCHING PROCESS

MILD EQUATION

▶ Define for $g \in L^+_{\infty}(D \times V)$, the (physical process) expectation semigroup

$$\phi_t[g](r,\upsilon) := \mathbb{E}_{\delta_{(r,\upsilon)}}[\langle g, X_t \rangle], \qquad t \ge 0, r \in D, \upsilon \in V,$$

and the advection semigroup

$$U_t[g](r,\upsilon) = g(r+\upsilon t,\upsilon)\mathbf{1}_{\{t<\kappa^D_{r,\upsilon}\}}, \qquad t\geq 0.$$

where $\kappa_{r,\upsilon}^D := \inf\{t > 0 : r + \upsilon t \notin D\}.$

Lemma

When $g \in L^+_{\infty}(D \times V)$, the space of non-negative functions in $L^+_{\infty}(D \times V)$, the expectation semigroup $(\phi_t[g], t \ge 0)$ is the unique bounded solution to the mild equation

$$\phi_t[g] = \mathbb{U}_t[g] + \int_0^t \mathbb{U}_s[(\mathcal{S} + \mathcal{F})\phi_{t-s}[g]] \mathrm{d}s, \qquad t \ge 0.$$

Lemma

The mild solution $(\phi_t, t \ge 0)$, is equal on $L_2(D \times V)$ to $(\psi_g(t, \cdot, \cdot), t \ge 0)$ and dual to $(\Psi_g(t, \cdot, \cdot), t \ge 0)$ on $L_2(D \times V)$, i.e.

$$\langle f, \phi_t[g] \rangle = \langle f, \psi_g(t, \cdot, \cdot) \rangle = \langle \Psi_f(t, \cdot, \cdot), g \rangle$$

for all $f, g \in L_2(D \times V)$.

7/19

λ -eigenvalue problem

So far

$$\langle f, \phi_t[g] \rangle = \langle \Psi_f(t, \cdot, \cdot), g \rangle$$

for all $f, g \in L_2(D \times V)$

• We want to play with the eigenfunction $\tilde{\varphi} \in L_2(D \times V)$, e.g.

$$\langle f, \phi_t[\tilde{\varphi}] \rangle = \langle \Psi_f(t, \cdot, \cdot), \tilde{\varphi} \rangle = \mathrm{e}^{\lambda t} \langle f, \tilde{\varphi} \rangle$$

suggesting (at least in the $L_2(D \times V)$ sense)

$$\phi_t[\tilde{\varphi}](r,\upsilon) = \mathbb{E}_{\delta_{(r,\upsilon)}}[\langle \tilde{\varphi}, X_t \rangle] := e^{\lambda t} \tilde{\varphi}(r,\upsilon)$$

8/19

- コン・4回シュ ヨシュ ヨン・9 くの

 \Rightarrow points us towards Monte-Carlo methods - especially when $\lambda = 0$

▶ Problem! No good unless $\tilde{\varphi} \in L^+_{\infty}(D \times V)$, but we only know $\tilde{\varphi} \in L^+_2(D \times V)$

PERRON-FROBENIUS

Theorem (Horton, K., Villemonais, 2018)

Suppose that

- *D is non-empty and convex;*
- Cross-sections σ_s , σ_f , π_s and π_f are uniformly bounded away from infinity;
- $\blacktriangleright \inf_{r \in D, \upsilon, \upsilon' \in V} \left(\sigma_s(r, \upsilon) \pi_s(r, \upsilon, \upsilon') + \sigma_f(r, \upsilon) \pi_f(r, \upsilon, \upsilon') \right) > 0$

Then, for the semigroup $(\phi_t, t \ge 0)$, there exists a $\lambda_* \in \mathbb{R}$, a positive¹ right eigenfunction $\varphi \in L^+_{\infty}(D \times V)$ and a left eigenmeasure which is absolutely continuous with respect to Lebesgue measure on $D \times V$ with density $\tilde{\varphi} \in L^+_{\infty}(D \times V)$, both having associated eigenvalue $e^{\lambda_* t}$, and such that φ (resp. $\tilde{\varphi}$) is uniformly (resp. a.e. uniformly) bounded away from zero on each compactly embedded subset of $D \times V$. In particular, for all $g \in L^+_{\infty}(D \times V)$,

$$\langle \tilde{\varphi}, \phi_t[g] \rangle = e^{\lambda_* t} \langle \tilde{\varphi}, g \rangle$$
 (resp. $\phi_t[\varphi] = e^{\lambda_* t} \varphi$) $t \ge 0$.

Moreover, there exists $\varepsilon > 0$ *such that*

$$\sup_{g\in L^+_{\infty}(D\times V): ||g||_{\infty} \leq 1} \left\| e^{-\lambda_* t} \varphi^{-1} \phi_t[g] - \langle \tilde{\varphi}, g \rangle \right\|_{\infty} = O(e^{-\varepsilon t}) \text{ as } t \to \infty.$$

¹To be precise, by a positive eigenfunction, we mean a mapping from $D \times V \to (0, \infty)$. This does not prevent it ^{9/19} being valued zero on ∂D , as D is an open bounded, convex domain.

$\lambda\text{-}\mathrm{Eigenvalue}$ and Monte-Carlo logic

 Suppose now we can efficiently simulate the Neutron branching process, recalling that

$$\phi_t[g](r,\upsilon) := \mathbb{E}_{\delta_{(r,\upsilon)}}[\langle g, X_t \rangle], \qquad t \ge 0, r \in D, \upsilon \in V,$$

$$\lambda_* = \lim_{t \to \infty} \frac{1}{t} \log \phi_t[g](r, \upsilon) = \lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}_{\delta_{(r, \upsilon)}}[\langle g, X_t \rangle], \qquad t \ge 0, r \in D, \upsilon \in V.$$

MONTE-CARLO IS STILL DIFFICULT

,×

Monte-Carlo, importance map $\tilde{\varphi}$

12/19 《 □ ▷ 《 🗗 ▷ 《 톤 ▷ 《 톤 ▷ 톤 · ♡ 즉 (ි

MANY-TO-ONE AND MONTE-CARLO PARALLELISATION

• The representation $\mathcal{T} + \mathcal{S} + \mathcal{F} = \mathcal{L} + \beta$, where

$$\mathcal{L}f(r,\upsilon) = \upsilon \cdot \nabla f(r,\upsilon,t) + \alpha(r,\upsilon) \int_{V} (f(r,\upsilon',t) - f(r,\upsilon,t)) \pi(r,\upsilon,\upsilon') d\upsilon'.$$

This is the Markov generator of a neutron random walk (NRW) (R, Υ) (scatters at rate α and chooses new velocity with distribution π) with probabilities ($\mathbf{P}_{(r,\upsilon)}, r \in D, \upsilon \in V$). We have a new representation in terms of (R, Υ) ,

$$\phi_t[g](r,\upsilon) = \mathbb{E}_{\delta_{(r,\upsilon)}}[\langle g, X_t \rangle] = \mathbf{E}_{(r,\upsilon)} \left[e^{\int_0^t \beta(R_u, \Upsilon_u) du} g(R_t, \Upsilon_t) \mathbf{1}_{(t < \tau^D)} \right],$$

for $t \ge 0, r \in D, v \in V$, where

$$\tau^D = \inf\{t > 0 : R_t \notin D\}.$$

This affords the opportunity to avoid simulating entire trees:

Interacting particle Monte-Carlo

14/19

Thank you!

2/2